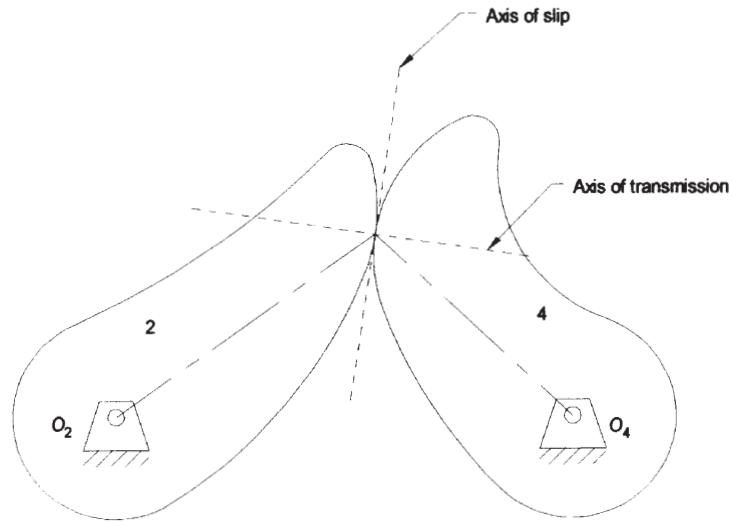


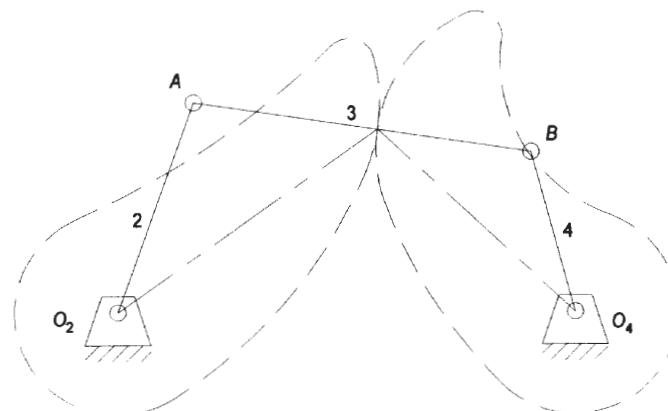
Chapter 8

CAM DESIGN

TOPIC/PROBLEM MATRIX


SECT	TOPIC	PROBLEMS
8.1	Cam Terminology	8-1, 8-3, 8-5
8.3	Double-Dwell Cam Design	8-55
	Simple Harmonic Motion (SHM)	8-26
	Cycloidal Displacement	8-23
	Modified Trapezoidal	8-7, 8-11, 8-21, 8-44
	Modified Sinusoidal	8-8, 8-10, 8-22, 8-45
	Polynomial Functions	8-24, 8-25, 8-33, 8-46
8.4	Single-Dwell Cam Design	8-9, 8-42, 8-47, 8-53
8.5	Critical Path Motion	8-17, 8-43, 8-48, 8-54
8.6	Sizing the Cam	
	Pressure Angle	8-2, 8-4, 8-6, 8-34
	Radius of Curvature	
	Roller Followers	8-18, 8-19, 8-20, 8-27, 8-28, 8-29, 8-30, 8-31, 8-32, 8-35, 8-36, 8-37, 8-38, 8-39, 8-40, 8-41
	Flat-Faced Followers	8-49, 8-50, 8-51, 8-52
	Roller & Flat-Faced Followers	8-12, 8-13, 8-14, 8-15, 8-16

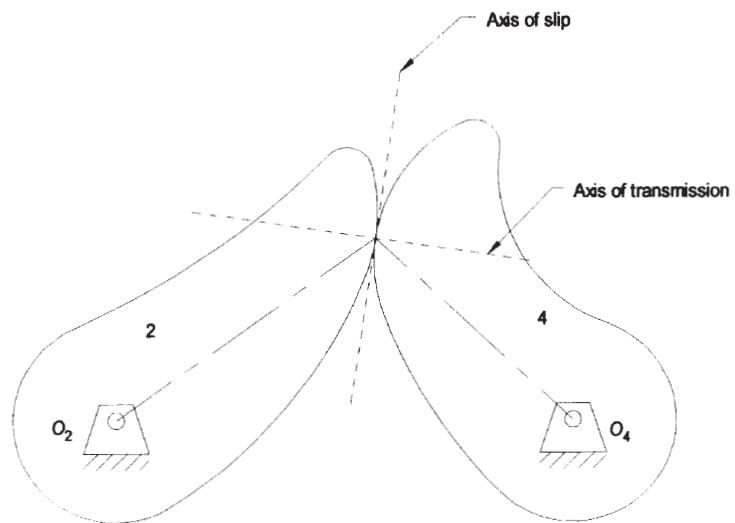
 PROBLEM 8-1


Statement: Figure P8-1 shows the cam and follower from Problem 6-65. Using graphical methods, find and sketch the equivalent fourbar linkage for this position of the cam and follower.

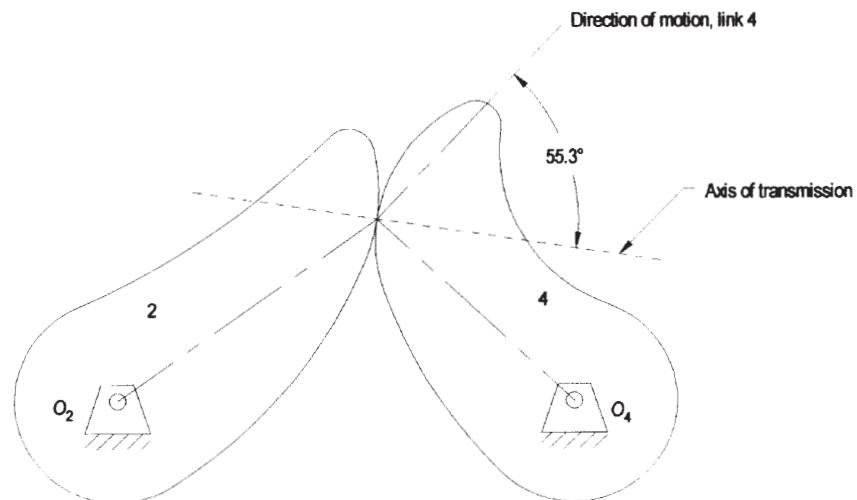
Solution: See Figure P8-1 and Mathcad file P0801.

1. Draw the cam and follower to scale.

2. As described in Section 8.1 and Figure 8-1, find the centers of curvature of the cams, which are located on the common normal (axis of transmission). They will be the locations of the moving pivots of the effective pin-jointed fourbar linkage.



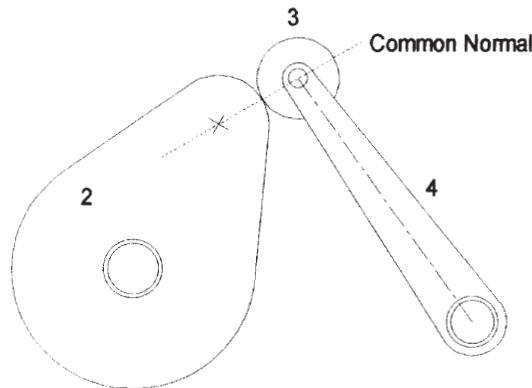
 PROBLEM 8-2


Statement: Figure P8-1 shows the cam and follower from Problem 6-65. Using graphical methods, find the pressure angle at the position shown.

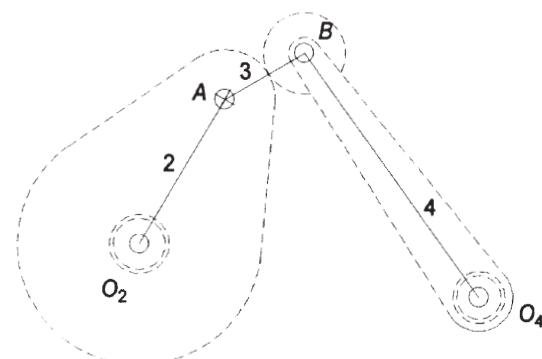
Solution: See Figure P8-1 and Mathcad file P0802.

1. Draw the cam and follower to scale.

2. As defined in Section 8.6 and Figure 8-41, the pressure angle is the angle between the direction of motion of the follower and the direction of the axis of transmission. Establish those two directions and measure the angle between them.



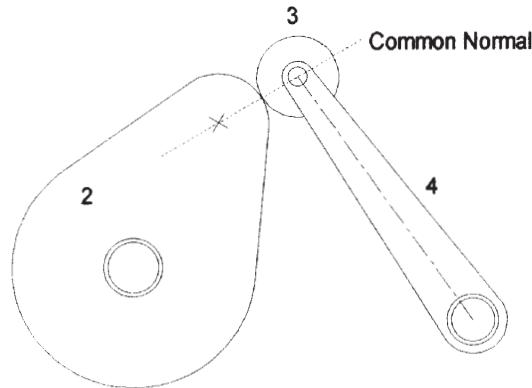
 PROBLEM 8-3


Statement: Figure P8-2 shows the cam and follower. Using graphical methods, find and sketch the equivalent fourbar linkage for this position of the cam and follower.

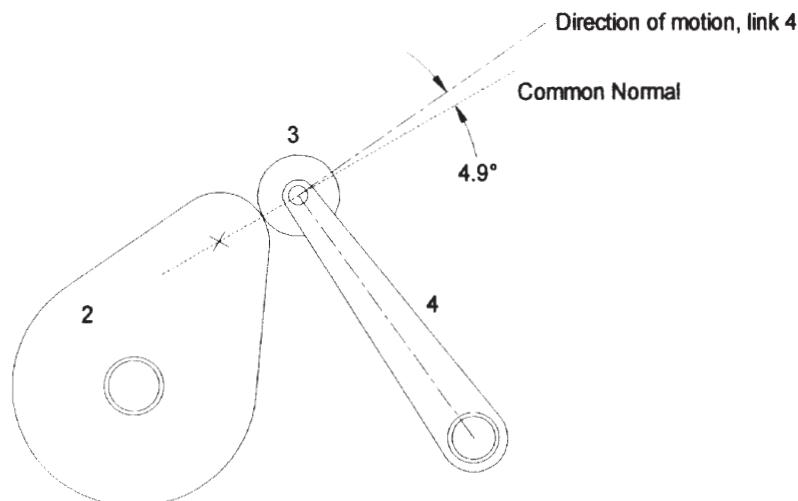
Solution: See Figure P8-2 and Mathcad file P0803.

1. Draw the cam and follower to scale.

2. As described in Section 8.1 and Figure 8-1, find the centers of curvature of the cams, which are located on the common normal (axis of transmission). They will be the locations of the moving pivots of the effective pin-jointed fourbar linkage.



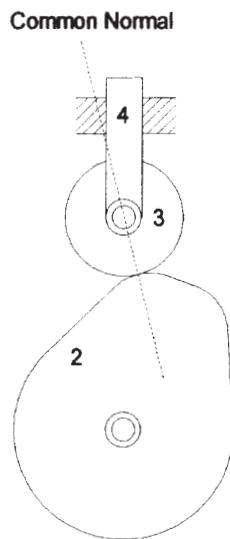
 PROBLEM 8-4


Statement: Figure P8-2 shows the cam and follower. Using graphical methods, find the pressure angle at the position shown.

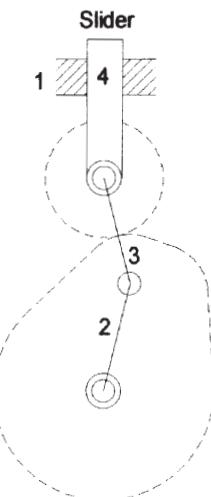
Solution: See Figure P8-2 and Mathcad file P0804.

1. Draw the cam and follower to scale.

2. As defined in Section 8.6 and Figure 8-41, the pressure angle is the angle between the direction of motion of the follower and the direction of the axis of transmission. Establish those two directions and measure the angle between them.



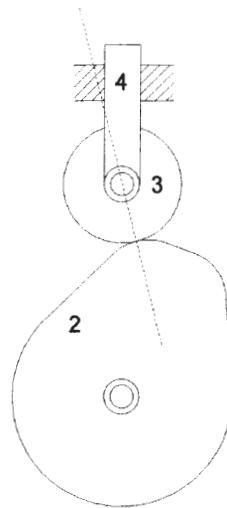
 PROBLEM 8-5


Statement: Figure P8-3 shows the cam and follower. Using graphical methods, find and sketch the equivalent fourbar linkage for this position of the cam and follower.

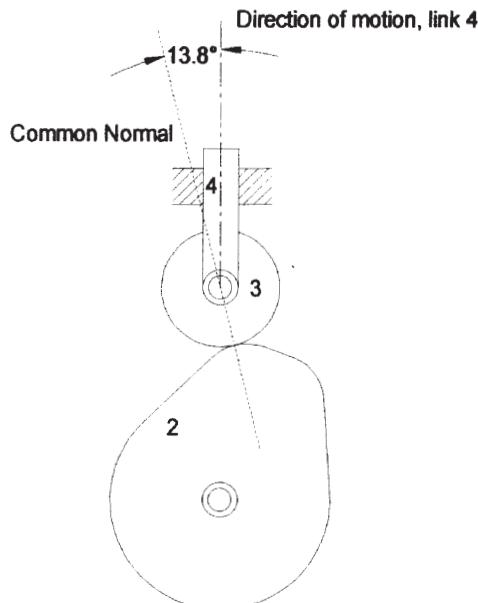
Solution: See Figure P8-3 and Mathcad file P0805.

1. Draw the cam and follower to scale.

2. As described in Section 8.1 and Figure 8-1, find the centers of curvature of the cams, which are located on the common normal (axis of transmission). They will be the locations of the moving pivots of the effective pin-jointed fourbar linkage.


 PROBLEM 8-6

Statement: Figure P8-3 shows the cam and follower. Using graphical methods, find the pressure angle at the position shown.


Solution: See Figure P8-3 and Mathcad file P0806.

1. Draw the cam and follower to scale.

Common Normal

2. As defined in Section 8.6 and Figure 8-41, the pressure angle is the angle between the direction of motion of the follower and the direction of the axis of transmission. Establish those two directions and measure the angle between them.

 PROBLEM 8-7

Statement: Design a double-dwell cam to move a follower from 0 to 2.5 in in 60 deg, dwell for 120 deg, fall 2.5 in in 30 deg and dwell for the remainder. The total cycle must take 4 sec. Choose suitable programs for rise and fall to minimize accelerations. Plot the s v a j diagrams.

Given:

RISE

DWELL

FALL

DWELL

$$\beta_1 := 60 \cdot \text{deg}$$

$$h_1 := 2.5 \cdot \text{in}$$

$$\beta_2 := 120 \cdot \text{deg}$$

$$h_2 := 0 \cdot \text{in}$$

$$\beta_3 := 30 \cdot \text{deg}$$

$$h_3 := 2.5 \cdot \text{in}$$

$$\beta_4 := 150 \cdot \text{deg}$$

$$h_4 := 0 \cdot \text{in}$$

$$\text{Cycle time: } \tau := 4 \cdot \text{sec}$$

Solution: See Mathcad file P0807.

1. The camshaft turns 2π rad during the time for one cycle. Thus, its speed is

$$\omega := \frac{2 \cdot \pi \cdot \text{rad}}{\tau} \quad \omega = 1.571 \frac{\text{rad}}{\text{sec}}$$

2. From Table 8-3, the motion program with lowest acceleration that does not have infinite jerk is the modified trapezoidal. The modified trapezoidal motion is defined in local coordinates by equations 8.15 through 8.19. The numerical constants in these SCCA equations are given in Table 8-2.

$$b := 0.25 \quad c := 0.50 \quad d := 0.25$$

$$C_v := 2.0000 \quad C_a := 4.8881 \quad C_j := 61.426$$

3. The SCCA equations for the rise or fall interval (β) are divided into 5 subintervals. These are:

for $0 \leq x \leq b/2$ where, for these equations, x is a local coordinate that ranges from 0 to 1,

$$y_1(x) := C_a \left[x \cdot \frac{b}{\pi} - \left(\frac{b}{\pi} \right)^2 \cdot \sin \left(\frac{\pi}{b} \cdot x \right) \right] \quad y'_1(x) := C_a \cdot \frac{b}{\pi} \cdot \left(1 - \cos \left(\frac{\pi}{b} \cdot x \right) \right)$$

$$y''_1(x) := C_a \cdot \sin \left(\frac{\pi}{b} \cdot x \right) \quad y'''_1(x) := C_a \cdot \frac{\pi}{b} \cdot \cos \left(\frac{\pi}{b} \cdot x \right)$$

for $b/2 \leq x \leq (1 - d)/2$

$$y_2(x) := C_a \left[\frac{x^2}{2} + b \cdot \left(\frac{1}{\pi} - \frac{1}{2} \right) \cdot x + b^2 \cdot \left(\frac{1}{8} - \frac{1}{\pi^2} \right) \right] \quad y'_2(x) := C_a \left[x + b \cdot \left(\frac{1}{\pi} - \frac{1}{2} \right) \right]$$

$$y''_2(x) := C_a \quad y'''_2(x) := 0$$

for $(1 - d)/2 \leq x \leq (1 + d)/2$

$$y_3(x) := C_a \left[\left(\frac{b}{\pi} + \frac{c}{2} \right) \cdot x + \left(\frac{d}{\pi} \right)^2 + b^2 \cdot \left(\frac{1}{8} - \frac{1}{\pi^2} \right) - \frac{(1-d)^2}{8} - \left(\frac{d}{\pi} \right)^2 \cdot \cos \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right] \right]$$

$$y'_3(x) := C_a \left[\frac{b}{\pi} + \frac{c}{2} + \frac{d}{\pi} \cdot \sin \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right] \right]$$

$$y''_3(x) := C_a \cdot \cos \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right]$$

$$y'''_3(x) := -C_a \cdot \frac{\pi}{d} \cdot \sin \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right]$$

for $(1 + d)/2 \leq x \leq 1 - b/2$

$$y_4(x) := C_a \left[-\frac{x^2}{2} + \left(\frac{b}{\pi} + 1 - \frac{b}{2} \right) \cdot x + \left(2 \cdot d^2 - b^2 \right) \cdot \left(\frac{1}{\pi^2} - \frac{1}{8} \right) - \frac{1}{4} \right]$$

$$y'_4(x) := C_a \left(-x + \frac{b}{\pi} + 1 - \frac{b}{2} \right) \quad y''_4(x) := -C_a \quad y'''_4(x) := 0$$

for $1 - b/2 \leq x \leq 1$

$$y_5(x) := C_a \left[\frac{b}{\pi} \cdot x + \frac{2 \cdot (d^2 - b^2)}{\pi^2} + \frac{(1-b)^2 - d^2}{4} - \left(\frac{b}{\pi} \right)^2 \cdot \sin \left[\frac{\pi}{b} \cdot (x-1) \right] \right]$$

$$y'_5(x) := C_a \frac{b}{\pi} \cdot \left[1 - \cos \left[\frac{\pi}{b} \cdot (x-1) \right] \right]$$

$$y''_5(x) := C_a \cdot \sin \left[\frac{\pi}{b} \cdot (x-1) \right] \quad y'''_5(x) := C_a \cdot \frac{\pi}{b} \cdot \cos \left[\frac{\pi}{b} \cdot (x-1) \right]$$

4. The above equations can be used for a rise or fall by using the proper values of θ , β , and h . To plot the *SVAJ* curves, first define a range function that has a value of one between the values of a and b and zero elsewhere.

$$R(x, x1, x2) := \text{if}[(x > x1) \wedge (x \leq x2), 1, 0]$$

5. The global *SVAJ* equations are composed of four intervals (rise, dwell, fall, and dwell). The local equations above must be assembled into a single equation each for *S*, *V*, *A*, and *J* that applies over the range $0 \leq \theta \leq 360$ deg.

6. Write the local *svaj* equations for the first interval, $0 \leq \theta \leq \beta_1$. Note that each subinterval function is multiplied by the range function so that it will have nonzero values only over its subinterval.

For $0 \leq \theta \leq \beta_1$ (Rise)

$$s_I(x) := h_I \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y_5(x) \right)$$

$$v_I(x) := \frac{h_I}{\beta_I} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'_5(x) \right)$$

$$a_I(x) := \frac{h_I}{\beta_I^2} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y''_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y''_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y''_5(x) \right)$$

$$j_I(x) := \frac{h_I}{\beta_I^3} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'''_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'''_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'''_5(x) \right)$$

7. Write the local *svaj* equations for the second interval, $\beta_1 \leq \theta \leq \beta_1 + \beta_2$. For this interval, the value of S is the value of S at the end of the previous interval and the values of V, A , and J are zero because of the dwell.

For $\beta_1 \leq \theta \leq \beta_1 + \beta_2$

$$s_2(x) := h_1 \quad v_2(x) := 0 \quad a_2(x) := 0 \quad j_2(x) := 0$$

8. Write the local *svaj* equations for the third interval, $\beta_1 + \beta_2 \leq \theta \leq \beta_1 + \beta_2 + \beta_3$.

For $\beta_1 + \beta_2 \leq \theta \leq \beta_1 + \beta_2 + \beta_3$

$$s_3(x) := h_3 \left[1 - \left(R\left(x, 0, \frac{b}{2}\right) \cdot y_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y_3(x) \dots \right) \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y_5(x) \right]$$

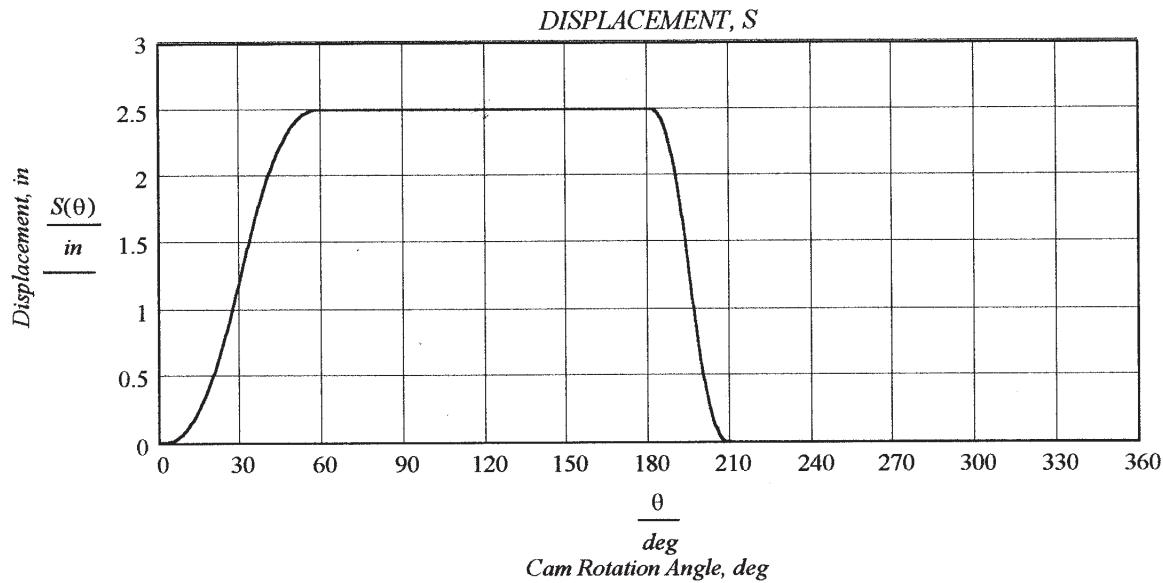
$$v_3(x) := -\frac{h_3}{\beta_3} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'_5(x) \right)$$

$$a_3(x) := -\frac{h_3}{\beta_3^2} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y''_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y''_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y''_5(x) \right)$$

$$j_3(x) := -\frac{h_3}{\beta_3^3} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'''_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'''_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'''_5(x) \right)$$

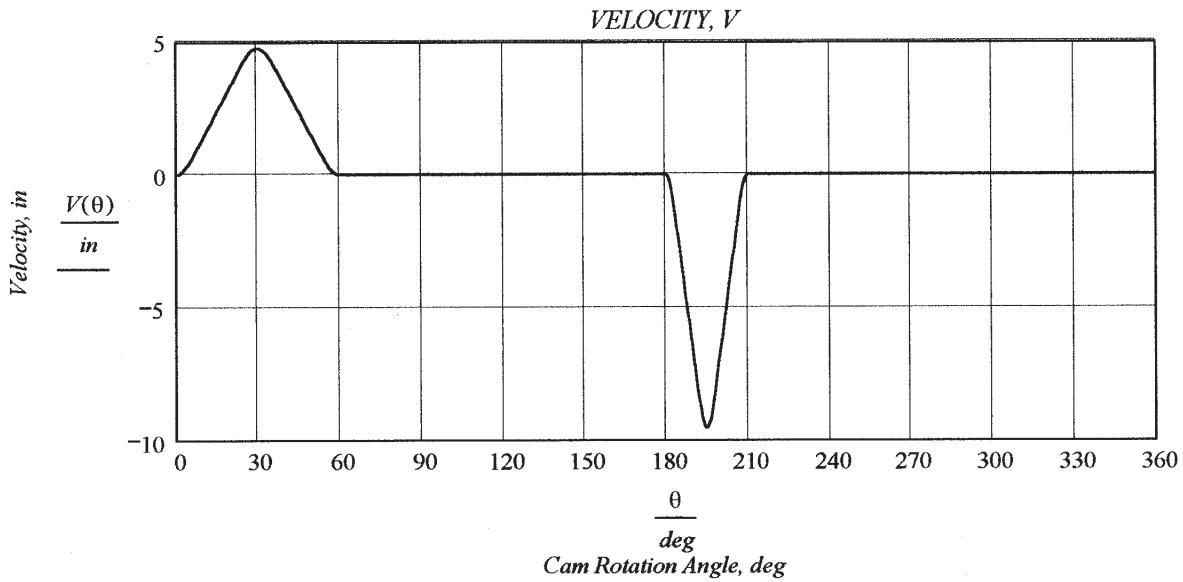
9. Write the local *svaj* equations for the fourth interval, $\beta_1 + \beta_2 + \beta_3 \leq \theta \leq \beta_1 + \beta_2 + \beta_3 + \beta_4$. For this interval, the values of S, V, A , and J are zero because of the dwell.

For $\beta_1 + \beta_2 + \beta_3 \leq \theta \leq \beta_1 + \beta_2 + \beta_3 + \beta_4$

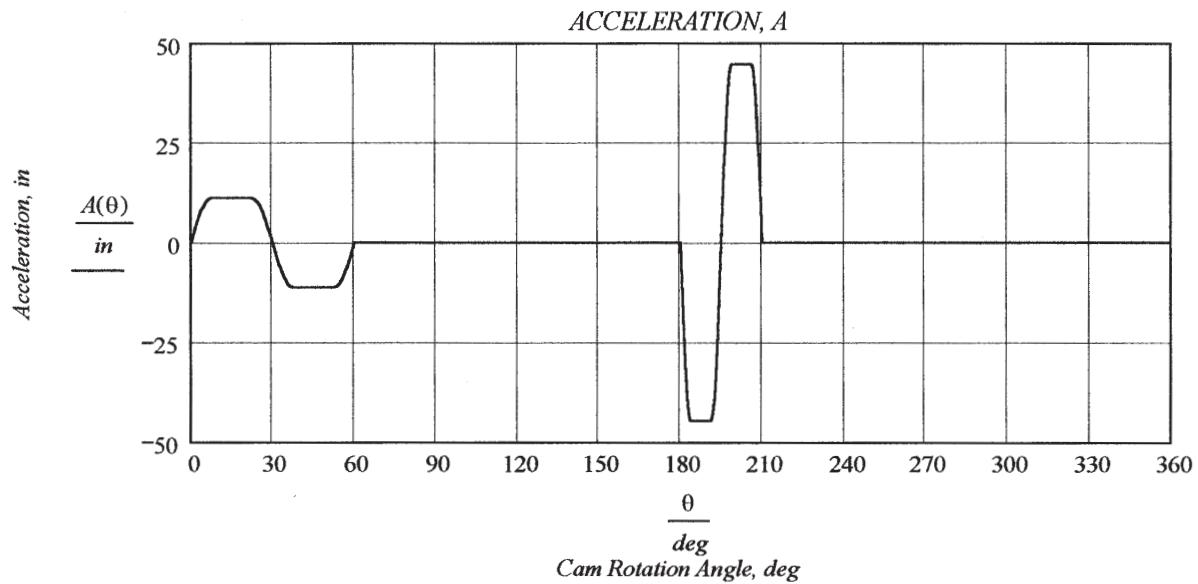

$$s_4(x) := 0 \quad v_4(x) := 0 \quad a_4(x) := 0 \quad j_4(x) := 0$$

10. Write the complete global equation for the displacement and plot it over one rotation of the cam, which is the sum of the four intervals defined above.

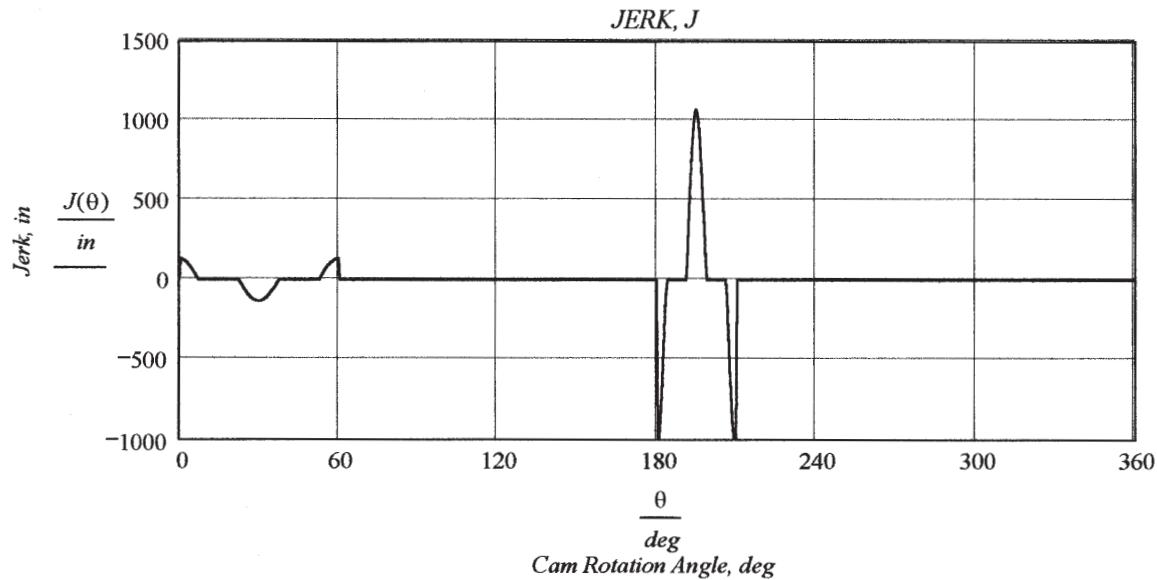
$$\text{Let } \theta_1 := \beta_1 \quad \theta_2 := \theta_1 + \beta_2 \quad \theta_3 := \theta_2 + \beta_3 \quad \theta_4 := \theta_3 + \beta_4$$


$$S(\theta) := s_1 \left(\frac{\theta}{\theta_1} \right) + R(\theta, \theta_1, \theta_2) \cdot s_2 \left(\frac{\theta - \theta_1}{\theta_2 - \theta_1} \right) \dots \\ + R(\theta, \theta_2, \theta_3) \cdot s_3 \left(\frac{\theta - \theta_2}{\theta_3 - \theta_2} \right) + R(\theta, \theta_3, \theta_4) \cdot s_4 \left(\frac{\theta - \theta_3}{\theta_4 - \theta_3} \right)$$

$$\theta := 0 \cdot \text{deg}, 0.5 \cdot \text{deg}.. 360 \cdot \text{deg}$$


11. Write the complete global equation for the velocity and plot it over one rotation of the cam, which is the sum of the four intervals defined above.

$$V(\theta) := v_1 \left(\frac{\theta}{\theta_1} \right) + R(\theta, \theta_1, \theta_2) \cdot v_2 \left(\frac{\theta - \theta_1}{\theta_2 - \theta_1} \right) \dots \\ + R(\theta, \theta_2, \theta_3) \cdot v_3 \left(\frac{\theta - \theta_2}{\theta_3 - \theta_2} \right) + R(\theta, \theta_3, \theta_4) \cdot v_4 \left(\frac{\theta - \theta_3}{\theta_4 - \theta_3} \right)$$


12. Write the complete global equation for the acceleration and plot it over one rotation of the cam, which is the sum of the four intervals defined above.

$$A(\theta) := a_1 \left(\frac{\theta}{\theta_1} \right) + R(\theta, \theta_1, \theta_2) \cdot a_2 \left(\frac{\theta - \theta_1}{\theta_2 - \theta_1} \right) \dots \\ + R(\theta, \theta_2, \theta_3) \cdot a_3 \left(\frac{\theta - \theta_2}{\theta_3 - \theta_2} \right) + R(\theta, \theta_3, \theta_4) \cdot a_4 \left(\frac{\theta - \theta_3}{\theta_4 - \theta_3} \right)$$

13. Write the complete global equation for the jerk and plot it over one rotation of the cam, which is the sum of the four intervals defined above.

$$J(\theta) := j_1 \left(\frac{\theta}{\theta_1} \right) + R(\theta, \theta_1, \theta_2) \cdot j_2 \left(\frac{\theta - \theta_1}{\theta_2 - \theta_1} \right) \dots \\ + R(\theta, \theta_2, \theta_3) \cdot j_3 \left(\frac{\theta - \theta_2}{\theta_3 - \theta_2} \right) + R(\theta, \theta_3, \theta_4) \cdot j_4 \left(\frac{\theta - \theta_3}{\theta_4 - \theta_3} \right)$$

 PROBLEM 8-8

Statement: Design a double-dwell cam to move a follower from 0 to 1.5 in 45 deg, dwell for 150 deg, fall 1.5 in 90 deg and dwell for the remainder. The total cycle must take 6 sec. Choose suitable programs for rise and fall to minimize velocities. Plot the *SVAJ* diagrams.

Given:

RISE

$$\beta_1 := 45 \cdot \text{deg}$$

$$h_1 := 1.5 \cdot \text{in}$$

DWELL

$$\beta_2 := 150 \cdot \text{deg}$$

$$h_2 := 0 \cdot \text{in}$$

FALL

$$\beta_3 := 90 \cdot \text{deg}$$

$$h_3 := 1.5 \cdot \text{in}$$

DWELL

$$\beta_4 := 75 \cdot \text{deg}$$

$$h_4 := 0 \cdot \text{in}$$

$$\text{Cycle time: } \tau := 6 \cdot \text{sec}$$

Solution: See Mathcad file P0808.

1. The camshaft turns 2π rad during the time for one cycle. Thus, its speed is

$$\omega := \frac{2 \cdot \pi \cdot \text{rad}}{\tau} \quad \omega = 1.047 \frac{\text{rad}}{\text{sec}}$$

2. The modified sinusoidal motion is defined in local coordinates by equations 8.15 through 8.19. The numerical constants in these SCCA equations are given in Table 8-2.

$$b := 0.25 \quad c := 0.00 \quad d := 0.75$$

$$C_a := 5.5280$$

3. The SCCA equations for the rise or fall interval (β) are divided into 5 subintervals. These are:

for $0 \leq x \leq b/2$ where, for these equations, x is a local coordinate that ranges from 0 to 1,

$$y_1(x) := C_a \left[x \cdot \frac{b}{\pi} - \left(\frac{b}{\pi} \right)^2 \cdot \sin \left(\frac{\pi}{b} \cdot x \right) \right] \quad y'_1(x) := C_a \cdot \frac{b}{\pi} \cdot \left(1 - \cos \left(\frac{\pi}{b} \cdot x \right) \right)$$

$$y''_1(x) := C_a \cdot \sin \left(\frac{\pi}{b} \cdot x \right) \quad y'''_1(x) := C_a \cdot \frac{\pi}{b} \cdot \cos \left(\frac{\pi}{b} \cdot x \right)$$

for $b/2 \leq x \leq (1 - d)/2$

$$y_2(x) := C_a \left[\frac{x^2}{2} + b \cdot \left(\frac{1}{\pi} - \frac{1}{2} \right) \cdot x + b^2 \cdot \left(\frac{1}{8} - \frac{1}{\pi^2} \right) \right] \quad y'_2(x) := C_a \left[x + b \cdot \left(\frac{1}{\pi} - \frac{1}{2} \right) \right]$$

$$y''_2(x) := C_a$$

$$y'''_2(x) := 0$$

for $(1 - d)/2 \leq x \leq (1 + d)/2$

$$y_3(x) := C_a \left[\left(\frac{b}{\pi} + \frac{c}{2} \right) \cdot x + \left(\frac{d}{\pi} \right)^2 + b^2 \cdot \left(\frac{1}{8} - \frac{1}{\pi^2} \right) - \frac{(1-d)^2}{8} - \left(\frac{d}{\pi} \right)^2 \cdot \cos \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right] \right]$$

$$y'_3(x) := C_a \left[\frac{b}{\pi} + \frac{c}{2} + \frac{d}{\pi} \cdot \sin \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right] \right]$$

$$y''_3(x) := C_a \cdot \cos \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right] \quad y'''_3(x) := -C_a \cdot \frac{\pi}{d} \cdot \sin \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right]$$

for $(1 + d)/2 \leq x \leq 1 - b/2$

$$y_4(x) := C_a \left[\frac{x^2}{2} + \left(\frac{b}{\pi} + 1 - \frac{b}{2} \right) \cdot x + \left(2 \cdot d^2 - b^2 \right) \cdot \left(\frac{1}{\pi^2} - \frac{1}{8} \right) - \frac{1}{4} \right]$$

$$y'_4(x) := C_a \left(-x + \frac{b}{\pi} + 1 - \frac{b}{2} \right) \quad y''_4(x) := -C_a \quad y'''_4(x) := 0$$

for $1 - b/2 \leq x \leq 1$

$$y_5(x) := C_a \left[\frac{b}{\pi} \cdot x + \frac{2 \cdot (d^2 - b^2)}{\pi^2} + \frac{(1-b)^2 - d^2}{4} - \left(\frac{b}{\pi} \right)^2 \cdot \sin \left[\frac{\pi}{b} \cdot (x-1) \right] \right]$$

$$y'_5(x) := C_a \cdot \frac{b}{\pi} \cdot \left[1 - \cos \left[\frac{\pi}{b} \cdot (x-1) \right] \right]$$

$$y''_5(x) := C_a \cdot \sin \left[\frac{\pi}{b} \cdot (x-1) \right]$$

$$y'''_5(x) := C_a \cdot \frac{\pi}{b} \cdot \cos \left[\frac{\pi}{b} \cdot (x-1) \right]$$

4. The above equations can be used for a rise or fall by using the proper values of θ , β , and h . To plot the *SVAJ* curves, first define a range function that has a value of one between the values of a and b and zero elsewhere.

$$R(x, x1, x2) := \text{if}[(x > x1) \wedge (x \leq x2), 1, 0]$$

5. The global *SVAJ* equations are composed of four intervals (rise, dwell, fall, and dwell). The local equations above must be assembled into a single equation each for *S*, *V*, *A*, and *J* that applies over the range $0 \leq \theta \leq 360$ deg.

6. Write the local *svaj* equations for the first interval, $0 \leq \theta \leq \beta_1$. Note that each subinterval function is multiplied by the range function so that it will have nonzero values only over its subinterval.

For $0 \leq \theta \leq \beta_1$ (Rise)

$$s_I(x) := h_I \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y_5(x) \right)$$

$$v_I(x) := \frac{h_I}{\beta_I} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'_5(x) \right)$$

$$a_I(x) := \frac{h_I}{\beta_I^2} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y''_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y''_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y''_5(x) \right)$$

$$j_I(x) := \frac{h_I}{\beta_I^3} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'''_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'''_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'''_5(x) \right)$$

7. Write the local *svaj* equations for the second interval, $\beta_1 \leq \theta \leq \beta_1 + \beta_2$. For this interval, the value of S is the value of S at the end of the previous interval and the values of V, A , and J are zero because of the dwell.

For $\beta_1 \leq \theta \leq \beta_1 + \beta_2$

$$s_2(x) := h_1 \quad v_2(x) := 0 \quad a_2(x) := 0 \quad j_2(x) := 0$$

8. Write the local *svaj* equations for the third interval, $\beta_1 + \beta_2 \leq \theta \leq \beta_1 + \beta_2 + \beta_3$.

For $\beta_1 + \beta_2 \leq \theta \leq \beta_1 + \beta_2 + \beta_3$

$$s_3(x) := h_3 \left[1 - \left(R\left(x, 0, \frac{b}{2}\right) \cdot y_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y_3(x) \dots \right) \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y_5(x) \right]$$

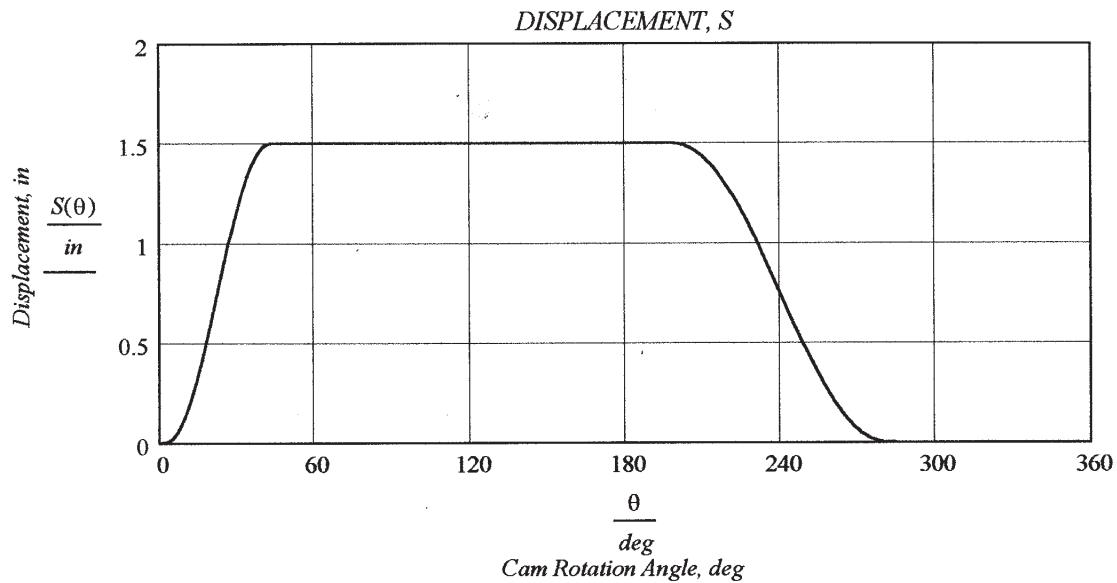
$$v_3(x) := -\frac{h_3}{\beta_3} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'_5(x) \right)$$

$$a_3(x) := -\frac{h_3}{\beta_3^2} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y''_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y''_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y''_5(x) \right)$$

$$j_3(x) := -\frac{h_3}{\beta_3^3} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'''_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'''_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'''_5(x) \right)$$

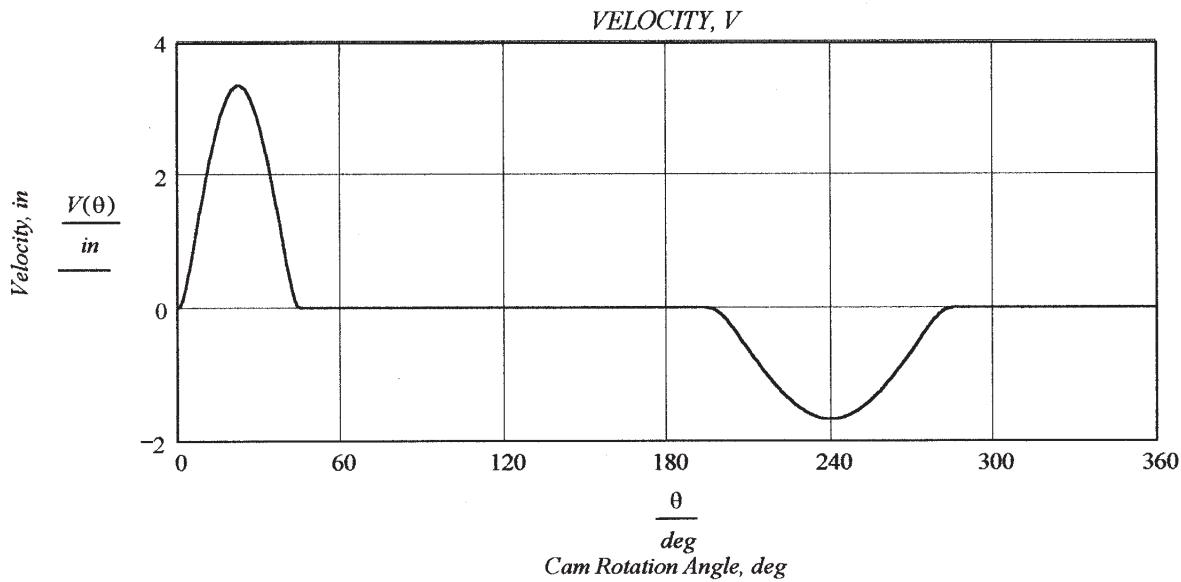
9. Write the local *svaj* equations for the fourth interval, $\beta_1 + \beta_2 + \beta_3 \leq \theta \leq \beta_1 + \beta_2 + \beta_3 + \beta_4$. For this interval, the values of S, V, A , and J are zero because of the dwell.

