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B-52's skin buckling clearly visible in this photo. The skin panels between the
forward and center fuselage buckle because mechanical forces and flexing of
the structure. This is normal and particularly evident on some types of aircraft

(including the B757).



Introduction

In their simplest form, columns are long, straight,
prismatic bars subjected to compressive, axial loads.

e

If a column begins to deform laterally, the deflection
may become large and lead to catastrophic failure. '

This situation, called buckling, can be defined as the
sudden large deformation of a structure due to a

slight increase of an existing load under which the |
structure had exhibited little, if any, deformation

before the load was increased.
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Introduction

 Once buckling occurs, a relatively small increase in
compressive force will produce a relatively large
lateral deflection, creating additional bending in the
column. 6,

* |If the compressive force Is removed, the column
returns to its original straight shape. '

 The fact that the column becomes straight again after
the compressive force is removed demonstrates that
the material remains elastic; that is, the stresses in the
column have not exceeded the proportional limit of the
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material.

« The buckling failure is a stability failure: The column T T
has transitioned from a stable equilibrium to an Py P>Pq
unstable one.



Column Buckling Theory uses ASSUMPTIONS OF BEAM

BENDING THEORY

Column Length is Much Larger Than Column
Width or Depth.

so most of the deflection is caused by bending,

very little deflection is caused by shear
Column Deflections are small.
Column has a Plane of Symmetry.
Resultant of All Loads acts
in the Plane of Symmetry.

Column has a Linear

Stress-Strain Relationship.

E =E

compression tension and 0yield compression Y

Oguckle < (Gyield = 0-Proportional Limit )

yield tension
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Column Buckling Theory i l
An IDEAL Column will NOT buckle. \
IDEAL Column will fail by: | -

— Punch thru .

- Denting o> 0-yield compressive *

— Fracture

In order for an IDEAL Column to buckle T T

a TRANSVERSE Load, F, P=P, P=P. -
must be applied P, = Critical Load
in addition to the P, = smallest load at which
Concentric Uniaxial Compressive Load. column may buckle

The TRANSVERSE Load, F, applied to IDEAL Column
Represents Imperfections in REAL Column



Column Buckling Theory

* Buckling is a mode of failure
caused by Structural Instability
due to a Compressive Load
- at no cross section of the member
is it necessary for
O > Oyielq -

* Three states of Equilibrium are possible for
an ldeal Column
— Stable Equilibrium
— Neutral equilibrium
— Unstable Equilibrium



Column Buckling Theory

« The notions of stability and instability can be defined concisely in
the following manner:

Stable—A small action produces a small effect.
Unstable—A small action produces a large effect.
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Column Buckling Theory

« Before a compressive load on a column is gradually increased
from zero, the column is in a state of stable equilibrium.

* During this state, if the column is perturbed by small lateral
deflections, it will return to its initial straight configuration when
the load is removed.

« As the load is increased further, a critical value is reached at
which the column is about to undergo large lateral deflections;
that is, the column is at the transition between stable and unstable
equilibrium.



Column Buckling Theory

* The maximum compressive load for which the column is in stable
equilibrium is called the critical buckling load.

* The compressive load cannot be increased beyond this critical
value unless the column is laterally restrained.

 For long, slender columns, the critical buckling load occurs at
stress levels that are much lower than the proportional limit for
the material, indicating that this type of buckling is an elastic
phenomenon.



Buckling of Pin-Ended Columns

« The stability of real columns will be investigated
by analyzing a long, slender column with pinned
ends.

e The column is loaded by a compressive load P that
passes through the centroid of the cross section at
the ends.

« The pins at each end are frictionless, and the load
IS applied to the column by the pins.

« The column itself is perfectly straight and made of
a linearly elastic material that is governed by
Hooke’s law.

Ideal column



Buckling of Pin-Ended Columns

 Since the column is assumed to have no
Imperfections, it is termed an ideal column.

* The ideal column is assumed to be symmetric about
the x—y plane, and any deflections occur in that
plane.

Ideal column



Buckling of Pin-Ended Columns

Buckled Configuration l”“‘ for
If the compressive load P is less than the critical load g
P, then the column will remain straight and will T "Hlg

shorten in response to a uniform compressive axial
stress 6 = P/A.

As long as P < P, the column is in stable
equilibrium.

When the compressive load P is increased to the critical
load P, the column is at the transition point between

stable and unstable equilibrium—a situation called : =
neutral equilibrium. L

Ideal column

A




Buckling of Pin-Ended Columns

« AtP =P, the deflected shape shown
In also satisfies equilibrium.

 The value of the critical load P and the shape
of the buckled column will be determined by an
analysis of this deflected shape.

¥V

Buckled column in
neutral equilibrium



Buckling of Pin-Ended Columns

Equilibrium of the Buckled Column

« Summing forces in the vertical direction gives
A = P, summing moments about A gives B, =
0, and summing forces in the horizontal
direction gives A, = 0.

\

A,

A,

A
|

Free-body diagram
of entire column



Buckling of Pin-Ended Columns

« Consider a free-body diagram cut through the
column at a distance x from the origin.

