
12

   

Chapter12
BALANCING
 Moderation is best,
 and to avoid all extremes
 PLUTARCH

12.0 INTRODUCTION Watch the lecture video for this chapter (48:09)*

Any link or member that is in pure rotation can, theoretically, be perfectly balanced to 
eliminate all shaking forces and shaking moments.  It is accepted design practice to bal-
ance all rotating members in a machine unless shaking forces are desired (as in a vibrating 
shaker mechanism, for example).  A rotating member can be balanced either statically or 
dynamically.  Static balance is a subset of dynamic balance.  To achieve complete bal-
ance requires that dynamic balancing be done.  In some cases, static balancing can be an 
acceptable substitute for dynamic balancing and is generally easier to do.

Rotating parts can, and generally should, be designed to be inherently balanced by 
their geometry.  However, the vagaries of production tolerances guarantee that there will 
still be some small unbalance in each part.  Thus a balancing procedure will have to be 
applied to each part after manufacture.  The amount and location of any imbalance can 
be measured quite accurately and compensated for by adding or removing material in 
the correct locations.

In this chapter we will investigate the mathematics of determining and designing a 
state of static and dynamic balance in rotating elements and also in mechanisms having 
complex motion, such as the fourbar linkage.  The methods and equipment used to mea-
sure and correct imbalance in manufactured assemblies will also be discussed.  It is quite 
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convenient to use the method of d’Alembert (see Section 10.14) when discussing rotating 
imbalance, applying inertia forces to the rotating elements, so we will do that.

12.1 STATIC BALANCE Watch a short video (09:58)†

Despite its name, static balance does apply to things in motion.  The unbalanced forces of 
concern are due to the accelerations of masses in the system.  The requirement for static 
balance is simply that the sum of all forces on the moving system (including d’Alembert 
inertial forces) must be zero.

∑ − = 0 (12.1)mF a

This is simply a restatement of Newton’s law as discussed in Section 10.14.

Another name for static balance is single-plane balance, which means that the 
masses which are generating the inertia forces are in, or nearly in, the same plane.  It is 
essentially a two-dimensional problem.  Some examples of common devices which meet 
this criterion, and thus can successfully be statically balanced, are a single gear or pulley 
on a shaft, a bicycle or motorcycle tire and wheel, a thin flywheel, an airplane propeller, 
an individual turbine blade-wheel (but not the entire turbine).  The common denominator 
among these devices is that they are all short in the axial direction compared to the radial 
direction, and thus can be considered to exist in a single plane.  An automobile tire and 
wheel is only marginally suited to static balancing as it is reasonably thick in the axial di-
rection compared to its diameter.  Despite this fact, auto tires are sometimes statically bal-
anced.  More often they are dynamically balanced and will be discussed under that topic.

Figure 12-1a shows a link in the shape of a vee which is part of a linkage.  We want to 
statically balance it.  We can model this link dynamically as two point masses m1 and m2 
concentrated at the local CGs of each “leg” of the link as shown in Figure 12-1b.  These 
point masses each have a mass equal to that of the “leg” they replace and are supported on 
massless rods at the position (R1 or R2) of that leg’s CG.  We can solve for the required 
amount and location of a third “balance mass” mb to be added to the system at some loca-
tion Rb in order to satisfy equation 12.1.

Assume that the system is rotating at some constant angular velocity �.  The accel-
erations of the masses will then be strictly centripetal (toward the center), and the inertia 
forces will be centrifugal (away from the center) as shown in Figure 12-1.  Since the 
system is rotating, the figure shows a “freeze-frame” image of it.  The position at which 
we “stop the action” for the purpose of drawing the picture and doing the calculations is 
both arbitrary and irrelevant to the computation.  We will set up a coordinate system with 
its origin at the center of rotation and resolve the inertial forces into components in that 
system.  Writing vector equation 12.1 for this system, we get:

− ω − ω − ω = 0 (12.2a)1
2

2
2 2m m mb bR R R1 2

Note that the only forces acting on this system are the inertia forces.  For balancing, it 
does not matter what external forces may be acting on the system.  External forces cannot 
be balanced by making any changes to the system’s internal geometry.  Note that the �� 
terms cancel.  For balancing, it also does not matter how fast the system is rotating, only 

  

†  http://www.designof-
machinery.com/DOM/
Static_Balance.mp4
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that it is rotating.  (The � will determine the magnitudes of these forces, but we are going 
to force their sum to be zero anyway.)

Dividing out the �2 and rearranging, we get:

= − − (12.2b)1 2m m mb bR R R1 2

Breaking into x and y components:

( )
( )= − +

= − +
(12.2c)

1 1 2 2

1 1 2 2

m R m R m R

m R m R m R

b b

b b

x x x

y y y

The terms on the right sides are known.  We can readily solve for the mRx and mRy
products needed to balance the system.  It will be convenient to convert the results to 
polar coordinates.

( )
( )

θ =

=
− +

− +

arctan

(12.2d)

arctan
1 1 2 2

1 1 2 2

m R

m R

m R m R

m R m R

b
b b

b b

y

x

y y

x x

( )

( )( )

= +

= +

= +

= +

= +

(12.2e)

2 2

2 2

2 2 2

2 2 2 2

2 2

R R R

m R m R R

m R R

m R m R

m R m R

b b b

b b b b b

b b b

b b b b

b b b b

x y

x y

x y

x y

x y

The angle at which the balance mass must be placed (with respect to our arbitrarily 
oriented freeze-frame coordinate system) is �b, found from equation 12.2d.  Note that the 
signs of the numerator and denominator of equation 12.2d must be individually main-
tained and a two-argument arctangent computed in order to obtain �b in the correct quad-
rant.  Most calculators and computers will give an arctangent result only between �90	


The mbRb product is found from equation 12.2e.  There is now an infinity of solutions 
available.  We can either select a value for mb and solve for the necessary radius Rb at 
which it should be placed, or choose a desired radius and solve for the mass that must be 
placed there.  Packaging constraints may dictate the maximum radius possible in some 
cases.  The balance mass is confined to the “single plane” of the unbalanced masses.

Once a combination of mb and Rb is chosen, it remains to design the physical counter-
weight.  The chosen radius Rb is the distance from the pivot to the CG of whatever shape 
we create for the counterweight mass.  Our simple dynamic model, used to calculate the 
mR product, assumed a point mass and a massless rod.  These ideal devices do not exist.  
A possible shape for this counterweight is shown in Figure 12-1c.  Its mass must be mb, 
distributed so as to place its CG at radius Rb at angle � .
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✍EXAMPLE 12-1

Static Balancing.

Given: The system shown in Figure 12-1 has the following data:

= = ∠ °
= = ∠ °

ω =

1.2 kg 1.135 m @ 113.4
1.8 kg 0.822 m @ 48.8

40 rad/sec

1 1

2 2

m R
m R

Find:  The mass-radius product and its angular location needed to statically balance the 
system.

Solution:

 1 Resolve the position vectors into xy components in the arbitrary coordinate system associated 
with the freeze-frame position of the linkage chosen for analysis.

= ∠ ° = − =

= ∠ ° = + =

1.135 @ 113.4 ; 0.451, 1.042
( )

0.822 @ 48.8 ; 0.541, 0.618

1 1 1

2 2 2

R R R
a

R R R

x y

x y

2 Solve equations 12.2c.

2R1m1 �

2R2m2 �

2Rbmb �

2

1

b

Y

X

Y

R 1

2R

R b

Moving global
mass center -
unbalanced

Stationary global
mass center - balanced

X

Y

Shaped
counterweight

X

m2

m1

m1

m2

m1

m2

mbmb

�� �
�

�

�

FIGURE 12-1
Static balancing a link in pure rotation

( (a )  Unbalanced link b)  Dynamic model ( c )  Statically balanced link
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= ( )( ) ( )( )

( )( ) ( )( )

= − − − − = −

= − − = − − = −

− 1.2 0.451 1.8 0.541 0.433
( )

1.2 1.042 1.8 0.618 2.363

1 1 2 2

1 1 2 2

m R m R m R
b

m R m R m R

b b

b b

x x x

y y y

3 Solve equations 12.2d and 12.2e.

( ) ( )

θ =
−
−

= °

= − + − =

arctan 2.363
0.433

259.6
( )

0.433 2.363 2.402 kg-m2 2
c

m R

b

b b

4 This mass-radius product of 2.402 kg-m can be obtained with a variety of shapes appended to 
the assembly.  Figure 12-1c shows a particular shape whose CG is at a radius of Rb  = 0.806 m 
at the required angle of 259.6	.  The mass required for this counterweight design is then:

� �
2.402 kg-m

0.806 m
2.980 kg ( )m db

  at a chosen CG radius of:

� 0.806 m ( )R eb

Many other shapes are possible.  As long as they provide the required mass-radius 
product at the required angle, the system will be statically balanced.  Note that the value 
of � was not needed in the calculation.

