System Dynamics and
Control

Introduction



Introduction: Terminology

Electrical, A/C Engine
& Charging

What is a Machine or Equipment?
It is an engineering made structure, which consists of systems  fyel system
and subsystems to perform certain functions.

What is a System?
It is a collection of interconnected components that are
designed to achieve a desired purpose.

Driver Display
What is a Control System?

It is an interconnection of components forming a system
configuration that will provide a user desired setpoint or a
response.

Transmission

Cooling System
Suspension & Steering Wheel & Brakes

What is a Process?

* A Process or a device or a plant is a system under control.

* The input and output relationship represents the cause-and
effect relationship of the process.



What is Control Engineering?

Application Example

e Consider an industrial steam heating unit (i.e.
System) as shown

* This unit represents a dynamical system (Liquid

Tank) and a Control System (Heater, Valve, __ Waterinfiow

Sensor and Controller) P S
e
e

e Control Objective: Maintain a liquid in the tank —— [ |

at a user set point defined temperature oo sslive @ Water outfow
¥, >

k_/ Tank temperalure

Steam flow Temperature
setpoint setpoint
Conroller 2 Controller 1

Steam
flow rate

Valve
opening




What is Control Engineering?

* How to accomplish the control objective?

Process

Primary Control Element (i.e. Steam Heater): needed to provide the required thermal energy
to affect the liquid’s temperature in the tank.

Secondary Control Element (i.e. Globe Valve): needed to change the steam flow rate to affect
the amount of heat transfer between the steam and the liquid through convection.

Actuator (i.e. a device to give a work): needed to partially open and close the valve (such as
diaphragm or piston actuator or electrical motor...etc.).

Sensor (i.e. Temperature Measured Value): needed to measure the temperature of the liquid
and it is required by the controller to make proper decisions.

Water inflow

Controller (i.e. Decision maker): needed to provide two decisions . e W

to be carried by the actuator (i.e. Control Law). =

T

* To open or close the valve N N
 How much to open or how much to close Sisomaive Watar utfow

Tank temperalure

Steam
flow rate

opening
sssssss



Types of Control Systems

* Control Systems maybe classified
into two types:

* Open Loop (i.e. without feedback): The Open Loop Control System

controller maybe set to provide a desired
process variable value (i.e. output). However, [ CS?]HO' H Driver
the process variable could be affected by

changes in load or disturbances.

e Closed Loop (i.e. with feedback measured Closed Loop Control System
sensor value of the process variable): The iy )
controller monitors the process variable Control S
through the feedback sensor measurement Sl )
and adjusts its decision accordingly. This

enables the system to handle load changes
and external disturbances Feedback




Control Objectives

Typically all controllers have the
following objectives or functions

 Stabilizing unstable systems * Enhancing Performance
unstable ¢ SDGEd of response
* Overshoot
e Steady state error (accuracy)
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Control History

18th Century James Watt’s centrifugal governor for the speed control of a steam
engine.

1920s Minorsky worked on automatic controllers for steering ships.
1930s Nyquist developed a method for analyzing the stability of controlled systems

1940s Frequency response methods made it possible to design linear closed-loop
control systems

1950s Root-locus method due to Evans was fully developed
1960s State space methods, optimal control, adaptive control and
1980s Learning controls are begun to investigated and developed.

Present and on-going research fields. Recent application of modern control theory
includes such non-engineering systems such as biological, biomedical, economic and
sOClo-economic systems

Greece (BC) — Float regulator mechanism
Holland (16™ Century)— Temperature regulator

A Measured Boiler

Crutpun !
shaft

Watt’s Flyball Governor
(18" century)



Dynamical Systems

Characteristics of a Dynamical System

* The system output depends on the current Fspring
input as well as previous inputs/outputs

* The system has internal memory A
* |t can be represented mathematically using /V\/\A/V\N

differential equations

e Typically the system order usually
corresponds to the number of independent
energy storage elements in the system.

* Examples on energy storing elements: Mass, ! VL LVE
Spring, Capacitor, inductor, ....etc.




Laplace Transform

* Using the Laplace transform, it is possible to

convert a system's time-domain Input r(t)
representation into another domain, where l

the output/input representation is known as Dynamical System
the transfer function, provided having zero Time Domain DE

initial conditions.

* It transforms the governing system l Output y(t)

differential equation into an algebraic =
equation which is often easier to analyze. L[ f()]=F(s) =jf(r]g‘-“d;
0

* The technigue maybe applied to any linear

system with constant coefficient differential
equation representations l Input R(S)

Dynamical System

* Note that: s=oc+jw (complex frequency Variable) !I__apla]fe [;O'main o6
ransfer Function

l Output Y(S)



Laplace Transform

Laplace Transform of the unit step.

