
2.1: PROBLEM DEFINITION

Find:
How density differs from specific weight

PLAN

Consider their definitions (conceptual and mathematical)

SOLUTION

Density is a [mass]/[unit volume], and specific weight is a [weight]/[unit volume].
Therefore, they are related by the equation γ = ρg, and density differs from specific
weight by the factor g , the acceleration of gravity.
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2.2: PROBLEM DEFINITION

Find:
Fluids for which we can (usually) assume density to be nearly constant
Fluids for which density should be calculated as a function of temperature and

pressure?

SOLUTION

Density can usually be assumed to be nearly constant for liquids , such as water, mer-
cury and oil. However, even the density of a liquid varies slightly as a function of
either pressure or temperature. Slight changes in the volume occupied by a given
mass of a liquid as a function of pressure can be calculated using the equation for
elasticity.

One must know the temperature and the pressure to determine the density of a gas .
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2.3: PROBLEM DEFINITION

Find:
Where in this text you can find density data for such fluids as oil and mercury.

SOLUTION

Table A.4 in the Appendix contains density data for such fluids as oil and mercury .
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2.4: PROBLEM DEFINITION

Situation:
An engineer needs to know the local density for an experiment with a glider.
z = 2500 ft.

Find:
Calculate density using local conditions.
Compare calculated density with the value from Table A.2, and make a recommen-

dation.

Properties:
From Table A.2, Rair = 287 J

kg·K , ρ = 1.22 kg/m
3.

Local temperature = 74.3 ◦F = 296.7K.

Local pressure = 27.3 in.-Hg = 92.45 kPa.

PLAN

Apply the ideal gas law for local conditions.

SOLUTION

Ideal gas law

ρ =
p

RT

=
92, 450N/m2

(287 kg/m3) (296.7K)

= 1.086 kg/m3

ρ = 1.09 kg/m3 (local conditions)

Table value. From Table A.2

ρ = 1.22 kg/m3 (table value)

The density difference (local conditions versus table value) is about 12%. Most
of this difference is due to the effect of elevation on atmospheric pressure.

Recommendation—use the local value of density because the effects of elevation are significant .

REVIEW

Note: Always use absolute pressure when working with the ideal gas law.
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2.5: PROBLEM DEFINITION

Situation:
Carbon dioxide.

Find:
Density and specific weight of CO2.

Properties:
From Table A.2, RCO2 = 189 J/kg·K.
p = 300 kPa, T = 60 ◦C.

PLAN

1. First, apply the ideal gas law to find density.
2. Then, calculate specific weight using γ = ρg.

SOLUTION

1. Ideal gas law

ρCO2 =
P

RT

=
300, 000 kPa

(189 J/ kgK) (60 + 273)K

ρCO2 = 4.767 kg/m
3

2. Specific weight
γ = ρg

Thus

γCO2 = ρCO2 × g

= 4.767 kg/m3 × 9.81m/ s2

γCO2 = 46.764 N/m
3

REVIEW

Always use absolute pressure when working with the ideal gas law.
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2.6: PROBLEM DEFINITION

Situation:
Methane gas.

Find:
Density (kg/m3).
Specific weight (N/m3).

Properties:
From Table A.2, RMethane = 518 J

kg·K .
p = 300 kPa, T = 60 ◦C.

PLAN

1. Apply the ideal gas law to find density.
2. Calculate specific weight using γ = ρg.

SOLUTION

1. Ideal gas law

ρMethane =
P

RT

=
300, 000 N

m2

518 J
kg·K(60 + 273K)

ρMethane = 1.74 kg/m
3

2. Specific weight
γ = ρg

Thus

γMethane = ρMethane × g

= 1.74 kg/m3 × 9.81m/ s2

γMethane = 17.1 N/m
3

REVIEW

Always use absolute pressure when working with the ideal gas law.
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2.7: PROBLEM DEFINITION

Situation:
Natural gas is stored in a spherical tank.

Find:
Ratio of final mass to initial mass in the tank.

Properties:
patm = 100 kPa, p1 = 100 kPa-gage.
p2 = 200 kPa-gage, T = 10 ◦C.

PLAN

Use the ideal gas law to develop a formula for the ratio of final mass to initial mass.

SOLUTION

1. Mass in terms of density
M = ρV (1)

2. Ideal gas law
ρ =

p

RT
(2)

3. Combine Eqs. (1) and (2)

M = ρV

= (p/RT )V

4. Volume and gas temperature are constant, so

M2

M1
=

p2
p1

and

M2

M1
=

300 kPa
200 kPa
M2

M1
=1.5
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2.8: PROBLEM DEFINITION

Situation:
Wind and water at 100 ◦C and 5 atm.

Find:
Ratio of density of water to density of air.

Properties:
Air, Table A.2: Rair = 287 J/kg·K.
Water (100oC), Table A.5: ρwater = 958 kg/m

3.

PLAN

Apply the ideal gas law to air.

SOLUTION

Ideal gas law

ρair =
p

RT

=
506, 600 kPa

(287 J/ kgK) (100 + 273)K

= 4.73 kg/m3

For water
ρwater = 958 kg/m

3

Ratio

ρwater
ρair

=
958 kg/m3

4.73 kg/m3

ρwater
ρair

= 203

REVIEW

Always use absolute pressures when working with the ideal gas law.
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2.9: PROBLEM DEFINITION

Situation:
Oxygen fills a tank.
Vtank = 10 ft

3, Wtank = 150 lbf.

Find:
Weight (tank plus oxygen).

Properties:
From Table A.2, RO2 = 1555 ft·lbf/(slug ·o R) .
p = 500 psia, T = 70 ◦F.

PLAN

Apply the ideal gas law to find density of oxygen.
Find the weight of the oxygen using specific weight (γ) and add this to the weight of
the tank.

SOLUTION

1. Ideal gas law

pabs. = 500 psia× 144 psf/psi = 72, 000 psf
T = 460 + 70 = 530◦R

ρ =
p

RT

=
72, 000 psf

(1555 ft lbf/ slugoR) (530oR)

ρ = 0.087 slugs/ft3

2. Specific weight

γ = ρg

= 0.087
slug

ft3
× 32.2 ft

s2

γ = 2.80 lbf/ft3

3. Weight of filled tank

Woxygen = 2.80 lbf/ft3 × 10 ft3

= 28 lbf

Wtotal = Woxygen +Wtank

= 28.0 lbf + 150 lbf

Wtotal = 178 lbf

REVIEW
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1. For compressed gas in a tank, pressures are often very high and the ideal gas
assumption is invalid. For this problem the pressure is about 34 atmospheres—it is
a good idea to check a thermodynamics reference to analyze whether or not real gas
effects are significant.
2. Always use absolute pressure when working with the ideal gas law.
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2.10: PROBLEM DEFINITION

Situation:
Oxygen is released from a tank through a valve.
V = 10m3.

Find:
Mass of oxygen that has been released.

Properties:
RO2 = 260

J
kg·K .

p1 = 800 kPa, T1 = 15 ◦C.
p2 = 600 kPa, T2 = 20 ◦C.

PLAN

1. Use ideal gas law, expressed in terms of density and the gas-specific (not universal)
gas constant.
2. Find the density for the case before the gas is released; and then mass from
density, given the tank volume.
3. Find the density for the case after the gas is released, and the corresponding mass.
4. Calculate the mass difference, which is the mass released.

