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Chapter9
GEAR TRAINS
Cycle and epicycle,
orb in orb
JOHN MILTON, PARADISE LOST

9.0 INTRODUCTION View the lecture video (54:45)†

The earliest known reference to gear trains is in a treatise by Hero of Alexandria (c. 100 
B.C.).  Gear trains are widely used in all kinds of mechanisms and machines, from can 
openers to aircraft carriers.  Whenever a change in the speed or torque of a rotating device 
is needed, a gear train or one of its cousins, the belt or chain drive mechanism, will usually 
be used.  This chapter will explore the theory of gear tooth action and the design of these 
ubiquitous devices for motion control.  The calculations involved are trivial compared to 
those for cams or linkages.  The shape of gear teeth has become quite standardized for 
good kinematic reasons that we will explore.

Gears of various sizes and styles are readily available from many manufacturers.  
Assembled gearboxes for particular ratios are also stock items.  The kinematic design of 
gear trains is principally involved with the selection of appropriate ratios and gear diam-
eters.  A complete gear train design will necessarily involve considerations of strength of 
materials and the complicated stress states to which gear teeth are subjected.  This text 
will not deal with the stress analysis aspects of gear design.  There are many texts that do.  
Some are listed in the bibliography at the end of this chapter.  This chapter will discuss 
the kinematics of gear tooth theory, gear types, and the kinematic design of gearsets and 
gear trains of simple, compound, reverted, and epicyclic types.  Chain and belt drives 
will also be discussed.  Examples of the use of these devices will be presented as well.
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9.1 ROLLING CYLINDERS

The simplest means of transferring rotary motion from one shaft to another is a pair of 
rolling cylinders.  They may be an external set of rolling cylinders as shown in Figure 
9-1a or an internal set as in Figure 9-1b.  Provided that sufficient friction is available at 
the rolling interface, this mechanism will work quite well.  There will be no slip between 
the cylinders until the maximum available frictional force at the joint is exceeded by the 
demands of torque transfer.

A variation on this mechanism is what causes your car or bicycle to move along 
the road.  Your tire is one rolling cylinder and the road the other (very large radius) one.  
Friction is all that prevents slip between the two, and it works well unless the friction coef-
ficient is reduced by the presence of ice or other slippery substances.  In fact, some early 
automobiles had rolling cylinder drives inside the transmission, as do some present-day 
snowblowers and garden tractors that use a rubber-coated wheel rolling against a steel 
disk to transmit power from the engine to the wheels.

A variant on the rolling cylinder drive is the flat or vee belt as shown in Figure 9-2.  
This mechanism also transfers power through friction and is capable of quite large power 
levels, provided enough belt cross section is provided.  Friction belts are used in a wide 
variety of applications from small sewing machines to the alternator drive on your car, to 
multihorsepower generators and pumps.  Whenever absolute phasing is not required and 
power levels are moderate, a friction belt drive may be the best choice.  They are relatively 
quiet running, require no lubrication, and are inexpensive compared to gears and chain 
drives.  A constant velocity transmission (CVT) as used in a number of automobiles is also 
a vee belt and pulley device in which the pulleys are adjusted in width to change the ratio.  
As one pulley widens, the other narrows to change the relative radii of the belt within their 
respective vees. The belt circumference, of course, remains the same.

Both rolling cylinders and belt (or chain) drives have effective linkage equivalents 
as shown in Figure 9-3.  These effective linkages are valid only for one instantaneous 
position but nevertheless show that these devices are just another variation of the fourbar 
linkage in disguise.

FIGURE 9-2
A two-groove vee belt drive  Courtesy of T. B. Wood's Sons Co., Chambersburg, PA

FIGURE 9-1
Rolling cylinders

(a ) External set

(b ) Internal set

View as a video
http://www.designof-

machinery.com/DOM/
gear.avi

View as a video
http://www.designof-

machinery.com/DOM/
internal_gear.avi
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The principal drawbacks to the rolling cylinder drive (or smooth belt) mechanism are 
its relatively low torque capability and the possibility of slip.  Some drives require absolute 
phasing of the input and output shafts for timing purposes.  A common example is the 
valve train drive in an automobile engine.  The valve cams must be kept in phase with 
the piston motion or the engine will not run properly.  A smooth belt or rolling cylinder 
drive from crankshaft to camshaft would not guarantee correct phasing.  In this case some 
means of preventing slip is needed.

This usually means adding some meshing teeth to the rolling cylinders.  They then 
become gears as shown in Figure 9-4 and are together called a gearset.  When two gears 
are placed in mesh to form a gearset such as this one, it is conventional to refer to the 
smaller of the two gears as the pinion and to the other as the gear.

9.2 THE FUNDAMENTAL LAW OF GEARING

Conceptually, teeth of any shape will prevent gross slip.  Old water-powered mills and 
windmills used wooden gears whose teeth were merely round wooden pegs stuck into the 
rims of the cylinders.  Even ignoring the crudity of construction of these early examples 
of gearsets, there was no possibility of smooth velocity transmission because the geometry 
of the tooth “pegs” violated the fundamental law of gearing which, if followed, provides 
that the angular velocity ratio between the gears of a gearset remains constant throughout 
the mesh.  A more complete and formal definition of this law is given below.  The angular 
velocity ratio (mV) referred to in this law is the same one that we derived for the fourbar 
linkage in Section 6.4 and equation 6.10.  It is equal to the ratio of the radius of the input 
gear to that of the output gear.

=
ω
ω

= ± = ±

ω
ω

= ± = ±

(9.1a)

= (9.1b)

m
r
r

d
d

m
r
r

d
d

V
out

in

in

out

in

out

T
in

out

out

in

out

in

( a )  Gear train
FIGURE 9-3
Gear and belt trains each have an equivalent fourbar linkage for any instantaneous position.

(b )  Belt train
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FIGURE 9-4
An external gearset
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View as a video
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The torque ratio (mT) was shown earlier to be the reciprocal of the velocity ratio 
(mV); thus a gearset is essentially a device to exchange torque for velocity or vice versa.  
Since there are no applied forces as in a linkage, but only applied torques on the gears, 
the mechanical advantage mA of a gearset is equal to its torque ratio mT.  The most com-
mon application is to reduce velocity and increase torque to drive heavy loads as in your 
automobile transmission.  Other applications require an increase in velocity, for which a 
reduction in torque must be accepted.  In either case, it is usually desirable to maintain 
a constant ratio between the gears as they rotate.  Any variation in ratio will show up as 
oscillation in the output velocity and torque even if the input is constant with time.

The radii in equations 9.1 are those of the rolling cylinders to which we are adding 
the teeth.  The positive or negative sign accounts for internal or external cylinder sets 
as defined in Figure 9-1.  An external set reverses the direction of rotation between the 
cylinders and requires the negative sign.  An internal gearset or a belt or chain drive will 
have the same direction of rotation on input and output shafts and require the positive sign 
in equations 9.1.  The surfaces of the rolling cylinders will become the pitch circles, and 
their diameters the pitch diameters of the gears.  The contact point between the cylinders 
lies on the line of centers as shown in Figure 9-3a, and this point is called the pitch point.

In order for the fundamental law of gearing to be true, the gear tooth contours on 
mating teeth must be conjugates of one another.  There is an infinite number of possible 
conjugate pairs that could be used, but only a few curves have seen practical application 
as gear teeth.  The cycloid still is used as a tooth form in watches and clocks, but most 
other gears use the involute curve for their shape.

The Involute Tooth Form
The involute is a curve that can be generated by unwrapping a taut string from a cylinder 
(called the evolute) as shown in Figure 9-5.  Note the following about this involute curve:

The string is always tangent to the cylinder.

The center of curvature of the involute is always at the point of tangency of the string 
with the cylinder.

A tangent to the involute is then always normal to the string, the length of which is the 
instantaneous radius of curvature of the involute curve.

Figure 9-6 shows two involutes on separate cylinders in contact or “in mesh.”  These 
represent gear teeth.  The cylinders from which the strings are unwrapped are called the 
base circles of the respective gears.  Note that the base circles are necessarily smaller than 
the pitch circles, which are at the radii of the original rolling cylinders, rp and rg.  The gear 
tooth must project both below and above the rolling cylinder surface (pitch circle) and the 
involute only exists outside of the base circle.  The amount of tooth that sticks out above 
the pitch circle is the addendum, shown as ap and ag for pinion and gear, respectively.  
These are equal for standard, full-depth gear teeth.

The geometry at this tooth-tooth interface is similar to that of a cam-follower joint 
as was defined in Figure 8-44.  There is a common tangent to both curves at the contact 
point, and a common normal, perpendicular to the common tangent.  Note that the 
common normal is, in fact, the “strings” of both involutes, which are colinear.  Thus the 

View as a video

FIGURE 9-5
Development of the
involute of a circle

"String"
tangent to
base circle
and normal
to involute

Involute curve

Base circle
or evolute

http://www.designof-
machinery.com/DOM/

involute.avi
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common normal, which is also the axis of transmission, always passes through the pitch 
point regardless of where in the mesh the two teeth are contacting.  

Figure 9-7 shows a pair of involute tooth forms in two positions, just beginning con-
tact and about to leave contact.  The common normals of both these contact points still 
pass through the same pitch point.  It is this property of the involute that causes it to obey 
the fundamental law of gearing.  The ratio of the driving gear radius to the driven gear 
radius remains constant as the teeth move into and out of mesh.

From this observation of the behavior of the involute we can restate the fundamental 
law of gearing in a more kinematically formal way as: the common normal of the tooth 
profiles, at all contact points within the mesh, must always pass through a fixed point on 
the line of centers, called the pitch point.  The gearset’s velocity ratio will then be a con-
stant defined by the ratio of the respective radii of the gears to the pitch point.

The points of beginning and leaving contact define the mesh of the pinion and gear.  
The distance along the line of action between these points within the mesh is called the 
length of action, Z, defined by the intersections of the respective addendum circles with 
the line of action, as shown in Figure 9-7.  Variables are defined in Figures 9-6 and 9-7.

( ) ( ) ( ) ( )= + − φ + + − φ − φcos cos sin (9.2)
2 2 2 2

Z r a r r a r Cp p p g g g

The distance along the pitch circle within the mesh is the arc of action, and the angles 
subtended by these points and the line of centers are the angle of approach and angle 
of recess.  These are shown only on the gear in Figure 9-7 for clarity, but similar angles 

FIGURE 9-6
Contact geometry and pressure angle of involute gear teeth
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exist for the pinion.  The arc of action on both pinion and gear pitch circles must be the 
same length for zero slip between the theoretical rolling cylinders.

Pressure Angle
The pressure angle in a gearset is similar to that of the cam and follower and is defined 
as the angle between the axis of transmission or line of action (common normal) and the 
direction of velocity at the pitch point as shown in Figures 9-6 and 9-7.  Pressure angles of 
gearsets are standardized at a few values by the gear manufacturers.  These are defined at 
the nominal center distance for the gearset as cut.  The standard values are 14.5�, 20�, and 
25� with 20� being the most commonly used and 14.5� now being considered obsolete.  
Any custom pressure angle can be made, but its expense over the available stock gears 
with standard pressure angles would be hard to justify.  Special cutters would have to be 
made.  Gears to be run together must be cut to the same nominal pressure angle.

Changing Center Distance
When involute teeth (or any teeth) have been cut into a cylinder, with respect to a particu-
lar base circle, to create a single gear, we do not yet have a pitch circle.  The pitch circle 
only comes into being when we mate this gear with another to create a pair of gears, or 
gearset.  There will be some range of center-to-center distances over which we can achieve 
a mesh between the gears.  There will also be an ideal center distance (CD) that will give 
us the nominal pitch diameters for which the gears were designed.  However, limitations 
of manufacturing processes give a low probability that we will be able to exactly achieve 

Arc of action Beginning contact

FIGURE 9-7
Pitch point, pitch circles, pressure angle, length of action, arc of action, and angles of approach and recess during
the meshing of a gear and pinion
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this ideal center distance in every case.  More likely, there will be some error in the center 
distance, even if small.

What will happen to the adherence to the fundamental law of gearing if there is error 
in the location of the gear centers?  If the gear tooth form is not an involute, then an error 
in center distance will violate the fundamental law, and there will be variation, or “ripple,” 
in the output velocity.  The output angular velocity will not be constant for a constant input 
velocity.  However, with an involute tooth form, center distance errors do not affect the 
velocity ratio.  This is the principal advantage of the involute over all other possible tooth 
forms and the reason why it is nearly universally used for gear teeth.  Figure 9-8 shows 
what happens when the center distance is varied on an involute gearset.  Note that the 
common normal still goes through a pitch point, common to all contact points within the 
mesh.  But the pressure angle is affected by the change in center distance.

Figure 9-8 also shows the pressure angles for two different center distances.  As the 
center distance increases, so will the pressure angle and vice versa.  This is one result of a 
change, or error, in center distance when using involute teeth.  Note that the fundamental 
law of gearing still holds in the modified center distance case.  The common normal is 

( a )  Correct center distance

FIGURE 9-8
Changing center distance of involute gears changes the pressure angle and pitch diameters

(b )  Increased center distance
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still tangent to the two base circles and still goes through the pitch point.  The pitch point 
has moved, but in proportion to the move of the center distance and the gear radii.  The 
velocity ratio is unchanged despite the shift in center distance.  In fact, the velocity ratio 
of involute gears is fixed by the ratio of the base circle diameters, which are unchanging 
once the gear is cut.

Backlash
Another factor affected by changing center distance is backlash.  Increasing the CD will 
increase the backlash and vice versa.  Backlash is defined as the clearance between mat-
ing teeth measured at the pitch circle.  Manufacturing tolerances preclude a zero clear-
ance, as all teeth cannot be exactly the same dimensions, and all must mesh.  So, there 
must be some small difference between the tooth thickness and the space width (see Figure 
9-9).  As long as the gearset is run with a nonreversing torque, backlash should not be a 
problem.  But, whenever torque changes sign, the teeth will move from contact on one 
side to the other.  The backlash gap will be traversed, and the teeth will impact with no-
ticeable noise.  This is the same phenomenon as crossover shock in the form-closed cam.  
As well as increasing stresses and wear, backlash can cause undesirable positional error 
in some applications.  If the center distance is set exactly to match the theoretical value 
for the gearset, the tooth-to-tooth composite backlash tolerance is in the range of 0.0001 
to 0.0007 inches for precision gears.  The increase in angular backlash as a function of 
error in center distance is approximately

( )θ =
φ

π
43200 tan minutes of arc (9.3)C

dB 	

where � = pressure angle, 	C = error in center distance, and d = pitch diameter of the 
gear on the shaft where the backlash is measured.

In servomechanisms, where motors are driving, for example, the control surfaces 
on an aircraft, backlash can cause potentially destructive “hunting” in which the control 
system tries in vain to correct positional errors due to backlash “slop” in the mechanical 
drive system.  Such applications need antibacklash gears which are really two gears 
back to back on the same shaft that can be rotated slightly at assembly with respect to one 
another, and then fixed so as to take up the backlash.  In less critical applications, such as 
the propeller drive on a boat, backlash on reversal will not even be noticed.

The American Gear Manufacturers Association (AGMA) defines standards for gear 
design and manufacture.  They define a spectrum of quality numbers and tolerances rang-
ing from the lowest (3) to the highest precision (16).  Obviously the cost of a gear will be 
a function of this quality index.

