

Fundamental Equations of Dynamics

KINEMATICS

Particle Rectilinear Motion

Variable a

$$a = \frac{dv}{dt}$$

$$v = \frac{ds}{dt}$$

$$a ds = v dv$$

Constant $a = a_c$

$$v = v_0 + a_c t$$

$$s = s_0 + v_0 t + \frac{1}{2} a_c t^2$$

$$v^2 = v_0^2 + 2a_c s - s_0^2$$

Particle Curvilinear Motion

x, y, z Coordinates

$$v_x = \dot{x} \quad a_x = \ddot{x}$$

$$v_y = \dot{y} \quad a_y = \ddot{y}$$

$$v_z = \dot{z} \quad a_z = \ddot{z}$$

r, θ, z Coordinates

$$v_r = \dot{r} \quad a_r = \ddot{r} - r\dot{\theta}^2$$

$$v_\theta = r\dot{\theta} \quad a_\theta = r\ddot{\theta} + 2\dot{r}\dot{\theta}$$

$$v_z = \dot{z} \quad a_z = \ddot{z}$$

n, t, b Coordinates

$$v = \dot{s} \quad a_t = \dot{v} = v \frac{dv}{ds}$$

$$a_n = \frac{v^2}{\rho} \quad \rho = \frac{[1 + (dy/dx)^2]^{3/2}}{|d^2y/dx^2|}$$

Relative Motion

$$\mathbf{v}_B = \mathbf{v}_A + \mathbf{v}_{B/A} \quad \mathbf{a}_B = \mathbf{a}_A + \mathbf{a}_{B/A}$$

Rigid Body Motion About a Fixed Axis

Variable α

Constant $\alpha = \alpha_c$

$$\alpha = \frac{d\omega}{dt}$$

$$\omega = \frac{d\theta}{dt}$$

$$\omega d\omega = \alpha d\theta$$

$$\omega = \omega_0 + \alpha_c t$$

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha_c t^2$$

$$\omega = \omega_0^2 + 2\alpha_c(\theta - \theta_0)$$

For Point P

$$s = \theta r \quad v = \omega r \quad a_t = \alpha r \quad a_n = \omega^2 r$$

Relative General Plane Motion—Translating Axes

$$\mathbf{v}_B = \mathbf{v}_A + \mathbf{v}_{B/A}(\text{pin}) \quad \mathbf{a}_B = \mathbf{a}_A + \mathbf{a}_{B/A}(\text{pin})$$

Relative General Plane Motion—Trans. and Rot. Axis

$$\mathbf{v}_B = \mathbf{v}_A + \boldsymbol{\Omega} \times \mathbf{r}_{B/A} + (\mathbf{v}_{B/A})_{xyz}$$

$$\mathbf{a}_B = \mathbf{a}_A + \dot{\boldsymbol{\Omega}} \times \mathbf{r}_{B/A} + \boldsymbol{\Omega} \times (\boldsymbol{\Omega} \times \mathbf{r}_{B/A}) + 2\boldsymbol{\Omega} \times (\mathbf{v}_{B/A})_{xyz} \times (\mathbf{a}_{B/A})_{xyz}$$

KINETICS

$$\text{Mass Moment of Inertia} \quad I = \int r^2 dm$$

$$\text{Parallel-Axis Theorem} \quad I = I_G + md^2$$

$$\text{Radius of Gyration} \quad k = \sqrt{\frac{I}{m}}$$

Equations of Motion

Particle	$\Sigma \mathbf{F} = m\mathbf{a}$
Rigid Body	$\Sigma F_x = m(a_G)_x$
(Plane Motion)	$\Sigma F_y = m(a_G)_y$
	$\Sigma M_G = I_G \alpha$ or $\Sigma M_P = \Sigma (M_k)_P$