SOLUTION

1. Ideal gas law

ρ =
p

RT

2. Density and mass for case 1

ρ1 =
800, 000 N

m2

(260 N·m
kg·K)(288K)

ρ1 = 10.68
kg

m3

M1 = ρ1V

= 10.68
kg

m3
× 10m3

M1 = 106.8 kg

3. Density and mass for case 2

ρ2 =
600, 000 N

m2

(260 N·m
kg·K)(288K)

ρ2 = 8.01
kg

m3
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M2 = ρ1V

= 8.01
kg

m3
× 10m3

M1 = 80.1 kg

4. Mass released from tank

M1 −M2 = 106.8− 80.1
M1 −M2 = 26.7 kg
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2.11: PROBLEM DEFINITION

Situation:
Properties of air.

Find:
Specific weight (N/m3).
Density (kg/m3).

Properties:
From Table A.2, R = 287 J

kg·K .
p = 600 kPa, T = 50 ◦C.

PLAN

First, apply the ideal gas law to find density. Then, calculate specific weight using
γ = ρg.

SOLUTION

1. Ideal gas law

ρair =
P

RT

=
600, 000 kPa

(287 J/ kgK) (50 + 273)K

ρair = 6.47 kg/m
3

2. Specific weight

γair = ρair × g

= 6.47 kg/m3 × 9.81m/ s2

γair = 63.5 N/m
3

REVIEW

Always use absolute pressure when working with the ideal gas law.
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2.12: PROBLEM DEFINITION

Situation:
Consider a mass of air in the atmosphere.
V = 1mi3.

Find:
Mass of air using units of slugs and kg.

Properties:
From Table A.2, ρair = 0.00237 slugs/ft

3.

Assumptions:
The density of air is the value at sea level for standard conditions.

SOLUTION

Units of slugs

M = ρV

M = 0.00237 slug
ft3
× (5280)3 ft3

M = 3.49× 108 slugs
Units of kg

M =
¡
3.49× 108 slug

¢
×
µ
14.59

kg

slug

¶
M = 5.09× 109 kg

REVIEW

The mass will probably be somewhat less than this because density decreases with
altitude.
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2.13: PROBLEM DEFINITION

Situation:
For a cyclist, temperature changes affect air density, thereby affecting both aero-

dynamic drag and tire pressure.

Find:
a.) Plot air density versus temperature for a range of -10oC to 50oC.
b.) Plot tire pressure versus temperature for the same temperature range.

Properties:
From Table A.2, Rair = 287 J/kg/K.
Initial conditions for part b: p = 450 kPa, T = 20 ◦C.

Assumptions:
For part b, assume that the bike tire volume does not change.

PLAN

Apply the ideal gas law.

SOLUTION

a.) Ideal gas law

ρ =
p

RT
=

101000 kPa

(287 J/ kgK) (273 + T )

Temperature (o C)
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b.) If the volume is constant, since mass can’t change, then density must be constant.
Thus

p

T
=

po
To

p = 450 kPa

µ
T

20 ◦C

¶
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2.14: PROBLEM DEFINITION

Situation:
Design of a CO2 cartridge to inflate a rubber raft.
Inflation pressure = 3 psi above patm = 17.7 psia = 122 kPa abs.

Find:
Estimate the volume of the raft.
Calculate the mass of CO2 (in grams) to inflate the raft.

Sketch:

Assumptions:
CO2 in the raft is at 62 ◦F = 290K.
Volume of the raft ≈ Volume of a cylinder with D = 0.45m & L = 16m (8 meters

for the length of the sides and 8 meters for the lengths of the ends plus center tubes).

Properties:
CO2, Table A.2, R = 189 J/kg·K.

PLAN

Since mass is related to volume by m = ρV, the steps are:
1. Find volume using the formula for a cylinder.
2. Find density using the ideal gas law (IGL).
3. Calculate mass.

SOLUTION

1. Volume

V =
πD2

4
× L

=

µ
π × 0.452

4
× 16

¶
m3

V = 2.54 m3

17



2. Ideal gas law

ρ =
p

RT

=
122, 000N/m2

(189 J/ kg · K) (290K)
= 2.226 kg/m3

3. Mass of CO2

m = ρV

=
¡
2.226 kg/m3¢ ¡2.54m3¢
m = 5660 g

REVIEW

The final mass (5.66 kg = 12.5 lbm) is large. This would require a large and potentially
expensive CO2 tank. Thus, this design idea may be impractical for a product that is
driven by cost.
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2.15: PROBLEM DEFINITION

Situation:
A helium filled balloon is being designed.
r = 1.3m, z = 80, 000 ft.

Find:
Weight of helium inside balloon.

Properties:
From Table A.2, RHe = 2077 J/kg·K.
p = 0.89 bar = 89 kPa, T = 22 ◦C = 295.2K.

PLAN

Weight is given by W = mg. Mass is related to volume by M = ρ ∗ V. Density can
be found using the ideal gas law.

SOLUTION

Volume in a sphere

V =
4

3
πr3

=
4

3
π (1.3m)3

= 9.203m3

Ideal gas law

ρ =
p

RT

=
89, 000N/m2

(2077 J/ kg · K) (295.2K)
= 0.145 kg/m3

Weight of helium

W = ρ× V × g

=
¡
0.145 kg/m3

¢
×
¡
9.203m3

¢
×
¡
9.81m/ s2

¢
= 13.10N

Weight = 13.1 N
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2.16: PROBLEM DEFINITION

Situation:
Hydrometers are used to measure alcohol content of wine and beer by measuring

specific weight at various stages of fermentation.
Fermentation is described by the following equation:

C6H12O6 → 2(CH3CH2OH) + 2(CO2)

Find:
Final specific gravity of the wine.
Percent alcohol content by volume after fermentation.

Assumptions:
All of the sugar is converted to alcohol.
Initial liquid is only sugar and water.

Properties:
Salcohol = 0.80, Ss = 1.59, Sw = 1.08.

PLAN

Imagine that the initial mixture is pure water plus saturated sugar solution and then
use this visualization to find the mass of sugar that is initially present (per unit
of volume). Next, apply conservation of mass to find the mass of alcohol that is
produced (per unit of volume). Then, solve for the problem unknowns.

SOLUTION

The initial density of the mixture is

ρmix =
ρwVw + ρsVs

Vo

where ρw and ρs are the densities of water and sugar solution (saturated), Vo is the
initial volume of the mixture, and Vs is the volume of sugar solution. The total
volume of the mixture is the volume of the pure water plus the volume of saturated
solution

Vw + Vs = Vo

The specific gravity is initially 1.08. Thus

Si =
ρmix

ρw
= (1− Vs

Vo
) +

ρs
ρw

Vs

Vo

1.08 = (1− Vs

Vo
) + 1.59

Vs

Vo

Vs

Vo
= 0.136
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Thus, the mass of sugar per unit volume of mixture

Ms

Vo
= 1.59× 0.136

= 0.216 kg/m3

The molecular weight of glucose is 180 and ethyl alcohol 46. Thus 1 kg of glucose
converts to 0.51 kg of alcohol so the final density of alcohol is

Ma

Vo
= 0.216× 0.51

= 0.110 kg/m3

The density of the final mixture based on the initial volume is

Mf

Vo
= (1− 0.136) + 0.110

= 0.974 kg/m3

The final volume is altered because of conversion
Vf

Vo
=

Mw

ρwVo
+

Ma

ρaVo

=
Vw

Vo
+
0.51Ms

ρaVo

=
Vw

Vo
+
0.51ρs
ρa

Vs

Vo

= 0.864 +
0.51× 1.59

0.8
× 0.136

= 1.002

The final density is

Mf

Vf
=

Mf

Vo
× Vo

Vf

= 0.974× 1

1.002
= 0.972 kg/m3

The final specific gravity is
Sf = 0.972

The alcohol content by volume

Va

Vf
=

Ma

ρaVf

=
Ma

Vo

1

ρa

Vo

Vf

= 0.110× 1

0.8
× 1

1.002
= 0.137
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Thus,
Percent alcohol by volume = 13.7%
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2.17: PROBLEM DEFINITION

Situation:
Several preview questions about viscosity are answered.

