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Chapter

GEAR TRAINS

Cycle and epicycle,
orb-in orb
JOHN MILTON, PARADISE LOST

9.0 INTRODUCTION View the lecture video (54:45)

The earliest known reference to gear trains is in a treatise by Hero of Alexandria (c. 100
B.C.). Gear trains are widely used in all kinds of mechanisms and machines, from can
openers to aircraft carriers. Whenever a change in the speed or torque of a rotating device
is needed, a gear train or one of its cousins, the belt or chain drive mechanism, will usually
be used. This chapter will explore the theory of gear tooth action and the design of these
ubiquitous devices for motion control. The calculations involved are trivial compared to
those for cams or linkages. The shape of gear teeth has become quite standardized for
good kinematic reasons that we will explore.

Gears of various sizes and styles are readily available from many manufacturers.
Assembled gearboxes for particular ratios are also stock items. The kinematic design of
gear trains is principally involved with the selection of appropriate ratios and gear diam-
eters. A complete gear train design will necessarily involve considerations of strength of
materials and the complicated stress states to which gear teeth are subjected. This text
will not deal with the stress analysis aspects of gear design. There are many texts that do.
Some are listed in the bibliography at the end of this chapter. This chapter will discuss
the kinematics of gear tooth theory, gear types, and the kinematic design of gearsets and
gear trains of simple, compound, reverted, and epicyclic types. Chain and belt drives
will also be discussed. Examples of the use of these devices will be presented as well.
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The simplest means of transferring rotary motion from one shaft to another is a pair of
rolling cylinders. They may be an external set of rolling cylinders as shown in Figure
9-1a or an internal set as in Figure 9-1b. Provided that sufficient friction is available at
the rolling interface, this mechanism will work quite well. There will be no slip between
the cylinders until the maximum available frictional force at the joint is exceeded by the
demands of torque transfer.

A variation on this mechanism is what causes your car or bicycle to move along
the road. Your tire is one rolling cylinder and the road the other (very large radius) one.
Friction is all that prevents slip between the two, and it works well unless the friction coef-
ficient is reduced by the presence of ice or other slippery substances. In fact, some early
automobiles had rolling cylinder drives inside the transmission, as do some present-day
snowblowers and garden tractors that use a rubber-coated wheel rolling against a steel
disk to transmit power from the engine to the wheels.

A variant on the rolling cylinder drive is the flat or vee belt as shown in Figure 9-2.
This mechanism also transfers power through friction and is capable of quite large power
levels, provided enough belt cross section is provided. Friction belts are used in a wide
variety of applications from small sewing machines to the alternator drive on your car, to
multihorsepower generators and pumps. Whenever absolute phasing is not required and
power levels are moderate, a friction belt drive may be the best choice. They are relatively
quiet running, require no lubrication, and are inexpensive compared to gears and chain
drives. A constant velocity transmission (CVT) as used in a number of automobiles is also
a vee belt and pulley device in which the pulleys are adjusted in width to change the ratio.
As one pulley widens, the other narrows to change the relative radii of the belt within their
respective vees. The belt circumference, of course, remains the same.

Both rolling cylinders and belt (or chain) drives have effective linkage equivalents
as shown in Figure 9-3. These effective linkages are valid only for one instantaneous
position but nevertheless show that these devices are just another variation of the fourbar
linkage in disguise.

FIGURE 9-2

A two-groove vee belt drive Courtesy of T. B. Wood's Sons Co., Chambersburg, PA
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(a) External set

View as a video

http://www.designof-

machinery.com/DOM/
gear.avi

(b) Internal set

View as a video
http://www.designof-
machinery.com/DOM/

internal_gear.avi

FIGURE 9-1

Rolling cylinders
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Sheave

Sheave

(a) Gear train (b) Belt train

Gear and belt trains each have an equivalent fourbar linkage for any instantaneous position.

View as a video

http://www.designot-

machinery.com/DOM/
gear.avi

Pinion Z

FIGURE 9-4
An external gearset

The principal drawbacks to the rolling cylinder drive (or smooth belt) mechanism are
its relatively low torque capability and the possibility of slip. Some drives require absolute
phasing of the input and output shafts for timing purposes. A common example is the
valve train drive in an automobile engine. The valve cams must be kept in phase with
the piston motion or the engine will not run properly. A smooth belt or rolling cylinder
drive from crankshaft to camshaft would not guarantee correct phasing. In this case some
means of preventing slip is needed.

This usually means adding some meshing teeth to the rolling cylinders. They then
become gears as shown in Figure 9-4 and are together called a gearset. When two gears
are placed in mesh to form a gearset such as this one, it is conventional to refer to the
smaller of the two gears as the pinion and to the other as the gear.

9.2 THE FUNDAMENTAL LAW OF GEARING

Conceptually, teeth of any shape will prevent gross slip. Old water-powered mills and
windmills used wooden gears whose teeth were merely round wooden pegs stuck into the
rims of the cylinders. Even ignoring the crudity of construction of these early examples
of gearsets, there was no possibility of smooth velocity transmission because the geometry
of the tooth “pegs” violated the fundamental law of gearing which, if followed, provides
that the angular velocity ratio between the gears of a gearset remains constant throughout
the mesh. A more complete and formal definition of this law is given below. The angular
velocity ratio (my) referred to in this law is the same one that we derived for the fourbar
linkage in Section 6.4 and equation 6.10. It is equal to the ratio of the radius of the input
gear to that of the output gear.

(0]
my =—2% -+ M 4 (9.1a)
d
Wiy Fout out
; T, d
mp=—1 =+ — 4 ;’” (9.1b)
(Dout rin mn
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The torque ratio (my) was shown earlier to be the reciprocal of the velocity ratio
(my); thus a gearset is essentially a device to exchange torque for velocity or vice versa.
Since there are no applied forces as in a linkage, but only applied torques on the gears,
the mechanical advantage m4 of a gearset is equal to its torque ratio my. The most com-
mon application is to reduce velocity and increase torque to drive heavy loads as in your
automobile transmission. Other applications require an increase in velocity, for which a
reduction in torque must be accepted. In either case, it is usually desirable to maintain
a constant ratio between the gears as they rotate. Any variation in ratio will show up as
oscillation in the output velocity and torque even if the input is constant with time.

The radii in equations 9.1 are those of the rolling cylinders to which we are adding
the teeth. The positive or negative sign accounts for internal or external cylinder sets
as defined in Figure 9-1. An external set reverses the direction of rotation between the
cylinders and requires the negative sign. An internal gearset or a belt or chain drive will
have the same direction of rotation on input and output shafts and require the positive sign
in equations 9.1. The surfaces of the rolling cylinders will become the pitch circles, and
their diameters the pitch diameters of the gears. The contact point between the cylinders
lies on the line of centers as shown in Figure 9-3a, and this point is called the pitch point.

In order for the fundamental law of gearing to be true, the gear tooth contours on
mating teeth must be conjugates of one another. There is an infinite number of possible
conjugate pairs that could be used, but only a few curves have seen practical application
as gear teeth. The cycloid still is used as a tooth form in watches and clocks, but most
other gears use the involute curve for their shape.

The Involute Tooth Form

The involute is a curve that can be generated by unwrapping a taut string from a cylinder
(called the evolute) as shown in Figure 9-5. Note the following about this involute curve:

The string is always tangent to the cylinder.

The center of curvature of the involute is always at the point of tangency of the string
with the cylinder.

A tangent to the involute is then always normal to the string, the length of which is the
instantaneous radius of curvature of the involute curve.

Figure 9-6 shows two involutes on separate cylinders in contact or “in mesh.” These
represent gear teeth. The cylinders from which the strings are unwrapped are called the
base circles of the respective gears. Note that the base circles are necessarily smaller than
the pitch circles, which are at the radii of the original rolling cylinders, r, and r,. The gear
tooth must project both below and above the rolling cylinder surface (pitch circle) and the
involute only exists outside of the base circle. The amount of tooth that sticks out above
the pitch circle is the addendum, shown as a, and a, for pinion and gear, respectively.
These are equal for standard, full-depth gear teeth.

The geometry at this tooth-tooth interface is similar to that of a cam-follower joint
as was defined in Figure 8-44. There is a common tangent to both curves at the contact
point, and a common normal, perpendicular to the common tangent. Note that the
common normal is, in fact, the “strings” of both involutes, which are colinear. Thus the
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View as a video
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involute.avi
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FIGURE 9-5

Development of the
involute of a circle
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Pressure angle rotated in direction of driven gear
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FIGURE 9-6

Contact geometry and pressure angle of involute gear teeth

common normal, which is also the axis of transmission, always passes through the pitch
point regardless of where in the mesh the two teeth are contacting.

Figure 9-7 shows a pair of involute tooth forms in two positions, just beginning con-
tact and about to leave contact. The common normals of both these contact points still
pass through the same pitch point. It is this property of the involute that causes it to obey
the fundamental law of gearing. The ratio of the driving gear radius to the driven gear
radius remains constant as the teeth move into and out of mesh.

From this observation of the behavior of the involute we can restate the fundamental
law of gearing in a more kinematically formal way as: the common normal of the tooth
profiles, at all contact points within the mesh, must always pass through a fixed point on
the line of centers, called the pitch point. The gearset’s velocity ratio will then be a con-
stant defined by the ratio of the respective radii of the gears to the pitch point.

The points of beginning and leaving contact define the mesh of the pinion and gear.
The distance along the line of action between these points within the mesh is called the
length of action, Z, defined by the intersections of the respective addendum circles with
the line of action, as shown in Figure 9-7. Variables are defined in Figures 9-6 and 9-7.

Z= \/(rp +ap, )2 —(rp cosq))2 +\/(rg +ag )2 —(rg cosd))2 —Csind 9.2)

The distance along the pitch circle within the mesh is the arc of action, and the angles
subtended by these points and the line of centers are the angle of approach and angle
of recess. These are shown only on the gear in Figure 9-7 for clarity, but similar angles
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Pressure angle rotated in direction of driven gear
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FIGURE 9-7

Pitch point, pitch circles, pressure angle, length of action, arc of action, and angles of approach and recess during

the meshing of a gear and pinion

exist for the pinion. The arc of action on both pinion and gear pitch circles must be the
same length for zero slip between the theoretical rolling cylinders.

Pressure Angle

The pressure angle in a gearset is similar to that of the cam and follower and is defined
as the angle between the axis of transmission or line of action (common normal) and the
direction of velocity at the pitch point as shown in Figures 9-6 and 9-7. Pressure angles of
gearsets are standardized at a few values by the gear manufacturers. These are defined at
the nominal center distance for the gearset as cut. The standard values are 14.5°, 20°, and
25° with 20° being the most commonly used and 14.5° now being considered obsolete.
Any custom pressure angle can be made, but its expense over the available stock gears
with standard pressure angles would be hard to justify. Special cutters would have to be
made. Gears to be run together must be cut to the same nominal pressure angle.

Changing Center Distance

When involute teeth (or any teeth) have been cut into a cylinder, with respect to a particu-
lar base circle, to create a single gear, we do not yet have a pitch circle. The pitch circle
only comes into being when we mate this gear with another to create a pair of gears, or
gearset. There will be some range of center-to-center distances over which we can achieve
a mesh between the gears. There will also be an ideal center distance (CD) that will give
us the nominal pitch diameters for which the gears were designed. However, limitations
of manufacturing processes give a low probability that we will be able to exactly achieve
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Shift in center distance \ ‘
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this ideal center distance in every case. More likely, there will be some error in the center
distance, even if small.

What will happen to the adherence to the fundamental law of gearing if there is error
in the location of the gear centers? If the gear tooth form is not an involute, then an error
in center distance will violate the fundamental law, and there will be variation, or “ripple,”
in the output velocity. The output angular velocity will not be constant for a constant input
velocity. However, with an involute tooth form, center distance errors do not affect the
velocity ratio. This is the principal advantage of the involute over all other possible tooth
forms and the reason why it is nearly universally used for gear teeth. Figure 9-8 shows
what happens when the center distance is varied on an involute gearset. Note that the
common normal still goes through a pitch point, common to all contact points within the
mesh. But the pressure angle is affected by the change in center distance.

Figure 9-8 also shows the pressure angles for two different center distances. As the
center distance increases, so will the pressure angle and vice versa. This is one result of a
change, or error, in center distance when using involute teeth. Note that the fundamental
law of gearing still holds in the modified center distance case. The common normal is

New pitch point

Pitch : * N.eV;’l’ laflger Base circle
itch radius ;
ra_ld@us of Pitch point gf pinion Y is unchanged
pinion shifts position </ /
Velocity at \/ 2 . ~ % )
pitch point S ‘ /’/// Y b i\ - New pitch
- — L - ——— _ circles
—/
\ ~
7~
Pressure . | L .
Pitch Base circle
angle radius preslsure New, larger is unchanged
6 =2° £ angle ! pitch radius
ot gear 0 =23° of gear
Line of action (common normal)
is tangent to both base circles
(a) Correct center distance (b) Increased center distance

FIGURE 9-8

Changing center distance of involute gears changes the pressure angle and pitch diameters
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still tangent to the two base circles and still goes through the pitch point. The pitch point
has moved, but in proportion to the move of the center distance and the gear radii. The
velocity ratio is unchanged despite the shift in center distance. In fact, the velocity ratio
of involute gears is fixed by the ratio of the base circle diameters, which are unchanging
once the gear is cut.

Backlash

Another factor affected by changing center distance is backlash. Increasing the CD will
increase the backlash and vice versa. Backlash is defined as the clearance between mat-
ing teeth measured at the pitch circle. Manufacturing tolerances preclude a zero clear-
ance, as all teeth cannot be exactly the same dimensions, and all must mesh. So, there
must be some small difference between the tooth thickness and the space width (see Figure
9-9). As long as the gearset is run with a nonreversing torque, backlash should not be a
problem. But, whenever torque changes sign, the teeth will move from contact on one
side to the other. The backlash gap will be traversed, and the teeth will impact with no-
ticeable noise. This is the same phenomenon as crossover shock in the form-closed cam.
As well as increasing stresses and wear, backlash can cause undesirable positional error
in some applications. If the center distance is set exactly to match the theoretical value
for the gearset, the tooth-to-tooth composite backlash tolerance is in the range of 0.0001
to 0.0007 inches for precision gears. The increase in angular backlash as a function of
error in center distance is approximately
tan¢

0 =43 ZOO(AC)—d minutes of arc (9.3)
T

where ¢ = pressure angle, AC = error in center distance, and d = pitch diameter of the
gear on the shaft where the backlash is measured.

In servomechanisms, where motors are driving, for example, the control surfaces
on an aircraft, backlash can cause potentially destructive “hunting” in which the control
system tries in vain to correct positional errors due to backlash “slop” in the mechanical
drive system. Such applications need antibacklash gears which are really two gears
back to back on the same shaft that can be rotated slightly at assembly with respect to one
another, and then fixed so as to take up the backlash. In less critical applications, such as
the propeller drive on a boat, backlash on reversal will not even be noticed.

The American Gear Manufacturers Association (AGMA) defines standards for gear
design and manufacture. They define a spectrum of quality numbers and tolerances rang-
ing from the lowest (3) to the highest precision (16). Obviously the cost of a gear will be
a function of this quality index.