For $\beta_1 + \beta_2 + \beta_3 \leq \theta \leq \beta_1 + \beta_2 + \beta_3 + \beta_4$

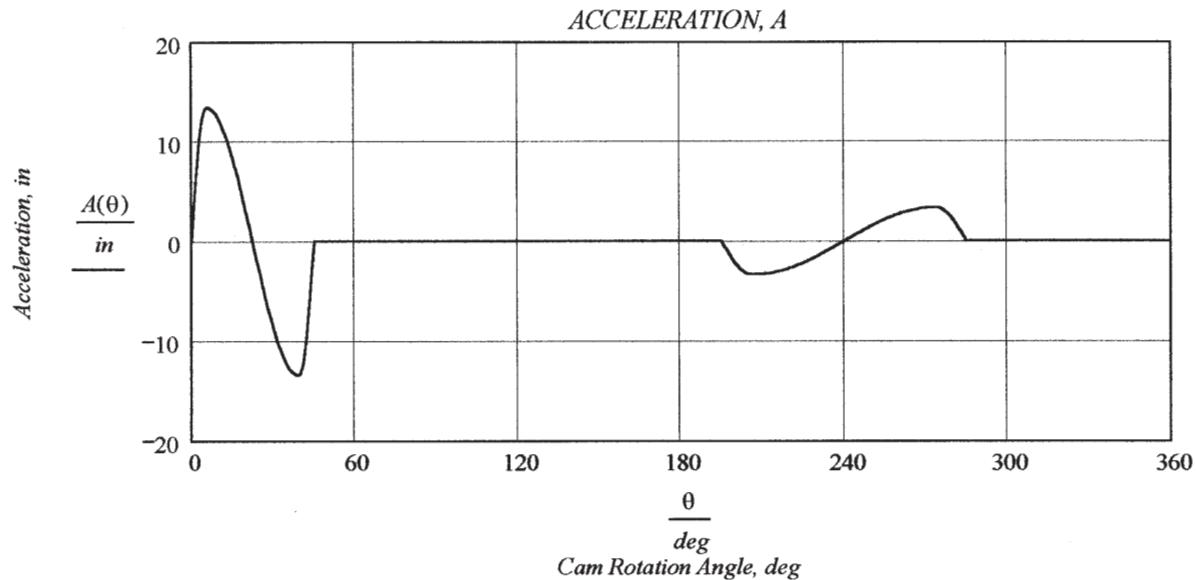

$$s_4(x) := 0 \quad v_4(x) := 0 \quad a_4(x) := 0 \quad j_4(x) := 0$$

10. Write the complete global equation for the displacement and plot it over one rotation of the cam, which is the sum of the four intervals defined above.

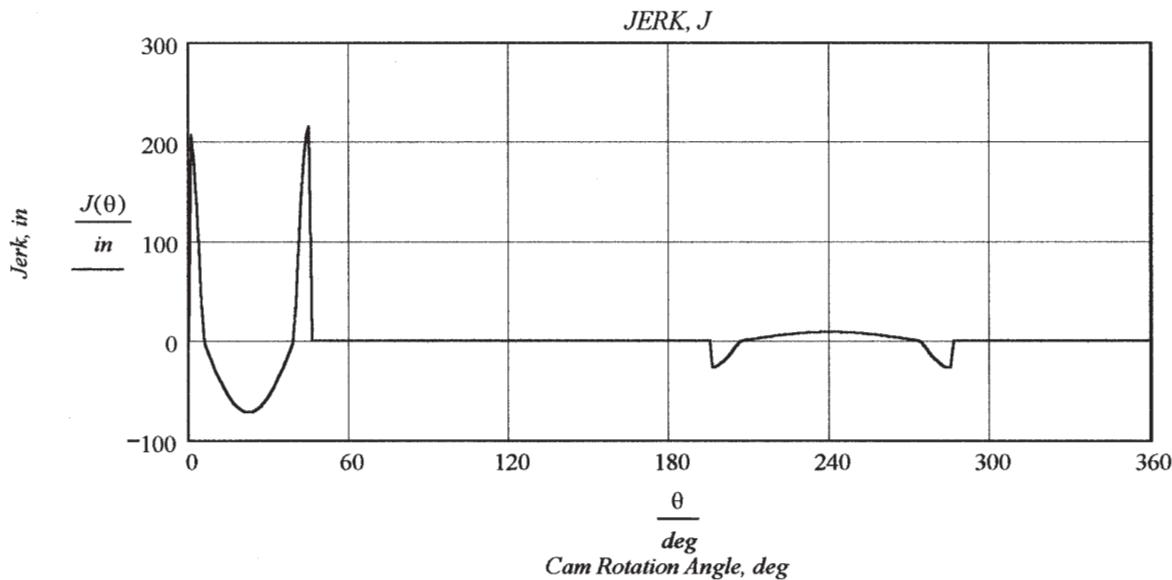
$$\text{Let } \theta_1 := \beta_1 \quad \theta_2 := \theta_1 + \beta_2 \quad \theta_3 := \theta_2 + \beta_3 \quad \theta_4 := \theta_3 + \beta_4$$


$$S(\theta) := s_1 \left(\frac{\theta}{\theta_1} \right) + R(\theta, \theta_1, \theta_2) \cdot s_2 \left(\frac{\theta - \theta_1}{\theta_2 - \theta_1} \right) \dots \\ + R(\theta, \theta_2, \theta_3) \cdot s_3 \left(\frac{\theta - \theta_2}{\theta_3 - \theta_2} \right) + R(\theta, \theta_3, \theta_4) \cdot s_4 \left(\frac{\theta - \theta_3}{\theta_4 - \theta_3} \right)$$

$$\theta := 0 \cdot \text{deg}, 1 \cdot \text{deg}..360 \cdot \text{deg}$$


11. Write the complete global equation for the velocity and plot it over one rotation of the cam, which is the sum of the four intervals defined above.

$$V(\theta) := v_1 \left(\frac{\theta}{\theta_1} \right) + R(\theta, \theta_1, \theta_2) \cdot v_2 \left(\frac{\theta - \theta_1}{\theta_2 - \theta_1} \right) \dots \\ + R(\theta, \theta_2, \theta_3) \cdot v_3 \left(\frac{\theta - \theta_2}{\theta_3 - \theta_2} \right) + R(\theta, \theta_3, \theta_4) \cdot v_4 \left(\frac{\theta - \theta_3}{\theta_4 - \theta_3} \right)$$


12. Write the complete global equation for the acceleration and plot it over one rotation of the cam, which is the sum of the four intervals defined above.

$$A(\theta) := a_1 \left(\frac{\theta}{\theta_1} \right) + R(\theta, \theta_1, \theta_2) \cdot a_2 \left(\frac{\theta - \theta_1}{\theta_2 - \theta_1} \right) \dots \\ + R(\theta, \theta_2, \theta_3) \cdot a_3 \left(\frac{\theta - \theta_2}{\theta_3 - \theta_2} \right) + R(\theta, \theta_3, \theta_4) \cdot a_4 \left(\frac{\theta - \theta_3}{\theta_4 - \theta_3} \right)$$

13. Write the complete global equation for the jerk and plot it over one rotation of the cam, which is the sum of the four intervals defined above.

$$\begin{aligned}
 J(\theta) := & j_1 \left(\frac{\theta}{\theta_1} \right) + R(\theta, \theta_1, \theta_2) \cdot j_2 \left(\frac{\theta - \theta_1}{\theta_2 - \theta_1} \right) \dots \\
 & + R(\theta, \theta_2, \theta_3) \cdot j_3 \left(\frac{\theta - \theta_2}{\theta_3 - \theta_2} \right) + R(\theta, \theta_3, \theta_4) \cdot j_4 \left(\frac{\theta - \theta_3}{\theta_4 - \theta_3} \right)
 \end{aligned}$$

 PROBLEM 8-9

Statement: Design a single-dwell cam to move a follower from 0 to 2.0 in in 60 deg, fall 2.0 in in 90 deg and dwell for the remainder. The total cycle must take 2 sec. Choose suitable programs for rise and fall to minimize velocities. Plot the *SVAJ* diagrams.

Given: RISE/FALL DWELL

$$\beta := 150 \cdot \text{deg} \quad \beta_3 := 210 \cdot \text{deg}$$

$$h := 2.0 \cdot \text{in} \quad h_3 := 0.0 \cdot \text{in}$$

$$\text{Cycle time: } \tau := 2 \cdot \text{sec}$$

Solution: See Mathcad file P0809.

1. The camshaft turns 2π rad during the time for one cycle. Thus, its speed is

$$\omega := \frac{2 \cdot \pi \cdot \text{rad}}{\tau} \quad \omega = 3.142 \frac{\text{rad}}{\text{sec}}$$

2. Use a two-segment polynomial. Let the rise and fall, together, be one segment and the dwell be the second segment. Then, the boundary conditions are:

$$\begin{aligned} \text{at } \theta = 0: \quad s &= 0, \quad v = 0, \quad a = 0 \\ \theta = \beta_1: \quad s &= h, \quad v = 0 \\ \theta = \beta: \quad s &= 0, \quad v = 0, \quad a = 0 \end{aligned}$$

This is a minimum set of 8 BCs. The $v = 0$ condition at $\theta = \beta_1$ is required to keep the displacement from overshooting the lift, h . Define the total lift, the rise interval, the fall interval, and the ratio of rise to the total interval.

$$\text{Total lift: } h = 2.000 \text{ in}$$

$$\text{Rise interval: } \beta_1 := 60 \cdot \text{deg} \quad A := \frac{\beta_1}{\beta} \quad A = 0.400$$

$$\text{Fall interval: } \beta_2 := 90 \cdot \text{deg}$$

3. Use the 8 BCs and equation 8.23 to write 8 equations in s , v , and a similar to those in example 8-9 but with 8 terms in the equation for s (the highest term will be seventh degree).

For $\theta = 0$: $s = v = a = 0$

$$0 := c_0 \quad 0 := c_1 \quad 0 := c_2$$

For $\theta = \beta_1$: $s = h$, $v = 0$

$$h := c_3 \cdot A^3 + c_4 \cdot A^4 + c_5 \cdot A^5 + c_6 \cdot A^6 + c_7 \cdot A^7$$

$$0 := 3 \cdot c_3 \cdot A^2 + 4 \cdot c_4 \cdot A^3 + 5 \cdot c_5 \cdot A^4 + 6 \cdot c_6 \cdot A^5 + 7 \cdot c_7 \cdot A^6$$

For $\theta = \beta$: $s = v = a = 0$

$$0 := c_3 + c_4 + c_5 + c_6 + c_7$$

$$0 := 3 \cdot c_3 + 4 \cdot c_4 + 5 \cdot c_5 + 6 \cdot c_6 + 7 \cdot c_7$$

$$0 := 6 \cdot c_3 + 12 \cdot c_4 + 20 \cdot c_5 + 30 \cdot c_6 + 42 \cdot c_7$$

4. Solve for the unknown polynomial coefficients. Note that C_0 through C_2 are zero

$$C := \begin{pmatrix} A^3 & A^4 & A^5 & A^6 & A^7 \\ 3 \cdot A^2 & 4 \cdot A^3 & 5 \cdot A^4 & 6 \cdot A^5 & 7 \cdot A^6 \\ 1 & 1 & 1 & 1 & 1 \\ 3 & 4 & 5 & 6 & 7 \\ 6 & 12 & 20 & 30 & 42 \end{pmatrix} \quad H := \begin{pmatrix} h \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad \begin{pmatrix} c_3 \\ c_4 \\ c_5 \\ c_6 \\ c_7 \end{pmatrix} := C^{-1} \cdot H$$

$$c_3 = 289.352 \text{ in}$$

$$c_4 = -1229.745 \text{ in}$$

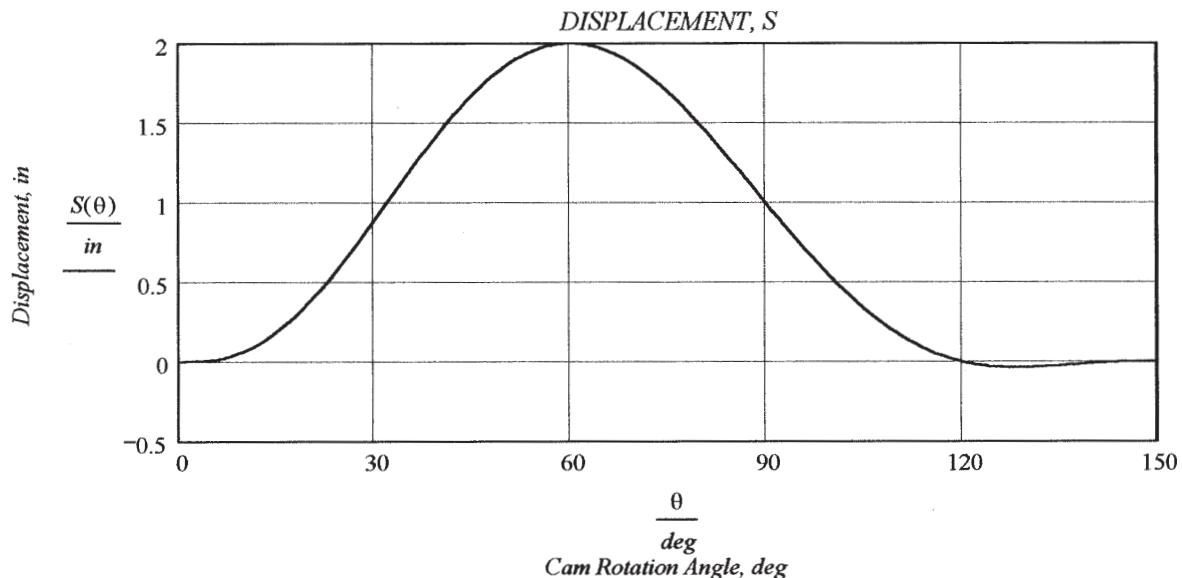
$$c_5 = 1953.125 \text{ in}$$

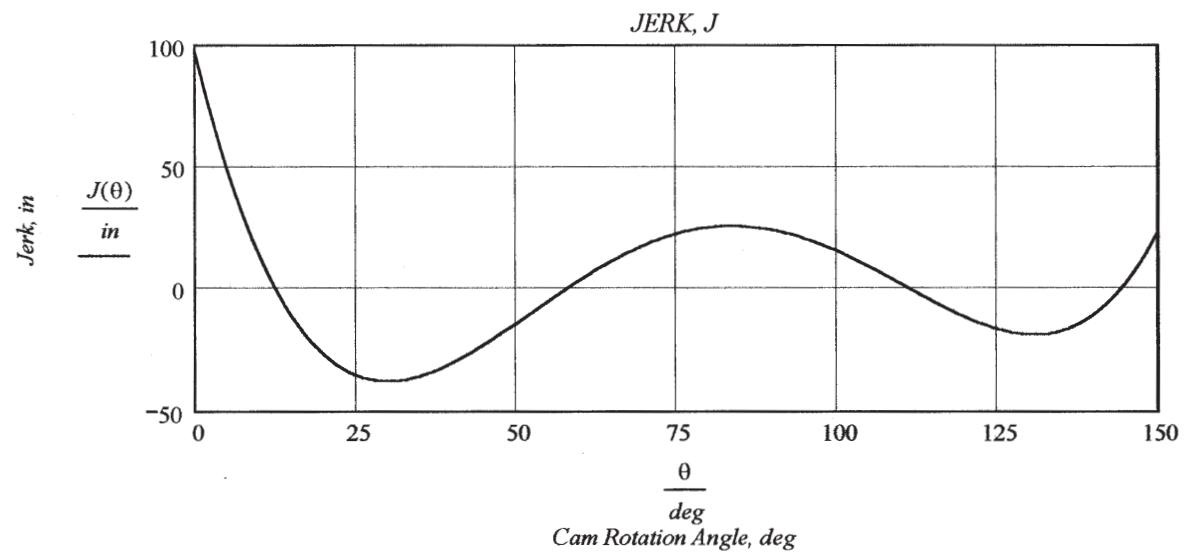
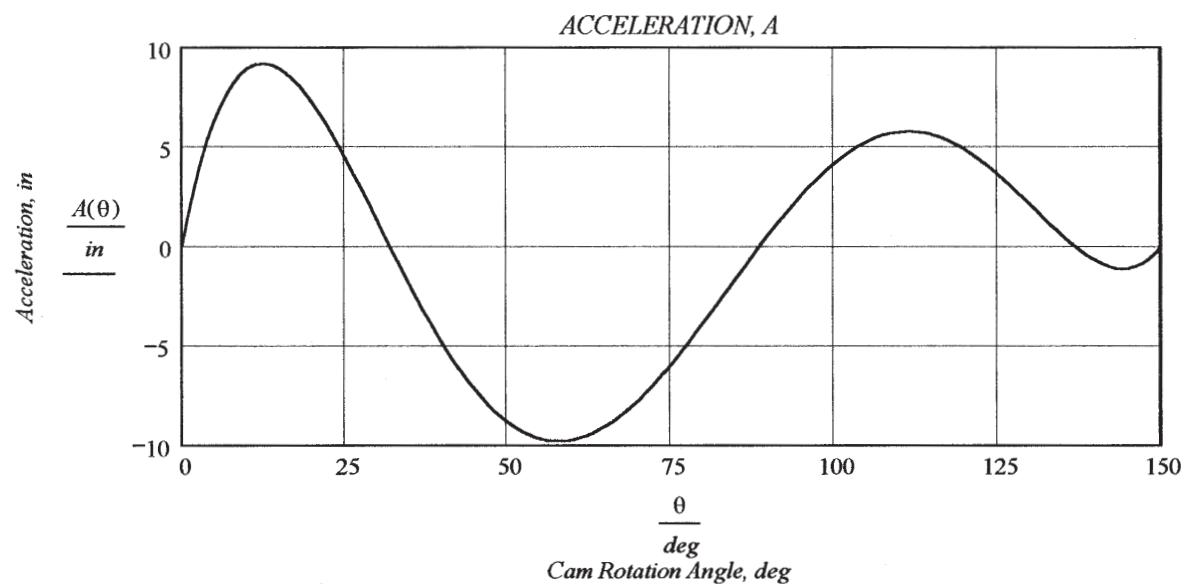
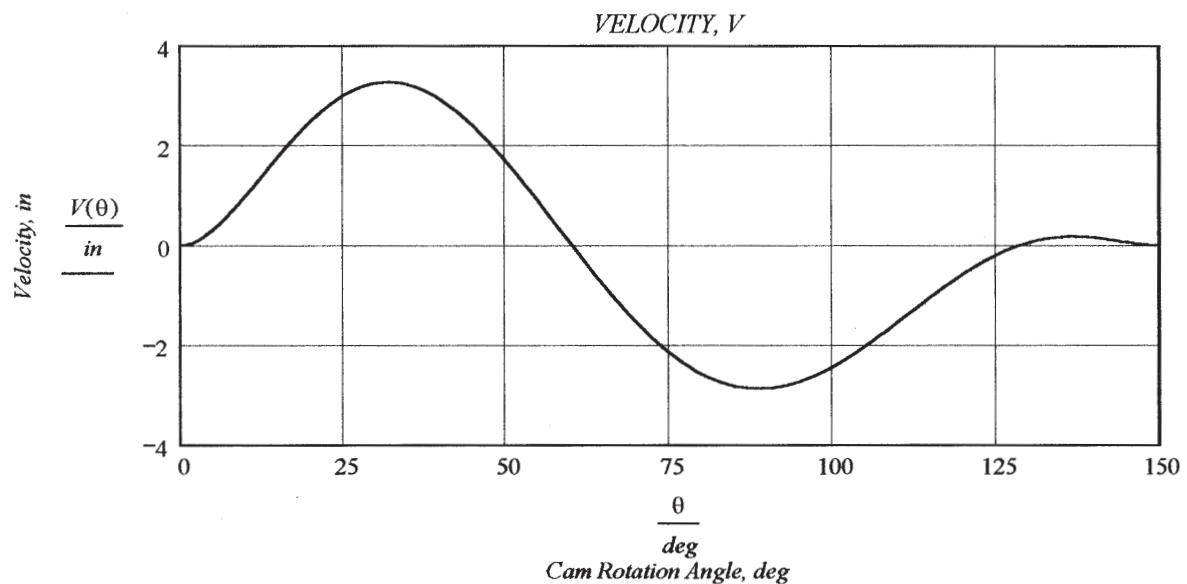
$$c_6 = -1374.421 \text{ in}$$

$$c_7 = 361.690 \text{ in}$$

5. Write the *SVAJ* equations for the rise/fall segment.

$$S(\theta) := c_3 \left(\frac{\theta}{\beta} \right)^3 + c_4 \left(\frac{\theta}{\beta} \right)^4 + c_5 \left(\frac{\theta}{\beta} \right)^5 + c_6 \left(\frac{\theta}{\beta} \right)^6 + c_7 \left(\frac{\theta}{\beta} \right)^7$$


$$V(\theta) := \frac{1}{\beta} \left[3 \cdot c_3 \left(\frac{\theta}{\beta} \right)^2 + 4 \cdot c_4 \left(\frac{\theta}{\beta} \right)^3 + 5 \cdot c_5 \left(\frac{\theta}{\beta} \right)^4 + 6 \cdot c_6 \left(\frac{\theta}{\beta} \right)^5 + 7 \cdot c_7 \left(\frac{\theta}{\beta} \right)^6 \right]$$




$$A(\theta) := \frac{1}{\beta^2} \left[6 \cdot c_3 \left(\frac{\theta}{\beta} \right) + 12 \cdot c_4 \left(\frac{\theta}{\beta} \right)^2 + 20 \cdot c_5 \left(\frac{\theta}{\beta} \right)^3 + 30 \cdot c_6 \left(\frac{\theta}{\beta} \right)^4 + 42 \cdot c_7 \left(\frac{\theta}{\beta} \right)^5 \right]$$

$$J(\theta) := \frac{1}{\beta^3} \left[6 \cdot c_3 + 24 \cdot c_4 \left(\frac{\theta}{\beta} \right) + 60 \cdot c_5 \left(\frac{\theta}{\beta} \right)^2 + 120 \cdot c_6 \left(\frac{\theta}{\beta} \right)^3 + 210 \cdot c_7 \left(\frac{\theta}{\beta} \right)^4 \right]$$

6. Plot the displacement, velocity, acceleration, and jerk over the interval $0 \leq \theta \leq \beta$.

$$\theta := 0 \cdot \text{deg}, 1 \cdot \text{deg..} \beta$$

 PROBLEM 8-10

Statement: Design a three-dwell cam to move a follower from 0 to 2.5 in in 40 deg, dwell for 100 deg, fall 1.5 in in 90 deg, dwell for 20 deg, fall 1.0 in in 30 deg, and dwell for the remainder. The total cycle must take 10 sec. Choose suitable programs for rise and fall to minimize velocities. Plot the *SVAJ* diagrams.

Given:

RISE/FALL	DWELL	FALL	DWELL
$\beta_1 := 40 \cdot \text{deg}$	$\beta_2 := 100 \cdot \text{deg}$	$\beta_3 := 90 \cdot \text{deg}$	$\beta_4 := 20 \cdot \text{deg}$
$h_1 := 2.5 \cdot \text{in}$	$h_2 := 0.0 \cdot \text{in}$	$h_3 := 1.5 \cdot \text{in}$	$h_4 := 0.0 \cdot \text{in}$
$\beta_5 := 30 \cdot \text{deg}$	$\beta_6 := 80 \cdot \text{deg}$		
$h_5 := 1.0 \cdot \text{in}$	$h_6 := 0.0 \cdot \text{in}$		

Cycle time: $\tau := 15 \cdot \text{sec}$

Solution: See Mathcad file P0810.

1. The camshaft turns 2π rad during the time for one cycle. Thus, its speed is

$$\omega := \frac{2 \cdot \pi \cdot \text{rad}}{\tau} \quad \omega = 0.419 \frac{\text{rad}}{\text{sec}}$$

2. From Table 8-3, the motion program with lowest velocity that does not have infinite jerk is the modified sinusoidal. The modified sinusoidal motion is defined in local coordinates by equations 8.15 through 8.19. The numerical constants in these SCCA equations are given in Table 8-2.

$$\begin{aligned} b &:= 0.25 & c &:= 0.00 & d &:= 0.75 \\ C_v &:= 1.7596 & C_a &:= 5.5280 & C_j &:= 69.466 \end{aligned}$$

3. The SCCA equations for the rise or fall interval (β) are divided into 5 subintervals. These are:

for $0 \leq x \leq b/2$ where, for these equations, x is a local coordinate that ranges from 0 to 1,

$$\begin{aligned} y_1(x) &:= C_a \left[x \cdot \frac{b}{\pi} - \left(\frac{b}{\pi} \right)^2 \cdot \sin \left(\frac{\pi}{b} \cdot x \right) \right] & y'_1(x) &:= C_a \cdot \frac{b}{\pi} \cdot \left(1 - \cos \left(\frac{\pi}{b} \cdot x \right) \right) \\ y''_1(x) &:= C_a \cdot \sin \left(\frac{\pi}{b} \cdot x \right) & y'''_1(x) &:= C_a \cdot \frac{\pi}{b} \cdot \cos \left(\frac{\pi}{b} \cdot x \right) \end{aligned}$$

for $b/2 \leq x \leq (1 - d)/2$

$$\begin{aligned} y_2(x) &:= C_a \left[\frac{x^2}{2} + b \cdot \left(\frac{1}{\pi} - \frac{1}{2} \right) \cdot x + b^2 \cdot \left(\frac{1}{8} - \frac{1}{\pi^2} \right) \right] & y'_2(x) &:= C_a \left[x + b \cdot \left(\frac{1}{\pi} - \frac{1}{2} \right) \right] \\ y''_2(x) &:= C_a & y'''_2(x) &:= 0 \end{aligned}$$

for $(1 - d)/2 \leq x \leq (1 + d)/2$

$$\begin{aligned} y_3(x) &:= C_a \left[\left(\frac{b}{\pi} + \frac{c}{2} \right) \cdot x + \left(\frac{d}{\pi} \right)^2 + b^2 \cdot \left(\frac{1}{8} - \frac{1}{\pi^2} \right) - \frac{(1-d)^2}{8} - \left(\frac{d}{\pi} \right)^2 \cdot \cos \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right] \right] \\ y'_3(x) &:= C_a \left[\frac{b}{\pi} + \frac{c}{2} + \frac{d}{\pi} \cdot \sin \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right] \right] \end{aligned}$$

$$y''_3(x) := C_a \cdot \cos \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right] \quad y'''_3(x) := -C_a \cdot \frac{\pi}{d} \cdot \sin \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right]$$

for $(1+d)/2 \leq x \leq 1 - b/2$

$$y_4(x) := C_a \cdot \left[-\frac{x^2}{2} + \left(\frac{b}{\pi} + 1 - \frac{b}{2} \right) \cdot x + \left(2 \cdot d^2 - b^2 \right) \cdot \left(\frac{1}{\pi^2} - \frac{1}{8} \right) - \frac{1}{4} \right]$$

$$y'_4(x) := C_a \left(-x + \frac{b}{\pi} + 1 - \frac{b}{2} \right) \quad y''_4(x) := -C_a \quad y'''_4(x) := 0$$

for $1 - b/2 \leq x \leq 1$

$$y_5(x) := C_a \cdot \left[\frac{b}{\pi} \cdot x + \frac{2 \cdot (d^2 - b^2)}{\pi^2} + \frac{(1-b)^2 - d^2}{4} - \left(\frac{b}{\pi} \right)^2 \cdot \sin \left[\frac{\pi}{b} \cdot (x-1) \right] \right]$$

$$y'_5(x) := C_a \frac{b}{\pi} \left[1 - \cos \left[\frac{\pi}{b} \cdot (x-1) \right] \right]$$

$$y''_5(x) := C_a \cdot \sin \left[\frac{\pi}{b} \cdot (x-1) \right] \quad y'''_5(x) := C_a \cdot \frac{\pi}{b} \cdot \cos \left[\frac{\pi}{b} \cdot (x-1) \right]$$

4. The above equations can be used for a rise or fall by using the proper values of θ , β , and h . To plot the *SVAJ* curves, first define a range function that has a value of one between the values of a and b and zero elsewhere.

$$R(x, x1, x2) := \text{if}[(x > x1) \wedge (x \leq x2), 1, 0]$$

5. The global *SVAJ* equations are composed of six intervals (rise, dwell, fall, dwell, fall, and dwell). The local equations above must be assembled into a single equation each for *S*, *V*, *A*, and *J* that applies over the range $0 \leq \theta \leq 360$ deg.

6. Write the local *svaj* equations for the first interval, $0 \leq \theta \leq \beta_1$. Note that each subinterval function is multiplied by the range function so that it will have nonzero values only over its subinterval.

For $0 \leq \theta \leq \beta_1$ (Rise)

$$s_I(x) := h_I \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y_I(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y_5(x) \right)$$

$$v_I(x) := \frac{h_I}{\beta_I} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'_I(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'_5(x) \right)$$

$$a_I(x) := \frac{h_I}{\beta_I^2} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y''_I(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y''_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y''_5(x) \right)$$

$$j_I(x) := \frac{h_I}{\beta_I^3} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'''_I(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'''_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'''_5(x) \right)$$

7. Write the local *svaj* equations for the second interval, $\beta_1 \leq \theta \leq \beta_1 + \beta_2$. For this interval, the value of S is the value of S at the end of the previous interval and the values of V, A , and J are zero because of the dwell.

For $\beta_1 \leq \theta \leq \beta_1 + \beta_2$ (dwell)

$$s_2(x) := h_I \quad v_2(x) := 0 \quad a_2(x) := 0 \quad j_2(x) := 0$$

8. Write the local *svaj* equations for the third interval, $\beta_1 + \beta_2 \leq \theta \leq \beta_1 + \beta_2 + \beta_3$.

For $\beta_1 + \beta_2 \leq \theta \leq \beta_1 + \beta_2 + \beta_3$ (fall)

$$s_3(x) := h_3 \left[1 - \left(R\left(x, 0, \frac{b}{2}\right) \cdot y_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y_3(x) \dots \right) \right] + h_I - h_3 \\ \left[+ R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y_5(x) \right]$$

$$v_3(x) := -\frac{h_3}{\beta_3} \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'_3(x) \dots \right) \\ \left[+ R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'_5(x) \right]$$

$$a_3(x) := -\frac{h_3}{\beta_3^2} \left(R\left(x, 0, \frac{b}{2}\right) \cdot y''_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y''_3(x) \dots \right) \\ \left[+ R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y''_5(x) \right]$$

$$j_3(x) := -\frac{h_3}{\beta_3^3} \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'''_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'''_3(x) \dots \right) \\ \left[+ R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'''_5(x) \right]$$

9. Write the local *svaj* equations for the fourth interval, $\beta_1 + \beta_2 + \beta_3 \leq \theta \leq \beta_1 + \beta_2 + \beta_3 + \beta_4$. For this interval, the values of S, V, A , and J are zero because of the dwell.

For $\beta_1 + \beta_2 + \beta_3 \leq \theta \leq \beta_1 + \beta_2 + \beta_3 + \beta_4$ (dwell)

$$s_4(x) := h_I - h_3 \quad v_4(x) := 0 \quad a_4(x) := 0 \quad j_4(x) := 0$$

10. Write the local *svaj* equations for the fifth interval,

For $\beta_1 + \beta_2 + \beta_3 + \beta_4 \leq \theta \leq \beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5$ (fall)

$$s_5(x) := h_5 \left[1 - \left(R\left(x, 0, \frac{b}{2}\right) \cdot y_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y_3(x) \dots \right) \right] \\ \left[+ R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y_5(x) \right]$$

$$v_5(x) := -\frac{h_5}{\beta_5} \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'_3(x) \dots \right) \\ \left[+ R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'_5(x) \right]$$

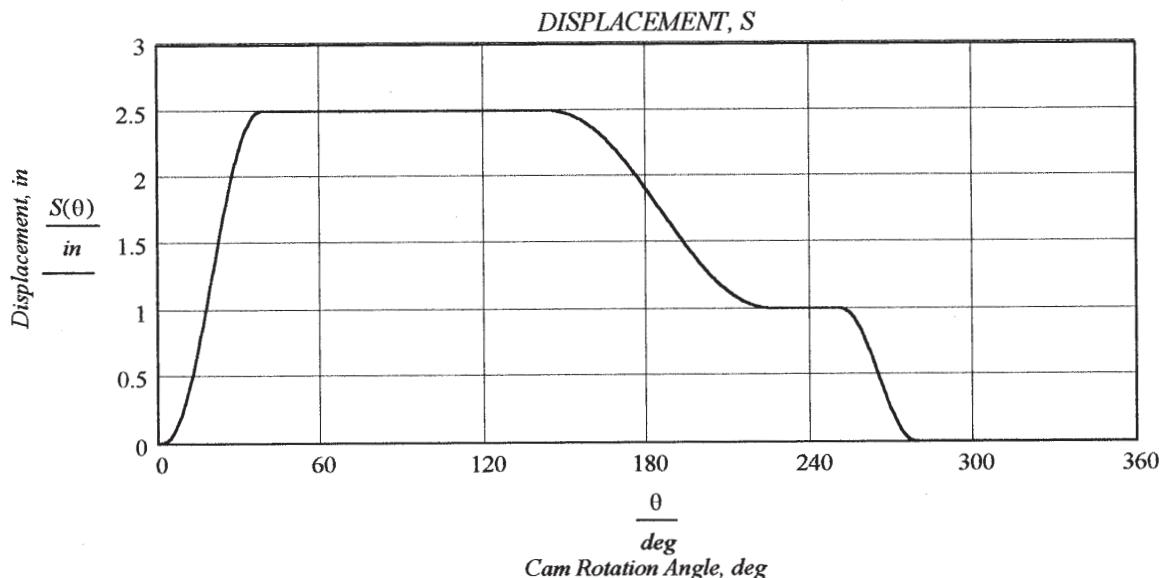
$$a_5(x) := -\frac{h_5}{\beta_5^2} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y''_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y''_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y''_5(x) \right)$$

$$j_5(x) := -\frac{h_5}{\beta_5^3} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'''_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'''_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'''_5(x) \right)$$

11. Write the local *svaj* equations for the sixth interval. For this interval, the values of *S*, *V*, *A*, and *J* are zero because of the dwell.

For $\beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5 \leq 0 \leq \beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5 + \beta_6$ (dwell)

$$s_6(x) := 0 \quad v_6(x) := 0 \quad a_6(x) := 0 \quad j_6(x) := 0$$

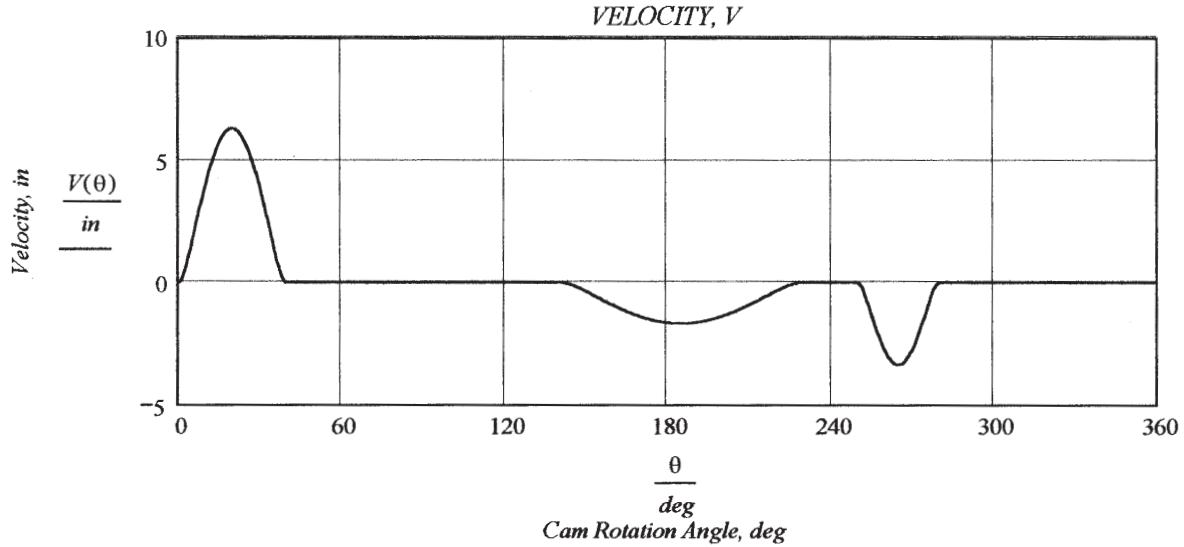

12. Write the complete global equation for the displacement and plot it over one rotation of the cam, which is the sum of the eight intervals defined above.

$$\text{Let} \quad \theta_1 := \beta_1 \quad \theta_2 := \theta_1 + \beta_2 \quad \theta_3 := \theta_2 + \beta_3 \quad \theta_4 := \theta_3 + \beta_4$$

$$\theta_5 := \theta_4 + \beta_5 \quad \theta_6 := \theta_5 + \beta_6$$

$$S(\theta) := s_1 \left(\frac{\theta}{\theta_1} \right) + R(\theta, \theta_1, \theta_2) \cdot s_2 \left(\frac{\theta - \theta_1}{\theta_2 - \theta_1} \right) \dots \\ + R(\theta, \theta_2, \theta_3) \cdot s_3 \left(\frac{\theta - \theta_2}{\theta_3 - \theta_2} \right) + R(\theta, \theta_3, \theta_4) \cdot s_4 \left(\frac{\theta - \theta_3}{\theta_4 - \theta_3} \right) \dots \\ + R(\theta, \theta_4, \theta_5) \cdot s_5 \left(\frac{\theta - \theta_4}{\theta_5 - \theta_4} \right) + R(\theta, \theta_5, \theta_6) \cdot s_6 \left(\frac{\theta - \theta_5}{\theta_6 - \theta_5} \right)$$

$$\theta := 0 \cdot \text{deg}, 0.5 \cdot \text{deg}..360 \cdot \text{deg}$$

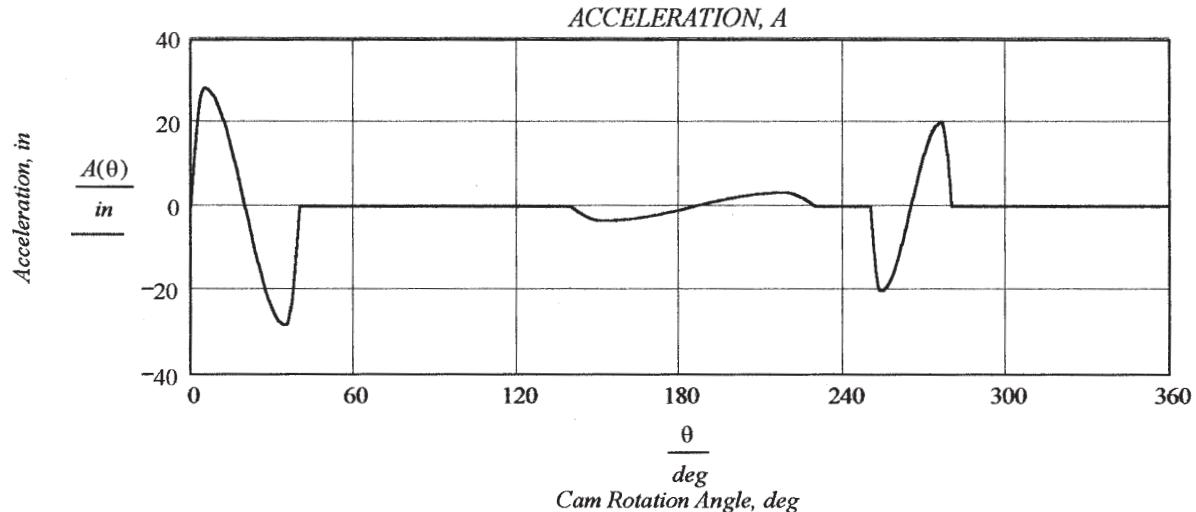


15. Write the complete global equation for the velocity and plot it over one rotation of the cam, which is the sum of the eight intervals defined above.

$$V(\theta) := v_1 \left(\frac{\theta}{\theta_1} \right) + R(\theta, \theta_1, \theta_2) \cdot v_2 \left(\frac{\theta - \theta_1}{\theta_2 - \theta_1} \right) \dots$$

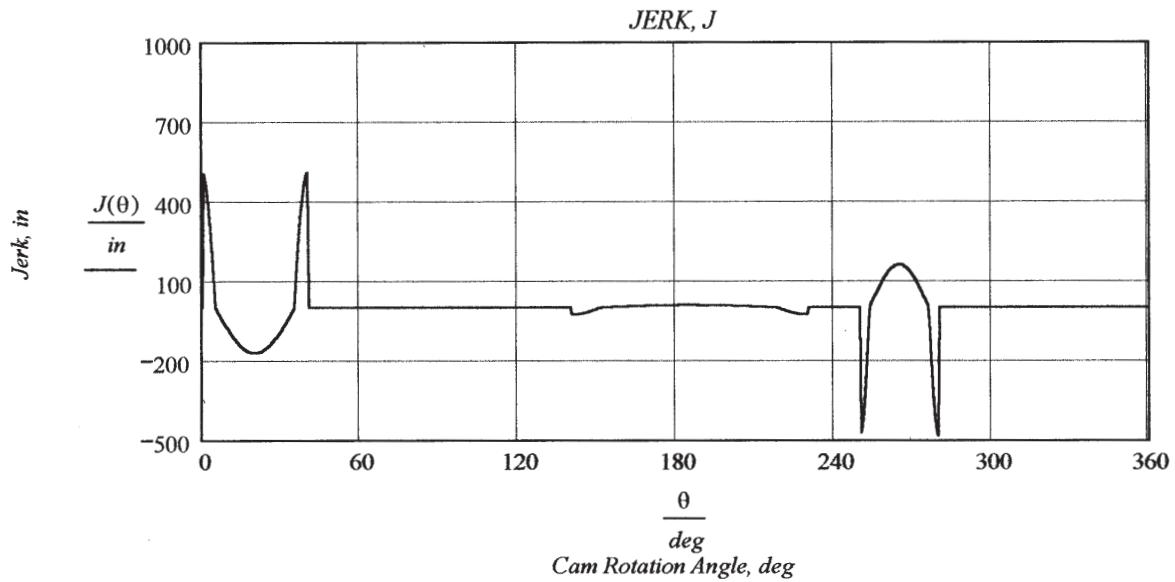
$$+ R(\theta, \theta_2, \theta_3) \cdot v_3 \left(\frac{\theta - \theta_2}{\theta_3 - \theta_2} \right) + R(\theta, \theta_3, \theta_4) \cdot v_4 \left(\frac{\theta - \theta_3}{\theta_4 - \theta_3} \right) \dots$$

$$+ R(\theta, \theta_4, \theta_5) \cdot v_5 \left(\frac{\theta - \theta_4}{\theta_5 - \theta_4} \right) + R(\theta, \theta_5, \theta_6) \cdot v_6 \left(\frac{\theta - \theta_5}{\theta_6 - \theta_5} \right)$$



16. Write the complete global equation for the acceleration and plot it over one rotation of the cam, which is the sum of the eight intervals defined above.

$$A(\theta) := a_1 \left(\frac{\theta}{\theta_1} \right) + R(\theta, \theta_1, \theta_2) \cdot a_2 \left(\frac{\theta - \theta_1}{\theta_2 - \theta_1} \right) \dots$$


$$+ R(\theta, \theta_2, \theta_3) \cdot a_3 \left(\frac{\theta - \theta_2}{\theta_3 - \theta_2} \right) + R(\theta, \theta_3, \theta_4) \cdot a_4 \left(\frac{\theta - \theta_3}{\theta_4 - \theta_3} \right) \dots$$

$$+ R(\theta, \theta_4, \theta_5) \cdot a_5 \left(\frac{\theta - \theta_4}{\theta_5 - \theta_4} \right) + R(\theta, \theta_5, \theta_6) \cdot a_6 \left(\frac{\theta - \theta_5}{\theta_6 - \theta_5} \right)$$

17. Write the complete global equation for the jerk and plot it over one rotation of the cam, which is the sum of the eight intervals defined above.

$$\begin{aligned}
 J(\theta) := & j_1 \left(\frac{\theta}{\theta_1} \right) + R(\theta, \theta_1, \theta_2) \cdot j_2 \left(\frac{\theta - \theta_1}{\theta_2 - \theta_1} \right) \dots \\
 & + R(\theta, \theta_2, \theta_3) \cdot j_3 \left(\frac{\theta - \theta_2}{\theta_3 - \theta_2} \right) + R(\theta, \theta_3, \theta_4) \cdot j_4 \left(\frac{\theta - \theta_3}{\theta_4 - \theta_3} \right) \dots \\
 & + R(\theta, \theta_4, \theta_5) \cdot j_5 \left(\frac{\theta - \theta_4}{\theta_5 - \theta_4} \right) + R(\theta, \theta_5, \theta_6) \cdot j_6 \left(\frac{\theta - \theta_5}{\theta_6 - \theta_5} \right)
 \end{aligned}$$

 PROBLEM 8-11

Statement: Design a four-dwell cam to move a follower from 0 to 2.5 in in 40 deg, dwell for 100 deg, fall 1.5 in in 90 deg, dwell for 20 deg, fall 0.5 in in 30 deg, dwell for 40 deg, fall 0.5 in in 30 deg, and dwell for the remainder. The total cycle must take 15 sec. Choose suitable programs for rise and fall to minimize accelerations. Plot the *SVAJ* diagrams.