12.2 DYNAMIC BALANCE Watch a short video (09:42)†

Dynamic balance is sometimes called two-plane balance.  It requires that two criteria 
be met.  The sum of the forces must be zero (static balance) plus the sum of the moments*

must also be zero.

∑

∑

=

=

0

(12.3)

0

F

M

These moments act in planes that include the axis of rotation of the assembly such as 
planes XZ and YZ in Figure 12-2.  The moment’s vector direction, or axis, is perpendicular 
to the assembly’s axis of rotation.

Any rotating object or assembly which is relatively long in the axial direction com-
pared to the radial direction requires dynamic balancing for complete balance.  It is pos-
sible for an object to be statically balanced but not be dynamically balanced.  Consider the 
assembly in Figure 12-2.  Two equal masses are at identical radii, 180	 apart rotationally, 
but separated along the shaft length.  A summation of –ma forces due to their rotation will 
be always zero.  However, in the side view, their inertia forces form a couple which rotates 
with the masses about the shaft.  This rocking couple causes a moment on the ground 
plane, alternately lifting and dropping the left and right ends of the shaft.

*  We will use the term 
moment in this text to refer 
to “turning forces” whose 
vectors are perpendicular to 
an axis of rotation or “long 
axis” of an assembly, and 
the term torque to refer to 
“turning forces” whose vec-
tors are parallel to an axis of 
rotation.

  

†  http://www.designof-
machinery.com/DOM/Dy-
namic_Balance.mp4
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Some examples of devices which require dynamic balancing are rollers, crankshafts, 
camshafts, axles, clusters of multiple gears, motor rotors, turbines, and propeller shafts.  
The common denominator among these devices is that their mass may be unevenly dis-
tributed both rotationally around their axis and longitudinally along their axis.

To correct dynamic imbalance requires either adding or removing the right amount 
of mass at the proper angular locations in two correction planes separated by some dis-
tance along the shaft.  This will create the necessary counterforces to statically balance 
the system and also provide a countercouple to cancel the unbalanced moment.  When an 
automobile tire and wheel is dynamically balanced, the two correction planes are the inner 
and outer edges of the wheel rim.  Correction weights are added at the proper locations in 
each of these correction planes based on a measurement of the dynamic forces generated 
by the unbalanced, spinning wheel.

It is always good practice to first statically balance all individual components that 
go into an assembly, if possible.  This will reduce the amount of dynamic imbalance that 
must be corrected in the final assembly and also reduce the bending moment on the shaft.  
A common example of this situation is the aircraft turbine which consists of a number 
of circular turbine wheels arranged along a shaft.  Since these spin at high speed, the in-
ertia forces due to any imbalance can be very large.  The individual wheels are statically 
balanced before being assembled to the shaft.  The final assembly is then dynamically 
balanced.

Some devices do not lend themselves to this approach.  An electric motor rotor is 
essentially a spool of copper wire wrapped in a complex pattern around the shaft.  The 
mass of the wire is not uniformly distributed either rotationally or longitudinally, so it will 
not be balanced.  It is not possible to modify the windings’ local mass distribution after 

FIGURE 12-2
Balanced forces—unbalanced moment
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the fact without compromising electrical integrity.  Thus the entire rotor imbalance must 
be countered in the two correction planes after assembly.

Consider the system of three lumped masses arranged around and along the shaft in 
Figure 12-3.  Assume that, for some reason, they cannot be individually statically balanced 
within their own planes.  We then create two correction planes labeled A and B.  In this 
design example, the unbalanced masses m1, m2, m3 and their radii R1, R2, R3 are known 
along with their angular locations �1, �2, and �3.  We want to dynamically balance the 
system.  A three-dimensional coordinate system is applied with the axis of rotation in 
the Z direction.  Note that the system has again been stopped in an arbitrary freeze-frame 
position.  Angular acceleration is assumed to be zero.  The summation of forces is:

− ω − ω − ω − ω − ω = 0 (12.4a)1 1
2

2 2
2

3 3
2 2 2m m m m mA A B BR R R R R

Dividing out the �2 and rearranging we get:

+ = − − − (12.4b)1 2 3 3m m m m mA A B BR R R R R1 2

Breaking into x and y components:

+ = − − −

+ = − − −
(12.4c)

1 1 2 2 3 3

1 1 2 2 3 3

m R m R m R m R m R

m R m R m R m R m R

A A B B

A A B B

x x x x x

y y y y y

Equations 12.4c have four unknowns in the form of the mR products at plane A and 
the mR products at plane B.  To solve, we need the sum of the moments equation which we 
can take about a point in one of the correction planes such as point O.  The moment arm 
z distances of each force measured from plane A are labeled l1, l2, l3, lB in the figure; thus

( ) ( ) ( ) ( )ω = − ω − ω − ω (12.4d)2
1 1

2
1 2 2

2
2 3 3

2
3m l m l m l m lB B BR R R R

Dividing out the �2, breaking into x and y components, and rearranging:

The moment in the XZ plane (i.e., about the Y axis) is:

( ) ( ) ( )
=
− − −

(12.4e)
1 1 1 2 2 2 3 3 3

m R
m R l m R l m R l

lB B
B

x
x x x

The moment in the YZ plane (i.e., about the X axis) is:

( ) ( ) ( )
=
− − −

(12.4f)
1 1 1 2 2 2 3 3 3

m R
m R l m R l m R l

lB B
B

y
y y y

These can be solved for the mR products in x and y directions for correction plane 
B which can then be substituted into equation 12.4c to find the values needed in plane 
A.  Equations 12.2d and 12.2e can then be applied to each correction plane to find the 
angles at which the balance masses must be placed and the mR products needed in each 
plane.  The physical counterweights can then be designed consistent with the constraints 
outlined in Section 12.1 on static balance.  Note that the radii  RA and RB do not have to 
have the same value.
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✍EXAMPLE 12-2

Dynamic Balancing.

Given: The system shown in Figure 12-3 has the following data:  

= = ∠ °
= = ∠ °
= = ∠ °

1.2 kg 1.135 m @ 113.4
1.8 kg 0.822 m @ 48.8
2.4 kg 1.04 m @ 251.4

1 1

2 2

3 3

m R
m R
m R

The z distances in meters from plane A are:  

� � � �0.854, 1.701, 2.396, 3.0971 2 3l l l lB

Find:  The mass-radius products and their angular locations needed to dynamically bal-
ance the system using the correction planes A and B.

Solution:

1 Resolve the position vectors into xy components in the arbitrary coordinate system associated 
with the freeze-frame position of the linkage chosen for analysis.

= ∠ ° = − = +

= ∠ ° = + = +

= ∠ ° = − = −

1.135 @ 113.4 ; 0.451, 1.042

0.822 @ 48.8 ; 0.541, 0.618 ( )

1.040 @ 251.4 ; 0.332, 0.986

1 1 1

2 2 2

3 3 3

R R R

R R R a

R R R

x y

x y

x y

R

2

2RBmB

2RAmA

2R1m1

2R2m2

X Z

O

Y

Y

A B

Correction planes

3

1l

Bl

2l

3lR3m3

m3

m2

m1

R2

R1

m1

m2

m3

�

�

�

�

�
�

FIGURE 12-3
Two-plane dynamic balancing
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mB
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RA
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mB
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2 Solve equation 12.4e for summation of moments about point O.

( ) ( ) ( )

( )( ) ( )( ) ( )( )

=
− − −

− − − − −
==

( )
1.2 0.451 0.854 1.8 0.541 1.701 2.4 0.332 2.396

3.097
0.230

1 1 1 2 2 2 3 3 3
m R

m R l m R l m R l
l

b
B B

B
x

x x x

( ) ( ) ( )

( )( ) ( )( ) ( )( )

=
− − −

=
− − − −

=

( )
1.2 1.042 0.854 1.8 0.618 1.701 2.4 0.986 2.396

3.097
0.874

1 1 1 2 2 2 3 3 3
m R

m R l m R l m R l

l
c

B B
B

y
y y y

3 Solve equations 12.2d and 12.2e for the mass radius product in plane B.

( ) ( )

θ = °

= + =

=arctan 0.874
0.230

75.27
( )

0.230 0.874 0.904 kg-m2 2
d

m R

B

B B

4 Solve equations 12.4c for forces in x and y directions.

( ) ( ) ( )
( ) ( ) ( )

− − − − − − =

− − − − − = −

−

−

=

=

= − − −

= − − −

( )
1.2 0.451 1.8 0.541 2.4 0.332 0.230 0.134

1.2 1.042 1.8 0.618 2.4 0.986 0.874 0.870

1 1 2 2 3 3

1 1 2 2 3 3

m R m R m R m R m R
m R m R m R m R m R

e
m R

m R

A A B B

A A B B

A A

A A

x x x x x

y y y y y

x

y

5 Solve equations 12.2d and 12.2e for the mass-radius product in plane A.

( ) ( )

θ =
−

= − °

= + − =

arctan 0.870
0.134

81.25
( )

0.134 0.870 0.880 kg-m2 2
f

m R

A

A A

6 These mass-radius products can be obtained with a variety of shapes appended to the assembly 
in planes A and B.  Many shapes are possible.  As long as they provide the required mass-radius 
products at the required angles in each correction plane, the system will be dynamically bal-
anced.