9.3 GEAR TOOTH NOMENCLATURE

Figure 9-9 shows two teeth of a gear with the standard nomenclature defined.  Pitch circle
and base circle have been defined above.  The tooth height is defined by the addendum
(added on) and the dedendum (subtracted from) that are referenced to the nominal pitch 
circle.  The dedendum is slightly larger than the addendum to provide a small amount of 
clearance between the tip of one mating tooth (addendum circle) and the bottom of the 
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tooth space of the other (dedendum circle).  The tooth thickness is measured at the pitch 
circle, and the tooth space width is slightly larger than the tooth thickness.  The difference 
between these two dimensions is the backlash.  The face width of the tooth is measured 
along the axis of the gear.  The circular pitch is the arc length along the pitch circle cir-
cumference measured from a point on one tooth to the same point on the next.  The circular 
pitch defines the tooth size.  The other tooth dimensions are standardized based on that 
dimension as shown in Table 9-1.  The definition of circular pitch pc is:

=
π (9.4a)p d
Nc

where d = pitch diameter and N = number of teeth.   The tooth pitch can also be measured 
along the base circle circumference and then is called the base pitch pb.

= φcos (9.4b)p pb c

The units of pc are inches or millimeters.  A more convenient and common way to 
define tooth size is to relate it to the diameter of the pitch circle rather than its circumfer-
ence.  The diametral pitch pd is:


 (9.4c)p N
dd

The units of pd are reciprocal inches, or number of teeth per inch.  This measure is only 
used in U.S. specification gears.  Combining equations 9.4a and 9.4c gives the following 
relationship between circular pitch and diametral pitch.

=
π (9.4d)p
pd
c

FIGURE 9-9
Gear tooth nomenclature
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The SI system, used for metric gears, defines a parameter called the module, which 
is the reciprocal of diametral pitch with pitch diameter measured in millimeters.


 (9.4e)m d
N

The units of the module are millimeters.  Unfortunately, metric gears are not inter-
changeable with U.S. gears, despite both being involute tooth forms, as their standards for 
tooth sizes are different.  In the United States, gear tooth sizes are specified by diametral 
pitch, elsewhere by module.  The conversion from one standard to the other is



25.4 (9.4f)m
pd

where m is in mm and pd is in inches.

The velocity ratio mV and the torque ratio mT of the gearset can be put into a more 
convenient form by substituting equation 9.4c into equations 9.1, noting that the diametral 
pitch of meshing gears must be the same.

= ± = ± (9.5a)m
d
d

N
NV

in

out

in

out

= ± = ± (9.5b)m
d
d

N
NT

out

in

out

in

Thus the velocity ratio and torque ratio can be computed from the number of teeth on the 
meshing gears, which are integers.  Note that a minus sign implies an external gearset and 
a positive sign an internal gearset as shown in Figure 9-1.  The gear ratio mG is always > 1 
and can be expressed in terms of either the velocity ratio or torque ratio depending on 
which is larger than 1.  Thus mG expresses the gear train’s overall ratio independent of 
change in direction of rotation or of the direction of power flow through the train when 
operated as either a speed reducer or a speed increaser.

Parameter

Pressure angle  �

Addendum  a
Dedendum  b
Working depth
Whole depth
Circular tooth thickness
Fillet radius—basic rack
Minimum basic clearance
Minimum width of top land
Clearance (shaved or ground teeth)

20� or 25�

1.000 / pd
1.250 / pd
2.000 / pd
2.250 / pd
1.571 / pd

0.300 / pd
0.250 / pd
0.250 / pd
0.350 / pd

Fine Pitch  (pd  �20 )

20�

1.000 / pd
1.250 / pd
2.000 / pd
2.200 / pd +  0.002 in
1.571 / pd
Not standardized
0.200 / pd +  0.002 in
Not standardized
0.350 / pd +  0.002 in

Coarse Pitch  (  < 20 )pd

TABLE  9-1 AGMA Full-Depth Gear Tooth Specifications
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STANDARD GEAR TEETH Standard, full-depth gear teeth have equal addenda on 
pinion and gear, with the dedendum being slightly larger for clearance.  The standard tooth 
dimensions are defined in terms of the diametral pitch.  Table 9-1 shows the definitions 
of dimensions of standard, full-depth gear teeth as defined by the AGMA, and Figure 
9-10 shows their shapes for three standard pressure angles.  Figure 9-11 shows the actual 
sizes of 20� pressure angle, standard, full-depth teeth from pd = 4 to 80.  Note the inverse 
relationship between pd and tooth size.  While there are no theoretical restrictions on the 
possible values of diametral pitch, a set of standard values is defined based on available 
gear cutting tools.  These standard tooth sizes are shown in Table 9-2 in terms of diametral 
pitch and in Table 9-3 in terms of metric module.  

9.4 INTERFERENCE AND UNDERCUTTING

The involute tooth form is only defined outside of the base circle.  In some cases, the 
dedendum will be large enough to extend below the base circle.  If so, then the portion 
of tooth below the base circle will not be an involute and will interfere with the tip of 
the tooth on the mating gear, which is an involute.  If the gear is cut with a standard gear 
shaper or a “hob,” the cutting tool will also interfere with the portion of tooth below the 
base circle and will cut away the interfering material.  This results in an undercut tooth as 
shown in Figure 9-12.  This undercutting weakens the tooth by removing material at its 
root.  The maximum moment and maximum shear from the tooth loaded as a cantilever 
beam both occur in this region.  Severe undercutting will promote early tooth failure.

Interference (and undercutting caused by manufacturing tools) can be prevented sim-
ply by avoiding gears with too few teeth.  If a gear has a large number of teeth, they will 
be small compared to its diameter.  As the number of teeth is reduced for a fixed diameter 
gear, the teeth must become larger.  At some point, the dedendum will exceed the radial 
distance between the base circle and the pitch circle, and interference will occur.  

Table 9-4a shows the minimum number of pinion teeth that can mesh with a rack 
without interference as a function of pressure angle.  Gears with this few teeth can be 
generated without undercutting only by a pinion cutter or by milling.  Gears that are cut 
with a hob, which has the same action as a rack with respect to the gear being cut, must 
have more teeth to avoid undercutting the involute tooth form during manufacture.  The 
minimum number of teeth that can be cut by a hob without undercutting as a function of 
pressure angle is shown in Table 9-4b.  Table 9-5a shows the maximum number of 20-de-
gree pressure angle full-depth gear teeth that can mesh with a given number of pinion teeth 
without interference and Table 9-5b shows the same information for 25-degree pressure 
angle full-depth gear teeth.  Note that the pinion tooth numbers in this table are all fewer 
than the minimum number of teeth that can be generated by a hob.  As the mating gear 
gets smaller, the pinion can have fewer teeth and still avoid interference.

Unequal-Addendum Tooth Forms
In order to avoid interference and undercutting on small pinions, the tooth form can be 
changed from the standard, full-depth shapes of Figure 9-10 that have equal addenda on 
both pinion and gear to an involute shape with a longer addendum on the pinion and a 

( a )    �
= 14.5�

FIGURE 9-10
AGMA full-depth tooth
profiles for three
pressure angles

(b )   
� = 20�

( c )    � = 25�
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Base circle

Pitch circle
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9FIGURE 9-11
Actual tooth sizes for various diametral pitches  Courtesy of Barber-Colman Co., Loves Park, IL
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FIGURE 9-12
Interference and undercutting of teeth below the base circle

Pinion

Gear

Pitch circles

Tooth below base circle
is not an involute

Interference

Undercutting

Base circle of gear

 Coarse
(pd < 20)

TABLE  9-2
Standard Diametral
Pitches

    Fine
(pd � 20)

3
4
5
6
8

1
1.25
1.5
1.75
2
2.5

10
12
14
16
18

20
24
32
48
64
72
80
96

120
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shorter one on the gear called profile-shifted gears.  The AGMA defines addendum mod-
ification coefficients, x1 and x2, which always sum to zero, being equal in magnitude and 
opposite in sign.  The positive coefficient x1 is applied to increase the pinion addendum, 
and the negative x2 decreases the gear addendum by the same amount.  The total tooth 
depth remains the same.  This shifts the pinion dedendum circle outside its base circle 
and eliminates that noninvolute portion of pinion tooth below the base circle.  The stan-
dard coefficients are ±0.25 and ±0.50, which add or subtract 25% or 50% of the standard 
addendum.  The limit of this approach occurs when the pinion tooth becomes pointed.  

There are secondary benefits to this technique.  The pinion tooth becomes thicker at 
its base and thus stronger.  The gear tooth is correspondingly weakened, but since a full-
depth gear tooth is stronger than a full-depth pinion tooth, this shift brings them closer to 
equal strength.  A disadvantage of unequal-addendum tooth forms is an increase in sliding 
velocity at the tooth tip.  The percent sliding between the teeth is greater than with equal 
addendum teeth which increases tooth-surface stresses.  Friction losses in the gear mesh 
are also increased by higher sliding velocities.   Figure 9-13 shows the contours of profile-
shifted involute teeth.  Compare these to standard tooth shapes in Figure 9-10.

9.5 CONTACT RATIO

The contact ratio mp defines the average number of teeth in contact at any one time as:


 (9.6a)m Z
pp
b

where Z is the length of action from equation 9.2 and pb is the base pitch from equation 9.4b. 
Substituting equations 9.4b and 9.4d into 9.6a defines mp in terms of pd:

=
π φcos

(9.6b)m
p Z

p
d

The contact ratio mp can also be expressed as a function only of pressure angle �, 
number of pinion teeth, Np, and the gear ratio mG. 

( )⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=

+ − φ + + − φ − + φ

π φ

2
1

2
cos

2
1

2
cos

2
1 sin

cos
(9.6c)

2 2 2 2

m

N N m N m N N
m

p

p p G p G p p
G

If the contact ratio is 1, then one tooth is leaving contact just as the next is beginning 
contact.  This is undesirable because slight errors in the tooth spacing will cause oscilla-
tions in the velocity, vibration, and noise.  In addition, the load will be applied at the tip of 
the tooth, creating the largest possible bending moment.  At larger contact ratios than 1, 
there is the possibility of load sharing among the teeth.  For contact ratios between 1 and 2, 
which are common for spur gears, there will still be times during the mesh when one pair 
of teeth will be taking the entire load.  However, these will occur toward the center of the 
mesh region where the load is applied at a lower position on the tooth, rather than at its tip.  
This point is called the highest point of single-tooth contact (HPSTC).  The minimum 
acceptable contact ratio for smooth operation is 1.2.  A minimum contact ratio of 1.4 is 
preferred and larger is better.  Most spur gearsets will have contact ratios between 1.4 and 2. 

84.67
63.50
50.80
31.75
25.40
20.32
16.93
12.70
8.47
6.35
5.08
4.23
3.18

2.54
2.12
1.59
1.27
1.02

0.3
0.4
0.5
0.8
1
1.25
1.5
2
3
4
5
6
8

10
12
16

20
25

Metric
Module

(mm)

Equivalent
(in-1 )pd

TABLE  9-3
Standard Metric
Modules

Pressure
Angle
(deg)

Minimum
Number
of Teeth

14.5
20
25

32
18
12

TABLE  9-4a
Minimum Number of
Pinion Teeth

 To Avoid Interference
Between a Full-Depth
Pinion and a Full-Depth
Rack
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✍EXAMPLE 9-1

Determining Gear Tooth and Gear Mesh Parameters.

Problem:  Find the gear ratio, circular pitch, base pitch, pitch diameters, pitch radii, center 
distance, addendum, dedendum, whole depth, clearance, outside diameters, and 
contact ratio of a gearset with the given parameters.  If the center distance is in-
creased 2% what is the new pressure angle and increase in backlash?

Given: A 6 pd, 20� pressure angle, 19-tooth pinion is meshed with a 37-tooth gear.  

Assume: The tooth forms are standard AGMA full-depth involute profiles.

Solution:

 1 The gear ratio is found from the tooth numbers on pinion and gear using equations 9.5a and 
9.5c.


 
 

37
19

1.947 ( )m
N
N

aG
g

p

2 The circular pitch can be found either from equation 9.4a or 9.4d.

=
π

=
π
=

6
0.524 in ( )p

p
bc

d

3 The base pitch measured on the base circle is (from equation 9.4b):

( )= φ = ° =cos 0.524cos 20 0.492 in ( )p p cb c

4 The pitch diameters and pitch radii of pinion and gear are found from equation 9.4c.

Pressure
Angle
(deg)

Minimum
Number
of Teeth

14.5
20
25

37
21
14

TABLE  9-4b
Minimum Number of
Pinion Teeth

 To Avoid Undercutting
When Cut With a Hob

17
16
15
14
13

1309
101
45
26
16

TABLE  9-5a
Maximum Number
of Gear Teeth

 To Avoid Interference
Between a 20�
Full-Depth 
Pinion and Full-Depth
Gears of Various Sizes 

Number
of Pinion

Teeth

Maximum
Gear
Teeth

11
10
9

Maximum
Gear
Teeth

249
32
13

TABLE  9-5b
Maximum Number
of Gear Teeth
To Avoid Interference 
Between a 25�
Full-Depth 
Pinion and Full-Depth
Gears of Various Sizes 

Number
of Pinion

Teeth

FIGURE 9-13
Profile-shifted teeth with long and short addenda to avoid interference and undercutting

Base circle
of pinion

Base circle
of gear

Pitch circles

Long addendum
on pinion

Short addendum
on gear

Pinion

Gear
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19
6

3.167 in,
2

1.583 in ( )d
N
p

r
d

dp
p

d
p

p


 
 
 
 

37
6

6.167 in,
2

3.083 in ( )d
N
p

r
d

eg
g

d
g

g

5 The nominal center distance C is the sum of the pitch radii:

= + = 4.667 in ( )C r r fp g

6 The addendum and dedendum are found from the equations in Table 9-1:


 
 

1.0 0.167 in, =1.25 0.208 in ( )a
p

b
p

g
d d

7 The whole depth ht is the sum of the addendum and dedendum.

= + = + =0.167 0.208 0.375 in ( )h a b ht

8 The clearance is the difference between dedendum and addendum.

= − = − =0.208 0.167 0.042 in ( )c b a i

9 The outside diameter of each gear is the pitch diameter plus two addenda:

= + = = + =2 3.500 in, 2 6.500 in ( )D d a D d a jo p o gp g

10 The contact ratio is found from equations 9.2 and 9.6a.

( ) ( ) ( ) ( )
( ) ( )

( ) ( )

= + − φ + + − φ − φ

= + − °

+ + − ° − ° =

= = =

cos cos sin

1.583 0.167 1.583cos20

3.083 0.167 3.083cos20 4.667sin20 0.798 in
0.798
0.492

1.62 ( )

2 2 2 2

2 2

2 2

Z r a r r a r C

m Z
p

k

p p p g g g

p
b

11 If the center distance is increased from the nominal value due to assembly errors or other fac-
tors, the effective pitch radii will change by the same percentage.  The gears’ base radii will 
remain the same.  The new pressure angle can be found from the changed geometry.  For a 2% 
increase in center distance (1.02x):

φ =
⎛

⎝
⎜

⎞

⎠
⎟ =

φ⎛

⎝
⎜

⎞

⎠
⎟ =

°⎛
⎝⎜

⎞
⎠⎟
= °− − −cos

1.02
cos

cos
1.02

cos cos20
1.02

22.89 ( )1 base circle 1 1
r

r
r

r
lnew

p

p

p

p

12 The change in backlash as measured at the pinion is found from equation 9.3.

( ) ( )( ) ( )
( )θ =

φ
π

°
π

43200 tan =43200 0.02 4.667
tan 22.89

3.167
=171 minutes of arc ( )C

d
mB 	
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9.6 GEAR TYPES

Gears are made in many configurations for particular applications.  This section describes 
some of the more common types.