Given:

RISE/FALL	DWELL	FALL	DWELL
$\beta_1 := 40 \cdot \text{deg}$	$\beta_2 := 100 \cdot \text{deg}$	$\beta_3 := 90 \cdot \text{deg}$	$\beta_4 := 20 \cdot \text{deg}$
$h_1 := 2.5 \cdot \text{in}$	$h_2 := 0.0 \cdot \text{in}$	$h_3 := 1.5 \cdot \text{in}$	$h_4 := 0.0 \cdot \text{in}$
$\beta_5 := 30 \cdot \text{deg}$	$\beta_6 := 40 \cdot \text{deg}$	$\beta_7 := 30 \cdot \text{deg}$	$\beta_8 := 10 \cdot \text{deg}$
$h_5 := 0.5 \cdot \text{in}$	$h_6 := 0.0 \cdot \text{in}$	$h_7 := 0.5 \cdot \text{in}$	$h_8 := 0.0 \cdot \text{in}$
Cycle time: $\tau := 15 \cdot \text{sec}$			

Solution: See Mathcad file P0811.

1. The camshaft turns 2π rad during the time for one cycle. Thus, its speed is

$$\omega := \frac{2 \cdot \pi \cdot \text{rad}}{\tau} \quad \omega = 0.419 \frac{\text{rad}}{\text{sec}}$$

2. From Table 8-3, the motion program with lowest acceleration that does not have infinite jerk is the modified trapezoidal. The modified trapezoidal motion is defined in local coordinates by equations 8.15 through 8.19. The numerical constants in these SCCA equations are given in Table 8-2.

$$\begin{aligned} b &:= 0.25 & c &:= 0.50 & d &:= 0.25 \\ C_v &:= 2.0000 & C_a &:= 4.8881 & C_j &:= 61.426 \end{aligned}$$

3. The SCCA equations for the rise or fall interval (β) are divided into 5 subintervals. These are:

for $0 \leq x \leq b/2$ where, for these equations, x is a local coordinate that ranges from 0 to 1,

$$\begin{aligned} y_I(x) &:= C_a \left[x \cdot \frac{b}{\pi} - \left(\frac{b}{\pi} \right)^2 \cdot \sin \left(\frac{\pi}{b} \cdot x \right) \right] & y'_I(x) &:= C_a \cdot \frac{b}{\pi} \cdot \left(1 - \cos \left(\frac{\pi}{b} \cdot x \right) \right) \\ y''_I(x) &:= C_a \cdot \sin \left(\frac{\pi}{b} \cdot x \right) & y'''_I(x) &:= C_a \cdot \frac{\pi}{b} \cdot \cos \left(\frac{\pi}{b} \cdot x \right) \end{aligned}$$

for $b/2 \leq x \leq (1 - d)/2$

$$\begin{aligned} y_2(x) &:= C_a \left[\frac{x^2}{2} + b \cdot \left(\frac{1}{\pi} - \frac{1}{2} \right) \cdot x + b^2 \cdot \left(\frac{1}{8} - \frac{1}{\pi^2} \right) \right] & y'_2(x) &:= C_a \left[x + b \cdot \left(\frac{1}{\pi} - \frac{1}{2} \right) \right] \\ y''_2(x) &:= C_a & y'''_2(x) &:= 0 \end{aligned}$$

for $(1 - d)/2 \leq x \leq (1 + d)/2$

$$\begin{aligned} y_3(x) &:= C_a \left[\left(\frac{b}{\pi} + \frac{c}{2} \right) \cdot x + \left(\frac{d}{\pi} \right)^2 + b^2 \cdot \left(\frac{1}{8} - \frac{1}{\pi^2} \right) - \frac{(1-d)^2}{8} - \left(\frac{d}{\pi} \right)^2 \cdot \cos \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right] \right] \\ y'_3(x) &:= C_a \left[\frac{b}{\pi} + \frac{c}{2} + \frac{d}{\pi} \cdot \sin \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right] \right] \end{aligned}$$

$$y''_3(x) := C_a \cdot \cos \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right] \quad y'''_3(x) := -C_a \cdot \frac{\pi}{d} \cdot \sin \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right]$$

for $(1+d)/2 \leq x \leq 1-b/2$

$$y_4(x) := C_a \cdot \left[-\frac{x^2}{2} + \left(\frac{b}{\pi} + 1 - \frac{b}{2} \right) \cdot x + \left(2 \cdot d^2 - b^2 \right) \cdot \left(\frac{1}{\pi^2} - \frac{1}{8} \right) - \frac{1}{4} \right]$$

$$y'_4(x) := C_a \left(-x + \frac{b}{\pi} + 1 - \frac{b}{2} \right) \quad y''_4(x) := -C_a \quad y'''_4(x) := 0$$

for $1-b/2 \leq x \leq 1$

$$y_5(x) := C_a \cdot \left[\frac{b}{\pi} \cdot x + \frac{2 \cdot (d^2 - b^2)}{\pi^2} + \frac{(1-b)^2 - d^2}{4} - \left(\frac{b}{\pi} \right)^2 \cdot \sin \left[\frac{\pi}{b} \cdot (x-1) \right] \right]$$

$$y'_5(x) := C_a \cdot \frac{b}{\pi} \cdot \left[1 - \cos \left[\frac{\pi}{b} \cdot (x-1) \right] \right]$$

$$y''_5(x) := C_a \cdot \sin \left[\frac{\pi}{b} \cdot (x-1) \right] \quad y'''_5(x) := C_a \cdot \frac{\pi}{b} \cdot \cos \left[\frac{\pi}{b} \cdot (x-1) \right]$$

4. The above equations can be used for a rise or fall by using the proper values of θ , β , and h . To plot the *SVAJ* curves, first define a range function that has a value of one between the values of a and b and zero elsewhere.

$$R(x, x1, x2) := \text{if}[(x > x1) \wedge (x \leq x2), 1, 0]$$

5. The global *SVAJ* equations are composed of eight intervals (rise, dwell, fall, dwell, fall, dwell, fall, and dwell). The local equations above must be assembled into a single equation each for *S*, *V*, *A*, and *J* that applies over the range $0 \leq \theta \leq 360$ deg.

6. Write the local *svaj* equations for the first interval, $0 \leq \theta \leq \beta_1$. Note that each subinterval function is multiplied by the range function so that it will have nonzero values only over its subinterval.

For $0 \leq \theta \leq \beta_1$ (Rise)

$$s_I(x) := h_I \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y_5(x) \right)$$

$$v_I(x) := \frac{h_I}{\beta_I} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'_5(x) \right)$$

$$a_I(x) := \frac{h_I}{\beta_I^2} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y''_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y''_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y''_5(x) \right)$$

$$j_I(x) := \frac{h_I}{\beta_I^3} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'''_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'''_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'''_5(x) \right)$$

7. Write the local *svaj* equations for the second interval, $\beta_1 \leq \theta \leq \beta_1 + \beta_2$. For this interval, the value of S is the value of S at the end of the previous interval and the values of V, A , and J are zero because of the dwell.

For $\beta_1 \leq \theta \leq \beta_1 + \beta_2$ (dwell)

$$s_2(x) := h_I \quad v_2(x) := 0 \quad a_2(x) := 0 \quad j_2(x) := 0$$

8. Write the local *svaj* equations for the third interval, $\beta_1 + \beta_2 \leq \theta \leq \beta_1 + \beta_2 + \beta_3$.

For $\beta_1 + \beta_2 \leq \theta \leq \beta_1 + \beta_2 + \beta_3$ (fall)

$$s_3(x) := h_3 \left[1 - \left(R\left(x, 0, \frac{b}{2}\right) \cdot y_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y_3(x) \dots \right) \right] + h_I - h_3 \\ \left[+ R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y_5(x) \right]$$

$$v_3(x) := -\frac{h_3}{\beta_3} \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'_3(x) \dots \right) \\ \left[+ R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'_5(x) \right]$$

$$a_3(x) := -\frac{h_3}{\beta_3^2} \left(R\left(x, 0, \frac{b}{2}\right) \cdot y''_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y''_3(x) \dots \right) \\ \left[+ R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y''_5(x) \right]$$

$$j_3(x) := -\frac{h_3}{\beta_3^3} \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'''_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'''_3(x) \dots \right) \\ \left[+ R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'''_5(x) \right]$$

9. Write the local *svaj* equations for the fourth interval, $\beta_1 + \beta_2 + \beta_3 \leq \theta \leq \beta_1 + \beta_2 + \beta_3 + \beta_4$. For this interval, the values of S, V, A , and J are zero because of the dwell.

For $\beta_1 + \beta_2 + \beta_3 \leq \theta \leq \beta_1 + \beta_2 + \beta_3 + \beta_4$ (dwell)

$$s_4(x) := h_I - h_3 \quad v_4(x) := 0 \quad a_4(x) := 0 \quad j_4(x) := 0$$

10. Write the local *svaj* equations for the fifth interval,

For $\beta_1 + \beta_2 + \beta_3 + \beta_4 \leq \theta \leq \beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5$ (fall)

$$s_5(x) := h_5 \left[1 - \left(R\left(x, 0, \frac{b}{2}\right) \cdot y_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y_3(x) \dots \right) \right] + h_7 \\ \left[+ R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y_5(x) \right]$$

$$v_5(x) := -\frac{h_5}{\beta_5} \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'_3(x) \dots \right) \\ \left[+ R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'_5(x) \right]$$

$$a_5(x) := -\frac{h_5}{\beta_5^2} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y''_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y''_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y''_5(x) \right)$$

$$j_5(x) := -\frac{h_5}{\beta_5^3} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'''_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'''_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'''_5(x) \right)$$

11. Write the local *svaj* equations for the sixth interval. For this interval, the values of *S*, *V*, *A*, and *J* are zero because of the dwell.

For $\beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5 \leq \theta \leq \beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5 + \beta_6$ (dwell)

$$s_6(x) := h_5 \quad v_6(x) := 0 \quad a_6(x) := 0 \quad j_6(x) := 0$$

12. Write the local *svaj* equations for the seventh interval,

For $\beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5 + \beta_6 \leq \theta \leq \beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5 + \beta_6 + \beta_7$ (fall)

$$s_7(x) := h_7 \left[1 - \left(R\left(x, 0, \frac{b}{2}\right) \cdot y_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y_3(x) \dots \right. \right. \\ \left. \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y_5(x) \right) \right]$$

$$v_7(x) := -\frac{h_7}{\beta_7} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'_5(x) \right)$$

$$a_7(x) := -\frac{h_7}{\beta_7^2} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y''_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y''_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y''_5(x) \right)$$

$$j_7(x) := -\frac{h_7}{\beta_7^3} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'''_1(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'''_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'''_5(x) \right)$$

13. Write the local *svaj* equations for the eighth interval. For this interval, the values of *S*, *V*, *A*, and *J* are zero because of the dwell.

For $\beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5 + \beta_6 + \beta_7 \leq \theta \leq \beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5 + \beta_6 + \beta_7 + \beta_8$ (dwell)

$$s_8(x) := 0 \quad v_8(x) := 0 \quad a_8(x) := 0 \quad j_8(x) := 0$$

14. Write the complete global equation for the displacement and plot it over one rotation of the cam, which is the sum of the eight intervals defined above.

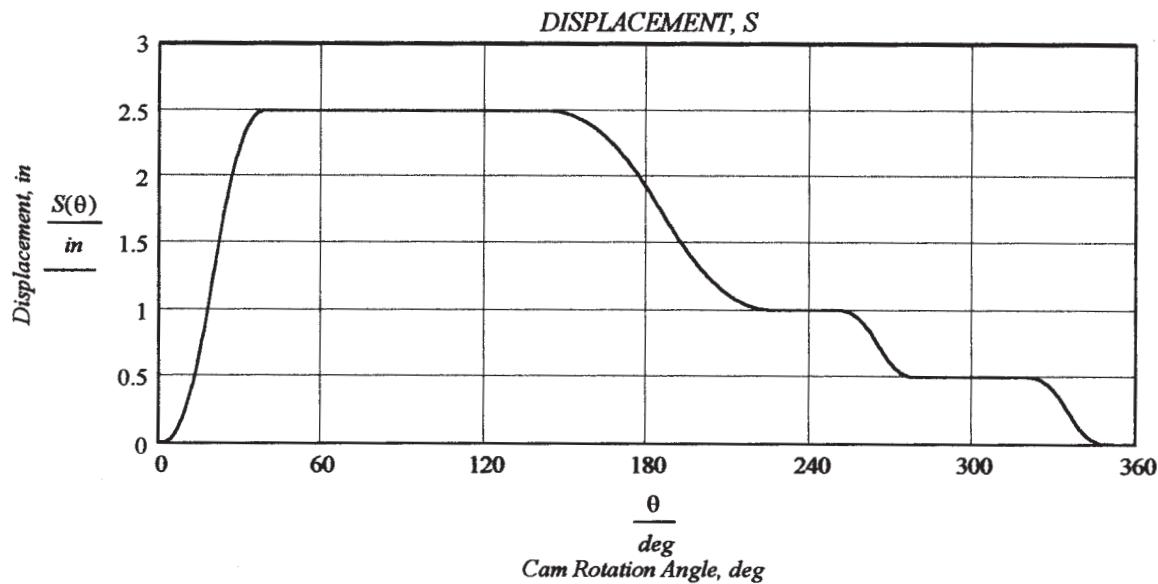
$$\text{Let } \theta_1 := \beta_1 \quad \theta_2 := \theta_1 + \beta_2 \quad \theta_3 := \theta_2 + \beta_3 \quad \theta_4 := \theta_3 + \beta_4$$

$$\theta_5 := \theta_4 + \beta_5$$

$$\theta_6 := \theta_5 + \beta_6$$

$$\theta_7 := \theta_6 + \beta_7$$

$$\theta_8 := \theta_7 + \beta_8$$

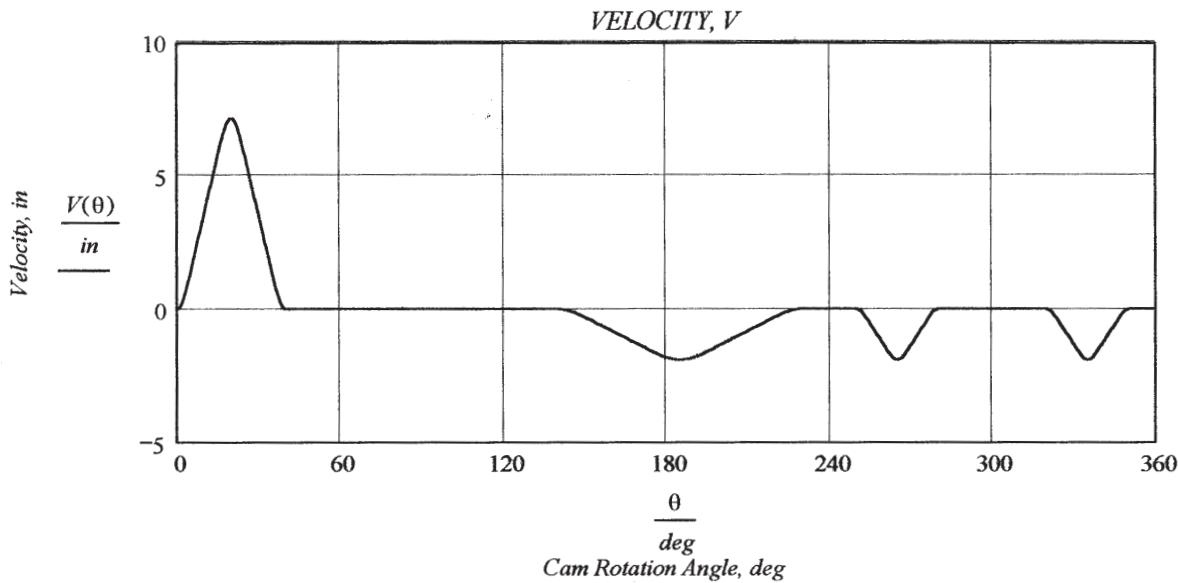

$$S(\theta) := s_1 \left(\frac{\theta}{\theta_1} \right) + R(\theta, \theta_1, \theta_2) \cdot s_2 \left(\frac{\theta - \theta_1}{\theta_2 - \theta_1} \right) \dots$$

$$+ R(\theta, \theta_2, \theta_3) \cdot s_3 \left(\frac{\theta - \theta_2}{\theta_3 - \theta_2} \right) + R(\theta, \theta_3, \theta_4) \cdot s_4 \left(\frac{\theta - \theta_3}{\theta_4 - \theta_3} \right) \dots$$

$$+ R(\theta, \theta_4, \theta_5) \cdot s_5 \left(\frac{\theta - \theta_4}{\theta_5 - \theta_4} \right) + R(\theta, \theta_5, \theta_6) \cdot s_6 \left(\frac{\theta - \theta_5}{\theta_6 - \theta_5} \right) \dots$$

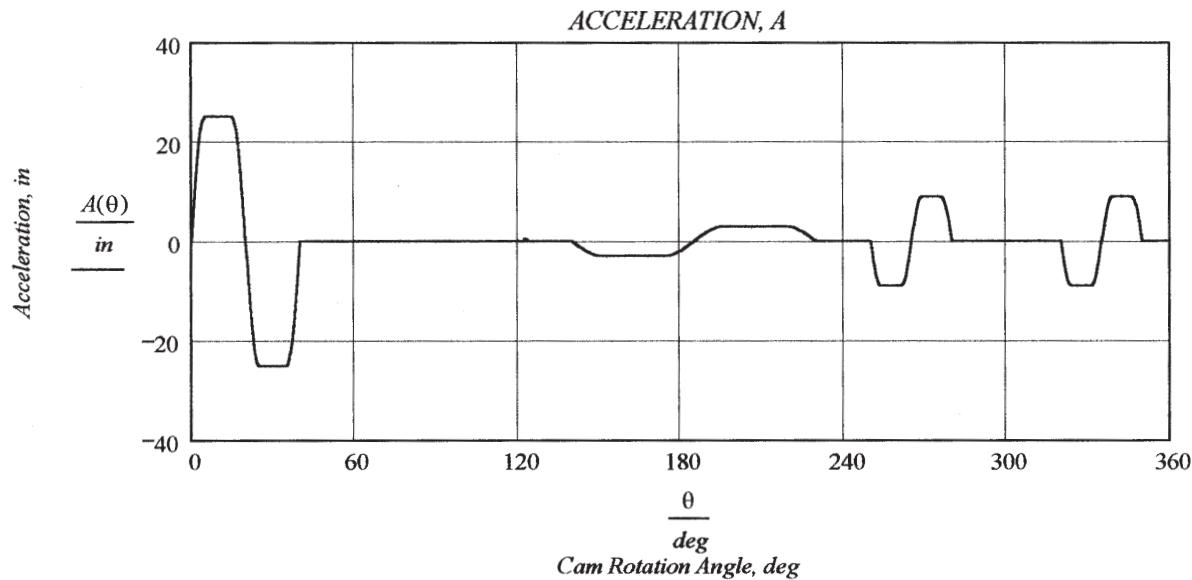
$$+ R(\theta, \theta_6, \theta_7) \cdot s_7 \left(\frac{\theta - \theta_6}{\theta_7 - \theta_6} \right) + R(\theta, \theta_7, \theta_8) \cdot s_8 \left(\frac{\theta - \theta_7}{\theta_8 - \theta_7} \right)$$

$$\theta := 0 \cdot \text{deg}, 0.5 \cdot \text{deg..} 360 \cdot \text{deg}$$

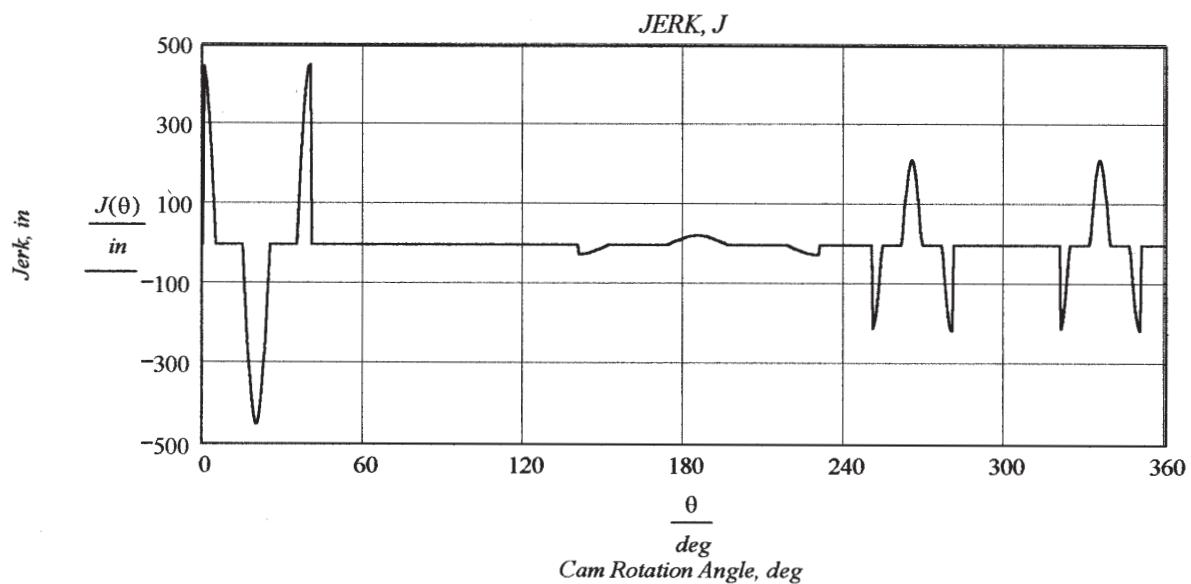

15. Write the complete global equation for the velocity and plot it over one rotation of the cam, which is the sum of the eight intervals defined above.

$$V(\theta) := v_1 \left(\frac{\theta}{\theta_1} \right) + R(\theta, \theta_1, \theta_2) \cdot v_2 \left(\frac{\theta - \theta_1}{\theta_2 - \theta_1} \right) \dots$$

$$+ R(\theta, \theta_2, \theta_3) \cdot v_3 \left(\frac{\theta - \theta_2}{\theta_3 - \theta_2} \right) + R(\theta, \theta_3, \theta_4) \cdot v_4 \left(\frac{\theta - \theta_3}{\theta_4 - \theta_3} \right) \dots$$


$$+ R(\theta, \theta_4, \theta_5) \cdot v_5 \left(\frac{\theta - \theta_4}{\theta_5 - \theta_4} \right) + R(\theta, \theta_5, \theta_6) \cdot v_6 \left(\frac{\theta - \theta_5}{\theta_6 - \theta_5} \right) \dots$$

$$+ R(\theta, \theta_6, \theta_7) \cdot v_7 \left(\frac{\theta - \theta_6}{\theta_7 - \theta_6} \right) + R(\theta, \theta_7, \theta_8) \cdot v_8 \left(\frac{\theta - \theta_7}{\theta_8 - \theta_7} \right)$$


16. Write the complete global equation for the acceleration and plot it over one rotation of the cam, which is the sum of the eight intervals defined above.

$$\begin{aligned}
 A(\theta) := & a_1 \left(\frac{\theta}{\theta_1} \right) + R(\theta, \theta_1, \theta_2) \cdot a_2 \left(\frac{\theta - \theta_1}{\theta_2 - \theta_1} \right) \dots \\
 & + R(\theta, \theta_2, \theta_3) \cdot a_3 \left(\frac{\theta - \theta_2}{\theta_3 - \theta_2} \right) + R(\theta, \theta_3, \theta_4) \cdot a_4 \left(\frac{\theta - \theta_3}{\theta_4 - \theta_3} \right) \dots \\
 & + R(\theta, \theta_4, \theta_5) \cdot a_5 \left(\frac{\theta - \theta_4}{\theta_5 - \theta_4} \right) + R(\theta, \theta_5, \theta_6) \cdot a_6 \left(\frac{\theta - \theta_5}{\theta_6 - \theta_5} \right) \dots \\
 & + R(\theta, \theta_6, \theta_7) \cdot a_7 \left(\frac{\theta - \theta_6}{\theta_7 - \theta_6} \right) + R(\theta, \theta_7, \theta_8) \cdot a_8 \left(\frac{\theta - \theta_7}{\theta_8 - \theta_7} \right)
 \end{aligned}$$

17. Write the complete global equation for the jerk and plot it over one rotation of the cam, which is the sum of the eight intervals defined above.

$$\begin{aligned}
 J(\theta) := & j_1 \left(\frac{\theta}{\theta_1} \right) + R(\theta, \theta_1, \theta_2) \cdot j_2 \left(\frac{\theta - \theta_1}{\theta_2 - \theta_1} \right) \dots \\
 & + R(\theta, \theta_2, \theta_3) \cdot j_3 \left(\frac{\theta - \theta_2}{\theta_3 - \theta_2} \right) + R(\theta, \theta_3, \theta_4) \cdot j_4 \left(\frac{\theta - \theta_3}{\theta_4 - \theta_3} \right) \dots \\
 & + R(\theta, \theta_4, \theta_5) \cdot j_5 \left(\frac{\theta - \theta_4}{\theta_5 - \theta_4} \right) + R(\theta, \theta_5, \theta_6) \cdot j_6 \left(\frac{\theta - \theta_5}{\theta_6 - \theta_5} \right) \dots \\
 & + R(\theta, \theta_6, \theta_7) \cdot j_7 \left(\frac{\theta - \theta_6}{\theta_7 - \theta_6} \right) + R(\theta, \theta_7, \theta_8) \cdot j_8 \left(\frac{\theta - \theta_7}{\theta_8 - \theta_7} \right)
 \end{aligned}$$

 PROBLEM 8-12

Statement: Size the cam from Problem 8-7 for a 1-in-radius roller follower considering pressure angle and radius of curvature. Use eccentricity only if necessary to balance those functions. Draw the cam profile. Repeat for a flat faced follower. Which would you use?

Units: $rpm := 2\pi \cdot rad \cdot min^{-1}$

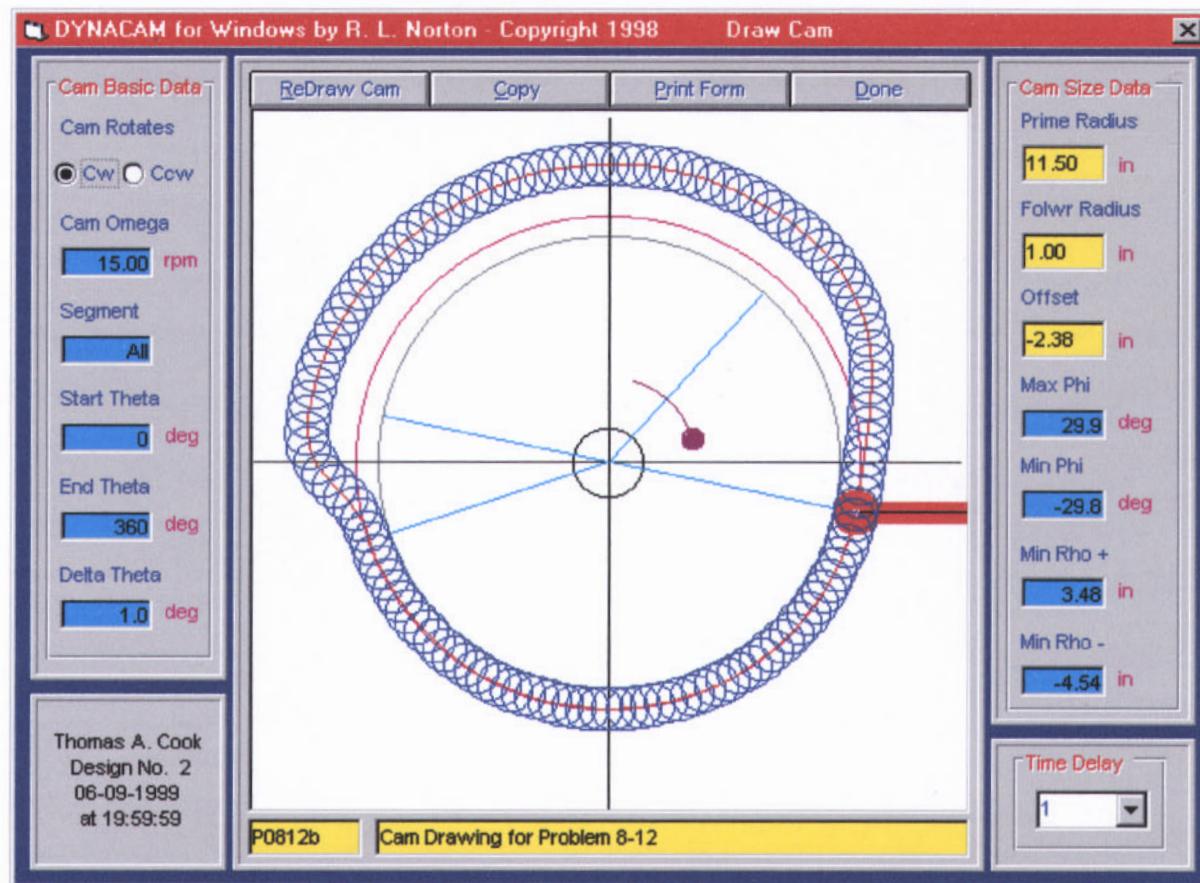
Given:

RISE	DWELL	FALL	DWELL
$\beta_1 := 60 \cdot deg$	$\beta_2 := 120 \cdot deg$	$\beta_3 := 30 \cdot deg$	$\beta_4 := 150 \cdot deg$
$h_1 := 2.5 \cdot in$	$h_2 := 0 \cdot in$	$h_3 := 2.5 \cdot in$	$h_4 := 0 \cdot in$

Cycle time: $\tau := 4 \cdot sec$

Solution: See Mathcad file P0812.

1. The camshaft turns 2π rad during the time for one cycle. Thus, its speed is


$$\omega := \frac{2\pi \cdot rad}{\tau} \quad \omega = 1.571 \frac{rad}{sec} \quad \omega = 15.000 \text{ rpm}$$

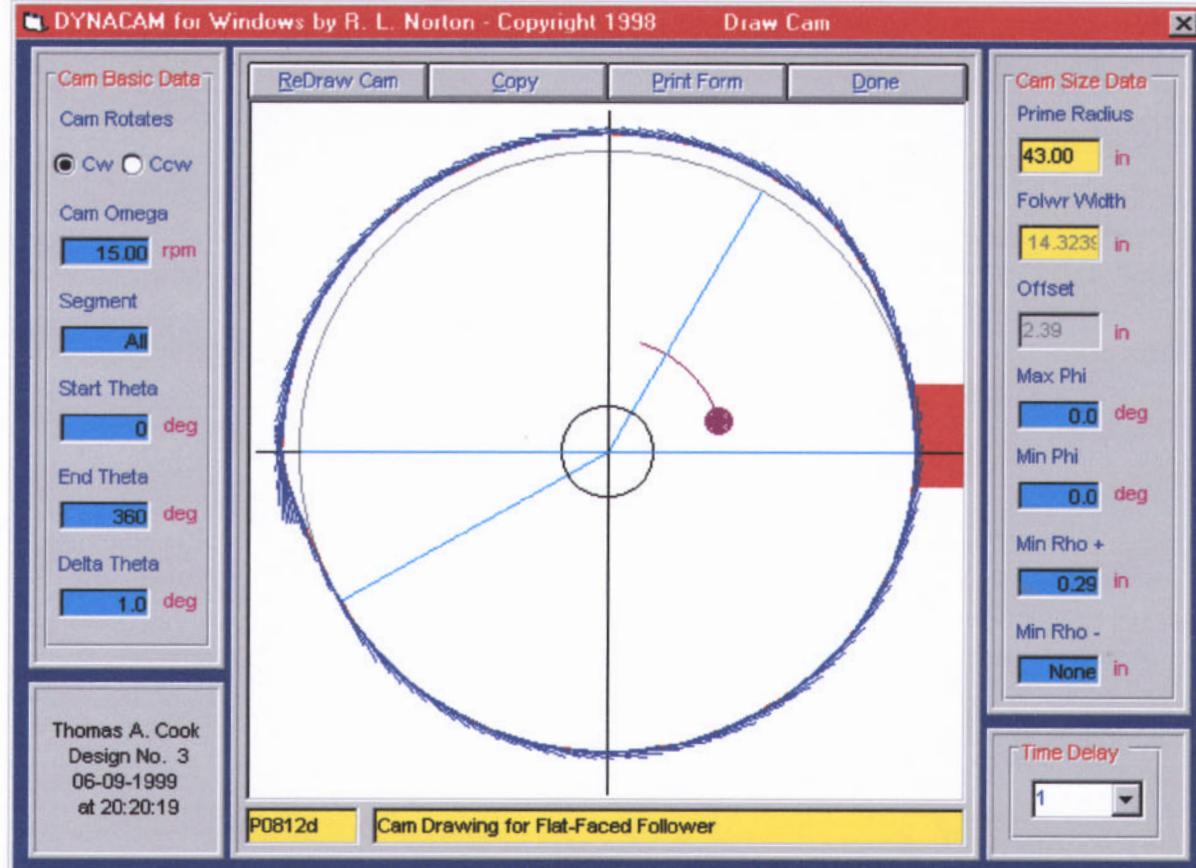
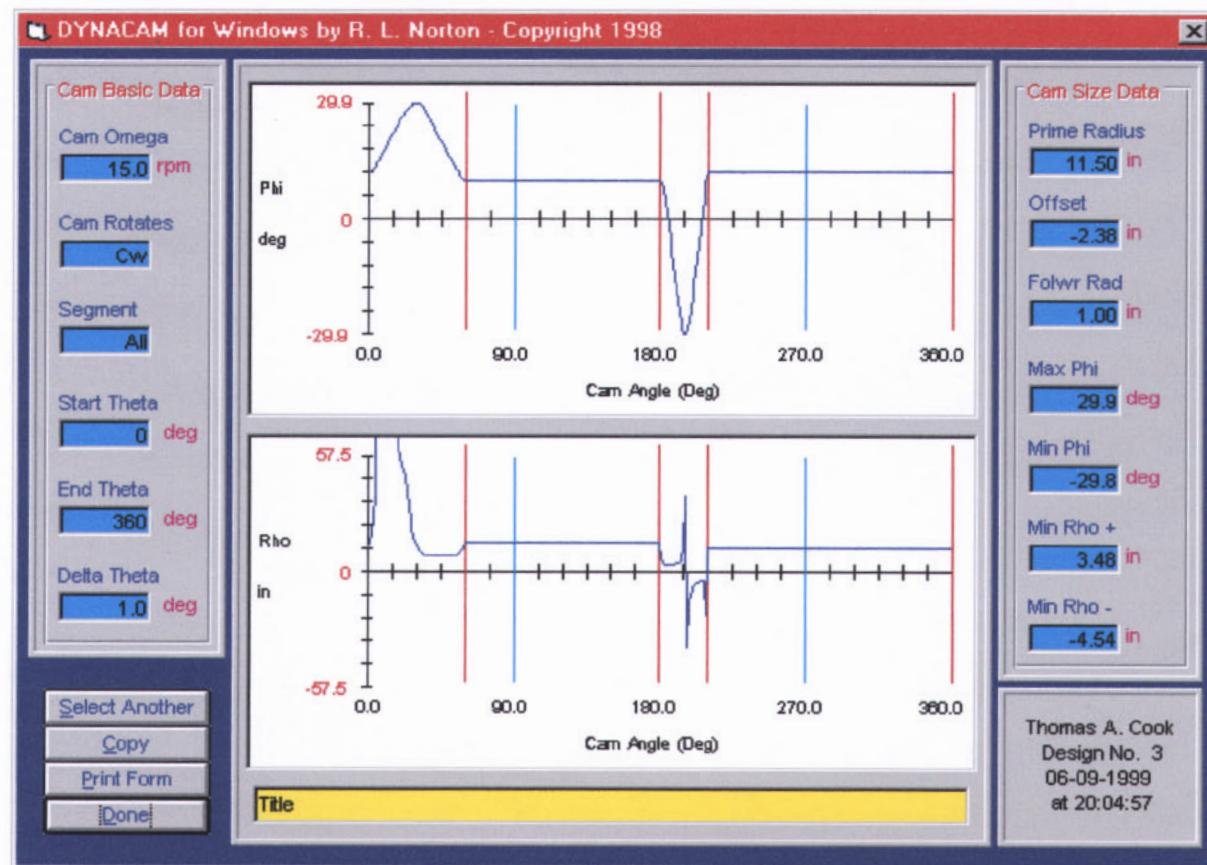
2. Problem 8-7 used a four-segment cam with modified trapezoidal acceleration for the rise and fall. Enter the above data into program DYNACAM. The input screen is shown below.

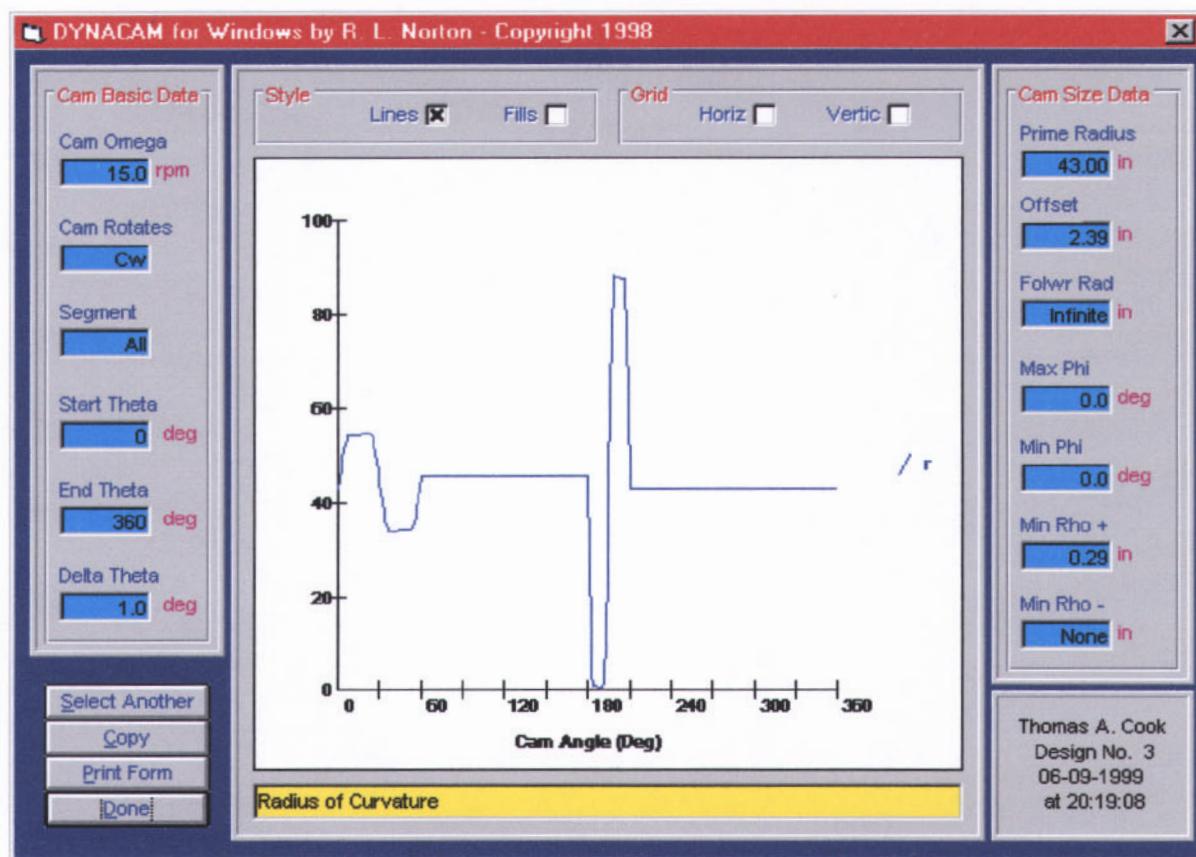
DYNACAM for Windows by R. L. Norton - Copyright 1998 Input Screen

Cam Data Cam Omega (rpm) <input type="text" value="15"/> No. Segms <input type="text" value="4"/> Delta Theta (deg) <input type="text" value="1.0"/> Follower <input checked="" type="radio"/> Trans	Segment Data <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th rowspan="2">Seg</th> <th rowspan="2">Beta</th> <th colspan="2">Angles</th> <th rowspan="2">Motion</th> <th rowspan="2">Cam Contour</th> <th colspan="2">Position (in)</th> </tr> <tr> <th>Start</th> <th>End</th> <th>Start</th> <th>End</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>60</td> <td>0</td> <td>60</td> <td>Rise</td> <td>MT - Mod Trap</td> <td>0</td> <td>2.5</td> </tr> <tr> <td>2</td> <td>120</td> <td>60</td> <td>180</td> <td>Dwell</td> <td>DW - Dwell</td> <td>2.5</td> <td>2.5</td> </tr> <tr> <td>3</td> <td>30</td> <td>180</td> <td>210</td> <td>Fall</td> <td>MT - Mod Trap</td> <td>2.5</td> <td>0</td> </tr> <tr> <td>4</td> <td>150</td> <td>210</td> <td>360</td> <td>Dwell</td> <td>DW - Dwell</td> <td>0</td> <td>0</td> </tr> </tbody> </table> 5 6 7 8 9 10 11 12 13 14 15 16	Seg	Beta	Angles		Motion	Cam Contour	Position (in)		Start	End	Start	End	1	60	0	60	Rise	MT - Mod Trap	0	2.5	2	120	60	180	Dwell	DW - Dwell	2.5	2.5	3	30	180	210	Fall	MT - Mod Trap	2.5	0	4	150	210	360	Dwell	DW - Dwell	0	0	Examples <input type="button" value="Calc"/> <input type="button" value="Plot"/> <input type="button" value="Print"/> <input type="button" value="Calc"/> <input type="button" value="Plot"/> <input type="button" value="Print"/> <input type="button" value="Calc"/> <input type="button" value="Plot"/> <input type="button" value="Print"/> <input type="button" value="Calc"/> <input type="button" value="Plot"/> <input type="button" value="Print"/>
Seg	Beta			Angles				Motion	Cam Contour	Position (in)																																				
		Start	End	Start	End																																									
1	60	0	60	Rise	MT - Mod Trap	0	2.5																																							
2	120	60	180	Dwell	DW - Dwell	2.5	2.5																																							
3	30	180	210	Fall	MT - Mod Trap	2.5	0																																							
4	150	210	360	Dwell	DW - Dwell	0	0																																							

3. The cam was sized iteratively to balance the positive and negative extreme values of the pressure angle by varying the eccentricity and to reduce the maximum absolute pressure angle to 30 deg or less by increasing the prime circle radius. The resulting cam is shown below.