So, when the design is still on the drawing board, these simple analysis techniques 
can be used to determine the necessary sizes and locations of balance masses for any 
assembly in pure rotation for which the mass distribution is defined.  This two-plane 
balance method can be used to dynamically balance any system in pure rotation, and all 
such systems should be balanced unless the purpose of the device is to create shaking 
forces or moments.
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12.3 BALANCING LINKAGES Watch a short video (26:55)†

Many methods have been devised to balance linkages.  Some achieve a complete balance 
of one dynamic factor, such as shaking force, at the expense of other factors such as shak-
ing moment or driving torque.  Others seek an optimum arrangement that collectively 
minimizes (but does not zero) shaking forces, moments, and torques for a best com-
promise.  Lowen and Berkof [1] and Lowen, Tepper, and Berkof [2] give comprehensive 
reviews of the literature on this subject up to 1983.  Additional work has been done on 
the problem since that time, some of which is noted in the references at the end of this 
chapter.  Kochev[15] presents a general theory for complete shaking moment balancing 
and a critical review of known methods.

Complete balance of any mechanism can be obtained by creating a second “mir-
ror image” mechanism connected to it so as to cancel all dynamic forces and moments.  
Certain configurations of multicylinder internal combustion engines do this.  The pistons 
and cranks of some cylinders cancel the inertial effects of others.  We will explore these 
engine mechanisms in Chapter 14.  However, this approach is expensive and is only justi-
fied if the added mechanism serves some second purpose such as increasing power, as in 
the case of additional cylinders in an engine.  Adding a “dummy” mechanism whose only 
purpose is to cancel dynamic effects is seldom economically justifiable.  

Most practical linkage balancing schemes seek to minimize or eliminate one or more 
of the dynamic effects (forces, moments, torques) by redistributing the mass of the ex-
isting links.  This typically involves adding counterweights and/or changing the shapes 
of links to relocate their CGs.  More elaborate schemes add geared counterweights to 
some links in addition to redistributing their mass.  As with any design endeavor, there 
are trade-offs.  For example, elimination of shaking forces usually increases the shaking 
moment and driving torque.  We can only present a few approaches to this problem in the 
space available.  The reader is directed to the literature for information on other methods.

Complete Force Balance of Linkages
The rotating links (cranks, rockers) of a linkage can be individually statically balanced 
by the rotating balance methods described in Section 12.1.  The effects of the couplers, 
which are in complex motion, are more difficult to compensate for.  Note that the process 
of statically balancing a rotating link, in effect, forces its mass center (CG) to be at its 
fixed pivot and thus stationary.  In other words the condition of static balance can also 
be defined as one of making the mass center stationary.  A coupler has no fixed pivot, 
and thus its mass center is, in general, always in motion.

Any mechanism, no matter how complex, will have, for every instantaneous position, 
a single, overall,  global mass center located at some particular point.  We can calculate 
its location knowing only the link masses and the locations of the CGs of the individual 
links at that instant.  The global mass center normally will change position as the linkage 
moves.  If we can somehow force this global mass center to be stationary, we will have a 
state of static balance for the overall linkage.

The Berkof-Lowen method of linearly independent vectors[3] provides a means to 
calculate the magnitude and location of counterweights to be placed on the rotating links 
which will make the global mass center stationary for all positions of the linkage.  Place-

  

†  http://www.designofma-
chinery.com/DOM/Link-
age_Balancing.mp4
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ment of the proper balance masses on the links will cause the dynamic forces on the fixed 
pivots to always be equal and opposite, i.e., a couple,  thus creating static balance (
F = 0 
but 
M � 0) in the moving linkage.  

This method works for any n-link planar linkage having a combination of revolute 
(pin) and prismatic (slider) joints, provided that there exists a path to the ground from 
every link which only contains revolute joints.[4]  In other words, if all possible paths from 
any one link to the ground contain sliding joints, then the method fails.  Any linkage of n 
links that meets the above criterion can be balanced by the addition of n/2 balance weights, 
each on a different link.[4]  We will apply the method from reference [3] to a fourbar 
linkage.  Unfortunately, doing so will increase the total mass of the original linkage by a 
factor of 2 to 3 for fourbar linkages and substantially more for  complex mechanisms.[15]

Figure 12-4 shows a fourbar linkage with its overall global mass center located by 
the position vector Rt.  The individual CGs of the links are located in the global system 
by position vectors R2, R3, and R4 (magnitudes R2, R3, R4), rooted at its origin, the crank 
pivot O2.  The link lengths are defined by position vectors labeled L1, L2, L3, L4 (mag-
nitudes l1, l2, l3, l4), and the local position vectors which locate the CGs within each link 
are B2, B3, B4 (magnitudes b2, b3, b4).  The angles of the vectors B2, B3, B4 are �2, �3, �4
measured internal to the links with respect to the links’ lines of centers L2, L3, L4.  The 
instantaneous link angles which locate L2, L3, L4 in the global system are �2, �3, �4.  The 
total mass of the system is simply the sum of the individual link masses:

= + + (12.5a)2 3 4m m m mt

The total mass moment about the origin must be equal to the sum of the mass moments 
due to the individual links:

∑ = = + + (12.5b)2 2 3 3 4 42M m m m mO t tR R R R

The position of the global mass center is then:

=
+ + (12.5c)2 2 3 3 4 4m m m
mt
t

R
R R R

and from the linkage geometry:

= =

= + = +

= + = +

( )

( )

( )

θ +φ θ φ

θ θ +φ θ θ φ

θ θ +φ θ θ φ4 4

(12.5d)

2 2 2

3 2 3 2 3

4 1 4 1 4

2 2 2 2

2 3 3 2 3 3

1 4 1 4

b e b e e

l e b e l e b e e

l e b e l e b e e

j j j

j j j j j

j j j j j

R

R

R

We can solve for the location of the global mass center for any link position for which 
we know the link angles �2, �3, �4.  We want to make this position vector Rt be a constant.  
The first step is to substitute equations 12.5d into 12.5b,

( )( ) ( )= + + + +θ φ θ θ φ θ θ φ4 (12.5e)2 2 3 2 3 4 1 42 2 2 3 3 1 4m m b e e m l e b e e m l e b e et t
j j j j j j j jR

and rearrange to group the constant terms as coefficients of the time-dependent terms:

( )( ) ( ) ( )= + + + +θ φ θ φ θ φ θ4 (12.5f)4 1 2 2 3 2 3 3 4 41 2 2 3 3 4m m l e m b e m l e m b e e m b e et t
j j j j j j jR
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Note that the terms in parentheses are all constant with time.  The only time-dependent 
terms are the ones containing �2, �3, and �4.

We can also write the vector loop equation for the linkage,

+ − − =θ θ θ θ 0 (12.6a)2 3 4 12 3 4 1l e l e l e l ej j j j

and solve it for one of the unit vectors that define a link direction, say link 3:

=
− +θ

θ θ θ
(12.6b)1 2 4

3
3

1 2 4
e l e l e l e

l
j

j j j

Substitute this into equation 12.5f to eliminate the �3 term and rearrange:

( )( ) ( )
( ) ( )

= + + − +

+ +

φ θ φ θ θ θ

φ θ θ4

1

(12.7a)

2 2 3 2
3

3 3 1 2 4

4 4 4 1

2 2 3 1 2 4

4 1

m m b e m l e
l
m b e l e l e l e

m b e e m l e

t t
j j j j j j

j j j

R

and collect terms:

= + −
⎛
⎝⎜

⎞
⎠⎟

+ +
⎛
⎝⎜

⎞
⎠⎟

+ +

φ φ θ φ φ θ

θ φ θ

4

(12.7b)

2 2 3 2 3 3
2

3
4 4 3 3

4

3

4 1 3 3
1

3

2 3 2 3 4

1 3 1

m m b e m l m b l
l
e e m b e m b l

l
e e

m l e m b l
l
e e

t t
j j j j j j

j j j

R

This expression gives us the tool to force Rt to be a constant and make the linkage 
mass center stationary.  For that to be so, the terms in parentheses which multiply the only 
two time-dependent variables, �2 and �4, must be forced to be zero.  (The fixed link angle 
�1 is a constant.)  Thus the requirement for linkage force balance is:
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FIGURE 12-4
Static (force) balancing a fourbar linkage