Spur, Helical, and Herringbone Gears
SPUR GEARS are ones in which the teeth are parallel to the axis of the gear.  This is 
the simplest and least expensive form of gear to make.  Spur gears can only be meshed if 
their axes are parallel.  Figure 9-14 shows a spur gear.

HELICAL GEARS are ones in which the teeth are at a helix angle � with respect to 
the axis of the gear as shown in Figure 9-15a.  Figure 9-16 shows a pair of opposite-hand*

helical gears in mesh.  Their axes are parallel.  Two crossed helical gears of the same 
hand can be meshed with their axes at an angle as shown in Figure 9-17.  The helix angles 
can be designed to accommodate any skew angle between the nonintersecting shafts.

Helical gears are more expensive than spur gears but offer some advantages.  They 
run quieter than spur gears because of the smoother and more gradual contact between 
their angled surfaces as the teeth come into mesh.  Spur gear teeth mesh along their entire 
face width at once.  The sudden impact of tooth on tooth causes vibrations that are heard 
as a “whine” which is characteristic of spur gears but is absent with helical gears.  Also, 
for the same gear diameter and diametral pitch, a helical gear is stronger due to the slightly 
thicker tooth form in a plane perpendicular to the axis of rotation.

HERRINGBONE GEARS are formed by joining two helical gears of identical pitch 
and diameter but of opposite hand on the same shaft.  These two sets of teeth are often 
cut on the same gear blank.  The advantage compared to a helical gear is the internal 
cancellation of its axial thrust loads since each “hand” half of the herringbone gear has an 
oppositely directed thrust load.  Thus no thrust bearings are needed other than to locate the 
shaft axially.  This type of gear is much more expensive than a helical gear and tends to 
be used in large, high-power applications such as ship drives, where the frictional losses 
from axial loads would be prohibitive.  A herringbone gear is shown in Figure 9-15b.  Its 
face view is the same as the helical gear’s.

EFFICIENCY The general definition of efficiency is output power/input power ex-
pressed as a percentage.  A spur gearset can be 98 to 99% efficient.  The helical gearset is 

 

* Helical gears are either 
right- or left-handed.  Note 
that the gear of Figure 9-15a 
is left-handed because, if 
either face of the gear were 
placed on a horizontal sur-
face, its teeth would slope 
up to the left.

FIGURE 9-14
A spur gear
Courtesy of Martin
Sprocket and Gear Co.,
Arlington, TX

FIGURE 9-15
A helical gear and a herringbone gear

(a )  Helical gear

�

Helix
angle

( b )  Herringbone gear
FIGURE 9-16
Parallel axis helical
gears
Courtesy of Martin
Sprocket and Gear Co.,
Arlington, TX

View as a video
http://www.designof-

machinery.com/DOM/
helical_parallel.avi
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less efficient than the spur gearset due to sliding friction along the helix angle.  They also 
present a reaction force along the axis of the gear, which the spur gear does not.  Thus heli-
cal gearsets must have thrust bearings as well as radial bearings on their shafts to prevent 
them from pulling apart along the axis.  Some friction losses occur in the thrust bearings 
as well.  A parallel helical gearset will be about 96 to 98% efficient, and a crossed helical 
set only 50 to 90% efficient.  The parallel helical set (opposite hand but same helix angle) 
has line contact between the teeth and can handle high loads at high speeds.  The crossed 
helical set has point contact and a large sliding component that limit its application to 
light load situations.

If the gearsets have to be shifted in and out of mesh while in motion, spur gears are 
a better choice than helical, as the helix angle interferes with the axial shifting motion.  
(Herringbone gears of course cannot be axially disengaged.)  Truck transmissions often 
use spur gears for this reason, whereas automobile (standard) transmissions use helical, 
constant mesh gears for quiet running and have a synchromesh mechanism to allow shift-
ing.  These transmission applications will be described in a later section.

Worms and Worm Gears
If the helix angle is increased sufficiently, the result will be a worm, which has only one 
tooth wrapped continuously around its circumference a number of times, analogous to 
a screw thread.  This worm can be meshed with a special worm gear (or worm wheel), 
whose axis is perpendicular to that of the worm as shown in Figure 9-18.  Because the 
driving worm typically has only one tooth, the ratio of the gearset is equal to one over the 
number of teeth on the worm gear (see equations 9.5).  These teeth are not involutes over 
their entire face, which means that the center distance must be maintained accurately to 
guarantee conjugate action.  

Worms and wheels are made and replaced as matched sets.  These worm gearsets 
have the advantage of very high gear ratios in a small package and can carry very high 
loads especially in their single or double enveloping forms.  Single enveloping means that 
the worm gear teeth are wrapped around the worm.  Double enveloping sets also wrap the 
worm around the gear, resulting in an hourglass-shaped worm.  Both of these techniques 
increase the surface area of contact between worm and wheel, increasing load carrying 
capacity and also cost.  One trade-off in any wormset is very high sliding and thrust loads 
that make the wormset rather inefficient at 40 to 85% efficiency.

Perhaps the major advantage of the wormset is that it can be designed to be impos-
sible to backdrive.  A spur or helical gearset can be driven from either shaft, as a veloc-
ity step-up or step-down device.  While this may be desirable in many cases, if the load 
being driven must be held in place after the power is shut off, the spur or helical gearset 
will not do.  They will “backdrive.”  This makes them unsuitable for such applications as 
a jack to raise a car unless a brake is added to the design to hold the load.  The wormset, 
on the other hand, can only be driven from the worm.  The friction can be large enough 
to prevent it being backdriven from the worm wheel.  Thus it can be used without a brake 
in load-holding applications such as jacks and hoists.

FIGURE 9-17
Crossed axis helical
gears
Courtesy of the Boston
Gear Division of IMO
Industries, Quincy, MA

View as a video
http://www.designof-

machinery.com/DOM/
helical_crossed.avi

FIGURE 9-18
A worm and worm
gear (or worm wheel)
Courtesy of Martin
Sprocket and Gear Co.,
Arlington, TX

View as a video
http://www.designof-

machinery.com/DOM/
worm_gear_set.avi
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Rack and Pinion
If the diameter of the base circle of a gear is increased without limit, the base circle will 
become a straight line.  If the “string” wrapped around this base circle to generate the 
involute were still in place after the base circle’s enlargement to an infinite radius, the 
string would be pivoted at infinity and would generate an involute that is a straight line.  
This linear gear is called a rack.  Its teeth are trapezoids, yet are true involutes.  This fact 
makes it easy to create a cutting tool to generate involute teeth on circular gears, by ac-
curately machining a rack and hardening it to cut teeth in other gears.  Rotating the gear 
blank with respect to the rack cutter while moving the cutter axially back and forth across 
the gear blank will shape, or develop, a true involute tooth on the circular gear.

Figure 9-19 shows a rack and pinion.  The most common application of this device 
is in rotary to linear motion conversion or vice versa.  It can be backdriven, so it requires 
a brake if used to hold a load.  An example of its use is in rack-and-pinion steering in 
automobiles.  The pinion is attached to the bottom end of the steering column and turns 
with the steering wheel.  The rack meshes with the pinion and is free to move left and 
right in response to your angular input at the steering wheel.  The rack is also one link 
in a multibar linkage that converts the linear translation of the rack to the proper amount 
of angular motion of a rocker link attached to the front wheel assembly to steer the car.

Bevel and Hypoid Gears
BEVEL GEARS For right-angle drives, crossed helical gears or a wormset can be used.  
For any angle between the shafts, including 90�, bevel gears may be the solution.  Just as 
spur gears are based on rolling cylinders, bevel gears are based on rolling cones as shown 
in Figure 9-20.  The angle between the axes of the cones and the included angles of the 
cones can be any compatible values as long as the apices of the cones intersect.  If they 
did not intersect, there would be a mismatch of velocity at the interface.  The apex of each 
cone has zero radius, thus zero velocity.  All other points on the cone surface will have 
nonzero velocity.  The velocity ratio of the bevel gears is defined by equation 9.1a using 
the pitch diameters at any common point of intersection of cone diameters.

SPIRAL BEVEL GEARS If the teeth are parallel to the axis of the gear, it will be a 
straight bevel gear as shown in Figure 9-21.  If the teeth are angled with respect to the 
axis, it will be a spiral bevel gear (Figure 9-22), analogous to a helical gear.  The cone 
axes and apices must intersect in both cases.  The advantages and disadvantages of straight 

FIGURE 9-19
A rack and pinion Photo courtesy of Martin Sprocket and Gear Co., Austin, TX

Pitch
 line

Addendum

Dedendum

� Pressure angle

Standard full-depth involute rack

View as a video
http://www.designof-

machinery.com/DOM/
rack_and_pinion.avi
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bevel and spiral bevel gears are similar to those of the spur gear and helical gear, respec-
tively, regarding strength, quietness, and cost.   Bevel gear teeth are not involutes but are 
based on an “octoid” tooth curve.  They must be replaced in pairs (gearsets) as they are 
not universally interchangeable, and their center distances must be accurately maintained.

HYPOID GEARS If the axes between the gears are nonparallel and also nonintersect-
ing,  bevel gears cannot be used.  Hypoid gears will accommodate this geometry.  Hypoid 
gears are based on rolling hyperboloids of revolution as shown in Figure 9-23.  (The term 
hypoid is a contraction of hyperboloid.)  The tooth form is not an involute.  These hypoid 
gears are used in the final drive of front-engine, rear-wheel-drive automobiles, in order to 
lower the axis of the driveshaft below the center of the rear axle to reduce the “driveshaft 
hump” in the back seat.

Noncircular Gears
Noncircular gears are based on the rolling centrodes of a Grashof double-crank fourbar 
linkage.  Centrodes are the loci of the instant center I24 of the linkage and were described 
in Section 6.5.  Figure 6-15b shows a pair of centrodes that could be used for noncircular 
gears.  Teeth would be added to their circumferences in the same way that we add teeth 
to rolling cylinders for circular gears.  The teeth then act to guarantee no slip.  Figure 
9-24 shows a pair of noncircular gears based on a different set of centrodes than those of 
Figure 6-15b. (The gears of Figure 9-24 really do make complete revolutions in mesh!)  
Of course, the velocity ratio of noncircular gears is not constant.  That is their purpose, 
to provide a time-varying output function in response to a constant velocity input.  Their 
instantaneous velocity ratio is defined by equation 6.11f.  These devices are used in a va-
riety of rotating machinery such as printing presses where variation in the angular velocity 
of rollers is required on a cyclical basis.

( a )  Incorrect arrangement

FIGURE 9-20
Bevel gears are based on rolling cones.

(b )  Correct arrangements

Velocity
mismatch

Pitch dia.

Apices must
be coincident

Pitch dia.

�

FIGURE 9-21
Straight bevel gears
Courtesy of Martin
Sprocket and Gear,
Arlington, TX

FIGURE 9-22
Spiral bevel gears
Courtesy of the Boston
Gear Division of IMO
Industries, Quincy, MA

View as a video
http://www.designof-

machinery.com/DOM/
bevel_gears.avi
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Belt and Chain Drives
VEE BELTS A vee belt drive is shown in Figure 9-2.  Vee belts are made of elastomers 
(synthetic rubber) reinforced with synthetic or metallic cords for strength.  The pulleys, 
or sheaves, have a matching vee groove that helps to grip the belt as belt tension jams the 
belt into the vee.  Vee belts have a transmission efficiency of 95 to 98% when first installed. 
This will decrease to about 93% as the belt wears and slippage increases.  Because of slip, 
the velocity ratio is neither exact nor constant.  Flat belts running on flat and crowned 
pulleys are still used in some applications as well.  As discussed above, slip is possible 
with untoothed belts and phasing cannot be guaranteed.

SYNCHRONOUS (TIMING) BELTS The synchronous belt solves the phasing prob-
lem by preventing slip while retaining some of the advantages of vee belts and can cost 
less than gears or chains.  Figure 9-25a shows a synchronous (or toothed) belt and its 
special gearlike pulleys or sheaves.  These belts are made of a rubberlike material but 
are reinforced with steel or synthetic cords for higher strength and have molded-in teeth 
that fit in the grooves of the pulleys for positive drive.  They are capable of fairly high 
torque and power transmission levels and are frequently used to drive automotive engine 
camshafts as shown in Figure 9-25b.  They are more expensive than conventional vee 
belts and are noisier, but run cooler and last longer.  Their transmission efficiency is 98% 
and stays at that level with use.  Manufacturers’ catalogs provide detailed information on 
sizing both vee and synchronous belts for various applications.  See Bibliography.

CHAIN DRIVES are often used for applications where positive drive (phasing) is 
needed and large torque requirements or high temperature levels preclude the use of tim-
ing belts.  When the input and output shafts are far apart, a chain drive may be the most 

View as a video
http://www.designof-

machinery.com/DOM/
Noncircular_Gears.mp4

FIGURE 9-24 
Noncircular gears

Copyright © 2018 Robert L. Norton
All Rights Reserved( a )  Rolling hyperboloids of revolution  

FIGURE 9-23
Hypoid gears are based on hyperboloids of revolution.

(b )  Automotive hypoid final drive gears
       Courtesy of General Motors Co., Detroit, MI

Nonintersecting
    skew axes 

Input driveshaft

Wheel axle
output shaft
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economical choice.  Conveyor systems often use chain drives to carry the work along 
the assembly line.  Steel chain can be run through many (but not all) hostile chemical or 
temperature environments.  Many types and styles of chain have been designed for vari-
ous applications ranging from the common roller chain (Figure 9-26a) as used on your 
bicycle or motorcycle, to more expensive inverted tooth or “silent chain” designs (Figure 
9-26b) used for camshaft drives in expensive automobile engines.  Figure 9-27 shows a 
typical sprocket for a roller chain.  Note that the sprocket teeth are not the same shape as 
gear teeth and are not involutes.  The sprocket tooth shape is dictated by the need to match 
the contour of the portion of chain that nestles in the grooves.  In this case the roller chain 
has cylindrical pins that engage the sprocket.

One unique limitation of chain drive is something called “chordal action.”  The links 
of the chain form a set of chords when wrapped around the circumference of the sprocket.  

( a )  Standard synchronous belt
       Courtesy of T. B. Wood's Sons Co.,
        Chambersburg, PA 

FIGURE 9-25
Toothed synchronous belts and sprockets

(b )  Engine valve camshaft drive
       Courtesy of Chevrolet Division,

        General Motors Co., Detroit, MI

FIGURE 9-26
Chain types for power transmission  From Phelan, R. M. (1970). Fundamentals of Mechanical Design, 3rd ed., McGraw-Hill. NY.

(b )  Inverted-tooth or silent chain(a )  Roller chain
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As these links enter and leave the sprocket, they impart a “jerky” motion to the driven 
shaft that causes some variation, or ripple, on the output velocity.  Chain drives do not 
exactly obey the fundamental law of gearing.  If very accurate, constant output velocity 
is required, a chain drive may not be the best choice.

VIBRATION IN BELTS AND CHAINS You may have noticed when watching the 
operation of, for example, a vee belt such as your car engine’s fan belt, that the belt span 
between pulleys vibrates laterally, even when the belt’s linear velocity is constant.  If you 
consider the acceleration of a belt particle as it travels around the belt path, you will realize 
that its acceleration is theoretically zero while traversing the unsupported spans between 
sheaves at constant velocity; but when it enters the wrap of a sheave, it suddenly acquires 
a nonzero centripetal acceleration that remains essentially constant in magnitude while the 
belt particle is on the sheave.  Thus the acceleration of a belt particle has sudden jumps 
from zero to some constant magnitude or vice versa, four times per traverse for a simple 
two-sheave system such as that of Figure 9-2, and more if there are multiple sheaves.  This 
provides theoretically infinite pulses of jerk to the belt particles at these transitions, and 
this excites the lateral natural frequencies of the belt’s unsupported span between sheaves.  
The result is lateral vibration of the belt span that creates dynamic variation in belt tension 
and noise.  If you watch the fan belt on a running engine, you will notice that it is flapping 
between the sheaves.  This is due to the infinite jerk pulse as the belt leaves the sheave. 