Find:
(a) The primary dimensions of viscosity and five common units of viscosity.
(b) The viscosity of motor oil (in traditional units).
(c) How and why viscosity of water varies with temperature?
(d) How and why viscosity of air varies with temperature?

SOLUTION

a) Primary dimensions of viscosity are [ M
LT
] .

Five common units are:
i) N· s

m2
; ii) dyn· s

cm2
; iii) poise; iv) centipoise; and v) lbf· s

ft2

(b) To find the viscosity of SAE 10W-30 motor oil at 115 ◦F, there are no tablular data
in the text. Therefore, one should use Figure A.2. For traditional units (because
the temperature is given in Fahrenheit) one uses the left-hand axis to report that

μ = 1.2× 10−3 lbf· s
ft2

.

Note: one should be careful to identify the correct factor of 10 for the log cycle that
contains the correct data point. For example, in this problem, the answer is between
1× 10−3 and 1× 10−2. One should be able to determine that the answer is 1.2× 10−3
and not 1× 10−2.

(c) The viscosity of water decreases with increasing temperature . This is true for
all liquids, and is because the loose molecular lattice within liquids, which provides a
given resistance to shear at a relatively cool temperature, has smaller energy barriers
resisting movement at higher temperatures.

(d) The viscosity of air increases with increasing temperature . This is true for all
gases, and is because gases do not have a loose molecular lattice. The only resistance
to shear provided in gases is due to random collision between different layers. As
the temperature increases, there are more likely to be more collisions, and therefore
a higher viscosity.
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2.18: PROBLEM DEFINITION

Situation:
Change in viscosity and density due to temperature.
T1 = 10

◦C, T2 = 70 ◦C.

Find:
Change in viscosity and density of water.
Change in viscosity and density of air.

Properties:
p = 101 kN/m2.

PLAN

For water, use data from Table A.5. For air, use data from Table A.3

SOLUTION

Water

μ70 = 4.04× 10−4 N·s/m2
μ10 = 1.31× 10−3 N·s/m2

∆μ = −9. 06× 10−4 N· s/m2

ρ70 = 978 kg/m
3

ρ10 = 1000 kg/m
3

∆ρ = −22 kg/m3

Air

μ70 = 2.04× 10−5 N · s/m2
μ10 = 1.76× 10−5 N · s/m2

∆μ = 2. 8× 10−6N · s/m2

ρ70 = 1.03 kg/m
3

ρ10 = 1.25 kg/m
3

∆ρ = −0.22 kg/m3
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2.19: PROBLEM DEFINITION

Situation:
Air at certain temperatures.
T1 = 10

◦C, T2 = 70 ◦C.

Find:
Change in kinematic viscosity.

Properties:
From Table A.3, ν70 = 1.99× 10−5 m2/s, ν10 = 1.41× 10−5 m2/s.

PLAN

Use properties found in Table A.3.

SOLUTION

∆vair,10→70 = (1.99− 1.41)× 10−5

∆vair,10→70 = 5.8×10−6m2/s

REVIEW

Sutherland’s equation could also be used to solve this problem.

25



2.20: PROBLEM DEFINITION

Situation:
Viscosity of SAE 10W-30 oil, kerosene and water.
T = 38 ◦C = 100 ◦F.

Find:
Dynamic and kinematic viscosity of each fluid.

PLAN

Use property data found in Table A.4, Fig. A.2 and Table A.5.

SOLUTION

Oil (SAE 10W-30) kerosene water

μ(N · s/m2) 6.7×10−2 1.4×10−3 (Fig. A-2) 6.8×10−4
ρ(kg/m3) 880 814 993

ν(m2/s) 7.6×10−5 1.7×10−6 (Fig. A-2) 6.8×10−7
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2.21: PROBLEM DEFINITION

Situation:
Dynamic and kinematic viscosity of air and water.
T = 20 ◦C.

Find:
Ratio of dynamic viscosity of air to that of water.
Ratio of kinematic viscosity of air to that of water.

Properties:
From Table A.3, μair,20◦C = 1.81× 10−5 N·s/m2; ν = 1.51× 10−5 m2/s
From Table A.5, μwater,20◦C = 1.00× 10−3 N·s/m2; ν = 1.00× 10−6 m2/s

SOLUTION

Dynamic viscosity

μair
μwater

=
1.81× 10−5N · s/m2
1.00× 10−3N · s/m2
μair
μwater

= 1.81×10−2

Kinematic viscosity

νair
νwater

=
1.51× 10−5m2/ s
1.00× 10−6m2/ s
νair
νwater

= 5.1
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2.22: PROBLEM DEFINITION

Situation:
Sutherland’s equation and the ideal gas law describe behaviors of common gases.

Find:
Develop an expression for the kinematic viscosity ratio ν/νo, where ν is at temper-

ature T and pressure p.

Assumptions:
Assume a gas is at temperature To and pressure po, where the subscript ”o” defines

the reference state.

PLAN

Combine the ideal gas law and Sutherland’s equation.

SOLUTION

The ratio of kinematic viscosities is

ν

νo
=

μ

μo

ρo
ρ
=

µ
T

To

¶3/2
To + S

T + S

po
p

T

To

ν

νo
=

po
p

µ
T

To

¶5/2
To + S

T + S
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2.23: PROBLEM DEFINITION

Situation:
The dynamic viscosity of air.
μo = 1.78× 10−5 N·s/m2.
To = 15

◦C, T = 100 ◦C.

Find:
Dynamic viscosity μ.

Properties:
From Table A.2, S = 111K.

SOLUTION

Sutherland’s equation

μ

μo
=

µ
T

To

¶3/2
To + S

T + S

=

µ
373K

288K

¶3/2
288K + 111K

373K + 111K
μ

μo
= 1.21

Thus

μ = 1.21μo
= 1.21×

¡
1.78× 10−5N · s/m2

¢
μ = 2.15× 10−5 N·s/m2
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2.24: PROBLEM DEFINITION

Situation:
Methane gas.
vo = 1.59× 10−5m2/ s.
To = 15

◦C, T = 200 ◦C.
po = 1atm, p = 2atm.

Find:
Kinematic viscosity (m2/ s).

Properties:
From Table A.2, S = 198K.

PLAN

Apply the ideal gas law and Sutherland’s equation.