9.3 GEAR TOOTH NOMENCLATURE

Figure 9-9 shows two teeth of a gear with the standard nomenclature defined. Pitch circle
and base circle have been defined above. The tooth height is defined by the addendum
(added on) and the dedendum (subtracted from) that are referenced to the nominal pitch
circle. The dedendum is slightly larger than the addendum to provide a small amount of
clearance between the tip of one mating tooth (addendum circle) and the bottom of the
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FIGURE 9-9
Gear tooth nomenclature

tooth space of the other (dedendum circle). The tooth thickness is measured at the pitch
circle, and the tooth space width is slightly larger than the tooth thickness. The difference
between these two dimensions is the backlash. The face width of the tooth is measured
along the axis of the gear. The circular pitch is the arc length along the pitch circle cir-
cumference measured from a point on one tooth to the same point on the next. The circular
pitch defines the tooth size. The other tooth dimensions are standardized based on that
dimension as shown in Table 9-1. The definition of circular pitch p,. is:

_md

N (9.4a)

De
where d = pitch diameter and N = number of teeth. The tooth pitch can also be measured
along the base circle circumference and then is called the base pitch p,.

Py = P OSY (9.4b)

The units of p, are inches or millimeters. A more convenient and common way to
define tooth size is to relate it to the diameter of the pitch circle rather than its circumfer-
ence. The diametral pitch p is:

N
== 9.4
Pa=— (94¢)
The units of p; are reciprocal inches, or number of teeth per inch. This measure is only
used in U.S. specification gears. Combining equations 9.4a and 9.4c gives the following
relationship between circular pitch and diametral pitch.

T
Dg=— (9.4d)

bc
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TABLE 9-1 AGMA Full-Depth Gear Tooth Specifications
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Parameter Coarse Pitch (pg<20) Fine Pitch (pg =20)
Pressure angle ¢ 20° or 25° 20°
Addendum a 1.000 / py4 1.000 / py
Dedendum b 1.250 / py 1.250 / py
Working depth 2.000/ py 2.000/ py
Whole depth 2.250/ py 2.200/ pgy + 0.002in
Circular tooth thickness 1.571/ py 1.571 / py
Fillet radius—basic rack 0.300/ py Not standardized
Minimum basic clearance 0.250/ py 0.200/ py + 0.002in
Minimum width of top land 0.250/ py Not standardized
Clearance (shaved or ground teeth) 0.350/ py 0.350/ pyg + 0.002in

The SI system, used for metric gears, defines a parameter called the module, which
is the reciprocal of diametral pitch with pitch diameter measured in millimeters.

d
m=— 9.4e
N (94e)
The units of the module are millimeters. Unfortunately, metric gears are not inter-
changeable with U.S. gears, despite both being involute tooth forms, as their standards for
tooth sizes are different. In the United States, gear tooth sizes are specified by diametral
pitch, elsewhere by module. The conversion from one standard to the other is

25.4
m=—-
Pd

(9.4f)

where m is in mm and p,; is in inches.

The velocity ratio my and the torque ratio my of the gearset can be put into a more
convenient form by substituting equation 9.4c into equations 9.1, noting that the diametral
pitch of meshing gears must be the same.

my =+ -4 __in (9.52)
dout NOM[
d N,

mp =+ ;_“f =+ Nj“’ (9.5b)

Thus the velocity ratio and torque ratio can be computed from the number of teeth on the
meshing gears, which are integers. Note that a minus sign implies an external gearset and
a positive sign an internal gearset as shown in Figure 9-1. The gear ratio m is always > 1
and can be expressed in terms of either the velocity ratio or torque ratio depending on
which is larger than 1. Thus mg expresses the gear train’s overall ratio independent of
change in direction of rotation or of the direction of power flow through the train when
operated as either a speed reducer or a speed increaser.
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Mg =‘mV’ or mg =‘mT , for mg =1 (9.5¢)

STANDARD GEAR TEETH Standard, full-depth gear teeth have equal addenda on
pinion and gear, with the dedendum being slightly larger for clearance. The standard tooth
dimensions are defined in terms of the diametral pitch. Table 9-1 shows the definitions
of dimensions of standard, full-depth gear teeth as defined by the AGMA, and Figure
9-10 shows their shapes for three standard pressure angles. Figure 9-11 shows the actual
sizes of 20° pressure angle, standard, full-depth teeth from p, = 4 to 80. Note the inverse
relationship between p, and tooth size. While there are no theoretical restrictions on the
possible values of diametral pitch, a set of standard values is defined based on available
gear cutting tools. These standard tooth sizes are shown in Table 9-2 in terms of diametral
pitch and in Table 9-3 in terms of metric module.

9.4 INTERFERENCE AND UNDERCUTTING

The involute tooth form is only defined outside of the base circle. In some cases, the
dedendum will be large enough to extend below the base circle. If so, then the portion
of tooth below the base circle will not be an involute and will interfere with the tip of
the tooth on the mating gear, which is an involute. If the gear is cut with a standard gear
shaper or a “hob,” the cutting tool will also interfere with the portion of tooth below the
base circle and will cut away the interfering material. This results in an undercut tooth as
shown in Figure 9-12. This undercutting weakens the tooth by removing material at its
root. The maximum moment and maximum shear from the tooth loaded as a cantilever
beam both occur in this region. Severe undercutting will promote early tooth failure.

Interference (and undercutting caused by manufacturing tools) can be prevented sim-
ply by avoiding gears with too few teeth. If a gear has a large number of teeth, they will
be small compared to its diameter. As the number of teeth is reduced for a fixed diameter
gear, the teeth must become larger. At some point, the dedendum will exceed the radial
distance between the base circle and the pitch circle, and interference will occur.

Table 9-4a shows the minimum number of pinion teeth that can mesh with a rack
without interference as a function of pressure angle. Gears with this few teeth can be
generated without undercutting only by a pinion cutter or by milling. Gears that are cut
with a hob, which has the same action as a rack with respect to the gear being cut, must
have more teeth to avoid undercutting the involute tooth form during manufacture. The
minimum number of teeth that can be cut by a hob without undercutting as a function of
pressure angle is shown in Table 9-4b. Table 9-5a shows the maximum number of 20-de-
gree pressure angle full-depth gear teeth that can mesh with a given number of pinion teeth
without interference and Table 9-5b shows the same information for 25-degree pressure
angle full-depth gear teeth. Note that the pinion tooth numbers in this table are all fewer
than the minimum number of teeth that can be generated by a hob. As the mating gear
gets smaller, the pinion can have fewer teeth and still avoid interference.

Unequal-Addendum Tooth Forms

In order to avoid interference and undercutting on small pinions, the tooth form can be
changed from the standard, full-depth shapes of Figure 9-10 that have equal addenda on
both pinion and gear to an involute shape with a longer addendum on the pinion and a
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TABLE 9-2
Standard Diametral
Pitches

Coarse Fine

(Pg<20) (pg=20)

1 20
125 24
15 32
175 48
2 64
25 72
3 80
4 96
5 120
6
8
10
12
14
16
FIGURE 9-11 8

Actual tooth sizes for various diametral pitches Courtesy of Barber-Coiman Co., Loves Park, IL
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FIGURE 9-12

Interference and undercutting of teeth below the base circle



502
TABLE 9-3
Standard Metric
Modules
Metric Equivalent
N:;dr:)'e Pd (in")
0.3 84.67
0.4 63.50
0.5 50.80
0.8 31.75
1 25.40
1.25 20.32
1.5 16.93
2 12.70
3 8.47
4 6.35
5 5.08
6 4.23
8 3.18
10 2.54
12 212
D 16 1.59
20 127
25 1.02
TABLE 9-4a

Minimum Number of
Pinion Teeth

To Avoid Interference
Between a Full-Depth
Pinion and a Full-Depth

Rack
Pressure  Minimum
Angle Number
(deg) of Teeth
14.5 32
20 18
25 12

DESIGN OF MACHINERY 6ed CHAPTER 9

shorter one on the gear called profile-shifted gears. The AGMA defines addendum mod-
ification coefficients, x; and x,, which always sum to zero, being equal in magnitude and
opposite in sign. The positive coefficient x; is applied to increase the pinion addendum,
and the negative x, decreases the gear addendum by the same amount. The total tooth
depth remains the same. This shifts the pinion dedendum circle outside its base circle
and eliminates that noninvolute portion of pinion tooth below the base circle. The stan-
dard coefficients are +0.25 and +0.50, which add or subtract 25% or 50% of the standard
addendum. The limit of this approach occurs when the pinion tooth becomes pointed.

There are secondary benefits to this technique. The pinion tooth becomes thicker at
its base and thus stronger. The gear tooth is correspondingly weakened, but since a full-
depth gear tooth is stronger than a full-depth pinion tooth, this shift brings them closer to
equal strength. A disadvantage of unequal-addendum tooth forms is an increase in sliding
velocity at the tooth tip. The percent sliding between the teeth is greater than with equal
addendum teeth which increases tooth-surface stresses. Friction losses in the gear mesh
are also increased by higher sliding velocities. Figure 9-13 shows the contours of profile-
shifted involute teeth. Compare these to standard tooth shapes in Figure 9-10.

9.5 CONTACT RATIO

The contact ratio m, defines the average number of teeth in contact at any one time as:

my =2 (9.62)
Py

where Z is the length of action from equation 9.2 and p, is the base pitch from equation 9.4b.
Substituting equations 9.4b and 9.4d into 9.6a defines m,, in terms of p:

_ piZ

" mcosd (9.6b)

P

The contact ratio m, can also be expressed as a function only of pressure angle ¢,
number of pinion teeth, Np, and the gear ratio mg.

N > (N > meN > (mgN > N
P _ P G'p | 6 p _'p .
\/( 5 +1J ( 5 cosq)] +\/{ 5 +1] [ 5 cosq)] 5 (1+mG)smq)

m, = (9.6¢)
mcos

If the contact ratio is 1, then one tooth is leaving contact just as the next is beginning
contact. This is undesirable because slight errors in the tooth spacing will cause oscilla-
tions in the velocity, vibration, and noise. In addition, the load will be applied at the tip of
the tooth, creating the largest possible bending moment. At larger contact ratios than 1,
there is the possibility of load sharing among the teeth. For contact ratios between 1 and 2,
which are common for spur gears, there will still be times during the mesh when one pair
of teeth will be taking the entire load. However, these will occur toward the center of the
mesh region where the load is applied at a lower position on the tooth, rather than at its tip.
This point is called the highest point of single-tooth contact (HPSTC). The minimum
acceptable contact ratio for smooth operation is 1.2. A minimum contact ratio of 1.4 is
preferred and larger is better. Most spur gearsets will have contact ratios between 1.4 and 2.
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Profile-shifted teeth with long and short addenda to avoid interference and undercutting
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Determining Gear Tooth and Gear Mesh Parameters.

Problem: Find the gear ratio, circular pitch, base pitch, pitch diameters, pitch radii, center

distance, addendum, dedendum, whole depth, clearance, outside diameters, and
contact ratio of a gearset with the given parameters. If the center distance is in-
creased 2% what is the new pressure angle and increase in backlash?

Given: A 6 p,, 20° pressure angle, 19-tooth pinion is meshed with a 37-tooth gear.
Assume: The tooth forms are standard AGMA full-depth involute profiles.
Solution:

The gear ratio is found from the tooth numbers on pinion and gear using equations 9.5a and
9.5¢.

my =—=—=—=1.947 a
G 0 (@)

2 The circular pitch can be found either from equation 9.4a or 9.4d.

Pe :pi=%=0.524 in (b)
d

The base pitch measured on the base circle is (from equation 9.4b):

Pp = P c080 =0.524c08(20°) =0.492 in ()

4 The pitch diameters and pitch radii of pinion and gear are found from equation 9.4c.
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TABLE 9-4b
Minimum Number of
Pinion Teeth

To Avoid Undercutting
When Cut With a Hob

Pressure  Minimum
Angle Number
(deg) of Teeth

14.5 37

20 21

25 14
TABLE 9-5a
Maximum Number
of Gear Teeth

To Avoid Interference
Between a 20°Full-Depth
Pinion and Full-Depth
Gears of Various Sizes

Number  Maximum

of Pinion Gear

Teeth Teeth

17 1309

16 101

15 45

14 26

13 16

TABLE 9-5b

Maximum Number

of Gear Teeth

To Avoid Interference
Between a 25° Full-Depth
Pinion and Full-Depth
Gears of Various Sizes

Number Maximum

of Pinion Gear
Teeth Teeth
1" 249

10 32

9 13
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10

N 1 d

d, =_P=?9=3_167 in, A =7p=1.583 in ()
Pd
N, 37 d

d, =_8=?=6,167 in, T =7g= 3.083 in (e)
Pa

The nominal center distance C is the sum of the pitch radii:
C=r,+1, =4.667 in o)

The addendum and dedendum are found from the equations in Table 9-1:

1.0 1.2
a=—=0.167 in, b:—5 =0.208 in (g)

Pd Pd
The whole depth 4, is the sum of the addendum and dedendum.

h, =a+b=0.167+0.208=0.375 in (h)

The clearance is the difference between dedendum and addendum.
¢c=b-a=0.208-0.167=0.042 in @)
The outside diameter of each gear is the pitch diameter plus two addenda:
Dop =d,+2a=3.500 in, DOg =dy +2a=6.500 in @
The contact ratio is found from equations 9.2 and 9.6a.
Z= \/(rp +a, )2 - (rp cosc]))2 + \/(rg +ag )2 - (rg cosq))2 —Csin¢

= \/(1.583+ 0.167)" —(1.583c0s20°)*

+ \/(3.083 +0.167)" —(3.083¢0520°)° - 4.6675in20° = 0.798 in

Z .
my=2=278 162 (k)
by 0492

If the center distance is increased from the nominal value due to assembly errors or other fac-
tors, the effective pitch radii will change by the same percentage. The gears’ base radii will
remain the same. The new pressure angle can be found from the changed geometry. For a 2%
increase in center distance (1.02x):

_1| "base cirel _1[ pcoso _1( cos20°
Opaw = COS l[ﬂ]=ws 1( P ]zcos 1( ™ =22.89° 0]

1.02r, 1.02r,

The change in backlash as measured at the pinion is found from equation 9.3.

22.89°
eB =43 ZOO(AC)M=43 200(002)(4667) tan( )

nd 7(3.167)

=171 minutes ofarc (m)
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9.6 GEAR TYPES

Gears are made in many configurations for particular applications. This section describes
some of the more common types.

Spur, Helical, and Herringbone Gears

SPUR GEARS are ones in which the feeth are parallel to the axis of the gear. This is
the simplest and least expensive form of gear to make. Spur gears can only be meshed if
their axes are parallel. Figure 9-14 shows a spur gear.

HELICAL GEARS are ones in which the teeth are at a helix angle y with respect to
the axis of the gear as shown in Figure 9-15a. Figure 9-16 shows a pair of opposite-hand™
helical gears in mesh. Their axes are parallel. Two crossed helical gears of the same
hand can be meshed with their axes at an angle as shown in Figure 9-17. The helix angles
can be designed to accommodate any skew angle between the nonintersecting shafts.