9.7 SIMPLE GEAR TRAINS View the lecture video (37:54)†

A  gear train is any collection of two or more meshing gears.  A simple gear train is one 
in which each shaft carries only one gear, the most basic, two-gear example of which is 
shown in Figure 9-4.  The velocity ratio mV (sometimes called train ratio) of this gearset is 
found by expanding equation 9.5a.  Figure 9-28 shows a simple gear train with five gears 
in series.  The expression for this simple train’s velocity ratio is:
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which is the same as equation 9.5a for a single gearset.

Each gearset potentially contributes to the overall train ratio, but in any case of a 
simple (series) train, the numerical effects of all gears except the first and last cancel out.  
The train ratio of a simple train is always just the ratio of the first gear over the last.  Only 
the sign of the overall ratio is affected by the intermediate gears which are called idlers
because typically no power is taken from their shafts.  If all gears in the train are external 
and there is an even number of gears in the train, the output direction will be opposite that 
of the input.  If there is an odd number of external gears in the train, the output will be in 
the same direction as the input.  Thus a single, external idler gear of any diameter can be 
used to change the direction of the output gear without affecting its velocity.

A single gearset of spur, helical, or bevel gears is usually limited to a ratio of about 
10:1 simply because the gearset will become very large, expensive, and hard to package 
above that ratio if the pinion is kept above the minimum numbers of teeth shown in Table 

FIGURE 9-27
A roller chain sprocket
Courtesy of Martin
Sprocket and Gear Co.,
Arlington, TX

† http://www.designof-
machinery.com/DOM/
Gear_Trains.mp4



9

DESIGN OF MACHINERY 6ed      CHAPTER  9512

9-4a or b.  If the need is to get a larger train ratio than can be obtained with a single gearset, 
it is clear from equations 9.6 that the simple train will be of no help.

It is common practice to insert a single idler gear to change direction, but more than 
one idler is superfluous.  There is little justification for designing a gear train as is shown 
in Figure 9-28.  If the need is to connect two shafts that are far apart, a simple train of 
many gears could be used but will be more expensive than a chain or belt drive for the 
same application.  Most gears are not cheap.

9.8 COMPOUND GEAR TRAINS

To get a train ratio of greater than about 10:1 with spur, helical, or bevel gears (or any 
combination thereof), it is necessary to compound the train (unless an epicyclic train 
is used—see Section 9.9).  A compound train is one in which at least one shaft carries 
more than one gear.  This will be a parallel or series-parallel arrangement, rather than 
the pure series connections of the simple gear train.  Figure 9-29 shows a compound train 
of four gears, two of which, gears 3 and 4, are fixed on the same shaft and thus have the 
same angular velocity.

The train ratio is now:
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This can be generalized for any number of gears in the train as:

= ±
product of number of teeth on driver gears
product of number of teeth on driven gears

(9.8b)mV

Note that these intermediate ratios do not cancel and the overall train ratio is the 
product of the ratios of parallel gearsets. Thus a larger ratio can be obtained in a compound 
gear train despite the approximately 10:1 limitation on individual gearset ratios.  The plus 
or minus sign in equation 9.8b depends on the number and type of meshes in the train, 
whether external or internal.  Writing the expression in the form of equation 9.8a and 
carefully noting the sign of each mesh ratio in the expression will result in the correct 
algebraic sign for the overall train ratio.

Design of Compound Trains
If one is presented with a completed design of a compound gear train such as that in  
Figure 9-29, it is a trivial task to apply equation 9.8 and determine the train ratio.  It is not 
so simple to do the inverse, namely, design a compound train for a specified train ratio.

✍EXAMPLE 9-2

Compound Gear Train Design.

Problem:  Design a compound train for an exact train ratio of 180:1.  Find a combination of 
gears that will give that ratio.

FIGURE 9-28
A simple gear train
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Solution:

1 The first step is to determine how many stages, or gearsets, are necessary.  Simplicity is the 
mark of good design, so try the smallest possibility first.  Take the square root of 180, which 
is 13.416.  So, two stages each of that ratio will give approximately 180:1.  However, this is 
larger than our design limit of 10:1 for each stage, so try three stages.  The cube root of 180 is 
5.646, well within 10, so three stages will do.

2 If we can find some integer ratio of gear teeth that will yield 5.646:1, we can simply use three 
of them to design our gearbox.  Using a lower limit of 12 teeth for the pinion and trying several 
possibilities we get the gearsets shown in Table 9-6 as possibilities.

3 The number of gear teeth obviously must be an integer.  The closest to an integer in Table 9-6 
is the 79.05 result.  Thus a 79:14 gearset comes closest to the desired ratio.  Applying this 
ratio to all three stages will yield a train ratio of (79/14)3 = 179.68:1, which is within 0.2% of 
180:1.  This may be an acceptable solution provided that the gearbox is not being used in a 
timing application.  If the purpose of this gearbox is to step down the motor speed for a crane 
hoist, for example, an approximate ratio will be adequate.

 4 Many gearboxes are used in production machinery to drive camshafts or linkages from a master 
driveshaft and must have the exact ratio needed or else the driven device will eventually get out 
of phase with the rest of the machine.  If that were the case in this example, then the solution 
found in step 3 would not be good enough.  We will need to redesign it for exactly 180:1.  Since 
our overall train ratio is an integer, it will be simplest to look for integer gearset ratios.  Thus 
we need three integer factors of 180.  The first solution above gives us a reasonable starting 
point in the cube root of 180, which is 5.646.  If we round this up (or down) to an integer, we 
may be able to find a suitable combination.

FIGURE 9-29
A compound gear train
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TABLE  9-6
Example 9-2
Possible Gearsets for 180:1
Three-Stage Compound
Train
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 5 Two compounded stages of 6:1 together give 36:1.  Dividing 180 by 36 gives 5.  Thus the stages 
shown in Table 9-7 provide one possible exact solution.

This solution, shown in Figure 9-30, meets our design criteria.  It has the correct, exact 
ratio; the stages are all less than 10:1; and no pinion has less than 14 teeth, which avoids 
undercutting if 25� pressure angle gears are used (Table 9-4b).

Design of Reverted Compound Trains
In the preceding example the input and output shaft locations are in different locations.  
This may well be acceptable or even desirable in some cases, depending on other packag-
ing constraints in the overall machine design.  Such a gearbox, whose input and output 
shafts are not coincident, is called a nonreverted compound train.  In some cases, such 
as automobile transmissions, it is desirable or even necessary to have the output shaft con-
centric with the input shaft.  This is referred to as “reverting the train” or “bringing it back 
onto itself.”  The design of a reverted compound train is more complicated because of 
the additional constraint that the center distances of the stages must be equal.  Referring to 
Figure 9-31, this constraint can be expressed in terms of their pitch radii, pitch diameters, 
or numbers of teeth (provided that all gears have the same diametral pitch).

FIGURE 9-30
Three-stage compound gear train for  train ratio mV = 1:180  (gear ratio mG = 180:1)
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TABLE  9-7
Example 9-2
Exact Solution for 180:1
Three-Stage Compound
Train
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+ = + (9.9a)2 3 4 5r r r r

+ = +or (9.9b)2 3 4 5d d d d

If pd is the same for all gears, equation 9.4c can be substituted in equation 9.9b and the 
diametral pitch terms will cancel giving

+ = + (9.9c)2 3 4 5N N N N

✍EXAMPLE 9-3

Reverted Gear Train Design.

Problem:  Design a reverted compound train for an exact train ratio of 18:1.

Solution:

 1 Though it is not at all necessary to have integer gearset ratios in a compound train (only integer 
tooth numbers), if the train ratio is an integer, it is easier to design with integer ratio gearsets.

 2 The square root of 18 is 4.2426, well within our 10:1 limitation.  So two stages will suffice in 
this gearbox.

 3 If we could form two identical stages, each with a ratio equal to the square root of the overall 
train ratio, the train would be reverted by default.  Table 9-8 shows that there are no reasonable 
combinations of tooth ratios that will give the exact square root needed.  Moreover, this square 
root is not a rational number, so we cannot get an exact solution by this approach.

FIGURE 9-31
A reverted compound gear train
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4.2426
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TABLE  9-8
Example 9-3
Possible Gearsets for 18:1
Two-Stage Reverted
Compound Train 

View as a video
http://www.designof-

machinery.com/DOM/
gear_train.avi
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4 Instead, let’s factor the train ratio.  All numbers in the factors 9 x 2 and 6 x 3 are less than 10, 
so they are acceptable on that basis.  It is probably better to have the ratios of the two stages 
closer in value to one another for packaging reasons, so the 6 x 3  choice will be tried.

5 Figure 9-31 shows a two-stage reverted train.  Note that, unlike the nonreverted train in Figure 
9-29, the input and output shafts are now in-line and cantilevered; thus each must have double 
bearings on one end for moment support and a good bearing ratio as was defined in Section 
2.18.

6 Equation 9.8 states the relationship for its compound train ratio.  In addition, we have the 
constraint that the center distances of the stages must be equal.  Use equation 9.9c and set it 
equal to an arbitrary constant K to be determined.

+ = + = ( )2 3 4 5N N N N K a

7 We wish to solve equations 9.8 and 9.9c simultaneously.  We can separate the terms in equation 
9.8 and set them each equal to one of the stage ratios chosen for this design.







1
6
6 ( )
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N
N
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 8 Separating the terms in equation (a):

+ =
+ =

( )
( )

2 3

4 5

N N K d
N N K e

9 Substituting equation (b) in (d) and equation (c) in (e) yields:

+ = =
+ = =
6 7 ( )
3 4 ( )

2 2 2

4 4 4

N N K N f
N N K N g

 10 To make equations (f) and (g) compatible, K must be set to at least the lowest common multiple 
of 7 and 4, which is 28.  This yields values of N2 = 4 teeth and N4 = 7 teeth.

 11 Since a four-tooth gear will have unacceptable undercutting, we need to increase our value of 
K sufficiently to make the smallest pinion large enough.

 12 A new value of K = 28 x 4 = 112 will increase the four-tooth gear to a 16-tooth gear, which is 
acceptable for a 25� pressure angle (Table 9-4b).  With this assumption of K =112, equations 
(b), (c), ( f ), and (g)  can be solved simultaneously to give:


 



 


16 96
( )

28 84

2 3

4 5

N N
h

N N

  which is a viable solution for this reverted train.

The same procedure outlined here can be applied to the design of reverted trains involving 
several stages such as the helical gearbox in Figure 9-32.
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An Algorithm for the Design of Compound Gear Trains
The examples of compound gear train design presented above used integer train ratios.  If 
the required train ratio is noninteger, it is more difficult to find a combination of integer 
tooth numbers that will give the exact train ratio.  Sometimes an irrational gear ratio may 
be needed for such tasks as conversion of English to metric measure within a machine tool 
gear train or when � is a factor in the ratio.  Then the closest approximation to the desired 
irrational train ratio that can be contained in a reasonable package is needed.

DilPare[1] and Selfridge and Riddle[2] have devised algorithms to solve this problem.  
Both require a computer for their solution.  The Selfridge and Riddle approach will be 
described here.  It is applicable to two- or three-stage compound trains.  A low limit Nmin
and a high limit Nmax on the acceptable number of teeth for any gear must be specified.  
An error tolerance � expressed as a percentage of the desired train ratio R (made always 
> 1) is also selected.  For a two-stage compound train the ratio will be as shown in equa-
tion 9.5c expanded according to equation 9.8b with the signs neglected for this analysis.


 
 (9.10a)3 5

2 4
R m

N N
N NG

The range of acceptable ratios is determined by the choice of error tolerance �.
= − ε

= + ε
(9.10b)

R R

R R

low

high

� � (9.10c)3 5

2 4
R

N N
N N

Rlow high

Then, since the tooth numbers must be integers:

FIGURE 9-32
A commercial, three-stage reverted compound gearbox
Courtesy of Boston Gear Division of IMO Industries, Quincy, MA
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( )≤ (9.10d)3 5 2 4N N INT N N Rhigh

( )=Let: (9.10e)2 4P INT N N Rhigh

Also from equation 9.10c,

( )≥ (9.10f)3 5 2 4N N INT N N Rlow

( )= +Let: 1 (9.10g)2 4Q INT N N Rlow

rounding up to the next integer.

A search is done on all values of a temporary parameter K defined as Q � K ≤ P to 
see if a usable product pair can be found.  Because of multiplicative symmetry, the largest 
value of N3 that need be considered is 

� (9.11a)3N P


Let: (9.11b)N Pp

The smallest value of N3 that need be considered occurs when K is at its smallest 
value Q and N5 takes its largest value Nhigh.  (N3 is also constrained by Nlow.)

� (9.11c)3N
Q
Nhigh

=
+ −⎛

⎝
⎜

⎞

⎠
⎟Let:

1
(9.11d)N INT

Q N
Nm
high

high

which also rounds up to the next integer.

The search finds those values of N3 that meet Nm � N3 � Np and N5 = K / N3.  The 
computer code for this algorithm is shown in Table 9-9.  The complete program COM-
POUND.TK is downloadable with this book, encoded for use with the TKSolver program.  
The code can be easily rewritten for other equation solvers or compilers.

This algorithm is extendable to three-stage compound gear trains, and the two-stage 
version can be modified to force reversion of the train by adding a center distance calcula-
tion for each gearset and a comparison to a selected tolerance on center distance.  These 
files are downloadable as TRIPLE.TK and REVERT.TK, respectively.  These programs each 
generate a table of all solutions that meet the stated error criteria within the tooth limits 
specified.  

✍EXAMPLE 9-4

Compound Gear Train Design to Approximate an Irrational Ratio.

Problem:  Find a pair of gearsets which when compounded will give a train ratio of  
3.14159:1 with an error of < 0.0005%.  Limit gears to tooth numbers between 15 
and 100.  Also determine the tooth numbers for the smallest error possible if the 
two gearsets must be reverted.
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eps = eps1
counter = 0

redo:
S = 1
R_high = Ratio + eps
R_low  = Ratio  - eps
Nh3 = INT( Nmax^2 / R_high )
Nh4 = INT( Nmax / SQRT ( R_high))
For pinion1 = Nmin to Nh4

Nhh = MIN ( Nmax, INT (Nh3 / pinion1))
For pinion2 = pinion1 to Nhh

Q = INT( pinion1 * pinion2 * R_low) + 1
P =  INT( pinion1 * pinion2 * R_high)

IF ( P < Q ) THEN GOTO np2
Nm = MAX ( Nmin, INT ( (Q + Nmax - 1) / Nmax ))
Np = SQRT(P)
For K = Q to P

For gear1 = Nm to Np
IF (MOD( K, gear1 ) <> 0 ) Then GOTO ng1
gear2 = K / gear1
error = ( Ratio - K / ( pinion1 * pinion2) )

IF error > eps THEN GOTO ng1

pin1[S] = pinion1
pin2[S] = pinion2
gear1[S] = gear1
gear2[S] = gear2
error[S] = ABS(error)
ratio1[S] = gear1 / pinion1
ratio2[S] = gear2 / pinion2
ratio[S] =  ratio1[S]  * ratio2[S]
S = S + 1

ng1: Next gear1
Next K

np2: Next pinion2
Next pinion1

IF (Length (pin1) = 0 ) Then GOTO again ELSE Return
again:

eps = eps * 2
counter = counter + 1
GOTO redo

" Ratio is the desired gear train ratio and must be > 1.  Nmin is the minimum number of teeth acceptable on any pinion.
" Nmax is the maximum number of teeth acceptable on any gear.  eps1 is initial estimate of the error tolerance on Ratio.
" eps is the tolerance used in the computation, initialized to eps1 but modified (doubled) until solutions are found.
" counter indicates how many times the initial tolerance was doubled.  Note that a large initial value on eps1 will cause long
" computation times whereas a too-small value (that gives no solutions) will quickly be increased and lead to a faster solution.
" pinion1, pinion2, gear1, and gear2 are tooth numbers for solution.

