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Chapter

BALANCING

Moderation is best,
and to avoid all extremes
PLUTARCH

12.0 INTRODUCTION Watch the lecture video for this chapter (48:09)"

Any link or member that is in pure rotation can, theoretically, be perfectly balanced to
eliminate all shaking forces and shaking moments. It is accepted design practice to bal-
ance all rotating members in a machine unless shaking forces are desired (as in a vibrating
shaker mechanism, for example). A rotating member can be balanced either statically or
dynamically. Static balance is a subset of dynamic balance. To achieve complete bal-
ance requires that dynamic balancing be done. In some cases, static balancing can be an
acceptable substitute for dynamic balancing and is generally easier to do.

Rotating parts can, and generally should, be designed to be inherently balanced by
their geometry. However, the vagaries of production tolerances guarantee that there will
still be some small unbalance in each part. Thus a balancing procedure will have to be
applied to each part after manufacture. The amount and location of any imbalance can
be measured quite accurately and compensated for by adding or removing material in
the correct locations.

In this chapter we will investigate the mathematics of determining and designing a
state of static and dynamic balance in rotating elements and also in mechanisms having
complex motion, such as the fourbar linkage. The methods and equipment used to mea-
sure and correct imbalance in manufactured assemblies will also be discussed. It is quite
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convenient to use the method of d’Alembert (see Section 10.14) when discussing rotating
imbalance, applying inertia forces to the rotating elements, so we will do that.

1241 STATIC BALANCE Watch a short video (09:58)F

Despite its name, static balance does apply to things in motion. The unbalanced forces of
concern are due to the accelerations of masses in the system. The requirement for static
balance is simply that the sum of all forces on the moving system (including d’Alembert
inertial forces) must be zero.

Y F-ma=0 (12.1)

This is simply a restatement of Newton’s law as discussed in Section 10.14.

Another name for static balance is single-plane balance, which means that the
masses which are generating the inertia forces are in, or nearly in, the same plane. It is
essentially a two-dimensional problem. Some examples of common devices which meet
this criterion, and thus can successfully be statically balanced, are a single gear or pulley
on a shaft, a bicycle or motorcycle tire and wheel, a thin flywheel, an airplane propeller,
an individual turbine blade-wheel (but not the entire turbine). The common denominator
among these devices is that they are all short in the axial direction compared to the radial
direction, and thus can be considered to exist in a single plane. An automobile tire and
wheel is only marginally suited to static balancing as it is reasonably thick in the axial di-
rection compared to its diameter. Despite this fact, auto tires are sometimes statically bal-
anced. More often they are dynamically balanced and will be discussed under that topic.

Figure 12-1a shows a link in the shape of a vee which is part of a linkage. We want to
statically balance it. We can model this link dynamically as two point masses m| and m;
concentrated at the local CGs of each “leg” of the link as shown in Figure 12-1b. These
point masses each have a mass equal to that of the “leg” they replace and are supported on
massless rods at the position (R or Ry) of that leg’s CG. We can solve for the required
amount and location of a third “balance mass” my, to be added to the system at some loca-
tion Ry, in order to satisfy equation 12.1.

Assume that the system is rotating at some constant angular velocity . The accel-
erations of the masses will then be strictly centripetal (toward the center), and the inertia
forces will be centrifugal (away from the center) as shown in Figure 12-1. Since the
system is rotating, the figure shows a “freeze-frame” image of it. The position at which
we “stop the action” for the purpose of drawing the picture and doing the calculations is
both arbitrary and irrelevant to the computation. We will set up a coordinate system with
its origin at the center of rotation and resolve the inertial forces into components in that
system. Writing vector equation 12.1 for this system, we get:

-m R0 - mR,0% —myRy0° =0 (12.2a)

Note that the only forces acting on this system are the inertia forces. For balancing, it
does not matter what external forces may be acting on the system. External forces cannot
be balanced by making any changes to the system’s internal geometry. Note that the ®?
terms cancel. For balancing, it also does not matter how fast the system is rotating, only
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that it is rotating. (The ® will determine the magnitudes of these forces, but we are going
to force their sum to be zero anyway.)

Dividing out the ®? and rearranging, we get:
mbRb = —mlRl - m2R2 (122b)
Breaking into x and y components:

mbbe = —(mlRlx + mszx )
(12.2¢c)
mbRby = —(mlRly + mszy )

The terms on the right sides are known. We can readily solve for the mR, and mR,
products needed to balance the system. It will be convenient to convert the results to
polar coordinates.

my Ry,

0, = arctan

(12.2d)

= [my? (bez +Rby2) (12.2¢)

The angle at which the balance mass must be placed (with respect to our arbitrarily
oriented freeze-frame coordinate system) is 6, found from equation 12.2d. Note that the
signs of the numerator and denominator of equation 12.2d must be individually main-
tained and a two-argument arctangent computed in order to obtain 6y, in the correct quad-
rant. Most calculators and computers will give an arctangent result only between £90°.

The myR}, product is found from equation 12.2e. There is now an infinity of solutions
available. We can either select a value for m;, and solve for the necessary radius R}, at
which it should be placed, or choose a desired radius and solve for the mass that must be
placed there. Packaging constraints may dictate the maximum radius possible in some
cases. The balance mass is confined to the “single plane” of the unbalanced masses.

Once a combination of my, and Ry, is chosen, it remains to design the physical counter-
weight. The chosen radius Ry, is the distance from the pivot to the CG of whatever shape
we create for the counterweight mass. Our simple dynamic model, used to calculate the
mR product, assumed a point mass and a massless rod. These ideal devices do not exist.
A possible shape for this counterweight is shown in Figure 12-1c. Its mass must be m,
distributed so as to place its CG at radius Rj, at angle 0 .
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Stationary global
mass center - balanced

Moving global
mass center -

unbalanced
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X
\ m, |
7
Shaped
/ m, R,®? counterweight
(@) Unbalanced link (b) Dynamic model (c) Statically balanced link
FIGURE 12-1
Static balancing a link in pure rotation
A DEXAMPLE 12-1
Static Balancing.
Given: The system shown in Figure 12-1 has the following data:
m; =12 kg R, =1.135m @£113.4°
m, =1.8 kg R, =0.822 m @£48.8°
® =40 rad/sec
Find: The mass-radius product and its angular location needed to statically balance the

system.
Solution:

1 Resolve the position vectors into xy components in the arbitrary coordinate system associated
with the freeze-frame position of the linkage chosen for analysis.

R; =1.135@ £113.4°% Rlx =-0.451, Rly =1.042

(a)
R, =0.822 @ £48.8°; Ry, =+0.541, R, =0618

2 Solve equations 12.2c.
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myR, =-mR; —myR, =-(1.2)(-0.451)-(1.8)(0.541)=-0.433

(b)
myRy =-mRy —myRy =-(12)(1.042)~(1.8)(0.618)=-2.363
3 Solve equations 12.2d and 12.2e.
6, = arctan — 03 _ 259.6°
-0.433
(c)

myRy =(~0.433)7 + (~2.363)° =2.402 kg-m

4 This mass-radius product of 2.402 kg-m can be obtained with a variety of shapes appended to
the assembly. Figure 12-1c shows a particular shape whose CG is at a radius of R, = 0.806 m
at the required angle of 259.6°. The mass required for this counterweight design is then:

2402 kg-m

m, = =2980k d
>~ 0.806 m & @

at a chosen CG radius of:

R, =0.806 m (e)

Many other shapes are possible. As long as they provide the required mass-radius
product at the required angle, the system will be statically balanced. Note that the value
of ® was not needed in the calculation.

12.2 DYNAMIC BALANCE Waitch a short video (09:42)"

Dynamic balance is sometimes called two-plane balance. It requires that two criteria
be met. The sum of the forces must be zero (static balance) plus the sum of the moments”
must also be zero.

