
بسم الله الرحمن الرحيم

لجنكم الأكاديمية Mech-Family تقدم لكم:

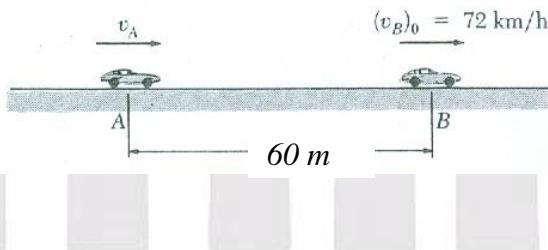
Dynamics First Exam 10/2013

وتحملي لكم دوام التوفيق والنجاح

A projectile is fired from the edge of a 150 m cliff with an initial velocity $V_0 = 180 \text{ m/s}$ at an angle $\theta = 30^\circ$ with the horizontal. Neglect air resistance

Question (1):

The velocity of the projectile at point B, i.e. the point at which the projectile strikes the ground, in (m/s) is;


(a) 172.363 (b) 187.997 (c) 191.939 (d) 169.946 (e) None of the above

Question (2):

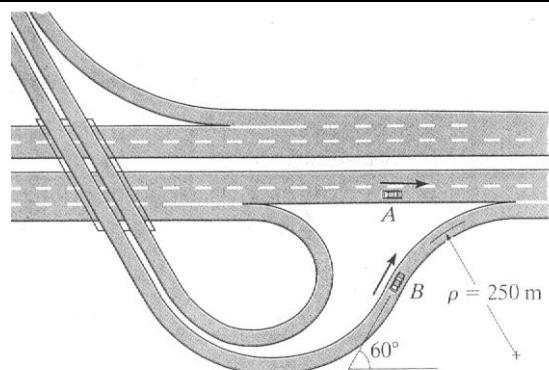
The radius of curvature at point A, in (m) is;

(a) 3813.7 (b) 3644.2 (c) 4031.9 (d) 4311.4 (e) None of the above

Car A is traveling east at a constant speed v_A and Car B is traveling in the same direction at a constant speed of 72 km/h. The driver of car B notices car A when it is still 60 m behind him then he accelerates at a constant rate of 0.75 m/s^2 to avoid being passed by car A. Knowing that the closest that A comes to B is 6m, determine the speed v_A of car A.

Question (3):

The speed v_A of car A, in (m/s) is;


(a) 33.601 (b) 26.633 (c) 29.0 (d) 31.313 (e) None of the above

Question (4):

The distance traveled by car B, in (m) is

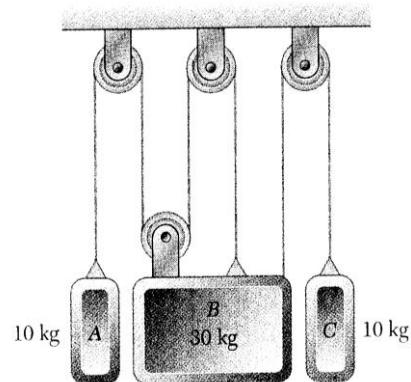
(a) 309.33 (b) 299.161 (c) 291.62 (d) 294.0 (e) None of the above

At the instant shown car A is traveling with a velocity of 30 m/s and has an acceleration of 2 m/s^2 along the highway. At the same instant car B is traveling on the shown curved road with a speed of 15 m/s, which is decreasing at 0.8 m/s^2 .

Question (5):

The velocity of B relative to A, in (m/s) is;

(a) 25.98 (b) 35.0 (c) 48.22 (d) 54.08 (e) None of the above


Question (6):

The acceleration of A relative to B, in (m/s^2) is;

(a) 2.192 (b) 5.185 (c) 4.186 (d) 3.188 (e) None of the above

The system shown is released from rest. Neglecting the masses of the pulleys and the effect of friction in the pulleys.

U → Up
D → Down

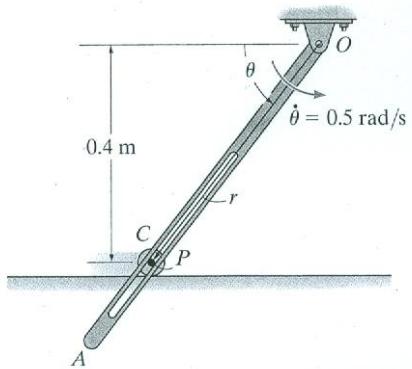
Question (7):

The acceleration of block A in (m/s^2) is

(a) 2.2638 U (b) 0.7546 D (c) 2.2638 D (d) 0.7546 U (e) None of the above

Question (8):

The acceleration of block C in (m/s^2) is


(a) 0.7546 U (b) 2.2638 D (c) 0.7546 D (d) 2.2638 U (e) None of the above

Question (9):

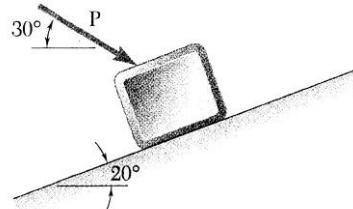
The tensions developed in the left cable in (N) is

(a) 90.554 (b) 75.462 (c) 120.738 (d) 74.092 (e) None of the above

The smooth 2 kg cylinder C has a pin P through its center which passes the slot in arm OA. If the arm is forced to rotate at a constant rate $\dot{\theta} = 0.5 \text{ rad/s}$ At the instant $\theta = 30^\circ$

Question (10):

The Force that the arm exerts on the cylinder in (N) is


(a) 11.364 (b) 5.542 (c) 27.468 (d) 3.027 (e) None of the above

Question (11):

The magnitude of the acceleration of the pin P in (m/s^2) is

(a) 2.4013 (b) 4.6974 (c) 0.8682 (d) 1.3856 (e) None of the above

A 40 kg block is at rest on the incline when force P is applied to it. If 4 s is required for the block to travel 10 m up the incline, knowing that the coefficient of kinetic friction is 0.25.

Question (12):

The acceleration of the block in (m/s^2) is

(a) 1.25 (b) 2.66 (c) 0.50 (d) 0.64 (e) None of the above

Question (13):

The magnitude of the force P in (N) is

(a) 545.990 (b) 558.399 (c) 612.468 (d) 738.038 (e) None of the above