12

DESIGN OF MACHINERY 6ed      CHAPTER  12654

+ − =

+ =

φ φ

φ φ4

0

(12.8a)
0

2 2 3 2 3 3
2

3

4 4 3 3
4

3

2 3

3

m b e m l m b l
l
e

m b e m b l
l
e

j j

j j

Rearrange to isolate one link’s terms (say link 3) on one side of each of these equations:

= −
⎛
⎝⎜

⎞
⎠⎟

= −

φ φ

φ φ4

(12.8b)
2 2 3 3

2

3
2

4 4 3 3
4

3

2 3

3

m b e m b l
l
e l

m b e m b l
l
e

j j

j j

We now have two equations involving three links.  The parameters for any one link 
can be assumed and the other two solved for.  A linkage is typically first designed to sat-
isfy the required motion and packaging constraints before this force-balancing procedure 
is attempted.  In that event, the link geometry and masses are already defined, at least 
in a preliminary way.  A useful strategy is to leave the link 3 mass and CG location as 
originally designed and calculate the necessary masses and CG locations of links 2 and 4 
to satisfy these conditions for balanced forces.  Links 2 and 4 are in pure rotation, so it is 
straightforward to add counterweights to them in order to move their CGs to the necessary 
locations.  With this approach, the right sides of equations 12.8b are reducible to numbers 
for a designed linkage.  We want to solve for the mass radius products m2b2 and m4b4 and 
also for  the angular locations of the CGs within the links.  Note that the angles �2 and �4
in equations 12.8 are measured with respect to the lines of centers of their respective links.

Equations 12.8b are vector equations.  Substitute the Euler identity (equation 4.4a) 
to separate into real and imaginary components, and solve for the x and y components of 
the mass-radius products.

( )

( )

= φ −
⎛
⎝⎜

⎞
⎠⎟

= φ
⎛
⎝⎜

⎞
⎠⎟

cos

(12.8c)

sin

2 2 3 3
2

3
3 2

2 2 3 3
2

3
3

m b m b l
l

l

m b m b l
l

x

y

( )

( )

= − φ

= − φ

cos

(12.8d)
sin

4 4 3 3
4

3
3

4 4 3 3
4

3
3

m b m b l
l

m b m b l
l

x

y

These components of the mR product needed to force balance the linkage represent 
the entire amount needed.  If links 2 and 4 are already designed with some individual 
unbalance (the CG not at pivot), then the existing mR product of the unbalanced link must 
be subtracted from that found in equations 12.8c and 12.8d in order to determine the size 
and location of additional counterweights to be added to those links.  As we did with the 
balance of rotating links, any combination of mass and radius that gives the desired prod-
uct is acceptable.  Use equations 12.2d and 12.2e to convert the cartesian mR products in 
equations 12.8c and 12.8d  to polar coordinates in order  to find the magnitude and angle 
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of the counterweight’s mR vector.  Note that the angle of the mR vector for each link will 
be referenced to that link’s line of centers.  Design the shape of the physical counter-
weights to be put on the links as discussed in Section 12.1.  

12.4 EFFECT OF BALANCING ON SHAKING AND PIN FORCES 

Figure 12-5 shows a fourbar linkage* to which balance masses have been added in accord 
with equations 12.8.  Note the counterweights placed on links 2 and 4 at the calculated 
locations for complete force balance.  Figure 12-6a shows a polar plot of the shaking 
forces of this linkage without the balance masses.  The maximum is 462 lb at 15	.  Figure 
12-6b shows the shaking forces after the balance masses are added.  The shaking forces 
are reduced to essentially zero.  The small residual forces seen in Figure 12-6b are due to 
computational round-off errors—the method gives theoretically exact results.  

 

* Open the disk file 
F12-05.4br in program 
LINKAGES to see more 
details on this linkage and 
its balancing.

�2 =  50 rad/sec
0 to 360
by 5 deg

L1 =  19 in
L2 =   5
L3 =  15
L4 =  10
Cplrpt = 13
@ 63	

FIGURE 12-5
A balanced fourbar linkage showing balance masses applied to links 2 and 4 

FIGURE 12-6
Polar plot of unbalanced shaking forces on ground plane of the fourbar linkage of Figure 12-5

(a )  Shaking force with linkage unbalanced (b )  Shaking force with linkage balanced

lb447

– 447
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The pin forces at the crank and rocker pivots have not disappeared as a result of add-
ing the balance masses, however.  Figures 12-7a and 12-7b, respectively, show the forces 
on crank and rocker pivots after balancing.  These forces are now equal and opposite.  
After balancing, the pattern of forces at pivot O2 is the mirror image of the pattern at pivot 
O4.  The net shaking force is the vector sum of these two sets of forces for each time step 
(Section 11.8).  The equal and opposite pairs of forces acting at the ground pivots at each 
time step create a time-varying shaking couple that rocks the ground plane.  These pin 
forces can be larger due to the balance weights and if so will increase the shaking couple 
compared to its former value in the unbalanced linkage—one trade-off for reducing the 
shaking forces to zero.  The stresses in the links and pins may also increase as a result of 
force balancing.  

12.5 EFFECT OF BALANCING ON INPUT TORQUE 

Individually balancing a link which is in pure rotation by the addition of a counterweight 
will have the side effect of increasing its mass moment of inertia.  The “flywheel effect” 
of the link is increased by this increase in its moment of inertia.  Thus the torque needed 
to accelerate that link will be greater.  The input torque will be unaffected by any change 
in the I of the input crank when it is run at constant angular velocity.  But, any rockers 
in the mechanism will have angular accelerations even when the crank does not.  Thus, 
individually balancing the rockers will tend to increase the required input torque even at 
constant input crank velocity.

Adding counterweights to the rotating links, necessary to force balance the entire 
linkage, both increases the links’ mass moments of inertia and also (individually) unbal-
ances those rotating links in order to gain the global balance.  Then the CGs of the rotating 
links will not be at their fixed pivots.  Any angular acceleration of these links will add 
to the torque loading on the linkage.  Balancing an entire linkage by this method then 

FIGURE 12-7
Polar plots of forces F21 and F41 acting on the ground plane of the force-balanced fourbar linkage of Figure 12-5

(b )  Rocker pivot force F41

lb770
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(a )  Crank pivot force F21
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X

Y
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can have the side effect of increasing the variation in the required input torque.  A larger 
flywheel may be needed on a balanced linkage in order to achieve the same coefficient of 
fluctuation as the unbalanced version of the linkage.

Figure 12-8 shows the input torque curve for the unbalanced linkage and for the same 
linkage after complete force balancing has been done.  The peak value of the required 
input torque has increased as a result of force balancing.  

Note, however, that the degree of increase in the input torque due to force balancing 
is dependent upon the choice of radii at which the balance masses are placed.  The extra 
mass moment of inertia that the balance mass adds to a link is proportional to the square 
of the radius to the CG of the balance mass.  The force balance algorithm only computes 
the required mass-radius product.  Placing the balance mass at as small a radius as pos-
sible will minimize the increase in input torque.  Weiss and Fenton[5] have shown that a 
circular counterweight placed tangent to the link’s pivot center (Figure 12-9) is a good 
compromise between added weight and increased moment of inertia.  To reduce the torque 
penalty further, one could also choose to do less than a complete force balance and accept 
some shaking force in trade.  

12.6 BALANCING THE SHAKING MOMENT IN LINKAGES

The shaking moment Ms about the crank pivot O2 in a force-balanced linkage is the sum 
of the reaction torque T21 and the shaking couple (ignoring any externally applied loads)[6]*

( )= + × (12.9)21 1 41sM T R F

where T21 is the negative of the driving torque T12, R1 is the position vector from O2 to 
O4 (i.e., link 1), and F41 is the force of the rocker on the ground plane.  In a general link-
age, the magnitude of the shaking moment can be reduced but cannot be eliminated by 
means of mass redistribution within its links.  Complete balancing of the shaking moment 
requires the addition of supplementary links and/or rotating counterweights.[7]

* Note that this statement 
is only true if the linkage is 
force-balanced which makes 
the moment of the shaking 
couple a free vector.  Other-
wise it is referenced to the 
chosen global coordinate 
system.  See reference [6] 
for complete derivations 
of  the shaking moment for 
both force-balanced and 
unbalanced linkages.