Y F=0

ZM:O

These moments act in planes that include the axis of rotation of the assembly such as
planes XZ and YZ in Figure 12-2. The moment’s vector direction, or axis, is perpendicular
to the assembly’s axis of rotation.

(12.3)

Any rotating object or assembly which is relatively long in the axial direction com-
pared to the radial direction requires dynamic balancing for complete balance. It is pos-
sible for an object to be statically balanced but not be dynamically balanced. Consider the
assembly in Figure 12-2. Two equal masses are at identical radii, 180° apart rotationally,
but separated along the shaft length. A summation of —ma forces due to their rotation will
be always zero. However, in the side view, their inertia forces form a couple which rotates
with the masses about the shaft. This rocking couple causes a moment on the ground
plane, alternately lifting and dropping the left and right ends of the shaft.
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nmy =mp
myR,®2 R, =R,

FIGURE 12-2
Balanced forces—unbalanced moment

Some examples of devices which require dynamic balancing are rollers, crankshafts,
camshafts, axles, clusters of multiple gears, motor rotors, turbines, and propeller shafts.
The common denominator among these devices is that their mass may be unevenly dis-
tributed both rotationally around their axis and longitudinally along their axis.

To correct dynamic imbalance requires either adding or removing the right amount
of mass at the proper angular locations in two correction planes separated by some dis-
tance along the shaft. This will create the necessary counterforces to statically balance
the system and also provide a countercouple to cancel the unbalanced moment. When an
automobile tire and wheel is dynamically balanced, the two correction planes are the inner
and outer edges of the wheel rim. Correction weights are added at the proper locations in
each of these correction planes based on a measurement of the dynamic forces generated
by the unbalanced, spinning wheel.

It is always good practice to first statically balance all individual components that
go into an assembly, if possible. This will reduce the amount of dynamic imbalance that
must be corrected in the final assembly and also reduce the bending moment on the shaft.
A common example of this situation is the aircraft turbine which consists of a number
of circular turbine wheels arranged along a shaft. Since these spin at high speed, the in-
ertia forces due to any imbalance can be very large. The individual wheels are statically
balanced before being assembled to the shaft. The final assembly is then dynamically
balanced.

Some devices do not lend themselves to this approach. An electric motor rotor is
essentially a spool of copper wire wrapped in a complex pattern around the shaft. The
mass of the wire is not uniformly distributed either rotationally or longitudinally, so it will
not be balanced. It is not possible to modify the windings’ local mass distribution after

j:

n,R,®?
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the fact without compromising electrical integrity. Thus the entire rotor imbalance must
be countered in the two correction planes after assembly.

Consider the system of three lumped masses arranged around and along the shaft in
Figure 12-3. Assume that, for some reason, they cannot be individually statically balanced
within their own planes. We then create two correction planes labeled A and B. In this
design example, the unbalanced masses m, m,, m3 and their radii Ry, Ry, R3 are known
along with their angular locations 01, 05, and 03. We want to dynamically balance the
system. A three-dimensional coordinate system is applied with the axis of rotation in
the Z direction. Note that the system has again been stopped in an arbitrary freeze-frame
position. Angular acceleration is assumed to be zero. The summation of forces is:

—m R 0% — mR,0% — m3R 307 —myuR ,0% —mpRp0* =0 (12.4a)
Dividing out the ®? and rearranging we get:
m R 4 +mgRp =—mR; —mRy —m3Ry (12.4b)
Breaking into x and y components:
myRy +mgRp =-mRy —myRy —m3Ry

(12.4¢)
mARAy + mBRBy = —mlRly - mszy - m3R3y

Equations 12.4c have four unknowns in the form of the mR products at plane A and
the mR products at plane B. To solve, we need the sum of the moments equation which we
can take about a point in one of the correction planes such as point O. The moment arm
z distances of each force measured from plane A are labeled /y, I, I3, [g in the figure; thus

(msR 02 )15 =~(mR10? |1y = (mR,07 |1, - (myRs0? s (12.4d)

Dividing out the ®2, breaking into x and y components, and rearranging:

The moment in the XZ plane (i.e., about the Y axis) is:

—(mlRlx )l1 —(mszx )l2 - (m3R3x )13

mgRp = (12.4e)
X lB
The moment in the YZ plane (i.e., about the X axis) is:
_(mlRly )l1 —(mszy )lz - (m3R3y )l3
msRg = (12.4)

lp

These can be solved for the mR products in x and y directions for correction plane
B which can then be substituted into equation 12.4c to find the values needed in plane
A. Equations 12.2d and 12.2e can then be applied to each correction plane to find the
angles at which the balance masses must be placed and the mR products needed in each
plane. The physical counterweights can then be designed consistent with the constraints
outlined in Section 12.1 on static balance. Note that the radii R4 and Rg do not have to
have the same value.
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FIGURE 12-3
Two-plane dynamic balancing
A DEXAMPLE 12-2
Dynamic Balancing.
Given: The system shown in Figure 12-3 has the following data:
m; =12 kg R, =1.135m @£113.4°
m, =18 kg R, =0.822 m @ £48.8°
my =2.4 kg Ry =1.04 m @ £251.4°
The z distances in meters from plane A are:
I, =0.854, L, =1.701, 5 = 2.396, I =3.097
Find: The mass-radius products and their angular locations needed to dynamically bal-

ance the system using the correction planes A and B.
Solution:

1 Resolve the position vectors into xy components in the arbitrary coordinate system associated
with the freeze-frame position of the linkage chosen for analysis.

R =1.135@ £113.4% R =-0451, Ry =+1042
R, =0.822 @ £48.8° R, =+0.541, Ry =+0.618 (a)
Ry =1.040 @ £251.4%; Ry =-0.332, Ry =-0.986
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2 Solve equation 12.4e for summation of moments about point O.

~ _(mlRlx )11 —(lesz )lz —(m3R3x )13

mpRp ;
B
(b)
—1.2(-0.451)(0.854) —1.8(0.541)(1.701) — 2.4(-0.332)(2.396) 0230
- 3.097 o
—(m1R1y )ll —(mszy )lz —(m3R3y )l3
mgRp = ;
B
(©
_ —1.2(1.042)(0.854) - 1.8(0.618)(1.701) — 2.4(-0.986)(2.396) 0874
- 3.097 o
3 Solve equations 12.2d and 12.2e for the mass radius product in plane B.
0.874
0p = arctang— =7527°
(d)
myRy =1/(0.230)" +(0.874)" =0.904 kg-m
4 Solve equations 12.4c for forces in x and y directions.
MRy =-mRy -myR, -m3R; -mpRp
MmyRy =-mBRy -myR, -m3R3 -mpRp ©
e
myR, =-12(-0.451)-1.8(0.541)-2.4(-0.332) - 0.230 = 0.134
maR,, =-1.2(1.042)-1.8(0.618) - 2.4(~0.986) — 0.874 = —0.870
5 Solve equations 12.2d and 12.2e for the mass-radius product in plane A.
0, = arctan——— = —81.25°
)

myR, = \/(0.134)2 +(~0.870)> =0.880 kg-m

6 These mass-radius products can be obtained with a variety of shapes appended to the assembly
in planes A and B. Many shapes are possible. As long as they provide the required mass-radius
products at the required angles in each correction plane, the system will be dynamically bal-
anced.

So, when the design is still on the drawing board, these simple analysis techniques
can be used to determine the necessary sizes and locations of balance masses for any
assembly in pure rotation for which the mass distribution is defined. This two-plane
balance method can be used to dynamically balance any system in pure rotation, and all
such systems should be balanced unless the purpose of the device is to create shaking
forces or moments.
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12.3 BALANCING LINKAGES Watch a short video (26:55)F

Many methods have been devised to balance linkages. Some achieve a complete balance
of one dynamic factor, such as shaking force, at the expense of other factors such as shak-
ing moment or driving torque. Others seek an optimum arrangement that collectively
minimizes (but does not zero) shaking forces, moments, and torques for a best com-
promise. Lowen and Berkof[!] and Lowen, Tepper, and Berkof[2! give comprehensive
reviews of the literature on this subject up to 1983. Additional work has been done on
the problem since that time, some of which is noted in the references at the end of this
chapter. Kochev!15] presents a general theory for complete shaking moment balancing
and a critical review of known methods.