Helical gears are more expensive than spur gears but offer some advantages. They
run quieter than spur gears because of the smoother and more gradual contact between
their angled surfaces as the teeth come into mesh. Spur gear teeth mesh along their entire
face width at once. The sudden impact of tooth on tooth causes vibrations that are heard
as a “whine” which is characteristic of spur gears but is absent with helical gears. Also,
for the same gear diameter and diametral pitch, a helical gear is stronger due to the slightly
thicker tooth form in a plane perpendicular to the axis of rotation.

HERRINGBONE GEARS are formed by joining two helical gears of identical pitch
and diameter but of opposite hand on the same shaft. These two sets of teeth are often
cut on the same gear blank. The advantage compared to a helical gear is the internal
cancellation of its axial thrust loads since each “hand” half of the herringbone gear has an
oppositely directed thrust load. Thus no thrust bearings are needed other than to locate the
shaft axially. This type of gear is much more expensive than a helical gear and tends to
be used in large, high-power applications such as ship drives, where the frictional losses
from axial loads would be prohibitive. A herringbone gear is shown in Figure 9-15b. Its
face view is the same as the helical gear’s.

EFFICIENCY The general definition of efficiency is output power/input power ex-
pressed as a percentage. A spur gearset can be 98 to 99% efficient. The helical gearset is

Helix

angle
— v
— =
f/\ =S

==y =S
— } ey
— —
— —_
(a) Helical gear (b) Herringbone gear
FIGURE 9-15

A helical gear and a herringbone gear
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FIGURE 9-14

A spur gear
Courtesy of Martin
Sprocket and Gear Co.,
Arlington, TX

* Helical gears are either
right- or left-handed. Note
that the gear of Figure 9-15a
is left-handed because, if
either face of the gear were
placed on a horizontal sur-
face, its teeth would slope
up to the left.

View as a video

http://www.designot-
machinery.com/DOM/
helical_parallel.avi

FIGURE 9-16

Parallel axis helical
gears

Courtesy of Martin
Sprocket and Gear Co.,
Arlington, TX
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View as a video
http://www.designot-
machinery.com/DOM/

helical_crossed.avi

FIGURE 9-17

Crossed axis helical
gears

Courtesy of the Boston
Gear Division of IMO
Industries, Quincy, MA

View as a video
http://www.designof-
machinery.com/DOM/

worm_gear_set.avi

FIGURE 9-18

A worm and worm
gear (or worm wheel)
Courtesy of Martin
Sprocket and Gear Co.,
Arlington, TX
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less efficient than the spur gearset due to sliding friction along the helix angle. They also
present a reaction force along the axis of the gear, which the spur gear does not. Thus heli-
cal gearsets must have thrust bearings as well as radial bearings on their shafts to prevent
them from pulling apart along the axis. Some friction losses occur in the thrust bearings
as well. A parallel helical gearset will be about 96 to 98% efficient, and a crossed helical
set only 50 to 90% efficient. The parallel helical set (opposite hand but same helix angle)
has line contact between the teeth and can handle high loads at high speeds. The crossed
helical set has point contact and a large sliding component that limit its application to
light load situations.

If the gearsets have to be shifted in and out of mesh while in motion, spur gears are
a better choice than helical, as the helix angle interferes with the axial shifting motion.
(Herringbone gears of course cannot be axially disengaged.) Truck transmissions often
use spur gears for this reason, whereas automobile (standard) transmissions use helical,
constant mesh gears for quiet running and have a synchromesh mechanism to allow shift-
ing. These transmission applications will be described in a later section.

Worms and Worm Gears

If the helix angle is increased sufficiently, the result will be a worm, which has only one
tooth wrapped continuously around its circumference a number of times, analogous to
a screw thread. This worm can be meshed with a special worm gear (or worm wheel),
whose axis is perpendicular to that of the worm as shown in Figure 9-18. Because the
driving worm typically has only one tooth, the ratio of the gearset is equal to one over the
number of teeth on the worm gear (see equations 9.5). These teeth are not involutes over
their entire face, which means that the center distance must be maintained accurately to
guarantee conjugate action.

Worms and wheels are made and replaced as matched sets. These worm gearsets
have the advantage of very high gear ratios in a small package and can carry very high
loads especially in their single or double enveloping forms. Single enveloping means that
the worm gear teeth are wrapped around the worm. Double enveloping sets also wrap the
worm around the gear, resulting in an hourglass-shaped worm. Both of these techniques
increase the surface area of contact between worm and wheel, increasing load carrying
capacity and also cost. One trade-off in any wormset is very high sliding and thrust loads
that make the wormset rather inefficient at 40 to 85% efficiency.

Perhaps the major advantage of the wormset is that it can be designed to be impos-
sible to backdrive. A spur or helical gearset can be driven from either shaft, as a veloc-
ity step-up or step-down device. While this may be desirable in many cases, if the load
being driven must be held in place after the power is shut off, the spur or helical gearset
will not do. They will “backdrive.” This makes them unsuitable for such applications as
a jack to raise a car unless a brake is added to the design to hold the load. The wormset,
on the other hand, can only be driven from the worm. The friction can be large enough
to prevent it being backdriven from the worm wheel. Thus it can be used without a brake
in load-holding applications such as jacks and hoists.
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View as a video o
http://www.designof- ‘ e \
machinery.com/DOM/
rack_and_pinion.avi Addendum

<

FIGURE 9-19

A rack and pinion Photo courtesy of Martin Sprocket and Gear Co., Austin, TX

Rack and Pinion

If the diameter of the base circle of a gear is increased without limit, the base circle will
become a straight line. If the “string” wrapped around this base circle to generate the
involute were still in place after the base circle’s enlargement to an infinite radius, the
string would be pivoted at infinity and would generate an involute that is a straight line.
This linear gear is called a rack. Its teeth are trapezoids, yet are true involutes. This fact
makes it easy to create a cutting tool to generate involute teeth on circular gears, by ac-
curately machining a rack and hardening it to cut teeth in other gears. Rotating the gear
blank with respect to the rack cutter while moving the cutter axially back and forth across
the gear blank will shape, or develop, a true involute tooth on the circular gear.

Figure 9-19 shows a rack and pinion. The most common application of this device
is in rotary to linear motion conversion or vice versa. It can be backdriven, so it requires
a brake if used to hold a load. An example of its use is in rack-and-pinion steering in
automobiles. The pinion is attached to the bottom end of the steering column and turns
with the steering wheel. The rack meshes with the pinion and is free to move left and
right in response to your angular input at the steering wheel. The rack is also one link
in a multibar linkage that converts the linear translation of the rack to the proper amount
of angular motion of a rocker link attached to the front wheel assembly to steer the car.

Bevel and Hypoid Gears

BEVEL GEARS For right-angle drives, crossed helical gears or a wormset can be used.
For any angle between the shafts, including 90°, bevel gears may be the solution. Just as
spur gears are based on rolling cylinders, bevel gears are based on rolling cones as shown
in Figure 9-20. The angle between the axes of the cones and the included angles of the
cones can be any compatible values as long as the apices of the cones intersect. If they
did not intersect, there would be a mismatch of velocity at the interface. The apex of each
cone has zero radius, thus zero velocity. All other points on the cone surface will have
nonzero velocity. The velocity ratio of the bevel gears is defined by equation 9.1a using
the pitch diameters at any common point of intersection of cone diameters.

SPIRAL BEVEL GEARS If the teeth are parallel to the axis of the gear, it will be a
straight bevel gear as shown in Figure 9-21. If the teeth are angled with respect to the
axis, it will be a spiral bevel gear (Figure 9-22), analogous to a helical gear. The cone
axes and apices must intersect in both cases. The advantages and disadvantages of straight

Standard full-depth involute rack
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Dedendum
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Pltch/;x

-

Pitch dia.
View as a video
Velocity Apices must http://www.designof-
mismatch be coincident machinery.com/DOM/
bevel_gears.avi
(a) Incorrect arrangement (b) Correct arrangements

FIGURE 9-20

Bevel gears are based on rolling cones.

FIGURE 9-21

Straight bevel gears
Courtesy of Martin
Sprocket and Gear,
Arlington, TX

FIGURE 9-22

Spiral bevel gears
Courtesy of the Boston
Gear Division of IMO

Industries, Quincy, MA

bevel and spiral bevel gears are similar to those of the spur gear and helical gear, respec-
tively, regarding strength, quietness, and cost. Bevel gear teeth are not involutes but are
based on an “octoid” tooth curve. They must be replaced in pairs (gearsets) as they are
not universally interchangeable, and their center distances must be accurately maintained.

HyproID GEARS  If the axes between the gears are nonparallel and also nonintersect-
ing, bevel gears cannot be used. Hypoid gears will accommodate this geometry. Hypoid
gears are based on rolling hyperboloids of revolution as shown in Figure 9-23. (The term
hypoid is a contraction of hyperboloid.) The tooth form is not an involute. These hypoid
gears are used in the final drive of front-engine, rear-wheel-drive automobiles, in order to
lower the axis of the driveshaft below the center of the rear axle to reduce the “driveshaft
hump” in the back seat.

Noncircular Gears

Noncircular gears are based on the rolling centrodes of a Grashof double-crank fourbar
linkage. Centrodes are the loci of the instant center /4 of the linkage and were described
in Section 6.5. Figure 6-15b shows a pair of centrodes that could be used for noncircular
gears. Teeth would be added to their circumferences in the same way that we add teeth
to rolling cylinders for circular gears. The teeth then act to guarantee no slip. Figure
9-24 shows a pair of noncircular gears based on a different set of centrodes than those of
Figure 6-15b. (The gears of Figure 9-24 really do make complete revolutions in mesh!)
Of course, the velocity ratio of noncircular gears is not constant. That is their purpose,
to provide a time-varying output function in response to a constant velocity input. Their
instantaneous velocity ratio is defined by equation 6.11f. These devices are used in a va-
riety of rotating machinery such as printing presses where variation in the angular velocity
of rollers is required on a cyclical basis.
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Nonintersecting
skew axes

Wheel axle
output shaft

Input driveshaft

(a) Rolling hyperboloids of revolution (b) Automotive hypoid final drive gears
Courtesy of General Motors Co., Detroit, Ml

FIGURE 9-23

Hypoid gears are based on hyperboloids of revolution.

Belt and Chain Drives

VEE BELTS A vee belt drive is shown in Figure 9-2. Vee belts are made of elastomers
(synthetic rubber) reinforced with synthetic or metallic cords for strength. The pulleys,
or sheaves, have a matching vee groove that helps to grip the belt as belt tension jams the
belt into the vee. Vee belts have a transmission efficiency of 95 to 98% when first installed.
This will decrease to about 93% as the belt wears and slippage increases. Because of slip,
the velocity ratio is neither exact nor constant. Flat belts running on flat and crowned
pulleys are still used in some applications as well. As discussed above, slip is possible
with untoothed belts and phasing cannot be guaranteed.

SYNCHRONOUS (TIMING) BELTS The synchronous belt solves the phasing prob-
lem by preventing slip while retaining some of the advantages of vee belts and can cost
less than gears or chains. Figure 9-25a shows a synchronous (or toothed) belt and its
special gearlike pulleys or sheaves. These belts are made of a rubberlike material but
are reinforced with steel or synthetic cords for higher strength and have molded-in teeth
that fit in the grooves of the pulleys for positive drive. They are capable of fairly high
torque and power transmission levels and are frequently used to drive automotive engine
camshafts as shown in Figure 9-25b. They are more expensive than conventional vee
belts and are noisier, but run cooler and last longer. Their transmission efficiency is 98%
and stays at that level with use. Manufacturers’ catalogs provide detailed information on
sizing both vee and synchronous belts for various applications. See Bibliography.

CHAIN DRIVES are often used for applications where positive drive (phasing) is
needed and large torque requirements or high temperature levels preclude the use of tim-
ing belts. When the input and output shafts are far apart, a chain drive may be the most
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Copyright © 2018 Robert L. Norton
All Rights Reserved
View as a video
http://www.designof-
machinery.com/DOM/
Noncircular_Gears.mp4

FIGURE 9-24

Noncircular gears
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(a) Standard synchronous belt (b) Engine valve camshaft drive
Courtesy of T. B. Wood's Sons Co., Courtesy of Chevrolet Division,
Chambersburg, PA General Motors Co., Detroit, MI

FIGURE 9-25

Toothed synchronous belts and sprockets

economical choice. Conveyor systems often use chain drives to carry the work along
the assembly line. Steel chain can be run through many (but not all) hostile chemical or
temperature environments. Many types and styles of chain have been designed for vari-
ous applications ranging from the common roller chain (Figure 9-26a) as used on your
bicycle or motorcycle, to more expensive inverted tooth or “silent chain” designs (Figure
9-26b) used for camshaft drives in expensive automobile engines. Figure 9-27 shows a
typical sprocket for a roller chain. Note that the sprocket teeth are not the same shape as
gear teeth and are not involutes. The sprocket tooth shape is dictated by the need to match
the contour of the portion of chain that nestles in the grooves. In this case the roller chain
has cylindrical pins that engage the sprocket.

One unique limitation of chain drive is something called “chordal action.” The links
of the chain form a set of chords when wrapped around the circumference of the sprocket.

FIGURE 9-26

(a) Roller chain (b) Inverted-tooth or silent chain

Chain types for power transmission From Phelan, R. M. (1970). Fundamentals of Mechanical Design, 3rd ed., McGraw-Hill. NY.
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As these links enter and leave the sprocket, they impart a “jerky” motion to the driven
shaft that causes some variation, or ripple, on the output velocity. Chain drives do not
exactly obey the fundamental law of gearing. If very accurate, constant output velocity
is required, a chain drive may not be the best choice.

VIBRATION IN BELTS AND CHAINS You may have noticed when watching the
operation of, for example, a vee belt such as your car engine’s fan belt, that the belt span
between pulleys vibrates laterally, even when the belt’s linear velocity is constant. If you
consider the acceleration of a belt particle as it travels around the belt path, you will realize
that its acceleration is theoretically zero while traversing the unsupported spans between
sheaves at constant velocity; but when it enters the wrap of a sheave, it suddenly acquires
anonzero centripetal acceleration that remains essentially constant in magnitude while the
belt particle is on the sheave. Thus the acceleration of a belt particle has sudden jumps
from zero to some constant magnitude or vice versa, four times per traverse for a simple
two-sheave system such as that of Figure 9-2, and more if there are multiple sheaves. This
provides theoretically infinite pulses of jerk to the belt particles at these transitions, and
this excites the lateral natural frequencies of the belt’s unsupported span between sheaves.
The result is lateral vibration of the belt span that creates dynamic variation in belt tension
and noise. If you watch the fan belt on a running engine, you will notice that it is flapping
between the sheaves. This is due to the infinite jerk pulse as the belt leaves the sheave.

9.7 SIMPLE GEAR TRAINS View the lecture video (37:54)F

A gear train is any collection of two or more meshing gears. A simple gear train is one
in which each shaft carries only one gear, the most basic, two-gear example of which is
shown in Figure 9-4. The velocity ratio my (sometimes called train ratio) of this gearset is
found by expanding equation 9.5a. Figure 9-28 shows a simple gear train with five gears
in series. The expression for this simple train’s velocity ratio is:

o B R

N.
my =+—n 9.7)
NOM[

or in general terms:

which is the same as equation 9.5a for a single gearset.