4. The minimum and maximum pressure angles and radius of curvature are shown in the figure above. The design has the following dimensions:



$$\text{Prime circle radius} \quad R_p := 11.5 \text{ in}$$


$$\text{Roller follower radius} \quad R_f := 1.00 \text{ in}$$

$$\text{Follower eccentricity} \quad \epsilon := -2.375 \text{ in}$$

5. Graphs of ϕ and ρ for the roller follower are shown on the following page.

6. The cam was sized for a flat-faced follower and the cam drawing is shown on the next page. In order to avoid undercutting, a base circle radius of 43 in is required. Obviously, the roller follower is to be preferred over the flat face follower in this case.

 PROBLEM 8-13

Statement: Size the cam from Problem 8-8 for a 1.5-in-radius roller follower considering pressure angle and radius of curvature. Use eccentricity only if necessary to balance those functions. Draw the cam profile. Repeat for a flat faced follower. Which would you use?

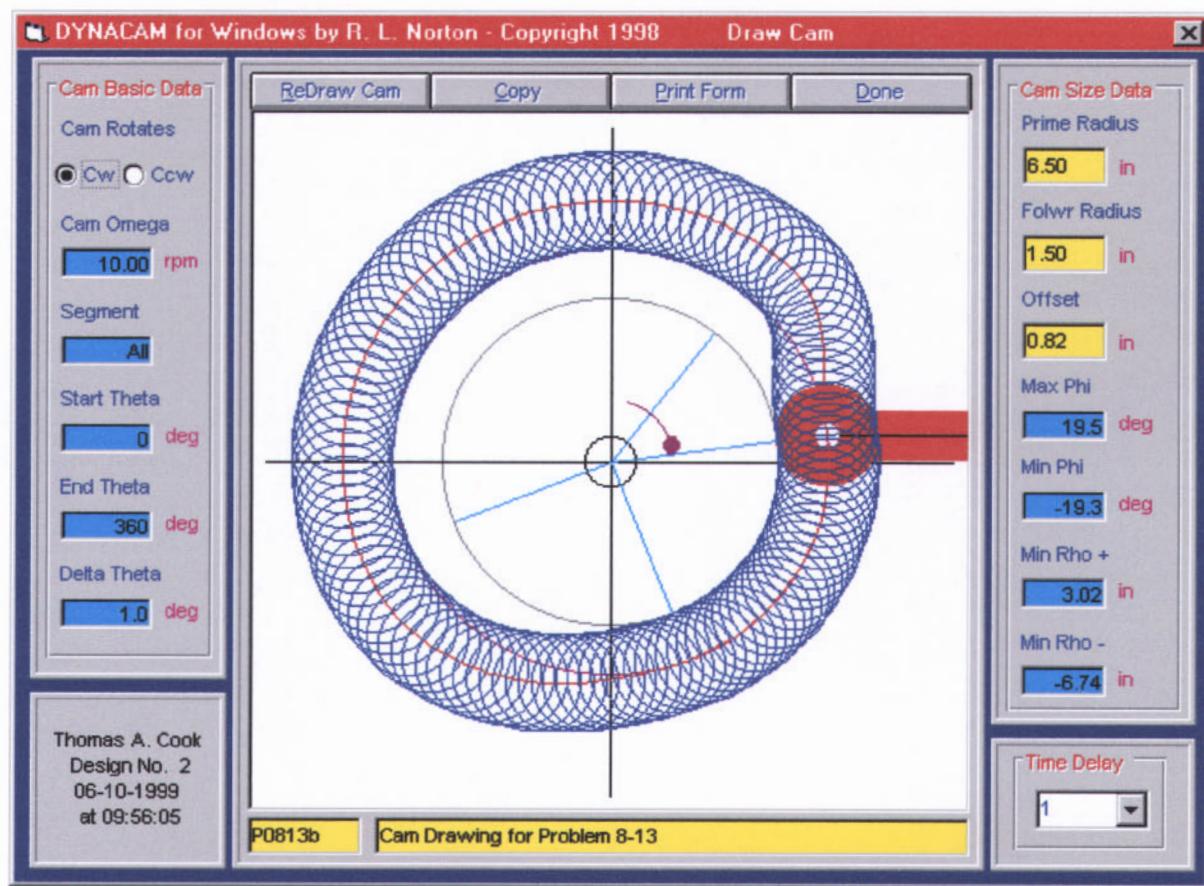
Units: $rpm := 2 \cdot \pi \cdot rad \cdot min^{-1}$

Given:

RISE	DWELL	FALL	DWELL
$\beta_1 := 45 \cdot deg$	$\beta_2 := 150 \cdot deg$	$\beta_3 := 90 \cdot deg$	$\beta_4 := 75 \cdot deg$
$h_1 := 1.5 \cdot in$	$h_2 := 0 \cdot in$	$h_3 := 1.5 \cdot in$	$h_4 := 0 \cdot in$
Cycle time: $\tau := 6 \cdot sec$			

Solution: See Mathcad file P0813.

1. The camshaft turns 2π rad during the time for one cycle. Thus, its speed is


$$\omega := \frac{2 \cdot \pi \cdot rad}{\tau} \quad \omega = 1.047 \frac{rad}{sec} \quad \omega = 10.000 \text{ rpm}$$

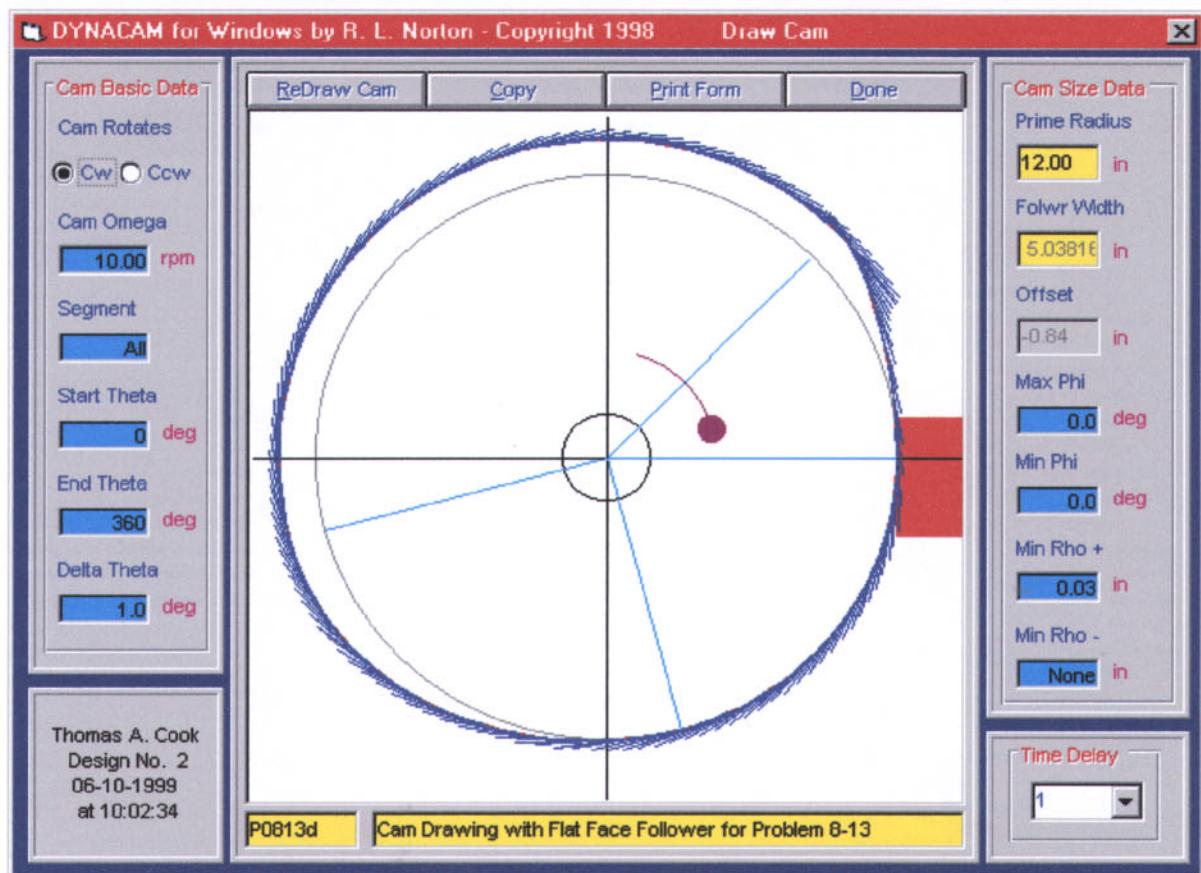
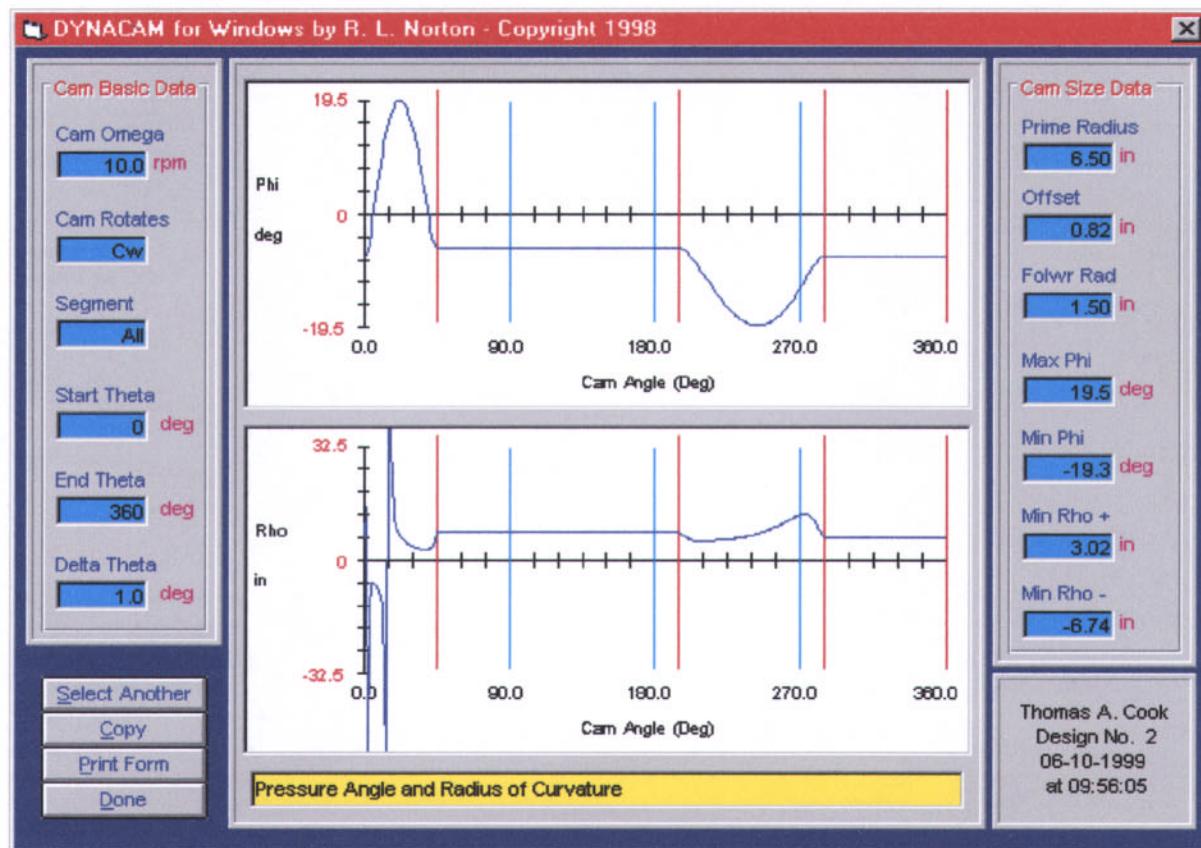
2. Problem 8-8 used a four-segment cam with modified sinusoidal acceleration for the rise and fall. Enter the above data into program DYNACAM. The input screen is shown below.

DYNACAM for Windows by R. L. Norton - Copyright 1998 Input Screen

Cam Data Cam Omega (rpm) <input type="text" value="10"/> No. Segmts <input type="text" value="4"/> Delta Theta (deg) <input type="text" value="1.0"/> Follower <input checked="" type="radio"/> Trans	Segment Data <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th rowspan="2">Seg</th> <th rowspan="2">Beta</th> <th colspan="2">Angles</th> <th rowspan="2">Motion</th> <th rowspan="2">Program</th> <th colspan="2">Position (in)</th> </tr> <tr> <th>Start</th> <th>End</th> <th>Start</th> <th>End</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>45</td> <td>0</td> <td>45</td> <td>Rise</td> <td>MS - Mod Sine</td> <td>0</td> <td>1.5</td> </tr> <tr> <td>2</td> <td>150</td> <td>45</td> <td>195</td> <td>Dwell</td> <td>DW - Dwell</td> <td>1.5</td> <td>1.5</td> </tr> <tr> <td>3</td> <td>90</td> <td>195</td> <td>285</td> <td>Fall</td> <td>MS - Mod Sine</td> <td>1.5</td> <td>0</td> </tr> <tr> <td>4</td> <td>75</td> <td>285</td> <td>360</td> <td>Dwell</td> <td>DW - Dwell</td> <td>0</td> <td>0</td> </tr> <tr> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>9</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>11</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>12</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>13</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>14</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>15</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>16</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> </tbody> </table>	Seg	Beta	Angles		Motion	Program	Position (in)		Start	End	Start	End	1	45	0	45	Rise	MS - Mod Sine	0	1.5	2	150	45	195	Dwell	DW - Dwell	1.5	1.5	3	90	195	285	Fall	MS - Mod Sine	1.5	0	4	75	285	360	Dwell	DW - Dwell	0	0	5								6								7								8								9								10								11								12								13								14								15								16								Examples <input type="button" value="Calc"/> <input type="button" value="Plot"/> <input type="button" value="Print"/> <input type="button" value="Calc"/> <input type="button" value="Plot"/> <input type="button" value="Print"/> <input type="button" value="Calc"/> <input type="button" value="Plot"/> <input type="button" value="Print"/> <input type="button" value="Calc"/> <input type="button" value="Plot"/> <input type="button" value="Print"/>
Seg	Beta			Angles				Motion	Program	Position (in)																																																																																																																																				
		Start	End	Start	End																																																																																																																																									
1	45	0	45	Rise	MS - Mod Sine	0	1.5																																																																																																																																							
2	150	45	195	Dwell	DW - Dwell	1.5	1.5																																																																																																																																							
3	90	195	285	Fall	MS - Mod Sine	1.5	0																																																																																																																																							
4	75	285	360	Dwell	DW - Dwell	0	0																																																																																																																																							
5																																																																																																																																														
6																																																																																																																																														
7																																																																																																																																														
8																																																																																																																																														
9																																																																																																																																														
10																																																																																																																																														
11																																																																																																																																														
12																																																																																																																																														
13																																																																																																																																														
14																																																																																																																																														
15																																																																																																																																														
16																																																																																																																																														

3. The cam was sized iteratively to balance the positive and negative extreme values of the pressure angle by varying the eccentricity and to reduce the maximum absolute pressure angle to 30 deg or less by increasing the prime circle radius. The resulting cam is shown below.

4. The minimum and maximum pressure angles and radius of curvature are shown in the figure above. The prime radius had to be increased above that which was necessary for the pressure angle constraint in order to provide a minimum radius of curvature that was twice the roller follower radius. The design has the following dimensions:



$$\text{Prime circle radius} \quad R_p := 6.5 \cdot \text{in}$$

$$\text{Roller follower radius} \quad R_f := 1.50 \cdot \text{in}$$

$$\text{Follower eccentricity} \quad \epsilon := 0.82 \cdot \text{in}$$

5. Graphs of ϕ and ρ for the roller follower are shown on the following page.

6. The cam was sized for a flat-faced follower and the cam drawing is shown on the next page. In order to avoid undercutting, a base circle radius of 12 in is required. Obviously, the roller follower is to be preferred over the flat face follower in this case.

 PROBLEM 8-14

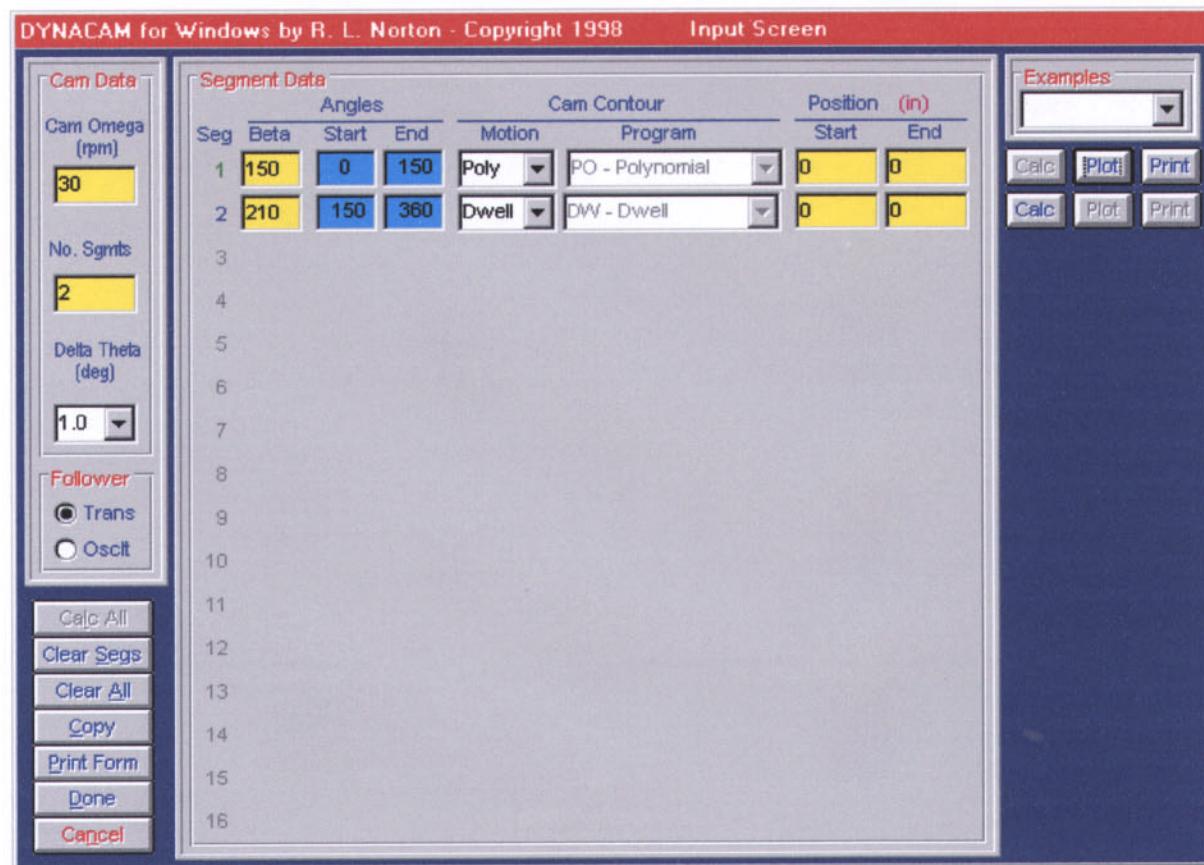
Statement: Size the cam from Problem 8-9 for a 0.5-in-radius roller follower considering pressure angle and radius of curvature. Use eccentricity only if necessary to balance those functions. Draw the cam profile. Repeat for a flat faced follower. Which would you use?

Units: $rpm := 2\pi \cdot rad \cdot min^{-1}$

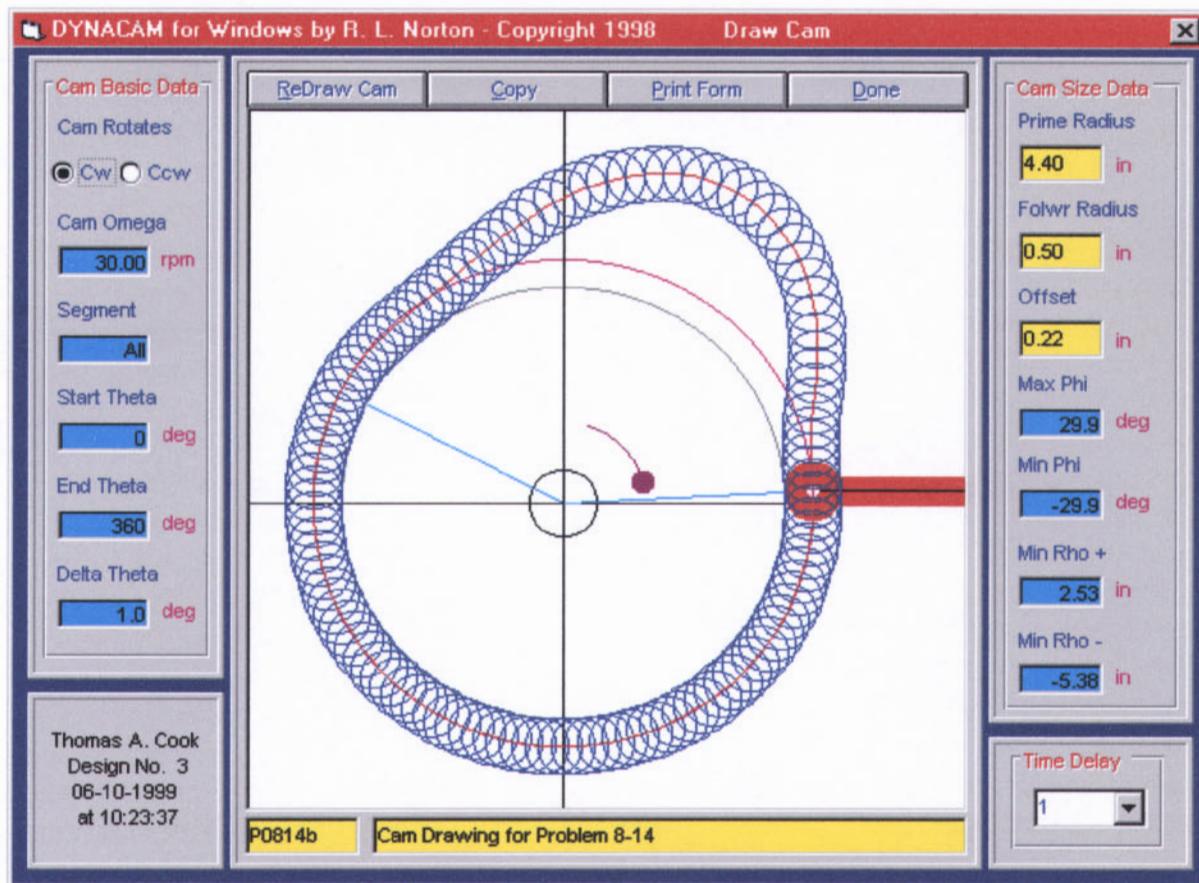
Given: RISE/FALL DWELL

$$\beta := 150 \cdot deg \quad \beta_2 := 150 \cdot deg$$

$$h_1 := 2.0 \cdot in \quad h_2 := 0.0 \cdot in$$


$$\text{Cycle time: } \tau := 2 \cdot sec$$

Solution: See Mathcad file P0814.

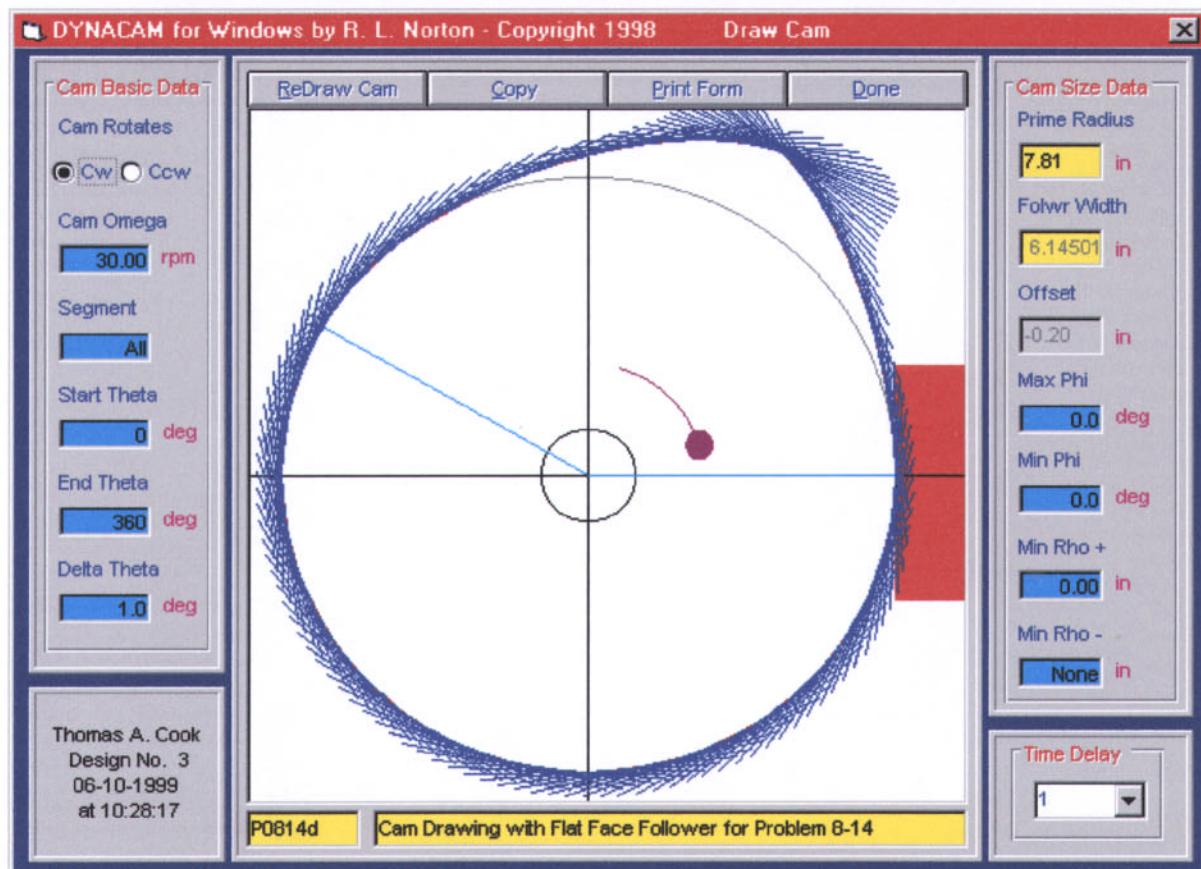
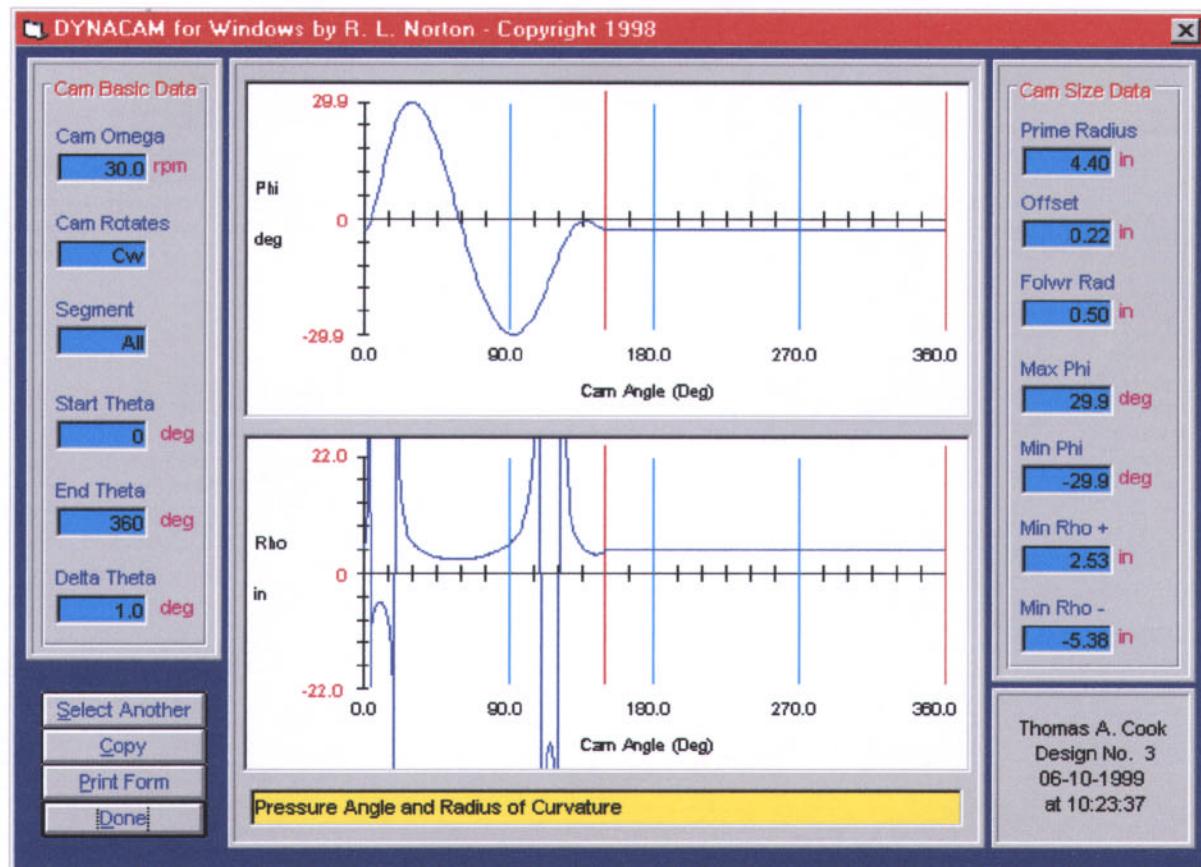

1. The camshaft turns 2π rad during the time for one cycle. Thus, its speed is

$$\omega := \frac{2\pi \cdot rad}{\tau} \quad \omega = 3.142 \frac{rad}{sec} \quad \omega = 30.000 \text{ rpm}$$

2. Problem 8-9 used a two-segment cam with one polynomial segment for the rise and fall. Enter the above data into program DYNACAM. The input screen is shown below.

3. The cam was sized iteratively to balance the positive and negative extreme values of the pressure angle by varying the eccentricity and to reduce the maximum absolute pressure angle to 30 deg or less by increasing the prime circle radius. The resulting cam is shown below.

4. The minimum and maximum pressure angles and radius of curvature are shown in the figure above. The design has the following dimensions:



$$\text{Prime circle radius} \quad R_p := 4.40 \text{ in}$$

$$\text{Roller follower radius} \quad R_f := 0.50 \text{ in}$$

$$\text{Follower eccentricity} \quad \epsilon := 0.22 \text{ in}$$

5. Graphs of ϕ and ρ for the roller follower are shown on the following page.

6. The cam was sized for a flat-faced follower and the cam drawing is shown on the next page. In order to avoid undercutting, a base circle radius of 7.81 in is required. Obviously, the roller follower is to be preferred over the flat face follower in this case.

PROBLEM 8-15

Statement: Size the cam from Problem 8-10 for a 2.0-in-radius roller follower considering pressure angle and radius of curvature. Use eccentricity only if necessary to balance those functions. Draw the cam profile. Repeat for a flat faced follower. Which would you use?

Units: $rpm := 2 \cdot \pi \cdot rad \cdot min^{-1}$

Given:

RISE/FALL	DWELL	FALL	DWELL
$\beta_1 := 40 \cdot deg$	$\beta_2 := 100 \cdot deg$	$\beta_3 := 90 \cdot deg$	$\beta_4 := 20 \cdot deg$
$h_1 := 2.5 \cdot in$	$h_2 := 0.0 \cdot in$	$h_3 := 1.5 \cdot in$	$h_4 := 0.0 \cdot in$
$\beta_5 := 30 \cdot deg$	$\beta_6 := 80 \cdot deg$		
$h_5 := 1.0 \cdot in$	$h_6 := 0.0 \cdot in$		
Cycle time: $\tau := 10 \cdot sec$			

Solution: See Mathcad file P0815.

1. The camshaft turns 2π rad during the time for one cycle. Thus, its speed is

$$\omega := \frac{2 \cdot \pi \cdot rad}{\tau} \quad \omega = 0.628 \frac{rad}{sec} \quad \omega = 6.000 \text{ rpm}$$

2. Problem 8-10 used a six-segment cam with modified sinusoidal acceleration for the rise and fall. Enter the above data into program DYNACAM. The input screen is shown below.

DYNACAM for Windows by R. L. Norton - Copyright 1998 Input Screen

Segment Data									
Angles			Cam Contour		Position (in)				
Seg	Beta	Start	End	Motion	Program	Start	End		
1	40	0	40	Rise	MS - Mod Sine	0	2.5		
2	100	40	140	Dwell	DW - Dwell	2.5	2.5		
3	90	140	230	Fall	MS - Mod Sine	2.5	1		
4	20	230	250	Dwell	DW - Dwell	1	1		
5	30	250	280	Fall	MS - Mod Sine	1	0		
6	80	280	360	Dwell	DW - Dwell	0	0		
7									
8									
9									
10									
11									
12									
13									
14									
15									
16									

Cam Data

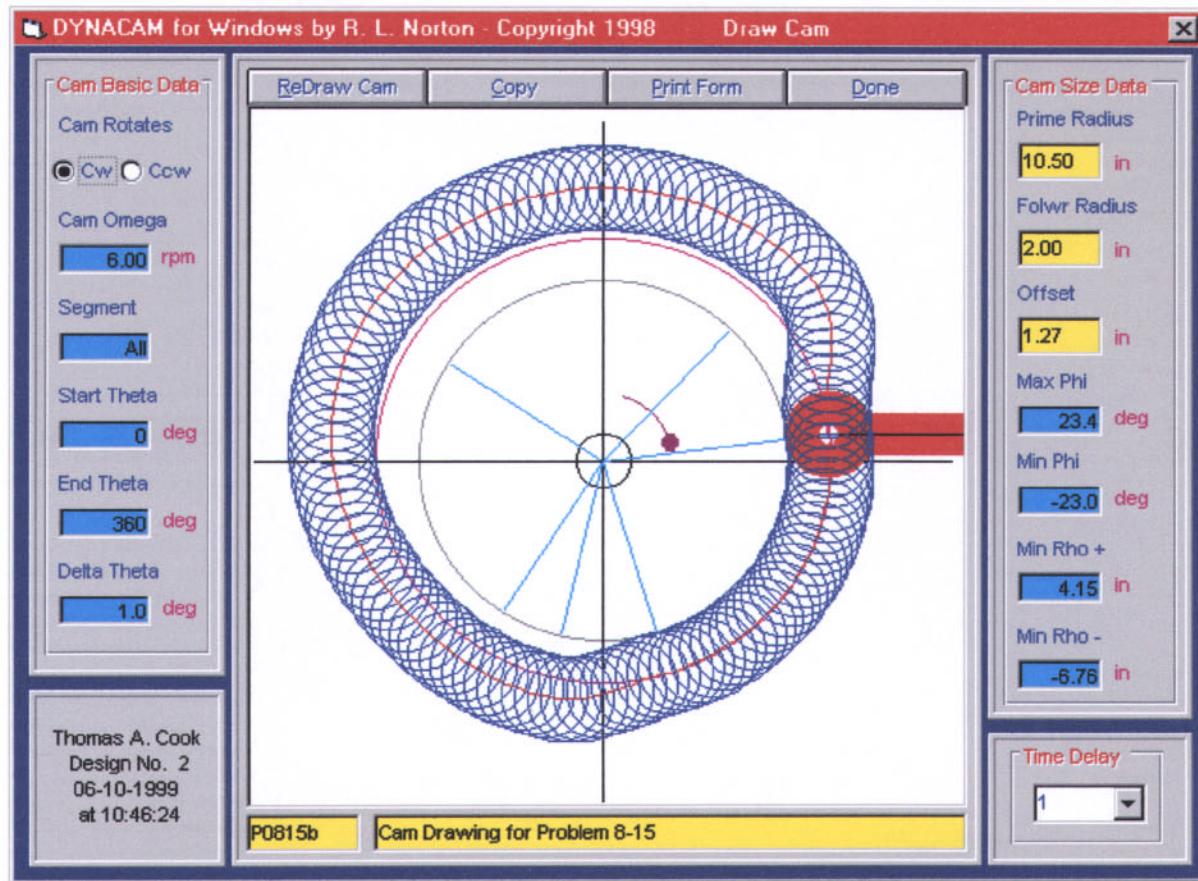
Cam Omega (rpm)	6
No. Segnts	6
Delta Theta (deg)	1.0

Follower

Trans

Osclt

Examples


Input Screen Buttons:

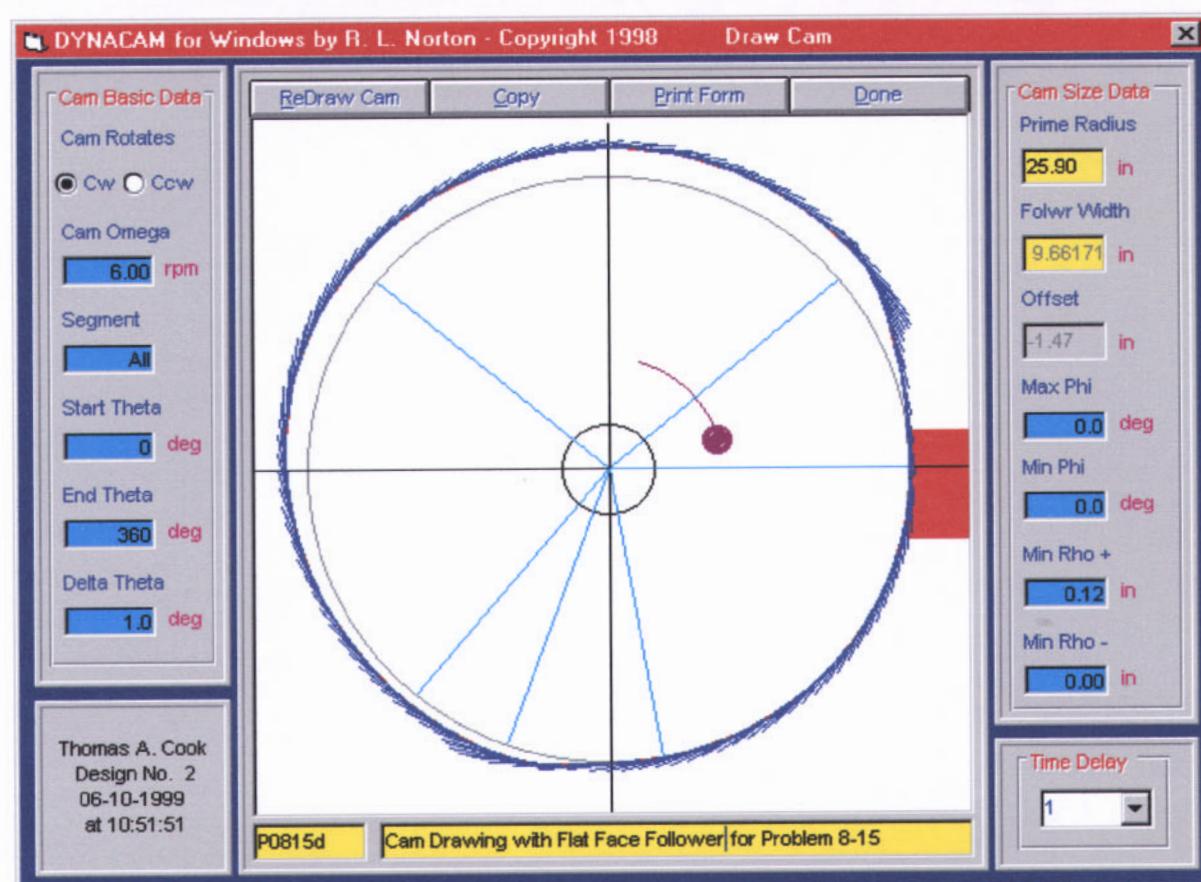
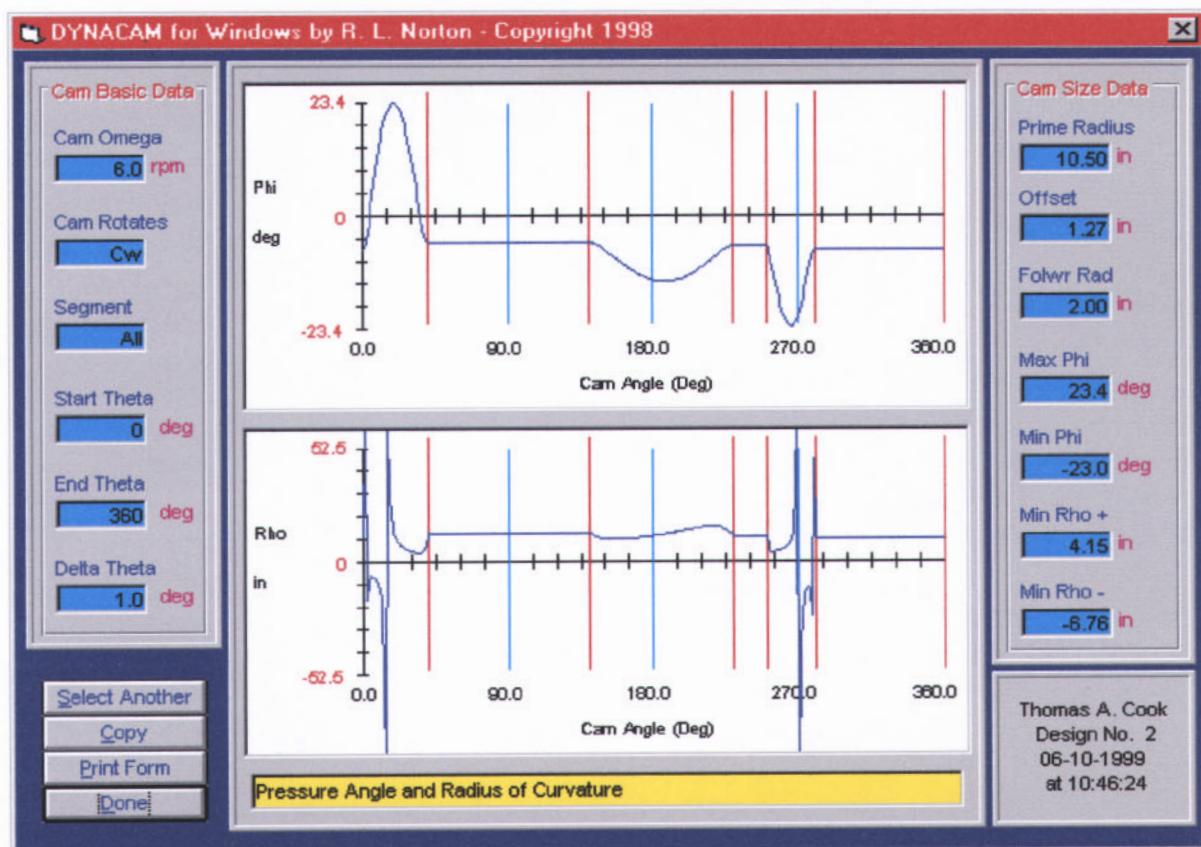
- Calc
- Plot
- Print

Input Screen Buttons (Bottom):

- Calc All
- Clear Segs
- Clear All
- Copy
- Print Form
- Done
- Cancel

3. The cam was sized iteratively to balance the positive and negative extreme values of the pressure angle by varying the eccentricity and to reduce the maximum absolute pressure angle to 30 deg or less by increasing the prime circle radius. The resulting cam is shown below.

