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Chapter Eight

Ordinary Differential Equations

First-Order Ordinary Differential Equations

Single-Step Methods:
= Buler’s Method
= Runge-Kutta Second Order Method » 5
= Runge-Kutta Fourth Order Method s o &
G

Multi-Step Methods:
= Midpoint Method
= Milne’s Method
s Adams-Bashforth Second Order Method
s Adams-Bashforth Fourth Order Method

System of 1°-Order Differential Equations:
= Using Single-Step Methods
= Using Multi-Step Methods

High-Order Ordinary Differential Equations

s Transformation to First Order D.E.’s
= Solution Using Single or Multi-Step Methods
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First iteration
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Second iteration
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Third iteration
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Draw your results...
o8 T \ Graphical representation
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     Draw your results...
Graphical representation
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Numerical Solution/ Differential Equations (ODE)
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- Runge-Kutta 2nd-Order

where: [!a’y.;‘:f h - jf({icsgt)
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Using Runge-Kutta 2nd-Order:

[             ]

[       ]

Dr. Hashem Alkhaldi


Dr. Hashem Alkhaldi

EX: Using Runge-Kutta 2nd-Order:

3

= 0.3 Cc—\ 0\93@\/1‘:&.»342%6*)

k.



(h = 0.3)

Using Runge-Kutta 2nd-Order:
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Using Runge-Kutta 2nd-Order:
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use (h = 3)

Using Runge-Kutta 2nd-Order:

EX:
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EX:

Using Runge-Kutta 2nd-Order:
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Runge-Kutta 4th-Order



Runge-Kutta 4th-Order
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Final answer


Final answer
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Multi-step Methods for solving ODE's

- Midpoint Method (2nd order)
- Milne's Method (4th order)
- Adams-Bashforth Method (2nd order)
- Adams-Bashforth Method (4th order)
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i=1,2,3,4,5, ..
- 2h. where:
Yua = Yia + 2 y0 is the given initial condition.

y1 is found from Runge-Kutta.


Multi-step Methods for solving ODE's

- Midpoint Method (2nd order)
- Milne's Method    (4th  order)
- Adams-Bashforth Method (2nd order)
- Adams-Bashforth Method (4th  order)

i= 1, 2, 3, 4, 5, ...
where: 
y0 is the given initial condition.
y1 is found from Runge-Kutta.            
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i=3,4,5,6,7, ...
4h where:
Yia =V +—Q2f~fia+21,) y0 is the given initial condition.
' 3 y1,y2, y3 are found from Runge-Kutta.
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Yin = y,+ (3f ~f4) Where:
y0 is the given initial condition.

y1l is found from Runge-Kutta.
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i= 3, 4, 5, 6, 7, ...
where: 
y0 is the given initial condition.
y1, y2, y3 are found from Runge-Kutta.

.

i= 1, 2, 3, 4, 5, ...
where: 
y0 is the given initial condition.
y1 is found from Runge-Kutta.

i= 3, 4, 5, 6, 7, ...
where: 
y0 is the given initial condition.
y1, y2, y3 are found from Runge-Kutta
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and,

1 —-
i =0+§(o.1+0.12)_o.11
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1 —
Va1 = 1.215+5(0.208+0.216_) =1.427

s s s P s s P P s P P s P P P P P P P P P P P P P P P P P P P P P s P P Pt

oo L39S Al pga 510 2+ I'_,L._Cdll.&w.i‘_;:.llﬁahligim 13 =

b R e tR.i-i-L.% =v(f) ?.BMI (e calegduaglie
Byl A0EE0 Addalgh b V g adll At o0 L gaaplalided
;v(t) =12e" sin(t) Oly i(0)=0A ¢ L=1H : R=100 Ol cala 1]
2,0 ;e Runge-Kutta 22,5 plasiols 1(0.2) deesd umgl

Ch=0.15. pusd . das)y

;2
S


and,

and,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Dr. Hashem Alkhaldi


Dr. Hashem Alkhaldi

380

s =l
e

.@&HL% =v(f) Wstall 3

di R .
T +—'V(’)
‘.'(5‘

i‘- = f(t,i)=—10i+ 12.e” .sin(?)
L3 A (e Runge-Kutta azyal 231,533 Aauall

=hf(t,f)=—i+] 2e~ .sin(f)

k, =hflt +%,i + -If‘—) =—(i+ El—) +1.2¢7499 sin(t +0.05)

)\‘*‘f/y

& 8

z)+1.2e“(”°'°5’.sin(t+0.05)

-hf(t+—h- 1+——-) —(i+—
—(i+k;)+1 2¢7#% gin(t+0.1)

k, =hf(t+hithk)=
i ,=i,,+%(k,+2k2+2k,+k4)

ol B A Ayl ySaY Aduali 620 RREE

:ngJ.” o
ni| &, i k; k2 ks Ky
0 0 0 0.057 0.0285 | 0.07990
111 0.1 | 00418 0.0666 | 0.0792 0.0729 0.0805
(2. 02| 0117 I
ol gh

i02)=01174
s
N
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y+y+3t=35 Zdustant) Aslall Jo gl Fuler azayle plutsouls (1 W@

y(0)=1
h=02, 0.1 pasda) / 0St<laaN2

Aty 225051 (2330 (pn TaAyIOT Gidaylo phainiuls a1 Jipatt g el 2 &5

LA iy o0 Runge-Kutta gids o plasiub: Joi J1gasst g el B L
eyl

_ Adams-Bashforth 2zl phisiuls Jo¥1 Jigeadt Jo et (4 v

YUYy = sin(f), y(0)= ¥'(0)=0 sAuduolant Aatall Jo wow gl ] M’

0<t<1
h=02, 0.1 pusniu)

yuy2y=d, 0=, YO=1 Y — 2 blan Aatalf Jo- w2l (6 >

0<t<1
h=02, 0.1 pusiu)

Aaghie (e WhgSs esilypgsm Byt 2 iyl caal ] atatall ot caale i3y (7 &
L gdaglall daid (2 R L:.__a.‘R.i+L.g;—=v(t) (_,.a,J.mmu,.\m.au,

CR=20Q ol Geele 1] 55t Agiant Adalgd b V g dll Al b

(5(0.5) Ao sl V() = 10sin(f) oty i(0) =04 « L=500mH

=018 i . a3 A0, (e Runge-Kutta 2zl pluasiub
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