Each gearset potentially contributes to the overall train ratio, but in any case of a
simple (series) train, the numerical effects of all gears except the first and last cancel out.
The train ratio of a simple train is always just the ratio of the first gear over the last. Only
the sign of the overall ratio is affected by the intermediate gears which are called idlers
because typically no power is taken from their shafts. If all gears in the train are external
and there is an even number of gears in the train, the output direction will be opposite that
of the input. If there is an odd number of external gears in the train, the output will be in
the same direction as the input. Thus a single, external idler gear of any diameter can be
used to change the direction of the output gear without affecting its velocity.

A single gearset of spur, helical, or bevel gears is usually limited to a ratio of about
10:1 simply because the gearset will become very large, expensive, and hard to package
above that ratio if the pinion is kept above the minimum numbers of teeth shown in Table
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FIGURE 9-27

A roller chain sprocket
Courtesy of Martin

Sprocket and Gear Co.,
Arlington, TX

 http://www.designof-
machinery.com/DOM/
Gear_Trains.mp4
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FIGURE 9-28
A simple gear train
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9-4aorb. If the need is to get a larger train ratio than can be obtained with a single gearset,
it is clear from equations 9.6 that the simple train will be of no help.

It is common practice to insert a single idler gear to change direction, but more than
one idler is superfluous. There is little justification for designing a gear train as is shown
in Figure 9-28. If the need is to connect two shafts that are far apart, a simple train of
many gears could be used but will be more expensive than a chain or belt drive for the
same application. Most gears are not cheap.

9.8 COMPOUND GEAR TRAINS

To get a train ratio of greater than about 10:1 with spur, helical, or bevel gears (or any
combination thereof), it is necessary to compound the train (unless an epicyclic train
is used—see Section 9.9). A compound train is one in which at least one shaft carries
more than one gear. This will be a parallel or series-parallel arrangement, rather than
the pure series connections of the simple gear train. Figure 9-29 shows a compound train
of four gears, two of which, gears 3 and 4, are fixed on the same shaft and thus have the
same angular velocity.

The train ratio is now:

(N2 | Ny
mv—( N, J( Ns] (9.8a)

This can be generalized for any number of gears in the train as:

o = 4 product of number of teeth on driver gears
Voo product of number of teeth on driven gears

(9.8b)

Note that these intermediate ratios do not cancel and the overall train ratio is the
product of the ratios of parallel gearsets. Thus a larger ratio can be obtained in a compound
gear train despite the approximately 10:1 limitation on individual gearset ratios. The plus
or minus sign in equation 9.8b depends on the number and type of meshes in the train,
whether external or internal. Writing the expression in the form of equation 9.8a and
carefully noting the sign of each mesh ratio in the expression will result in the correct
algebraic sign for the overall train ratio.

Design of Compound Trains

If one is presented with a completed design of a compound gear train such as that in
Figure 9-29, it is a trivial task to apply equation 9.8 and determine the train ratio. It is not
so simple to do the inverse, namely, design a compound train for a specified train ratio.

ﬁDEXAMPLE 9-2

Compound Gear Train Design.

Problem: Design a compound train for an exact train ratio of 180:1. Find a combination of
gears that will give that ratio.
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FIGURE 9-29
A compound gear train

Solution:

1

The first step is to determine how many stages, or gearsets, are necessary. Simplicity is the
mark of good design, so try the smallest possibility first. Take the square root of 180, which
is 13.416. So, two stages each of that ratio will give approximately 180:1. However, this is
larger than our design limit of 10:1 for each stage, so try three stages. The cube root of 180 is
5.646, well within 10, so three stages will do.

If we can find some integer ratio of gear teeth that will yield 5.646:1, we can simply use three
of them to design our gearbox. Using a lower limit of 12 teeth for the pinion and trying several
possibilities we get the gearsets shown in Table 9-6 as possibilities.

The number of gear teeth obviously must be an integer. The closest to an integer in Table 9-6
is the 79.05 result. Thus a 79:14 gearset comes closest to the desired ratio. Applying this
ratio to all three stages will yield a train ratio of (79/14)3 = 179.68:1, which is within 0.2% of
180:1. This may be an acceptable solution provided that the gearbox is not being used in a
timing application. If the purpose of this gearbox is to step down the motor speed for a crane
hoist, for example, an approximate ratio will be adequate.

Many gearboxes are used in production machinery to drive camshafts or linkages from a master
driveshaft and must have the exact ratio needed or else the driven device will eventually get out
of phase with the rest of the machine. If that were the case in this example, then the solution
found in step 3 would not be good enough. We will need to redesign it for exactly 180:1. Since
our overall train ratio is an integer, it will be simplest to look for integer gearset ratios. Thus
we need three integer factors of 180. The first solution above gives us a reasonable starting
point in the cube root of 180, which is 5.646. If we round this up (or down) to an integer, we
may be able to find a suitable combination.

TABLE 9-6

Example 9-2
Possible Gearsets for 180:1
Three-Stage Compound
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Train

Gearset Pinion Gear
Ratio Teeth Teeth
5.646 x 12 = 67.75
5.646 x 13 = 73.40
5.646 x 14 = 79.05
5.646 x 15 = 84.69
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FIGURE 9-30
DThree—stage compound gear train for train ratio m,,=1:180 (gear ratio mg =180:1)

TABLE 9-7 5 Two compounded stages of 6:1 together give 36:1. Dividing 180 by 36 gives 5. Thus the stages
Example 9-2 shown in Table 9-7 provide one possible exact solution.

Exact Solution for 180:1
Three-Stage Compound
Train

This solution, shown in Figure 9-30, meets our design criteria. It has the correct, exact
ratio; the stages are all less than 10:1; and no pinion has less than 14 teeth, which avoids
undercutting if 25° pressure angle gears are used (Table 9-4b).

Gearset Pinion Gear
Ratio Teeth Teeth

6 x 14 = 84
6 x 1M = 8 Design of Reverted Compound Trains
5 x 14 = 70

In the preceding example the input and output shaft locations are in different locations.
This may well be acceptable or even desirable in some cases, depending on other packag-
ing constraints in the overall machine design. Such a gearbox, whose input and output
shafts are not coincident, is called a nonreverted compound train. In some cases, such
as automobile transmissions, it is desirable or even necessary to have the output shaft con-
centric with the input shaft. This is referred to as “reverting the train” or “bringing it back
onto itself.” The design of a reverted compound train is more complicated because of
the additional constraint that the center distances of the stages must be equal. Referring to
Figure 9-31, this constraint can be expressed in terms of their pitch radii, pitch diameters,
or numbers of teeth (provided that all gears have the same diametral pitch).
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FIGURE 9-31

A reverted compound gear train

Hhtr=rths (9.9a)

If p, is the same for all gears, equation 9.4c can be substituted in equation 9.9b and the
diametral pitch terms will cancel giving

N2+N3=N4+N5 (99C)
,@)EXAMPLE 9-3

Reverted Gear Train Design.

Problem: Design a reverted compound train for an exact train ratio of 18:1.

Solution:

1 Thoughitis not at all necessary to have integer gearset ratios in a compound train (only integer
tooth numbers), if the train ratio is an integer, it is easier to design with integer ratio gearsets.

2 The square root of 18 is 4.2426, well within our 10:1 limitation. So two stages will suffice in
this gearbox.

3 If we could form two identical stages, each with a ratio equal to the square root of the overall
train ratio, the train would be reverted by default. Table 9-8 shows that there are no reasonable
combinations of tooth ratios that will give the exact square root needed. Moreover, this square
root is not a rational number, so we cannot get an exact solution by this approach.

515

TABLE 9-8
Example 9-3

Possible Gearsets for 18:1
Two-Stage Reverted
Compound Train

Gearset Pinion Gear

Ratio Teeth Teeth
42426 x 12 = 5091
42426 x 13 = 5515
42426 x 14 = 59.40
42426 x 15 = 63.64
42426 x 16 = 67.88
42426 x 17 = 7212
42426 x 18 = 76.37
42426 x 19 = 80.61
42426 x 20 = 84.85
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11

12

Instead, let’s factor the train ratio. All numbers in the factors 9 x 2 and 6 x 3 are less than 10,
so they are acceptable on that basis. It is probably better to have the ratios of the two stages
closer in value to one another for packaging reasons, so the 6 x 3 choice will be tried.

Figure 9-31 shows a two-stage reverted train. Note that, unlike the nonreverted train in Figure
9-29, the input and output shafts are now in-line and cantilevered; thus each must have double
bearings on one end for moment support and a good bearing ratio as was defined in Section
2.18.

Equation 9.8 states the relationship for its compound train ratio. In addition, we have the
constraint that the center distances of the stages must be equal. Use equation 9.9c and set it
equal to an arbitrary constant K to be determined.

N, +N;=N,+Ns=K (@)

‘We wish to solve equations 9.8 and 9.9¢ simultaneously. We can separate the terms in equation
9.8 and set them each equal to one of the stage ratios chosen for this design.

N, 1
N, 6
N; =6N, (b)
Ny 1
N, 3
N5 =3N, ()
Separating the terms in equation (a):
N,+N;=K d)
Ny+Ns=K (e)
Substituting equation (b) in (d) and equation (c) in (e) yields:
N, +6N, =K =7N, )
Ny +3N,=K=4N, ®

To make equations (f) and (g) compatible, K must be set to at least the lowest common multiple
of 7 and 4, which is 28. This yields values of N, = 4 teeth and N4 = 7 teeth.

Since a four-tooth gear will have unacceptable undercutting, we need to increase our value of
K sufficiently to make the smallest pinion large enough.

A new value of K = 28 x 4 = 112 will increase the four-tooth gear to a 16-tooth gear, which is
acceptable for a 25° pressure angle (Table 9-4b). With this assumption of K =112, equations
(b), (¢), (f), and (g) can be solved simultaneously to give:

N, =16 N;=9
(h)
N, =28 Ns =84

which is a viable solution for this reverted train.

The same procedure outlined here can be applied to the design of reverted trains involving
several stages such as the helical gearbox in Figure 9-32.
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FIGURE 9-32

A commercial, three-stage reverted compound gearbox
Courtesy of Boston Gear Division of IMO Industries, Quincy, MA

An Algorithm for the Design of Compound Gear Trains

The examples of compound gear train design presented above used integer train ratios. If
the required train ratio is noninteger, it is more difficult to find a combination of integer
tooth numbers that will give the exact train ratio. Sometimes an irrational gear ratio may
be needed for such tasks as conversion of English to metric measure within a machine tool
gear train or when 7 is a factor in the ratio. Then the closest approximation to the desired
irrational train ratio that can be contained in a reasonable package is needed.

DilParel!l and Selfridge and Riddle[?! have devised algorithms to solve this problem.
Both require a computer for their solution. The Selfridge and Riddle approach will be
described here. It is applicable to two- or three-stage compound trains. A low limit N,,;,
and a high limit N,,,, on the acceptable number of teeth for any gear must be specified.
An error tolerance € expressed as a percentage of the desired train ratio R (made always
> 1) is also selected. For a two-stage compound train the ratio will be as shown in equa-
tion 9.5¢ expanded according to equation 9.8b with the signs neglected for this analysis.

_ N3Ns

R=m,=
7 N,N,

(9.10a)

The range of acceptable ratios is determined by the choice of error tolerance €.

R[OW =R-¢
(9.10b)
Rhigh =R+¢
N3Ns
Rigw < N,N, < Rhigh (9.10c)

Then, since the tooth numbers must be integers:
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N3N < INT(N; Ny Ry ) (9.10d)

Let: P=INT(N,N,Ryg ) (9.10€)
Also from equation 9.10c,

N3N > INT(N,N4 Ry, ) (9.10f)
Let: Q=INT(N,N4Ry, )+1 (9.10g)

rounding up to the next integer.

A search is done on all values of a temporary parameter K defined as Q < K < P to
see if a usable product pair can be found. Because of multiplicative symmetry, the largest
value of N3 that need be considered is

N; <P (9.11a)
Let: N, =P (9.11b)

The smallest value of N3 that need be considered occurs when K is at its smallest
value O and Ns takes its largest value Ny;gp,. (N3 is also constrained by Njpy,..)

Ny 22 (9.110)
Npign
Q+ Ny —1
Let: N, = INT| ~—M&h~ (9.11d)
high

which also rounds up to the next integer.

The search finds those values of N3 that meet N,, < N3 < N, and N5 = K/ N3. The
computer code for this algorithm is shown in Table 9-9. The complete program COM-
POUND.TK is downloadable with this book, encoded for use with the TKSolver program.
The code can be easily rewritten for other equation solvers or compilers.

This algorithm is extendable to three-stage compound gear trains, and the two-stage
version can be modified to force reversion of the train by adding a center distance calcula-
tion for each gearset and a comparison to a selected tolerance on center distance. These
files are downloadable as TRIPLE.TK and REVERT.TK, respectively. These programs each
generate a table of all solutions that meet the stated error criteria within the tooth limits
specified.

,@)EXAMPLE 9-4

Compound Gear Train Design to Approximate an Irrational Ratio.

Problem: Find a pair of gearsets which when compounded will give a train ratio of
3.14159:1 with an error of < 0.0005%. Limit gears to tooth numbers between 15
and 100. Also determine the tooth numbers for the smallest error possible if the
two gearsets must be reverted.
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TABLE 9-9 Algorithm for Design of Two-Stage Compound Gear Trains

From Author’s downloadable TKSolver file Compound.tk. Based on Reference [2]

" Ratio is the desired gear train ratio and must be > 1. Nmin is the minimum number of teeth acceptable on any pinion.

" Nmax is the maximum number of teeth acceptable on any gear. eps/ is initial estimate of the error tolerance on Ratio.

" eps is the tolerance used in the computation, initialized to eps/ but modified (doubled) until solutions are found.

" counter indicates how many times the initial tolerance was doubled. Note that a large initial value on eps/ will cause long
" computation times whereas a too-small value (that gives no solutions) will quickly be increased and lead to a faster solution.
" pinionl, pinion2, gearl, and gear2 are tooth numbers for solution.

eps = epsl " initialize error bound
counter = 0 " initialize counter
redo: " reentry point for additional tries at solution
S=1 " initialize the array pointer
R_high = Ratio + eps " initialize tolerance bands around ratio
R_low = Ratio - eps " initialize tolerance bands around ratio
Nh3 = INT( Nmax"2 / R_high ) " intermediate value for computation
Nh4 = INT( Nmax /SQRT ( R_high)) " intermediate value for computation
For pinionl = Nmin to Nh4 " loop for first pinion
Nhh = MIN ( Nmax, INT (Nh3 / pinionl)) " intermediate value for computation
For pinion2 = pinionl to Nhh " loop for 2nd pinion
P = INT( pinionl * pinion2 * R_high) " intermediate value for computation
O = INT{( pinionl * pinion2 * R_low) + 1 " intermediate value for computation
IF (P < Q )THEN GOTO np2 " skip to next pinion?2 if true
Nm = MAX ( Nmin, INT ( (Q + Nmax - 1)/ Nmax )) " intermediate value for computation
Np = SORT(P) " intermediate value for computation
ForK=QtoP " loop for parameter K
For gearl = Nm to Np " loop for first gear
IF (MOD( K, gearl ) <> 0 ) Then GOTO ngl " not a match - skip to next gearl
gear2 = K/ gearl " find second gear tooth number
error = ( Ratio - K/ ( pinionl * pinion2) ) " find error in ratio
"check to see if is within current tolerance
IF error > eps THEN GOTO ngl " is out of bounds - skip to next gearl

" else load solution into arrays
pinl[S] = pinionl

pin2[S] = pinion2

gearl[S] = gearl

gear2[S] = gear2

error[S] = ABS(error)

ratiol [S] = gearl / pinionl
ratio2[S] = gear2 / pinion2
ratio[S] = ratiol[S] * ratio2[S]

S=S+1 " increment array pointer
ngl: Next gearl
Next K
np2: Next pinion2
Next pinionl
" test to see if any solution occurred with current eps value
IF (Length (pinl) = 0 ) Then GOTO again ELSE Return " have a solution
again: " double eps value and try again
eps =eps *2

counter = counter + 1
GOTO redo
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* Note that this gear train
combination gives an ap-
proximation for 7 that is
exact to 4 decimal places.
But, this example asks

for an approximation to 5
decimal places within a tol-
erance of 5 ten-thousandths
of one percent. This ratio
is off by one thousandth

of a percent of the desired
5-place value.