0

–1200

1600

1200

800

400

–400

–800

FIGURE 12-8
Unbalanced and balanced input torque curves for the fourbar linkage of Figure 12-5
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Many techniques have been developed that use optimization methods to find a link-
age-mass configuration that will minimize the shaking moment alone or in combina-
tion with minimizing shaking force and/or input torque.  Hockey[8], [9] shows that the 
fluctuation in kinetic energy and input torque of a mechanism may be reduced by proper 
distribution of mass within its links and that this approach is more weight efficient than 
adding a flywheel to the input shaft.  Berkof [10] also describes a method to minimize the 
input torque by internal mass rearrangement.  Lee and Cheng [11] and Qi and Pennestri [12]

show methods to optimally balance the combined shaking force, shaking moment, and 
input torque in high-speed linkages by mass redistribution and addition of counterweights. 
Porter et al.[13] suggest using a genetic algorithm to optimize the same set of parameters.  
Bagci [14] describes several approaches to balancing shaking forces and shaking moments 
in the fourbar slider-crank linkage.  Kochev[15] provides a general theory for complete 
force and moment balance.  Esat and Bahai [16] describe a theory for complete force and 
moment balance that requires rotating counterweights on the coupler.  Arakelian and 
Smith[17] derive a method for the complete force and moment balance of Watt’s and 
Stephenson’s sixbar linkages.  Most of these methods require significant computing re-
sources, and space does not permit a complete discussion of them all here.  The reader is 
directed to the references for more information.

Berkof’s method for complete moment balancing of the fourbar linkage [7] is simple 
and useful even though it is limited to “inline” linkages, i.e., those whose link CGs lie on 
their respective link centerlines as shown in Figure 12-9.  This is not an overly restric-
tive constraint since many practical linkages are made with straight links.  Even if a link 
must have a shape that deviates from its line of centers, its CG can still be placed on that 
line by adding mass to the link in the proper location, increased mass being the trade-off.  

For complete moment balancing by Berkof’s method, in addition to being an inline 
linkage, the coupler must be reconfigured to become a physical pendulum* such that it is 
dynamically equivalent to a lumped mass model as shown in Figure 12-10.  The coupler 
is shown in Figure 12-10a as a uniform rectangular bar of mass m, length a, and width 
h and in Figure 12-10b as a “dogbone.”  These are only two of many possibilities.  We 

* This method of moment 
balancing is “recognized 
as a superior technique and 
recommended when ap-
plicable.”[15]

FIGURE 12-9
An inline fourbar
linkage [6], [7]

[5]

with optimally
located circular
counterweights. 

( a )  Rectangular coupler link

FIGURE 12-10
Making the coupler link a physical pendulum

(b)  Dogbone coupler link
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want the lumped masses to be at the pivot pins, connected by a “massless” rod.  Then the 
coupler’s lumped masses will be in pure rotation either as part of the crank or as part of 
the rocker.  This can be accomplished by adding mass as indicated by dimension e at the 
coupler ends.† 

The three requirements for dynamic equivalence were stated in Section 10.2 and are 
equal mass, same CG location, and same mass moment of inertia.  The first and second 
of these are easily satisfied by placing ml = m/2 at each pin.  The third requirement can be 
stated in terms of radius of gyration k instead of moment of inertia using equation 10.11b.

� (12.10)k I
m

Taking each lump separately as if the massless rod were split at the CG into two rods 
each of length b, the moment of inertia Il of each lump will be

� �

� �and
2

2 (12.11a)

2

2 2

I I m b

I m b mb

l l

l

� � �then
2

(12.11b)
2

k mb
m

b a

For the link configuration in Figure 12-10a, this will be satisfied if the link dimen-
sions have the following dimensionless ratio (assuming constant link thickness).

= ⎛
⎝⎜

⎞
⎠⎟

− −
1
2

3 1
2

(12.12)
2e

h
a
h

a
h

where e defines the length of the material that must be added at each end to satisfy equa-
tion 12.11b.

For the link configuration in Figure 12-10b, the length e of the added material of 
width h needed to make it a physical pendulum can be found from
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The second step is to force-balance the linkage with its modified coupler using the method 
of Section 12.3 and define the required counterweights on links 2 and 4.  With the shaking 
forces eliminated, the shaking moment is a free vector, as is the input torque.

† Note that this arrange-
ment also makes each pin 
joint the center of percus-
sion for the other pin as 
the center of rotation.  This 
means that a force applied 
at either pin will have a zero 
reaction force at the other 
pin, effectively decoupling 
them dynamically.  See Sec-
tion 10.10 and also Figure 
13-10 for further discussion 
of this effect.
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Then as the third step, the shaking moment can be counteracted by adding geared 
inertia counterweights to links 2 and 4 as shown in Figure 12-11.  These must turn in the 
opposite direction to the links, so they require a gear ratio of –1.  Such an inertia coun-
terweight can balance any planar moment that is proportional to an angular acceleration 
and does not introduce any net inertia forces to upset the force balance of the linkage.  
Trade-offs include increased input torque and  larger pin forces resulting from the torque 
required to accelerate the additional rotational inertia. There can also be large loads on the 
gear teeth and impact when torque reversals take up the gearsets’ backlash, causing noise.

The shaking moment of an inline fourbar linkage is derived in reference [6] as

∑

( )
( )
( )

= α

= − + +

= − + −

= − + +

=

where:

(12.14)
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2 2 2
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2
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3 3 3
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3 3

4 4 4
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A m k r a r

A m k r a r

s i i
i

M

�i is the angular acceleration of link i.  The other variables are defined in Figure 12-11.

Adding the effects of the two inertia counterweights gives

∑= α + α + α
=

(12.15)
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The shaking moment can be forced to zero if

( )

= −
= −

= = −or
(12.16)
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This leads to a set of five design equations that must be satisfied for complete force 
and moment balancing of an inline fourbar linkage.*
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Equations 12.17a and 12.17b are the force-balance criteria of equation 12.8 written 
for the inline linkage case.  Equation 12.17c defines the coupler as a physical pendulum.  

* These components of 
the mR product needed to 
force-balance the linkage 
represent the entire amount 
needed.  If links 2 and 4 are 
already designed with some 
individual unbalance (i.e., 
the CG not at pivot), then 
the existing mR product of 
the unbalanced link must be 
subtracted from that found 
in equations 12.17a and 
12.17b in order to determine 
the size and location of 
additional counterweights to 
be added to those links.  
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Equations 12.17d and 12.17e define the mass moments of inertia required for the two in-
ertia counterweights.  Note that if the linkage is run at constant angular velocity, �2 will 
be zero in equation 12.14 and the inertia counterweight on link 2 can be omitted.

12.7 MEASURING AND CORRECTING IMBALANCE Watch a video 
(02:43)†

While we can do a great deal to ensure balance when designing a machine, variations 
and tolerances in manufacturing will preclude even a well-balanced design from being 
in perfect balance when built.  Thus there is need for a means to measure and correct the 
imbalance in rotating systems.  Perhaps the best example assembly to discuss is that of 
the automobile tire and wheel, with which most readers will be familiar.  Certainly the 
design of this device promotes balance, as it is essentially cylindrical and symmetrical.  
If manufactured to be perfectly uniform in geometry and homogeneous in material, it 
should be in perfect balance as is.  But typically it is not.  The wheel (or rim) is more 
likely to be close to balanced, as manufactured, than is the tire.  The wheel is made of a 
homogeneous metal and has fairly uniform geometry and cross section.  The tire, however, 
is a composite of synthetic rubber elastomer and fabric cord or metal wire.  The whole is 
compressed in a mold and steam-cured at high temperature.  The resulting material varies 
in density and distribution, and its geometry is often distorted in the process of removal 
from the mold and cooling.

STATIC BALANCING  After the tire is assembled to the wheel, the assembly must be 
balanced to reduce vibration at high speeds.  The simplest approach is to statically balance 
it, though it is not really an ideal candidate for this approach as it is thick axially compared 
to its diameter.  To do so it is typically suspended in a horizontal plane on a cone through 
its center hole.  A bubble level is attached to the wheel, and weights are placed at positions 

FIGURE 12-11
Completely force and moment balanced inline fourbar linkage with physical pendulum
coupler and inertia counterweights on rotating links (ctrwt = counterweight) 
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†  http://www.designof-
machinery.com/DOM/
Field_Balancing.mp4
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around the rim of the wheel until it sits level.  These weights are then attached to the rim 
at those points.  This is a single-plane balance and thus can only cancel the unbalanced 
forces.  It has no effect on any unbalanced moments due to uneven distribution of mass 
along the axis of rotation.  It also is not very accurate.