" initialize the array pointer
" initialize tolerance bands around ratio
" initialize tolerance bands around ratio
" intermediate value for computation
" intermediate value for computation
" loop for first pinion

" loop for 2nd pinion
" intermediate value for computation
" intermediate value for computation

" loop for first gear
" not a match - skip to next gear1
" find second gear tooth number
" find error in ratio

" is out of bounds - skip to next gear1

" increment array pointer

" have a solution

" initialize error bound
" initialize counter

" intermediate value for computation

" double eps value and try again

"check to see if is within current tolerance

" else load solution into arrays

" test to see if any solution occurred with current eps value

" reentry point for additional tries at solution

" skip to next pinion2 if true
" intermediate value for computation
" intermediate value for computation
" loop for parameter K

TABLE  9-9 Algorithm for Design of Two-Stage Compound Gear Trains
From Author’s downloadable TKSolver file Compound.tk.  Based on Reference [2]  
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Solution:

1 Input data to the algorithm are R = 3.141 59, Nlow = 15, Nhigh = 100, initial � = 3.141 59 E-5.

 2 The TKSolver file COMPOUND.TK (see Table 9-9) was used to generate the nonreverted solu-
tions shown in Table 9-10.

 3 The best nonreverted solution (7th row in Table 9-10) has an error in ratio of 7.849 9 E-06 
(0.000 249 87%) giving a ratio of 3.141 582 with gearsets of 29:88 and 85:88 teeth.

 4 The TKSolver file REVERT.TK was used to generate the reverted solutions shown in Table 9-11.

 5 The best reverted solution has an error in ratio of –9.619 8 E-04 (–0.030 62%) giving a ratio 
of 3.142 562 with gearsets of 22:39 and 22:39 teeth.  

 6 Note that imposing the additional constraint of reversion has reduced the number of possible 
solutions effectively to one (the two solutions in Table 9-11 differ by a factor of 2 in tooth 
numbers but have the same error) and the error is much greater than that of even the worst of 
the 11 nonreverted solutions in Table 9-10.

9.9 EPICYCLIC OR PLANETARY GEAR TRAINS

The conventional gear trains described in the previous sections are all one-degree-of-
freedom (DOF) devices.  Another class of gear train has wide application, the epicyclic or 

* Note that this gear train 
combination gives an ap-
proximation for � that is 
exact to 4 decimal places.  
But, this example asks 
for an approximation to 5 
decimal places within a tol-
erance of 5 ten-thousandths 
of one percent.  This ratio 
is off by one thousandth 
of a percent of the desired 
5-place value.

† This is the closest pos-
sible approximation to 
a 5-place value for � in 
a nonreverted gear train

within the given limitations 
on gear sizes.

44 78 1.773 44 78 1.773 3.142 562 -9.619 8 E-04
22 39 1.773 22 39 1.773 3.142 562 -9.619 8 E-04

TABLE  9-11 Reverted Gearsets and Errors in Ratio for Example 9-4
N2 N3 N4 N5Ratio1 Ratio 2 mV Error

43 77 1.791 57 100 1.754 3.141 575 1.513 3 E-05
43 85 1.977 56 89 1.589 3.141 611 2.129 6 E-05
41 75 1.829 46 79 1.717 3.141 569 2.054 1 E-05
33 68 2.061 61 93 1.525 3.141 580 1.026 8 E-05
29 88 3.034 85 88 1.035 3.141 582† 7.849 9 E-06
28 85 3.036 86 89 1.035 3.141 611 2.129 6 E-05
25 51 2.040 50 77 1.540 3.141 600* 1.000 0 E-05
23 75 3.261 82 79 0.963 3.141 569 2.054 1 E-05
22 62 2.818 61 68 1.115 3.141 580 1.026 8 E-05
17 60 3.529 91 81 0.890 3.141 564 2.568 2 E-05
17 54 3.176 91 90 0.989 3.141 564 2.568 2 E-05

TABLE  9-10 Nonreverted Gearsets and Errors in Ratio for Example 9-4
N2 N3 N4 N5Ratio1 Ratio2 mV Error
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planetary train.  This is a two-DOF device.  Two inputs are needed to obtain a predict-
able output.  In some cases, such as the automotive differential, one input is provided (the 
driveshaft) and two frictionally coupled outputs are obtained (the two driving wheels).  
In other applications such as automatic transmissions, aircraft engine to propeller reduc-
tions, and in-hub bicycle transmissions, two inputs are provided (one usually being a zero 
velocity, i.e., a fixed gear), and one controlled output results.

Figure 9-33a shows a conventional, one-DOF gearset in which link 1 is immobilized 
as the ground link.  Figure 9-33b shows the same gearset with link 1 now free to rotate as 
an arm that connects the two gears.  Now only the joint O2 is grounded and the system 
DOF = 2.  This has become an epicyclic train with a sun gear and a planet gear orbiting 
around the sun, held in orbit by the arm.  Two inputs are required.  Typically, the arm 
and the sun gear will each be driven in some direction at some velocity.  In many cases, 
one of these inputs will be zero velocity, i.e., a brake applied to either the arm or the sun 
gear.  Note that a zero velocity input to the arm merely makes a conventional train out of 
the epicyclic train as shown in Figure 9-33a.  Thus the conventional gear train is simply 
a special case of the more complex epicyclic train, in which its arm is held stationary.

In this simple example of an epicyclic train, the only gear left to take an output from, 
after putting inputs to sun and arm, is the planet.  It is a bit difficult to get a usable output 
from this orbiting gear as its pivot is moving.  A more useful configuration is shown in 
Figure 9-34 to which a ring gear has been added.  This ring gear meshes with the planet 
and pivots at O2, so it can be easily tapped as the output member.  Most planetary trains 
will be arranged with ring gears to bring the planetary motion back to a grounded pivot.  
Note how the sun gear, ring gear, and arm are all brought out as concentric hollow shafts 
so that each can be accessed to tap its angular velocity and torque as either an input or 
an output.

Epicyclic trains come in many varieties.  Levai[3] cataloged 12 possible types of basic 
epicyclic trains as shown in Figure 9-35.  These basic trains can be connected together to 
create a larger number of trains having more degrees of freedom.  This is done in automo-
tive automatic transmissions as described in a later section.

( a )  Conventional gearset

FIGURE 9-33
Conventional gearsets are special cases of planetary or epicyclic gearsets

(b )  Planetary or epicyclic gearset
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While it is relatively easy to visualize the power flow through a conventional gear 
train and observe the directions of motion for its member gears, it is very difficult to 
determine the behavior of a planetary train by observation.  We must do the necessary 
calculations to determine its behavior and may be surprised at the often counterintuitive 

FIGURE 9-34
Planetary gearset with ring gear used as output
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FIGURE 9-35
Levai's 12 possible epicyclic trains [3]
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View as a video
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results.  Since the gears are rotating with respect to the arm and the arm itself has motion, 
we have a velocity difference problem here that requires equation 6.5b be applied to this 
problem.  Rewriting the velocity difference equation 6.5b in terms of angular velocities 
specific to this system, we get:

ω = ω +ω (9.12)/gear arm gear arm

Equations 9.12 and 9.5a are all that is needed to solve for the velocities in an epicyclic 
train, provided that the tooth numbers and two input conditions are known.

The Tabular Method
One approach to the analysis of velocities in an epicyclic train is to create a table which 
represents equation 9.12 for each gear in the train.

✍EXAMPLE 9-5

Epicyclic Gear Train Analysis by the Tabular Method.

Problem:  Consider the train in Figure 9-34, with the tooth numbers and initial conditions:

Sun gear N2 = 40-tooth external gear
Planet gear  N3 = 20-tooth external gear
Ring gear  N4 = 80-tooth internal gear
Input to arm  200 rpm clockwise
Input to sun  100 rpm clockwise

We wish to find the absolute output angular velocity of the ring gear.

Solution:

1 The solution table is set up with a column for each term in equation 9.12 and a row for each 
gear in the train.  It will be most convenient if we can arrange the table so that meshing gears 
occupy adjacent rows.  The table for this method, prior to data entry, is shown in Figure 9-36.

2 Note that the gear ratios are shown straddling the rows of gears to which they apply.  The gear 
ratio column is placed next to the column containing the velocity differences �gear/arm because 
the gear ratios only apply to the velocity difference.  The gear ratios cannot be directly applied 
to the absolute velocities in the �gear column.

FIGURE 9-36
Table for the solution of planetary gear trains

Gear # Gear
ratio

� armgear� gear/arm�= +

1 2 3
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3 The solution strategy is simple but is fraught with opportunities for careless errors.  Note that 
we are solving a vector equation with scalar algebra and the signs of the terms denote the sense 
of the � vectors which are all directed along the Z axis.  Great care must be taken to get the 
signs of the input velocities and of the gear ratios correct in the table, or the answer will be 
wrong.  Some gear ratios may be negative if they involve external gearsets, and others will be 
positive if they involve an internal gear.  We have both types in this example.

4 The first step is to enter the known data as shown in Figure 9-37 which in this case are the 
arm velocity (in all rows) and the absolute velocity of gear 2 in column 1.  The gear ratios can 
also be calculated and placed in their respective locations.  Note that these ratios should be 
calculated for each gearset in a consistent manner, following the power flow through the train.  
That is, starting at gear 2 as the driver, it drives gear 3 directly.  This makes its ratio –N2/N3,
or input over output, not the reciprocal.  This ratio is negative because the gearset is external.
Gear 3 in turn drives gear 4 so its ratio is +N3/N4.  This is a positive ratio because of the in-
ternal gear.

 5 Once any one row has two entries, the value for its remaining column can be calculated from 
equation 9.12, which is shown in the top row of Figures 9-37 and 9-38.  Once any one value in 
the velocity difference column (column 3) is found, the gear ratios can be applied to calculate 
all other values in that column.  Finally, the remaining rows can be calculated from equation 
9.12 to yield the absolute velocities of all gears in column 1.  These computations are shown in 
Figure 9-38 which completes the solution.

 6 The overall train value for this example can be calculated from the table and is from arm to 
ring gear  +1.25:1 and from sun gear to ring gear +2.5:1.

FIGURE 9-37
Given data for planetary gear train from Example 9-5 placed in solution table
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FIGURE 9-38
Solution for planetary gear train from Example 9-5
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In this example, the arm velocity was given.  If it is to be found as the output, then it must 
be entered in the table as an unknown, x, and the equations solved for that unknown.

FERGUSON’S PARADOX Epicyclic trains have several advantages over conventional 
trains including higher train ratios in smaller packages, reversion by default, and simul-
taneous, concentric, bidirectional outputs available from a single unidirectional input.  
These features make planetary trains popular as automatic transmissions in automobiles 
and trucks, etc.

The so-called Ferguson paradox of Figure 9-39 illustrates all these features of the 
planetary train.  It is a compound epicyclic train with one 20-tooth planet gear (gear 5) 
carried on the arm and meshing simultaneously with three sun gears.  These sun gears 
have 100 teeth (gear 2), 99 teeth (gear 3), and 101 teeth (gear 4), respectively.  The center 
distances between all sun gears and the planet are the same despite the slightly different 
pitch diameters of each sun gear.  This is possible because of the properties of the involute 
tooth form as described in Section 9.2.  Each sun gear will run smoothly with the planet 
gear. Each gearset will merely have a slightly different pressure angle.

✍EXAMPLE 9-6

Analyzing Ferguson’s Paradox by the Tabular Method.

Problem:  Consider Ferguson’s paradox train in Figure 9-39, which has the following tooth 
numbers and initial conditions:

Sun gear  # 2  N2 = 100-tooth external gear
Sun gear  # 3 N3 = 99-tooth external gear
Sun gear  # 4  N4 = 101-tooth external gear
Planet gear  N5 = 20-tooth external gear
Input to sun  # 2 0 rpm
Input to arm  100 rpm counterclockwise

FIGURE 9-39
Ferguson's paradox compound planetary gear train

2 3 4

5
Planet 20t

Arm

Sun # 4 - 101t

Sun # 3 - 99t

Sun # 2 - 100t

Arm

BearingBearing
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 Sun gear 2 is fixed to the frame, thus providing one input (zero velocity) to the 
system.  The arm is driven at 100 rpm counterclockwise as the second input.  Find 
the angular velocities of the two outputs that are available from this compound 
train, one from gear 3 and one from gear 4, both of which are free to rotate on the 
main shaft.  

Solution:

 1 The tabular solution for this train is set up in Figure 9-40 which shows the given data.  Note 
that the row for gear 5 is repeated for clarity in applying the gear ratio between gears 5 and 4.

 2 The known input values of velocity are the arm angular velocity and the zero absolute velocity 
of gear 2.

 3 The gear ratios in this case are all negative because of the external gear sets, and their values 
reflect the direction of power flow from gear 2 to 5, then 5 to 3, and 5 to 4 in the second branch.

 4 Figure 9-41 shows the calculated values added to the table.  Note that for a counterclockwise 
100 rpm input to the arm, we get a counterclockwise 1 rpm output from gear 4 and a clockwise 
1 rpm output from gear 3, simultaneously.

This result accounts for the use of the word paradox to describe this train.  Not only 
do we get a much larger ratio (100:1) than we could from a conventional train with gears 
of 100 and 20 teeth, but we have our choice of output directions!

Automotive automatic transmissions use compound planetary trains, which are al-
ways in mesh, and which give different ratio forward speeds, plus reverse, by simply 
engaging and disengaging brakes on different members of the train.  The brake provides 
zero velocity input to one train member.  The other input is from the engine.  The output 
is thus modified by the application of these internal brakes in the transmission according 
to the selection of the operator (Park, Reverse, Neutral, Drive, etc.). An example of a 
modern, eight-speed automatic transmission is shown in Figure 9-45.

FIGURE 9-40
Given data for Ferguson's paradox planetary gear train from Example 9-6
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The Formula Method
It is not necessary to tabulate the solution to an epicyclic train.  The velocity difference 
formula can be solved directly for the train ratio.  We can rearrange equation 9.12 to solve 
for the velocity difference term.  Then, let �F represent the angular velocity of the first 
gear in the train (chosen at either end), and �L represent the angular velocity of the last 
gear in the train (at the other end).

For the first gear in the system:
ω = ω −ω (9.13a)/F arm F arm

For the last gear in the system:
ω = ω −ω (9.13b)/L arm L arm

Dividing the last by the first:
ω
ω

=
ω −ω
ω −ω

= (9.13c)/

/
RL arm

F arm

L arm

F arm

This gives an expression for the fundamental train value R which defines a velocity 
ratio for the train with the arm held stationary.  The leftmost side of equation 9.13c in-
volves only the velocity difference terms that are relative to the arm.  This fraction is equal 
to the ratio of the products of tooth numbers of the gears from first to last in the train as 
defined in equation 9.8b which can be substituted for the leftmost side of equation 9.13c.