4. The minimum and maximum pressure angles and radius of curvature are shown in the figure above. The prime radius had to be increased above that which was necessary for the pressure angle constraint in order to provide a minimum radius of curvature that was twice the roller follower radius. The design has the following dimensions:



$$\text{Prime circle radius} \quad R_p := 10.50 \text{-in}$$

$$\text{Roller follower radius} \quad R_f := 2.00 \text{-in}$$

$$\text{Follower eccentricity} \quad \epsilon := 1.27 \text{-in}$$

5. Graphs of ϕ and ρ for the roller follower are shown on the following page.

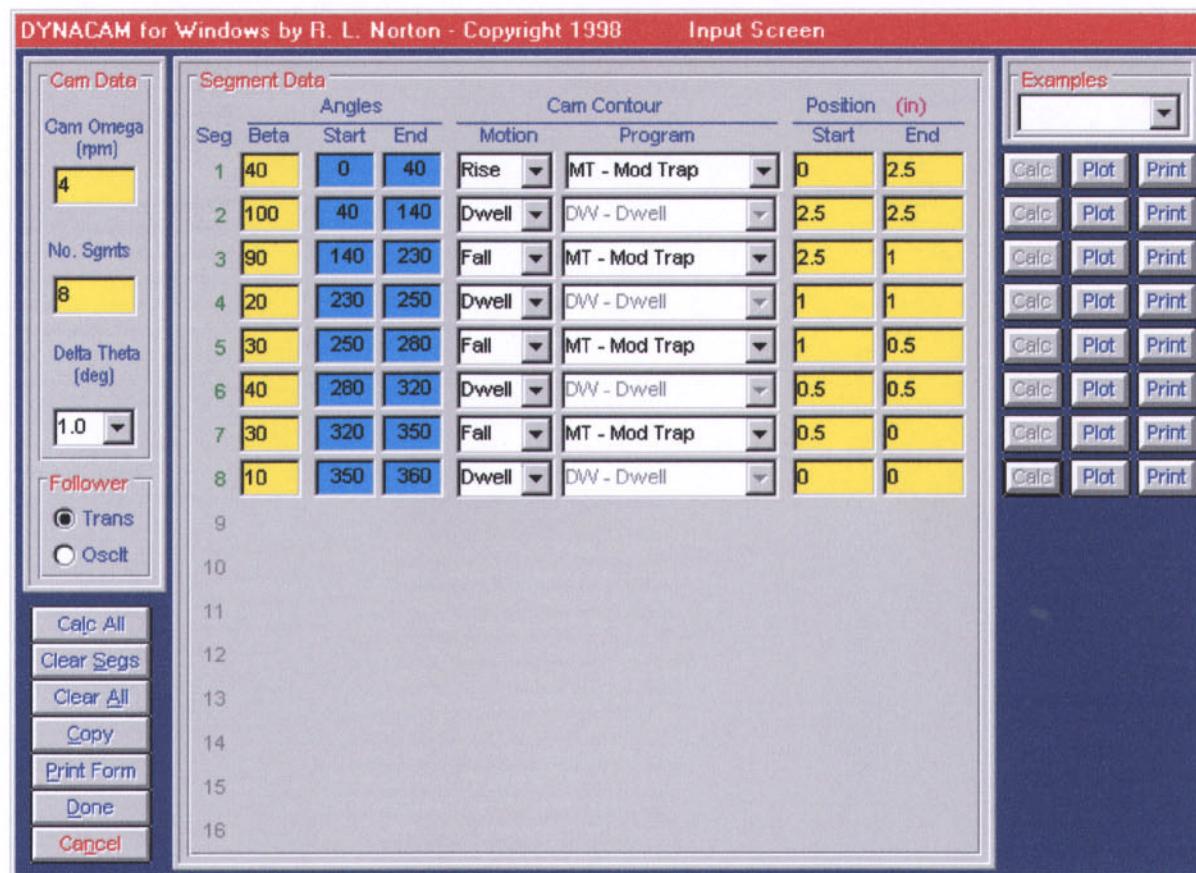
6. The cam was sized for a flat-faced follower and the cam drawing is shown on the next page. In order to avoid undercutting, a base circle radius of 25.9 in is required. Obviously, the roller follower is to be preferred over the flat face follower in this case.

 PROBLEM 8-16

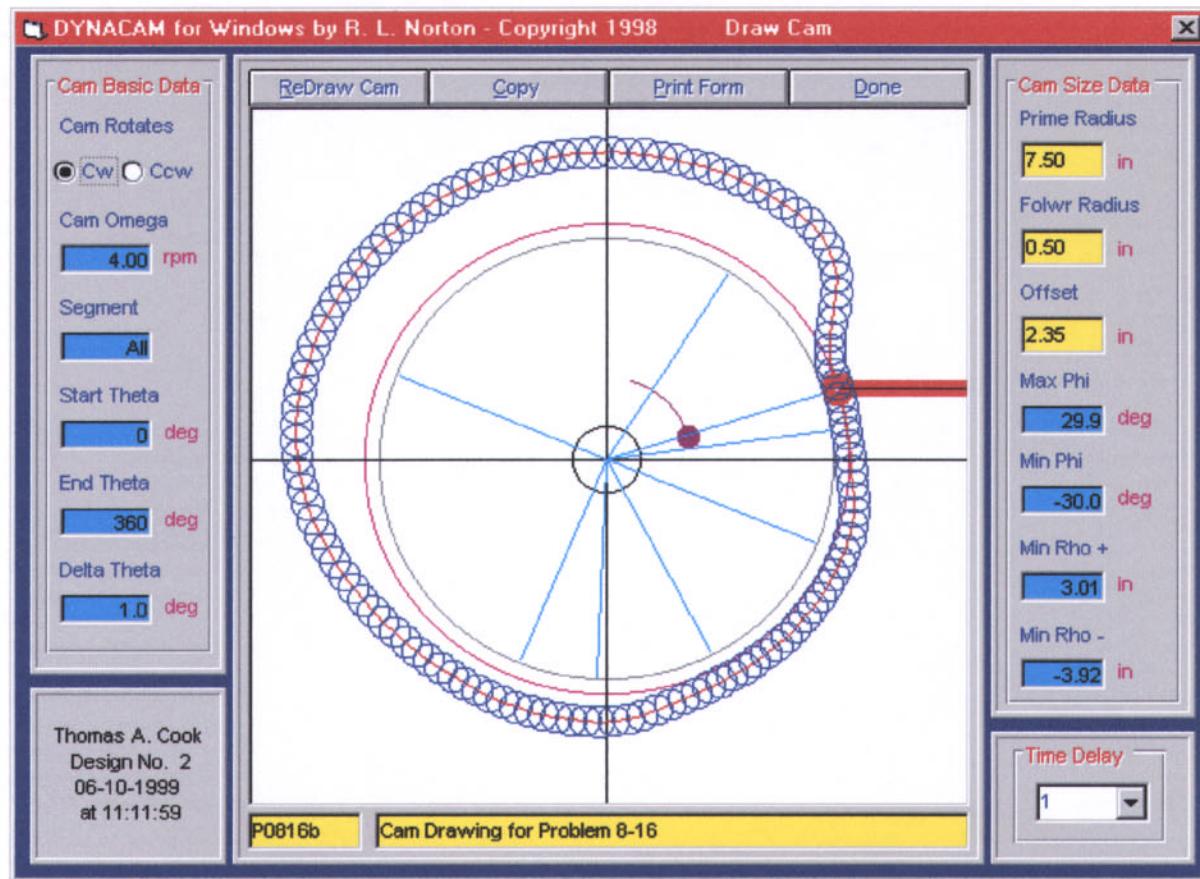
Statement: Size the cam from Problem 8-11 for a 0.5-in-radius roller follower considering pressure angle and radius of curvature. Use eccentricity only if necessary to balance those functions. Draw the cam profile. Repeat for a flat faced follower. Which would you use?

Units: $rpm := 2\pi \cdot rad \cdot min^{-1}$

Given:	RISE/FALL	DWELL	FALL	DWELL
	$\beta_1 := 40 \cdot deg$	$\beta_2 := 100 \cdot deg$	$\beta_3 := 90 \cdot deg$	$\beta_4 := 20 \cdot deg$
	$h_1 := 2.5 \cdot in$	$h_2 := 0.0 \cdot in$	$h_3 := 1.5 \cdot in$	$h_4 := 0.0 \cdot in$
	$\beta_5 := 30 \cdot deg$	$\beta_6 := 40 \cdot deg$	$\beta_7 := 30 \cdot deg$	$\beta_8 := 10 \cdot deg$
	$h_5 := 0.5 \cdot in$	$h_6 := 0.0 \cdot in$	$h_7 := 0.5 \cdot in$	$h_8 := 0.0 \cdot in$


Cycle time: $\tau := 15 \cdot sec$

Solution: See Mathcad file P0816.

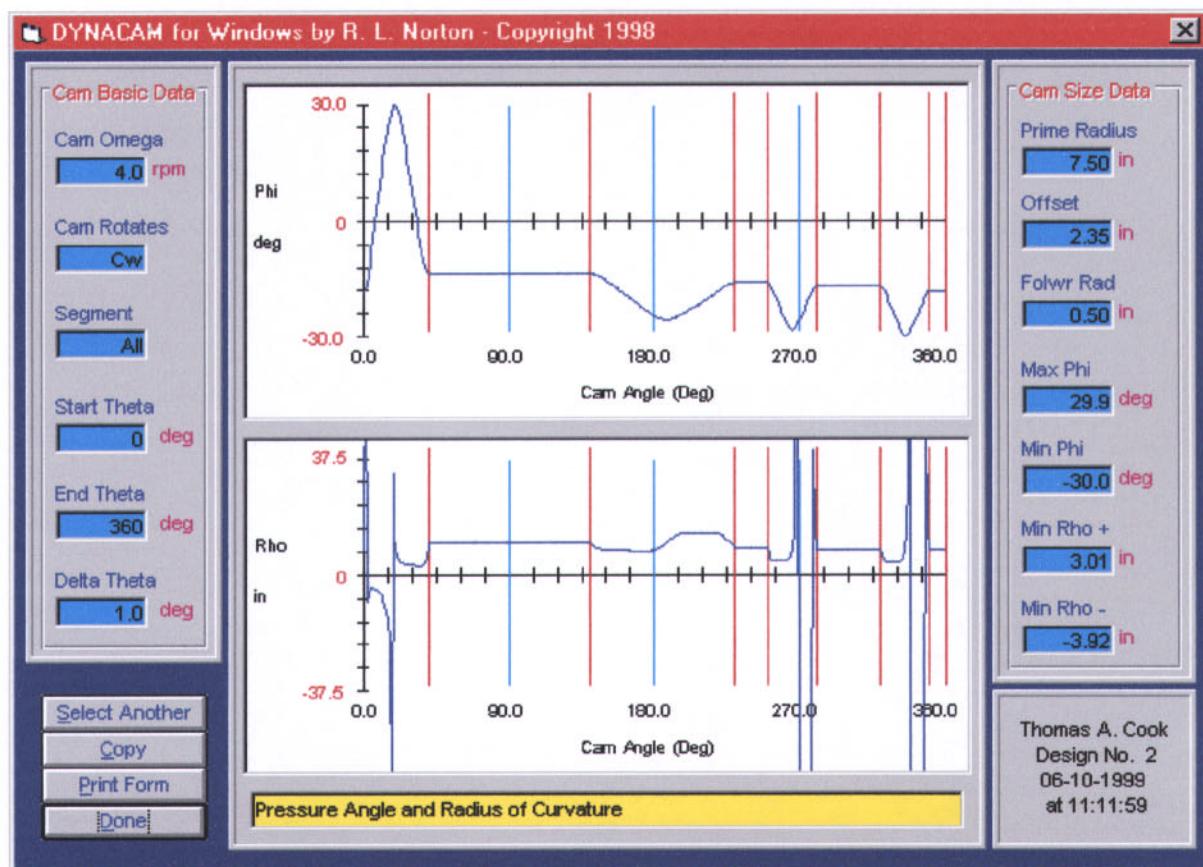

1. The camshaft turns 2π rad during the time for one cycle. Thus, its speed is

$$\omega := \frac{2\pi \cdot rad}{\tau} \quad \omega = 0.419 \frac{rad}{sec} \quad \omega = 4.000 \text{ rpm}$$

2. Problem 8-11 used an eight-segment cam with modified trapezoidal acceleration for the rise and fall. Enter the above data into program DYNACAM. The input screen is shown below.

3. The cam was sized iteratively to balance the positive and negative extreme values of the pressure angle by varying the eccentricity and to reduce the maximum absolute pressure angle to 30 deg or less by increasing the prime circle radius. The resulting cam is shown below.

4. The minimum and maximum pressure angles and radius of curvature are shown in the figure above. The design has the following dimensions:



$$\text{Prime circle radius} \quad R_p := 7.50 \text{ in}$$

$$\text{Roller follower radius} \quad R_f := 0.50 \text{ in}$$

$$\text{Follower eccentricity} \quad e := 2.35 \text{ in}$$

5. Graphs of ϕ and ρ for the roller follower are shown on the following page.

6. The cam was sized for a flat-faced follower and the cam drawing is shown on the next page. In order to avoid undercutting, a base circle radius of 23.25 in is required. Obviously, the roller follower is to be preferred over the flat face follower in this case.

 PROBLEM 8-17

Statement: A high friction, high inertia load is to be driven. We wish to keep peak velocity low. Combine segments of polynomial displacements with a constant velocity segment on both rise and fall to reduce the maximum velocity below that obtainable with a full period modified sine acceleration alone (i.e., with no constant velocity portion). Compare the two designs and comment. Use an ω of one for comparison.

Given:

RISE

$$\beta_1 := 90 \cdot \text{deg}$$

$$h_1 := 1.0 \cdot \text{in}$$

DWELL

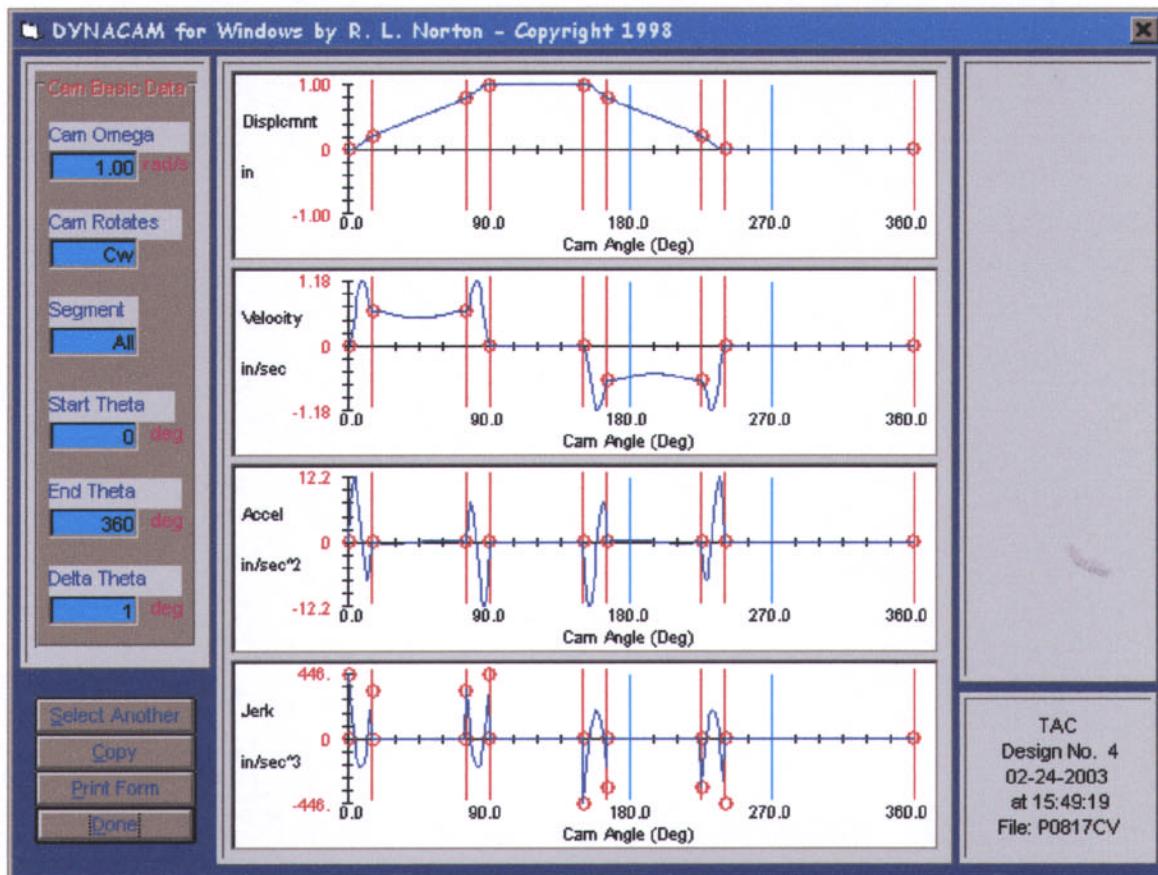
$$\beta_2 := 60 \cdot \text{deg}$$

$$h_2 := 0 \cdot \text{in}$$

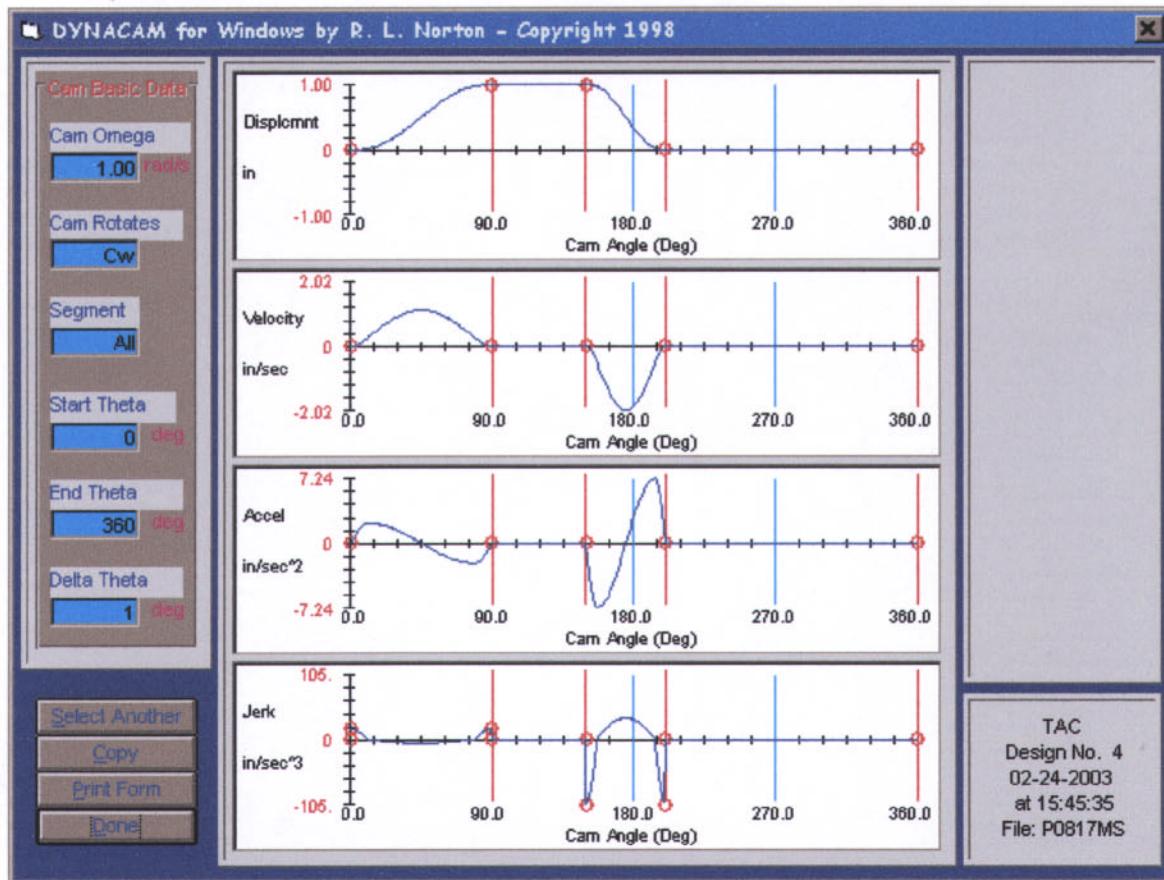
FALL

$$\beta_3 := 50 \cdot \text{deg}$$

$$h_3 := 1.0 \cdot \text{in}$$


DWELL

$$\beta_4 := 160 \cdot \text{deg}$$


$$h_4 := 0 \cdot \text{in}$$

Solution: See Mathcad file P0817.

1. Use DYNACAM to get the data for comparison of these two cam profiles. Start with the CV-poly profile, which is shown below. In this design eight segments were used: three each for the rise and fall and one each for the two dwells. The (nearly) constant velocity segments were each 54 deg. The maximum acceleration and jerk are 12.2 and 446, respectively.

1. The DYNACAM output screen for the modified sine profile is shown below. The maximum acceleration and jerk are 74.4 and 105, respectively. Obviously, for the CV-poly design choices that were made, the modified sine profile results in lower inertia forces and a smoother follower motion.

 PROBLEM 8-18

Statement: A constant velocity of 0.4 in/sec must be matched for 1.5 sec. Then the follower must return to your choice of starting point and dwell for 2 sec. The total cycle time is 6 sec. Design a cam for a follower radius of 0.75 in and a maximum pressure angle of 30 deg, absolute value.

Given: Required constant velocity $V_{cv} := 0.4 \cdot \text{in} \cdot \text{sec}^{-1}$ $t_{cv} := 1.5 \cdot \text{sec}$

Dwell time $t_{dwell} := 2 \cdot \text{sec}$

Cycle time $t_{cycle} := 6 \cdot \text{sec}$

Follower radius $R_f := 0.75 \cdot \text{in}$

Solution: See Mathcad file P0818.

1. The camshaft turns 2π rad during the time for one cycle. Thus, its speed is

$$\omega := \frac{2 \cdot \pi \cdot \text{rad}}{t_{cycle}} \quad \omega = 1.047 \frac{\text{rad}}{\text{sec}}$$

2. Use a four-segment polynomial cam as described below.

Segment	Function	Motion
1	Constant velocity	Rise
2	Polynomial (5 deg)	Fall
3	None	Dwell
4	Polynomial (5 deg)	Rise

3. Calculate the two known cam rotation interval widths.

$$\text{Constant velocity segment} \quad \beta_1 := \frac{t_{cv}}{t_{cycle}} \cdot 2 \cdot \pi \quad \beta_1 = 90.000 \text{ deg}$$

$$\text{Dwell segment} \quad \beta_3 := \frac{t_{dwell}}{t_{cycle}} \cdot 2 \cdot \pi \quad \beta_3 = 120.000 \text{ deg}$$

4. This leaves 150 deg to allocate to segments 2 and 4. Tentatively, let

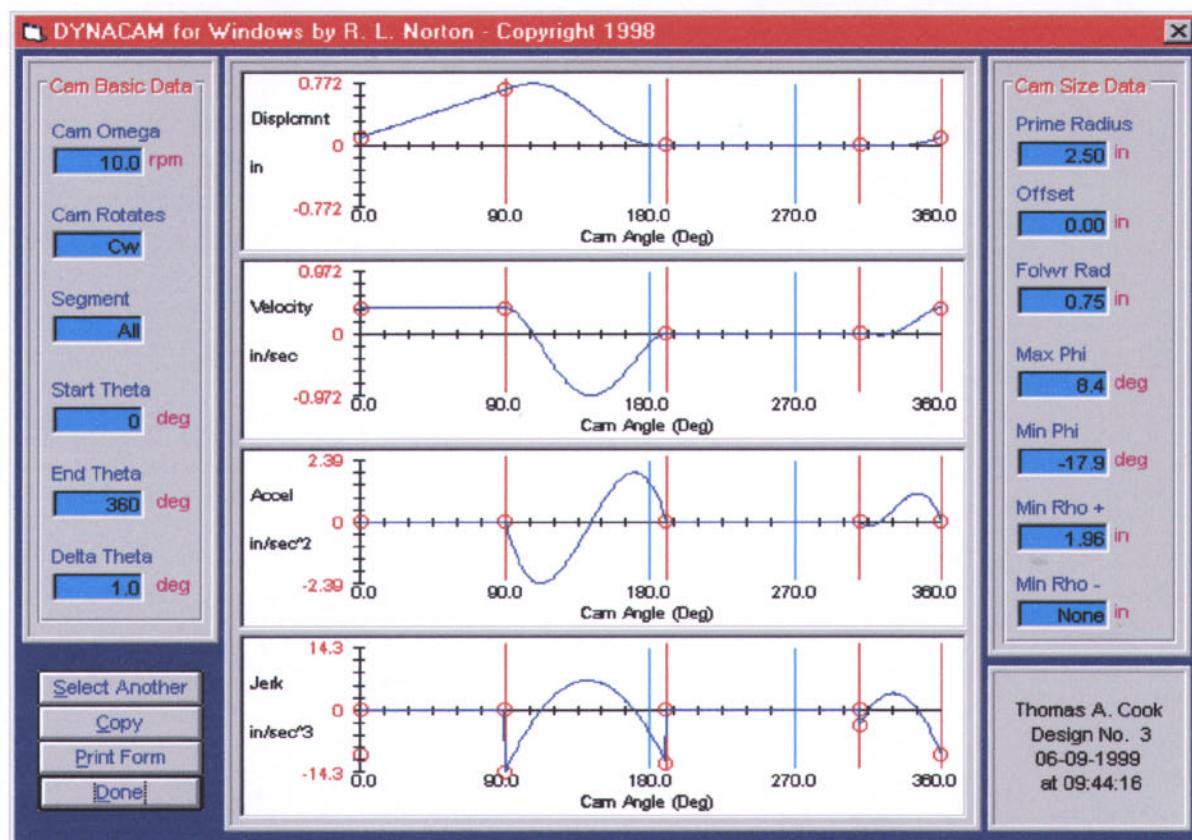
$$\beta_2 := 100 \cdot \text{deg} \quad \beta_4 := 50 \cdot \text{deg}$$

5. Calculate the lift for the constant velocity segment.

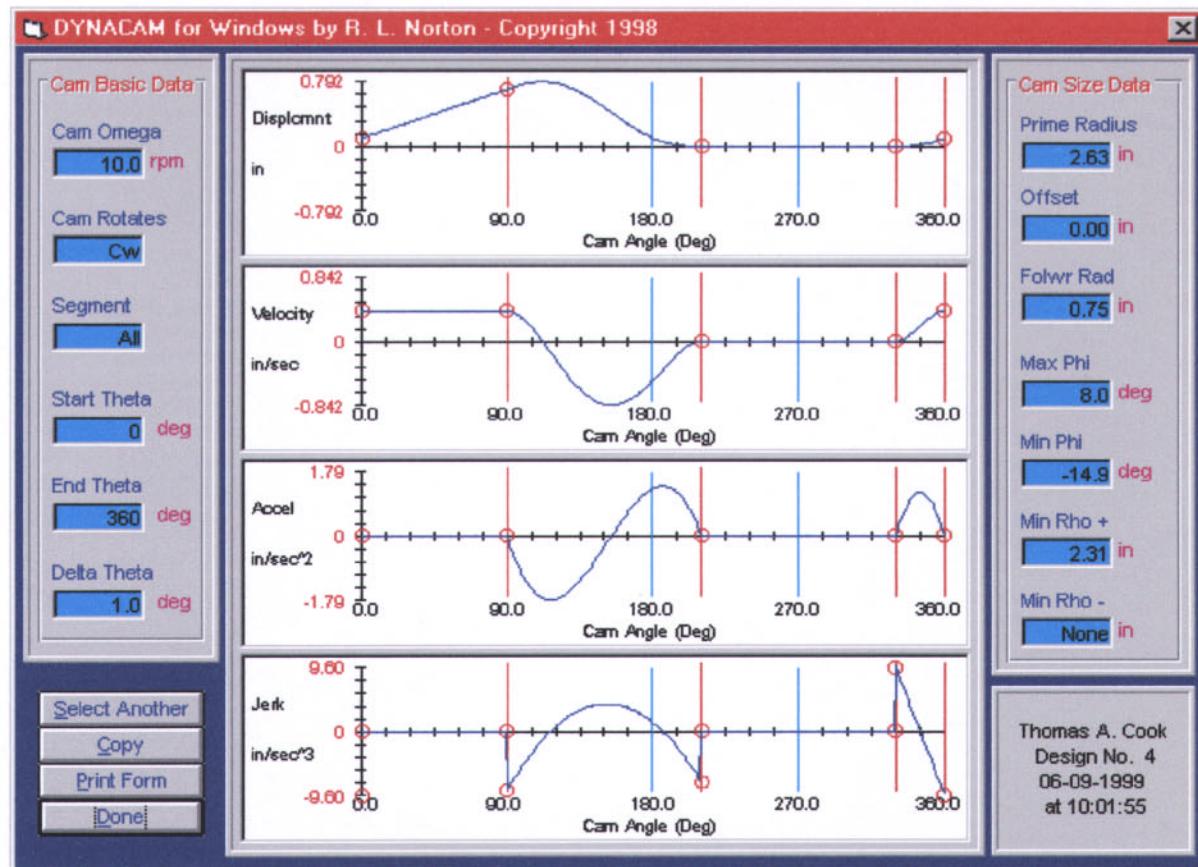
$$L_I := V_{cv} \cdot t_{cv} \quad L_I = 0.600 \text{ in}$$

6. Make other initial design choices.

$$\text{Lift of segment 4 (and starting position for segment 1)} \quad L_4 := 0.1 \cdot \text{in}$$


$$\text{Prime circle radius} \quad R_p := 2.50 \cdot \text{in}$$

7. Enter the above data into program DYNACAM. The input screen and resulting *SVAJ* diagrams are shown on the next page.


DYNACAM for Windows by R. L. Norton - Copyright 1998 **Input Screen**

Cam Data			Segment Data				Cam Contour		Position (in)	
			Angles		Motion		Program		Start	End
Cam Omega (rpm)	10		Seg	Beta	Start	End	Motion	Program	0.1	0.7
No. Segmts	4		1	90	0	90	Poly	PO - Polynomial	0.7	0
Delta Theta (deg)	1.0		2	100	90	190	Poly	PO - Polynomial	0	0
Follower	<input checked="" type="radio"/> Trans	<input type="radio"/> Oscilt	3	120	190	310	Dwell	D/W - Dwell	0	0
			4	50	310	360	Poly	PO - Polynomial	0	0.1
			5							
			6							
			7							
			8							
			9							
			10							
			11							
			12							
			13							
			14							
			15							
			16							

Calc All **Clear Segs** **Clear All** **Copy** **Print Form** **Done** **Cancel**

- From *SVAJ* diagrams we see that all design goals are met but the peak acceleration in segment 2 is higher than the peak in segment 4. These can be more evenly balanced by increasing the segment 2 interval and decreasing the segment 4 interval. Iterate on these intervals until the peak accelerations are more nearly the same.
- The second interval was changed to 120 deg and the fourth to 30 deg, and the prime circle radius was increased to 2.625 in (to maintain $\rho_{min}/R_f > 3$). The resulting peak accelerations are more in balance and are shown in the *SVAJ* diagram below. The maximum pressure angle is well within the required limit.

 PROBLEM 8-19

Statement: A constant velocity of 0.25 in/sec must be matched for 3 sec. Then the follower must return to your choice of starting point and dwell for 3 sec. The total cycle time is 12 sec. Design a cam for a follower radius of 1.25 in and a maximum pressure angle of 35 deg, absolute value.

Given:	Required constant velocity	$V_{cv} := 0.25 \cdot \text{in}\cdot\text{sec}^{-1}$	$t_{cv} := 3 \cdot \text{sec}$
	Dwell time	$t_{dwell} := 3 \cdot \text{sec}$	
	Cycle time	$t_{cycle} := 12 \cdot \text{sec}$	
	Follower radius	$R_f := 1.25 \cdot \text{in}$	

Solution: See Mathcad file P0819.

1. The camshaft turns 2π rad during the time for one cycle. Thus, its speed is

$$\omega := \frac{2 \cdot \pi \cdot \text{rad}}{t_{cycle}} \quad \omega = 0.524 \frac{\text{rad}}{\text{sec}}$$

2. Use a four-segment polynomial cam as described below.

Segment	Function	Motion
1	Constant velocity	Rise
2	Polynomial (5 deg)	Fall
3	None	Dwell
4	Polynomial (5 deg)	Rise

3. Calculate the two known cam rotation interval widths.

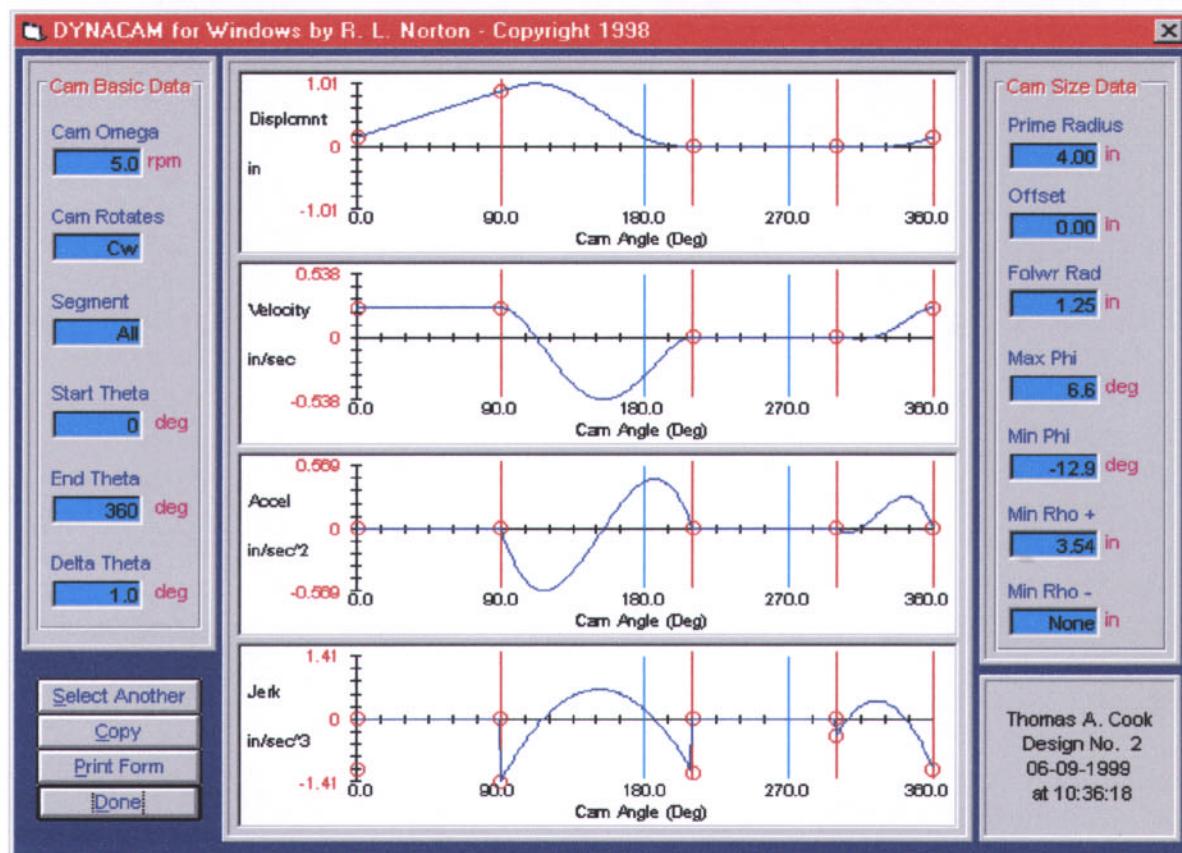
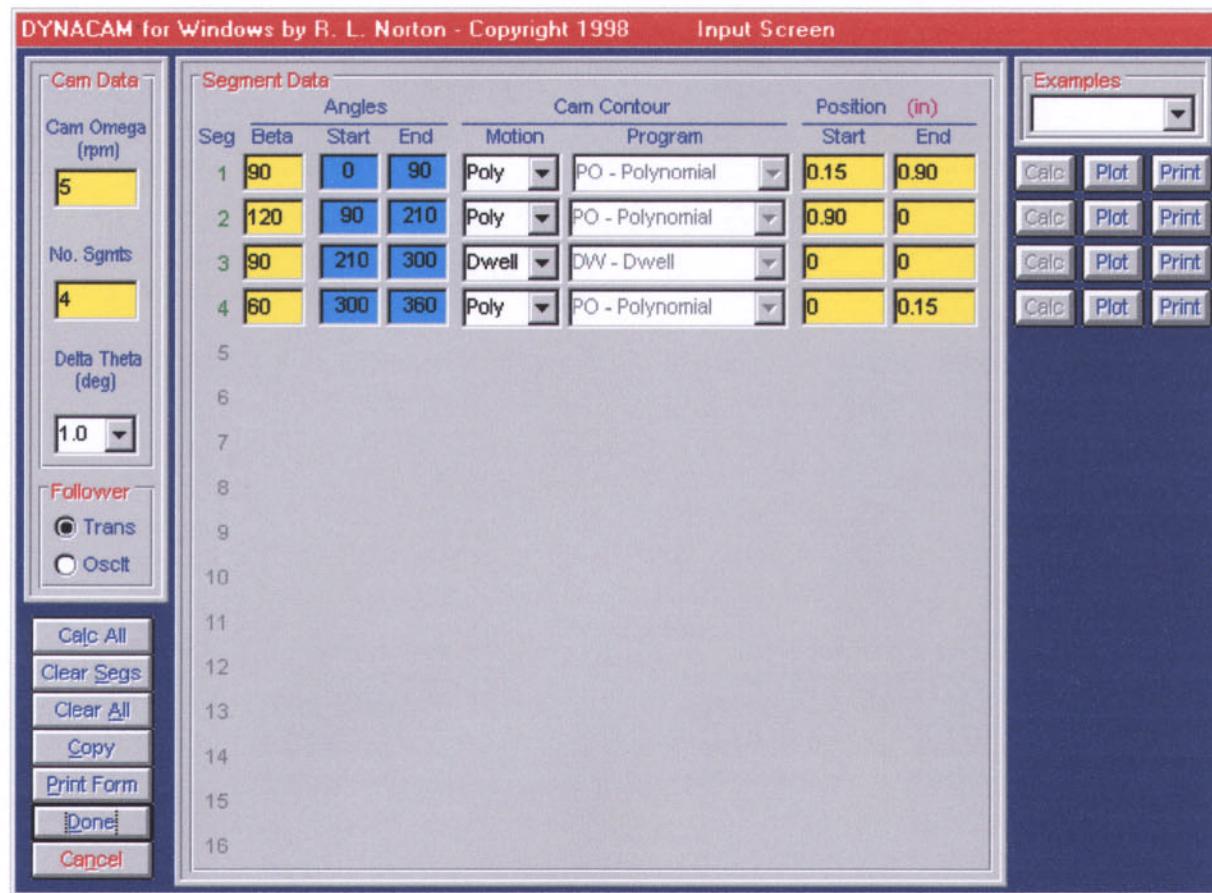
$$\text{Constant velocity segment} \quad \beta_1 := \frac{t_{cv}}{t_{cycle}} \cdot 2 \cdot \pi \quad \beta_1 = 90.000 \text{ deg}$$

$$\text{Dwell segment} \quad \beta_3 := \frac{t_{dwell}}{t_{cycle}} \cdot 2 \cdot \pi \quad \beta_3 = 90.000 \text{ deg}$$

4. This leaves 180 deg to allocate to segments 2 and 4. Tentatively, let

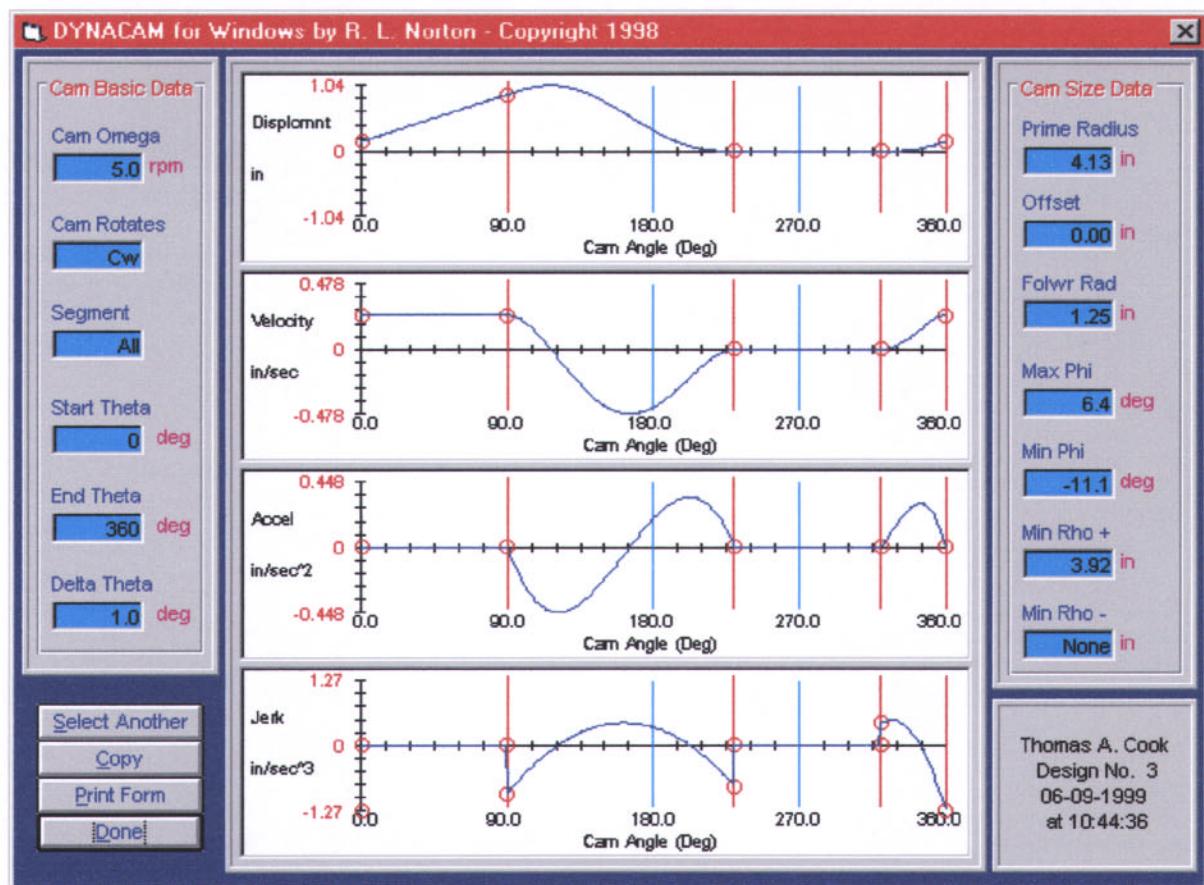
$$\beta_2 := 120 \cdot \text{deg} \quad \beta_4 := 60 \cdot \text{deg}$$

5. Calculate the lift for the constant velocity segment.



$$L_I := V_{cv} \cdot t_{cv} \quad L_I = 0.750 \text{ in}$$

6. Make other initial design choices.

$$\text{Lift of segment 4 (and starting position for segment 1)} \quad L_4 := 0.15 \cdot \text{in}$$


$$\text{Prime circle radius} \quad R_p := 4.00 \cdot \text{in}$$

7. Enter the above data into program DYNACAM. The input screen and resulting SVAJ diagrams are shown on the next page.

8. From *SVAJ* diagrams we see that all design goals are met but the peak acceleration in segment 2 is higher than the peak in segment 4. These can be more evenly balanced by increasing the segment 2 interval and decreasing the segment 4 interval. Iterate on these intervals until the peak accelerations are more nearly the same. Note also that ρ_{min} is not greater than 3 times R_f

9. The second interval was changed to 140 deg and the fourth to 40 deg, and the prime circle radius was increased to 4.125 in (to maintain $\rho_{min}/R_f > 3$). The resulting peak accelerations are more in balance and are shown in the *SVAJ* diagram below. The maximum pressure angle is well within the required limit.

 PROBLEM 8-20

Statement: A constant velocity of 2 in/sec must be matched for 1 sec. Then the follower must return to your choice of starting point. The total cycle time is 2.75 sec. Design a cam for a follower radius of 0.5 in and a maximum pressure angle of 25 deg, absolute value.

Given:

Required constant velocity	$V_{cv} := 2.0 \cdot \text{in} \cdot \text{sec}^{-1}$	$t_{cv} := 1 \cdot \text{sec}$
Cycle time	$t_{cycle} := 2.75 \cdot \text{sec}$	
Follower radius	$R_f := 0.5 \cdot \text{in}$	

Solution: See Mathcad file P0820.