Principle of Work and Energy

$$T_1 + U_{1-2} = T_2$$

Kinetic Energy

Particle	$T = \frac{1}{2}mv^2$
----------	-----------------------

$$\text{Rigid Body} \quad T = \frac{1}{2}mv_G^2 + \frac{1}{2}I_G \omega^2$$

Work

$$\text{Variable force} \quad U_F = \int F \cos \theta ds$$

$$\text{Constant force} \quad U_F = (F \cos \theta) \Delta s$$

$$\text{Weight} \quad U_W = -W \Delta y$$

$$\text{Spring} \quad U_s = -(\frac{1}{2}ks_2^2 - \frac{1}{2}ks_1^2)$$

$$\text{Couple moment} \quad U_M = M \Delta \theta$$

Power and Efficiency

$$P = \frac{dU}{dt} = \mathbf{F} \cdot \mathbf{v} \quad \epsilon = \frac{P_{\text{out}}}{P_{\text{in}}} = \frac{U_{\text{out}}}{U_{\text{in}}}$$

Conservation of Energy Theorem

$$T_1 + V_1 = T_2 + V_2$$

Potential Energy

$$V = V_g + V_e, \text{ where } V_g = \pm W y, V_e = +\frac{1}{2}ks^2$$

Principle of Linear Impulse and Momentum

Particle	$m\mathbf{v}_1 + \Sigma \int \mathbf{F} dt = m\mathbf{v}_2$
----------	---

$$\text{Rigid Body} \quad m(\mathbf{v}_G)_1 + \Sigma \int \mathbf{F} dt = m(\mathbf{v}_G)_2$$

Conservation of Linear Momentum

$$\Sigma (\text{syst. } m\mathbf{v})_1 = \Sigma (\text{syst. } m\mathbf{v})_2$$

$$\text{Coefficient of Restitution} \quad e = \frac{(v_B)_2 - (v_A)_2}{(v_A)_1 - (v_B)_1}$$

Principle of Angular Impulse and Momentum

Particle	$(\mathbf{H}_O)_1 + \Sigma \int \mathbf{M}_O dt = (\mathbf{H}_O)_2$
	where $H_O = (d)(mv)$

$$\text{Rigid Body} \quad (\mathbf{H}_G)_1 + \Sigma \int \mathbf{M}_G dt = (\mathbf{H}_G)_2$$

$$\text{where } H_G = I_G \omega$$

$$(\mathbf{H}_O)_1 + \Sigma \int \mathbf{M}_O dt = (\mathbf{H}_O)_2$$

$$\text{where } H_O = I_O \omega$$

Conservation of Angular Momentum

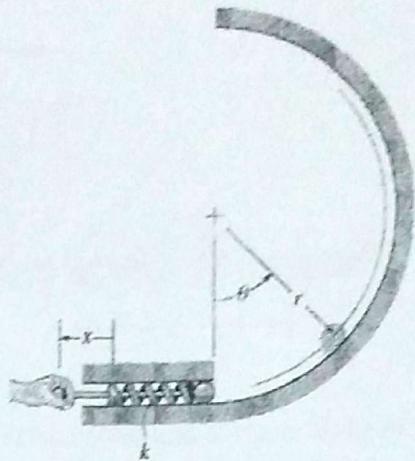
$$\Sigma (\text{syst. } \mathbf{H})_1 = \Sigma (\text{syst. } \mathbf{H})_2$$

$$\text{Rod; } \bar{I} = \frac{1}{12}mL^2 \quad ; \text{ Plate } \bar{I} = \frac{1}{12}m(a^2 + b^2)$$

Question (1):

A small ball of mass, M is fired up the vertical circular smooth track using the shown spring plunger. The plunger keeps the spring compressed a distance δ when $x = 0$. Let $M = 0.5 \text{ kg}$, $\delta = 50 \text{ mm}$, $r = 1.5 \text{ m}$ and $k = 500 \text{ N/m}$.

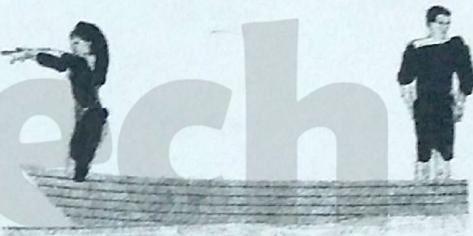
Q1) How far x must the plunger be pulled back and released so that the ball will begin to leave the track at $\theta = 150^\circ$?