Liu(t))= [1e™de=""e™[

0 § ’
Lu(n) =+
A)

Unit Step Function, y(t)
1.5 T T T
| e— i
e T e e e R
T S et SIS
03 | i i | |
-1 0 1 2 3 4 3
Time, (s)

’ The Laplace transform of a unit impulse:

Mathematically:

1, +€
j&(t—t‘,)dt=l £>0

'“‘e

S(t—t)=0 t# 0

L[5(t)]=T8 (e Mdt=e"* =1

Pictorially, the unit impulse appears as follows:

(1)

‘G(t—t.}

0 t,



Laplace Transform

Building transform pairs:

Lle “u(t)]= _[e""'e“"’dt —= j e dt
0

cog

Lie O
—e" 1
Lle™u(t)|= —
| ) (s+a)E s+a
—at l
A transform | @ u(t) — S
sS+a

pair

Building transform pairs:

Lltu(t)] =Tte"”dt

e

Jud’vzuv'ﬂ —Ivdu R
) {

u=t

1 A transform

tu(t) & 3 pair
S




Laplace Transform

Building transform pairs: Time Shift
| TEe™+e ™) m
Licos(wt)]|= e dt —s
s LLf (t-ayu(t-a))= [ f(1-a)e™
=%|: l. - +l. :| Letx=t—a,thendx=dt andt=x+a
s—jw s+ jw
. Ast—a, x—=>0and as t = oo, x — <, So,
- S2 5 wl T ~s(x4a) g __ . —as T ~5X
ff(x)e dx= e jf(x)e dx
0 0
cos(wi)u(t) & - S - A transform
S +w” pair

L[ f(t—a)u(t—a)]=e " F(s)




Laplace Transform

Frequency Shift

Lie ™ f(0)]=]le™ f(0))e"dt

= Tf(t)e"“""dt=F(s +a)

Lle™ f(t)]=F(s+a)

Example: Using Frequency Shift

Find the L|e™cos(wt)]

In this case, f(t) = cos(wt) so,

F(s)=—2

st +w’
and F(s+a)= (S+,a) -
(s+a) +w”
(s+a)

Lle™ cos(wt)]=

(s+a) +(w)



Laplace Transform

Time Integration: Time Integration:
The property is: Making these substitutions and carrying out
. B2 The integration shows that
L jj (t)dt =I [ £(x)dx e~
0 oLo
Integrate by parts: LI:jf(t)dt:|=lJf(t)e""dt
1 S
Let u=| f(x)dx. du=f(t)dt ’ 10
: =—F(s)
and s

e L.
dv=edt, v=——e"
s




Laplace Transform

Time Differentiation:

If the L[f(t)] = F(s), we want to show:

df (t)

L[——]=sF(s)- f(0)

Integrate by parts:

u=e",du=-se"dt and

dfd @) b= dr ), 50 V=10

Time Differentiation:

Making the previous substitutions gives,

[ f] f(t)e™

=0— f£(0)+s j f(t)e " dt

—J £ (0)|-se ar

So we have shown:

df (1)
[ 7 ]—91’(?) f£(0)



Laplace Transform

Time Differentiation:

| We can extend the previous to show; |

=

L df (1)’

dt’

HEA (1)

dt’

dt”

=5*F(s)~sf (0)— f'(0)

= §'F(s)-*f(0)—sf'(0)— £"(0)

general case

JJarar

=5"F(s)~s"" f(0)~s"" £'(0)

—— fﬂn—'l}{n]

Transform Pairs:

f(t) F(s)
o(1) 1
1
u(r) fi Fa o —
= 1 5
E—.ﬂ‘ 1
S+a
1
f —
a
= n!
t 1




Laplace Transform

Transform Pairs:

(1)

Transform Pairs:

F(s)
G 1
i
¢ [ : ]z
s+a
=~ n!
IHE ’ n+l
(s+a)
sin(wr) : w :
S +w
cos(wr) s
st4w?

f(t) F(s)
e " sin(wt) H: :
(s+a) +w’
a s+a
e ' cos(wr) : :
(s+a) +w
i ssin@ +wcos@
sin(wt +8) 5 ﬁ w?
S5 +w
scos@ —wsin@
cos(wt+8)

T+ w?