1. The camshaft turns 2π rad during the time for one cycle. Thus, its speed is

$$\omega := \frac{2 \cdot \pi \cdot \text{rad}}{t_{cycle}} \quad \omega = 2.285 \frac{\text{rad}}{\text{sec}}$$

2. Use a two-segment polynomial cam similar to that used in Example 8-10 and described below.

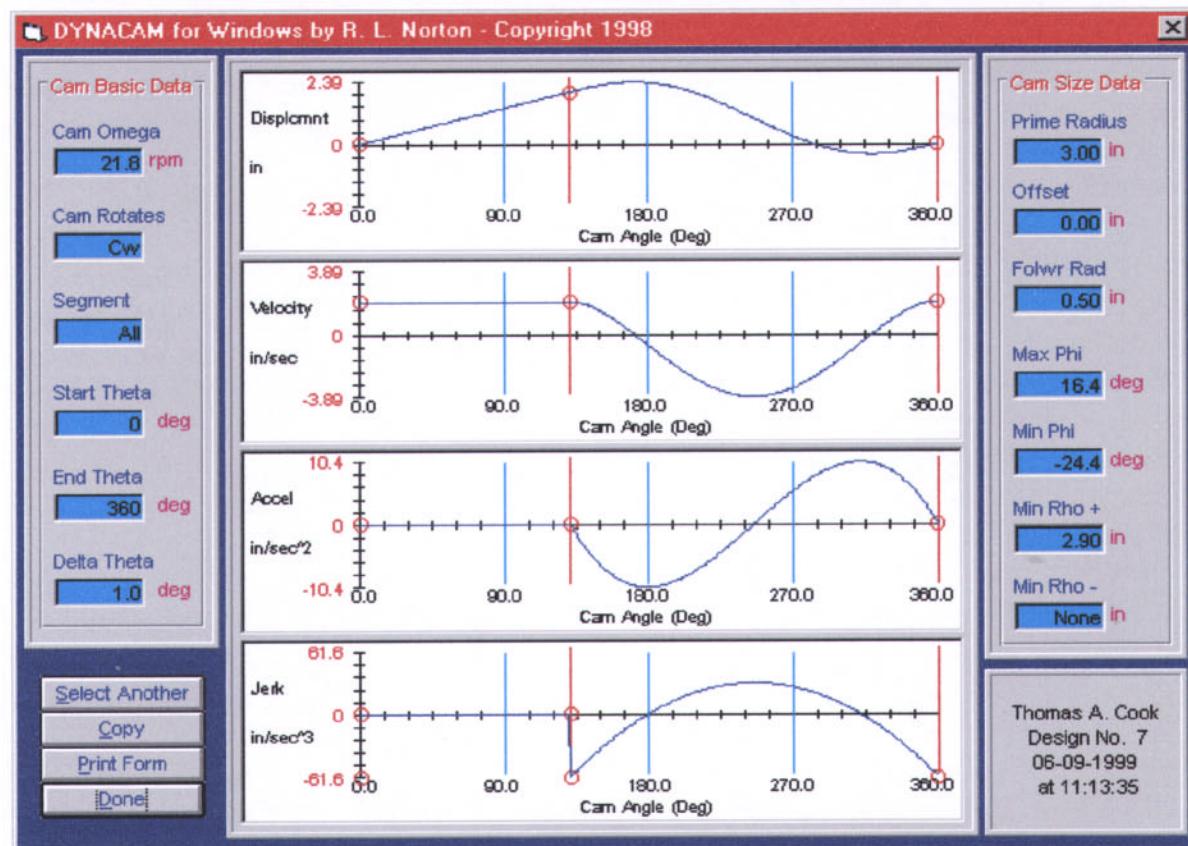
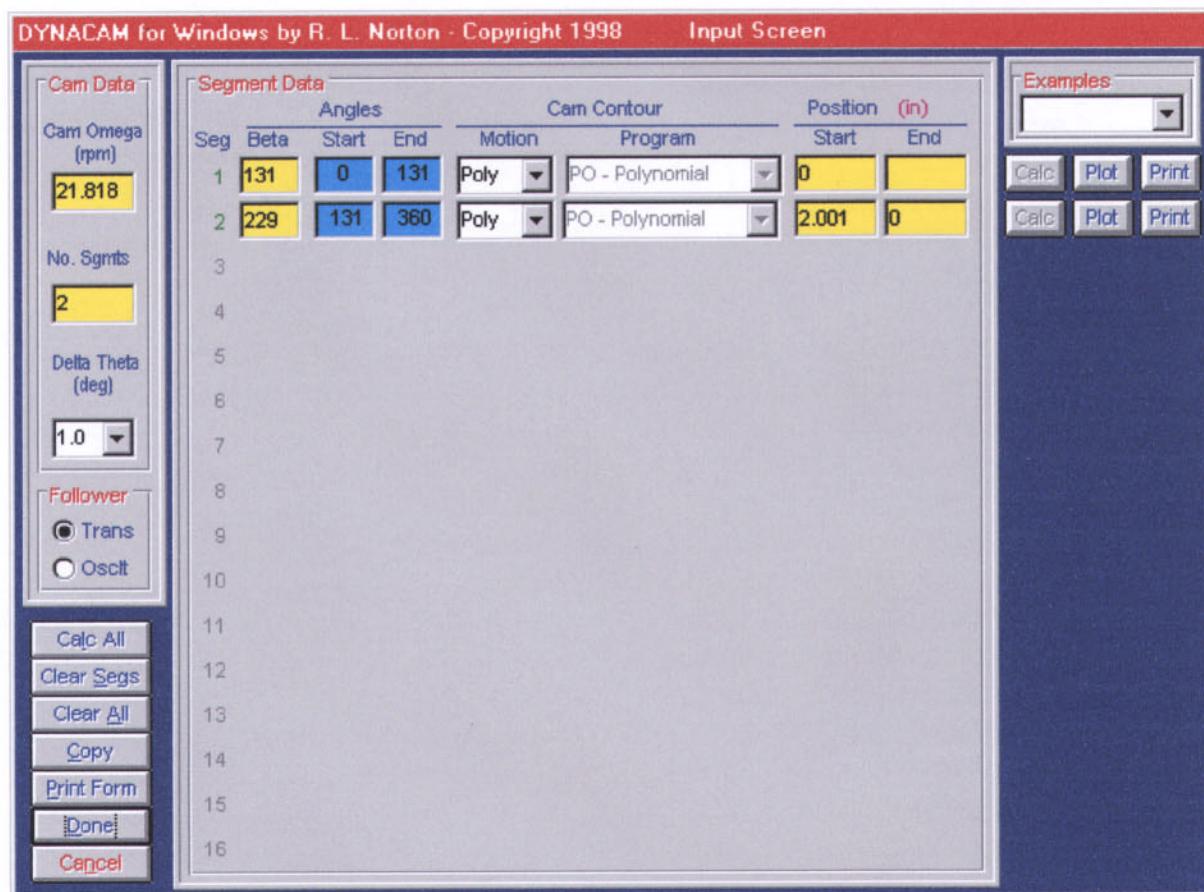
Segment	Function	Motion
1	Constant velocity	Rise
2	Polynomial (5 deg)	Fall

3. Calculate the known cam rotation interval width.

$$\text{Constant velocity segment} \quad \beta_1 := \frac{t_{cv}}{t_{cycle}} \cdot 2 \cdot \pi \quad \beta_1 = 130.909 \text{ deg}$$

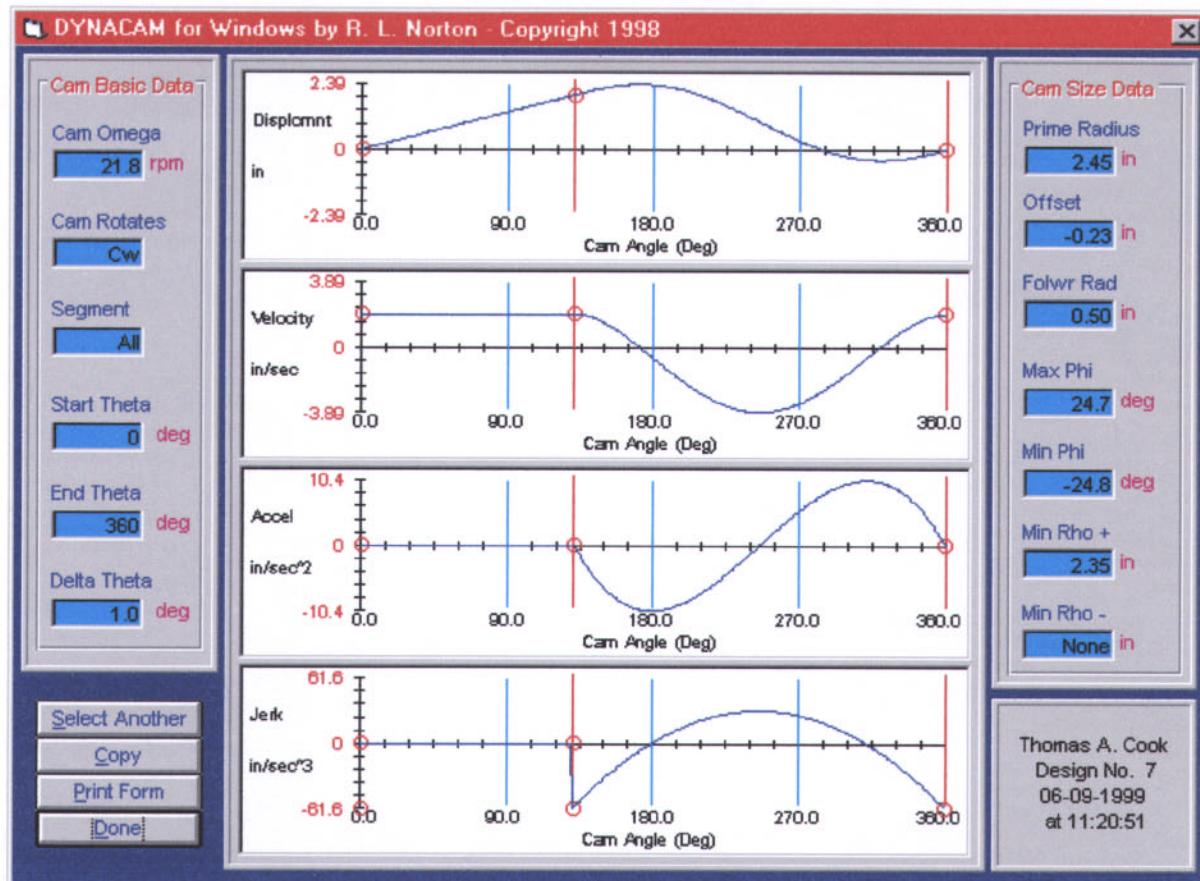
4. This leaves 229.091 deg for segments 2.

$$\beta_2 := 360 \cdot \text{deg} - \beta_1 \quad \beta_2 = 229.091 \text{ deg}$$



5. Calculate the lift for the constant velocity segment.

$$L_I := V_{cv} \cdot t_{cv} \quad L_I = 2.000 \text{ in}$$

6. Make other initial design choices.


$$\text{Prime circle radius} \quad R_p := 4.00 \cdot \text{in}$$

7. Enter the above data into program DYNACAM. The input screen and resulting *SVAJ* diagrams are shown on the next page.

8. From $SV\dot{A}J$ diagrams we see that all design goals are met but the maximum pressure angle is considerably lower (in absolute value) than the minimum pressure angle. These can be balanced by making the follower eccentric with respect to the cam centerline. This will also allow the prime radius to be reduced. Iterate on these parameters until the maximum and minimum pressure angles are nearly the same (numerically) and reduce the prime circle radius until the pressure angle is at, or below, the required limit.

9. The eccentricity was iterated to -0.23 in and the prime circle radius was reduced to 2.45 in. This resulted in a balanced maximum and minimum pressure angle that is just below the required limit. The minimum radius of curvature is almost 5 times the follower radius, which is ample. The $SV\dot{A}J$ diagram for the final iteration is shown below.

 PROBLEM 8-21

Statement: Write a computer program or use an equation solver such as Mathcad or TKSolver to calculate and plot the s v α_j diagrams for a modified trapezoidal acceleration cam function for any specified values of lift and duration. Test it using a lift of 20 mm over an interval of 60 deg at 1 rad/sec.

Enter: Lift: $h_1 := 20 \cdot \text{mm}$

Duration: $\beta_1 := 60 \cdot \text{deg}$

Solution: See Mathcad file P0821.

1. Enter values for lift and duration above.
2. The numerical constants in these SCCA for the modified trapezoidal equations are given in Table 8-2.

$$b := 0.25 \quad c := 0.50 \quad d := 0.25$$

$$C_v := 2.0000 \quad C_a := 4.8881 \quad C_j := 61.426$$

3. The SCCA equations for the rise or fall interval (β) are divided into 5 subintervals. These are:

for $0 \leq x \leq b/2$ where, for these equations, x is a local coordinate that ranges from 0 to 1,

$$y_1(x) := C_a \left[x \cdot \frac{b}{\pi} - \left(\frac{b}{\pi} \right)^2 \cdot \sin \left(\frac{\pi}{b} \cdot x \right) \right] \quad y'_1(x) := C_a \cdot \frac{b}{\pi} \cdot \left(1 - \cos \left(\frac{\pi}{b} \cdot x \right) \right)$$

$$y''_1(x) := C_a \cdot \sin \left(\frac{\pi}{b} \cdot x \right) \quad y'''_1(x) := C_a \cdot \frac{\pi}{b} \cdot \cos \left(\frac{\pi}{b} \cdot x \right)$$

for $b/2 \leq x \leq (1 - d)/2$

$$y_2(x) := C_a \left[\frac{x^2}{2} + b \cdot \left(\frac{1}{\pi} - \frac{1}{2} \right) \cdot x + b^2 \cdot \left(\frac{1}{8} - \frac{1}{\pi^2} \right) \right] \quad y'_2(x) := C_a \left[x + b \cdot \left(\frac{1}{\pi} - \frac{1}{2} \right) \right]$$

$$y''_2(x) := C_a \quad y'''_2(x) := 0$$

for $(1 - d)/2 \leq x \leq (1 + d)/2$

$$y_3(x) := C_a \left[\left(\frac{b}{\pi} + \frac{c}{2} \right) \cdot x + \left(\frac{d}{\pi} \right)^2 + b^2 \cdot \left(\frac{1}{8} - \frac{1}{\pi^2} \right) - \frac{(1-d)^2}{8} - \left(\frac{d}{\pi} \right)^2 \cdot \cos \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right] \right]$$

$$y'_3(x) := C_a \left[\frac{b}{\pi} + \frac{c}{2} + \frac{d}{\pi} \cdot \sin \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right] \right]$$

$$y''_3(x) := C_a \cdot \cos \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right] \quad y'''_3(x) := -C_a \cdot \frac{\pi}{d} \cdot \sin \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right]$$

for $(1 + d)/2 \leq x \leq 1 - b/2$

$$y_4(x) := C_a \left[-\frac{x^2}{2} + \left(\frac{b}{\pi} + 1 - \frac{b}{2} \right) \cdot x + (2 \cdot d^2 - b^2) \cdot \left(\frac{1}{\pi^2} - \frac{1}{8} \right) - \frac{1}{4} \right]$$

$$y'_4(x) := C_a \left(-x + \frac{b}{\pi} + 1 - \frac{b}{2} \right) \quad y''_4(x) := -C_a \quad y'''_4(x) := 0$$

for $1 - b/2 \leq x \leq 1$

$$y_5(x) := C_a \cdot \left[\frac{b}{\pi} \cdot x + \frac{2 \cdot (d^2 - b^2)}{\pi^2} + \frac{(1-b)^2 - d^2}{4} - \left(\frac{b}{\pi} \right)^2 \cdot \sin \left[\frac{\pi}{b} \cdot (x-1) \right] \right]$$

$$y'_5(x) := C_a \cdot \frac{b}{\pi} \cdot \left[1 - \cos \left[\frac{\pi}{b} \cdot (x-1) \right] \right]$$

$$y''_5(x) := C_a \cdot \sin \left[\frac{\pi}{b} \cdot (x-1) \right]$$

$$y'''_5(x) := C_a \cdot \frac{\pi}{b} \cdot \cos \left[\frac{\pi}{b} \cdot (x-1) \right]$$

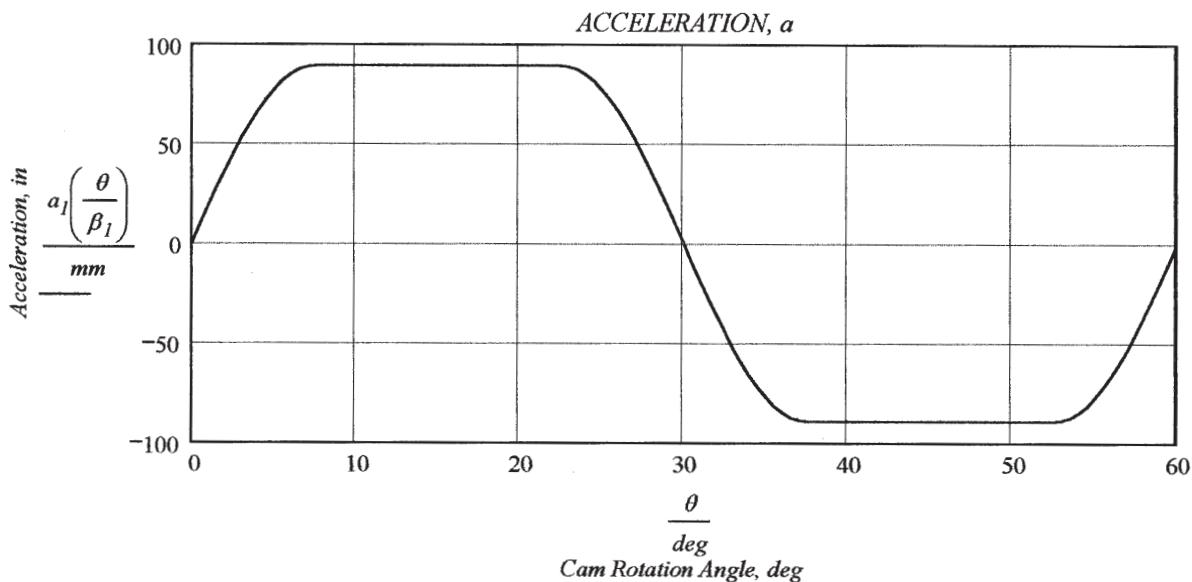
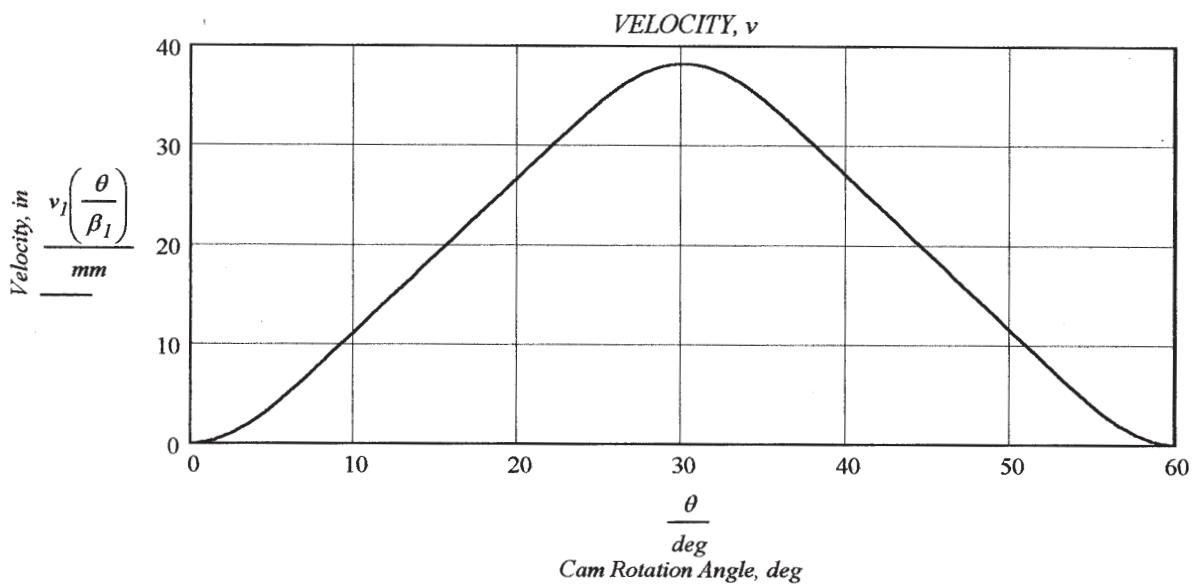
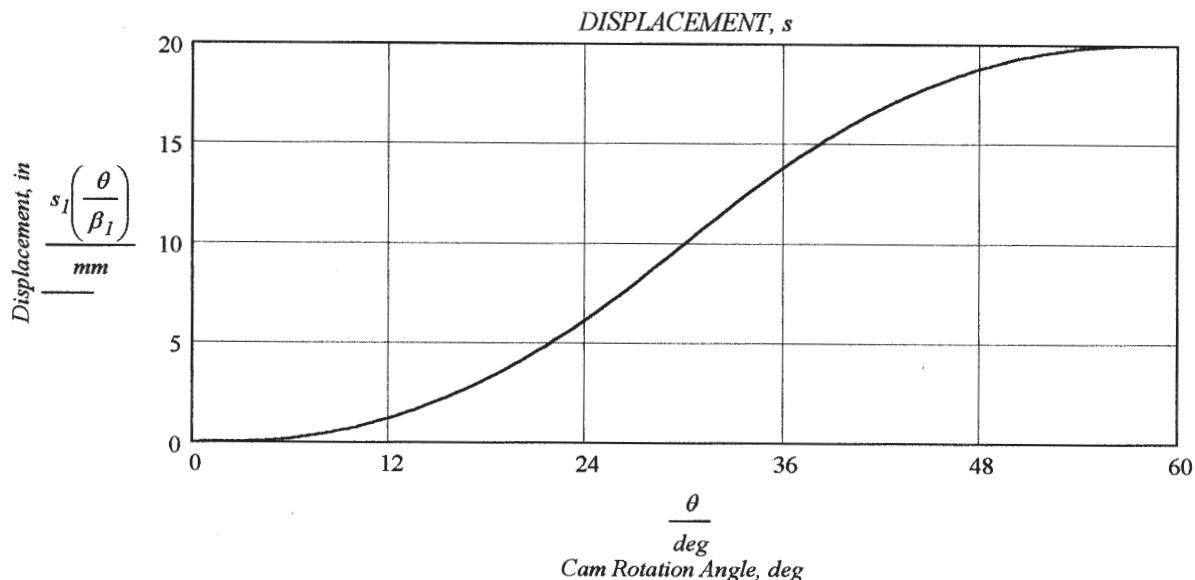
4. The above equations can be used for a rise or fall by using the proper values of θ , β , and h . To plot the *SVAJ* curves, first define a range function that has a value of one between the values of a and b and zero elsewhere.

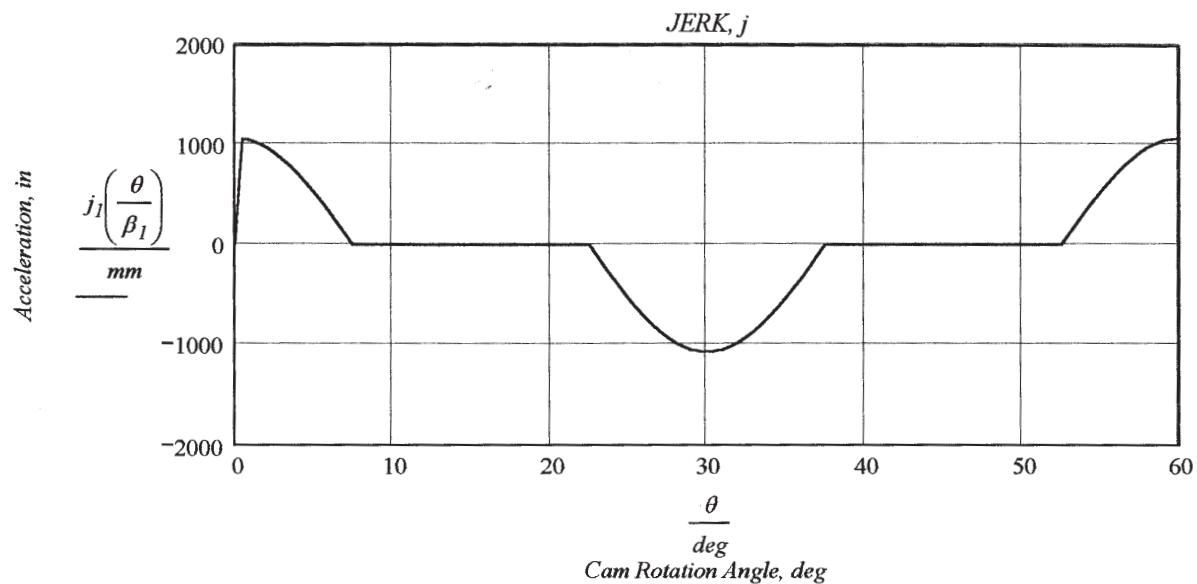
$$R(x, x1, x2) := if[(x > x1) \wedge (x \leq x2), 1, 0]$$

5. The global *SVAJ* equations are composed of four intervals (rise, dwell, fall, and dwell). The local equations above must be assembled into a single equation each for S , V , A , and J that applies over the range $0 \leq \theta \leq 360$ deg.

6. Write the local *svaj* equations for the first interval, $0 \leq \theta \leq \beta_1$. Note that each subinterval function is multiplied by the range function so that it will have nonzero values only over its subinterval.

For $0 \leq \theta \leq \beta_1$ (Rise)




$$s_I(x) := h_I \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y_I(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y_3(x) \dots + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y_5(x) \right)$$


$$v_I(x) := \frac{h_I}{\beta_I} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'_I(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'_3(x) \dots + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'_5(x) \right)$$

$$a_I(x) := \frac{h_I}{\beta_I^2} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y''_I(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y''_3(x) \dots + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y''_5(x) \right)$$

$$j_I(x) := \frac{h_I}{\beta_I^3} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'''_I(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'''_3(x) \dots + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'''_5(x) \right)$$

5. Plot the displacement, velocity, acceleration, and jerk functions over the lift interval: $\theta := 0 \cdot \text{deg}, 0.5 \cdot \text{deg..} \beta_1$

 PROBLEM 8-22

Statement: Write a computer program or use an equation solver such as Mathcad or TKSolver to calculate and plot the $s v a j$ diagrams for a modified sinusoidal acceleration cam function for any specified values of lift and duration. Test it using a lift of 20 mm over an interval of 60 deg at 1 rad/sec.

Enter: Lift: $h_I := 20 \cdot \text{mm}$

Duration: $\beta_I := 60 \cdot \text{deg}$

Solution: See Mathcad file P0822.

1. Enter values for lift and duration above.
2. The numerical constants in these SCCA for the modified trapezoidal equations are given in Table 8-2.

$$b := 0.25 \quad c := 0.00 \quad d := 0.75$$

$$C_v := 1.7596 \quad C_a := 5.5280 \quad C_j := 69.466$$

3. The SCCA equations for the rise or fall interval (β) are divided into 5 subintervals. These are:

for $0 \leq x \leq b/2$ where, for these equations, x is a local coordinate that ranges from 0 to 1,

$$y_I(x) := C_a \left[x \cdot \frac{b}{\pi} - \left(\frac{b}{\pi} \right)^2 \cdot \sin \left(\frac{\pi}{b} \cdot x \right) \right] \quad y'_I(x) := C_a \frac{b}{\pi} \left(1 - \cos \left(\frac{\pi}{b} \cdot x \right) \right)$$

$$y''_I(x) := C_a \cdot \sin \left(\frac{\pi}{b} \cdot x \right) \quad y'''_I(x) := C_a \cdot \frac{\pi}{b} \cdot \cos \left(\frac{\pi}{b} \cdot x \right)$$

for $b/2 \leq x \leq (1 - d)/2$

$$y_2(x) := C_a \left[\frac{x^2}{2} + b \cdot \left(\frac{1}{\pi} - \frac{1}{2} \right) \cdot x + b^2 \cdot \left(\frac{1}{8} - \frac{1}{\pi^2} \right) \right] \quad y'_2(x) := C_a \left[x + b \cdot \left(\frac{1}{\pi} - \frac{1}{2} \right) \right]$$

$$y''_2(x) := C_a \quad y'''_2(x) := 0$$

for $(1 - d)/2 \leq x \leq (1 + d)/2$

$$y_3(x) := C_a \left[\left(\frac{b}{\pi} + \frac{c}{2} \right) \cdot x + \left(\frac{d}{\pi} \right)^2 + b^2 \cdot \left(\frac{1}{8} - \frac{1}{\pi^2} \right) - \frac{(1-d)^2}{8} - \left(\frac{d}{\pi} \right)^2 \cdot \cos \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right] \right]$$

$$y'_3(x) := C_a \left[\frac{b}{\pi} + \frac{c}{2} + \frac{d}{\pi} \cdot \sin \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right] \right]$$

$$y''_3(x) := C_a \cdot \cos \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right] \quad y'''_3(x) := -C_a \cdot \frac{\pi}{d} \cdot \sin \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right]$$

for $(1 + d)/2 \leq x \leq 1 - b/2$

$$y_4(x) := C_a \left[\frac{x^2}{2} + \left(\frac{b}{\pi} + 1 - \frac{b}{2} \right) \cdot x + \left(2 \cdot d^2 - b^2 \right) \cdot \left(\frac{1}{\pi^2} - \frac{1}{8} \right) - \frac{1}{4} \right]$$

$$y'_4(x) := C_a \left[-x + \frac{b}{\pi} + 1 - \frac{b}{2} \right] \quad y''_4(x) := -C_a \quad y'''_4(x) := 0$$

for $1 - b/2 \leq x \leq 1$

$$y_5(x) := C_a \left[\frac{b}{\pi} \cdot x + \frac{2 \cdot (d^2 - b^2)}{\pi^2} + \frac{(1-b)^2 - d^2}{4} - \left(\frac{b}{\pi} \right)^2 \cdot \sin \left[\frac{\pi}{b} \cdot (x-1) \right] \right]$$

$$y'_5(x) := C_a \cdot \frac{b}{\pi} \cdot \left[1 - \cos \left[\frac{\pi}{b} \cdot (x-1) \right] \right]$$

$$y''_5(x) := C_a \cdot \sin \left[\frac{\pi}{b} \cdot (x-1) \right]$$

$$y'''_5(x) := C_a \cdot \frac{\pi}{b} \cdot \cos \left[\frac{\pi}{b} \cdot (x-1) \right]$$

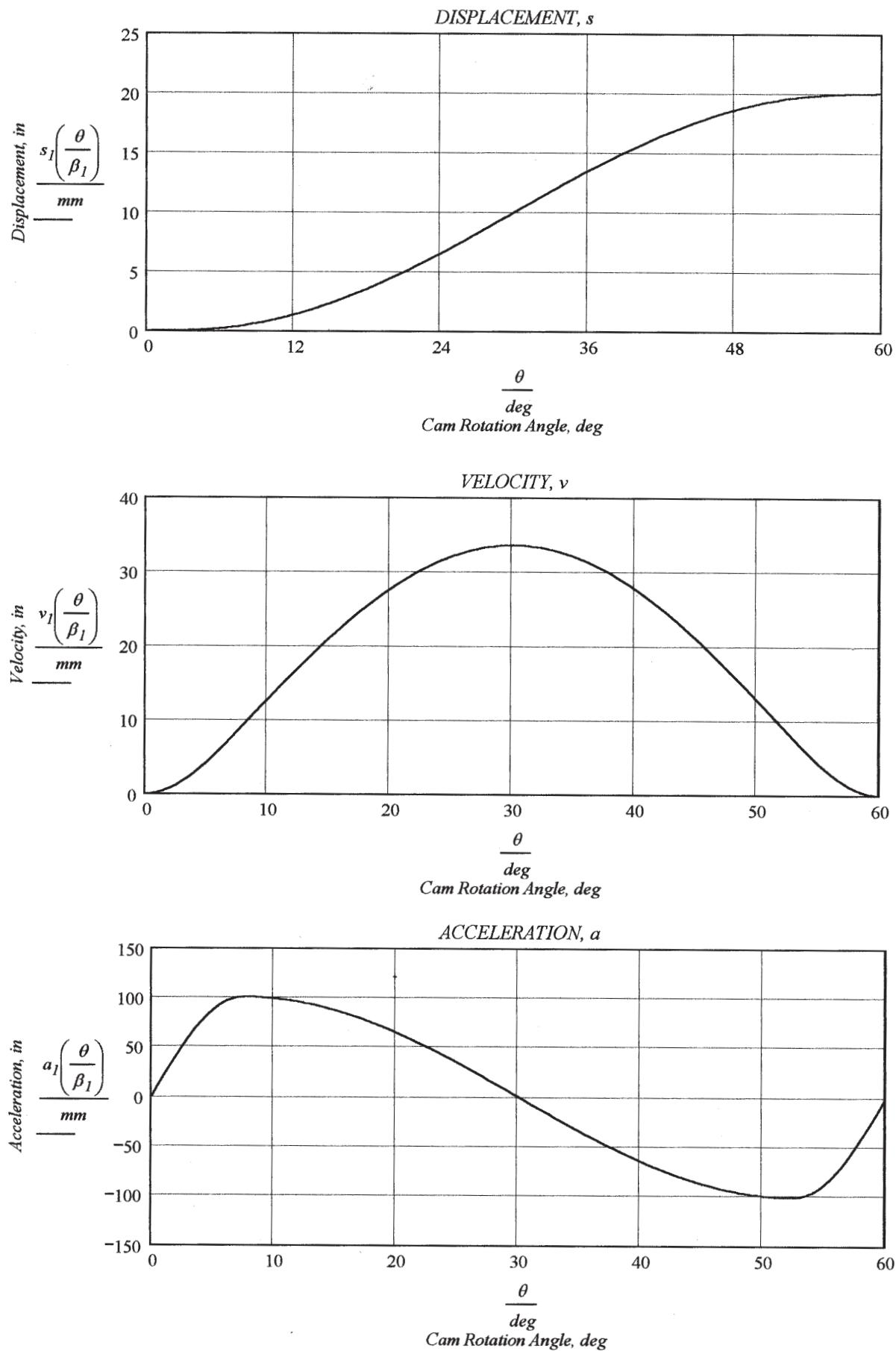
4. The above equations can be used for a rise or fall by using the proper values of θ , β , and h . To plot the *SVAJ* curves, first define a range function that has a value of one between the values of a and b and zero elsewhere.

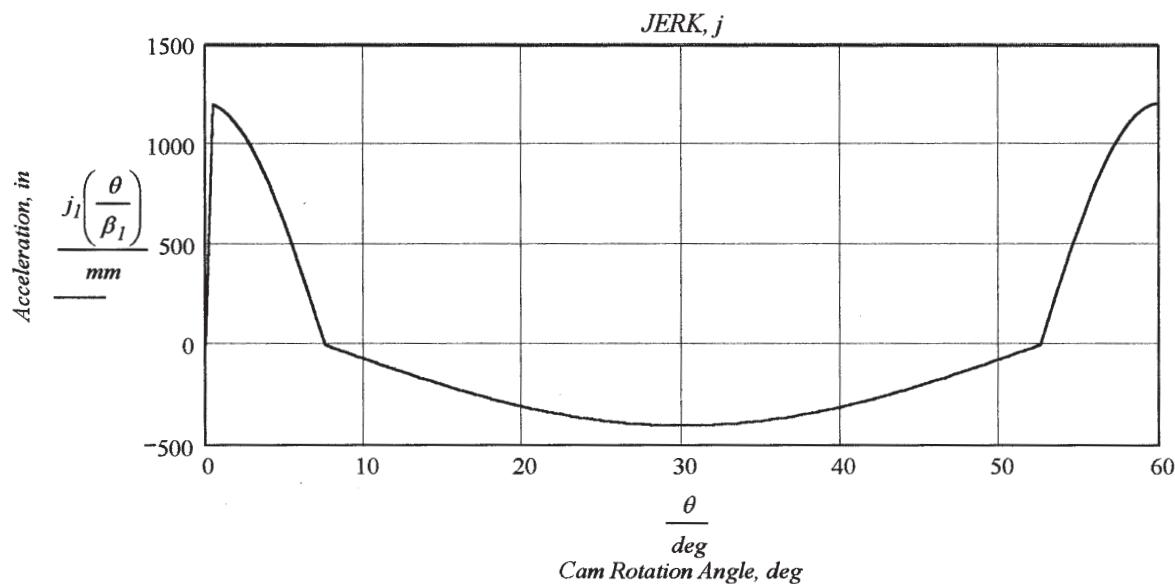
$$R(x, x1, x2) := \text{if}[(x > x1) \wedge (x \leq x2), 1, 0]$$

5. The global *SVAJ* equations are composed of four intervals (rise, dwell, fall, and dwell). The local equations above must be assembled into a single equation each for S , V , A , and J that applies over the range $0 \leq \theta \leq 360$ deg.

6. Write the local *svaj* equations for the first interval, $0 \leq \theta \leq \beta_1$. Note that each subinterval function is multiplied by the range function so that it will have nonzero values only over its subinterval.

For $0 \leq \theta \leq \beta_1$ (Rise)


$$s_I(x) := h_I \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y_I(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y_3(x) \dots + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y_5(x) \right)$$


$$v_I(x) := \frac{h_I}{\beta_I} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'_I(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'_3(x) \dots + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'_5(x) \right)$$

$$a_I(x) := \frac{h_I}{\beta_I^2} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y''_I(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y''_3(x) \dots + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y''_5(x) \right)$$

$$j_I(x) := \frac{h_I}{\beta_I^3} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'''_I(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'''_3(x) \dots + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'''_5(x) \right)$$

5. Plot the displacement, velocity, acceleration, and jerk functions over the lift interval: $\theta := 0 \cdot \text{deg}, 0.5 \cdot \text{deg..} \beta_1$

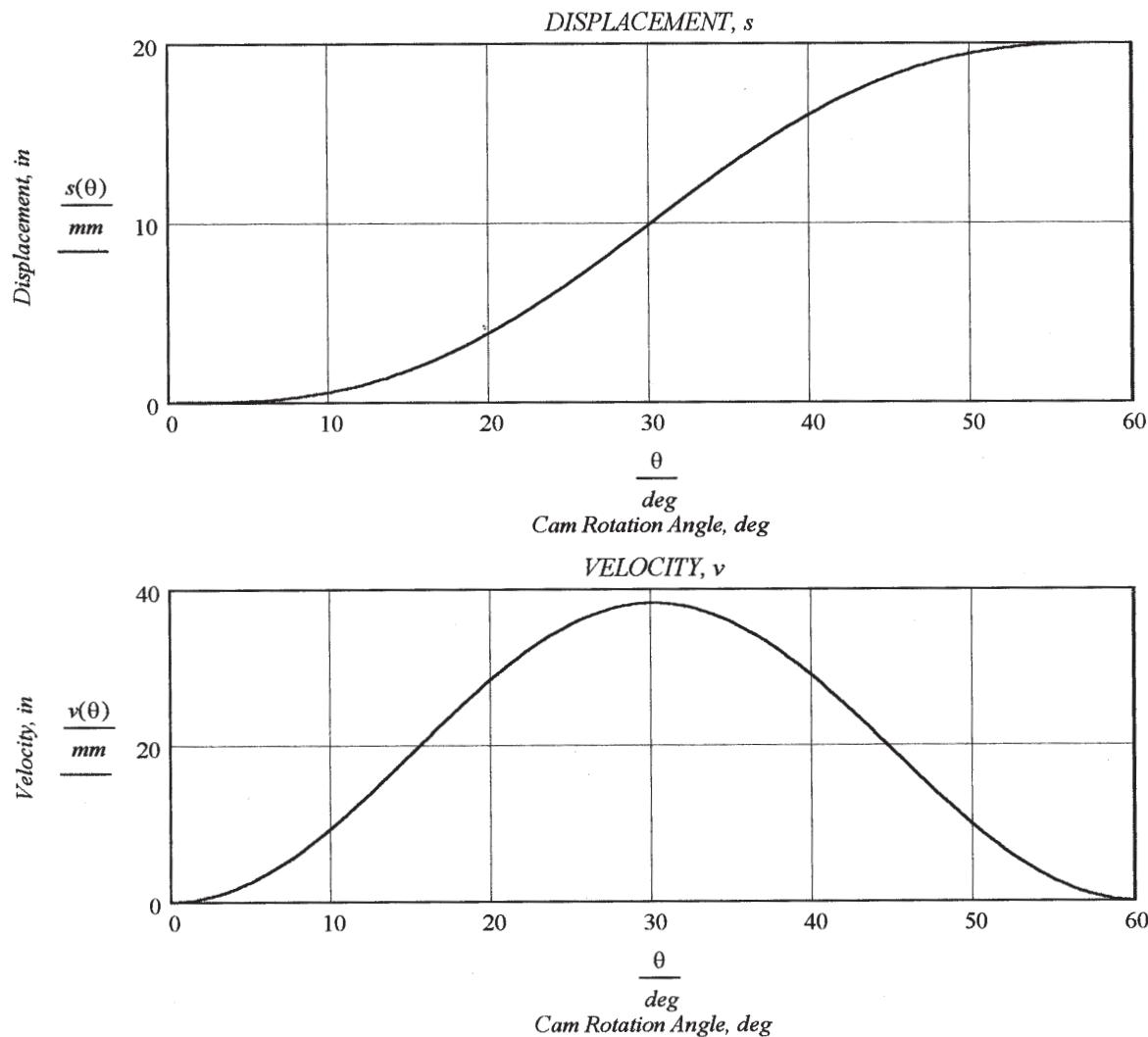
PROBLEM 8-23

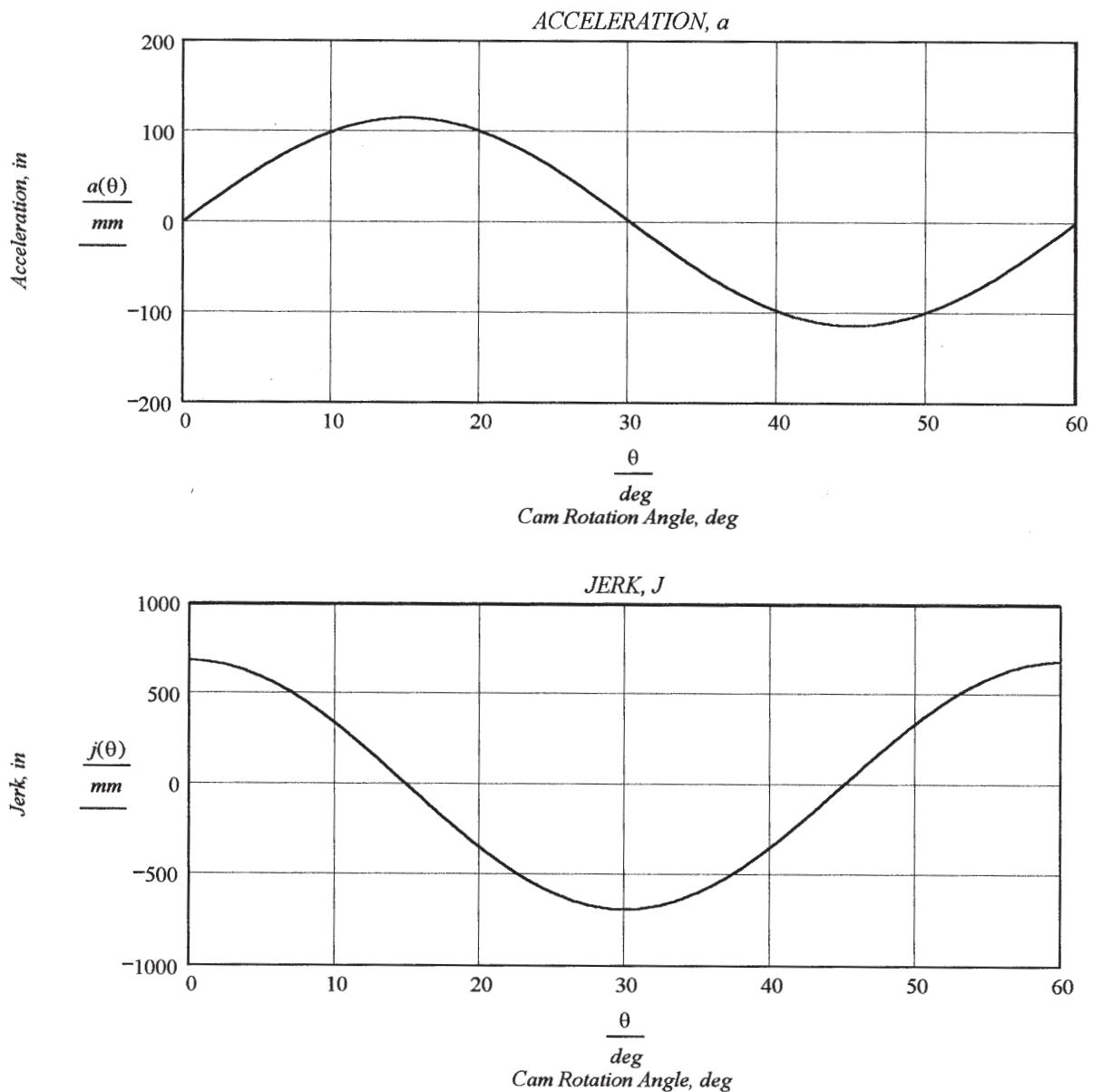
Statement: Write a computer program or use an equation solver such as Mathcad or TKSolver to calculate and plot the s v a j diagrams for a cycloidal displacement cam function for any specified values of lift and duration. Test it using a lift of 20 mm over an interval of 60 deg at 1 rad/sec.