Complete balance of any mechanism can be obtained by creating a second “mir-
ror image” mechanism connected to it so as to cancel all dynamic forces and moments.
Certain configurations of multicylinder internal combustion engines do this. The pistons
and cranks of some cylinders cancel the inertial effects of others. We will explore these
engine mechanisms in Chapter 14. However, this approach is expensive and is only justi-
fied if the added mechanism serves some second purpose such as increasing power, as in
the case of additional cylinders in an engine. Adding a “dummy’” mechanism whose only
purpose is to cancel dynamic effects is seldom economically justifiable.

Most practical linkage balancing schemes seek to minimize or eliminate one or more
of the dynamic effects (forces, moments, torques) by redistributing the mass of the ex-
isting links. This typically involves adding counterweights and/or changing the shapes
of links to relocate their CGs. More elaborate schemes add geared counterweights to
some links in addition to redistributing their mass. As with any design endeavor, there
are trade-offs. For example, elimination of shaking forces usually increases the shaking
moment and driving torque. We can only present a few approaches to this problem in the
space available. The reader is directed to the literature for information on other methods.

Complete Force Balance of Linkages

The rotating links (cranks, rockers) of a linkage can be individually statically balanced
by the rotating balance methods described in Section 12.1. The effects of the couplers,
which are in complex motion, are more difficult to compensate for. Note that the process
of statically balancing a rotating link, in effect, forces its mass center (CG) to be at its
fixed pivot and thus stationary. In other words the condition of static balance can also
be defined as one of making the mass center stationary. A coupler has no fixed pivot,
and thus its mass center is, in general, always in motion.

Any mechanism, no matter how complex, will have, for every instantaneous position,
a single, overall, global mass center located at some particular point. We can calculate
its location knowing only the link masses and the locations of the CGs of the individual
links at that instant. The global mass center normally will change position as the linkage
moves. If we can somehow force this global mass center to be stationary, we will have a
state of static balance for the overall linkage.

The Berkof-Lowen method of linearly independent vectors[3! provides a means to
calculate the magnitude and location of counterweights to be placed on the rotating links
which will make the global mass center stationary for all positions of the linkage. Place-
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ment of the proper balance masses on the links will cause the dynamic forces on the fixed
pivots to always be equal and opposite, i.e., a couple, thus creating static balance (ZF =0
but 2M # 0) in the moving linkage.

This method works for any n-link planar linkage having a combination of revolute
(pin) and prismatic (slider) joints, provided that there exists a path to the ground from
every link which only contains revolute joints.!4! In other words, if all possible paths from
any one link to the ground contain sliding joints, then the method fails. Any linkage of n
links that meets the above criterion can be balanced by the addition of n/2 balance weights,
each on a different link.[*] We will apply the method from reference [3] to a fourbar
linkage. Unfortunately, doing so will increase the total mass of the original linkage by a
factor of 2 to 3 for fourbar linkages and substantially more for complex mechanisms.[15]

Figure 12-4 shows a fourbar linkage with its overall global mass center located by
the position vector R,. The individual CGs of the links are located in the global system
by position vectors Ry, R3, and Ry (magnitudes R,, R3, R4), rooted at its origin, the crank
pivot O,. The link lengths are defined by position vectors labeled L, Ly, L3, L4 (mag-
nitudes [y, b, I3, I4), and the local position vectors which locate the CGs within each link
are B, B3, B4 (magnitudes b,, b3, by). The angles of the vectors By, B3, By are ¢p, 03, ¢4
measured internal to the links with respect to the links’ lines of centers L, L3, L4. The
instantaneous link angles which locate Lo, L3, L4 in the global system are 0,, 03, 64. The
total mass of the system is simply the sum of the individual link masses:

m,=m, +m;+m (12.5a)
t h T Mz + 1y

The total mass moment about the origin must be equal to the sum of the mass moments
due to the individual links:

D Mg, =mR, =mR, +m;Rs +mR, (12.5b)

The position of the global mass center is then:

_ myR, +mzR3 +myRy

R, (12.5¢)
my
and from the linkage geometry:
R, =b, e](ez+¢2) =b, 2192 J02
Ry =hel® +b,e/03403) _ ) o102 L oJ05,005 (12.5d)

R, =1 Py b, ej(94 +04) _ L Py b, 004 gJ04

We can solve for the location of the global mass center for any link position for which
we know the link angles 0,, 03, 64. We want to make this position vector R, be a constant.
The first step is to substitute equations 12.5d into 12.5b,

mR, =m, (b2 e/%2¢/% )+ my (12 e 4 by e/%3¢J03 )+ my (l1 e/ 4 by e/%4gl04 ) (12.5e)
and rearrange to group the constant terms as coefficients of the time-dependent terms:

mR, = (m4ll e/ )+(m2b2ej¢2 +msl, )eje2 +(m3b3 /% )ej63 +(m4b4 el04 )eje‘* (12.59)
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Y B; Global mass center

FIGURE 12-4

Static (force) balancing a fourbar linkage

Note that the terms in parentheses are all constant with time. The only time-dependent
terms are the ones containing 6,, 63, and 64.

We can also write the vector loop equation for the linkage,
Lel® 41 e/% 1, e 1 e =0 (12.6a)
and solve it for one of the unit vectors that define a link direction, say link 3:

03 ll ejel - l2 e]ez + l4 eje4
e =

(12.6b)
l3

Substitute this into equation 12.5f to eliminate the 03 term and rearrange:
. . 1 . . . .
mR, = (mzbzef‘i’2 +msl, )e’e2 +l—(m3b3 eJ? )(ll e/ — 1 e/ 11, ¢/% )
3

+ (m4b4 elt4 )eje‘* + (m4ll e/ ) (12.7a)

and collect terms:

. L . ) . L . .
mR, = (mzbzejq’2 +msly, —msb, Ilejq’3 ]ejez + [m4b4 /% 4 myb, liejq’3 je’e“
3 3

. Lo
+myly 1 + myby llejq’3 e (12.7b)
3
This expression gives us the tool to force R, to be a constant and make the linkage
mass center stationary. For that to be so, the terms in parentheses which multiply the only
two time-dependent variables, 0, and 0,4, must be forced to be zero. (The fixed link angle
0, is a constant.) Thus the requirement for linkage force balance is:
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mzbzej(bz + m312 —m3b3 lle]¢3 =0
3
(12.8a)

. L .
myb, e/ +msby lie”’3 =0
3

Rearrange to isolate one link’s terms (say link 3) on one side of each of these equations:

mzbzejq’2 =my [bg ;lej% -1 j
’ (12.8b)
by e = —myby 403
3
We now have two equations involving three links. The parameters for any one link
can be assumed and the other two solved for. A linkage is typically first designed to sat-
isfy the required motion and packaging constraints before this force-balancing procedure
is attempted. In that event, the link geometry and masses are already defined, at least
in a preliminary way. A useful strategy is to leave the link 3 mass and CG location as
originally designed and calculate the necessary masses and CG locations of links 2 and 4
to satisfy these conditions for balanced forces. Links 2 and 4 are in pure rotation, so it is
straightforward to add counterweights to them in order to move their CGs to the necessary
locations. With this approach, the right sides of equations 12.8b are reducible to numbers
for a designed linkage. We want to solve for the mass radius products myb, and myby and
also for the angular locations of the CGs within the links. Note that the angles ¢, and ¢4
in equations 12.8 are measured with respect to the lines of centers of their respective links.