SOLUTION

ν =
μ

ρ
ν

νo
=

μ

μo

ρo
ρ

Ideal-gas law
ν

νo
=

μ

μo

po
p

T

To

Sutherland’s equation
ν

νo
=

po
p

µ
T

To

¶5/2
To + S

T + S

so

ν

νo
=

1

2

µ
473K

288K

¶5/2
288K + 198K

473K + 198K
= 1.252

and

ν = 1.252× 1.59× 10−5 m2/s
ν = 1.99× 10−5m2/ s
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2.25: PROBLEM DEFINITION

Situation:
Nitrogen gas.
μo = 3.59× 10−7 lbf · s/ ft2.
To = 59

◦F, T = 200 ◦F.

Find:
μ using Sutherland’s equation.

Properties:
From Table A.2, S =192oR.

SOLUTION

Sutherland’s equation

μ

μo
=

µ
T

To

¶3/2
To + S

T + S

=

µ
660oR
519oR

¶3/2
519oR+ 192oR
660oR+ 192oR

= 1.197

μ = 1.197×
µ
3.59× 10−7 lbf · s

ft2

¶
= 4. 297× 10−7

μ = 4.30× 10−7 lbf-s/ft2
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2.26: PROBLEM DEFINITION

Situation:
Helium gas.
vo = 1.22× 10−3 ft2/ s.
To = 59

◦F, T = 30 ◦F.
po = 1atm, p = 1.5 atm.

Find:
Kinematic viscosity using Sutherland’s equation.

Properties:
From Table A.2, S =143oR.

PLAN

Combine the ideal gas law and Sutherland’s equation.

SOLUTION

ν

νo
=

po
p

µ
T

To

¶5/2
To + S

T + S

=
1.5

1

µ
490oR
519oR

¶5/2
519oR+ 143oR
490oR+ 143oR

= 1.359

ν = 1.359×
µ
1.22× 10−3 ft

2

s

¶
= 1. 658× 10−3 ft

2

s

ν = 1.66× 10−3 ft2/ s
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2.27: PROBLEM DEFINITION

Situation:
Absolute viscosity of propane.
To = 100

◦C, μo = 1× 10−5Ns/m2.
T = 400 ◦C, μ = 1.72× 10−5Ns/m2.

Find:
Sutherland’s constant.

SOLUTION

Sutherland’s equation

S

To
=

μ
μo

¡
To
T

¢1/2 − 1
1− μ

μo

¡
To
T

¢3/2
Also

μ

μo
= 1.72

To
T

=
373K

673K

Thus

S

To
= 0.964

S = 360 K
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2.28: PROBLEM DEFINITION

Situation:
Ammonia at room temperature.
To = 68

◦F, μo = 2.07× 10−7 lbf s/ ft2.
T = 392 ◦F, μ = 3.46× 10−7 lbf s/ ft2.

Find:
Sutherland’s constant.

SOLUTION

Sutherland’s equation

S

To
=

μ
μo

¡
To
T

¢1/2 − 1
1− μ

μo

¡
To
T

¢3/2 (1)

Calculations

μ

μo
=

3.46× 10−7 lbf s/ ft2

2.07× 10−7 lbf s/ ft2
= 1.671 (a)

To
T

=
528 ◦R
852 ◦R

= 0.6197 (b)

Substitute (a) and (b) into Eq. (1)

S

To
= 1.71

S = 903 oR
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2.29: PROBLEM DEFINITION

Situation:
SAE 10W30 motor oil.
To = 38

◦C, μo = 0.067N s/m
2.

T = 99 ◦C, μ = 0.011N s/m2.

Find:
The viscosity of motor oil, μ(60oC), using the equation μ = Ceb/T .

PLAN

Use algebra and known values of viscosity (μ) to solve for the constant b. Then,
solve for the unknown value of viscosity.

SOLUTION

Viscosity variation of a liquid can be expressed as μ = Ceb/T . Thus, evaluate μ at
temperatures T and To and take the ratio:

μ

μo
= exp

∙
b(
1

T
− 1

To
)

¸
Take the logarithm and solve for b.

b =
ln (μ/μo)

( 1
T
− 1

To
)

Data

μ/μo =
0.011N s/m2

0.067N s/m2
= 0.164

T = 372K

To = 311K

Solve for b
b = 3430 (K)

Viscosity ratio at 60oC

μ

μo
= exp

∙
3430

µ
1

333K
− 1

311K

¶¸
= 0.4833

μ = 0.4833× 0.067N s/m2

μ = 0.032 N · s/m2
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2.30: PROBLEM DEFINITION

Situation:
Viscosity of grade 100 aviation oil.
To = 100

◦F, μo = 4.43× 10−3 lbf s/ ft2.
T = 210 ◦F, μ = 3.9× 10−4 lbf s/ ft2.

Find:
μ(150oF), using the equation μ = Ceb/T .

PLAN

Use algebra and known values of viscosity (μ) to solve for the constant b. Then,
solve for the unknown value of viscosity.

SOLUTION

Viscosity variation of a liquid can be expressed as μ = Ceb/T . Thus, evaluate μ at
temperatures T and To and take the ratio:

μ

μo
= exp

∙
b(
1

T
− 1

To
)

¸
Take the logarithm and solve for b

b =
ln (μ/μo)

( 1
T
− 1

To
)

Data

μ

μo
=

0.39× 10−3 lbf s/ ft2

4.43× 10−3 lbf s/ ft2
= 0.08804

T = 670oR

To = 560oR

Solve for b
b = 8293 (oR)

Viscosity ratio at 150oF

μ

μo
= exp

∙
8293

µ
1

610oR
− 1

560oR

¶¸
= 0.299

μ = 0.299×
µ
4.43× 10−3 lbf · s

ft2

¶
μ = 1.32× 10−3 lbf· s

ft2
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2.31: PROBLEM DEFINITION

Situation:
Oil (SAE 10W30) fills the space between two plates.
∆y = 1/8 = 0.125 in, u = 25 ft/ s.

Lower plate is at rest.

Find:
Shear stress in oil.

Properties:
Oil (SAE 10W30 @ 150 ◦F) from Figure A.2: μ = 5.2× 10−4 lbf·s/ft2.

Assumptions:
1.) Assume oil is a Newtonian fluid.
2.) Assume Couette flow (linear velocity profile).

SOLUTION

Rate of strain

du

dy
=

∆u

∆y

=
25 ft/ s

(0.125/12) ft

du

dy
= 2400 s−1

Newton’s law of viscosity

τ = μ

µ
du

dy

¶
=

µ
5.2× 10−4 lbf · s

ft2

¶
×
µ
2400

1

s

¶
= 1. 248

lbf

ft2

τ = 1.25 lbf
ft2
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2.32: PROBLEM DEFINITION

Situation:
Properties of air and water.
T = 40 ◦C, p = 170 kPa.

Find:
Kinematic and dynamic viscosities of air and water.

Properties:
Air data from Table A.3, μair = 1.91× 10−5 N·s/m2
Water data from Table A.5, μwater = 6.53× 10−4 N·s/m2, ρwater = 992 kg/m3.

PLAN

Apply the ideal gas law to find density. Find kinematic viscosity as the ratio of
dynamic and absolute viscosity.

SOLUTION

A.) Air
Ideal gas law

ρair =
p

RT

=
170, 000 kPa

(287 J/ kgK) (313.2K)

= 1.89 kg/m3

μair = 1.91× 10−5 N· s
m2

ν =
μ

ρ

=
1.91× 10−5Ns/m2

1.89 kg/m3

νair = 10.1× 10−6m2/ s

B.) water
μwater = 6.53× 10−5 N·s/m2

ν =
μ

ρ

ν =
6.53× 10−4Ns/m2

992 kg/m3

νwater = 6.58× 10−7 m2/s
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2.33: PROBLEM DEFINITION

Situation:
Sliding plate viscometer is used to measure fluid viscosity.
A = 50× 100mm, ∆y = 1mm.
u = 10m/ s, F = 3N.