TABLE 9-10 Nonreverted Gearsets and Errors in Ratio for Example 9-4

T This is the closest pos-
sible approximation to

a 5-place value for 7 in

a nonreverted gear train
within the given limitations
on gear sizes.

Ny N3 Ratio1 Ng Ng Ratio2 my Error
17 54 3.176 91 90 0.989 3.141 564 2.568 2 E-05
17 60 3.529 91 81 0.890 3.141 564 2.568 2 E-05
22 62 2.818 61 68 1.15 3.141 580 1.026 8 E-05
23 75 3.261 82 79 0.963 3.141 569 2.0541E-05
25 51 2.040 50 77 1.540 3.141600* 1.000 O E-05
28 85 3.036 86 89 1.035 3.1416M 2129 6 E-05
29 88 3.034 85 88 1.035 3.141582" 7.849 9 E-06
33 68 2.061 61 93 1.525 3.141 580 1.026 8 E-05
a4 75 1.829 46 79 1.717 3.141 569 2.0541E-05
43 85 1977 56 89 1.589 3.1416m 2129 6 E-05
43 77 1.791 57 100 1.754 3.141575 1.513 3 E-05
TABLE 9-11 Reverted Gearsets and Errors in Ratio for Example 9-4
Ny N3 Ratio1 Ng Ng Ratio 2 my Error
22 39 1.773 22 39 1773 3.142 562 -9.619 8 E-04
44 78 1773 44 78 1773 3.142 562 -9.619 8 E-04
Solution:

Input data to the algorithm are R = 3.141 59, Ny,,, = 15, Nj;o, = 100, initial € = 3.141 59 E-5.

The TKSolver file COMPOUND.TK (see Table 9-9) was used to generate the nonreverted solu-
tions shown in Table 9-10.

The best nonreverted solution (7th row in Table 9-10) has an error in ratio of 7.849 9 E-06
(0.000 249 87%) giving a ratio of 3.141 582 with gearsets of 29:88 and 85:88 teeth.

The TKSolver file REVERT.TK was used to generate the reverted solutions shown in Table 9-11.

The best reverted solution has an error in ratio of —9.619 8 E-04 (-0.030 62%) giving a ratio
of 3.142 562 with gearsets of 22:39 and 22:39 teeth.

Note that imposing the additional constraint of reversion has reduced the number of possible
solutions effectively to one (the two solutions in Table 9-11 differ by a factor of 2 in tooth
numbers but have the same error) and the error is much greater than that of even the worst of
the 11 nonreverted solutions in Table 9-10.

9.9

EPICYCLIC OR PLANETARY GEAR TRAINS

The conventional gear trains described in the previous sections are all one-degree-of-
freedom (DOF) devices. Another class of gear train has wide application, the epicyclic or
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FIGURE 9-33

Conventional gearsets are special cases of planetary or epicyclic gearsets

planetary train. This is a two-DOF device. Two inputs are needed to obtain a predict-
able output. In some cases, such as the automotive differential, one input is provided (the
driveshaft) and two frictionally coupled outputs are obtained (the two driving wheels).
In other applications such as automatic transmissions, aircraft engine to propeller reduc-
tions, and in-hub bicycle transmissions, two inputs are provided (one usually being a zero
velocity, i.e., a fixed gear), and one controlled output results.

Figure 9-33a shows a conventional, one-DOF gearset in which link 1 is immobilized
as the ground link. Figure 9-33b shows the same gearset with link 1 now free to rotate as
an arm that connects the two gears. Now only the joint O, is grounded and the system
DOF =2. This has become an epicyclic train with a sun gear and a planet gear orbiting
around the sun, held in orbit by the arm. Two inputs are required. Typically, the arm
and the sun gear will each be driven in some direction at some velocity. In many cases,
one of these inputs will be zero velocity, i.e., a brake applied to either the arm or the sun
gear. Note that a zero velocity input to the arm merely makes a conventional train out of
the epicyclic train as shown in Figure 9-33a. Thus the conventional gear train is simply
a special case of the more complex epicyclic train, in which its arm is held stationary.

In this simple example of an epicyclic train, the only gear left to take an output from,
after putting inputs to sun and arm, is the planet. It is a bit difficult to get a usable output
from this orbiting gear as its pivot is moving. A more useful configuration is shown in
Figure 9-34 to which a ring gear has been added. This ring gear meshes with the planet
and pivots at Oy, so it can be easily tapped as the output member. Most planetary trains
will be arranged with ring gears to bring the planetary motion back to a grounded pivot.
Note how the sun gear, ring gear, and arm are all brought out as concentric hollow shafts
so that each can be accessed to tap its angular velocity and torque as either an input or
an output.

Epicyclic trains come in many varieties. Levail3! cataloged 12 possible types of basic
epicyclic trains as shown in Figure 9-35. These basic trains can be connected together to
create a larger number of trains having more degrees of freedom. This is done in automo-
tive automatic transmissions as described in a later section.

Planet gear
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Levai's 12 possible epicyclic trains [3]
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results. Since the gears are rotating with respect to the arm and the arm itself has motion,
we have a velocity difference problem here that requires equation 6.5b be applied to this
problem. Rewriting the velocity difference equation 6.5b in terms of angular velocities
specific to this system, we get:

Wgear = Ogrm + Ogear/arm (9.12)

Equations 9.12 and 9.5a are all that is needed to solve for the velocities in an epicyclic
train, provided that the tooth numbers and two input conditions are known.

The Tabular Method

One approach to the analysis of velocities in an epicyclic train is to create a table which
represents equation 9.12 for each gear in the train.

@)EXAMPLE 9-5

Epicyclic Gear Train Analysis by the Tabular Method.

Problem: Consider the train in Figure 9-34, with the tooth numbers and initial conditions:
Sun gear N, = 40-tooth external gear
Planet gear N3 = 20-tooth external gear
Ring gear N4 = 80-tooth internal gear
Input to arm 200 rpm clockwise
Input to sun 100 rpm clockwise

We wish to find the absolute output angular velocity of the ring gear.
Solution:

1 The solution table is set up with a column for each term in equation 9.12 and a row for each
gear in the train. It will be most convenient if we can arrange the table so that meshing gears
occupy adjacent rows. The table for this method, prior to data entry, is shown in Figure 9-36.

2 Note that the gear ratios are shown straddling the rows of gears to which they apply. The gear
ratio column is placed next to the column containing the velocity differences ®Wgeqy/qrm because
the gear ratios only apply to the velocity difference. The gear ratios cannot be directly applied
to the absolute velocities in the g, column.

1 2 3

Gear # ® gear = Ogrm +| O gear/arm Gear

ratio

FIGURE 9-36

Table for the solution of planetary gear trains
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1 2 3

Gear # @ ear = Warm + | O gear/arm Gear
Ratio

2 -100 -200
-40/20

3 -200
+20/80

4 -200

FIGURE 9-37

Given data for planetary gear train from Example 9-5 placed in solution table

3 The solution strategy is simple but is fraught with opportunities for careless errors. Note that
we are solving a vector equation with scalar algebra and the signs of the terms denote the sense
of the m vectors which are all directed along the Z axis. Great care must be taken to get the
signs of the input velocities and of the gear ratios correct in the table, or the answer will be
wrong. Some gear ratios may be negative if they involve external gearsets, and others will be
positive if they involve an internal gear. We have both types in this example.

4 The first step is to enter the known data as shown in Figure 9-37 which in this case are the
arm velocity (in all rows) and the absolute velocity of gear 2 in column 1. The gear ratios can
also be calculated and placed in their respective locations. Note that these ratios should be
calculated for each gearset in a consistent manner, following the power flow through the train.
That is, starting at gear 2 as the driver, it drives gear 3 directly. This makes its ratio —N»/N3,
or input over output, not the reciprocal. This ratio is negative because the gearset is external.
Gear 3 in turn drives gear 4 so its ratio is +N3/N4. This is a positive ratio because of the in-
ternal gear.

5 Once any one row has two entries, the value for its remaining column can be calculated from
equation 9.12, which is shown in the top row of Figures 9-37 and 9-38. Once any one value in
the velocity difference column (column 3) is found, the gear ratios can be applied to calculate
all other values in that column. Finally, the remaining rows can be calculated from equation
9.12 to yield the absolute velocities of all gears in column 1. These computations are shown in
Figure 9-38 which completes the solution.

6 The overall train value for this example can be calculated from the table and is from arm to
ring gear +1.25:1 and from sun gear to ring gear +2.5:1.

1 2 3
Gear # ® gear = Oyrm +| @ gear/arm Gear
Ratio
2 -100 -200 +100
—40/20
3 —400 -200 -200
+20/80
4 -250 -200 =50

FIGURE 9-38

Solution for planetary gear train from Example 9-5
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In this example, the arm velocity was given. If it is to be found as the output, then it must
be entered in the table as an unknown, x, and the equations solved for that unknown.

FERGUSON’S PARADOX  Epicyclic trains have several advantages over conventional
trains including higher train ratios in smaller packages, reversion by default, and simul-
taneous, concentric, bidirectional outputs available from a single unidirectional input.
These features make planetary trains popular as automatic transmissions in automobiles
and trucks, etc.

The so-called Ferguson paradox of Figure 9-39 illustrates all these features of the
planetary train. It is a compound epicyclic train with one 20-tooth planet gear (gear 5)
carried on the arm and meshing simultaneously with three sun gears. These sun gears
have 100 teeth (gear 2), 99 teeth (gear 3), and 101 teeth (gear 4), respectively. The center
distances between all sun gears and the planet are the same despite the slightly different
pitch diameters of each sun gear. This is possible because of the properties of the involute
tooth form as described in Section 9.2. Each sun gear will run smoothly with the planet
gear. Each gearset will merely have a slightly different pressure angle.

A DEXAMPLE 9-6

Analyzing Ferguson’s Paradox by the Tabular Method.

Problem: Consider Ferguson’s paradox train in Figure 9-39, which has the following tooth
numbers and initial conditions:
Sun gear #2 N, = 100-tooth external gear
Sun gear #3 N3 = 99-tooth external gear
Sun gear #4 Ny = 101-tooth external gear
Planet gear Ns = 20-tooth external gear
Input to sun #2 0 rpm
Input to arm 100 rpm counterclockwise
)ﬁ Planet 20t \
5

Arm

Sun #4 - 101t

FIGURE 9-39

Ferguson's paradox compound planetary gear train
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1 2 3

Gear # ® gear = Ogrm +| O gear/arm Gear
Ratio

2 0 +100
—-100/20

5 +100
-20/99

3 +100

5 +100
-20/101

4 +100

FIGURE 9-40

Given data for Ferguson's paradox planetary gear train from Example 9-6

Sun gear 2 is fixed to the frame, thus providing one input (zero velocity) to the
system. The arm is driven at 100 rpm counterclockwise as the second input. Find
the angular velocities of the two outputs that are available from this compound
train, one from gear 3 and one from gear 4, both of which are free to rotate on the
main shaft.

Solution:

1 The tabular solution for this train is set up in Figure 9-40 which shows the given data. Note
that the row for gear 5 is repeated for clarity in applying the gear ratio between gears 5 and 4.

2 The known input values of velocity are the arm angular velocity and the zero absolute velocity
of gear 2.

3 The gear ratios in this case are all negative because of the external gear sets, and their values
reflect the direction of power flow from gear 2 to 5, then 5 to 3, and 5 to 4 in the second branch.

4 Figure 9-41 shows the calculated values added to the table. Note that for a counterclockwise
100 rpm input to the arm, we get a counterclockwise 1 rpm output from gear 4 and a clockwise
1 rpm output from gear 3, simultaneously.

This result accounts for the use of the word paradox to describe this train. Not only
do we get a much larger ratio (100:1) than we could from a conventional train with gears
of 100 and 20 teeth, but we have our choice of output directions!

Automotive automatic transmissions use compound planetary trains, which are al-
ways in mesh, and which give different ratio forward speeds, plus reverse, by simply
engaging and disengaging brakes on different members of the train. The brake provides
zero velocity input to one train member. The other input is from the engine. The output
is thus modified by the application of these internal brakes in the transmission according
to the selection of the operator (Park, Reverse, Neutral, Drive, etc.). An example of a
modern, eight-speed automatic transmission is shown in Figure 9-45.
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1 2 3
Gear # Ooear = | Qarm +| O gear/arm Gear
Ratio
> 0 +100 | 100
-100/20
5 +600 +100 +500
-20/99
3 -1.01 +100 -101.01
5 +600 +100 +500
-20/101
4 +0.99 +100 -99.01

FIGURE 9-41

Solution to Ferguson's paradox planetary gear train from Example 9-6

The Formula Method

It is not necessary to tabulate the solution to an epicyclic train. The velocity difference
formula can be solved directly for the train ratio. We can rearrange equation 9.12 to solve
for the velocity difference term. Then, let ®g represent the angular velocity of the first
gear in the train (chosen at either end), and ®; represent the angular velocity of the last
gear in the train (at the other end).
For the first gear in the system:
OF/arm = OF = Ogppy (9.13a)

For the last gear in the system:
Or/arm = OL =~ Ogpp (9.13b)

Dividing the last by the first:

(O] 0 —0
Liarm _ L am _ p (9.13c)
OFr/arm  OF = Ogpp

This gives an expression for the fundamental train value R which defines a velocity
ratio for the train with the arm held stationary. The leftmost side of equation 9.13c in-
volves only the velocity difference terms that are relative to the arm. This fraction is equal
to the ratio of the products of tooth numbers of the gears from first to last in the train as
defined in equation 9.8b which can be substituted for the leftmost side of equation 9.13c.

R+ product of number of teeth on driver gears  ®p —®,.,
" product of number of teeth on driven gears  ®p — ® g,

(9.14)

This equation can be solved for any one of the variables on the right side provided
that the other two are defined as the two inputs to this two-DOF train. Either the veloci-
ties of the arm plus one gear must be known or the velocities of two gears, the first and
last, as so designated, must be known. Another limitation of this method is that both the
first and last gears chosen must be pivoted to ground (not orbiting), and there must be a
path of meshes connecting them, which may include orbiting planet gears. Let us use this
method to again solve the Ferguson paradox of Example 9-6.
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A DEXAMPLE 9-7

Analyzing Ferguson’s Paradox by the Formula Method.