Equations 12.8b are vector equations. Substitute the Euler identity (equation 4.4a)
to separate into real and imaginary components, and solve for the x and y components of
the mass-radius products.

l
(myb, ), =my [b3 licos¢3 - lz]
3

(12.8¢)
L .
(myb )y =ms [bs fsm%]
3
)
(Wl4b4 )X = —m3b3 liCOS ¢3
3
(12.8d)
Iy .
(m4b4 )y =—-mzb; lismq)3

3

These components of the mR product needed to force balance the linkage represent
the entire amount needed. If links 2 and 4 are already designed with some individual
unbalance (the CG not at pivot), then the existing mR product of the unbalanced link must
be subtracted from that found in equations 12.8c and 12.8d in order to determine the size
and location of additional counterweights to be added to those links. As we did with the
balance of rotating links, any combination of mass and radius that gives the desired prod-
uct is acceptable. Use equations 12.2d and 12.2e to convert the cartesian mR products in
equations 12.8c and 12.8d to polar coordinates in order to find the magnitude and angle
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L1=19in
L2=5
L3=15
L4=10
Cplrpt =13
@63°
,= 50 rad/sec
0to 360
by 5 deg
FIGURE12-5

A balanced fourbar linkage showing balance masses applied to links 2 and 4

of the counterweight’s mR vector. Note that the angle of the mR vector for each link will
be referenced to that link’s line of centers. Design the shape of the physical counter-
weights to be put on the links as discussed in Section 12.1.

12.4 EFFECT OF BALANCING ON SHAKING AND PIN FORCES

Figure 12-5 shows a fourbar linkage™ to which balance masses have been added in accord
with equations 12.8. Note the counterweights placed on links 2 and 4 at the calculated
locations for complete force balance. Figure 12-6a shows a polar plot of the shaking
forces of this linkage without the balance masses. The maximum is 462 Ib at 15°. Figure
12-6b shows the shaking forces after the balance masses are added. The shaking forces
are reduced to essentially zero. The small residual forces seen in Figure 12-6b are due to
computational round-off errors—the method gives theoretically exact results.
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* Open the disk file
F12-05.4br in program
LINKAGES to see more
details on this linkage and
its balancing.
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(a) Shaking force with linkage unbalanced (b) Shaking force with linkage balanced

FIGURE 12-6

Polar plot of unbalanced shaking forces on ground plane of the fourbar linkage of Figure 12-5
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FIGURE 12-7

(a) Crank pivot force Fyq (b) Rocker pivot force Fg

Polar plots of forces F»q and F4q acting on the ground plane of the force-balanced fourbar linkage of Figure 12-5

The pin forces at the crank and rocker pivots have not disappeared as a result of add-
ing the balance masses, however. Figures 12-7a and 12-7b, respectively, show the forces
on crank and rocker pivots after balancing. These forces are now equal and opposite.
After balancing, the pattern of forces at pivot O, is the mirror image of the pattern at pivot
0Oy4. The net shaking force is the vector sum of these two sets of forces for each time step
(Section 11.8). The equal and opposite pairs of forces acting at the ground pivots at each
time step create a time-varying shaking couple that rocks the ground plane. These pin
forces can be larger due to the balance weights and if so will increase the shaking couple
compared to its former value in the unbalanced linkage—one trade-off for reducing the
shaking forces to zero. The stresses in the links and pins may also increase as a result of
force balancing.

12.5 EFFECT OF BALANCING ON INPUT TORQUE

Individually balancing a link which is in pure rotation by the addition of a counterweight
will have the side effect of increasing its mass moment of inertia. The “flywheel effect”
of the link is increased by this increase in its moment of inertia. Thus the torque needed
to accelerate that link will be greater. The input torque will be unaffected by any change
in the / of the input crank when it is run at constant angular velocity. But, any rockers
in the mechanism will have angular accelerations even when the crank does not. Thus,
individually balancing the rockers will tend to increase the required input torque even at
constant input crank velocity.

Adding counterweights to the rotating links, necessary to force balance the entire
linkage, both increases the links’ mass moments of inertia and also (individually) unbal-
ances those rotating links in order to gain the global balance. Then the CGs of the rotating
links will not be at their fixed pivots. Any angular acceleration of these links will add
to the torque loading on the linkage. Balancing an entire linkage by this method then
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FIGURE 12-8

Unbalanced and balanced input torque curves for the fourbar linkage of Figure 12-5

can have the side effect of increasing the variation in the required input torque. A larger
flywheel may be needed on a balanced linkage in order to achieve the same coefficient of
fluctuation as the unbalanced version of the linkage.

Figure 12-8 shows the input torque curve for the unbalanced linkage and for the same
linkage after complete force balancing has been done. The peak value of the required
input torque has increased as a result of force balancing.

Note, however, that the degree of increase in the input torque due to force balancing
is dependent upon the choice of radii at which the balance masses are placed. The extra
mass moment of inertia that the balance mass adds to a link is proportional to the square
of the radius to the CG of the balance mass. The force balance algorithm only computes
the required mass-radius product. Placing the balance mass at as small a radius as pos-
sible will minimize the increase in input torque. Weiss and Fentonl5! have shown that a
circular counterweight placed tangent to the link’s pivot center (Figure 12-9) is a good
compromise between added weight and increased moment of inertia. To reduce the torque
penalty further, one could also choose to do less than a complete force balance and accept
some shaking force in trade.

12.6 BALANCING THE SHAKING MOMENT IN LINKAGES

The shaking moment M, about the crank pivot O, in a force-balanced linkage is the sum
of the reaction torque T5; and the shaking couple (ignoring any externally applied loads)[®!*

M =T, +(R; xFy) (12.9)
where T» is the negative of the driving torque T, R is the position vector from O to
Oy (i.e., link 1), and F4 is the force of the rocker on the ground plane. In a general link-
age, the magnitude of the shaking moment can be reduced but cannot be eliminated by
means of mass redistribution within its links. Complete balancing of the shaking moment
requires the addition of supplementary links and/or rotating counterweights.[”]
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* Note that this statement
is only true if the linkage is
force-balanced which makes
the moment of the shaking
couple a free vector. Other-
wise it is referenced to the
chosen global coordinate
system. See reference [6]
for complete derivations

of the shaking moment for
both force-balanced and
unbalanced linkages.
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FIGURE 12-9

An inline fourbar
linkagelol17]

with optimally
located circular
counterweights.!

* This method of moment
balancing is “recognized
as a superior technique and
recommended when ap-
plicable.”[15]

— | ¢ |-
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Many techniques have been developed that use optimization methods to find a link-
age-mass configuration that will minimize the shaking moment alone or in combina-
tion with minimizing shaking force and/or input torque. Hockey!8l: [91 shows that the
fluctuation in kinetic energy and input torque of a mechanism may be reduced by proper
distribution of mass within its links and that this approach is more weight efficient than
adding a flywheel to the input shaft. Berkof![10] also describes a method to minimize the
input torque by internal mass rearrangement. Lee and Cheng 1] and Qi and Pennestri [12]
show methods to optimally balance the combined shaking force, shaking moment, and
input torque in high-speed linkages by mass redistribution and addition of counterweights.
Porter et al.[13] suggest using a genetic algorithm to optimize the same set of parameters.
Bagci[14] describes several approaches to balancing shaking forces and shaking moments
in the fourbar slider-crank linkage. Kochev[1>] provides a general theory for complete
force and moment balance. Esat and Bahai[10! describe a theory for complete force and
moment balance that requires rotating counterweights on the coupler. Arakelian and
Smith[17] derive a method for the complete force and moment balance of Watt’s and
Stephenson’s sixbar linkages. Most of these methods require significant computing re-
sources, and space does not permit a complete discussion of them all here. The reader is
directed to the references for more information.