Find:
Viscosity of the fluid.

Assumptions:
Linear velocity distribution.

PLAN

1. The shear force τ is a force/area.
2. Use equation for viscosity to relate shear force to the velocity distribution.

SOLUTION

1. Calculate shear force

τ =
Force

Area

τ =
3N

50mm× 100mm
τ = 600N

2. Find viscosity

μ =
τ³
du
dy

´
μ =

600N

[10m/ s] / [1mm]

μ = 6× 10−2 N· s
m2
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2.34: PROBLEM DEFINITION

Situation:
Water flows near a wall. The velocity distribution is

u(y) = a
³y
b

´1/6
a = 10m/ s, b = 2mm and y is the distance (mm) from the wall.

Find:
Shear stress in the water at y = 1 mm.

Properties:
Table A.5 (water at 20 ◦C): μ = 1.00× 10−3N · s/m2.

SOLUTION

Rate of strain (algebraic equation)

du

dy
=

d

dy

∙
a
³y
b

´1/6¸
=

a

b1/6
1

6y5/6

=
a

6b

µ
b

y

¶5/6
Rate of strain (at y = 1mm)

du

dy
=

a

6b

µ
b

y

¶5/6
=

10m/ s

6× 0.002m

µ
2mm

1mm

¶5/6
= 1485 s−1

Shear Stress

τ y=1mm = μ
du

dy

=

µ
1.00× 10−3 N · s

m2

¶¡
1485 s−1

¢
= 1.485Pa

τ (y = 1mm) = 1.49Pa
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2.35: PROBLEM DEFINITION

Situation:
Velocity distribution of crude oil between two walls.
μ = 8× 10−5 lbf s/ ft2, B = 0.1 ft.
u = 100y(0.1− y) ft/ s, T = 100 ◦F.

Find:
Shear stress at walls.

SOLUTION

Velocity distribution
u = 100y(0.1− y) = 10y − 100y2

Rate of strain

du/dy = 10− 200y
(du/dy)y=0 = 10 s−2 (du/dy)y=0.1 = −10 s−1

Shear stress

τ0 = μ
du

dy
= (8× 10−5)× 10

τ 0 = 8×10−4 lbf/ft2

τ 0.1 = 8×10−4 lbf/ft2

Plot

0.00

0.02

0.04

0.06

0.08

0.10

D
is

ta
nc

e

Velocity
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2.36: PROBLEM DEFINITION

Situation:
A liquid flows between parallel boundaries.
y0 = 0.0mm, V0 = 0.0m/ s.
y1 = 1.0mm, V1 = 1.0m/ s.
y2 = 2.0mm, V2 = 1.99m/ s.
y3 = 3.0mm, V3 = 2.98m/ s.

Find:
(a) Maximum shear stress.
(b) Location where minimum shear stress occurs.

SOLUTION

(a) Maximum shear stress

τ = μdV/dy

τmax ≈ μ(∆V/∆y) next to wall

τmax = (10−3N · s/m2)((1 m/s)/0.001 m)
τmax = 1.0 N/m2

(b)The minimum shear stress will occur midway between the two walls . Its mag-
nitude will be zero because the velocity gradient is zero at the midpoint.
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2.37: PROBLEM DEFINITION

Situation:
Glycerin is flowing in between two stationary plates. The velocity distribution is

u = − 1
2μ

dp

dx

¡
By − y2

¢
dp/dx = −1.6 kPa/m, B = 5 cm.

Find:
Velocity and shear stress at a distance of 12 mm from wall (i.e. at y = 12mm).
Velocity and shear stress at the wall (i.e. at y = 0mm).

Properties:
Glycerin (20 ◦C), Table A.4: μ = 1.41N · s/m2.

PLAN

Find velocity by direct substitution into the specified velocity distribution.
Find shear stress using the definition of viscosity: τ = μ (du/dy), where the rate-of-
strain (i.e. the derivative du/dy) is found by differentiating the velocity distribution.

SOLUTION

a.) Velocity (at y = 12mm)

u = − 1
2μ

dp

dx

¡
By − y2

¢
= − 1

2 (1.41N · s/m2)
¡
−1600N/m3

¢ ¡
(0.05m) (0.012m)− (0.012m)2

¢
= 0.258 7

m

s

u (y = 12mm) = 0.259m/ s

Rate of strain (general expression)

du

dy
=

d

dy

µ
− 1
2μ

dp

dx

¡
By − y2

¢¶
=

µ
− 1
2μ

¶µ
dp

dx

¶
d

dy

¡
By − y2

¢
=

µ
− 1
2μ

¶µ
dp

dx

¶
(B − 2y)

Rate of strain (at y = 12mm)

du

dy
=

µ
− 1
2μ

¶µ
dp

dx

¶
(B − 2y)

=

µ
− 1

2 (1.41N · s/m2)

¶µ
−1600 N

m3

¶
(0.05m− 2× 0.012m)

= 14.75 s−1
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Definition of viscosity

τ = μ
du

dy

=

µ
1.41

N · s
m2

¶¡
14.75 s−1

¢
= 20. 798Pa

τ (y = 12mm) = 20.8Pa

b.) Velocity (at y = 0mm)

u = − 1
2μ

dp

dx

¡
By − y2

¢
= − 1

2 (1.41N · s/m2)
¡
−1600N/m3

¢ ¡
(0.05m) (0m)− (0m)2

¢
= 0.00

m

s

u (y = 0mm) = 0m/ s

Rate of strain (at y = 0mm)

du

dy
=

µ
− 1
2μ

¶µ
dp

dx

¶
(B − 2y)

=

µ
− 1

2 (1.41N · s/m2)

¶µ
−1600 N

m3

¶
(0.05m− 2× 0m)

= 28.37 s−1

Shear stress (at y = 0mm)

τ = μ
du

dy

=

µ
1.41

N · s
m2

¶¡
28.37 s−1

¢
= 40.00Pa

τ (y = 0mm) = 40.0Pa

REVIEW

1. As expected, the velocity at the wall (i.e. at y = 0) is zero due to the no slip
condition.

2. As expected, the shear stress at the wall is larger than the shear stress away
from the wall. This is because shear stress is maximum at the wall and zero
along the centerline (i.e. at y = B/2).
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2.38: PROBLEM DEFINITION

Situation:
Laminar flow occurs between two horizontal parallel plates. The velocity distrib-

ution is

u = − 1
2μ

dp

ds

¡
Hy − y2

¢
+ ut

y

H

Pressure p decreases with distance s, and the speed of the upper plate is ut. Note
that ut has a negative value to represent that the upper plate is moving to the left.
Moving plate: y = H.
Stationary plate: y = 0.

Find:
(a) Whether shear stress is greatest at the moving or stationary plate.
(b) Location of zero shear stress.
(c) Derive an expression for plate speed to make the shear stress zero at y = 0.

Sketch:

H
u

ut

y

s

PLAN

By inspection, the rate of strain (du/dy) or slope of the velocity profile is larger at
the moving plate. Thus, we expect shear stress τ to be larger at y = H. To check
this idea, find shear stress using the definition of viscosity: τ = μ (du/dy). Evaluate
and compare the shear stress at the locations y = H and y = 0.