DYNAMIC BALANCING The better approach is to dynamically balance it.  This re-
quires a dynamic balancing machine be used.  Figure 12-12 shows a schematic of such a 
device used for balancing wheels and tires or any other rotating assembly.  The assembly 
to be balanced is mounted temporarily on an axle, called a mandrel, which is supported 
in bearings within the balancer.  These two bearings are each mounted on a suspension 
which contains a transducer that measures dynamic force.  A common type of force trans-
ducer contains a piezoelectric crystal which delivers a voltage proportional to the force 
applied.  This voltage is amplified electronically and delivered to circuitry or software 
which can compute its peak magnitude and the phase angle of that peak with respect to 
some time reference signal.  The reference signal is supplied by a shaft encoder on the 
mandrel which provides a short duration electrical pulse once per revolution in exactly 
the same angular location.  This encoder pulse triggers the computer to begin processing 
the force signal.  The encoder may also provide some large number of additional pulses 
equispaced around the shaft circumference (often 1024).  These are used to trigger the 
recording of each data sample from the transducers in exactly the same location around 
the shaft and to provide a measure of shaft velocity via an electronic counter.

The assembly to be balanced is then “spun up” to some angular velocity, usually with 
a friction drive contacting its circumference.  The drive torque is then removed and the 
drive motor stopped, allowing the assembly to “freewheel.”  (This is to avoid measuring 
any forces due to imbalances in the drive system.)  The measuring sequence is begun, 
and the dynamic forces at each bearing are measured simultaneously and their waveforms 
stored.  Many cycles can be measured and averaged to improve the quality of the measure-

FIGURE 12-12
A dynamic wheel balancer
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ment.  Because forces are being measured at two locations displaced along the axis, both 
summation of moment and summation of force data are computed.  

The force signals are sent to a built-in computer for processing and computation of 
the needed balance masses and locations.  The data needed from the measurements are 
the magnitudes of the peak forces and the angular locations of those peaks with respect 
to the shaft encoder’s reference angle (which corresponds to a known point on the wheel).  
The axial locations of the wheel rim’s inside and outside edges (the correction planes) 
with respect to the balance machine’s transducer locations are provided to the machine’s 
computer by operator measurement.  From these data the net unbalanced force and net 
unbalanced moment can be calculated since the distance between the measured bearing 
forces is known.  The mass-radius products needed in the correction planes on each side 
of the wheel can then be calculated from equations 12.3 in terms of the mR product of the 
balance weights.  The correction radius is that of the wheel rim.  The balance masses and 
angular locations are calculated for each correction plane to put the system in dynamic 
balance.  Weights having the needed mass are clipped onto the inside and outside wheel 
rims (which are the correction planes in this case), at the proper angular locations.  The 
result is a fairly accurately dynamically balanced tire and wheel.
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12.9 PROBLEMS
*†12-1 A system of two coplanar arms on a common shaft, as shown in Figure 12-1, is to be 

designed.  For the row(s) assigned in Table P12-1, find the shaking force of the linkage 
when run unbalanced at 10 rad/sec and design a counterweight to statically balance the 
system.  Work in any consistent units system you prefer.

†12-2 The minute hand on Big Ben weighs 40 lb and is 10 ft long.  Its CG is 4 ft from the piv-
ot.  Calculate the mR product and angular location needed to statically balance this link 
and design a physical counterweight, positioned close to the center.  Select material and 
design the detailed shape of the counterweight which is of 2-in uniform thickness in the 
Z direction.

†12-3 A “V for victory” advertising sign is being designed to be oscillated about the apex of 
the V, on a billboard, as the rocker of a fourbar linkage.  The angle between the legs of 
the V is 20	.  Each leg is 8 ft long and 1.5 ft wide.  Material is 0.25-in-thick aluminum.  
Design the V link for static balance.

†12-4  A three-bladed ceiling fan has 1.5-ft by 0.25-ft equispaced rectangular blades that 
nominally weigh 2 lb each.  Manufacturing tolerances will cause the blade weight 
to vary up to plus or minus 5%.  The mounting accuracy of the blades will vary the 
location of the CG versus the spin axis by plus or minus 10% of the blades’ diameters.  
Calculate the weight of the largest steel counterweight needed at a 2-in radius to stati-
cally balance the worst-case blade assembly if the minimum blade radius is 6 in.

*†12-5 A system of three noncoplanar weights is arranged on a shaft generally as shown in 
Figure 12-3.  For the dimensions from the row(s) assigned in Table P12-2, find the 
shaking forces and shaking moment when run unbalanced  at 100 rpm and specify the 
mR product and angle of the counterweights in correction planes A and B needed to 
dynamically balance the system.  The correction planes are 20 units apart.  Work in any 
consistent units system you prefer.

* Answers in Appendix F.

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

Row

a

b

c

d

e

m 1

0.20

2.00

3.50

5.20

0.96

m 2

0.40

4.36

2.64

8.60

3.25

R1

1.25 @ 30	

3.00 @ 45	

2.65 @ 100	

7.25 @ 150	

5.50 @ –30	

R2

2.25 @ 120	

9.00 @ 320	

5.20 @ –60	

6.25 @ 220	

3.55 @ 120	

TABLE  P12-1 Data for Problem 12-1

Topic/Problem Matrix

12.1 Static Balance
12-1, 12-2, 12-3,  
12-4, 12-37, 12-41

12.2 Dynamic Balance
12-5, 12-13, 12-14, 
12-15, 12-16, 12-17, 
12-18, 12-19, 12-38, 
12-39

12.3 Balancing Linkages
12-8a, 12-12, 12-27, 
12-29, 12-31, 12-33, 
12-35, 12-40

12.5
Input Torque
Effect of Balancing on

12-8b, 12-9, 12-10, 
12-11, 12-42

12.6 Balancing Shaking 
Moment in Linkages
12-20, 12-21, 12-22, 
12-23, 12-28, 12-30, 
12-32, 12-34, 12-36

12.7 Measuring and Cor-
recting Imbalance

12-6, 12-7, 12-24,  
12-25, 12-26, 12-43

TABLE  P12-0
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*†12-6 A wheel and tire assembly has been run at 100 rpm on a dynamic balancing machine 
as shown in Figure 12-10.  The force measured at the left bearing had a peak of 5 lb 
at a phase angle of 45	 with respect to the zero reference angle on the tire.  The force 
measured at the right bearing had a peak of 2 lb at a phase angle of –120	 with respect 
to the reference zero on the tire.  The center distance between the two bearings on the 
machine is 10 in.  The left edge of the wheel rim is 4 in from the centerline of the clos-
est bearing.  The wheel is 7 in wide at the rim.  Calculate the size and location, with 
respect to the tire’s zero reference angle, of balance weights needed on each side of the 
rim to dynamically balance the tire assembly.  The wheel rim diameter is 15 in.

*†12-7 Repeat Problem 12-6 for measured forces of 6 lb at a phase angle of –60	 with respect 
to the reference zero on the�tire, measured at the left bearing, and 4 lb at a phase angle 
of 150	�with respect to the reference zero on the tire, measured at the right bearing.  
The wheel diameter is 16 in.

*†‡12-8 Table P11-3 shows geometric and kinematic data of some fourbar linkages.

a. For the row(s) from Table P11-3 assigned in this problem, calculate the size and 
angular locations of the counterbalance mass-radius products needed on links 2 
and 4 to completely force-balance the linkage by the method of Berkof and Lowen.  
Check your manual calculation with program LINKAGES.

b. Calculate the input torque for the linkage both with and without the added balance 
weights and compare the results.  Use program LINKAGES.

  *†12-9 Link 2 in Figure P12-1 rotates at 500 rpm.  The links are steel with cross sections of  
1 x 2 in.  Half of the 29-lb weight of the laybar and reed is supported by the linkage at 
point B.  Design counterweights to force-balance the linkage and determine its change 
in peak torque versus the unbalanced condition.  See Problem 11-13 for more informa-
tion on the overall mechanism.

†‡12-10 Figure P12-2a shows a fourbar linkage and its dimensions in meters.  The steel crank 
and rocker have uniform cross sections 50 mm wide by 25 mm thick.  The aluminum 
coupler is 25 mm thick.  The crank O2A rotates at a constant speed of � = 40 rad/sec.  
Design counterweights to force-balance the linkage and determine its change in peak 
torque versus the unbalanced condition.

 †‡12-11 Figure P12-2b shows a fourbar linkage and its dimensions in meters.  The steel crank 
and rocker have uniform cross sections 50 mm wide by 25 mm thick.  The aluminum 
coupler is 25 mm thick.  The crank O2A rotates at a constant speed of � = 50 rad/sec.  
Design counterweights to force-balance the linkage and determine its change in peak 
torque versus the unbalanced condition.

reed

rocker
7.187"

crank
   2"

ground
 9.625"

�2

coupler
 8.375"A

B

@ –43	

FIGURE P12-1
Problem 12-9

O2

O4

e 0.96 3.25 0.92 1 3 18 5.50 @ 30	 3.55 @ 120	 2.65 @ 100	

d 5.20 8.60 4.77 7 1 2 1 6 7.25 @ 150	 6.25 @ 220	 9.00 @ 320	

c 3.50 2.64 8.75 4 9 11 2.65 @ 100	 5.20 @ – 60	 1.25 @ 30	

b 2.00 4.36 3.56 5 7 16 3.00 @ 45	 9.00 @ 320	 6.25 @ 220	

a 0.20 0.40 1.24 2 8 17 1.25 @ 30	 2.25 @ 120	 5.50 @ – 30	

Row R3R2R1l 3l 2l 1m 3m 2m 1

TABLE  P12-2 Data for Problem 12-5

 
* Answers in Appendix F.
 
† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
 
‡ These problems are suited 
to solution using program 
LINKAGES.
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 †12-12 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to solve for the mass-radius products that will force-balance any fourbar linkage 
for which the geometry and mass properties are known.

 †12-13 Figure P12-3 shows a system with two weights on a rotating shaft.  W  1 = 15 lb @ 0	 at 
a 6-in radius and W2 = 20 lb @ 270	 at a 5-in radius.  Determine the magnitudes and 
angles of the balance weights needed to dynamically balance the system.  The balance 
weight in plane 3 is placed at a radius of 5 in and in plane 4 of 8 in.

 *†12-14 Figure P12-4 shows a system with two weights on a rotating shaft.  W  1 = 20 lb @ 45	 
at a 6-in radius and W2 = 15 lb @ 300	 at a 4-in radius.  Determine the radii and angles 
of the balance weights needed to dynamically balance the system.  The balance weight 
in plane 3 weighs 20 lb and in plane 4 weighs 40 lb. 

 †12-15 Figure P12-5 shows a system with two weights on a rotating shaft.  W  1 = 10 lb @ 90	 
at a 3-in radius and W2 = 15 lb @ 240	 at a 3-in radius.  Determine the magnitudes and 
angles of the balance weights needed to dynamically balance the system.  The balance 
weights in planes 3 and 4 are placed at a 3-in radius.

 *†12-16 Figure P12-6 shows a system with three weights on a rotating shaft.  W  1 = 6 lb @ 
120	 at a 5-in radius, W2 = 12 lb @ 240	 at a 4-in radius, and W3 = 9 lb @ 300	 at a 

 
† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

* Answers in Appendix F.

FIGURE P12-2
Problems 12-10  to 12-11

(a ) ( b )

AP = 3.06

L4 = 2.33

L3 = 2.06

L2 = 1.0

L1 = 2.22
O2 O4

–31	
A

B

P
B

AP = 0.97

L2 = 0.34

P

L3 = 0.68 L4 = 0.85

L1 = 1.3
O2 O4

A
54	

7

9

4

3

W2

W1

W1

W2

�

FIGURE P12-3
Problem 12-13

W2

W1W1

W2

�

39

43

FIGURE P12-4
Problem 12-14
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* Answers in Appendix F.

† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

‡ These problems are suited 
to solution using program 
LINKAGES.

8-in radius.  Determine the magnitudes and angles of the balance weights needed to 
dynamically balance the system.  The balance weights in planes 4 and 5 are placed at a 
4-in radius.

†12-17 Figure P12-7 shows a system with three weights on a rotating shaft.  W2 = 10 lb @ 
90	 at a 3-in radius, W3 = 10 lb @ 180	 at a 4-in radius, and W4 = 8 lb @ 315	 at a 
4-in radius.  Determine the magnitudes and angles of the balance weights needed to 
dynamically balance the system.  The balance weight in plane 1 is placed at a radius of 
4 in and in plane 5 of 3 in.

 *†12-18 The 400-mm-dia steel roller in Figure P12-8 has been tested on a dynamic balancing 
machine at 100 rpm and shows an unbalanced force of F1 = 0.291 N @ �
�1 = 45	 in the xy plane at 1 and F4 = 0.514 N @ �4 = 210	 in the xy plane at 4.  
Determine the angular locations and required diameters of 25-mm-deep holes drilled 
radially inward from the surface in planes 2 and 3 to dynamically balance the system.

 †12-19 The 500-mm-dia steel roller in Figure P12-8 has been tested on a dynamic balancing 
machine at 100 rpm and shows an unbalanced force of F1 = 0.23 N @ �1 = 30	 in the 
xy plane at 1 and F4 = 0.62 N @ �4 = 135	 in the x-y plane at 4.  Determine the angu-
lar locations and required diameters of 25-mm-deep holes drilled radially inward from 
the surface in planes 2 and 3 to dynamically balance the system.

 †‡12-20 The linkage in Figure P12-9a has rectangular steel links of 20 x 10 mm cross section 
similar to that shown in Figure 12-10a.  Design the necessary balance weights and 
other features necessary to completely eliminate the shaking force and shaking mo-
ment.  State all assumptions.

†‡12-21 Repeat Problem 12-20 using links configured as in Figure 12-10b with the same cross 
section but having “dogbone” end diameters of 50 mm.

†‡12-22 The linkage in Figure P12-9b has rectangular steel links of 20 x 10 mm cross section 
similar to that shown in Figure 12-10a.  Design the necessary balance weights and 
other features necessary to completely eliminate the shaking force and shaking mo-
ment.  State all assumptions.

†‡12-23 Repeat Problem 12-22 using steel links configured as in Figure 12-10b with a 20 x 10 
mm cross section and having “dogbone” end diameters of 50 mm.

†12-24 The device in Figure P12-10 is used to balance fan blade/hub assemblies running at 
600 rpm. The center distance between the two bearings on the machine is 250 mm.  
The left edge of the fan hub (plane A) is 100 mm from the centerline of the closest 
bearing (at F2).  The hub is 75 mm wide along its axis and has a diameter of 200 mm 

W2

W1

W1

W2

�

3

4

4

3

5

FIGURE P12-5
Problem 12-15

FIGURE P12-6
Problem 12-16

W2

W1W1

W2

�

4 5W3 W3

4

4

10

10
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W2

6

2

1

5

4
W3

W4

W2

W3

�W4

FIGURE P12-7
Problem 12-17

Dimensions in mm
   (not to scale)

z x

y
F1

F4

�1�4

FIGURE P12-8
Problems 12-18 and 12-19

1 2 3 4

200 250

750

L2 = 78

B
L3 = 109

L4 = 121
A

L1 = 54
O2 O4

B

L2 = 50

L3 = 185
L4 = 90

A

L1 = 172
O2 O4

FIGURE P12-9
Problems 12-20 to 12-23 

(a ) ( b )

All dimensions in mm

Bearing

FIGURE P12-10
Problems 12-24 to 12-26

F1

A B

F2

y'

x'
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† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
 
‡ These problem solutions 
can be checked with pro-
gram LINKAGES.

along the surfaces where balancing weights are fastened.  The peak magnitude of force 
F1 is 0.5 N at a phase angle of 30	 with respect to the rotating x’ axis.  Force F2 had a 
peak of 0.2 N at a phase angle of –130	.  Calculate the magnitudes and locations with 
respect to the  x’ axis of balance weights placed in planes A and B of the hub to dynami-
cally balance the fan assembly.

†12-25 Repeat Problem 12-24 using the following data. The hub is 55 mm wide and has a di-
ameter of 150 mm along the surfaces where balancing weights are fastened. The force 
F1 measured at the left bearing had a peak of 1.5 N at a phase angle of 60	 with respect 
to the rotating x’ axis. The force F2 measured at the right bearing had a peak of 2.0 N at 
a phase angle of –180	 with respect to the rotating x’ axis.

 †12-26 Repeat Problem 12-24 using the following data. The hub is 125 mm wide and has a 
diameter of 250 mm along the surfaces where balancing weights are fastened. The 
force F1 measured at the left bearing had a peak of 1.1 N at a phase angle of 120	 with 
respect to the rotating x’ axis. The force F2 measured at the right bearing had a peak of 
1.8 N at a phase angle of –93	 with respect to the rotating x’ axis.

 †‡12-27 Figure P12-11 shows a fourbar linkage.  L1 = 160, L2 = 58, L3 = 108, and L4 = 110 
mm.  All links are 4-mm-thick by 20-mm-wide steel. The square ends of link 3 extend 
10 mm beyond the pivots.  The other links’ ends have 10-mm radii about the hole.  
Design counterweights to force-balance the linkage using the Berkof-Lowen method.

 †‡12-28 Use the data of Problem 12-27 to design the necessary balance weights and other fea-
tures to completely eliminate the shaking force and shaking moment the linkage exerts 
on the ground link.