Berkof’s method for complete moment balancing of the fourbar linkage [] is simple
and useful even though it is limited to “inline” linkages, i.e., those whose link CGs lie on
their respective link centerlines as shown in Figure 12-9. This is not an overly restric-
tive constraint since many practical linkages are made with straight links. Even if a link
must have a shape that deviates from its line of centers, its CG can still be placed on that
line by adding mass to the link in the proper location, increased mass being the trade-off.

For complete moment balancing by Berkof’s method, in addition to being an inline
linkage, the coupler must be reconfigured to become a physical pendulum™ such that it is
dynamically equivalent to a lumped mass model as shown in Figure 12-10. The coupler
is shown in Figure 12-10a as a uniform rectangular bar of mass m, length a, and width
h and in Figure 12-10b as a “dogbone.” These are only two of many possibilities. We

a >

- ) ——h —>
12

o A <
[
[

a >

. €%
N

) Rectangular coupler link (b) Dogbone coupler link

FIGURE 12-10

Making the coupler link a physical pendulum
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want the lumped masses to be at the pivot pins, connected by a “massless” rod. Then the
coupler’s lumped masses will be in pure rotation either as part of the crank or as part of
the rocker. This can be accomplished by adding mass as indicated by dimension e at the
coupler ends.

The three requirements for dynamic equivalence were stated in Section 10.2 and are
equal mass, same CG location, and same mass moment of inertia. The first and second
of these are easily satisfied by placing m; = m/2 at each pin. The third requirement can be
stated in terms of radius of gyration k instead of moment of inertia using equation 10.11b.

k= —
m

(12.10)

Taking each lump separately as if the massless rod were split at the CG into two rods
each of length b, the moment of inertia /; of each lump will be

I 2
L===mpb
1= m
and I=2mb* =mb* (12.112)
2
then P L (12.11b)
m

For the link configuration in Figure 12-10a, this will be satisfied if the link dimen-
sions have the following dimensionless ratio (assuming constant link thickness).

e 1 ay a

— == 3= -1 -=

h 2 ( h ] 2h
where e defines the length of the material that must be added at each end to satisfy equa-
tion 12.11b.

(12.12)

For the link configuration in Figure 12-10b, the length e of the added material of
width / needed to make it a physical pendulum can be found from

3 2
A(fj +B(£j +C(£j+D -0
h h h
(12.13)
where:

3
D= —2(3j + 13(£)+12n—10
C C

The second step is to force-balance the linkage with its modified coupler using the method
of Section 12.3 and define the required counterweights on links 2 and 4. With the shaking
forces eliminated, the shaking moment is a free vector, as is the input torque.
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T Note that this arrange-
ment also makes each pin
joint the center of percus-
sion for the other pin as

the center of rotation. This
means that a force applied
at either pin will have a zero
reaction force at the other
pin, effectively decoupling
them dynamically. See Sec-
tion 10.10 and also Figure
13-10 for further discussion
of this effect.
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Then as the third step, the shaking moment can be counteracted by adding geared
inertia counterweights to links 2 and 4 as shown in Figure 12-11. These must turn in the
opposite direction to the links, so they require a gear ratio of —1. Such an inertia coun-
terweight can balance any planar moment that is proportional to an angular acceleration
and does not introduce any net inertia forces to upset the force balance of the linkage.
Trade-offs include increased input torque and larger pin forces resulting from the torque
required to accelerate the additional rotational inertia. There can also be large loads on the
gear teeth and impact when torque reversals take up the gearsets’ backlash, causing noise.

The shaking moment of an inline fourbar linkage is derived in reference [6] as

4
M, =Y Ao, (12.14)
i=2

where: Ay =—m, (k22 1+ a2r2)
Az =-mgy (k% + r32 - a3r3)
Ay =-my (ki +rf +a4r4)

o is the angular acceleration of link i. The other variables are defined in Figure 12-11.

Adding the effects of the two inertia counterweights gives
4
MS :ZAla‘l +12(X2 +I4(X4 (1215)
i=2

The shaking moment can be forced to zero if
12 = —A2
I,=—A4 (12.16)

Ay=0, or k3 :r3(a3—r3)

This leads to a set of five design equations that must be satisfied for complete force
* These components of and moment balancing of an inline fourbar linkage.”

12 the mR product needed to a
force-balance the linkage myr, = m3b3 [—zj (12.17a)
represent the entire amount a3
needed. If links 2 and 4 are
already designed with some Myry, =myr; (a_4] (12.17b)
individual unbalance (i.e., as
the CG not at pivot), then
the existing mR product of k% =r;b, (12.17¢)
the unbalanced link must be
subtracted from that found 2
in equations 12.17a and I =m, (kz +rn + azrz) (12.17d)
12.17b in order to determine
the size and location of
additional counterweights to
be added to those links.

Iy=my (ki +rf +a4r4) (12.17¢)

Equations 12.17a and 12.17b are the force-balance criteria of equation 12.8 written
for the inline linkage case. Equation 12.17c defines the coupler as a physical pendulum.
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Physical pendulum
mass (2 places)

Inertia ctrwt

Inertia ctrwt _ (flywheel)

FIGURE 12-11

Completely force and moment balanced inline fourbar linkage with physical pendulum
coupler and inertia counterweights on rotating links (ctrwt = counterweight)

Equations 12.17d and 12.17e define the mass moments of inertia required for the two in-
ertia counterweights. Note that if the linkage is run at constant angular velocity, o, will
be zero in equation 12.14 and the inertia counterweight on link 2 can be omitted.

12.7 MEASURING AND CORRECTING IMBALANCE Watch a video
02:43)1

While we can do a great deal to ensure balance when designing a machine, variations
and tolerances in manufacturing will preclude even a well-balanced design from being
in perfect balance when built. Thus there is need for a means to measure and correct the
imbalance in rotating systems. Perhaps the best example assembly to discuss is that of
the automobile tire and wheel, with which most readers will be familiar. Certainly the
design of this device promotes balance, as it is essentially cylindrical and symmetrical.
If manufactured to be perfectly uniform in geometry and homogeneous in material, it
should be in perfect balance as is. But typically it is not. The wheel (or rim) is more
likely to be close to balanced, as manufactured, than is the tire. The wheel is made of a
homogeneous metal and has fairly uniform geometry and cross section. The tire, however,
is a composite of synthetic rubber elastomer and fabric cord or metal wire. The whole is
compressed in a mold and steam-cured at high temperature. The resulting material varies
in density and distribution, and its geometry is often distorted in the process of removal
from the mold and cooling.

STATIC BALANCING  After the tire is assembled to the wheel, the assembly must be
balanced to reduce vibration at high speeds. The simplest approach is to statically balance
it, though it is not really an ideal candidate for this approach as it is thick axially compared
to its diameter. To do so it is typically suspended in a horizontal plane on a cone through
its center hole. A bubble level is attached to the wheel, and weights are placed at positions

661

 http://www.designof-
machinery.com/DOM/
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FIGURE 12-12

Tire
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around the rim of the wheel until it sits level. These weights are then attached to the rim
at those points. This is a single-plane balance and thus can only cancel the unbalanced
forces. It has no effect on any unbalanced moments due to uneven distribution of mass
along the axis of rotation. It also is not very accurate.

DYNAMIC BALANCING The better approach is to dynamically balance it. This re-
quires a dynamic balancing machine be used. Figure 12-12 shows a schematic of such a
device used for balancing wheels and tires or any other rotating assembly. The assembly
to be balanced is mounted temporarily on an axle, called a mandrel, which is supported
in bearings within the balancer. These two bearings are each mounted on a suspension
which contains a transducer that measures dynamic force. A common type of force trans-
ducer contains a piezoelectric crystal which delivers a voltage proportional to the force
applied. This voltage is amplified electronically and delivered to circuitry or software
which can compute its peak magnitude and the phase angle of that peak with respect to
some time reference signal. The reference signal is supplied by a shaft encoder on the
mandrel which provides a short duration electrical pulse once per revolution in exactly
the same angular location. This encoder pulse triggers the computer to begin processing
the force signal. The encoder may also provide some large number of additional pulses
equispaced around the shaft circumference (often 1024). These are used to trigger the
recording of each data sample from the transducers in exactly the same location around
the shaft and to provide a measure of shaft velocity via an electronic counter.