(a) 0.215 m (b) 0.192 m (c) 0.182 m (d) 0.179 m (e) 0.161 m

Questions (2-3):

A 90-kg man and a 60-kg woman stand at opposite ends of a 330-kg boat, ready to dive, each with a 10 m/s velocity relative to the boat from corresponding end.



Q2) If the man dives first, then the velocity of the boat, in m/s after they have both dived is:

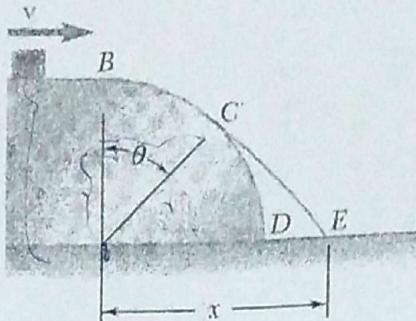
(a) -1.147 (b) -0.893 (c) -0.315 (d) -0.625 (e) -0.337

Q3) If they both dive at same time, then the velocity of the boat, in m/s after they have dived is:

(a) -1.147 (b) -0.893 (c) -0.315 (d) -0.625 (e) -0.337

Questions (4-6):

A small block of 3 kg mass slides on a horizontal fixed smooth surface at a speed of $v = 5 \text{ m/s}$ at a height $h = 3 \text{ m}$ above ground, as shown in the figure.



Q4) The **angular momentum** of the block about the center of the cylindrical surface, in $\text{kg} \cdot \text{m}^2/\text{s}$ at point, **B** is: (where k : ccw ; $-k$: cw)

(a) -45 k (b) -30 k (c) -15 k (d) 30 k (e) 45 k

Q5) The angle θ at which it will leave the smooth cylindrical surface **BCD** is:

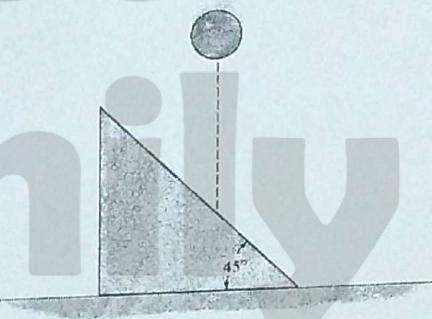
(a) 48.2° (b) 74.1° (c) 68.2° (d) 18.2° (e) 45.0°

Q6) The velocity of the block, in m/s at point **C** will be:

(a) 5.0 (b) 5.3 (c) 4.8 (d) 5.9 (e) 3.5

Questions (7-9):

A sphere of 2-kg mass falls from rest at height, h above impact point and strikes a 6-kg triangular block with a vertical velocity, $v = 5 \text{ m/s}$. If the triangular block rests on a smooth surface and the coefficient of restitution, $e = 1$, then find the following:



Q7) The height of the ball, h above impact point, **before** the impact is:

(a) 2.17 m (b) 2.71 m (c) 1.72 m (d) 1.27 m (e) 5.00 m

Q8) The velocity of the block, in m/s just after the impact is

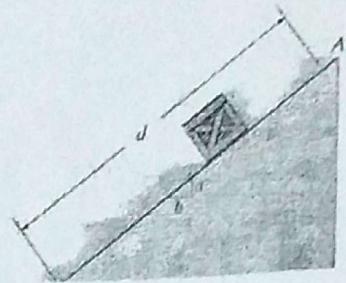
(a) 4.34 (b) 1.42 (c) 3.43 (d) 5.00 (e) 2.41

Q9) Assume that the velocity of the sphere after impact is equal to 5 m/s in the **horizontal** direction, and if the time of impact between the sphere and the block is 0.003 s , then the average impulsive force (in kN) exerted on the sphere by the block is:

(a) 7.07 (b) 14.14 (c) 4.71 (d) 3.53 (e) zero

Questions (10):

A block of 3 kg mass rests initially at the **bottom** of an inclined smooth surface of length, $d = 10$ m making an angle of 30° with the horizontal. This block is subjected to a force, F parallel to the inclined surface, for only **one second**, then the block continues its motion such that it reached the top of the inclined surface at point, A , where its velocity is zero.



Q10) What is the **minimum** value of force, F ?

(a) 14.715 N (b) 25.312 N (c) 37.968 N (d) 50.625 N (e) 12.656 N