SOLUTION

Part (a)
1. Shear stress, from definition of viscosity

τ = μ
du

dy

= μ
d

dy

∙
− 1
2μ

dp

ds

¡
Hy − y2

¢
+ ut

y

H

¸
= μ

∙
−H

2μ

dp

ds
+

y

μ

dp

ds
+

ut
H

¸
τ (y) = −(H − 2y)

2

dp

ds
+

μut
H
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Shear stress at y = H

τ (y = H) = −(H − 2H)
2

dp

ds
+

μut
H

=
H

2

µ
dp

ds

¶
+

μut
H

(1)

2. Shear stress at y = 0

τ (y = 0) = −(H − 0)
2

dp

ds
+

μut
H

= −H
2

µ
dp

ds

¶
+

μut
H

(2)

Since pressure decreases with distance, the pressure gradient dp/ds is negative. Since
the upper wall moves to the left, ut is negative. Thus, maximum shear stress occurs
at y = H because both terms in Eq. (1) have the same sign (they are both negative.)
In other words,

|τ (y = H)| > |τ (y = 0)|
.

Maximum shear stress occur at y = H .

Part (b)
Use definition of viscosity to find the location (y) of zero shear stress

τ = μ
du

dy

= −μ(1/2μ)dp
ds
(H − 2y) + utμ

H

= −(1/2)dp
ds
(H − 2y) + utμ

H

Set τ = 0 and solve for y

0 = −(1/2)dp
ds
(H − 2y) + utμ

H

y =
H

2
− μut

Hdp/ds

Part (c)
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τ = μ
du

dy
= 0 at y = 0

du

dy
= −(1/2μ)dp

ds
(H − 2y) + ut

H

Then, at y = 0 : du/dy = 0 = −(1/2μ)dp
ds

H +
ut
H

Solve for ut : ut = (1/2μ)
dp

ds
H2

Note : because
dp

ds
< 0, ut < 0.
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2.39: PROBLEM DEFINITION

Situation:
Oxygen at 50 ◦F and 100 ◦F.

Find:
Ratio of viscosities: μ100

μ50
.

SOLUTION

Because the viscosity of gases increases with temperature μ100/μ50 > 1. Correct
choice is (c) .
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2.40: PROBLEM DEFINITION

Situation:
A cylinder falls inside a pipe filled with oil.
d = 100mm, D = 100.5mm.
c = 200mm, W = 15N.

Find:
Speed at which the cylinder slides down the pipe.

Properties:
SAE 20W oil (10oC) from Figure A.2: μ = 0.35 N·s/m2.

SOLUTION

τ = μ
dV

dy
W

πdc
=

μVfall
(D − d)/2

Vfall =
W (D − d)

2πdcμ

Vfall =
15N(0.5× 10−3m)

(2π × 0.1m× 0.2m× 3.5× 10−1Ns/m2)
Vfall = 0.17m/s
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2.41: PROBLEM DEFINITION

Situation:
A disk is rotated very close to a solid boundary with oil in between.
ωa = 1 rad/ s, r2 = 2 cm, r3 = 3 cm.
ωb = 2 rad/ s, rb = 3 cm.
H = 2mm, μc = 0.01N s/m

2.

Find:
(a) Ratio of shear stress at 2 cm to shear stress at 3 cm.
(b) Speed of oil at contact with disk surface.
(c) Shear stress at disk surface.

Assumptions:
Linear velocity distribution: dV/dy = V/y = ωr/y.

SOLUTION

(a) Ratio of shear stresses

τ = μ
dV

dy
=

μωr

y

τ 2
τ 3

=
μ× 1× 2/y
μ× 1× 3/y
τ 2
τ 3
=
2

3

(b) Speed of oil

V = ωr = 2× 0.03
V = 0.06m/s

(c) Shear stress at surface

τ = μ
dV

dy
= 0.01N s/m2 × 0.06m/ s

0.002m

τ = 0.30N/m2
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2.42: PROBLEM DEFINITION

Situation:
A disk is rotated in a container of oil to damp the motion of an instrument.

Find:
Derive an equation for damping torque as a function of D,S, ω and μ.

PLAN

Apply the Newton’s law of viscosity.

SOLUTION

Shear stress

τ = μ
dV

dy

=
μrω

s

Find differential torque–on an elemental strip of area of radius r the differential
shear force will be τdA or τ(2πrdr). The differential torque will be the product of
the differential shear force and the radius r.

dTone side = r[τ(2πrdr)]

= r
hμrω

s
(2πrdr)

i
=

2πμω

s
r3dr

dTboth sides = 4
³rπμω

s

´
r3dr

Integrate

T =

D/2Z
0

4πμω

s
r3dr

T =
1

16

πμωD4

s
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2.43: PROBLEM DEFINITION

Situation:
One type of viscometer involves the use of a rotating cylinder inside a fixed cylinder.
Tmin = 50

◦F, Tmax = 200 ◦F.

Find:
(a) Design a viscometer that can be used to measure the viscosity of motor oil.

Assumptions:
Motor oil is SAE 10W-30. Data from Fig A-2: μ will vary from about 2×10−4lbf-

s/ft2 to 8× 10−3lbf-s/ft2.
Assume the only significant shear stress develops between the rotating cylinder and

the fixed cylinder.
Assume we want the maximum rate of rotation (ω) to be 3 rad/s.
Maximum spacing is 0.05 in.

SOLUTION

One possible design solution is given below.
Design decisions:

1. Let h = 4.0 in. = 0.333 ft

2. Let I.D. of fixed cylinder = 9.00 in. = 0.7500 ft.

3. Let O.D. of rotating cylinder = 8.900 in. = 0.7417 ft.

Let the applied torque, which drives the rotating cylinder, be produced by a force
from a thread or small diameter monofilament line acting at a radial distance rs.
Here rs is the radius of a spool on which the thread of line is wound. The applied
force is produced by a weight and pulley system shown in the sketch below.

h rc

Δr
W

Pulley

The relationship between μ, rs, ω, h, and W is now developed.

T = rcFs (1)

where T = applied torque
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rc = outer radius of rotating cylinder
Fs = shearing force developed at the outer radius of the rotating cylinder but Fs =
τAs where As = area in shear = 2πrch

τ = μdV/dy ≈ μ∆V/∆r where ∆V = rcω and ∆r = spacing

Then T = rc(μ∆V/∆r)(2πrch)

= rcμ(
rcω

∆r
)(2πrch) (2)

But the applied torque T =Wrs so Eq. (2) become

Wrs = r3cμω(2π)
h

∆r
Or

μ =
Wrs∆r

2πωhr3c
(3)

The weight W will be arbitrarily chosen (say 2 or 3 oz.) and ω will be determined by
measuring the time it takes the weight to travel a given distance. So rsω = Vfall or
ω = Vfall/rs. Equation (3) then becomes

μ =

µ
W

Vf

¶µ
r2s
r3c

¶µ
∆r

2πh

¶
In our design let rs = 2 in. = 0.1667 ft. Then

μ =

µ
W

Vf

¶
(0.1667)2

(.3708)3
0.004167

(2π × .3333)

μ =

µ
W

Vf

¶µ
0.02779

0.05098

¶
μ =

µ
W

Vf

¶
(1.085× 10−3) lbf · s/ft2

Example: If W = 2oz. = 0.125lb. and Vf is measured to be 0.24 ft/s then

μ =
0.125

0.24
(1.085× 10−3) lbf s/ ft2

= 0.564× 10−4 lbf · s/ ft2

REVIEW

Other things that could be noted or considered in the design:

1. Specify dimensions of all parts of the instrument.

2. Neglect friction in bearings of pulley and on shaft of cylinder.

3. Neglect weight of thread or monofilament line.

4. Consider degree of accuracy.

5. Estimate cost of the instrument.
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2.44: PROBLEM DEFINITION

Situation:
Elasticity of ethyl alcohol and water.
Eethyl = 1.06× 109 Pa.
Ewater = 2.15× 109 Pa.