The assembly to be balanced is then “spun up” to some angular velocity, usually with
a friction drive contacting its circumference. The drive torque is then removed and the
drive motor stopped, allowing the assembly to “freewheel.” (This is to avoid measuring
any forces due to imbalances in the drive system.) The measuring sequence is begun,
and the dynamic forces at each bearing are measured simultaneously and their waveforms
stored. Many cycles can be measured and averaged to improve the quality of the measure-

Bearing Correction planes
Mandrel \A B /

Shaft encoder

T

TF |
=1 —

Force transducers

A dynamic wheel balancer
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ment. Because forces are being measured at two locations displaced along the axis, both
summation of moment and summation of force data are computed.

The force signals are sent to a built-in computer for processing and computation of
the needed balance masses and locations. The data needed from the measurements are
the magnitudes of the peak forces and the angular locations of those peaks with respect
to the shaft encoder’s reference angle (which corresponds to a known point on the wheel).
The axial locations of the wheel rim’s inside and outside edges (the correction planes)
with respect to the balance machine’s transducer locations are provided to the machine’s
computer by operator measurement. From these data the net unbalanced force and net
unbalanced moment can be calculated since the distance between the measured bearing
forces is known. The mass-radius products needed in the correction planes on each side
of the wheel can then be calculated from equations 12.3 in terms of the mR product of the
balance weights. The correction radius is that of the wheel rim. The balance masses and
angular locations are calculated for each correction plane to put the system in dynamic
balance. Weights having the needed mass are clipped onto the inside and outside wheel
rims (which are the correction planes in this case), at the proper angular locations. The
result is a fairly accurately dynamically balanced tire and wheel.
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TABLE P12-0
Topic/Problem Matrix

121 Static Balance
12-1, 12-2, 12-3,
12-4, 12-37, 12-41

12.2 Dynamic Balance
12-5, 12-13, 12-14,
12-15, 12-16, 12-17,
12-18, 12-19, 12-38,
12-39

12.3 Balancing Linkages
12-8a, 12-12, 12-27,
12-29, 12-31, 12-33,
12-35, 12-40

12.5 Effect of Balancing on
Input Torque
12-8b, 12-9, 12-10,
12-11, 12-42

12.6 Balancing Shaking
Moment in Linkages
12-20, 12-21, 12-22,
12-23, 12-28, 12-30,
12-32, 12-34, 12-36

12.7 Measuring and Cor-
recting Imbalance

12-6, 12-7, 12-24,
12-25, 12-26, 12-43

* Answers in Appendix F.

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.
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14

16

17

12.9

*12-1

12-2

12-3

T12-4

*12-5

Bagci, C. (1975). “Shaking Force and Shaking Moment Balancing of the Plane Slider-Crank
Mechanism.” Proc. of the 4th OSU Applied Mechanism Conference, Stillwater, OK, p. 25-1.

Kochey, L. S. (2000). “General Theory of Complete Shaking Moment Balancing of Planar Link-
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Arakelian, V. H., and M. R. Smith. (1999). “Complete Shaking Force and Shaking Moment
Balancing of Linkages.” Mechanism and Machine Theory, 34, pp. 1141-1153.

PROBLEMS

A system of two coplanar arms on a common shaft, as shown in Figure 12-1, is to be
designed. For the row(s) assigned in Table P12-1, find the shaking force of the linkage
when run unbalanced at 10 rad/sec and design a counterweight to statically balance the
system. Work in any consistent units system you prefer.

The minute hand on Big Ben weighs 40 Ib and is 10 ft long. Its CG is 4 ft from the piv-
ot. Calculate the mR product and angular location needed to statically balance this link
and design a physical counterweight, positioned close to the center. Select material and
design the detailed shape of the counterweight which is of 2-in uniform thickness in the
Z direction.

A “V for victory” advertising sign is being designed to be oscillated about the apex of
the V, on a billboard, as the rocker of a fourbar linkage. The angle between the legs of
the V is 20°. Each leg is 8 ft long and 1.5 ft wide. Material is 0.25-in-thick aluminum.
Design the V link for static balance.

A three-bladed ceiling fan has 1.5-ft by 0.25-ft equispaced rectangular blades that
nominally weigh 2 1b each. Manufacturing tolerances will cause the blade weight

to vary up to plus or minus 5%. The mounting accuracy of the blades will vary the
location of the CG versus the spin axis by plus or minus 10% of the blades’ diameters.
Calculate the weight of the largest steel counterweight needed at a 2-in radius to stati-
cally balance the worst-case blade assembly if the minimum blade radius is 6 in.

A system of three noncoplanar weights is arranged on a shaft generally as shown in
Figure 12-3. For the dimensions from the row(s) assigned in Table P12-2, find the
shaking forces and shaking moment when run unbalanced at 100 rpm and specify the
mR product and angle of the counterweights in correction planes A and B needed to
dynamically balance the system. The correction planes are 20 units apart. Work in any
consistent units system you prefer.

TABLE P12-1 Data for Problem 12-1

Row my my R4 Ry
a 0.20 0.40 125 @ 30° 2.25@120°
b 2.00 4.36 3.00 @ 45° 9.00 @ 320°
c 3.50 2.64 2.65 @100° 5.20 @ -60°
d 5.20 8.60 7.25 @ 150° 6.25 @ 220°
e 0.96 3.25 5.50 @ -30° 3.55 @ 120°
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TABLE P12-2 Data for Problem 12-5

Row mq mop m3 I1 Iz I3 R1 Rz R3

a 020 040 124 2 8 17 1.25 @ 30° 2.25@120° 5.50 @ — 30°
b 200 436 356 5 7 16 3.00 @ 45° 9.00 @ 320° 6.25 @ 220°
c 350 264 875 4 9 M1 2.65 @ 100° 520@-60° 1.25@30°

d 520 860 477 7 12 16 725@150° 6.25 @ 220° 9.00 @ 320°

e 096 325 092 1 3 18 5.50 @ 30° 3.55 @120° 2.65 @ 100°

“f12-6 A wheel and tire assembly has been run at 100 rpm on a dynamic balancing machine
as shown in Figure 12-10. The force measured at the left bearing had a peak of 5 Ib
at a phase angle of 45° with respect to the zero reference angle on the tire. The force
measured at the right bearing had a peak of 2 1b at a phase angle of —120° with respect
to the reference zero on the tire. The center distance between the two bearings on the
machine is 10 in. The left edge of the wheel rim is 4 in from the centerline of the clos-
est bearing. The wheel is 7 in wide at the rim. Calculate the size and location, with
respect to the tire’s zero reference angle, of balance weights needed on each side of the
rim to dynamically balance the tire assembly. The wheel rim diameter is 15 in.

“t12-7 Repeat Problem 12-6 for measured forces of 6 Ib at a phase angle of ~60° with respect
to the reference zero on thetire, measured at the left bearing, and 4 1b at a phase angle
of 150° with respect to the reference zero on the tire, measured at the right bearing.
The wheel diameter is 16 in.

“t£12-8  Table P11-3 shows geometric and kinematic data of some fourbar linkages.

a.  For the row(s) from Table P11-3 assigned in this problem, calculate the size and
angular locations of the counterbalance mass-radius products needed on links 2
and 4 to completely force-balance the linkage by the method of Berkof and Lowen.
Check your manual calculation with program LINKAGES.

b. Calculate the input torque for the linkage both with and without the added balance
weights and compare the results. Use program LINKAGES.