†‡12-29 The linkage in Figure P12-11 has link lengths L1 = 3.26, L2 = 2.75, L3 = 3.26, L4 = 
2.95 in.  All links are 0.5-in-wide x 0.2-in-thick steel.  The square ends of link 3 extend  
0.25 in beyond the pivots.  Links 2 and 4 have rounded ends that have a radius of 
0.25 in.  Design counterweights to force-balance the linkage using the Berkof-Lowen 
method.

 †‡12-30 Use the data of Problem 12-29 to design the necessary balance weights and other fea-
tures to completely eliminate the shaking force and shaking moment the linkage exerts 
on the ground link.

†‡12-31 The linkage in Figure P12-11 has link lengths L1 = 8.88, L2 = 3.44, L3 = 7.40, L4 = 
5.44 in.   All links have a uniform 0.5-in-wide x 0.2-in-thick cross section and are made 
from aluminum.  Link 3 has squared ends that extend 0.25 in from the pivot point cen-
ters.  Links 2 and 4 have rounded ends that have a radius of 0.25 in.  Design counter-
weights to force-balance the linkage using the method of Berkof and Lowen.

 †‡12-32 Use the data of Problem 12-31 to design the necessary balance weights and other fea-
tures to completely eliminate the shaking force and shaking moment the linkage exerts 
on the ground link.

†‡12-33 The linkage in Figure P12-12 has L1 = 9.5, L2 = 5.0, L3 = 7.4, L4 = 8.0, and AP = 
8.9 in.  Links 2 and 4 are rectangular steel with a 1-in wide x 0.12-in thick cross sec-
tion and 0.5-in-radius ends.  The coupler is 0.25-in-thick aluminum with 0.5-in radii 
at points A, B, and P.  Design counterweights to force-balance the linkage using the 
Berkof-Lowen method.

 †‡12-34 Use the data of Problem 12-33, changing link 3 to be steel with the same cross-section 
dimensions as links 2 and 4, to design the necessary balance weights and other features 

FIGURE P12-11
Problems 12-27 to 12-31

O4

O2

2

3

4

schematic- not to scale

56	

P

A

B

O2 O4

2

3
4

1

Problems 12-33 to 12-34
FIGURE P12-12
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necessary to completely eliminate the shaking force and shaking moment the linkage 
exerts on the ground link.

†‡12-35 Figure P12-13 shows a fourbar linkage and its dimensions in inches.  All links are 
0.08-in-thick steel and have a uniform cross section 0.26 in wide x 0.12 in thick.  Links 
2 and 4 have rounded ends with a 0.13-in radius.  Link 3 has squared ends that extend 
0.13 in from the pivot point centers.  Design counterweights to force-balance the link-
age using the method of Berkof and Lowen.

†‡12-36 Use the data of Problem 12-35 to design the necessary balance weights and other fea-
tures to completely eliminate the shaking force and shaking moment the linkage exerts 
on the ground link.

†12-37 A manufacturing company makes 5-blade ceiling fans.  Before assembling the fan 
blades onto the hub, the blades are weighed and the location of the CG is determined as 
a distance from the center of rotation and an angular offset from the geometric center of 
the blade.  At final assembly a technician is provided with the weight and CG data for 
the 5 blades.  Write a computer program or use an equation solver such as Mathcad or 
TKSolver to calculate the required weight and angular position of a balance weight that 
is attached to the hub at a radius of 2.5 in.  Use the geometric center of blade one as a 
reference axis.  Test your program with the data given in Table P12-3.

 †*12-38 The motor rotor shown in Figure P12-14 has been tested on a dynamic balance machine 
at 1800 rpm and shows unbalanced forces of F1 = 2.43 lb @ �1 = 34.5	 in the xy plane 
at 1 and F4 = 5.67 lb @ �4 = 198	 in the xy plane at 4.  Balance weights consist of 
cylindrical disks whose center of rotation is a drilled hole located at a distance e from 
the center of the disk.  The net weight of each disk is 0.50 lb and the disks are located 
on planes 2 and 3.  Determine the angular locations of the line through the drilled hole 
and the center of the disk with respect to the x axis and the eccentric distances e to 
dynamically balance the system.

 †12-39 The motor rotor shown in Figure P12-14 has been tested on a dynamic balance machine 
at 1450 rpm and shows unbalanced forces of F1 = 4.82 lb @ �1 = 163	 in the xy plane 
at 1 and F4 = 7.86 lb @ �4 = 67.8	 in the xy plane at 4.  Balance weights consist of 
cylindrical disks whose center of rotation is a drilled hole located at a distance e from 
the center of the disk.  The net weight of each disk is 0.375 lb and the disks are located 
on planes 2 and 3.  Determine the angular locations of the line through the drilled hole 
and the center of the disk with respect to the x axis and the eccentric distances e to 
dynamically balance the system.

2

4

L4 = 6.48
L3 = 4.88
L2 = 5.52
L1 = 2.72

3

�2

FIGURE P12-13
Problem 12-35 to 12-36

1.75 2.25

10 Dimensions in inches (not to scale)

1 2 3 4

z x

y F1

F4

�1�4

motor rotor

eccentric weights

eccentric weight

e

FIGURE P12-14
Problems 12-38 and 12-39

i �i (	)ri (in)Wi (lb)

1.50 12.01 –0.25

1.54 11.95 0.25

5 1.49 12.04 –0.50
4 1.55 12.03 –1.00
3
2 1.48 11.97 0.75
1

TABLE  P12-3
Data for Problem
12-37

A C (in)B (lb)

0.48

0.51

0.47
0.49

0.51
24.2

23.9

24.1
24.0

24.4

5
4
3
2
1

TABLE  P12-5
Data for Problem
12-41

 
* Answers in Appendix F.
 
† These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
 
‡ These problems are suited to solution using program LINKAGES.
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 *12-40 Table P12-4 gives the geometry and kinematic data for several fourbar linkages similar 
to that shown in Figure P12-11.  For the row(s) assigned in Table P12-4, design 
counterweights of the type shown in Figure P12-15 for links 2 and 4 to completely 
force-balance the linkage by the method of Berkof and Lowen.  The square ends of link 
3 extend a distance e from the hole center.  The other links’ ends are full round with 
a radius r about the hole center.  All pin holes have the same diameter d, and all links 
have the same width, 2r, and thickness t.  The hole-to-hole link lengths are L1, L2, L3, 
and L4.   The counterweight will be integrally machined with the link and will have the 
same thickness as the link.

 12-41 An engineering student bought a five-blade ceiling fan for her bedroom.  After reading 
the assembly instructions she realized that a small balance weight furnished with the 
fan might be needed to keep the fan from vibrating.  She measured the weight and 
found the position of the CG of each blade and she measured the hub and found it to 
have a diameter of 8 in.  Her blade measurements are reproduced in Table P12-5, where 
column A is the blade number, column B is blade weight, and column C is the distance 
from a blade’s base to its CG.  Where did she fasten the 2-ounce balance weight?

 12-42 Figure P12-16 shows a fourbar linkage and its dimensions in meters.  The steel crank, 
coupler, and rocker have uniform cross sections 50 mm wide by 25 mm thick.  The 
crank O2A rotates at a constant speed of ���= 40 rad/sec.  Design counterweights to 
force balance the linkage and determine its change in peak torque versus the unbal-
anced condition.  The peak torque before balancing is 3.12 kNm.

 12-43 Repeat Problem 12-6 for measured forces of 2.5 lb at a phase angle of 40	 with respect 
to the reference zero on the tire, measured at the left bearing, and 1.8 lb at a phase 
angle of −130	 with respect to the reference zero on the tire, measured at the right 
bearing.  The wheel diameter is 14 in.

12.10 VIRTUAL LABORATORY View the video (35:38)†      View the lab §

L12-1  View the downloadable video Fourbar Linkage Virtual Laboratory.  Open the file 
Virtual Fourbar Linkage Lab 12-1.doc and follow the instructions as directed by your 
professor.  For this lab it is suggested that you compare the data for the balanced and 
unbalanced conditions of the linkage. 

 
* These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
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FIGURE P12-15
Problem 12-40
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L4 = 0.950 m
L3 = 0.785 m
L2 = 0.356 m
L1 = 1.000 m

AP = 1.090 m

Problem 12-42
FIGURE P12-16

Row

a
b
c
d
e
f

Material

TABLE  P12-4 Data for Problem 12-40       Lengths in mm.

L2

100
75

125
150
50
175

r

13
12
15

20
15
25

d

6
6
8

10
8

12

t

4
4
6
3
6
5

e

13
15
15

20
16
30

Steel
Steel
Aluminum
Titanium
Aluminum
Steel

L3

300
250
375
475
200
625

L4

200
300
350
400
175

250

L1

375
150
50

250
225
475

§ http://www.designofmachinery.com/DOM/Fourbar_Virtual_Lab.zip

† http://www.designofmachinery.com/DOM/Fourbar_Machine_Virtual_laboratory.mp4