Problem: Consider the same Ferguson paradox train as in Example 9-6 which has the follow-
ing tooth numbers and initial conditions (see Figure 9-37):

Sun gear #2 N = 100-tooth external gear
Sun gear #3 N3 = 99-tooth external gear
Sun gear #4 N4 = 101-tooth external gear
Planet gear N5 = 20-tooth external gear
Input to sun #2 0 rpm

Input to arm 100 rpm counterclockwise

Sun gear 2 is fixed to the frame, providing one input (zero velocity) to the system.
The arm is driven at 100 rpm CCW as the second input. Find the angular velocities
of the two outputs that are available from this compound train, one from gear 3 and
one from gear 4, both of which are free to rotate on the main shaft.

Solution:

1 We will have to apply equation 9.14 twice, once for each output gear. Taking gear 3 as the last
gear in the train with gear 2 as the first, we have:

N, =100 N3 =99 N5 =20
(@)

Wy =+100 wp =0 ;=7

2 Substituting in equation 9.14 we get:
[_&](_ﬁj _ 0L~ O
NS N3 Op = Ogppy
()25
20 99 0-100
5 =-1.01

3 Now taking gear 4 as the last gear in the train with gear 2 as the first, we have:

N, =100 N, =101 N5 =20
()
@ gy =+100 op =0 o, =7
4 Substituting in equation 9.14, we get:
[N_][N_] _ 0L = O
Ns Ny OF = Wgppm
100 20 w4 —100
—|-= = d)
20 101 0-100

4 =+0.99

These are the same results as were obtained with the tabular method.
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910 EFFICIENCY OF GEAR TRAINS

The general definition of efficiency is output power/input power. 1t is expressed as a frac-
tion (decimal %) or as a percentage. The efficiency of a conventional gear train (simple or
compound) is very high. The power loss per gearset is only about 1 to 2% depending on
such factors as tooth finish and lubrication. A gearset’s basic efficiency is termed Ey. An
external gearset will have an E of about 0.98 or better and an external-internal gearset
about 0.99 or better. When multiple gearsets are used in a conventional simple or com-
pound train, the overall efficiency of the train will be the product of the efficiencies of all
its stages. For example, a two-stage train with both gearset efficiencies of Ey = 0.98 will
have an overall efficiency of | = 0.98% = 0.96.

Epicyclic trains, if properly designed, can have even higher overall efficiencies than
conventional trains. But, if the epicyclic train is poorly designed, its efficiency can be so
low that it will generate excessive heat and may even be unable to operate at all. This
strange result can come about if the orbiting elements (planets) in the train have high losses
that absorb a large amount of “circulating power” within the train. It is possible for this
circulating power to be much larger than the throughput power for which the train was
designed, resulting in excessive heating or stalling. The computation of the overall ef-
ficiency of an epicyclic train is much more complicated than the simple multiplication in-
dicated above that works for conventional trains. Molian[4] presents a concise derivation.

To calculate the overall efficiency 1 of an epicyclic train, we need to define a basic
ratio p which is related to the fundamental train value R defined in equation 9.13c:

if[R| 21, then p=R else p=1/R (9.15)

This constrains p to represent a speed increase rather than a decrease regardless of which
way the gear train is intended to operate.

For the purpose of calculating torque and power in an epicyclic gear train, we can con-
sider it to be a “black box” with three concentric shafts as shown in Figure 9-42. These
shafts are labeled 1, 2, and arm and connect to either “end” of the gear train and to its
arm, respectively. Two of these shafts can serve as inputs and the third as output in any
combination. The details of the gear train’s internal configuration are not needed if we
know its basic ratio p and the basic efficiency E of its gearsets. All the analysis is done
relative to the arm of the train since the internal power flow and losses are only affected
by rotation of shafts 1 and 2 with respect to the arm, not by rotation of the entire unit.
We also model it as having a single planet gear for the purpose of determining E( on the
assumption that the power and the losses are equally divided among all gears actually in
the train. Counterclockwise torques and angular velocities are considered positive. Power
is the product of torque and angular velocity, so a positive power is an input (torque and
velocity in same direction) and negative power is an output.

If the gear train is running at constant speed or is changing speed too slowly to sig-
nificantly affect its internal kinetic energy, then we can assume static equilibrium and the
torques will sum to zero.

T +T + Ty =0 (9.16)

The sum of power in and out must also be zero, but the direction of power flow affects the
computation. If the power flows from shaft 1 to shaft 2, then:

529
Gearbox
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FIGURE 9-42

Generic epicyclic
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* This example is adapted
from reference [5].
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EoT ((1)1 _warm)+T2 (0)2 _(’)arm):0 (9.17a)
If the power flows from shaft 2 to shaft 1, then:
Ty (01 = g )+ EoTy (@3 = @ ) =0 (9.17b)

If the power flows from shaft 1 to 2, equations 9.16 and 9.17a are solved simultaneously
to obtain the system torques. If the power flows in the other direction, then equations 9.16
and 9.17b are used instead. Substitution of equation 9.13c in combination with equation
9.15 introduces the basic ratio p and after simultaneous solution yields:

T
power flow from 1 to 2 T, =—4m _ (9.182)
17 pE, -1
o —
E,T,
T, = —ppb?i‘”’f (9.18b)
) —
E,T,
power flow from 2 to 1 T, = —2-am (9.192)
p—Eg
T
T, = —SLEZ” (9.19b)
—Ey

Once the torques are found, the input and output power can be calculated using the
known input and output velocities (from a kinematic analysis as described above) and the
efficiency then determined from output power/input power.

There are eight possible cases depending on which shaft is fixed, which shaft is
input, and whether the basic ratio p is positive or negative. These cases are shown in
Table 9-12[4] which includes expressions for the train efficiency as well as for the torques.
Note that the torque on one shaft is always known from the load required to be driven or
the power available from the driver, and this is needed to calculate the other two torques.

A DEXAMPLE 9-8
Determining the Efficiency of an Epicyclic Gear Train.”

Problem: Find the overall efficiency of the epicyclic train shown in Figure 9-43. The basic ef-
ficiency E( is 0.9928 and the gear tooth numbers are: Npo= 82t, Ng = 84t, N = 86t,
Np = 82t, Np = 82t, and N = 84t. Gear A (shaft 2) is fixed to the frame, providing
a zero velocity input. The arm is driven as the second input.

Solution:

1 Find the basic ratio p for the gear train using equations 9.14 and 9.15. Note that gears B and
C have the same velocity as do gears D and E, so their ratios are 1 and thus are omitted.

_ NpNpNp _84(82)(84) _ 1764

NgNeN,  82(86)(82) 1763

=1.000567 (a)

2 The combination of p > 1, shaft 2 fixed and input to the arm corresponds to Case 2 in Table
9-12, giving an efficiency of:
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TABLE 9-12 Torques and Efficiencies in an Epicyclic Train[4]
Fixed Input Train _
Case P Shaft Shaft Ratio i T> Tarm Efficiency (n)
I PELT, pEy -1
1— _ arm arm T 0
1 >+ 2 1 p 1- pE, 1-pE, arm p—1
1 T p-E, Ey(p-1)
2 >+ 2 arm Pa T === [_ il
1-p Ey Ey p—Ey
3 > 1 5 p-1 Tarm _ PEyTuym T pEy -1
P PEy -1 pEy -1 “n Ey(p-1)
P Ey p—E, p-1
4 >+ 1 - ——T T —-| ——|T
arm o-1 o 2 2 [ 0 2 p—E,
L. PELT, pEy —1
_ 1— _ arm 0Larm T 0
5 <-1 2 1 p 1—pE0 l_pE() arm p_l
! i P-Ey Ey(p-1)
6 <1 2 arm — T —P— — T
1-p Ey [ E, ! p-Ep
p_l EOTurm pTarm p_EO
7 <-1 1 2 - T
P p—Eo P-Ep o p-1
T, Ey—1 Ey(p-1
8 < 1 arm Ll T oE. T, (p 0 1 0 (p )
Ey(p—1) 0.9928(1.000567 —1
=0 (p-1) = ( )_ 0.073=7.3% (b)

p—Eo

1.000567 —0.9928

3 This is a very low efficiency which makes this gearbox essentially useless. About 93% of the
input power is being circulated within the gear train and wasted as heat.

FIGURE 9-43
Epicyclic Train for Example 9-8
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Copyright © 2018 Robert L. Norton: All Rights Reserved
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The above example points out a problem with epicyclic gear trains that have basic
ratios near unity. They have low efficiency and are useless for transmission of power.
Large speed ratios with high efficiency can only be obtained with trains having large
basic ratios.[%]

T http://www.designofma- 9.11 TRANSMISSIONS View the lecture video (41:06)F

chinery.com/DOM/Gear_

Transmissions.mp4 COMPOUND REVERTED GEAR TRAINS  are commonly used in manual (nonautomatic)
automotive transmissions to provide user-selectable ratios between the engine and the
drive wheels for torque multiplication (mechanical advantage). Modern gearboxes usually
have from four to seven forward speeds and one reverse. Most transmissions of this type
use helical gears for quiet operation. These gears are not moved into and out of engage-
ment when shifting from one speed to another except for reverse. Rather, the desired ratio
gears are selectively locked to the output shaft by synchromesh mechanisms as in Figure
9-44 which shows a four-speed, manually shifted, synchromesh automotive transmission.

The input shaft is at top left. The input gear is always in mesh with the leftmost gear
on the countershaft at the bottom. This countershaft has several gears integral with it, each
of which meshes with a different output gear that is freewheeling on the output shaft. The
output shaft is concentric with the input shaft, making this a reverted train, but the input
and output shafts only connect through the gears on the countershaft except in “top gear”
(fourth speed), for which the input and output shafts are directly coupled together with a
synchromesh clutch for a 1:1 ratio.

The synchromesh clutches are beside each gear on the output shaft and are partially
hidden by the shifting collars that move them left and right in response to the driver’s hand

CLUTCH 3-4 SYNCHROMIZER 3IRD SPEED 1-2 SYNCHROMIZER
GEAR [ENGAGED 3RD GEAR) GEAR [NEUTRAL)
A\

View Top Gear

http://www.designof- View Reverse

machinery.com/DOM/ http://www.designof-
manual_transmission_ machinery.com/DOM/
high_gear.avi manual_transmission_

reverse.avi

3RD SPEED
View Low Gear
http://www.designot-
machinery.com/DOM/
COUNTERGEAR COUNTERGEAR manual_transmission_
DRIVEN 3IRD GEAR

low_gear.avi

FIGURE 9-44

Four-speed manual synchromesh automobile transmission Source: Crouse, W. H. (1980). Automotive Mechanics, 8th ed.,
McGraw-Hill, New York, NY, p. 480. Reprinted with permission.
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on the shift lever. These clutches act to lock one gear to the output shaft at a time to pro-
vide a power path from input to output of a particular ratio. The arrows on the figure show
the power path for third-speed forward, which is engaged. Reverse gear, on the lower
right, engages an idler gear which is physically shifted into and out of mesh at standstill.

PLANETARY OR EPICYCLIC TRAINS are commonly used in automatic-shifting au-
tomotive transmissions as shown in Figure 9-45. The input shaft, which couples to the
engine’s crankshaft, is one input to the multi-DOF transmission that consists of several
stages of epicyclic trains. Automatic transmissions can have any number of ratios. Au-
tomotive examples historically have had from one (early) to ten (current) forward speeds.
Truck and bus automatic transmissions may have more.

Several epicyclic gearsets can be seen near the center of the eight-speed transmis-
sion in Figure 9-45. They are controlled by hydraulically operated multidisk clutches
and brakes within the transmission that impart zero velocity (second) inputs to various
elements of the train to create one of eight forward velocity ratios plus reverse in this
particular example. The clutches force zero relative velocity between the two elements
engaged, and the brakes force zero absolute velocity on the element. Since all gears are
in constant mesh, the transmission can be shifted under load by switching the internal
brakes and clutches on and off. They are controlled by a combination of inputs that in-
clude driver selection (PRND), road speed, throttle position, engine load and speed, and
other factors that are automatically monitored and computer controlled. Some modern
transmission controllers use artificial intelligence techniques to learn and adapt to the
operator’s style of driving by automatically resetting the shift points for gentle or aggres-
sive performance based on driving habits. Some allow manual control of shift points.

At the left side of Figure 9-45 is a turbine-like fluid coupling between engine and
transmission, called a torque converter, a cutaway of which is shown in Figure 9-46.
This device allows sufficient slip in the coupling fluid to let the engine idle with the trans-
mission engaged and the vehicle’s wheels stopped. The engine-driven impeller blades,

turbine stator clutches planetary
lock-up clutch impeller and brakes trains

FIGURE 9-45

ZF eight-speed automatic transmission Photo: Stefan Krause, License: FAL
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flywheel impeller input side  turbine stator impeller output side

~ attached to

_ : — " flywheel

turbine attached oil ’

to transmission - one-way

input shaft N clutch
between
stator and
transmission
stator ——1—1 | e

7

engine transmission
crankshaft input shaft

I
pilot bearing transmission
case
oil oil flow

(a) Schematic cross-section

FIGURE 9-46 Copyright © 2018 Robert L. Norton: All Rights Reserved

Cutaways of torque converters Photo courtesy of Mannesmann Sachs AG
running in oil, transmit torque by pumping oil past a set of stationary stator blades and
against the turbine blades attached to the transmission input shaft. The stator blades,
which do not move, serve to redirect the flow of oil exiting the impeller blades to a more
favorable angle relative to the turbine blades. This redirection of flow is responsible for
the torque multiplication that gives the device its name, torque converter. Without the
stator blades, it is just a fluid coupling that will transmit, but not multiply, the torque. In a
torque converter, the maximum torque increase of about 2x occurs at stall when the trans-
mission’s turbine is stopped and the engine-driven impeller is turning, creating maximum
slip between the two. This torque boost aids in accelerating the vehicle from rest when its
inertia must be overcome. The torque multiplication decreases to one at zero slip between
impeller and turbine. However, the device cannot reach a zero slip condition on its own.
It will always operate with a few percent of slip. This wastes energy in steady-state op-
eration, as when the vehicle is traveling at constant speed on level ground. To conserve
this energy, most torque converters are now equipped with an electromechanical lockup
clutch that engages above about 30 mph in top gear and locks the stator to the impeller,
making the transmission efficiency then close to 100%. When speed drops below a set

speed, or when the transmission downshifts, the clutch is disengaged, allowing the torque
converter to again perform its function.