Find:
Which substance is easier to compress, and why.

PLAN

Consider bulk density equation.

SOLUTION

The bulk modulus of elasticity is given by:

E = −∆p
V

∆V
=

∆p

dρ/ρ

This means that elasticity is inversely related to change in density, and to the negative
change in volume.
Therefore, the liquid with the smaller elasticity is easier to compress.
Ethyl alcohol is easier to compress because it has the smaller elasticity , because elas-
ticity is inversely related to change in density.
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2.45: PROBLEM DEFINITION

Situation:
Pressure is applied to a mass of water.
V = 2000 cm3, p = 2× 106N/m2.

Find:
Volume after pressure applied (cm3).

Properties:
From Table A.5, E = 2.2× 109 Pa

PLAN

1. Use modulus of elasticity equation to calculate volume change resulting from
pressure change.
2. Calculate final volume based on original volume and volume change.

SOLUTION

1. Elasticity equation

E = −∆p
V

∆V

∆V = −∆p

E
V

= −
∙
(2× 106) Pa
(2.2× 109) Pa

¸
2000 cm3

= −1.82 cm3

2. Final volume

Vfinal = V +∆V

= (2000− 1.82) cm3

Vfinal = 1998 cm
3
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2.46: PROBLEM DEFINITION

Situation:
Water is subjected to an increase in pressure.

Find:
Pressure increase needed to reduce volume by 2%.

Properties:
From Table A.5, E = 2.2× 109 Pa.

PLAN

Use modulus of elasticity equation to calculate pressure change required to achieve
the desired volume change.

SOLUTION Modulus of elasticity equation

E = −∆p
V

∆V

∆p = E
∆V

V

= −
¡
2.2× 109 Pa

¢µ−0.01× V

V

¶
=

¡
2.2× 109 Pa

¢
(0.02)

= 4.4× 107 Pa

∆p = 44MPa
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2.47: PROBLEM DEFINITION

Situation:
Open tank of water.
T20 = 20

◦C, T80 = 80 ◦C.
V = 400 l, d = 3m.
Hint: Volume change is due to temperature.

Find:
Percentage change in volume.
Water level rise for given diameter.

Properties:
From Table A.5: ρ20 = 998

kg
m3
,and ρ80 = 972

kg
m3
.

PLAN

This problem is NOT solved using the elasticity equation, because the volume change
results from a change in temperature causing a density change, NOT a change in
pressure. The tank is open, so the pressure at the surface of the tank is always
atmospheric.

SOLUTION

a. Percentage change in volume must be calculated for this mass of water at two
temperatures.
For the first temperature, the volume is given as V20 = 400 L = 0.4m3.Its density is
ρ20 = 998

kg
m3
. Therefore, the mass for both cases is given by.

m = 998
kg

m3
× 0.4m3

= 399.2 kg

For the second temperature, that mass takes up a larger volume:

V80 =
m

ρ
=
399.2 kg

972 kg
m3

= 0.411m3

Therefore, the percentage change in volume is

0.411m3 − 0.4m3
0.4m3

= 0.0275

volume % change = = 2.8%

b. If the tank has D = 3m, then V = πr2h = 7.68h.Therefore:
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h20 = .052m

h80 = .054m

And water level rise is 0.054− 0.52m = 0.002m = 2mm.
water level rise is = 0.002m = 2mm

REVIEW

Density changes can result from temperature changes, as well as pressure changes.
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2.48: PROBLEM DEFINITION

Situation:
Surface tension is an energy/area.

Find:
Show that EnergyArea equals Force

Length .

Energy
Area

=
force · distance

area

=

"
M L

T 2
· L

L2

#

=

∙
M

T 2

¸

Force
Length

=

"
M L

T 2

L

#

=

∙
M

T 2

¸
The primary dimensions for EnergyArea and Force

Length are both
£
M
T 2

¤
, so they are equal.
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2.49: PROBLEM DEFINITION

Situation:
Very small spherical droplet of water.

Find:
Pressure inside.

SOLUTION

Refer to Fig. 2-6(a). The surface tension force, 2πrσ, will be resisted by the pressure
force acting on the cut section of the spherical droplet or

p(πr2) = 2πrσ

p =
2σ

r

p =
4σ

d
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2.50: PROBLEM DEFINITION

Situation:
A spherical soap bubble.
Inside radius R, wall-thickness t, surface tension σ.
Special case: R = 4mm.

Find:
Derive a formula for the pressure difference across the bubble
Pressure difference for bubble with R = 4mm.

Assumptions:
The effect of thickness is negligible, and the surface tension is that of pure water.

PLAN

Apply equilibrium, then the surface tension force equation.

SOLUTION

Force balance

p

2 x 2 Rπ σ

Surface tension force

X
F = 0

∆pπR2 − 2(2πRσ) = 0

Formula for pressure difference

∆p =
4σ

R
Pressure difference

∆p4mm rad. =
4× 7.3× 10−2 N/m

0.004 m
∆p4mm rad. = 73.0 N/m2
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2.51: PROBLEM DEFINITION

Situation:
A water bug is balanced on the surface of a water pond.
n = 6 legs, c = 5mm/leg.

Find:
Maximum mass of bug to avoid sinking.

Properties:
Surface tension of water, from Table A.4, σ = 0.073 N/m.

PLAN

Apply equilibrium, then the surface tension force equation.

SOLUTION

Force equilibrium

Upward force due to surface tension = Weight of Bug

FT = mg

To find the force of surface tension (FT ), consider the cross section of one leg of the
bug:

θ

F F

Surface tension
force on one
side of leg

Cross section
of bug leg

Assume  is small
Then cos  =1; F cos = F

θ
θ θ

Surface tension force

FT = (2/leg)(6 legs)σc

= 12σc

= 12(0.073 N/m)(0.005 m)

= 0.00438N

Apply equilibrium

FT −mg = 0

m =
FT

g
=
0.00438N

9.81m2/ s

= 0.4465× 10−3 kg

m = 0.447× 10−3 kg
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2.52: PROBLEM DEFINITION

Situation:
A water column in a glass tube is used to measure pressure.
d1 = 0.25 in, d2 = 1/8 in, d3 = 1/32 in.

Find:
Height of water column due to surface tension effects for all diameters.

Properties:
From Table A.4: surface tension of water is 0.005 lbf/ft.