Laplace Transform

Theorem:| Initial Value Theorem:

If the function f(t) and its first derivative are Laplace transformable and f(t)
Has the Laplace transform F(s), and the EIT) foF (s) exists, then

limsF(s)=lim f(¢)= £(0) Initial Value
iS00 t—0 Theorem

Example: Initial ValueTheorem:

Given;

F(s):Lz)
(s+1)%+52

Find £(0)

2
FO)=limsF(s)=tims— 2 _jjp| S 28
§—o00 §—oo (S+1) +5 §—eo s +2.§'+1+25
= Jény ssz/sz+2s/$2 _

1



Laplace Transform

Theorem:

Final Value Theorem:

If the function f(t) and its first derivative are Laplace transformable and f(t)
has the Laplace transform F(s), and the liﬂ sF(s) exists, then
5 o9

limsF(s)=1lim f(¢)= f (o) Final Value
s—0 f—> o Tkeorem

Example: Final Value Theorem:

Given:

F(s)=

(v+2)

note F~'(s)=te™ cos 3t

_l(v+2) +3ZI

Find f(c)-.

f(0)=lim sF(s)= lim sy

s—0

(s+2) -
0 [s+2)P 437 T

=0



Transfer Function

* A transfer function is the Laplace transform of the system’s
differential equation with omitting initial conditions

 Hence, it is a rational function of the variable ‘s’

l Input X(S)
Y (S ) System Transfer
G(S) = X(S) Its =0 Function G(S)

l Output Y(S)

4 i | i | l:l ] ':I_]' 1
L Y(s) z’_vf_”.s” +h S +'”+br5+bu
G(s) = =

7] ) n—1 ) _
X(s) a,s"+a, s +--tas+a,

1

* |f the coefficients ai and bi are constants, the system is linear time invariant (LTI)
* The highest order n of the denominator is referred to as the order of the system.




Matlab Representation

num= [bi,bz, e s ,bm,bmﬂ];
den=[1,a:,a:,. . .,&81, ail];,
G=tf (num, den)

Application
* Try to enter the following transfer function into Matlab

. s+5
G(s)= 53
sT4+2s5°+3s +4s5+5

* Also, find the step and impulse response: use step(G) and impulse(G)



Dynamical System Response

* The time response of a linear dynamic system consists of the sum of the transient
response (Natural response) which depends on the initial conditions and the
steady-state response (Forced response ) which depends on the system input.

* Note that these correspond to the free (homogeneous or zero input) and the
forced (inhomogeneous or non-zero input) solutions of the governing differential
equations, respectively.

A
Input command ¢

T !

Steady-state Steady-state
response error

——-

Transient
response

Floor

Elevator response

Time



First Order System

e Consider the following First Order System (FOS) transfer function

 Where the sigma represents the location of the system pole

* The impulse response will be an exponential function: U(S)=1
Y(s) = = U(s)

S+o

Y(s) =—1

S+0

y(t) =e

The order of a dynamic system is the order of the highest
derivative of its governing differential equation.

Equivalently, it is the highest power of s in the denominator
of its transfer function.




Effect of Pole Location

- When o > 0, the pole is located at s <0,

The exponential expression y(t) decays. Alm(s)
Impulse response is stable. if >0 if <0
- When o <0, the pole is located at s > 0,
The exponential expression y(t) grows with time. 2 2
Impulse response Is referred to as unstable. % * E &)
N if <0

y(t) = et om0

7




Stability of FOS

A system is stable if the output remains bounded for all bounded
(finite) inputs. -

Practically, this means that the system will not “blow up” while In
operation.

If all poles of the transfer function have negative real parts, then
the system is stable.

If any pole has a positive real part, then the system is unstable.

If any pair of poles is on the imaginary axis, then the systemis
marginally stable and the system will oscillate.




Finding Stability using Matlab

- Poles of a given LTI model G can be obtained directly with pole(G)

- Zeros of the system G can be obtained with the function zero(G)

- Poles and zeros of G can be sketched with the function pzmap(G)

- Example
Is the following plant BIBO stable?

s® +7s* + 245424
s* +10s° +355% + 505+ 24

G,(s)=



First Order System

o differential equation o transfer function
* b
vy + ay = bu G =
S+ a
kq
. C
Yy +y=kgu G




First Order System

- The time constant represents the time scale for which the dynamics
of the system are significant.

- For first order systems, the time constant is the time it takes for the
system to reach 63% of the steady-state value for a step response
or to decrease to 37% of the initial value for an impulse response.