= ± =
ω −ω
ω −ω

product of number of teeth on driver gears
product of number of teeth on driven gears

(9.14)R L arm

F arm

This equation can be solved for any one of the variables on the right side provided 
that the other two are defined as the two inputs to this two-DOF train.  Either the veloci-
ties of the arm plus one gear must be known or the velocities of two gears, the first and 
last, as so designated, must be known.  Another limitation of this method is that both the 
first and last gears chosen must be pivoted to ground (not orbiting), and there must be a 
path of meshes connecting them, which may include orbiting planet gears.  Let us use this 
method to again solve the Ferguson paradox of Example 9-6. 

FIGURE 9-41
Solution to Ferguson's paradox planetary gear train from Example 9-6
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✍EXAMPLE 9-7

Analyzing Ferguson’s Paradox by the Formula Method.

Problem:  Consider the same Ferguson paradox train as in Example 9-6 which has the follow-
ing tooth numbers and initial conditions (see Figure 9-37):

Sun gear #2  N2 = 100-tooth external gear
Sun gear #3 N3 = 99-tooth external gear
Sun gear #4 N4 = 101-tooth external gear
Planet gear  N5 = 20-tooth external gear
Input to sun #2 0 rpm
Input to arm  100 rpm counterclockwise

Sun gear 2 is fixed to the frame, providing one input (zero velocity) to the system.  
The arm is driven at 100 rpm CCW as the second input.  Find the angular velocities 
of the two outputs that are available from this compound train, one from gear 3 and 
one from gear 4, both of which are free to rotate on the main shaft.  

Solution:

1 We will have to apply equation 9.14 twice, once for each output gear.  Taking gear 3 as the last 
gear in the train with gear 2 as the first, we have:

ω

= = =

= + ω = ω =

100 99 20
( )

100 0 ?

2 3 5N N N
a

arm F L

2 Substituting in equation 9.14 we get:

−
⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟
=
ω −ω
ω −ω

−⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟
=
ω −
−

ω = −

100
20

20
99

100
0 100

( )

1.01

2

5

5

3

3

3

N
N

N
N

b

L arm

F arm

3 Now taking gear 4 as the last gear in the train with gear 2 as the first, we have:

ω

= = =

= + ω = ω =

100 101 20
( )

100 0 ?

2 4 5N N N
c

arm F L

4 Substituting in equation 9.14, we get:

−
⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟
=
ω −ω
ω −ω

−⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟
=
ω −
−

ω = +

100
20

20
101

100
0 100

( )

0.99

2

5

5

4

4

4

N
N

N
N

d

L arm

F arm

These are the same results as were obtained with the tabular method.
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9.10 EFFICIENCY OF GEAR TRAINS

The general definition of efficiency is output power/input power.  It is expressed as a frac-
tion (decimal %) or as a percentage.  The efficiency of a conventional gear train (simple or 
compound) is very high.  The power loss per gearset is only about 1 to 2% depending on 
such factors as tooth finish and lubrication.  A gearset’s basic efficiency is termed E0.  An 
external gearset will have an E0 of about 0.98 or better and an external-internal gearset 
about 0.99 or better.  When multiple gearsets are used in a conventional simple or com-
pound train, the overall efficiency of the train will be the product of the efficiencies of all 
its stages.  For example, a two-stage train with both gearset efficiencies of E0 = 0.98 will 
have an overall efficiency of � = 0.982 = 0.96.

Epicyclic trains, if properly designed, can have even higher overall efficiencies than 
conventional trains.  But, if the epicyclic train is poorly designed, its efficiency can be so 
low that it will generate excessive heat and may even be unable to operate at all.  This 
strange result can come about if the orbiting elements (planets) in the train have high losses 
that absorb a large amount of “circulating power” within the train.  It is possible for this 
circulating power to be much larger than the throughput power for which the train was 
designed, resulting in excessive heating or stalling.  The computation of the overall ef-
ficiency of an epicyclic train is much more complicated than the simple multiplication in-
dicated above that works for conventional trains.  Molian[4] presents a concise derivation.

To calculate the overall efficiency � of an epicyclic train, we need to define a basic 
ratio � which is related to the fundamental train value R defined in equation 9.13c:

≥ ρ = ρ =if 1, then else 1 (9.15)R R R

This constrains � to represent a speed increase rather than a decrease regardless of which 
way the gear train is intended to operate.

For the purpose of calculating torque and power in an epicyclic gear train, we can con-
sider it to be a “black box” with three concentric shafts as shown in Figure 9-42.  These 
shafts are labeled 1, 2, and arm and connect to either “end” of the gear train and to its 
arm, respectively.  Two of these shafts can serve as inputs and the third as output in any 
combination.  The details of the gear train’s internal configuration are not needed if we 
know its basic ratio � and the basic efficiency E0 of its gearsets.  All the analysis is done 
relative to the arm of the train since the internal power flow and losses are only affected 
by rotation of shafts 1 and 2 with respect to the arm, not by rotation of the entire unit.  
We also model it as having a single planet gear for the purpose of determining E0 on the 
assumption that the power and the losses are equally divided among all gears actually in 
the train.  Counterclockwise torques and angular velocities are considered positive.  Power 
is the product of torque and angular velocity, so a positive power is an input (torque and 
velocity in same direction) and negative power is an output.

If the gear train is running at constant speed or is changing speed too slowly to sig-
nificantly affect its internal kinetic energy, then we can assume static equilibrium and the 
torques will sum to zero.

+ + = 0 (9.16)1 2T T Tarm

The sum of power in and out must also be zero, but the direction of power flow affects the 
computation. If the power flows from shaft 1 to shaft 2,  then:

FIGURE 9-42
Generic epicyclic

�arm

1 2

arm

Gearbox

Tarm

��
T�

��
T�
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( ) ( )ω −ω + ω −ω = 0 (9.17a)0 1 1 2 2E T Tarm arm

If the power flows from shaft 2 to shaft 1,  then:

( ) ( )ω −ω + ω −ω = 0 (9.17b)1 1 0 2 2T E Tarm arm

If the power flows from shaft 1 to 2, equations 9.16 and 9.17a are solved simultaneously 
to obtain the system torques.  If the power flows in the other direction, then equations 9.16 
and 9.17b are used instead.  Substitution of equation 9.13c in combination with equation 
9.15 introduces the basic ratio � and after simultaneous solution yields:

=
ρ −

= −
ρ
ρ −

power flow from 1 to 2
1

(9.18a)

1
(9.18b)

1
0

2
0

0

T
T
E

T
E T
E

arm

arm

=
ρ−

= −
ρ
ρ−

power flow from 2 to 1 (9.19a)

(9.19b)

1
0

0

2
0

T
E T
E

T
T
E

arm

arm

Once the torques are found, the input and output power can be calculated using the 
known input and output velocities (from a kinematic analysis as described above) and the 
efficiency then determined from output power/input power.  

There are eight possible cases depending on which shaft is fixed, which shaft is 
input, and whether the basic ratio � is positive or negative.  These cases are shown in 
Table 9-12[4] which includes expressions for the train efficiency as well as for the torques.  
Note that the torque on one shaft is always known from the load required to be driven or 
the power available from the driver, and this is needed to calculate the other two torques.

✍EXAMPLE 9-8

Determining the Efficiency of an Epicyclic Gear Train.*

Problem:  Find the overall efficiency of the epicyclic train shown in Figure 9-43.  The basic ef-
ficiency E0 is 0.9928 and the gear tooth numbers are: NA= 82t, NB = 84t, NC = 86t, 
ND = 82t, NE = 82t, and NF = 84t.  Gear A (shaft 2) is fixed to the frame, providing 
a zero velocity input.  The arm is driven as the second input.  

Solution:

 1 Find the basic ratio � for the gear train using equations 9.14 and 9.15.  Note that gears B and 
C have the same velocity as do gears D and E, so their ratios are 1 and thus are omitted.

( )( )
( )( )ρ = = = ≅

84 82 84
82 86 82

1764
1763

1.000567 ( )N N N
N N N

aF D B

E C A

2 The combination of � > 1, shaft 2 fixed and input to the arm corresponds to Case 2 in Table 
9-12, giving an efficiency of:

* This example is adapted 
from reference [5].
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( ) ( )
η =

ρ−
ρ−

=
−

−
= =

1 0.9928 1.000567 1
1.000567 0.9928

0.073 7.3% ( )0

0

E
E

b

 3 This is a very low efficiency which makes this gearbox essentially useless.  About 93% of the 
input power is being circulated within the gear train and wasted as heat.  
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TABLE  9-12 Torques and Efficiencies in an Epicyclic Train [4]
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FIGURE 9-43
Epicyclic Train for Example 9-8

Copyright © 2018 Robert L. Norton:  All Rights Reserved
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The above example points out a problem with epicyclic gear trains that have basic 
ratios near unity.  They have low efficiency and are useless for transmission of power.  
Large speed ratios with high efficiency can only be obtained with trains having large 
basic ratios.[5]

9.11 TRANSMISSIONS View the lecture video (41:06)†

COMPOUND REVERTED GEAR TRAINS are commonly used in manual (nonautomatic) 
automotive transmissions to provide user-selectable ratios between the engine and the 
drive wheels for torque multiplication (mechanical advantage).  Modern gearboxes usually 
have from four to seven forward speeds and one reverse.  Most transmissions of this type 
use helical gears for quiet operation.  These gears are not moved into and out of engage-
ment when shifting from one speed to another except for reverse.  Rather, the desired ratio 
gears are selectively locked to the output shaft by synchromesh mechanisms as in Figure 
9-44 which shows a four-speed, manually shifted, synchromesh automotive transmission. 

The input shaft is at top left.  The input gear is always in mesh with the leftmost gear 
on the countershaft at the bottom.  This countershaft has several gears integral with it, each 
of which meshes with a different output gear that is freewheeling on the output shaft.  The 
output shaft is concentric with the input shaft, making this a reverted train, but the input 
and output shafts only connect through the gears on the countershaft except in “top gear” 
(fourth speed), for which the input and output shafts are directly coupled together with a 
synchromesh clutch for a 1:1 ratio.

The synchromesh clutches are beside each gear on the output shaft and are partially 
hidden by the shifting collars that move them left and right in response to the driver’s hand 

FIGURE 9-44
Four-speed manual synchromesh automobile transmission   Source: Crouse, W. H. (1980). Automotive Mechanics, 8th ed., 
McGraw-Hill, New York, NY, p. 480.  Reprinted with permission.

† http://www.designofma-
chinery.com/DOM/Gear_
Transmissions.mp4

View Top Gear
http://www.designof-

machinery.com/DOM/
manual_transmission_

high_gear.avi

View Low Gear

http://www.designof-
machinery.com/DOM/
manual_transmission_

reverse.avi

View Reverse

http://www.designof-
machinery.com/DOM/
manual_transmission_

low_gear.avi
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on the shift lever.  These clutches act to lock one gear to the output shaft at a time to pro-
vide a power path from input to output of a particular ratio.  The arrows on the figure show 
the power path for third-speed forward, which is engaged.  Reverse gear, on the lower 
right, engages an idler gear which is physically shifted into and out of mesh at standstill.

PLANETARY OR EPICYCLIC TRAINS are commonly used in automatic-shifting au-
tomotive transmissions as shown in Figure 9-45.  The input shaft, which couples to the 
engine’s crankshaft, is one input to the multi-DOF transmission that consists of several 
stages of epicyclic trains.  Automatic transmissions can have any number of ratios.  Au-
tomotive examples historically have had from one (early) to ten (current) forward speeds.  
Truck and bus automatic transmissions may have more. 

Several epicyclic gearsets can be seen near the center of the eight-speed transmis-
sion in Figure 9-45.  They are controlled by hydraulically operated multidisk clutches 
and brakes within the transmission that impart zero velocity (second) inputs to various 
elements of the train to create one of eight forward velocity ratios plus reverse in this 
particular example.  The clutches force zero relative velocity between the two elements 
engaged, and the brakes force zero absolute velocity on the element.  Since all gears are 
in constant mesh, the transmission can be shifted under load by switching the internal 
brakes and clutches on and off.  They are controlled by a combination of inputs that in-
clude driver selection (PRND), road speed, throttle position, engine load and speed, and 
other factors that are automatically monitored and computer controlled.  Some modern 
transmission controllers use artificial intelligence techniques to learn and adapt to the 
operator’s style of driving by automatically resetting the shift points for gentle or aggres-
sive performance based on driving habits.  Some allow manual control of shift points.

 At the left side of Figure 9-45 is a turbine-like fluid coupling between engine and 
transmission, called a torque converter, a cutaway of which is shown in Figure 9-46.  
This device allows sufficient slip in the coupling fluid to let the engine idle with the trans-
mission engaged and the vehicle’s wheels stopped.  The engine-driven impeller blades, 

impeller
statorturbine

lock-up clutch
clutches

 and brakes
planetary

 trains

FIGURE 9-45 
ZF eight-speed automatic transmission Photo: Stefan Krause, License: FAL  
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running in oil, transmit torque by pumping oil past a set of stationary stator blades and 
against the turbine blades attached to the transmission input shaft.  The stator blades, 
which do not move, serve to redirect the flow of oil exiting the impeller blades to a more 
favorable angle relative to the turbine blades.  This redirection of flow is responsible for 
the torque multiplication that gives the device its name, torque converter.  Without the 
stator blades, it is just a fluid coupling that will transmit, but not multiply, the torque.  In a 
torque converter, the maximum torque increase of about 2x occurs at stall when the trans-
mission’s turbine is stopped and the engine-driven impeller is turning, creating maximum 
slip between the two.  This torque boost aids in accelerating the vehicle from rest when its 
inertia must be overcome.  The torque multiplication decreases to one at zero slip between 
impeller and turbine.  However, the device cannot reach a zero slip condition on its own.  
It will always operate with a few percent of slip.  This wastes energy in steady-state op-
eration, as when the vehicle is traveling at constant speed on level ground.  To conserve 
this energy, most torque converters are now equipped with an electromechanical lockup 
clutch that engages above about 30 mph in top gear and locks the stator to the impeller, 
making the transmission efficiency then close to 100%.  When speed drops below a set 
speed, or when the transmission downshifts, the clutch is disengaged, allowing the torque 
converter to again perform its function.     

FIGURE 9-46 
Cutaways of torque converters  Photo courtesy of Mannesmann Sachs AG 
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(a)   Schematic cross-section (b )  Torque converter
Copyright © 2018 Robert L. Norton:  All Rights Reserved
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Figure 9-47a shows a schematic of a four-speed automatic transmission.  Its three 
epicyclic stages, two clutches (C1, C2), and three band brakes (B1, B2, B3) are depicted.  
Figure 9-47b shows an activation table of the brake-clutch combinations for each speed 
ratio of this transmission.[6]

An historically interesting example of an epicyclic train used in a manually shifted 
gearbox is the Ford Model T transmission shown and described in Figure 9-48.  Over 
9 million were produced from 1909 to 1927, before the invention of the synchromesh 
mechanism shown in Figure 9-44.  Conventional (compound-reverted) transmissions as 
used in most other automobiles of that era (and into the 1930s) were unaffectionately 
known as “crashboxes,” the name being descriptive of the noise made when shifting un-
synchronized gears into and out of mesh while in motion.  Henry Ford had a better idea, that 
he copied from F.W. Lanchester.*  Ford’s Model T planetary gears were in constant mesh.  
The two forward speeds and one reverse were achieved by engaging/disengaging a clutch 
and band brakes in various combinations via foot pedals.  These provided second inputs to 
the epicyclic train which, like Ferguson’s paradox, gave bidirectional outputs, all without 
any “crashing” of gear teeth.  This Lanchester/Model T transmission is the precursor to all 
modern automatic transmissions which replace the T’s foot pedals with automated hydraulic 
operation of the clutches and brakes.