Enter:

$$\text{Lift: } h := 20 \text{ mm}$$

$$\text{Duration: } \beta := 60 \text{ deg}$$


Solution: See Mathcad file P0823.


1. Cycloidal motion is defined in local coordinates by equations 8.12. They are:

$$s(\theta) := h \cdot \left(\frac{\theta}{\beta} - \frac{1}{2 \cdot \pi} \cdot \sin\left(2 \cdot \pi \cdot \frac{\theta}{\beta}\right) \right) \quad v(\theta) := \frac{h}{\beta} \cdot \left(1 - \cos\left(2 \cdot \pi \cdot \frac{\theta}{\beta}\right) \right)$$

$$a(\theta) := 2 \cdot \pi \cdot \frac{h}{\beta^2} \cdot \sin\left(2 \cdot \pi \cdot \frac{\theta}{\beta}\right) \quad j(\theta) := 4 \cdot \pi^2 \cdot \frac{h}{\beta^3} \cdot \cos\left(2 \cdot \pi \cdot \frac{\theta}{\beta}\right)$$

2. Plot the displacement, velocity, acceleration, and jerk functions over the lift interval: $\theta := 0 \text{ deg}, 0.5 \text{ deg} .. \beta$

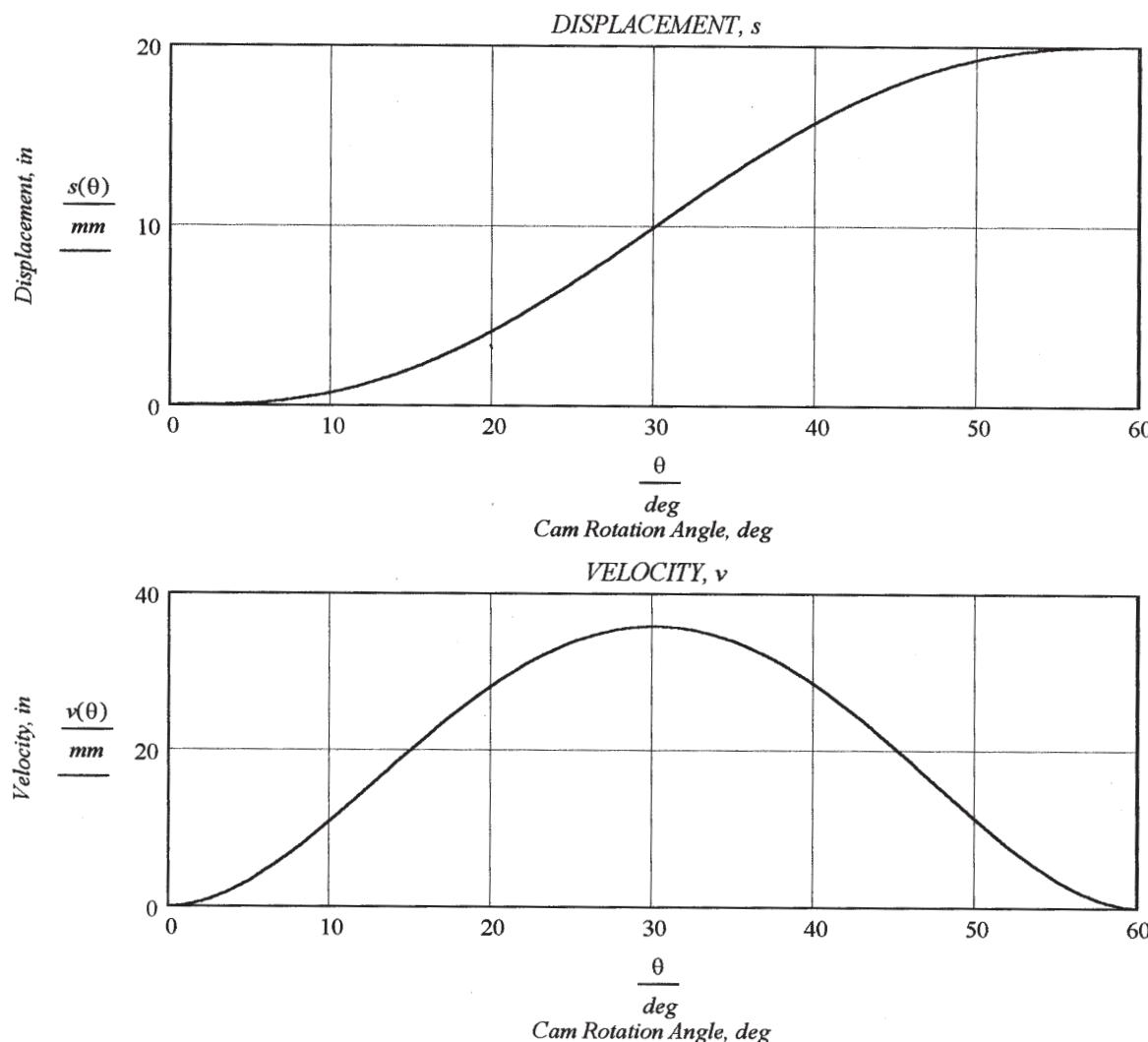
PROBLEM 8-24

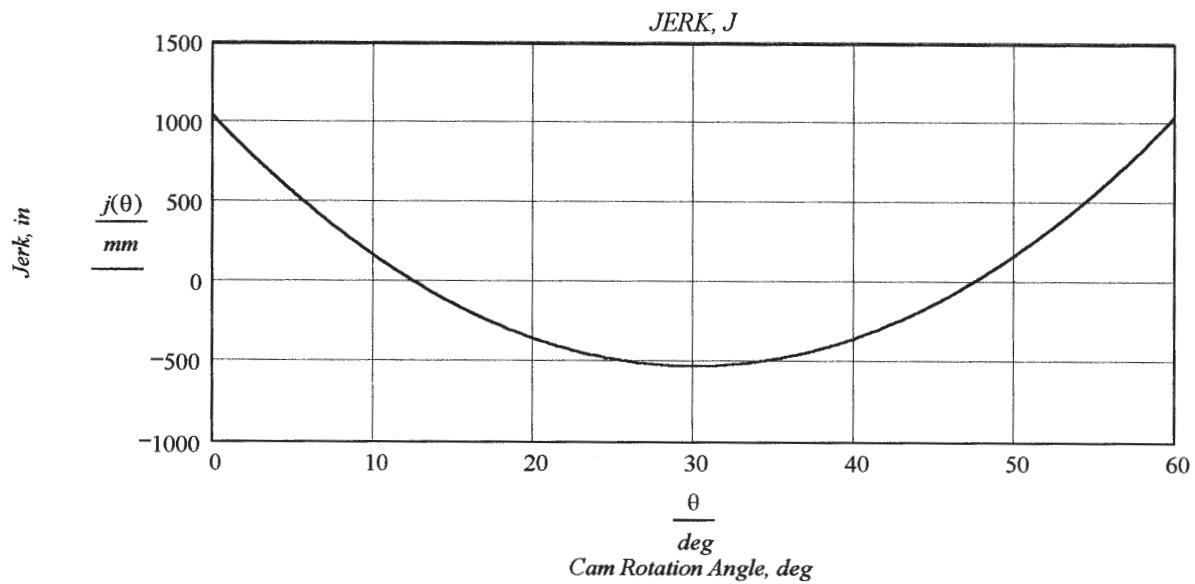
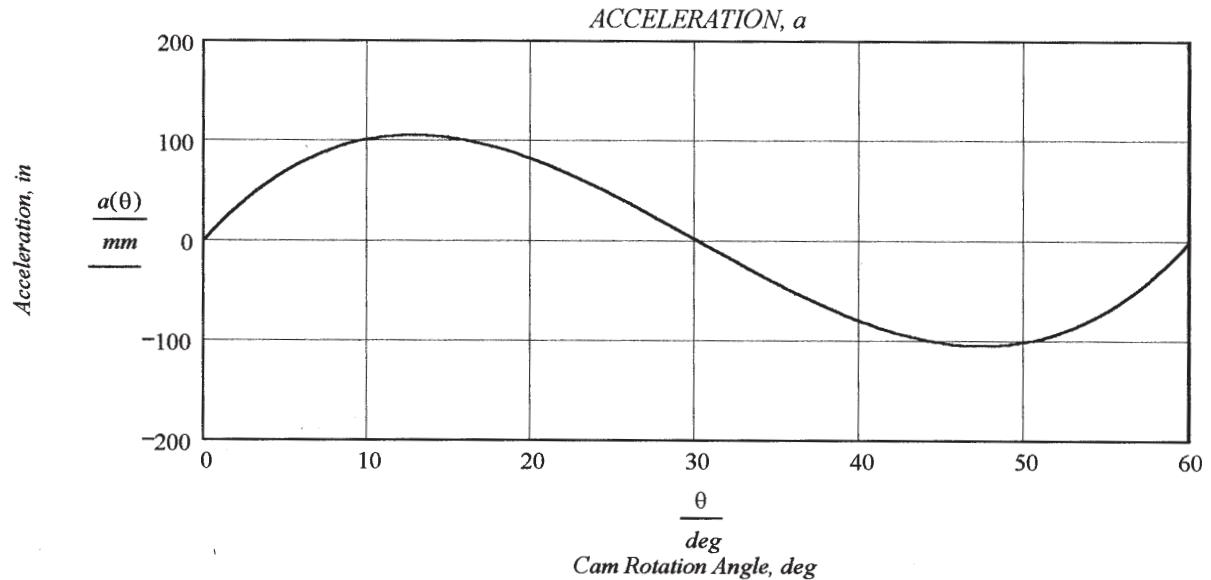
Cam design: Write a computer program or use an equation solver such as Mathcad or TK Solver to calculate and plot the s v a j diagrams for a 3-4-5 polynomial displacement cam function for any specified values of lift and duration. Test it using a lift of 20 mm over an interval of 60 deg at 1 rad/sec.

Statement: Write a computer program or use an equation solver such as Mathcad or TK Solver to calculate and plot the s v a j diagrams for a 3-4-5 polynomial displacement cam function for any specified values of lift and duration. Test it using a lift of 20 mm over an interval of 60 deg at 1 rad/sec.

Enter: Lift: $h := 20 \text{ mm}$

Duration: $\beta := 60 \text{ deg}$


Solution: See Mathcad file P0824.



1. The 3-4-5 polynomial is defined in local coordinates by equations 8.24. They are:

$$s(\theta) := h \cdot \left[10 \cdot \left(\frac{\theta}{\beta} \right)^3 - 15 \cdot \left(\frac{\theta}{\beta} \right)^4 + 6 \cdot \left(\frac{\theta}{\beta} \right)^5 \right] \quad v(\theta) := \frac{h}{\beta} \cdot \left[30 \cdot \left(\frac{\theta}{\beta} \right)^2 - 60 \cdot \left(\frac{\theta}{\beta} \right)^3 + 30 \cdot \left(\frac{\theta}{\beta} \right)^4 \right]$$

$$a(\theta) := \frac{h}{\beta^2} \cdot \left[60 \cdot \left(\frac{\theta}{\beta} \right) - 180 \cdot \left(\frac{\theta}{\beta} \right)^2 + 120 \cdot \left(\frac{\theta}{\beta} \right)^3 \right] \quad j(\theta) := \frac{h}{\beta^3} \cdot \left[60 - 360 \cdot \left(\frac{\theta}{\beta} \right) + 360 \cdot \left(\frac{\theta}{\beta} \right)^2 \right]$$

2. Plot the displacement, velocity, acceleration, and jerk functions over the lift interval: $\theta := 0 \text{ deg}, 0.5 \text{ deg} .. \beta$

PROBLEM 8-25

Cam design: Write a computer program or use an equation solver such as Mathcad or TK Solver to calculate and plot the s v a j diagrams for a 4-5-6-7 polynomial displacement cam function for any specified values of lift and duration. Test it using a lift of 20 mm over an interval of 60 deg at 1 rad/sec.

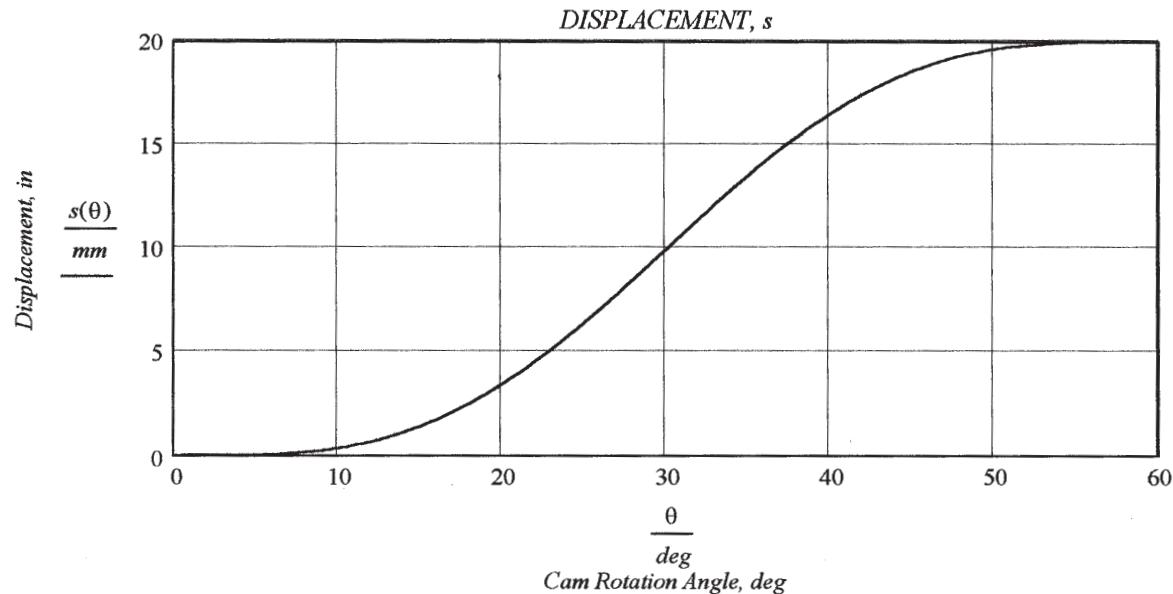
Statement: Write a computer program or use an equation solver such as Mathcad or TK Solver to calculate and plot the s v a j diagrams for a 4-5-6-7 polynomial displacement cam function for any specified values of lift and duration. Test it using a lift of 20 mm over an interval of 60 deg at 1 rad/sec.

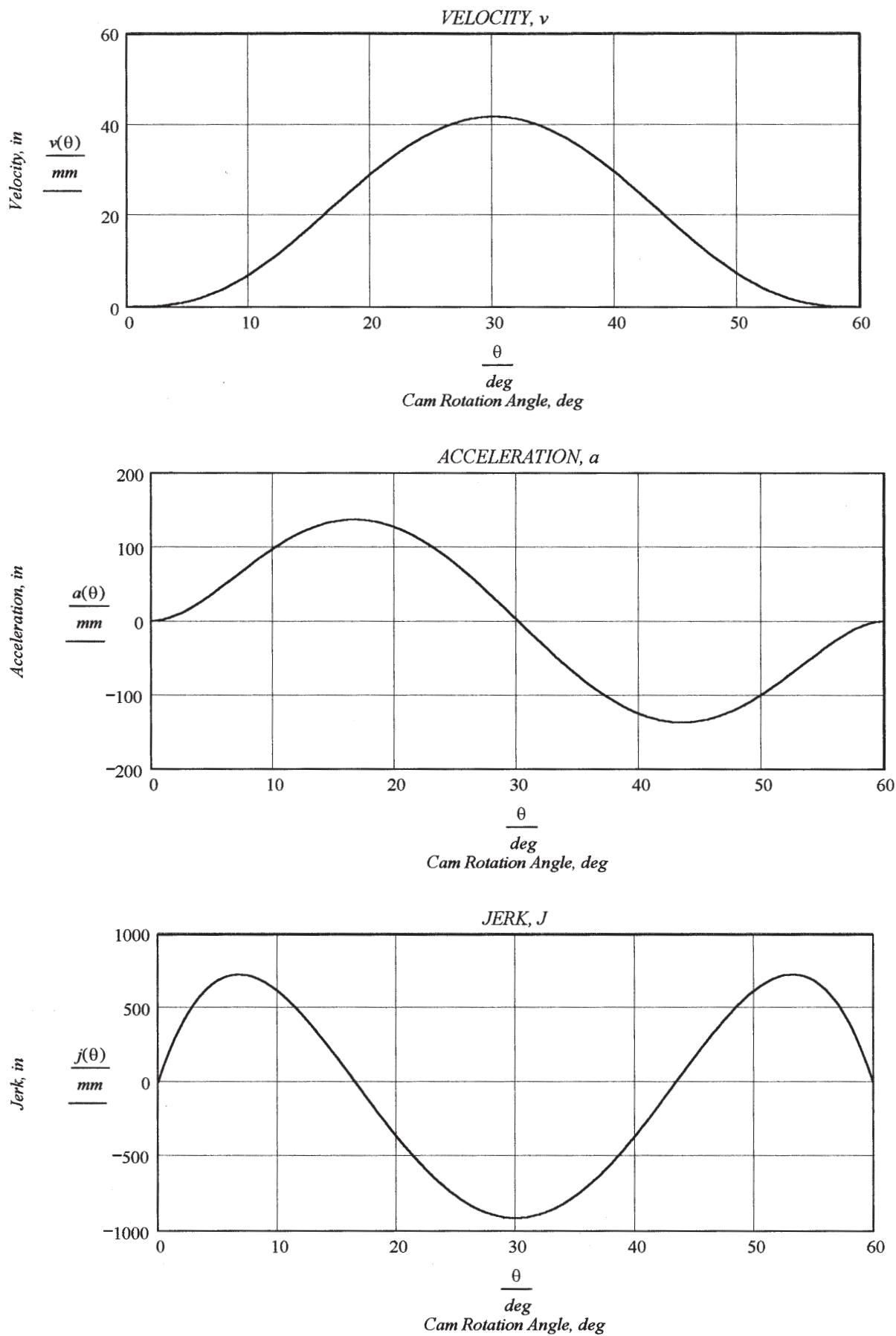
Enter: Lift: $h := 20 \text{ mm}$

Duration: $\beta := 60 \text{ deg}$

Solution: See Mathcad file P0825.

1. The 4-5-6-7 polynomial is defined in local coordinates by equation 8.25. Differentiate it to get v , a , and j .


$$s(\theta) := h \cdot \left[35 \left(\frac{\theta}{\beta} \right)^4 - 84 \left(\frac{\theta}{\beta} \right)^5 + 70 \left(\frac{\theta}{\beta} \right)^6 - 20 \left(\frac{\theta}{\beta} \right)^7 \right]$$


$$v(\theta) := \frac{h}{\beta} \cdot \left[140 \left(\frac{\theta}{\beta} \right)^3 - 420 \left(\frac{\theta}{\beta} \right)^4 + 420 \left(\frac{\theta}{\beta} \right)^5 - 140 \left(\frac{\theta}{\beta} \right)^6 \right]$$

$$a(\theta) := \frac{h}{\beta^2} \cdot \left[420 \left(\frac{\theta}{\beta} \right)^2 - 1680 \left(\frac{\theta}{\beta} \right)^3 + 2100 \left(\frac{\theta}{\beta} \right)^4 - 840 \left(\frac{\theta}{\beta} \right)^5 \right]$$

$$j(\theta) := \frac{h}{\beta^3} \cdot \left[840 \left(\frac{\theta}{\beta} \right) - 5040 \left(\frac{\theta}{\beta} \right)^2 + 8400 \left(\frac{\theta}{\beta} \right)^3 - 4200 \left(\frac{\theta}{\beta} \right)^4 \right]$$

2. Plot the displacement, velocity, acceleration, and jerk functions over the lift interval: $\theta := 0 \text{ deg}, 0.5 \text{ deg} .. \beta$

PROBLEM 8-26

Cam Design: Write a computer program or use an equation solver such as Mathcad or TKSolver to calculate and plot the s v a j diagrams for a simple harmonic displacement cam function for any specified values of lift and duration. Test it using a lift of 20 mm over an interval of 60 deg at 1 rad/sec.

Statement:
Enter:

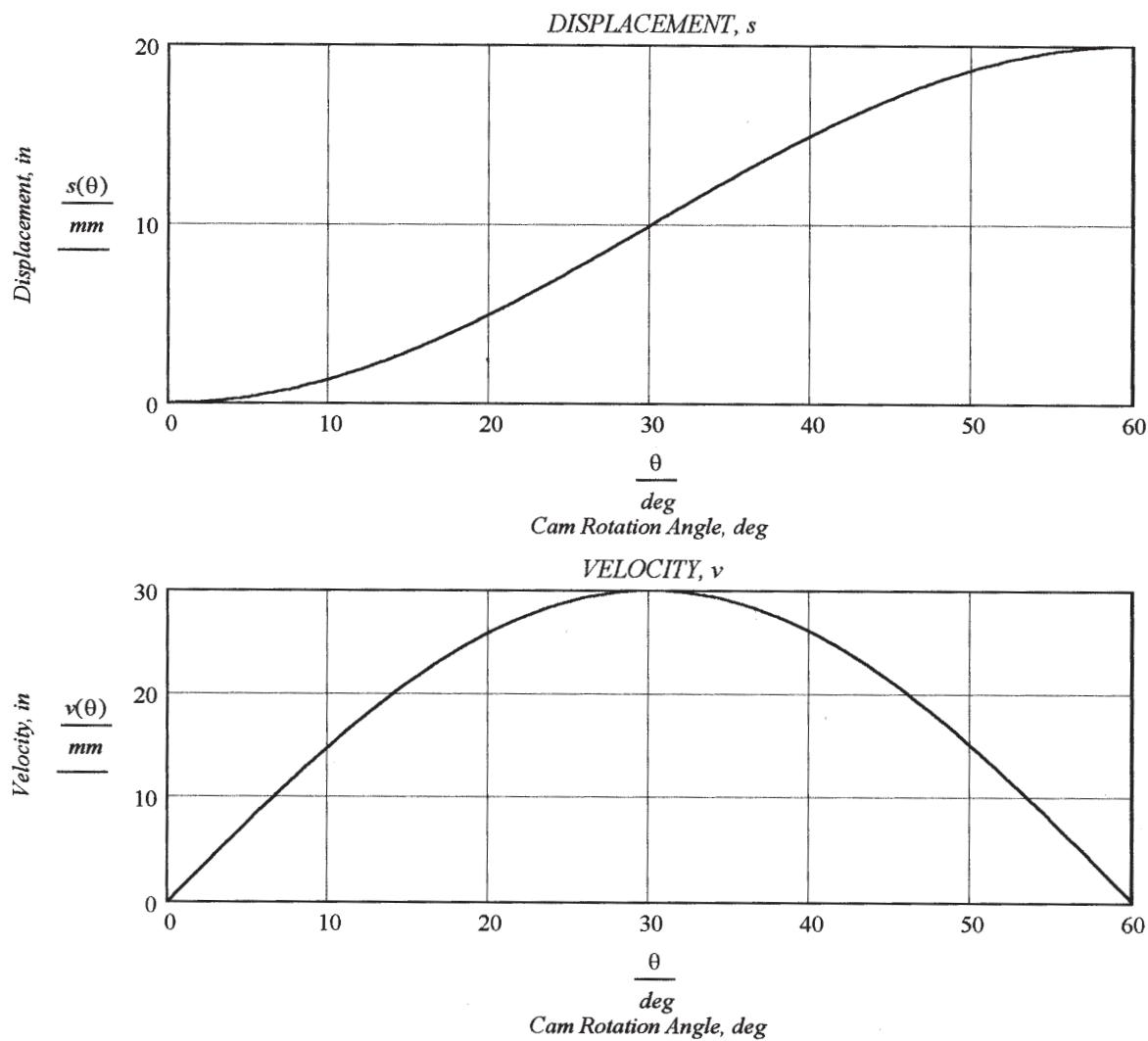
Write a computer program or use an equation solver such as Mathcad or TKSolver to calculate and plot the s v a j diagrams for a simple harmonic displacement cam function for any specified values of lift and duration. Test it using a lift of 20 mm over an interval of 60 deg at 1 rad/sec.

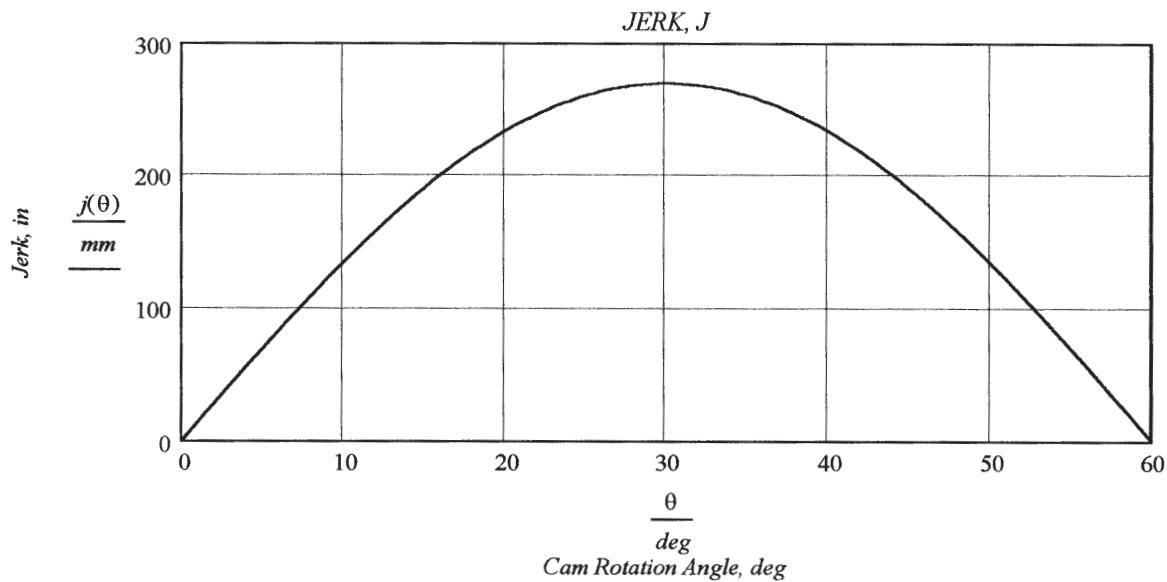
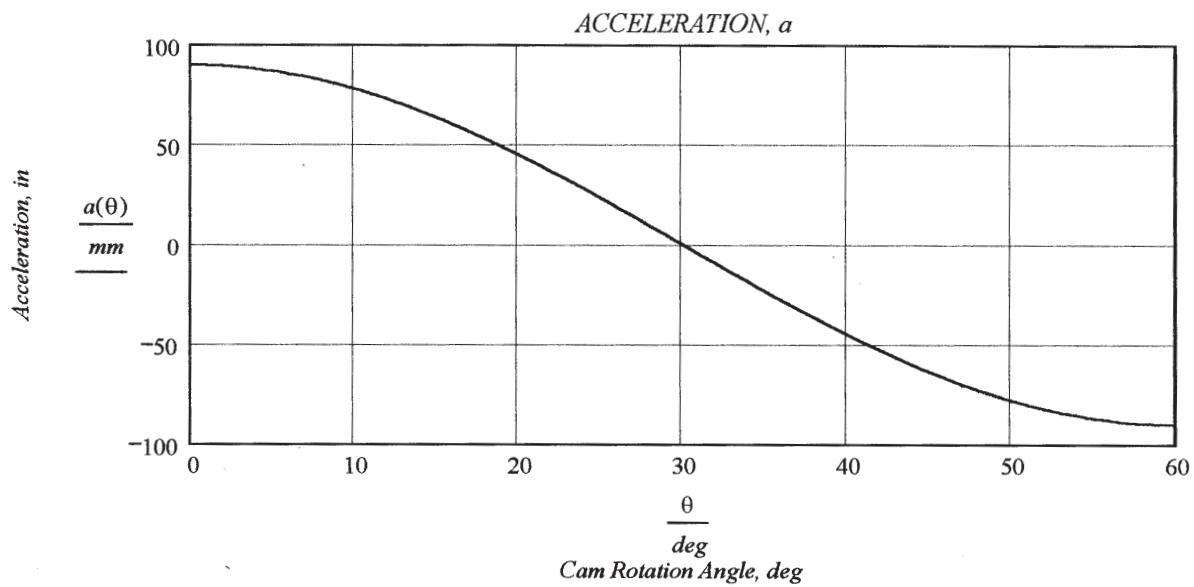
Lift: $h := 20 \text{ mm}$

Duration: $\beta := 60 \text{ deg}$

Solution: See Mathcad file P0826.

1. The simple harmonic motion (SHM) is defined in local coordinates by equations 8.6. They are:


$$s(\theta) := \frac{h}{2} \left(1 - \cos\left(\pi \cdot \frac{\theta}{\beta}\right) \right)$$



$$v(\theta) := \frac{\pi}{\beta} \cdot \frac{h}{2} \cdot \sin\left(\pi \cdot \frac{\theta}{\beta}\right)$$

$$a(\theta) := \frac{\pi^2}{\beta^2} \cdot \frac{h}{2} \cdot \cos\left(\pi \cdot \frac{\theta}{\beta}\right)$$

$$j(\theta) := \frac{\pi^3}{\beta^3} \cdot \frac{h}{2} \cdot \sin\left(\pi \cdot \frac{\theta}{\beta}\right)$$

2. Plot the displacement, velocity, acceleration, and jerk functions over the lift interval: $\theta := 0 \text{ deg}, 0.5 \text{ deg} .. \beta$

 PROBLEM 8-27

Statement: Write a computer program or use an equation solver such as Mathcad or TKSolver to calculate and plot the pressure angle and radius of curvature for a modified trapezoidal acceleration cam function for any specified values of lift and duration. Test it using a lift of 20 mm over an interval of 60 deg at 1 rad/sec, and determine the prime circle radius needed to obtain a maximum pressure angle of 20 deg. What is the minimum diameter roller follower needed to avoid undercutting with these data?

Enter: Lift: $h_I := 20 \text{ mm}$ Eccentricity $\varepsilon := 4 \text{ mm}$
 Duration: $\beta_I := 60 \cdot \text{deg}$ Prime circle radius $R_p := 50 \text{ mm}$

Solution: See Mathcad file P0827.

1. Enter values for lift and duration above.
2. The numerical constants in these SCCA for the modified trapezoidal equations are given in Table 8-2.

$$\begin{aligned} b &:= 0.25 & c &:= 0.50 & d &:= 0.25 \\ C_v &:= 2.0000 & C_a &:= 4.8881 & C_j &:= 61.426 \end{aligned}$$

3. The SCCA equations for the rise or fall interval (β) are divided into 5 subintervals. These are:

for $0 \leq x \leq b/2$ where, for these equations, x is a local coordinate that ranges from 0 to 1,

$$\begin{aligned} y_I(x) &:= C_a \left[x \cdot \frac{b}{\pi} - \left(\frac{b}{\pi} \right)^2 \cdot \sin \left(\frac{\pi}{b} \cdot x \right) \right] & y'_I(x) &:= C_a \cdot \frac{b}{\pi} \cdot \left(1 - \cos \left(\frac{\pi}{b} \cdot x \right) \right) \\ y''_I(x) &:= C_a \cdot \sin \left(\frac{\pi}{b} \cdot x \right) & y'''_I(x) &:= C_a \cdot \frac{\pi}{b} \cdot \cos \left(\frac{\pi}{b} \cdot x \right) \end{aligned}$$

for $b/2 \leq x \leq (1 - d)/2$

$$\begin{aligned} y_2(x) &:= C_a \left[\frac{x^2}{2} + b \cdot \left(\frac{1}{\pi} - \frac{1}{2} \right) \cdot x + b^2 \cdot \left(\frac{1}{8} - \frac{1}{\pi^2} \right) \right] & y'_2(x) &:= C_a \left[x + b \cdot \left(\frac{1}{\pi} - \frac{1}{2} \right) \right] \\ y''_2(x) &:= C_a & y'''_2(x) &:= 0 \end{aligned}$$

for $(1 - d)/2 \leq x \leq (1 + d)/2$

$$\begin{aligned} y_3(x) &:= C_a \left[\left(\frac{b}{\pi} + \frac{c}{2} \right) \cdot x + \left(\frac{d}{\pi} \right)^2 + b^2 \cdot \left(\frac{1}{8} - \frac{1}{\pi^2} \right) - \frac{(1-d)^2}{8} - \left(\frac{d}{\pi} \right)^2 \cdot \cos \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right] \right] \\ y'_3(x) &:= C_a \left[\frac{b}{\pi} + \frac{c}{2} + \frac{d}{\pi} \cdot \sin \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right] \right] \\ y''_3(x) &:= C_a \cdot \cos \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right] & y'''_3(x) &:= -C_a \cdot \frac{\pi}{d} \cdot \sin \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right] \end{aligned}$$

for $(1 + d)/2 \leq x \leq 1 - b/2$

$$\begin{aligned} y_4(x) &:= C_a \left[-\frac{x^2}{2} + \left(\frac{b}{\pi} + 1 - \frac{b}{2} \right) \cdot x + (2 \cdot d^2 - b^2) \cdot \left(\frac{1}{\pi^2} - \frac{1}{8} \right) - \frac{1}{4} \right] \\ y'_4(x) &:= C_a \left(-x + \frac{b}{\pi} + 1 - \frac{b}{2} \right) & y''_4(x) &:= -C_a & y'''_4(x) &:= 0 \end{aligned}$$

for $1 - b/2 \leq x \leq 1$

$$y_5(x) := C_a \cdot \left[\frac{b}{\pi} \cdot x + \frac{2 \cdot (d^2 - b^2)}{\pi^2} + \frac{(1-b)^2 - d^2}{4} - \left(\frac{b}{\pi} \right)^2 \cdot \sin \left[\frac{\pi}{b} \cdot (x-1) \right] \right]$$

$$y'_5(x) := C_a \cdot \frac{b}{\pi} \cdot \left[1 - \cos \left[\frac{\pi}{b} \cdot (x-1) \right] \right]$$

$$y''_5(x) := C_a \cdot \sin \left[\frac{\pi}{b} \cdot (x-1) \right]$$

$$y'''_5(x) := C_a \cdot \frac{\pi}{b} \cdot \cos \left[\frac{\pi}{b} \cdot (x-1) \right]$$

4. The above equations can be used for a rise or fall by using the proper values of θ , β , and h . To plot the *SVAJ* curves, first define a range function that has a value of one between the values of a and b and zero elsewhere.

$$R(x, x1, x2) := if[(x > x1) \wedge (x \leq x2), 1, 0]$$

5. The global *SVAJ* equations are composed of four intervals (rise, dwell, fall, and dwell). The local equations above must be assembled into a single equation each for S , V , A , and J that applies over the range $0 \leq \theta \leq 360$ deg.

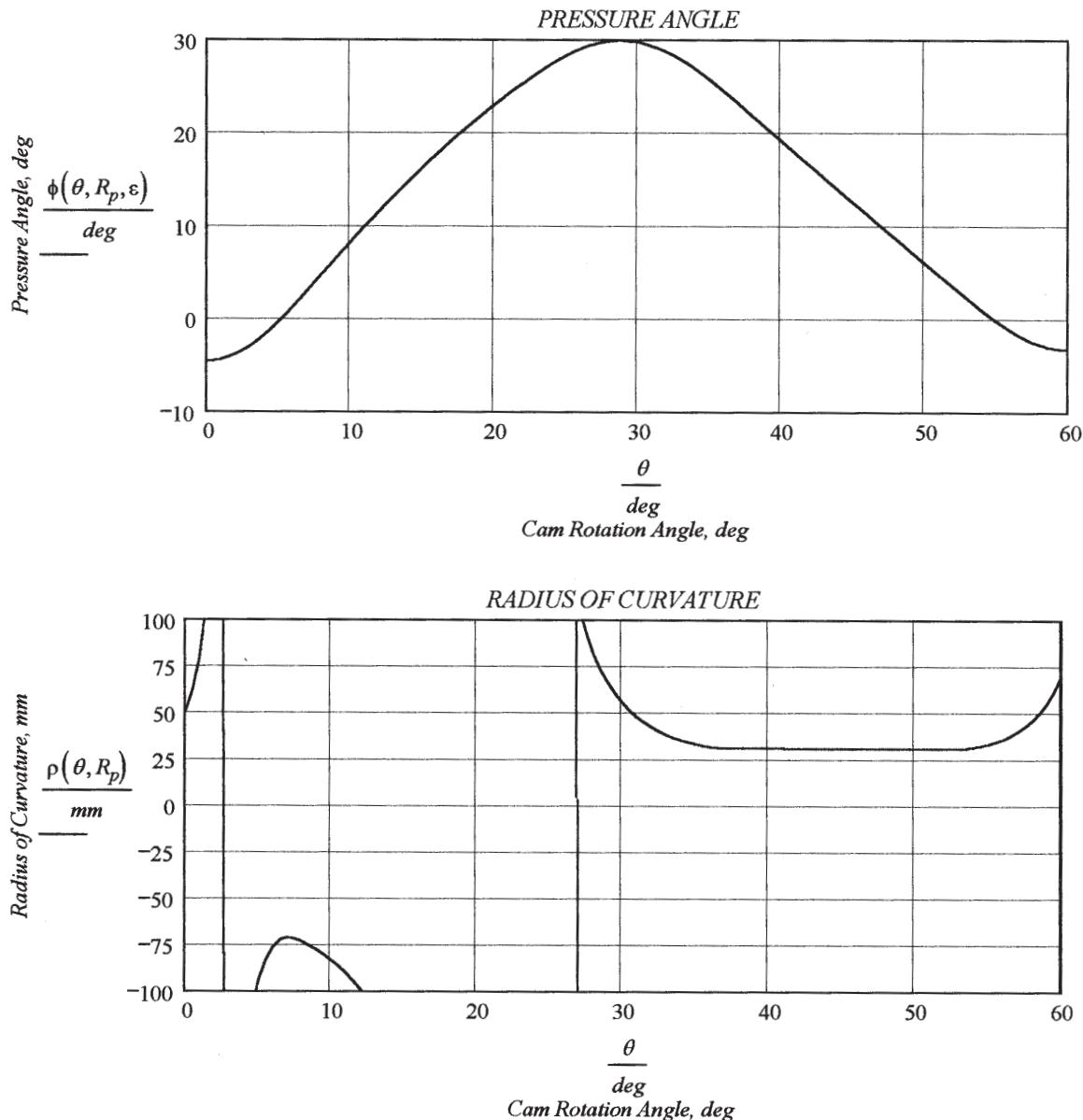
6. Write the local *svaj* equations for the first interval, $0 \leq \theta \leq \beta_1$. Note that each subinterval function is multiplied by the range function so that it will have nonzero values only over its subinterval.

For $0 \leq \theta \leq \beta_1$ (Rise)

$$s_I(x) := h_I \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y_I(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y_5(x) \right)$$

$$v_I(x) := \frac{h_I}{\beta_I} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'_I(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'_5(x) \right)$$

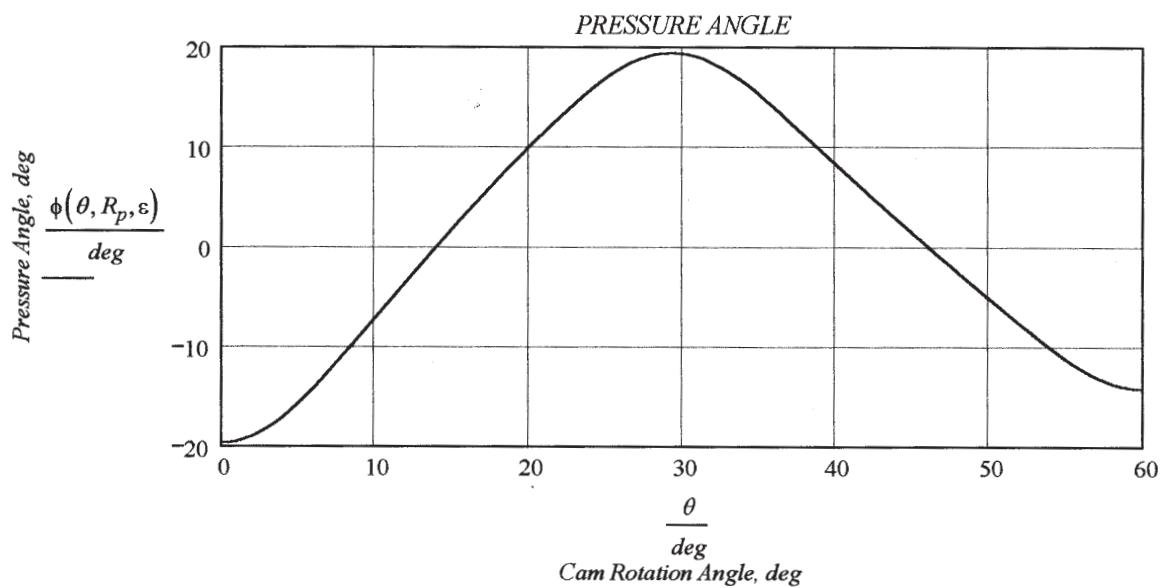
$$a_I(x) := \frac{h_I}{\beta_I^2} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y''_I(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y''_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y''_5(x) \right)$$


$$j_I(x) := \frac{h_I}{\beta_I^3} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'''_I(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'''_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'''_5(x) \right)$$

5. Using equations 8.31d and 8.33, write the pressure angle and radius of curvature functions.

$$\phi(\theta, R_p, \varepsilon) := \text{atan} \left(\frac{v_I \left(\frac{\theta}{\beta_I} \right) - \varepsilon}{s_I \left(\frac{\theta}{\beta_I} \right) + \sqrt{R_p^2 - \varepsilon^2}} \right)$$

$$\rho(\theta, R_p) := \frac{\left[\left(R_p + s_I \left(\frac{\theta}{\beta_1} \right) \right)^2 + v_I \left(\frac{\theta}{\beta_1} \right)^2 \right]^{\frac{3}{2}}}{\left(R_p + s_I \left(\frac{\theta}{\beta_1} \right) \right)^2 + 2 \cdot v_I \left(\frac{\theta}{\beta_1} \right)^2 - a_I \left(\frac{\theta}{\beta_1} \right) \cdot \left(R_p + s_I \left(\frac{\theta}{\beta_1} \right) \right)}$$


6. Plot the pressure angle and radius of curvature functions over the lift interval: $\theta := 0 \cdot \text{deg}, 0.5 \cdot \text{deg..} \beta_1$

7. The graphs above show the pressure angle and radius of curvature for the values of R_p and ϵ entered on the first page. These values will be iterated below to obtain a balanced pressure angle whose absolute value is not greater than 20 deg.

$$R_p := 52 \cdot \text{mm}$$

$$\epsilon := 17.5 \cdot \text{mm}$$

8. From the graph of radius of curvature above, we see that the minimum value occurs at a cam angle of about 45 deg.

$$\rho_{min} := \rho(45 \cdot \text{deg}, R_p) \quad \rho_{min} = 32.123 \text{ mm}$$

Using a multiple of 3, the maximum roller follower radius is $R_f := \frac{\rho_{min}}{3}$ $R_f = 10.7 \text{ mm}$

 PROBLEM 8-28

Statement: Write a computer program or use an equation solver such as Mathcad or TK Solver to calculate and plot the pressure angle and radius of curvature for a modified sinusoidal acceleration cam function for any specified values of lift and duration. Test it using a lift of 20 mm over an interval of 60 deg at 1 rad/sec, and determine the prime circle radius needed to obtain a maximum pressure angle of 20 deg. What is the minimum diameter roller follower needed to avoid undercutting with these data?