« Since Ay = 0, any shear force V acting in the
horizontal direction on the exposed surface of
the column in this free-body diagram must also
equal zero in order to satisfy equilibrium.

« Consequently, both the horizontal reaction Ay
and a shear force V can be omitted from the S —
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free-body diagram in. of partial column

« AtP =P, the deflected shape also satisfies
equilibrium.



Buckling of Pin-Ended Columns

 The value of the critical load P and the shape of the buckled

column will be determined by an analysis of this deflected-shape.
P B
B B H{EF M \
My =M+Pv=0 M = EI
dx? |
B 4 py =0
dx?

The differential equation gives the deflected

shape of an ideal column. This equation is a Free-body

homogeneous second-order ordinary differential equatidf“Wit
constant coefficients that has boundary conditions v(0) = 0 an
= 0.

diagram

;flumn

dv(L)



Buckling of Pin-Ended Columns

Solution of the Differential Equation

S
d*v d2v P El
El—+ Pv =0 ‘ Lt v =0
dx? dx? EI \
a7y + kv =0
dx?

The general solution of this homogeneous equation Is:

v = C;sinkx + C, cos kx

where C, and C, are constants that must be evaluated with the
use of the boundary conditions.



Buckling of Pin-Ended Columns

Solution of the Differential Equation

v = C;sinkx + C, cos kx

From the boundary conditions v(0) = 0, v(L) = 0,we obtain

0 = C; sin(0) + C, cos(0) = C;(0) + Co(1)
LG =0

0 = C;sin(kL)

‘ kL = nm n=

k2 = e k = ’i d /iL =nmw
El El El




Euler Buckling Load and Buckling Modes

« The critical load for an ideal column is known as the Euler
buckling load, after the Swiss mathematician Leonhard Euler
(1707-1783), who published the first solution of the equation for
the buckling of long, slender columns in 1757.

n’mEl
LE

° P:

n=1.223.... also known as Euler’s formula.

 Deflections have been assumed to be small. The deflected shape
IS called the mode shape, and the buckled shape corresponding to
n=11inis called the first buckling mode.

« By considering higher values of n, it is theoretically possible to
obtain an infinite number of critical loads and corresponding
mode shapes.



Euler Buckling Load and Buckling Modes

X

First buckling mode Second buckling mode
(n=1) (n=2)



Euler Buckling Load and Buckling Modes

« The critical load for the second mode is four times greater than
that of the first mode.

« Buckled shapes for the higher modes are of no practical interest,

since the column buckles upon reaching its lowest critical load
value.

« Higher mode shapes can be attained only by providing lateral
restraint to the column at intermediate

 Locations to prevent the column from buckling in the first mode.



Euler Buckling Stress

 The normal stress in the column at the critical load is

P

Cr
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« The radius of gyration r is a section property defined as:

« |f the moment of inertia | is replaced by Ar?:

- m’E(Ar*) m’Er* nm’E
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Euler Buckling Stress

« The quantity L/r is termed the slenderness ratio and is determined
for the axis about which bending tends to occur.

« For an ideal column with no intermediate bracing to restrain
lateral deflection, buckling occurs about the axis of minimum
moment of inertia (which corresponds to the minimum radius of
gyration).

 Euler buckling is an elastic phenomenon. If the axial compressive
load is removed from an ideal column, it will return to its initial
straight configuration.

* In Euler buckling, the critical stress o, remains below the
proportional limit for the material.



Euler Buckling Stress

_ m*E(Ar*) mEr*  m’E

AL’ 12 (LIry?
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Valid only when the critical stress is less than the proportional limit
for the material, because the derivation of that equation is based on
Hooke’s law



Implications of Euler Buckling — Design Issues

« Euler buckling load is inversely related to the square of the
column length. Therefore, the load that causes buckling decreases
rapidly as the column length increases.

« The only material property that appears in the equations is the
elastic modulus E, which represents the stiffness of the material.

« One means of increasing the load-carrying capacity of a given
column is to use a material with a higher value of E.

« Buckling occurs about the cross-sectional axis that corresponds to
the minimum moment of inertia (which in turn corresponds to the
minimum radius of gyration).



Implications of Euler Buckling — Design Issues

It is generally inefficient to select a member that has great
disparity between the maximum and minimum moments of inertia
for use as a column.

« This inefficiency can be mitigated if additional lateral bracing is
provided to restrain lateral deflection about the weaker axis.

 Since the Euler buckling load is directly related to the moment of
Inertia | of the cross section, a column’s load-carrying capacity
can often be improved, without increasing its cross-sectional area,
by employing thin-walled tubular shapes.



Implications of Euler Buckling — Design Issues

 Circular pipes and square hollow structural sections are
particularly efficient in this regard.

« The radius of gyration r provides a good measure of the
relationship between moment of inertia and cross-sectional area.

 In choosing between two shapes of equal area for use as a
column, it is helpful to keep in mind that the shape with the larger
radius of gyration will be able to withstand more load before
buckling.



Implications of Euler Buckling — Design Issues

« The Euler buckling load equation and the Euler buckling stress
equation depend only on the column length L, the stiffness of the
material (E), and the cross-sectional properties (1).