(b) Torque converter
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B3 B2 B1 Clutch/Brake Activation
C2 @ & @ Range

. 3 Ci C By By B3

First X X

2 8 1
Cl 6 I I I Second X X
s I I I ¢ Third X X
T T1 Fourth ~ x X
INPUT OUTPUT Reverse X X

(a) Schematic of 4-speed automatic transmission

FIGURE 9-47

Schematic of automatic transmission from Figure 9-45 Adapted from reference [6]

Figure 9-47a shows a schematic of a four-speed automatic transmission. Its three
epicyclic stages, two clutches (Cy, C»), and three band brakes (B}, By, B3) are depicted.
Figure 9-47b shows an activation table of the brake-clutch combinations for each speed
ratio of this transmission.[0]

An historically interesting example of an epicyclic train used in a manually shifted
gearbox is the Ford Model T transmission shown and described in Figure 9-48. Over
9 million were produced from 1909 to 1927, before the invention of the synchromesh
mechanism shown in Figure 9-44. Conventional (compound-reverted) transmissions as
used in most other automobiles of that era (and into the 1930s) were unaffectionately
known as “crashboxes,” the name being descriptive of the noise made when shifting un-
synchronized gears into and out of mesh while in motion. Henry Ford had a better idea, that
he copied from F.W. Lanchester.” Ford’s Model T planetary gears were in constant mesh.
The two forward speeds and one reverse were achieved by engaging/disengaging a clutch
and band brakes in various combinations via foot pedals. These provided second inputs to
the epicyclic train which, like Ferguson’s paradox, gave bidirectional outputs, all without
any “crashing” of gear teeth. This Lanchester/Model T transmission is the precursor to all
modern automatic transmissions which replace the T’s foot pedals with automated hydraulic
operation of the clutches and brakes.

CONTINUOUSLY VARIABLE TRANSMISSION (CVT) A transmission that has no
gears, the CVT uses two sheaves or pulleys that adjust their axial widths simultaneously
in opposite directions to change the ratio of the belt drive that runs in the sheaves. This
concept was invented by Daimler in 1896 and was used on some very early automobiles
as the final drive and transmission combined. It is finding renewed application in the 21st
century in the quest for higher-efficiency vehicle drives. Figure 9-49 shows a commercial
automobile CVT that uses a steel, segmented “belt” of vee cross section that runs on ad-
justable width sheaves. To change the transmission ratio, one sheave’s width is opened
and the other closed in concert such that the effective pitch radii deliver the desired ratio.
It thus has an infinity of possible ratios, varying continuously between two limits. The
ratio is adjustable while running under load. The CVT shown is designed and computer
controlled to keep the vehicle’s engine running at essentially constant speed at an rpm
that delivers the best fuel economy, regardless of vehicle speed. Similar designs of CVTs
that use conventional rubber vee belts have long been used in low-power machinery such
as snow blowers and lawn tractors.

(b) Clutch / brake activation table

* Frederick W. Lanchester,
a major automotive pioneer,
invented the compound epi-
cyclic manual transmission
and patented it in England
in 1898, well before Ford
made the Model T (from
1909 to 1927). Ford made
money by the millions and
Lanchester died poor. As a
side note, contemporary re-
ports claim that Henry Ford
was never able to master the
double-clutching required to
properly shift a “crashbox
transmission” of the period.
This factoid is claimed

to be the reason he chose
Lanchester’s constant mesh,
planetary transmission for
his Model T. Ransom E.
Olds had also used this
transmission in his Curved-
Dash Olds well before Ford



FIGURE 9-48
Ford Model T epicyclic transmission
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The input from the engine is to arm 2.
Gear 6 is rigidly attached to the output
shaft which drives the wheels. Gears 3,
4, and 5 rotate at the same speed.

There are two forward speeds. Low
(1:2.75) is selected by engaging band
brake By to lock gear 7 to the frame.
Clutch C is disengaged.

High (1:1) is selected by engaging
clutch C which locks the input shaft
directly to the output shaft.

Reverse (1:-4) is obtained by engaging
brake band B to lock gear 8 to the
frame. Clutch C is disengaged.

912 DIFFERENTIALS

gear teeth
N3 =27
Ny=33
Ns =24
Ne =27
N7=21
Ng =30

gear-train brakes

planets brake bands
4 By B Bs
=]

P clutch C

car brake

Copyright © 2018 Robert L. Norton: All Rights Reserved

A differential is a device that allows a difference in velocity (and displacement) between
two elements. This requires a 2-DOF mechanism such as an epicyclic gear train. Perhaps
the most common application of differentials is in the final drive mechanisms of wheeled
land vehicles as shown in Figure P9-3. When a four-wheeled vehicle turns, the wheels
on the outside of the turn must travel farther than the inside wheels due to their different
turning radii as shown in Figure 9-50. Without a differential mechanism between the
inner and outer driving wheels, the tires must slip on the road surface for the vehicle to

output shaft

input shaft

FIGURE 9-49

variable-width sheave

steel, segmented "vee" belt

variable-width sheave

Continuously Variable Transmission (CVT) Courtesy of ZF Getriebe GmbH, Saabruken, Germany
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turn. If the tires have good traction, a nondifferentiated drive train will attempt to go in
a straight line at all times and will fight the driver in turns. In a “full-time” four-wheel
-drive” (4WD) vehicle (sometimes called “all wheel drive”” or AWD) an additional differ-
ential is needed between the front and rear wheels to allow the wheel velocities at each end
of the vehicle to vary in proportion to the traction developed at either end of the vehicle
under slippery conditions. Figure 9-51 shows an AWD automotive chassis with its three
differentials. In this example, the center differential is packaged with the transmission
and front differential but effectively is in the driveshaft between the front and rear wheels
as shown in Figure 9-50. Differentials are made with various gear types. For rear axle
applications, a bevel gear epicyclic is commonly used as shown in Figure 9-52a and in
Figure P9-3. For center and front differentials, helical or spur gear arrangements are often
used as in Figure 9-52b and c.

An epicyclic train used as a differential has one input and two outputs. Taking the
rear differential in an automobile as an example, its input is from the driveshaft and its
outputs are to the right and left wheels. The two outputs are coupled through the road via
the traction (friction) forces between tires and pavement. The relative velocity between
each wheel can vary from zero when both tires have equal traction and the car is not
turning, to twice the epicyclic train’s input speed when one wheel is on ice and the other
has traction. Front or rear differentials split the torque equally between their two wheel
outputs. Since power is the product of torque and angular velocity, and power out can-
not exceed power in, the power is split between the wheels according to their velocities.
When traveling straight ahead (both wheels having traction), half the power goes to each
wheel. As the car turns, the faster wheel gets more power and the slower one less. When
one wheel loses traction (as on ice), it gets all the power (50% torque x 200% speed), and
the wheel with traction gets zero power (50% torque x 0% speed). This is why 4WD or
AWD is needed in slippery conditions. In AWD, the center differential splits the torque
between front and rear in some proportion. If one end of the car loses traction, the other
may still be able to control it provided it still has traction.

Ar t Difference
in radius

Front Diff

Center Diff L

_+_

Rear Diff

FIGURE 9-50

Turning behavior of a four-wheel vehicle Source: Courtesy of Tochigi Fuji Sangyo, Japan
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* Non-full-time 4WD is
common in trucks and
differs from AWD in that it
lacks the center differential,
making it usable only when
the road is slippery. Any
required differences in
rotational velocity between
rear and front driven wheels
is then accommodated by
tire slip. On dry pave-
ment, a non-full-time 4WD
vehicle will not handle

well and can be dangerous.
Unlike vehicles with AWD,
which is always engaged,
non-full-time 4WD vehicles
normally operate in 2WD
and require driver action to
obtain 4WD. Manufactur-
ers caution against shifting
these vehicles into 4WD
unless traction is poor.



538

View a Video Free

Spinning
http://www.designof-
machinery.com/DOM/
differential_normal.avi

View a Video
Locked

http://www.designof-
machinery.com/DOM/
differential_locked.avi

(c)

FIGURE 9-52

Differentials
Courtesy of Tochigi Fuji
Sangyo, Japan
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Center differential

) Front differential

@ Rear differential

FIGURE 9-51

An all-wheel-drive (AWD) chassis and drive train Source: Courtesy of Tochigi Fuji Sangyo, Japan

LIMITED SLIP DIFFERENTIALS Because of their behavior when one wheel loses
traction, various differential designs have been created to limit the slip between the two
outputs under those conditions. These are called limited slip differentials and typically
provide some type of friction device between the two output gears to transmit some torque
but still allow slip for turning. Some use a fluid coupling between the gears, and others
use spring-loaded friction disks or cones as can be seen in Figure 9-52a. Some use an
electrically controlled clutch within the epicyclic train to lock it up on demand for off-
road applications as shown in Figure 9-52b. The TORSEN® (from TORque SENsing)
differential of Figure 9-53, invented by V. Gleasman, uses wormsets whose resistance to
backdriving provides torque coupling between the outputs. The lead angle of the worm
determines the percent of torque transmitted across the differential. These differentials are
used in many AWD vehicles including the Army’s High Mobility Multipurpose Wheeled
Vehicle ( HMMWYV) known as the “Humvee” or “Hummer.”
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(a) TORSEN® Type 1 differential (b) TORSEN® Type 2 differential

FIGURE 9-53

TORSEN" limited-slip differentials Source: Courtesy of JTEKT Torsen Inc., Rochester, NY
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*19-1

9.2

9.3

9-4

PROBLEMS*

A 24-tooth gear has AGMA standard full-depth involute teeth with diametral pitch of 5.
Calculate the pitch diameter, circular pitch, addendum, dedendum, tooth thickness, and
clearance.

A 40-tooth, 10 p, gear has AGMA standard full-depth involute teeth. Calculate pitch
diameter, circular pitch, addendum, dedendum, tooth thickness, and clearance.

A 30-tooth, 12 p; gear has AGMA standard full-depth involute teeth. Calculate the
pitch diameter, circular pitch, addendum, dedendum, tooth thickness, and clearance.

Using any available string, some tape, a pencil, and a drinking glass or tin can, generate
and draw an involute curve on a piece of paper. With your protractor, show that all
normals to the curve are tangent to the base circle.

# Problem figures are pro-
vided as downloadable PDF
files with same names as the
figure number.

* Answers in Appendix F.

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.
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A spur gearset must have pitch diameters of 2.5 and 8 in. What is the largest standard
tooth size, in terms of diametral pitch p, that can be used without having any interference
or undercutting? Find the number of teeth on the hob-cut gear and pinion for this p,:

a. For a 20° pressure angle.
b. For a 25° pressure angle. (Note that diametral pitch need not be an integer.)

Design a simple, spur gear train for a ratio of —7:1 and diametral pitch of 10. Specify
pitch diameters and numbers of teeth. Calculate the contact ratio.

Design a simple, spur gear train for a ratio of +6:1 and diametral pitch of 5. Specify
pitch diameters and numbers of teeth. Calculate the contact ratio.

Design a simple, spur gear train for a ratio of —7:1 and diametral pitch of 8. Specify
pitch diameters and numbers of teeth. Calculate the contact ratio.

Design a simple, spur gear train for a ratio of +6.5:1 and diametral pitch of 5. Specify
pitch diameters and numbers of teeth. Calculate the contact ratio.

Design a compound, spur gear train for a ratio of —80:1 and diametral pitch of 12.
Specify pitch diameters and numbers of teeth. Sketch the train to scale.

Design a compound, spur gear train for a ratio of 50:1 and diametral pitch of 8. Specify
pitch diameters and numbers of teeth. Sketch the train to scale.

Design a compound, spur gear train for a ratio of 120:1 and diametral pitch of 5.
Specify pitch diameters and numbers of teeth. Sketch the train to scale.

Design a compound, spur gear train for a ratio of —250:1 and diametral pitch of 9.
Specify pitch diameters and numbers of teeth. Sketch the train to scale.

Design a compound, reverted, spur gear train for a ratio of 28:1 and diametral pitch of
8. Specify pitch diameters and numbers of teeth. Sketch the train to scale.

Design a compound, reverted, spur gear train for a ratio of 40:1 and diametral pitch of
8. Specify pitch diameters and numbers of teeth. Sketch the train to scale.

Design a compound, reverted, spur gear train for a ratio of 65:1 and diametral pitch of
8. Specify pitch diameters and numbers of teeth. Sketch the train to scale.

Design a compound, reverted, spur gear train for a ratio of 7:1 and diametral pitch of 4.
Specify pitch diameters and numbers of teeth. Sketch the train to scale.

Design a compound, reverted, spur gear train for a ratio of 12:1 and diametral pitch of
6. Specify pitch diameters and numbers of teeth. Sketch the train to scale.

Design a compound, reverted, spur gear transmission that will give two shiftable ratios
of +3:1 forward and —4.5:1 reverse with diametral pitch of 6. Specify pitch diameters
and numbers of teeth. Sketch the train to scale.

Design a compound, reverted, spur gear transmission that will give two shiftable ratios
of +5:1 forward and —3.5:1 reverse with diametral pitch of 6. Specify pitch diameters
and numbers of teeth. Sketch the train to scale.

Note: All problem figures are provided as PDF files, and some are also provided as animated Working Model
files. PDF filenames are the same as the figure number.
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Design a compound, reverted, spur gear transmission that will give three shiftable ra-
tios of +6:1, 4+3.5:1 forward, and —4:1 reverse with diametral pitch of 8. Specify pitch
diameters and numbers of teeth. Sketch the train to scale.

Design a compound, reverted, spur gear transmission that will give three shiftable
ratios of +4.5:1, +2.5:1 forward, and —3.5:1 reverse with diametral pitch of 5. Specify
pitch diameters and numbers of teeth. Sketch the train to scale.

Design the rolling cones for a —3:1 ratio and a 60° included angle between the shafts.
Sketch the train to scale.

Design the rolling cones for a —4.5:1 ratio and a 40° included angle between the shafts.

Sketch the train to scale.

Figure P9-1 shows a compound planetary gear train (not to scale). Table P9-1 gives
data for gear numbers of teeth and input velocities. For the row(s) assigned, find the
variable represented by a question mark.

Figure P9-2 shows a compound planetary gear train (not to scale). Table P9-2 gives
data for gear numbers of teeth and input velocities. For the row(s) assigned, find the
variable represented by a question mark.

FIGURE P9-1
Planetary gearset for Problem 9-25 and 9-81

TABLE P9-1 Data for Problem 9-25 and 9-81

Row N> N3 Ng Ng Ng 2 We ®arm
a 30 25 45 50 200 ? 20 - 50
b 30 25 45 50 200 30 ? - 90
c 30 25 45 50 200 50 0 ?
d 30 25 45 30 160 ? 40 - 50
e 30 25 45 30 160 50 ? -75
f 30 25 45 30 160 50 0 ?

541

Table P9-0 Part 2
Topic/Problem Matrix

9.11 Transmissions

9-19, 9-20, 9-21,
9-22,9-34, 9-44

* Answers in Appendix F.

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.
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* Answers in Appendix F.

T These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.
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TABLE P9-2 Data for Problem 9-26
Row N> N3 Ng Ng Ng 02 ®e Ogrm
a 50 25 45 30 40 ? 20 -50
b 30 35 55 40 50 30 ? -90
c 40 20 45 30 35 50 0 ?
d 25 45 35 30 50 ? 40 -50
e 35 25 55 35 45 30 ? -75
f 30 30 45 40 35 40 0 ?
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FIGURE P9-2

Compound planetary gear train for Problem 9-26
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*19-27  Figure P9-3 shows a planetary gear train used in an automotive rear-end differential
(not to scale). The car has wheels with a 16-in rolling radius and is moving forward
in a straight line at 55 mph. The engine is turning 2500 rpm. The transmission is in
direct drive (1:1) with the driveshaft.

a.  What are the rear wheels’ rpm and the gear ratio between ring and pinion?
b.  As the car hits a patch of ice, the right wheel speeds up to 800 rpm. What is the
speed of the left wheel? Hint: The average of both wheels’ rpm is a constant.