Enter: Lift: $h_I := 20 \text{ mm}$ Eccentricity $\varepsilon := 4 \text{ mm}$
 Duration: $\beta_I := 60 \cdot \text{deg}$ Prime circle radius $R_p := 50 \cdot \text{mm}$

Solution: See Mathcad file P0828.

1. Enter values for lift and duration above.
2. The numerical constants in these SCCA for the modified sinusoidal equations are given in Table 8-2.

$$\begin{aligned} b &:= 0.25 & c &:= 0.00 & d &:= 0.75 \\ C_v &:= 1.7596 & C_a &:= 5.5280 & C_j &:= 69.466 \end{aligned}$$

3. The SCCA equations for the rise or fall interval (β) are divided into 5 subintervals. These are:

for $0 \leq x \leq b/2$ where, for these equations, x is a local coordinate that ranges from 0 to 1,

$$\begin{aligned} y_I(x) &:= C_a \cdot \left[x \cdot \frac{b}{\pi} - \left(\frac{b}{\pi} \right)^2 \cdot \sin \left(\frac{\pi}{b} \cdot x \right) \right] & y'_I(x) &:= C_a \cdot \frac{b}{\pi} \cdot \left(1 - \cos \left(\frac{\pi}{b} \cdot x \right) \right) \\ y''_I(x) &:= C_a \cdot \sin \left(\frac{\pi}{b} \cdot x \right) & y'''_I(x) &:= C_a \cdot \frac{\pi}{b} \cdot \cos \left(\frac{\pi}{b} \cdot x \right) \end{aligned}$$

for $b/2 \leq x \leq (1 - d)/2$

$$\begin{aligned} y_2(x) &:= C_a \cdot \left[\frac{x^2}{2} + b \cdot \left(\frac{1}{\pi} - \frac{1}{2} \right) \cdot x + b^2 \cdot \left(\frac{1}{8} - \frac{1}{\pi^2} \right) \right] & y'_2(x) &:= C_a \cdot \left[x + b \cdot \left(\frac{1}{\pi} - \frac{1}{2} \right) \right] \\ y''_2(x) &:= C_a & y'''_2(x) &:= 0 \end{aligned}$$

for $(1 - d)/2 \leq x \leq (1 + d)/2$

$$\begin{aligned} y_3(x) &:= C_a \cdot \left[\left(\frac{b}{\pi} + \frac{c}{2} \right) \cdot x + \left(\frac{d}{\pi} \right)^2 + b^2 \cdot \left(\frac{1}{8} - \frac{1}{\pi^2} \right) - \frac{(1-d)^2}{8} - \left(\frac{d}{\pi} \right)^2 \cdot \cos \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right] \right] \\ y'_3(x) &:= C_a \cdot \left[\frac{b}{\pi} + \frac{c}{2} + \frac{d}{\pi} \cdot \sin \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right] \right] \\ y''_3(x) &:= C_a \cdot \cos \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right] & y'''_3(x) &:= -C_a \cdot \frac{\pi}{d} \cdot \sin \left[\frac{\pi}{d} \cdot \left(x - \frac{1-d}{2} \right) \right] \end{aligned}$$

for $(1 + d)/2 \leq x \leq 1 - b/2$

$$\begin{aligned} y_4(x) &:= C_a \cdot \left[-\frac{x^2}{2} + \left(\frac{b}{\pi} + 1 - \frac{b}{2} \right) \cdot x + \left(2 \cdot d^2 - b^2 \right) \cdot \left(\frac{1}{\pi^2} - \frac{1}{8} \right) - \frac{1}{4} \right] \\ y'_4(x) &:= C_a \cdot \left[-x + \frac{b}{\pi} + 1 - \frac{b}{2} \right] & y''_4(x) &:= -C_a & y'''_4(x) &:= 0 \end{aligned}$$

for $1 - b/2 \leq x \leq 1$

$$y_5(x) := C_a \left[\frac{b}{\pi} \cdot x + \frac{2 \cdot (d^2 - b^2)}{\pi^2} + \frac{(1-b)^2 - d^2}{4} - \left(\frac{b}{\pi} \right)^2 \cdot \sin \left[\frac{\pi}{b} \cdot (x-1) \right] \right]$$

$$y'_5(x) := C_a \frac{b}{\pi} \left[1 - \cos \left[\frac{\pi}{b} \cdot (x-1) \right] \right]$$

$$y''_5(x) := C_a \cdot \sin \left[\frac{\pi}{b} \cdot (x-1) \right]$$

$$y'''_5(x) := C_a \cdot \frac{\pi}{b} \cdot \cos \left[\frac{\pi}{b} \cdot (x-1) \right]$$

4. The above equations can be used for a rise or fall by using the proper values of θ , β , and h . To plot the *SVAJ* curves, first define a range function that has a value of one between the values of a and b and zero elsewhere.

$$R(x, x1, x2) := \text{if}[(x > x1) \wedge (x \leq x2), 1, 0]$$

5. The global *SVAJ* equations are composed of four intervals (rise, dwell, fall, and dwell). The local equations above must be assembled into a single equation each for *S*, *V*, *A*, and *J* that applies over the range $0 \leq \theta \leq 360$ deg.

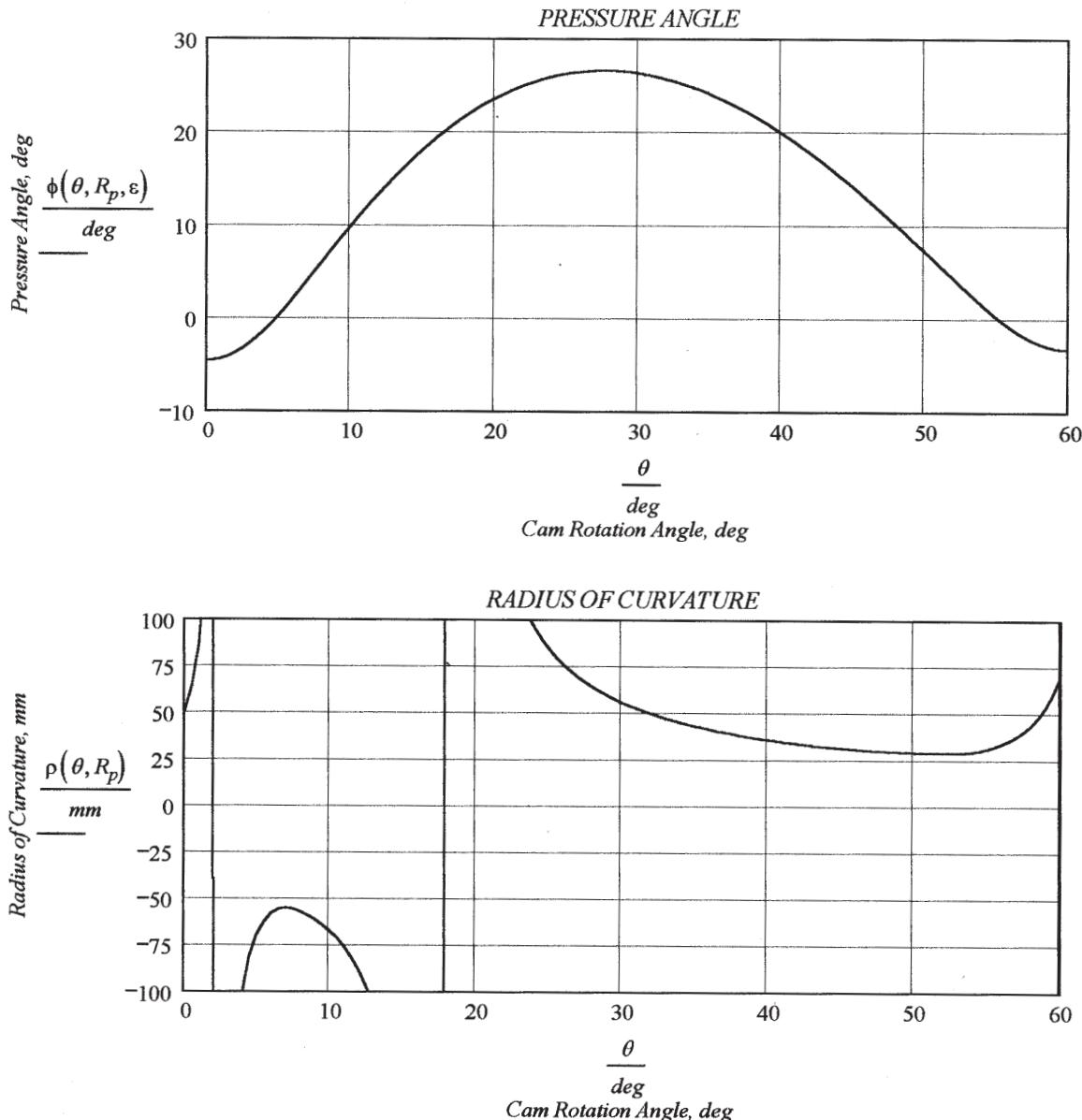
6. Write the local *svaj* equations for the first interval, $0 \leq \theta \leq \beta_1$. Note that each subinterval function is multiplied by the range function so that it will have nonzero values only over its subinterval.

For $0 \leq \theta \leq \beta_1$ (Rise)

$$s_I(x) := h_I \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y_I(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y_5(x) \right)$$

$$v_I(x) := \frac{h_I}{\beta_I} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'_I(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'_5(x) \right)$$

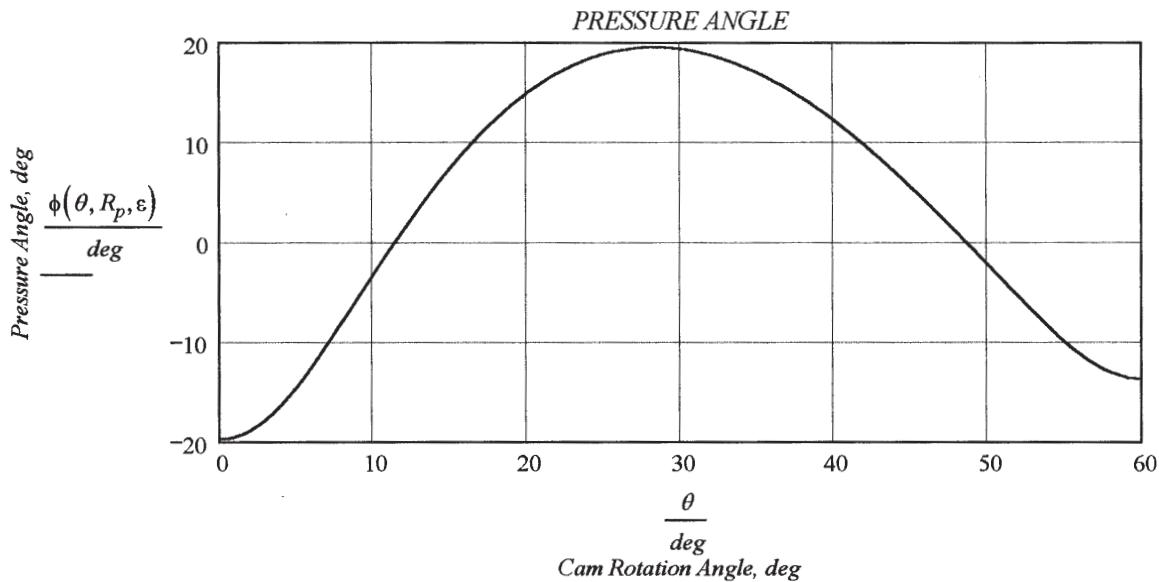
$$a_I(x) := \frac{h_I}{\beta_I^2} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y''_I(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y''_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y''_5(x) \right)$$


$$j_I(x) := \frac{h_I}{\beta_I^3} \cdot \left(R\left(x, 0, \frac{b}{2}\right) \cdot y'''_I(x) + R\left(x, \frac{b}{2}, \frac{1-d}{2}\right) \cdot y'''_2(x) + R\left(x, \frac{1-d}{2}, \frac{1+d}{2}\right) \cdot y'''_3(x) \dots \right. \\ \left. + R\left(x, \frac{1+d}{2}, 1 - \frac{b}{2}\right) \cdot y'''_4(x) + R\left(x, 1 - \frac{b}{2}, 1\right) \cdot y'''_5(x) \right)$$

5. Using equations 8.31d and 8.33, write the pressure angle and radius of curvature functions.

$$\phi(\theta, R_p, \varepsilon) := \text{atan} \left(\frac{v_I \left(\frac{\theta}{\beta_I} \right) - \varepsilon}{s_I \left(\frac{\theta}{\beta_I} \right) + \sqrt{R_p^2 - \varepsilon^2}} \right)$$

$$\rho(\theta, R_p) := \frac{\left[\left(R_p + s_I \left(\frac{\theta}{\beta_1} \right) \right)^2 + v_I \left(\frac{\theta}{\beta_1} \right)^2 \right]^{\frac{3}{2}}}{\left(R_p + s_I \left(\frac{\theta}{\beta_1} \right) \right)^2 + 2 \cdot v_I \left(\frac{\theta}{\beta_1} \right)^2 - a_I \left(\frac{\theta}{\beta_1} \right) \cdot \left(R_p + s_I \left(\frac{\theta}{\beta_1} \right) \right)}$$


6. Plot the pressure angle and radius of curvature functions over the lift interval: $\theta := 0 \cdot \text{deg}, 0.5 \cdot \text{deg..} \beta_1$

7. The graphs above show the pressure angle and radius of curvature for the values of R_p and ε entered on the first page. These values will be iterated below to obtain a balanced pressure angle whose absolute value is not greater than 20 deg.

$$R_p := 45 \cdot \text{mm}$$

$$\varepsilon := 15.2 \cdot \text{mm}$$

8. From the graph of radius of curvature above, we see that the minimum value occurs at a cam angle of about 52 deg.

$$\rho_{min} := \rho(52 \cdot \text{deg}, R_p) \quad \rho_{min} = 25.562 \text{ mm}$$

Using a multiple of 3, the maximum roller follower radius is $R_f := \frac{\rho_{min}}{3}$ $R_f = 8.5 \text{ mm}$

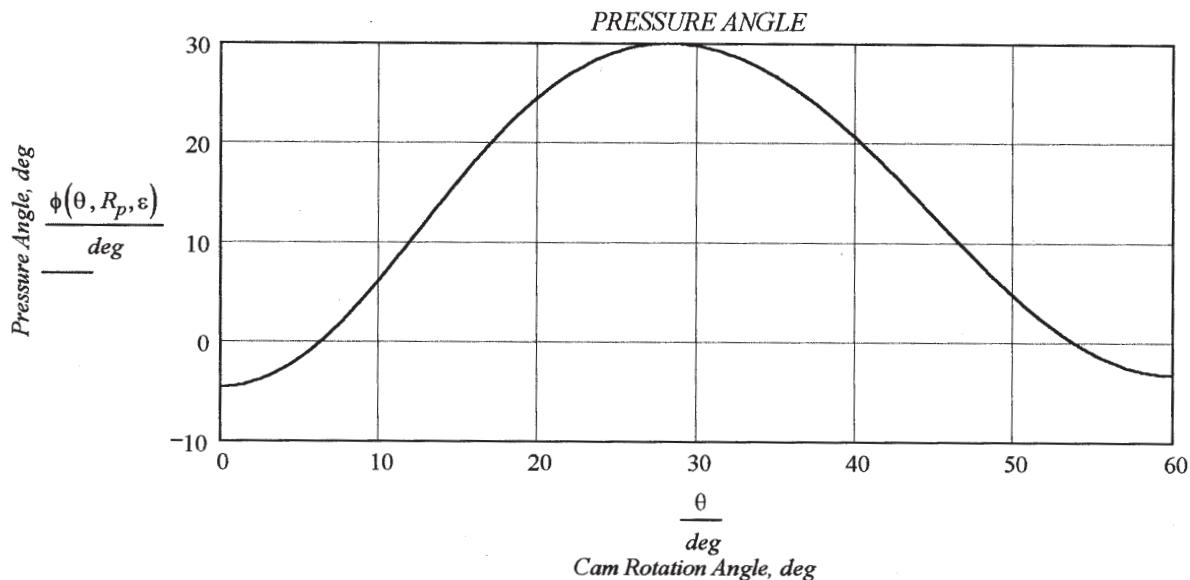
PROBLEM 8-29

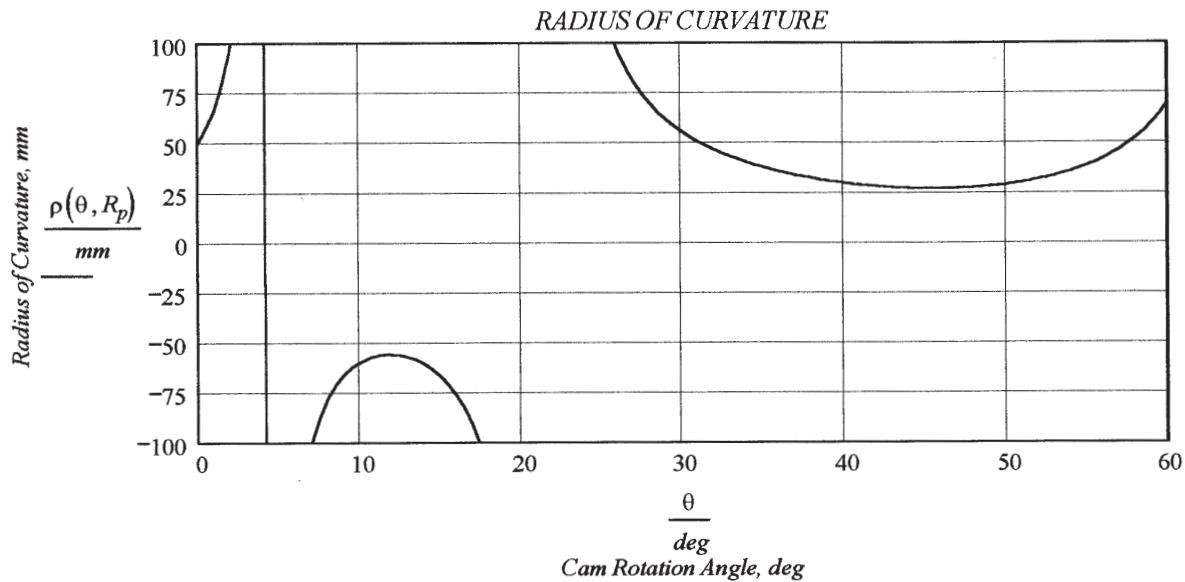
Statement: Write a computer program or use an equation solver such as Mathcad or TKSolver to calculate and plot the pressure angle and radius of curvature for a cycloidal displacement cam function for any specified values of lift, duration, eccentricity, and prime circle radius. Test it using a lift of 20 mm over an interval of 60 deg at 1 rad/sec, and determine the prime circle radius needed to obtain a maximum pressure angle of 20 deg. What is the minimum diameter roller follower needed to avoid undercutting with these data?

Enter:

$$\begin{array}{ll} \text{Lift: } & h := 20 \cdot \text{mm} \\ \text{Duration: } & \beta := 60 \cdot \text{deg} \end{array} \quad \begin{array}{ll} \text{Eccentricity} & \varepsilon := 4 \cdot \text{mm} \\ \text{Prime circle radius} & R_p := 50 \cdot \text{mm} \end{array}$$

Solution: See Mathcad file P0829.

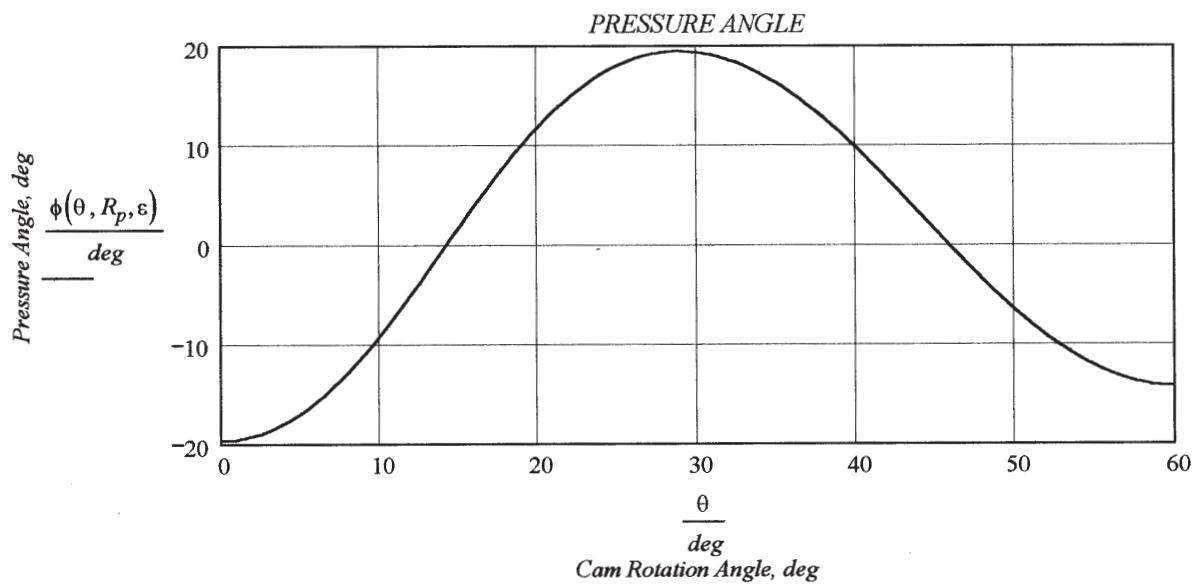

1. Cycloidal motion is defined in local coordinates by equations 8.12. They are:


$$\begin{array}{ll} s(\theta) := h \cdot \left(\frac{\theta}{\beta} - \frac{1}{2 \cdot \pi} \cdot \sin\left(2 \cdot \pi \cdot \frac{\theta}{\beta}\right) \right) & v(\theta) := \frac{h}{\beta} \cdot \left(1 - \cos\left(2 \cdot \pi \cdot \frac{\theta}{\beta}\right) \right) \\ a(\theta) := 2 \cdot \pi \cdot \frac{h}{\beta^2} \cdot \sin\left(2 \cdot \pi \cdot \frac{\theta}{\beta}\right) & j(\theta) := 4 \cdot \pi^2 \cdot \frac{h}{\beta^3} \cdot \cos\left(2 \cdot \pi \cdot \frac{\theta}{\beta}\right) \end{array}$$

2. Using equations 8.31d and 8.33, write the pressure angle and radius of curvature functions.

$$\begin{aligned} \phi(\theta, R_p, \varepsilon) &:= \text{atan}\left(\frac{v(\theta) - \varepsilon}{s(\theta) + \sqrt{R_p^2 - \varepsilon^2}}\right) \\ \rho(\theta, R_p) &:= \frac{\left[(R_p + s(\theta))^2 + v(\theta)^2\right]^{\frac{3}{2}}}{(R_p + s(\theta))^2 + 2 \cdot v(\theta)^2 - a(\theta) \cdot (R_p + s(\theta))} \end{aligned}$$

3. Plot the pressure angle and radius of curvature functions over the lift interval: $\theta := 0 \cdot \text{deg}, 0.5 \cdot \text{deg} .. \beta$



4. The graphs above show the pressure angle and radius of curvature for the values of R_p and ϵ entered on the first page. These values will be iterated below to obtain a balanced pressure angle whose absolute value is not greater than 20 deg.

$$R_p := 52 \text{ mm}$$

$$\epsilon := 17.5 \text{ mm}$$

5. From the graph of radius of curvature above, we see that the minimum value occurs at a cam angle of about 45 deg.

$$\rho_{min} := \rho(45 \text{ deg}, R_p)$$

$$\rho_{min} = 28.093 \text{ mm}$$

Using a multiple of 3, the maximum roller follower radius is $R_f := \frac{\rho_{min}}{3}$ $R_f = 9.4 \text{ mm}$

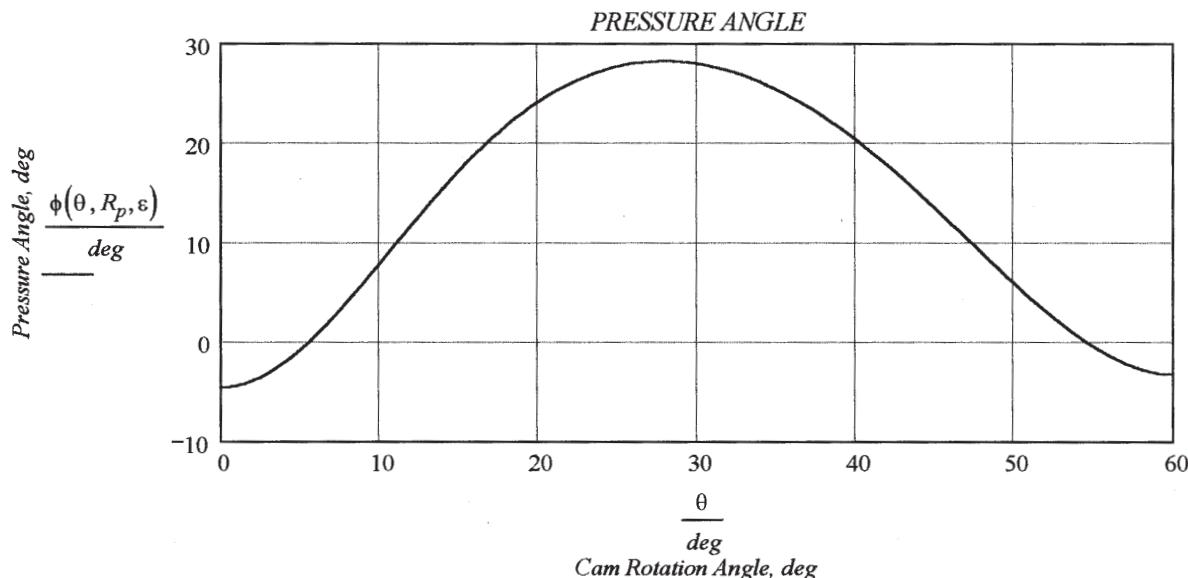
PROBLEM 8-30

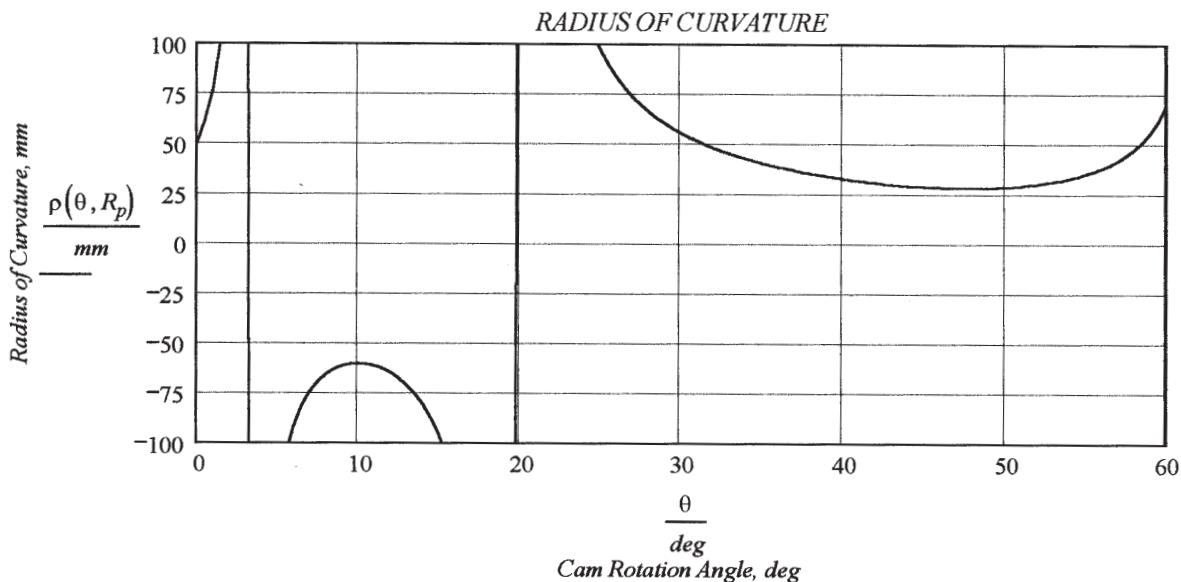
Statement: Write a computer program or use an equation solver such as Mathcad or TK Solver to calculate and plot the pressure angle and radius of curvature for a 3-4-5 polynomial displacement cam function for any specified values of lift, duration, eccentricity, and prime circle radius. Test it using a lift of 20 mm over an interval of 60 deg at 1 rad/sec, and determine the prime circle radius needed to obtain a maximum pressure angle of 20 deg. What is the minimum diameter roller follower needed to avoid undercutting with these data?

Enter:

$$\begin{array}{lll} \text{Lift:} & h := 20 \cdot \text{mm} & \text{Eccentricity} & \varepsilon := 4 \cdot \text{mm} \\ \text{Duration:} & \beta := 60 \cdot \text{deg} & \text{Prime circle radius} & R_p := 50 \cdot \text{mm} \end{array}$$

Solution: See Mathcad file P0830.

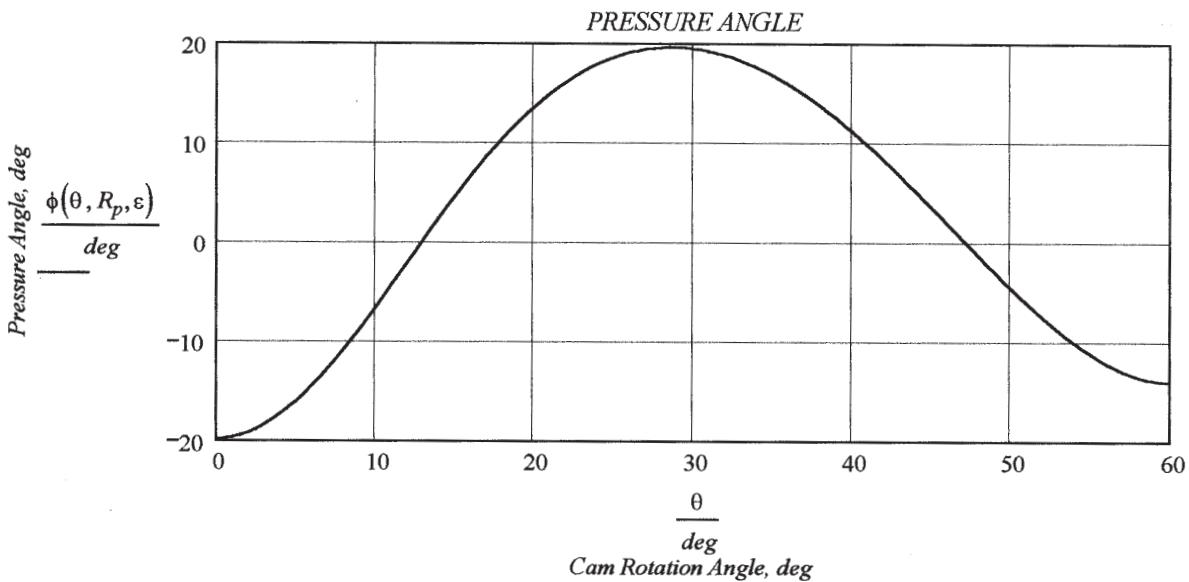

1. The 3-4-5 polynomial is defined in local coordinates by equations 8.24. They are:


$$\begin{aligned} s(\theta) &:= h \cdot \left[10 \cdot \left(\frac{\theta}{\beta} \right)^3 - 15 \cdot \left(\frac{\theta}{\beta} \right)^4 + 6 \cdot \left(\frac{\theta}{\beta} \right)^5 \right] & v(\theta) &:= \frac{h}{\beta} \cdot \left[30 \cdot \left(\frac{\theta}{\beta} \right)^2 - 60 \cdot \left(\frac{\theta}{\beta} \right)^3 + 30 \cdot \left(\frac{\theta}{\beta} \right)^4 \right] \\ a(\theta) &:= \frac{h}{\beta^2} \cdot \left[60 \cdot \left(\frac{\theta}{\beta} \right) - 180 \cdot \left(\frac{\theta}{\beta} \right)^2 + 120 \cdot \left(\frac{\theta}{\beta} \right)^3 \right] & j(\theta) &:= \frac{h}{\beta^3} \cdot \left[60 - 360 \cdot \left(\frac{\theta}{\beta} \right) + 360 \cdot \left(\frac{\theta}{\beta} \right)^2 \right] \end{aligned}$$

2. Using equations 8.31d and 8.33, write the pressure angle and radius of curvature functions.

$$\begin{aligned} \phi(\theta, R_p, \varepsilon) &:= \text{atan} \left(\frac{v(\theta) - \varepsilon}{s(\theta) + \sqrt{R_p^2 - \varepsilon^2}} \right) \\ \rho(\theta, R_p) &:= \frac{\left[(R_p + s(\theta))^2 + v(\theta)^2 \right]^{\frac{3}{2}}}{(R_p + s(\theta))^2 + 2 \cdot v(\theta)^2 - a(\theta) \cdot (R_p + s(\theta))} \end{aligned}$$

3. Plot the pressure angle and radius of curvature functions over the lift interval: $\theta := 0 \cdot \text{deg}, 0.5 \cdot \text{deg} .. \beta$



4. The graphs above show the pressure angle and radius of curvature for the values of R_p and ϵ entered on the first page. These values will be iterated below to obtain a balanced pressure angle whose absolute value is not greater than 20 deg.

$$R_p := 48 \cdot \text{mm}$$

$$\epsilon := 16.3 \cdot \text{mm}$$

5. From the graph of radius of curvature above, we see that the minimum value occurs at a cam angle of about 48 deg.

$$\rho_{\min} := \rho(48 \cdot \text{deg}, R_p) \quad \rho_{\min} = 26.885 \text{ mm}$$

Using a multiple of 3, the maximum roller follower radius is $R_f := \frac{\rho_{\min}}{3}$ $R_f = 9.0 \text{ mm}$

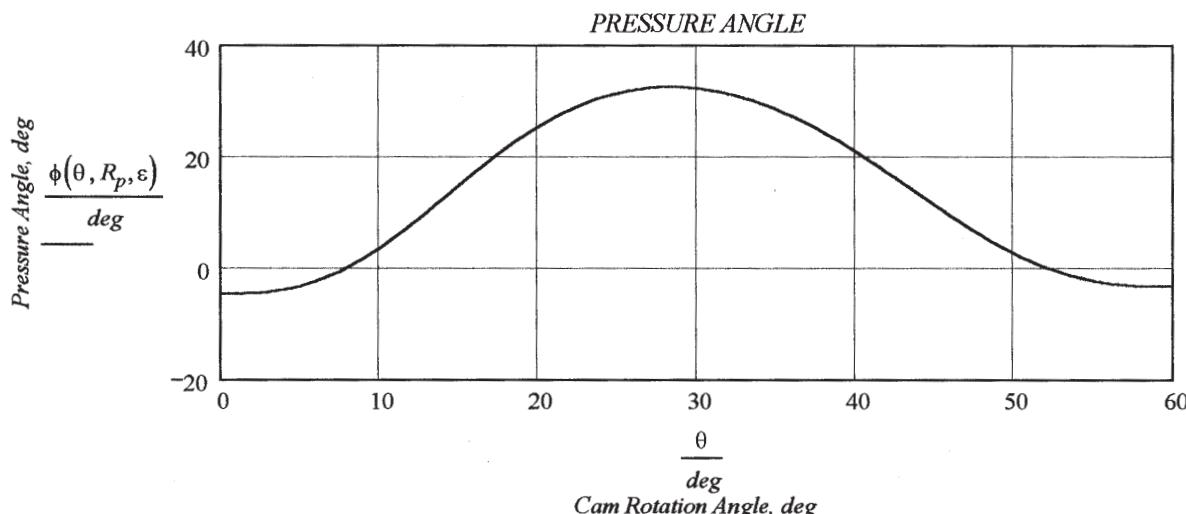
PROBLEM 8-31

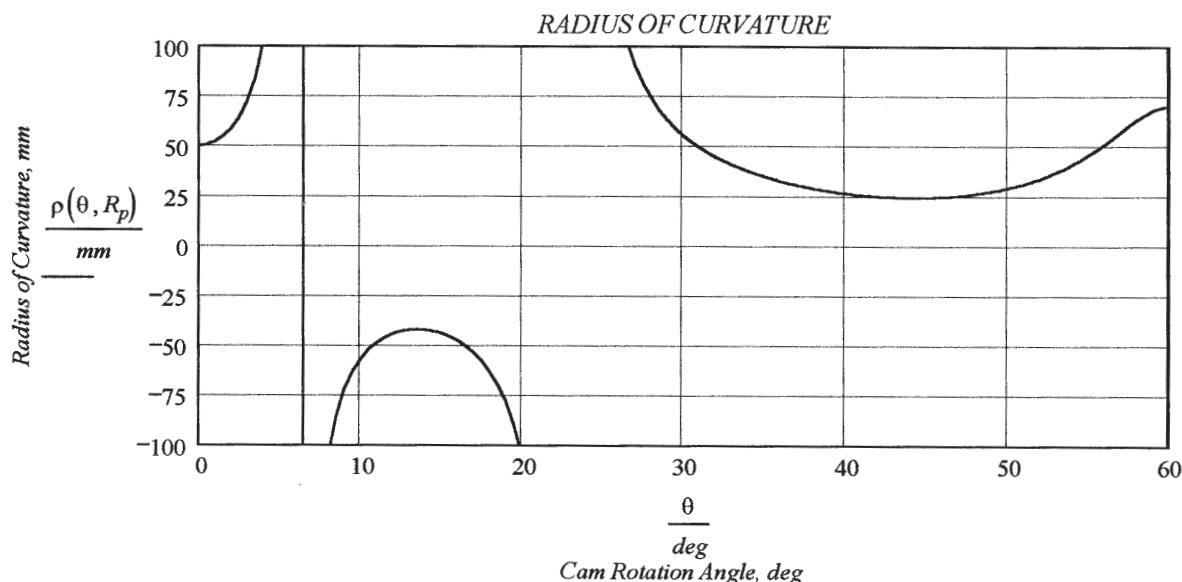
Statement: Write a computer program or use an equation solver such as Mathcad or TK Solver to calculate and plot the pressure angle and radius of curvature for a 4-5-6-7 polynomial displacement cam function for any specified values of lift, duration, eccentricity, and prime circle radius. Test it using a lift of 20 mm over an interval of 60 deg at 1 rad/sec, and determine the prime circle radius needed to obtain a maximum pressure angle of 20 deg. What is the minimum diameter roller follower needed to avoid undercutting with these data?

Enter:

$$\begin{array}{lll} \text{Lift:} & h := 20 \cdot \text{mm} & \text{Eccentricity} & \varepsilon := 4 \cdot \text{mm} \\ \text{Duration:} & \beta := 60 \cdot \text{deg} & \text{Prime circle radius} & R_p := 50 \cdot \text{mm} \end{array}$$

Solution: See Mathcad file P0831.

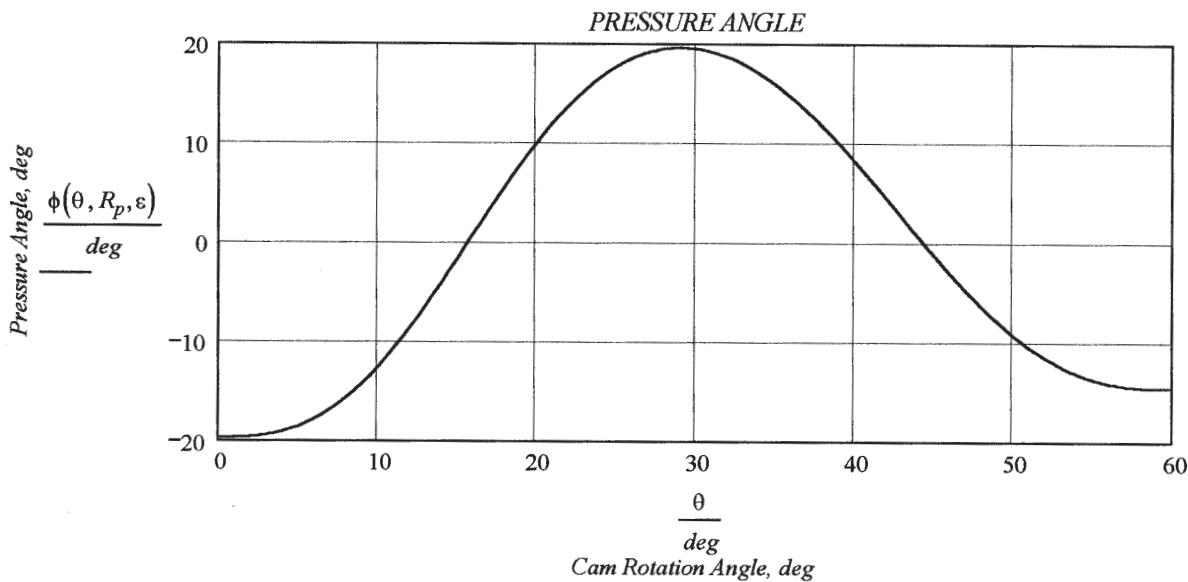

1. The 4-5-6-7 polynomial is defined in local coordinates by equation 8.25. Differentiate it to get v , a , and j .


$$\begin{aligned} s(\theta) &:= h \cdot \left[35 \cdot \left(\frac{\theta}{\beta} \right)^4 - 84 \cdot \left(\frac{\theta}{\beta} \right)^5 + 70 \cdot \left(\frac{\theta}{\beta} \right)^6 - 20 \cdot \left(\frac{\theta}{\beta} \right)^7 \right] \\ v(\theta) &:= \frac{h}{\beta} \cdot \left[140 \cdot \left(\frac{\theta}{\beta} \right)^3 - 420 \cdot \left(\frac{\theta}{\beta} \right)^4 + 420 \cdot \left(\frac{\theta}{\beta} \right)^5 - 140 \cdot \left(\frac{\theta}{\beta} \right)^6 \right] \\ a(\theta) &:= \frac{h}{\beta^2} \cdot \left[420 \cdot \left(\frac{\theta}{\beta} \right)^2 - 1680 \cdot \left(\frac{\theta}{\beta} \right)^3 + 2100 \cdot \left(\frac{\theta}{\beta} \right)^4 - 840 \cdot \left(\frac{\theta}{\beta} \right)^5 \right] \end{aligned}$$

2. Using equations 8.31d and 8.33, write the pressure angle and radius of curvature functions.

$$\begin{aligned} \phi(\theta, R_p, \varepsilon) &:= \text{atan} \left(\frac{v(\theta) - \varepsilon}{s(\theta) + \sqrt{R_p^2 - \varepsilon^2}} \right) \\ \rho(\theta, R_p) &:= \frac{\left[(R_p + s(\theta))^2 + v(\theta)^2 \right]^{\frac{3}{2}}}{(R_p + s(\theta))^2 + 2 \cdot v(\theta)^2 - a(\theta) \cdot (R_p + s(\theta))} \end{aligned}$$

3. Plot the pressure angle and radius of curvature functions over the lift interval: $\theta := 0 \cdot \text{deg}, 0.5 \cdot \text{deg..} \beta$



4. The graphs above show the pressure angle and radius of curvature for the values of R_p and ϵ entered on the first page. These values will be iterated below to obtain a balanced pressure angle whose absolute value is not greater than 20 deg.

$$R_p := 57 \text{ mm}$$

$$\epsilon := 19.2 \text{ mm}$$

5. From the graph of radius of curvature above, we see that the minimum value occurs at a cam angle of about 45 deg.

$$\rho_{min} := \rho(45 \text{ deg}, R_p) \quad \rho_{min} = 28.317 \text{ mm}$$

Using a multiple of 3, the maximum roller follower radius is $R_f := \frac{\rho_{min}}{3}$ $R_f = 9.4 \text{ mm}$