CONTINUOUSLY VARIABLE TRANSMISSION (CVT) A transmission that has no 
gears, the CVT uses two sheaves or pulleys that adjust their axial widths simultaneously 
in opposite directions to change the ratio of the belt drive that runs in the sheaves.  This 
concept was invented by Daimler in 1896 and was used on some very early automobiles 
as the final drive and transmission combined.  It is finding renewed application in the 21st 
century in the quest for higher-efficiency vehicle drives.  Figure 9-49 shows a commercial 
automobile CVT that uses a steel, segmented “belt” of vee cross section that runs on ad-
justable width sheaves.  To change the transmission ratio, one sheave’s width is opened 
and the other closed in concert such that the effective pitch radii deliver the desired ratio.  
It thus has an infinity of possible ratios, varying continuously between two limits.  The 
ratio is adjustable while running under load.  The CVT shown is designed and computer 
controlled to keep the vehicle’s engine running at essentially constant speed at an rpm 
that delivers the best fuel economy, regardless of vehicle speed.  Similar designs of CVTs 
that use conventional rubber vee belts have long been used in low-power machinery such 
as snow blowers and lawn tractors. 

* Frederick W. Lanchester, 
a major automotive pioneer, 
invented the compound epi-
cyclic manual transmission 
and patented it in England 
in 1898, well before Ford 
made the Model T (from 
1909 to 1927).  Ford made 
money by the millions and 
Lanchester died poor.  As a 
side note, contemporary re-
ports claim that Henry Ford 
was never able to master the 
double-clutching required to 
properly shift a “crashbox 
transmission” of the period.  
This factoid is claimed 
to be the reason he chose 
Lanchester’s constant mesh, 
planetary transmission for 
his Model T.  Ransom E. 
Olds had also used this 
transmission in his Curved-
Dash Olds well before Ford 

Range

First
Second
Third
Fourth
Reverse

C1 C2 B1 B2 B3
x
x
x
x x

x
x

x

x x

Clutch/Brake Activation 

( a )  Schematic of 4-speed automatic transmission

FIGURE 9-47
Schematic of automatic transmission from Figure 9-45  Adapted from reference [6]

(b )  Clutch / brake activation table
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9.12 DIFFERENTIALS

A differential is a device that allows a difference in velocity (and displacement) between 
two elements.  This requires a 2-DOF mechanism such as an epicyclic gear train.  Perhaps 
the most common application of differentials is in the final drive mechanisms of wheeled 
land vehicles as shown in Figure P9-3.  When a four-wheeled vehicle turns, the wheels 
on the outside of the turn must travel farther than the inside wheels due to their different 
turning radii as shown in Figure 9-50.  Without a differential mechanism between the 
inner and outer driving wheels, the tires must slip on the road surface for the vehicle to 

FIGURE 9-48 
Ford Model T epicyclic transmission

The input from the engine is to arm 2.
Gear 6 is rigidly attached to the output
shaft which drives the wheels.  Gears 3,
4, and 5 rotate at the same speed.

There are two forward speeds.  Low
(1:2.75) is selected by engaging band
brake B2 to lock gear 7 to the frame.
Clutch C is disengaged.

High (1:1) is selected by engaging
clutch C which locks the input shaft
directly to the output shaft.

Reverse (1:-4) is obtained by engaging
brake band B1 to lock gear 8 to the
frame.  Clutch C is disengaged.

3
4

5

2

6
7

8
B1 B2 B3

input
shaft

output
shaft

N3 = 27
N4 = 33
N5 = 24
N6 = 27
N7 = 21
N8 = 30

B1 B2 B3

clutch C

brake bandsplanets

sun gears

gear teeth

gear-train brakes car brake

6
8

7

key

arm

input shaft

6

8 6

7

Copyright © 2018 Robert L. Norton:  All Rights Reserved

input shaft

output shaft

variable-width sheave

steel, segmented "vee" belt

variable-width sheave

FIGURE 9-49 
Continuously Variable Transmission (CVT)  Courtesy of ZF Getriebe GmbH, Saabruken, Germany
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* Non-full-time 4WD is 
common in trucks and 
differs from AWD in that it 
lacks the center differential, 
making it usable only when 
the road is slippery.  Any 
required differences in  
rotational velocity between 
rear and front driven wheels 
is then accommodated by 
tire slip.  On dry pave-
ment, a non-full-time 4WD 
vehicle will not handle 
well and can be dangerous. 
Unlike vehicles with AWD, 
which is always engaged, 
non-full-time 4WD vehicles 
normally operate in 2WD 
and require driver action to 
obtain 4WD.   Manufactur-
ers caution against shifting 
these vehicles into 4WD 
unless traction is poor.   

turn.  If the tires have good traction, a nondifferentiated drive train will attempt to go in 
a straight line at all times and will fight the driver in turns.  In a “full-time” four-wheel 
-drive* (4WD) vehicle (sometimes called “all wheel drive” or AWD) an additional differ-
ential is needed between the front and rear wheels to allow the wheel velocities at each end 
of the vehicle to vary in proportion to the traction developed at either end of the vehicle 
under slippery conditions.  Figure 9-51 shows an AWD automotive chassis with its three 
differentials.  In this example, the center differential is packaged with the transmission 
and front differential but effectively is in the driveshaft between the front and rear wheels 
as shown in Figure 9-50.  Differentials are made with various gear types.  For rear axle 
applications, a bevel gear epicyclic is commonly used as shown in Figure 9-52a and in 
Figure P9-3.  For center and front differentials, helical or spur gear arrangements are often 
used as in Figure 9-52b and c.  

An epicyclic train used as a differential has one input and two outputs.  Taking the 
rear differential in an automobile as an example, its input is from the driveshaft and its 
outputs are to the right and left wheels.  The two outputs are coupled through the road via 
the traction (friction) forces between tires and pavement.  The relative velocity between 
each wheel can vary from zero when both tires have equal traction and the car is not 
turning, to twice the epicyclic train’s input speed when one wheel is on ice and the other 
has traction.  Front or rear differentials split the torque equally between their two wheel 
outputs.  Since power is the product of torque and angular velocity, and power out can-
not exceed power in, the power is split between the wheels according to their velocities.  
When traveling straight ahead (both wheels having traction), half the power goes to each 
wheel.  As the car turns, the faster wheel gets more power and the slower one less.  When 
one wheel loses traction (as on ice), it gets all the power (50% torque x 200% speed), and 
the wheel with traction gets zero power (50% torque x 0% speed).  This is why 4WD or 
AWD is needed in slippery conditions.  In AWD, the center differential splits the torque 
between front and rear in some proportion.  If one end of the car loses traction, the other 
may still be able to control it provided it still has traction.

FIGURE 9-50
Turning behavior of a four-wheel vehicle  Source: Courtesy of Tochigi Fuji Sangyo, Japan
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LIMITED SLIP DIFFERENTIALS Because of their behavior when one wheel loses 
traction, various differential designs have been created to limit the slip between the two 
outputs under those conditions.  These are called limited slip differentials and typically 
provide some type of friction device between the two output gears to transmit some torque 
but still allow slip for turning.  Some use a fluid coupling between the gears, and others 
use spring-loaded friction disks or cones as can be seen in Figure 9-52a.  Some use an 
electrically controlled clutch within the epicyclic train to lock it up on demand for off-
road applications as shown in Figure 9-52b.  The TORSEN® (from TORque SENsing) 
differential of Figure 9-53, invented by V. Gleasman, uses wormsets whose resistance to 
backdriving provides torque coupling between the outputs.  The lead angle of the worm 
determines the percent of torque transmitted across the differential.  These differentials are 
used in many AWD vehicles including the Army’s High Mobility Multipurpose Wheeled 
Vehicle (HMMWV) known as the “Humvee” or “Hummer.” 

9.13 REFERENCES
1 DilPare, A. L. (1970). “A Computer Algorithm to Design Compound Gear Trains for Arbitrary 

Ratio.” J. of Eng. for Industry, 93B(1), pp. 196-200.

 2 Selfridge, R. G., and D. L. Riddle. (1978). “Design Algorithms for Compound Gear Train 
Ratios.” ASME Paper: 78-DET-62.

 3 Levai, Z. (1968). “Structure and Analysis of Planetary Gear Trains.” Journal of Mechanisms, 3,  
pp. 131-148.

 4 Molian, S. (1982). Mechanism Design: An Introductory Text.  Cambridge University Press: Cam-
bridge, p. 148.

FIGURE 9-51
An all-wheel-drive (AWD) chassis and drive train  Source: Courtesy of Tochigi Fuji Sangyo, Japan

FIGURE 9-52
Differentials
Courtesy of Tochigi Fuji
Sangyo, Japan

(a )

(b )

( c )

View a Video Free 

Spinning

http://www.designof-
machinery.com/DOM/
differential_normal.avi

View a Video 

Locked
http://www.designof-

machinery.com/DOM/
differential_locked.avi
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Useful websites for information on gear, belt, or chain drives

http://www.howstuffworks.com/gears.htm

http://www.efunda.com/DesignStandards/gears/gears_introduction.cfm

http://www.gates.com/index.cfm

http://www.bostongear.com/

http://www.martinsprocket.com/

9.15 PROBLEMS‡

*†9-1 A 24-tooth gear has AGMA standard full-depth involute teeth with diametral pitch of 5.  
Calculate the pitch diameter, circular pitch, addendum, dedendum, tooth thickness, and 
clearance.

†9-2 A 40-tooth, 10 pd gear has AGMA standard full-depth involute teeth.  Calculate pitch 
diameter, circular pitch, addendum, dedendum, tooth thickness, and clearance.

†9-3 A 30-tooth, 12 pd gear has AGMA standard full-depth involute teeth.  Calculate the 
pitch diameter, circular pitch, addendum, dedendum, tooth thickness, and clearance.

9-4 Using any available string, some tape, a pencil, and a drinking glass or tin can, generate 
and draw an involute curve on a piece of paper.  With your protractor, show that all 
normals to the curve are tangent to the base circle.

( a )  TORSEN® Type 1 differential (b ) TORSEN® Type 2 differential
FIGURE 9-53
TORSEN® limited-slip differentials    Source: Courtesy of JTEKT Torsen Inc., Rochester, NY 

* Answers in Appendix F.

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

‡ Problem figures are pro-
vided as downloadable PDF 
files with same names as the 
figure number.  
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 *9-5 A spur gearset must have pitch diameters of 2.5 and 8 in.  What is the largest standard 
tooth size, in terms of diametral pitch pd, that can be used without having any interference 
or undercutting?  Find the number of teeth on the hob-cut gear and pinion for this pd:
a. For a 20� pressure angle.
b. For a 25� pressure angle.  (Note that diametral pitch need not be an integer.)

 *†9-6 Design a simple, spur gear train for a ratio of –7:1 and diametral pitch of 10.  Specify 
pitch diameters and numbers of teeth.  Calculate the contact ratio.

 *†9-7 Design a simple, spur gear train for a ratio of +6:1 and diametral pitch of 5.  Specify 
pitch diameters and numbers of teeth.  Calculate the contact ratio.

 †9-8 Design a simple, spur gear train for a ratio of –7:1 and diametral pitch of 8.  Specify 
pitch diameters and numbers of teeth.  Calculate the contact ratio.

 †9-9 Design a simple, spur gear train for a ratio of +6.5:1 and diametral pitch of 5.  Specify 
pitch diameters and numbers of teeth.  Calculate the contact ratio.

 *†9-10 Design a compound, spur gear train for a ratio of –80:1 and diametral pitch of 12.  
Specify pitch diameters and numbers of teeth.  Sketch the train to scale.

 †9-11 Design a compound, spur gear train for a ratio of 50:1 and diametral pitch of 8.  Specify 
pitch diameters and numbers of teeth.  Sketch the train to scale.

 *†9-12 Design a compound, spur gear train for a ratio of 120:1 and diametral pitch of 5.  
Specify pitch diameters and numbers of teeth.  Sketch the train to scale.

 †9-13 Design a compound, spur gear train for a ratio of –250:1 and diametral pitch of 9.  
Specify pitch diameters and numbers of teeth.  Sketch the train to scale.

 *†9-14 Design a compound, reverted, spur gear train for a ratio of  28:1 and diametral pitch of 
8.  Specify pitch diameters and numbers of teeth.  Sketch the train to scale.

 †9-15 Design a compound, reverted, spur gear train for a ratio of 40:1 and diametral pitch of 
8.  Specify pitch diameters and numbers of teeth.  Sketch the train to scale.

 *†9-16 Design a compound, reverted, spur gear train for a ratio of 65:1 and diametral pitch of 
8.  Specify pitch diameters and numbers of teeth.  Sketch the train to scale.

 †9-17 Design a compound, reverted, spur gear train for a ratio of 7:1 and diametral pitch of 4.  
Specify pitch diameters and numbers of teeth.  Sketch the train to scale.

 †9-18 Design a compound, reverted, spur gear train for a ratio of 12:1 and diametral pitch of 
6.  Specify pitch diameters and numbers of teeth.  Sketch the train to scale.

 *†9-19 Design a compound, reverted, spur gear transmission that will give two shiftable ratios 
of +3:1 forward and –4.5:1 reverse with diametral pitch of 6.  Specify pitch diameters 
and numbers of teeth.  Sketch the train to scale.  

 †9-20 Design a compound, reverted, spur gear transmission that will give two shiftable ratios 
of +5:1 forward and –3.5:1 reverse with diametral pitch of 6.  Specify pitch diameters 
and numbers of teeth.  Sketch the train to scale.

* Answers in Appendix F.

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

 

Note: All problem figures are provided as PDF files, and some are also provided as animated Working Model 
files.  PDF filenames are the same as the figure number.  
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* Answers in Appendix F.

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

*†9-21 Design a compound, reverted, spur gear transmission that will give three shiftable ra-
tios of +6:1, +3.5:1 forward, and –4:1 reverse with diametral pitch of 8.  Specify pitch 
diameters and numbers of teeth.  Sketch the train to scale.

†9-22 Design a compound, reverted, spur gear transmission that will give three shiftable 
ratios of +4.5:1, +2.5:1 forward, and –3.5:1 reverse with diametral pitch of 5.  Specify 
pitch diameters and numbers of teeth.  Sketch the train to scale.

†9-23 Design the rolling cones for a –3:1 ratio and a 60� included angle between the shafts.  
Sketch the train to scale.

†9-24 Design the rolling cones for a –4.5:1 ratio and a 40� included angle between the shafts.  
Sketch the train to scale.

*†9-25 Figure P9-1 shows a compound planetary gear train (not to scale).  Table P9-1 gives 
data for gear numbers of teeth and input velocities.  For the row(s) assigned, find the 
variable represented by a question mark.

*†9-26 Figure P9-2 shows a compound planetary gear train (not to scale).  Table P9-2 gives 
data for gear numbers of teeth and input velocities.  For the row(s) assigned, find the 
variable represented by a question mark.

FIGURE P9-1
Planetary gearset for Problem 9-25 and 9-81
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TABLE  P9-1 Data for Problem 9-25 and 9-81
N6N5N4N3N2 � � �

Table P9-0 Part 2
Topic/Problem Matrix

9.11 Transmissions
9-19, 9-20, 9-21,  
9-22, 9-34, 9-44
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FIGURE P9-2
Compound planetary gear train for Problem 9-26
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TABLE  P9-2 Data for Problem 9-26
N6N5N4N3N2 � � �

*†9-27 Figure P9-3 shows a planetary gear train used in an automotive rear-end differential 
(not to scale).  The car has wheels with a 16-in rolling radius and is moving forward 
in a straight line at 55 mph.  The engine is turning 2500 rpm.  The transmission is in 
direct drive (1:1) with the driveshaft.  
a.   What are the rear wheels’ rpm and the gear ratio between ring and pinion?
b.  As the car hits a patch of ice, the right wheel speeds up to 800 rpm.  What is the 

speed of the left wheel?  Hint: The average of both wheels’ rpm is a constant.
c. Calculate the fundamental train value of the epicyclic stage.