SOLUTION

Surface tension force

∆h =
4σ

γd
=
4× 0.005 lbf/ ft
62.4 lbf/ ft3 × d

=
3.21× 10−4

d
ft.

d =
1

4
in. =

1

48
ft.; ∆h =

3.21× 10−4 ft
1/48

= 0.0154 ft. = 0.185 in.

d =
1

8
in. =

1

96
ft.; ∆h =

3.21× 10−4 ft
1/96

= 0.0308 ft. = 0.369 in.

d =
1

32
in. =

1

384
ft.; ∆h =

3.21× 10−4 ft
1/384

= 0.123 ft.= 1.48 in.
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2.53: PROBLEM DEFINITION

Situation:
Two vertical glass plates
y = 1mm

Find:
Capillary rise (h) between the plates.

Properties:
From Table A.4, surface tension of water is 7.3× 10−2 N/m.

PLAN

Apply equilibrium, then the surface tension force equation.

SOLUTION

θ

σσ
y

y

Equilibrium

X
Fy = 0

Force due to surface tension = Weight of fluid that has been pulled upward

(2c)σ = (hct) γ

Solve for capillary rise (h)

2σc− hctγ = 0

h =
2σ

γt

h =
2× (7.3× 10−2N/m)
9810N/m3 × 0.001m

= 0.0149 m

h = 14.9 mm
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2.54: PROBLEM DEFINITION

Situation:
A spherical water drop.
d = 1mm

Find:
Pressure inside the droplet (N/m2)

Properties:
From Table A.4, surface tension of water is 7.3× 10−2 N/m

PLAN

Apply equilibrium, then the surface tension force equation.

SOLUTION

Equilibrium (half the water droplet)

Force due to pressure = Force due to surface tension

pA = σL

∆pπR2 = 2πRσ

Solve for pressure

∆p =
2σ

R

∆p =
2× 7.3× 10−2N/m
(0.5× 10−3m)

∆p = 292 N/m2
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2.55: PROBLEM DEFINITION

Situation:
A tube employing capillary rise is used to measure temperature of water
T0 = 0

◦C, T100 = 100 ◦C
σ0 = 0.0756N/m, σ100 = 0.0589N/m

Find:
Size the tube (this means specify diameter and length).

PLAN

Apply equilibrium and the surface tension force equation.

SOLUTION

The elevation in a column due to surface tension is

∆h =
4σ

γd

where γ is the specific weight and d is the tube diameter. For the change in surface
tension due to temperature, the change in column elevation would be

∆h =
4∆σ

γd
=
4× 0.0167N/m
9810N/m3 × d

=
6.8× 10−6

d

The change in column elevation for a 1-mm diameter tube would be 6.8 mm . Spe-
cial equipment, such the optical system from a microscope, would have to be used to
measure such a small change in deflection It is unlikely that smaller tubes made of
transparent material can be purchased to provide larger deflections.
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2.56: PROBLEM DEFINITION

Situation:
A soap bubble and a droplet of water of equal diameter falling in air
d = 2mm, σbubble = σdroplet

Find:
Which has the greater pressure inside.

SOLUTION

The soap bubble will have the greatest pressure because there are two surfaces (two
surface tension forces) creating the pressure within the bubble. The correct choice is
a)
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2.57: PROBLEM DEFINITION

Situation:
A hemispherical drop of water is suspended under a surface

Find:
Diameter of droplet just before separation

Properties:
Table A.5 (20 ◦C): γ = 9790N/m3, σ = 0.073N/m.

SOLUTION

Equilibrium

Weight of droplet = Force due to surface tensionµ
πD3

12

¶
γ = (πD)σ

Solve for D

D2 =
12σ

γ

=
12× (0.073 N/m)
9790 N/m3

= 8. 948× 10−5m2

D = 9. 459× 10−3m

D = 9.46mm
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2.58: PROBLEM DEFINITION

Situation:
Surface tension is being measured by suspending liquid from a ring
Di = 10 cm, Do = 9.5 cm
W = 10 g, F = 16 g

Find:
Surface tension

PLAN

1. Force equilibrium on the fluid suspended in the ring. For force due to surface
tension, use the form of the equation provided in the text for the special case of a
ring being pulled out of a liquid.
2. Solve for surface tension - all the other forces are known.

SOLUTION 1. Force equilibrium

(Upward force) = (Weight of fluid) + (Force due to surface tension)

F = W + σ(πDi + πDo)

2. Solve for surface tension

σ =
F −W

π(Di +Do)

σ =
(0.016− 0.010) kg× 9.81m/ s2

π(0.1 + 0.095)m

= 9.61× 10−2 kg
s2

σ = 0.0961 N/m
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2.59: PROBLEM DEFINITION

Situation:
A liquid reaches the vapor pressure

Find:
What happens to the liquid

SOLUTION

If a liquid reaches its vapor pressure for a given temperature, it boils .
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2.60: PROBLEM DEFINITION

Find:
How does vapor pressure change with increasing temperature?

SOLUTION

The vapor pressure increases with increasing temperature . To get an everyday feel
for this, note from the Appendix that the vapor pressure of water at 212 ◦F (100 ◦C)
is 101kPa (14.7 psia). To get water to boil at a lower temperature, you would have
to exert a vacuum on the water. To keep it from boiling until a higher temperature,
you would have to pressurize it.

71



2.61: PROBLEM DEFINITION

Situation:
Watar at 60 ◦F

Find:
The pressure that must be imposed for water to boil

Properties:
Water (60 ◦F), Table A.5: Pv = 0.363 psia

SOLUTION

The pressure to which the fluid must be exposed is P = 0.363 psia. This is lower
than atmospheric pressure. Therefore, assuming atmospheric pressure is 14.7 psia
gage, or 14.7 psig, the pressure needed could also be reported as P = -14.34 psig .
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2.62: PROBLEM DEFINITION

Situation:
T = 20 ◦C,fluid is water.

Find:
The pressure that must be imposed to cause boiling

Properties:
Water (60 ◦F), Table A.5: Pv = 2340 Pa abs

SOLUTION

Bubbles will be noticed to be forming when P = Pv.

P = 2340 Pa abs
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2.63: PROBLEM DEFINITION

Situation:
Water in a closed tank
T = 20 ◦C, p = 10400Pa

Find:
Whether water will bubble into the vapor phase (boil).

Properties:
From Table A.5, at T = 20 ◦C, Pv = 2340 Pa abs

SOLUTION

The tank pressure is 10,400 Pa abs, and Pv = 2340 Pa abs. So the tank pressure is
higher than the Pv. Therefore the water will not boil .

REVIEW

The water can be made to boil at this temperature only if the pressure is reduced
to 2340 Pa abs. Or, the water can be made to boil at this pressure only if the
temperature is raised to approximately 50 ◦C.
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2.64: PROBLEM DEFINITION

Situation:
The boiling temperature of water decreases with increasing elevation
∆p
∆T
= −3.1 kPa

oC
.

Find:
Boiling temperature at an altitude of 3000 m

Properties:
T = 100oC, p = 101 kN/m2.
z3000 = 3000m, p3000 = 69 kN/m2.

Assumptions:
Assume that vapor pressure versus boiling temperature is a linear relationship.

PLAN

Develop a linear equation for boiling temperature as a function of elevation.

SOLUTION

Let BT = "Boiling Temperature." Then, BT as a function of elevation is

BT (3000 m) = BT (0 m) +
µ
∆BT

∆p

¶
∆p

Thus,

BT (3000 m) = 100 ◦C+

µ
−1.0 ◦C
3.1 kPa

¶
(101− 69) kPa

= 89. 677 ◦C

Boiling Temperature (3000 m) = 89.7 ◦C
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