*112-9  Link 2 in Figure P12-1 rotates at 500 rpm. The links are steel with cross sections of
1 x 2 in. Half of the 29-1b weight of the laybar and reed is supported by the linkage at
point B. Design counterweights to force-balance the linkage and determine its change
in peak torque versus the unbalanced condition. See Problem 11-13 for more informa-
tion on the overall mechanism.

$12-10 Figure P12-2a shows a fourbar linkage and its dimensions in meters. The steel crank
and rocker have uniform cross sections 50 mm wide by 25 mm thick. The aluminum
coupler is 25 mm thick. The crank O»A rotates at a constant speed of ® = 40 rad/sec.
Design counterweights to force-balance the linkage and determine its change in peak
torque versus the unbalanced condition.

T#12-11 Figure P12-2b shows a fourbar linkage and its dimensions in meters. The steel crank
and rocker have uniform cross sections 50 mm wide by 25 mm thick. The aluminum
coupler is 25 mm thick. The crank O»A rotates at a constant speed of ® = 50 rad/sec.
Design counterweights to force-balance the linkage and determine its change in peak
torque versus the unbalanced condition.
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ground
9.625"
@ —43°

FIGURE P12-1
Problem 12-9

* Answers in Appendix F.

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.

# These problems are suited
to solution using program
LINKAGES.
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Problem 12-13

* Answers in Appendix F.

T These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.
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FIGURE P12-2
Problems 12-10 to 12-11

12-12

12-13

“12-14

12-15

“f12-16

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to solve for the mass-radius products that will force-balance any fourbar linkage
for which the geometry and mass properties are known.

Figure P12-3 shows a system with two weights on a rotating shaft. Wi =151b @ 0° at
a 6-in radius and W, = 20 Ib @ 270° at a 5-in radius. Determine the magnitudes and
angles of the balance weights needed to dynamically balance the system. The balance
weight in plane 3 is placed at a radius of 5 in and in plane 4 of 8 in.

Figure P12-4 shows a system with two weights on a rotating shaft. W; =201b @ 45°
at a 6-in radius and W, = 15 1b @ 300° at a 4-in radius. Determine the radii and angles
of the balance weights needed to dynamically balance the system. The balance weight
in plane 3 weighs 20 Ib and in plane 4 weighs 40 Ib.

Figure P12-5 shows a system with two weights on a rotating shaft. W; = 101b @ 90°
at a 3-in radius and W, = 15 1b @ 240° at a 3-in radius. Determine the magnitudes and
angles of the balance weights needed to dynamically balance the system. The balance
weights in planes 3 and 4 are placed at a 3-in radius.

Figure P12-6 shows a system with three weights on a rotating shaft. W; =61b @
120° at a 5-in radius, W, = 12 Ib @ 240° at a 4-in radius, and W3 =9 1b @ 300° at a
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FIGURE P12-4
Problem 12-14
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8-in radius. Determine the magnitudes and angles of the balance weights needed to

dynamically balance the system. The balance weights in planes 4 and 5 are placed at a

4-in radius.

Figure P12-7 shows a system with three weights on a rotating shaft. W, =101b @
90° at a 3-in radius, W3 = 10 Ib @ 180° at a 4-in radius, and W4 =81b @ 315° ata
4-in radius. Determine the magnitudes and angles of the balance weights needed to

dynamically balance the system. The balance weight in plane 1 is placed at a radius of

4 in and in plane 5 of 3 in.

The 400-mm-dia steel roller in Figure P12-8 has been tested on a dynamic balancing
machine at 100 rpm and shows an unbalanced force of F; = 0.291 N @

0; = 45°in the xy plane at 1 and F4 = 0.514 N @ 04 = 210° in the xy plane at 4.
Determine the angular locations and required diameters of 25-mm-deep holes drilled
radially inward from the surface in planes 2 and 3 to dynamically balance the system.

The 500-mm-dia steel roller in Figure P12-8 has been tested on a dynamic balancing
machine at 100 rpm and shows an unbalanced force of F; = 0.23 N @ 6; = 30° in the
xy plane at 1 and Fy = 0.62 N @ 04 = 135° in the x-y plane at 4. Determine the angu-
lar locations and required diameters of 25-mm-deep holes drilled radially inward from
the surface in planes 2 and 3 to dynamically balance the system.

The linkage in Figure P12-9a has rectangular steel links of 20 x 10 mm cross section
similar to that shown in Figure 12-10a. Design the necessary balance weights and
other features necessary to completely eliminate the shaking force and shaking mo-
ment. State all assumptions.

Repeat Problem 12-20 using links configured as in Figure 12-10b with the same cross
section but having “dogbone” end diameters of 50 mm.

The linkage in Figure P12-9b has rectangular steel links of 20 x 10 mm cross section
similar to that shown in Figure 12-10a. Design the necessary balance weights and
other features necessary to completely eliminate the shaking force and shaking mo-
ment. State all assumptions.

Repeat Problem 12-22 using steel links configured as in Figure 12-10b with a 20 x 10
mm cross section and having “dogbone” end diameters of 50 mm.

The device in Figure P12-10 is used to balance fan blade/hub assemblies running at
600 rpm. The center distance between the two bearings on the machine is 250 mm.
The left edge of the fan hub (plane A) is 100 mm from the centerline of the closest
bearing (at F»). The hub is 75 mm wide along its axis and has a diameter of 200 mm
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FIGURE P12-5
Problem 12-15

* Answers in Appendix F.

 These problems are suited

to solution using Mathcad,
Matlab, or TKSolver equa-

tion solver programs. 12

¥ These problems are suited
to solution using program
LINKAGES.
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FIGURE P12-8
Problems 12-18 and 12-19
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FIGURE P12-9
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along the surfaces where balancing weights are fastened. The peak magnitude of force
F11s 0.5 N at a phase angle of 30° with respect to the rotating x” axis. Force F; had a
peak of 0.2 N at a phase angle of —130°. Calculate the magnitudes and locations with
respect to the x’ axis of balance weights placed in planes A and B of the hub to dynami-
cally balance the fan assembly.

Repeat Problem 12-24 using the following data. The hub is 55 mm wide and has a di-
ameter of 150 mm along the surfaces where balancing weights are fastened. The force
F1 measured at the left bearing had a peak of 1.5 N at a phase angle of 60° with respect
to the rotating x” axis. The force F) measured at the right bearing had a peak of 2.0 N at
a phase angle of —180° with respect to the rotating x’ axis.

Repeat Problem 12-24 using the following data. The hub is 125 mm wide and has a
diameter of 250 mm along the surfaces where balancing weights are fastened. The
force | measured at the left bearing had a peak of 1.1 N at a phase angle of 120° with
respect to the rotating x” axis. The force F, measured at the right bearing had a peak of
1.8 N at a phase angle of —93° with respect to the rotating x’ axis.

Figure P12-11 shows a fourbar linkage. L| =160, Ly =58, L3 = 108, and L, = 110
mm. All links are 4-mm-thick by 20-mm-wide steel. The square ends of link 3 extend
10 mm beyond the pivots. The other links’ ends have 10-mm radii about the hole.
Design counterweights to force-balance the linkage using the Berkof-Lowen method.

Use the data of Problem 12-27 to design the necessary balance weights and other fea-
tures to completely eliminate the shaking force and shaking moment the linkage exerts
on the ground link.

The linkage in Figure P12-11 has link lengths L = 3.26, Ly = 2.75, L3 = 3.26, Ly =
2.95 in. All links are 0.5-in-wide x 0.2-in-thick steel. The square ends of link 3 extend
0.25 in beyond the pivots. Links 2 and 4 have rounded ends that have a radius of

0.25 in. Design counterweights to force-balance the linkage using the Berkof-Lowen
method.

Use the data of Problem 12-29 to design the necessary balance weights and other fea-
tures to completely eliminate the shaking force and shaking moment the linkage exerts
on the ground link.