†9-28 Design a speed-reducing planetary gearbox to be used to lift a 5-ton load 50 ft with a 
motor that develops 20 lb-ft of torque at its operating speed of 1750 rpm.  The available 
winch drum has no more than a 16-in diameter when full of its steel cable.  The speed 
reducer should be no larger in diameter than the winch drum.  Gears of no more than 
about 75 teeth are desired, and diametral pitch needs to be no smaller than 6 to stand 

* Answers in Appendix F.

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
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the stresses.  Make multiview sketches of your design and show all calculations.  How 
long will it take to raise the load with your design?

*†9-29 Determine all possible two-stage compound gear combinations that will give an ap-
proximation to the Naperian base 2.71828.  Limit tooth numbers to between 18 and 80.  
Determine the arrangement that gives the smallest error.

†9-30 Determine all possible two-stage compound gear combinations that will give an ap-
proximation to 2�.  Limit tooth numbers to between 15 and 90.  Determine the arrange-
ment that gives the smallest error.

†9-31 Determine all possible two-stage compound gear combinations that will give an 
approximation to �.�.  Limit tooth numbers to between 20 and 100.  Determine the ar-
rangement that gives the smallest error.

†9-32 Determine all possible two-stage compound gear combinations that will give an ap-
proximation to /�.�.  Limit tooth numbers to between 20 and 100.  Determine the 
arrangement that gives the smallest error.

†9-33 Figure P9-4a shows a reverted clock train.  Design it using 25� nominal pressure 
angle gears of 24 pd having between 12 and 150 teeth.  Determine the tooth numbers 
and nominal center distance.  If the center distance has a manufacturing tolerance of 
± 0.006 in, what will the pressure angle and backlash at the minute hand be at each 
extreme of the tolerance?

 †9-34 Figure P9-4b shows a three-speed shiftable transmission.  Shaft F, with the cluster of 
gears E, G, and H, is capable of sliding left and right to engage and disengage the three 
gearsets in turn.  Design the three reverted stages to give output speeds at shaft F of 
150, 350, and 550 rpm for an input speed of 450 rpm to shaft D.

* Answers in Appendix F.

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

FIGURE P9-3
Automotive differential planetary gear train for Problem 9-27
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*†9-35 Figure P9-5a shows a compound epicyclic train used to drive a winch drum. Gear A is 
driven at 18 rpm CW and gear D is fixed to ground.  Tooth numbers are in the figure.  
Find speed and direction of the drum.  What is train efficiency for gearsets E0 = 0.97?

 †9-36 Figure P9-5b shows a compound epicyclic train with its tooth numbers.  The arm is 
driven CCW at 20 rpm.  Gear A is driven CW at 40 rpm.  Find speed of ring gear D.  

*†9-37 Figure P9-6a shows an epicyclic train with its tooth numbers.  The arm is driven CCW 
at 50 rpm and gear A on shaft 1 is fixed to ground.  Find speed of gear D on shaft 2.  
What is the efficiency of this train if the basic gearsets have E0 = 0.96?

FIGURE P9-4
Problems 9-33 to 9-34  Source: P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission     

( a ) ( b )

FIGURE P9-5

Problems 9-35 to 9-36 

(a ) ( b )

Source: P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission

* Answers in Appendix F.

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
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 †9-38 Figure P9-6b shows a differential with its tooth numbers.  Gear A is driven CCW at 10 
rpm and gear B is driven CW at 24 rpm.   Find the speed of gear D.  

 *†9-39 Figure P9-7a shows a gear train containing both compound-reverted and epicyclic 
stages.  Tooth numbers are in the figure.  The motor is driven CW at 1500 rpm.  Find 
the speeds of shafts 1 and 2.  

 †9-40 Figure P9-7b shows an epicyclic train used to drive a winch drum.  The arm is driven at 
250 rpm CCW and gear A, on shaft 2, is fixed to ground.  Find speed and direction of 
the drum on shaft 1.  What is train efficiency if the basic gearsets have E0 = 0.98?

* Answers in Appendix F.

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

FIGURE P9-6
Problems 9-37 to 9-38 

(a ) ( b )

Source:  P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission

FIGURE P9-7
Problems 9-39 to 9-40  

(a ) (b )

Source: P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission



9

DESIGN OF MACHINERY 6ed      CHAPTER  9546

*†9-41 Figure P9-8 shows an epicyclic train with its tooth numbers. Gear 2 is driven at 600 
rpm CW and gear D is fixed to ground.  Find speed and direction of gears 1 and 3.  

†9-42 Figure P9-9 shows a compound epicyclic train. Shaft 1 is driven at 300 rpm CCW and 
gear A is fixed to ground.  The tooth numbers are indicated in the figure.  Determine the 
speed and direction of shaft 2.  

*†9-43 Figure P9-10 shows a compound epicyclic train. Shaft 1 is driven at 60 rpm.  Tooth 
numbers are in the figure.  Find speed and direction of gears G and M.  

†9-44 Calculate the ratios in the Model T transmission shown in Figure 9-48 and prove that 
the values shown in the figure’s sidebar are correct.

†9-45 Do Problem 7-57.

* Answers in Appendix F.

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

FIGURE P9-8
Problem 9-41 Source: P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission

FIGURE P9-9
Problem 9-42  Source: P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission
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 9-46 Figure P9-11 shows an involute generated from a base circle of radius rb.  Point A is 
simultaneously on the base circle and the involute.  Point B is any point on the involute 
curve and point C is on the base circle where a line drawn from point B is tangent to 
the base circle.  Point O is the center of the base circle.  The angle �B (angle BOC) 
is known as the involute pressure angle corresponding to point B (not to be confused 
with the pressure angle of two gears in mesh, which is defined in Figure 9-6).  The 
angle AOB is known as the involute of �B and is often designated as inv �B.  Using the 
definition of the involute tooth form and Figure 9-5, derive an equation for inv �B as a 
function of �B alone.

 9-47 Using data and definitions from Problem 9-46, show that when point B is at the pitch 
circle the involute pressure angle is equal to the pressure angle of two gears in mesh.

 9-48 Using data and definitions from Problem 9-46, and with point B at the pitch circle 
where the involute pressure angle �B is equal to the pressure angle � of two gears in 
mesh, derive equation 9.4b.

 9-49 Using Figures 9-6 and 9-7, derive equation 9.2, which is used to calculate the length of 
action of a pair of meshing gears.

 †9-50 Backlash of 0.03 mm measured on the pitch circle of a 40-mm-diameter pinion in mesh 
with a 100-mm-diameter gear is desired.  If the gears are standard, full-depth, with 25� 
pressure angles, by how much should the center distance be increased?

 †9-51 Backlash of 0.0012 in measured on the pitch circle of a 2.000-in-diameter pinion in 
mesh with a 5.000-in-diameter gear is desired.  If the gears are standard, full-depth, 
with 25� pressure angles, by how much should the center distance be increased?

 †9-52 A 22-tooth gear has standard full-depth involute teeth with a module of 6.  Calculate 
the pitch diameter, circular pitch, addendum, dedendum, tooth thickness, and clearance 
using the AGMA specifications in Table 9-1 substituting m for 1/pd.

 
† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

FIGURE P9-10
Problem 9-43 Source: P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission
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† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

 †9-53 A 40-tooth gear has standard full-depth involute teeth with a module of 3.  Calculate 
the pitch diameter, circular pitch, addendum, dedendum, tooth thickness, and clearance 
using the AGMA specifications in Table 9-1 substituting m for 1/pd.

 †9-54 A 30-tooth gear has standard full-depth involute teeth with a module of 2.  Calculate 
the pitch diameter, circular pitch, addendum, dedendum, tooth thickness, and clearance 
using the AGMA specifications in Table 9-1 substituting m for 1/pd.

 †9-55 Determine the minimum number of teeth on a pinion with a 20� pressure angle for the 
following gear-to-pinion ratios such that there will be no tooth-to-tooth interference: 
1:1, 2:1, 3:1, 4:1, 5:1.

 †9-56 Determine the minimum number of teeth on a pinion with a 25� pressure angle for the 
following gear-to-pinion ratios such that there will be no tooth-to-tooth interference: 
1:1, 2:1, 3:1, 4:1, 5:1.

 †9-57 A pinion with a 3.000-in pitch diameter is to mesh with a rack.  What is the largest 
standard tooth size, in terms of diametral pitch, that can be used without having any 
interference? a. For a 20� pressure angle     b. For a 25� pressure angle

 †9-58 A pinion with a 75-mm pitch diameter is to mesh with a rack.  What is the largest 
standard tooth size, in terms of metric module, that can be used without having any 
interference? a. For a 20� pressure angle     b. For a 25� pressure angle

 †9-59 In order to have a smooth-running gearset it is desired to have a contact ratio of at least 
1.5.  If the gears have a pressure angle of 25� and gear ratio of 4, what is the minimum 
number of teeth on the pinion that will yield the required minimum contact ratio?

 †9-60 In order to have a smooth-running gearset it is desired to have a contact ratio of at least 
1.5.  If the gears have a pressure angle of 25� and a 20-tooth pinion, what is the mini-
mum gear ratio that will yield the required minimum contact ratio?

 †9-61 Calculate and plot the train ratio of a noncircular gearset, as a function of input angle, 
that is based on the centrodes of Figure 6-15b.  The link length ratios are  
L1/L2 = 1.60, L3/L2 = 1.60, and L4/L2 = 1.00.

 †9-62 Repeat problem 9-61 for a fourbar linkage with link ratios of L1/L2 = 1.80,  
L3/L2 = 1.80, and L4/L2 = 1.00.

 †9-63 Figure 9-35b (repeated here) shows (schematically) a compound epicyclic train.  The 
tooth numbers are 50, 25, 35, and 90 for gears 2, 3, 4, and 5, respectively.  The arm is 
driven at 180 rpm CW and gear 5 is fixed to ground.  Determine the speed and direc-
tion of gear 2.  What is the efficiency of this train if the basic gearsets have E0 = 0.98?

 †9-64 Figure 9-35h (repeated here) shows (schematically) a compound epicyclic train.  The 
tooth numbers are 80, 20, 25, and 85 for gears 2, 3, 4, and 5, respectively.  Gear 2 is 
driven at 200 rpm CCW.  Determine the speed and direction of the arm if gear 5 is fixed 
to ground.  What is the efficiency of this train if the basic gearsets have E0 = 0.98?

 †9-65 Figure 9-35i (repeated here) shows (schematically) a compound epicyclic train.  The 
tooth numbers are 24, 18, 20, and 90 for gears 2, 3, 4, and 5, respectively.  The arm is 
driven at 100 rpm CCW and gear 2 is fixed to ground.  Determine the speed and direc-
tion of gear 5.  What is the efficiency of this train if the basic gearsets have E0 = 0.98?

 9-66 Using Figure 9-8, derive an equation for the operating pressure angle of two gears 
in mesh as a function of their base circle radii, the standard center distance, and the 
change in center distance.
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*†9-67 A pinion and gear in mesh have base circle radii of 1.8126 and 3.6252 in, respectively.  
If they were cut with a standard pressure angle of 25˚, determine their operating pres-
sure angle if the standard center distance is increased by 0.062 in.

†9-68 A pinion and gear in mesh have base circle radii of 1.35946 and 2.26577 in, respectively.  
If they have a standard center distance of 4.000 in, determine the standard pressure angle 
and the operating pressure angle if the standard center distance is increased by 0.050 in.

*†9-69 A 25-tooth pinion meshes with a 60-tooth gear.  They have a diametral pitch of 4, a 
pressure angle of 20˚, and AGMA full-depth involute profiles.  Find the gear ratio, cir-
cular pitch, base pitch, pitch diameters, standard center distance, addendum, dedendum, 
whole depth, clearance, outside diameters. and contact ratio of the gearset.

†9-70 A 15-tooth pinion meshes with a 45-tooth gear.  They have a diametral pitch of 5, a 
pressure angle of 25˚, and AGMA full-depth involute profiles.  Find the gear ratio, cir-
cular pitch, base pitch, pitch diameters, standard center distance, addendum, dedendum, 
whole depth, clearance, outside diameters.     and contact ratio of the gearset.

*†9-71 Design a compound, spur gear train that will reduce the speed of a 900-rpm synchronous 
AC motor to exactly 72 revolutions per hour with the output rotating in the same direction 
as the motor.  Use gears with a pressure angle of 25� and minimize the package size.

†9-72 A gearset with a contact ratio of at least 1.5 is desired.  If the gears have standard 
AGMA full-depth teeth with a pressure angle of 25�, and the pinion has 21 teeth, what 
is the minimum gear ratio that will give the required minimum contact ratio?

†9-73 Provide a preliminary design (pitch diameters and numbers of teeth) for a gear set with 
a gear ratio of mG = 4, a diametral pitch pd = 8, and a contact ratio of at least 1.5.

 9-74 A 22-tooth pinion meshes with a 55-tooth gear.  They have a diametral pitch of 8, a 
pressure angle of 20°, and AGMA full-depth involute profiles.  Find the gear ratio, cir-
cular pitch, base pitch, pitch diameters, standard center distance, addendum, dedendum, 
whole depth, clearance, and outside diameters.

FIGURE 9-35
Levai's 12 possible epicyclic trains [3]
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* Answers in Appendix F.

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
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9-75 A 16-tooth pinion meshes with a 48-tooth gear.  They have a diametral pitch of 10, a 
pressure angle of 25°, and AGMA full-depth involute profiles that have been modified 
to have unequal addendum tooth forms of ±0.50.  Find the pitch diameters, addendum, 
dedendum, whole depth, dedendum diameters, base diameters, and outside diameters.

9-76 Design a gearset that has standard, full-depth teeth, a gear ratio of 5 and a contact ratio 
of at least 1.6 minimizing the space occupied by the pinion and gear.  Determine the 
diametral pitch and the outside diameters of the pinion and gear if a course diametral 
pitch is required.

9-77 Provide a preliminary design (pitch diameters and numbers of teeth) for a gearset that 
will have a gear ratio of mG = 6, a diametral pitch pd = 5, and a contact ratio of at least 
1.75.

 9-78 Design a compound, spur gear train for a ratio of –180:1 and diametral pitch of 10.  
Specify pitch diameters and numbers of teeth.  Sketch the train to scale.

 9-79 Figures 9-35b and 9-35i show (schematically) two epicyclic trains, each with an arm, 
a ring gear, and three external gears.  If the arm (1) is the input, the ring gear (5) is the 
output, and gear 2 is stationary, find the velocity ratios for these two configurations 
given the following tooth numbers: 18, 27, 24, and 60 for gears 2, 3, 4, and 5, respec-
tively.

 9-80 Determine the overall efficiencies of the epicyclic trains given in Problem 9-79 if they 
each have basic efficiencies of E0 = 0.98.

 9-81 Figure P9-1 shows a compound planetary gear train (not to scale).  Table P9-1 gives 
data for gear numbers of teeth.  For the row(s) assigned (ignoring the velocity data), 
find the overall efficiency of the train if E0 = 0.980, the arm is the input, the sun is the 
output, and the ring gear is stationary.

End 
of

Part I