« The critical buckling load is independent of the strength of the
material. Consequently, there is no advantage in using the higher
strength steel (which, presumably, is more expensive) instead of
the lower strength steel in this instance.

« The Euler buckling load as given agrees well with experiment,
but only for “long” columns for which the slenderness ratio L/r is
large, typically in excess of 140 for steel columns.



Implications of Euler Buckling — Design Issues

« A “short” compression member can be treated as a simply
compression member.

e Most practical columns are “intermediate” in length, and
consequently, neither solution is applicable.

« These intermediate-length columns are analyzed by empirical
formulas.

« The slenderness ratio is the key parameter used to classify
columns as long, intermediate, or short.



Examples

A 15 mm by 25 mm X
rectangular aluminum bar is ‘
used as a 650 mm long S S
compression member. The
ends of the compression

member are pinned. | 1 — 25 mm

650 mm

Determine the slenderness

ratio and the Euler buckling
load for the compression 15 mm
member. ]

Cross section.

Assume that E = 70 GPa.



Examples

Lacing
bars
A 40 ft long column is 72—<

y

-

C10 X 15.3 shapes
aligned toe-to-toe

.

fabricated by connecting two
standard steel C10 x 15.3
channels with lacing bars as
shown.

8.51n.

The ends of the column are
pinned.

Cross section.

Determine the Euler buckling -
load for the column. Assume T N
that A=4481n."
_ X——x d I, =67.3in!
E = 29,000 ksi for the steel. . a7
i ,=2271n.
v X = 0.634 in,
by




The Effect of End Conditions on Column Buckling

« The Euler buckling formula was derived for an ideal column with
pinned ends (i.e., ends with zero moment that are free to rotate,
but are restrained against translation).

e Columns are commonly supported in other ways, as well and
these different conditions at the ends of a column have a
significant effect on the load at which buckling occurs.

Effective-length Concept

2
p - T E{z

P = 7 = | L =KL
n’E




The Effect of End Conditions on Column Buckling

0.7L

(a) Pinned—pinned (b) Fixed—pinned
column: K =1 column: K=0.7

(c¢) Fixed—fixed
column: K=0.5

(d) Fixed—free
column: K=2



Practical Considerations - Design Issues

It is iImportant to keep in mind that the column end conditions
shown are idealizations.

A pin-ended column is usually loaded through a pin that, because
of friction, is not completely free to rotate.

Consequently, there will always be an indeterminate (though
usually small) moment at the ends of a pin-ended column, and
this moment will reduce the distance between the inflection points
to a value less than L.

Fixed-end connections theoretically provide perfect restraint
against rotation. However, columns are typically connected to
other structural members that have some measure of flexibility in
themselves, so it is quite difficult to construct a real connection
that prevents all rotation.



Practical Considerations - Design Issues

* Thus, a fixed—fixed column will have an effective length
somewhat greater than L/2.

« Because of these practical considerations, the theoretical K
factors are typically modified to account for the difference
between the idealized and the realistic behavior of connections.

« Design codes that utilize effective length factors therefore usually
specify a recommended practical value for K factors in preference
to the theoretical values.



Practical Considerations - Design Issues

\ % \ %E &\%\:\ 0 o %i_;
Buckled shape | 4 :" : 5 '." ;
of column ’ . ! vl ] ;
shown by ' ' ! ol ..‘
dashed line | % ' ’ : : :
T (F L

1 | 4 1 -

TheoretealK 1 o5 | 07 | 10 | 10 | 20 | 20

1.0 2.10 2.0

Recommended| g5 | g9 | 1.2
design value K

Rotation fixed and translation fixed

End condition

key Rotation fixed and translation free

Rotation free and translation free

S
W Rotation free and translation fixed




Examples

A long, slender W8 x 24
structural steel shape is used as
a 35 ft long column. The column
IS supported in the vertical
direction at base A and pinned at
ends A and C against translation
In the y and z directions.

Lateral support is provided to
the column so that deflection in
the x—z plane is restrained at
mid-height B; however, the
column is free to deflect in the
x-y plane at B.

Lateral
bracing

17.5




Examples

Determine the maximum
compressive load P that the
column can support if a
factor of safety of 2.5 is
required.

In your analysis, consider
the possibility that buckling
could occur about either the
strong axis or the weak axis
of the column.

Assume that E = 29,000 ksi
and oy, = 36 ksi.

Lateral
bracing

v Weak
/ axis

W8 X 24

Strong j

axis

=183 in.*
r, =1.611n.



Examples

AW310 x 60 structural steel shape is
used as a column with an actual
length L =9 m. The column is fixed
at base A.

Lateral support is provided to the 5
column, so deflection in the x-z
plane is restrained at the upper end,
however, the column is free to deflect
In the x—y plane at B.

L

y /xw'e?l!i
Determine the critical buckling load I, =128x10° mm* ———
of the column. Assume that E = 200 I, =184 x10° mm*
GPa and oy = 250 MPa. =130 mm J—‘a
r, =49.3 mm ST]TQ W310 X 60

I
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