The linkage in Figure P12-11 has link lengths L = 8.88, Ly =3.44, L3 =7.40, Ly =
5.44in. All links have a uniform 0.5-in-wide x 0.2-in-thick cross section and are made
from aluminum. Link 3 has squared ends that extend 0.25 in from the pivot point cen-
ters. Links 2 and 4 have rounded ends that have a radius of 0.25 in. Design counter-
weights to force-balance the linkage using the method of Berkof and Lowen.

Use the data of Problem 12-31 to design the necessary balance weights and other fea-
tures to completely eliminate the shaking force and shaking moment the linkage exerts
on the ground link.

The linkage in Figure P12-12 has L1 =9.5, L, =5.0, L3 = 7.4, Ly = 8.0, and AP =
8.91in. Links 2 and 4 are rectangular steel with a 1-in wide x 0.12-in thick cross sec-
tion and 0.5-in-radius ends. The coupler is 0.25-in-thick aluminum with 0.5-in radii
at points A, B, and P. Design counterweights to force-balance the linkage using the
Berkof-Lowen method.

Use the data of Problem 12-33, changing link 3 to be steel with the same cross-section
dimensions as links 2 and 4, to design the necessary balance weights and other features

669

schematic- not to scale

FIGURE P12-11
Problems 12-27 to 12-31

FIGURE P12-12
Problems 12-33 to 12-34

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.

* These problem solutions
can be checked with pro-
gram LINKAGES.



670

L =272

Ly=552
L3 =488
Ly =648

FIGURE P12-13
Problem 12-35 to 12-36

TABLE P12-3

Data for Problem
12-37

i W;ab) riGin) ;)
1 150 12.01 -0.25
2 148 MN1.97 0.75
3 154 MN.95 0.25
4 155 12.03 -1.00
5 149 12.04 -0.50
TABLE P12-5

Data for Problem

12-41
A

B(@b) C(in)
1 0.48 242
2 0.51 24.4
3 0.51 23.9
4 0.49 240
5 0.47 241

* Answers in Appendix F.

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.
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12-36

12-37

12-38

12-39

necessary to completely eliminate the shaking force and shaking moment the linkage
exerts on the ground link.

Figure P12-13 shows a fourbar linkage and its dimensions in inches. All links are
0.08-in-thick steel and have a uniform cross section 0.26 in wide x 0.12 in thick. Links
2 and 4 have rounded ends with a 0.13-in radius. Link 3 has squared ends that extend
0.13 in from the pivot point centers. Design counterweights to force-balance the link-
age using the method of Berkof and Lowen.

Use the data of Problem 12-35 to design the necessary balance weights and other fea-
tures to completely eliminate the shaking force and shaking moment the linkage exerts
on the ground link.

A manufacturing company makes 5-blade ceiling fans. Before assembling the fan
blades onto the hub, the blades are weighed and the location of the CG is determined as
a distance from the center of rotation and an angular offset from the geometric center of
the blade. At final assembly a technician is provided with the weight and CG data for
the 5 blades. Write a computer program or use an equation solver such as Mathcad or
TKSolver to calculate the required weight and angular position of a balance weight that
is attached to the hub at a radius of 2.5 in. Use the geometric center of blade one as a
reference axis. Test your program with the data given in Table P12-3.

The motor rotor shown in Figure P12-14 has been tested on a dynamic balance machine
at 1800 rpm and shows unbalanced forces of F| =2.43 1b @ 0; = 34.5° in the xy plane
at 1 and F4 =5.67 1b @ 04 = 198° in the xy plane at 4. Balance weights consist of
cylindrical disks whose center of rotation is a drilled hole located at a distance e from
the center of the disk. The net weight of each disk is 0.50 Ib and the disks are located
on planes 2 and 3. Determine the angular locations of the line through the drilled hole
and the center of the disk with respect to the x axis and the eccentric distances e to
dynamically balance the system.

The motor rotor shown in Figure P12-14 has been tested on a dynamic balance machine
at 1450 rpm and shows unbalanced forces of F; =4.821b @ 0; = 163° in the xy plane
at 1 and F4 =7.861b @ 04 = 67.8° in the xy plane at 4. Balance weights consist of
cylindrical disks whose center of rotation is a drilled hole located at a distance e from
the center of the disk. The net weight of each disk is 0.375 1b and the disks are located
on planes 2 and 3. Determine the angular locations of the line through the drilled hole
and the center of the disk with respect to the x axis and the eccentric distances e to
dynamically balance the system.

1 2 3 4 y F
— eccentric weights — /

1.75 motor rotor ) .
- - eccentric weight

10 Dimensions in inches (not to scale)

FIGURE P12-14
Problems 12-38 and 12-39

 These problems are suited to solution using program LINKAGES.
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TABLE P12-4 Data for Problem 12-40  Lengths in mm.

Row Ly L, L Ly r e d t Material
a 375 100 300 200 13 13 6 4 Steel
b 150 75 250 300 12 15 6 4 Steel
c 50 125 375 350 15 15 8 6 Aluminum
d 250 150 475 400 20 20 10 3 Titanium
e 225 50 200 175 15 16 8 6 Aluminum
f 475 175 625 250 25 30 12 5 Steel
“12-40  Table P12-4 gives the geometry and kinematic data for several fourbar linkages similar

12-41

12-42

12-43

1210

L12-1

to that shown in Figure P12-11. For the row(s) assigned in Table P12-4, design
counterweights of the type shown in Figure P12-15 for links 2 and 4 to completely
force-balance the linkage by the method of Berkof and Lowen. The square ends of link
3 extend a distance e from the hole center. The other links’ ends are full round with

a radius r about the hole center. All pin holes have the same diameter d, and all links
have the same width, 2r, and thickness 7. The hole-to-hole link lengths are Ly, Ly, L3,
and Ly. The counterweight will be integrally machined with the link and will have the
same thickness as the link.

An engineering student bought a five-blade ceiling fan for her bedroom. After reading
the assembly instructions she realized that a small balance weight furnished with the
fan might be needed to keep the fan from vibrating. She measured the weight and
found the position of the CG of each blade and she measured the hub and found it to
have a diameter of 8 in. Her blade measurements are reproduced in Table P12-5, where
column A is the blade number, column B is blade weight, and column C is the distance
from a blade’s base to its CG. Where did she fasten the 2-ounce balance weight?

Figure P12-16 shows a fourbar linkage and its dimensions in meters. The steel crank,
coupler, and rocker have uniform cross sections 50 mm wide by 25 mm thick. The
crank O»A rotates at a constant speed of 0= 40 rad/sec. Design counterweights to
force balance the linkage and determine its change in peak torque versus the unbal-
anced condition. The peak torque before balancing is 3.12 kNm.

Repeat Problem 12-6 for measured forces of 2.5 1b at a phase angle of 40° with respect
to the reference zero on the tire, measured at the left bearing, and 1.8 Ib at a phase
angle of —130° with respect to the reference zero on the tire, measured at the right
bearing. The wheel diameter is 14 in.

VIRTUAL LABORATORY View the video (35:38)"  View the lab &

View the downloadable video Fourbar Linkage Virtual Laboratory. Open the file
Virtual Fourbar Linkage Lab 12-1.doc and follow the instructions as directed by your
professor. For this lab it is suggested that you compare the data for the balanced and
unbalanced conditions of the linkage.

T http://www.designofmachinery.com/DOM/Fourbar_Machine_Virtual_laboratory.mp4

§ http://www.designofmachinery.com/DOM/Fourbar_Virtual_Lab.zip
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original
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_a(F-r)
3(r2-r2)
A=2(r2-7)

FIGURE P12-15
Problem 12-40

Ly =1.000m
L, =0.356m 12
L3=0.785m
Ls=0.950m
AP =1.090m

FIGURE P12-16
Problem 12-42

* These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.