=03TA- —




FOS: Step Response

(s)
R(S) a C‘(.S')
v+ a ————— j‘

C(s) =R(s)G(s)= ﬁ

c(@)=c,(D+c,()=1-™

(1)

t sl time constant
1.0 /
/
0.9 7
0.8 ¥
0.7 -
0.6 |- 63% of final value
at f = one time constant
05
04
03
02F
0.1
| | | .
a a « a a
T,




FOS: Time Constant

- Time for the system output to
reach approximately 63% of its
final steady state value

Indication of system response
speed

c(f)=c,(N+c,(H)=1-e™

= 012037
A

.T(f)|r=% =1-e

—ar

&

¥
=1-0.37=0.63

«(1)

Initial slope = —— —u
bime constant

1.0

0.9
0.7 -

L

0.6
0.5
0.4
0.3
02
0.1

63% of final value
at f = one tme constant

()




FOS: Matlab Simulation

»>» Kdo=5

i Edc =

Tc = 10;

o
I

2.: G(S)= kdc
s = tf('s'); s +1 Te =

G = k_dc/(Tc*s+1) 10
step (u*G)

»» G=tf (Kdc, [Tc 1])
Step Response

1 0 T T 1 [ —t 1 T T
.-/'7----____ G =

-

Amplitude

»>> step(u*i)
»» grid on

0 10 20 30 40 50 60 70 80 90
Time (seconds)



FOS: Matlab

Ta =5;

onum = a; i ‘“‘“"_“_‘_‘*5""“*
~den = [1 a]; G(s)=_° ) Za

o figure S +a 07

o step (num,den) ; %M 7

o grid on U7



FOS: Settling Time

o The settling time Is the time ()

'l Imitial slope = I

required for the system output to » time constant
fall within 2% percentage of the 0ol /
steady state value for a step input  osf |
or equivalently to decrease to a ! " Ju———.
certain percentage of the initial | at 1 = one time constant
value for an impulse input. 04}
0|
o For first order systems, settling - | | o
time is approximately 3.9 * time 0| 1 2 3 5

constant -— =




FOS: Rising Time

- The rise time is the time
required for the system output
to rise from 10% to 90% of the
final steady-state value.

- Tr=2.2/a

el

1.4
0.9

0
0.7

0.6
0.5
0.4
0.3
0.2
0.1

()

Imitial slope =

%

/ / =

|
time constant

63% of final value
at f = one tme constant

]

p=] [ =8

o |h =

|



Applications on System’s Time Constant

Digital Thermometer Digital Infrared Ear Thermometer

o Response time =10-20sec  © Response time = 1 sec




System Dynamics

 What is dynamical systems modeling?

* Modeling is the processing of finding a mathematical representation of the
dynamical system (i.e. physical model) that captures its dynamical behavior.

* Mathematical Model is a mathematical formula that is used to represent a
dynamical system, typically a Differential Equation.

* Modeling utilizes basic Engineering Formulas and concepts to derive the
Mathematical Model, such as

* Energy conservation and mass balance
* Kirshoff laws, Fourier laws, Newton laws, ...etc



Applications: FOS

* Derive the mathematical model for the Tank Level problem

Inlet valve l' 1 F L{t

* Mass Balance Material E
9, —9, = stored (AR HY= RS, W
9 d\’B\ — CL_:XEQ« G:g,l TF ) 1 ougue
Stared ﬁ A OU'\ - ;LIC:O LL [Outletvalve
ﬂ dt Jt . (’:R'i-l-l P —
A ~R 4. Yo=rA ;
Ratf T L— R 4 FO DE| & 4 an Flow s

LmP\tLCﬂ- DPamain IC —¢ " 4i=% &i:\
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ARS HEVHHE) <R G 4= ?l%,\ — ’L \mt
t

hetr = va Grit
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Applications: FOS

* Drive a cars mathematical model in terms of its speed

% L\ F)ga: b s &_&
/\/tbu‘tﬂh’ﬁ | s

€<« b‘U —F—“U:.T
ZJ{T:M X () ficton <— L _ =i
. Vb i
Uf—é)— ) — N - 1~L
1{)%_ MY (£) =m\ & LLSI_H $ Y/

M .&';-;- U'(t\:_L_ (L&) 0 DE “« k=% U

b
ke Ul £)
Lq\alaq _{ﬁmg Uity = k.. €




Applications: FOS

e Drive the RCL circuit mathematical model R

L
‘ﬁwul \y= A | _1; | -
) v ' &5 T

_5'__| [_\ U = (_\?ﬁ‘{a dot Time Domain

NV ZR+TS) 47 Fidd c=X R sL

1/sC

~ \e. — S +
\LL:(R—HL\:HV - — H‘C) 1 |

B i

Laplace Domain
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