79-28

c.  Calculate the fundamental train value of the epicyclic stage.

Design a speed-reducing planetary gearbox to be used to lift a 5-ton load 50 ft with a
motor that develops 20 1b-ft of torque at its operating speed of 1750 rpm. The available
winch drum has no more than a 16-in diameter when full of its steel cable. The speed
reducer should be no larger in diameter than the winch drum. Gears of no more than
about 75 teeth are desired, and diametral pitch needs to be no smaller than 6 to stand
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FIGURE P9-3

Automotive differential planetary gear train for Problem 9-27

the stresses. Make multiview sketches of your design and show all calculations. How
long will it take to raise the load with your design?

*9-29  Determine all possible two-stage compound gear combinations that will give an ap-
proximation to the Naperian base 2.71828. Limit tooth numbers to between 18 and 80.
Determine the arrangement that gives the smallest error.

f9-30  Determine all possible two-stage compound gear combinations that will give an ap-
proximation to 2r. Limit tooth numbers to between 15 and 90. Determine the arrange-
ment that gives the smallest error.

f9-31  Determine all possible two-stage compound gear combinations that will give an
approximation to /2. Limit tooth numbers to between 20 and 100. Determine the ar-
rangement that gives the smallest error.

f9-32  Determine all possible two-stage compound gear combinations that will give an ap-
proximation to 3m/2. Limit tooth numbers to between 20 and 100. Determine the
arrangement that gives the smallest error.

f9-33  Figure P9-4a shows a reverted clock train. Design it using 25° nominal pressure
angle gears of 24 p,; having between 12 and 150 teeth. Determine the tooth numbers
and nominal center distance. If the center distance has a manufacturing tolerance of
+ 0.006 in, what will the pressure angle and backlash at the minute hand be at each
extreme of the tolerance?

* Answers in Appendix F.

9-34  Figure P9-4b shows a three-speed shiftable transmission. Shaft F, with the cluster of T These problems are suited
gears E, G, and H, is capable of sliding left and right to engage and disengage the three  to solution using Mathcad,
gearsets in turn. Design the three reverted stages to give output speeds at shaft F of Matlab, or TKSolver equa-

150, 350, and 550 rpm for an input speed of 450 rpm to shaft D. tion solver programs.
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Problems 9-33 to 9-34 Source: P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission

*19-35  Figure P9-5a shows a compound epicyclic train used to drive a winch drum. Gear A is
‘A o Abpendix F driven at 18 rpm CW and gear D is fixed to ground. Tooth numbers are in the figure.
TISWETS 0 Appendix Find speed and direction of the drum. What is train efficiency for gearsets £y = 0.97?
T These problems are suited 79-36  Figure P9-5b shows a compound epicyclic train with its tooth numbers. The arm is
to solution using Marhcad, driven CCW at 20 rpm. Gear A is driven CW at 40 rpm. Find speed of ring gear D.
Matlab, or TKSol - ¢ . . . . - . .
tioan golv(; prog(r]a:;; edud *19-37  Figure P9-6a shows an epicyclic train with its tooth numbers. The arm is driven CCW
’ at 50 rpm and gear A on shaft 1 is fixed to ground. Find speed of gear D on shaft 2.
What is the efficiency of this train if the basic gearsets have Ey = 0.96?
. B-28
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FIGURE P9-5

Problems 9-35 to 9-36 Source: P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission



GEAR TRAINS
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FIGURE P9-6

Problems 9-37 to 9-38 Source: P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission

79-38  Figure P9-6b shows a differential with its tooth numbers. Gear A is driven CCW at 10
rpm and gear B is driven CW at 24 rpm. Find the speed of gear D.

*19-39  Figure P9-7a shows a gear train containing both compound-reverted and epicyclic
stages. Tooth numbers are in the figure. The motor is driven CW at 1500 rpm. Find
the speeds of shafts 1 and 2.

79-40 Figure P9-7b shows an epicyclic train used to drive a winch drum. The arm is driven at
250 rpm CCW and gear A, on shaft 2, is fixed to ground. Find speed and direction of
the drum on shaft 1. What is train efficiency if the basic gearsets have Ejy = 0.98?

* Answers in Appendix F.

 These problems are suited
to solution using Mathcad,

Matlab, or TKSolver equa-
tion solver programs.
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Problems 9-39 to 9-40 Source: P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission
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ARM SHAFT kK24 == =

FIGURE P9-8

Problem 9-41 Source: P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission

*19-41  Figure P9-8 shows an epicyclic train with its tooth numbers. Gear 2 is driven at 600
rpm CW and gear D is fixed to ground. Find speed and direction of gears 1 and 3.

* Answers in Appendix F.

79-42  Figure P9-9 shows a compound epicyclic train. Shaft 1 is driven at 300 rpm CCW and
gear A is fixed to ground. The tooth numbers are indicated in the figure. Determine the
speed and direction of shaft 2.

T These problems are suited
to solution using Mathcad,

Matlab, or TKSolver equa- *19-43  Figure P9-10 shows a compound epicyclic train. Shaft 1 is driven at 60 rpm. Tooth
tion solver programs. numbers are in the figure. Find speed and direction of gears G and M.

79-44  Calculate the ratios in the Model T transmission shown in Figure 9-48 and prove that
the values shown in the figure’s sidebar are correct.

79-45 Do Problem 7-57.

T |A-s6-FIXED =

FIGURE P9-9

Problem 9-42 Source: P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission
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FIGURE P9-10

Problem 9-43 Source: P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission

9-46

9-47

9-48

9-49

79-50

79-51

79-52

Figure P9-11 shows an involute generated from a base circle of radius r;,. Point A is
simultaneously on the base circle and the involute. Point B is any point on the involute
curve and point C is on the base circle where a line drawn from point B is tangent to
the base circle. Point O is the center of the base circle. The angle ¢ (angle BOC)

is known as the involute pressure angle corresponding to point B (not to be confused
with the pressure angle of two gears in mesh, which is defined in Figure 9-6). The
angle AOB is known as the involute of ¢g and is often designated as inv ¢g. Using the
definition of the involute tooth form and Figure 9-5, derive an equation for inv ¢p as a
function of ¢p alone.

Using data and definitions from Problem 9-46, show that when point B is at the pitch
circle the involute pressure angle is equal to the pressure angle of two gears in mesh.

Using data and definitions from Problem 9-46, and with point B at the pitch circle
where the involute pressure angle ¢p is equal to the pressure angle ¢ of two gears in
mesh, derive equation 9.4b.

Using Figures 9-6 and 9-7, derive equation 9.2, which is used to calculate the length of
action of a pair of meshing gears.

Backlash of 0.03 mm measured on the pitch circle of a 40-mm-diameter pinion in mesh
with a 100-mm-diameter gear is desired. If the gears are standard, full-depth, with 25°
pressure angles, by how much should the center distance be increased?

Backlash of 0.0012 in measured on the pitch circle of a 2.000-in-diameter pinion in
mesh with a 5.000-in-diameter gear is desired. If the gears are standard, full-depth,
with 25° pressure angles, by how much should the center distance be increased?

A 22-tooth gear has standard full-depth involute teeth with a module of 6. Calculate
the pitch diameter, circular pitch, addendum, dedendum, tooth thickness, and clearance
using the AGMA specifications in Table 9-1 substituting m for 1/p,.

547

B involute
. 4 curve
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circle

FIGURE P9-11
Problem 9-46

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.
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T These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.
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9-53

f9-54

9-55

9-56

9-57

9-58

9-59

9-60

f9-61

f9-62

79-63

f9-64

9-65

9-66

A 40-tooth gear has standard full-depth involute teeth with a module of 3. Calculate
the pitch diameter, circular pitch, addendum, dedendum, tooth thickness, and clearance
using the AGMA specifications in Table 9-1 substituting m for 1/p,.

A 30-tooth gear has standard full-depth involute teeth with a module of 2. Calculate
the pitch diameter, circular pitch, addendum, dedendum, tooth thickness, and clearance
using the AGMA specifications in Table 9-1 substituting m for 1/p,.

Determine the minimum number of teeth on a pinion with a 20° pressure angle for the
following gear-to-pinion ratios such that there will be no tooth-to-tooth interference:
1:1,2:1, 3:1, 4:1, 5:1.

Determine the minimum number of teeth on a pinion with a 25° pressure angle for the
following gear-to-pinion ratios such that there will be no tooth-to-tooth interference:
1:1,2:1, 3:1, 4:1, 5:1.

A pinion with a 3.000-in pitch diameter is to mesh with a rack. What is the largest
standard tooth size, in terms of diametral pitch, that can be used without having any
interference? a. Fora?20°pressure angle  b. For a 25° pressure angle

A pinion with a 75-mm pitch diameter is to mesh with a rack. What is the largest
standard tooth size, in terms of metric module, that can be used without having any
interference? a. Fora?20°pressure angle  b. For a 25° pressure angle

In order to have a smooth-running gearset it is desired to have a contact ratio of at least
1.5. If the gears have a pressure angle of 25° and gear ratio of 4, what is the minimum
number of teeth on the pinion that will yield the required minimum contact ratio?

In order to have a smooth-running gearset it is desired to have a contact ratio of at least
1.5. If the gears have a pressure angle of 25° and a 20-tooth pinion, what is the mini-
mum gear ratio that will yield the required minimum contact ratio?

Calculate and plot the train ratio of a noncircular gearset, as a function of input angle,
that is based on the centrodes of Figure 6-15b. The link length ratios are
Ly/Ly = 1.60, Ls/Ly = 1.60, and L4/L, = 1.00.

Repeat problem 9-61 for a fourbar linkage with link ratios of L{/L, = 1.80,
L3/L, = 1.80, and L4/L, = 1.00.

Figure 9-35b (repeated here) shows (schematically) a compound epicyclic train. The
tooth numbers are 50, 25, 35, and 90 for gears 2, 3, 4, and 5, respectively. The arm is
driven at 180 rpm CW and gear 5 is fixed to ground. Determine the speed and direc-
tion of gear 2. What is the efficiency of this train if the basic gearsets have Ey = 0.98?

Figure 9-35h (repeated here) shows (schematically) a compound epicyclic train. The
tooth numbers are 80, 20, 25, and 85 for gears 2, 3, 4, and 5, respectively. Gear 2 is
driven at 200 rpm CCW. Determine the speed and direction of the arm if gear 5 is fixed
to ground. What is the efficiency of this train if the basic gearsets have Ey = 0.98?

Figure 9-35i (repeated here) shows (schematically) a compound epicyclic train. The
tooth numbers are 24, 18, 20, and 90 for gears 2, 3, 4, and 5, respectively. The arm is
driven at 100 rpm CCW and gear 2 is fixed to ground. Determine the speed and direc-
tion of gear 5. What is the efficiency of this train if the basic gearsets have Ey = 0.98?

Using Figure 9-8, derive an equation for the operating pressure angle of two gears
in mesh as a function of their base circle radii, the standard center distance, and the
change in center distance.
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FIGURE 9-35 repeated

Levai's 12 possible epicyclic trains [3]

967

79-68

*19-69

79-70

*9-71

9-72

79-73

9-74

A pinion and gear in mesh have base circle radii of 1.8126 and 3.6252 in, respectively.
If they were cut with a standard pressure angle of 25°, determine their operating pres-
sure angle if the standard center distance is increased by 0.062 in.

* Answers in Appendix F.

 These problems are suited

A pinion and gear in mesh have base circle radii of 1.35946 and 2.26577 in, respectively. to solution using Mathcad,
If they have a standard center distance of 4.000 in, determine the standard pressure angle Matlab, or TKSolver equa-
and the operating pressure angle if the standard center distance is increased by 0.050 in. tion solver programs.

A 25-tooth pinion meshes with a 60-tooth gear. They have a diametral pitch of 4, a
pressure angle of 20°, and AGMA full-depth involute profiles. Find the gear ratio, cir-
cular pitch, base pitch, pitch diameters, standard center distance, addendum, dedendum,
whole depth, clearance, outside diameters. and contact ratio of the gearset.

A 15-tooth pinion meshes with a 45-tooth gear. They have a diametral pitch of 5, a
pressure angle of 25°, and AGMA full-depth involute profiles. Find the gear ratio, cir-
cular pitch, base pitch, pitch diameters, standard center distance, addendum, dedendum,
whole depth, clearance, outside diameters. and contact ratio of the gearset.

Design a compound, spur gear train that will reduce the speed of a 900-rpm synchronous
AC motor to exactly 72 revolutions per hour with the output rotating in the same direction
as the motor. Use gears with a pressure angle of 25° and minimize the package size.

A gearset with a contact ratio of at least 1.5 is desired. If the gears have standard
AGMA full-depth teeth with a pressure angle of 25°, and the pinion has 21 teeth, what
is the minimum gear ratio that will give the required minimum contact ratio?

Provide a preliminary design (pitch diameters and numbers of teeth) for a gear set with
a gear ratio of mg = 4, a diametral pitch p; = 8, and a contact ratio of at least 1.5.

A 22-tooth pinion meshes with a 55-tooth gear. They have a diametral pitch of 8, a
pressure angle of 20°, and AGMA full-depth involute profiles. Find the gear ratio, cir-
cular pitch, base pitch, pitch diameters, standard center distance, addendum, dedendum,
whole depth, clearance, and outside diameters.
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9-75

9-76

9-77

9-78

9-79

9-80

9-81

A 16-tooth pinion meshes with a 48-tooth gear. They have a diametral pitch of 10, a
pressure angle of 25°, and AGMA full-depth involute profiles that have been modified
to have unequal addendum tooth forms of +0.50. Find the pitch diameters, addendum,
dedendum, whole depth, dedendum diameters, base diameters, and outside diameters.

Design a gearset that has standard, full-depth teeth, a gear ratio of 5 and a contact ratio
of at least 1.6 minimizing the space occupied by the pinion and gear. Determine the
diametral pitch and the outside diameters of the pinion and gear if a course diametral
pitch is required.

Provide a preliminary design (pitch diameters and numbers of teeth) for a gearset that
will have a gear ratio of mg = 6, a diametral pitch pd = 5, and a contact ratio of at least
1.75.

Design a compound, spur gear train for a ratio of —180:1 and diametral pitch of 10.
Specify pitch diameters and numbers of teeth. Sketch the train to scale.

Figures 9-35b and 9-35i show (schematically) two epicyclic trains, each with an arm,
aring gear, and three external gears. If the arm (1) is the input, the ring gear (5) is the
output, and gear 2 is stationary, find the velocity ratios for these two configurations
given the following tooth numbers: 18, 27, 24, and 60 for gears 2, 3, 4, and 5, respec-
tively.

Determine the overall efficiencies of the epicyclic trains given in Problem 9-79 if they
each have basic efficiencies of Ey = 0.98.

Figure P9-1 shows a compound planetary gear train (not to scale). Table P9-1 gives
data for gear numbers of teeth. For the row(s) assigned (ignoring the velocity data),
find the overall efficiency of the train if £y = 0.980, the arm is the input, the sun is the
output, and the ring gear is stationary.




