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When a solid body deforms as a consequence of applied loads, work is done 
on the body by these loads. 

Since the applied loads are external to the body, this work is called external
work. 

As deformation occurs in the body, internal work, commonly referred to as 
strain energy, is stored within the body as potential energy.

“The work performed on an elastic body in static equilibrium by external 
forces is equal to the strain energy stored in the body.”

Introduction



Work W is defined as 
the product of a force 
that acts on a particle 
(often, in a body) and 
The distance the 
particle (or body) 
moves in the direction 
of the force.

W1 = F1s1 and W2 = F2s2

Work can be either a positive or a negative quantity. Positive work occurs 
when the particle moves in the same direction that the force acts.

Work and Strain Energy



The load will be applied to the bar very slowly,
Increasing from zero to its maximum value P.

Any dynamic or inertial effects due to motion
are precluded. As the load is applied, the bar 
gradually elongates. 

The bar attains its maximum deformation δ 
when the full magnitude of P is reached. 

Thereafter, both the load and the deformation remain unchanged.

Work and Strain Energy



The work done by the load is the product 
of the magnitude of the force and the 
Distance that the particle (or body) the 
force acts on moves; however, in this 
instance the force changes its magnitude 
from zero to its final value P. 

As a result, the work done by the load
as the bar elongates is dependent on 
the manner in which the force and the 
Corresponding deformation vary.

Work and Strain Energy



The total work done by the load as it 
increases in magnitude from zero to P 
can be determined by summing together 
all such infinitely small increments:

Work and Strain Energy



Provided that no energy is lost in the form
of heat, the strain energy U is equal in 
magnitude to the external work W

While external work may be either a positive or a negative quantity, strain 
energy is always a positive quantity.

Strain Energy



The force acting on each x face of this element 
is  dFx = σx dy dz

The work done by dFx can be expressed as:

Furthermore, by conservation of energy, the strain energy stored in the 
volume element must equal the external work:

Strain-Energy Density for Uniaxial Normal Stress



The strain-energy density u can be determined by 
dividing the strain energy dU by the volume dV
of the element:

If the material is linearly elastic, then σ x = Eεx

and the strain-energy density can be Expressed 
solely in terms of stress as:

or

Strain-Energy Density for Uniaxial Normal Stress



The total strain energy associated with uniaxial 
normal stress can be found by

Strain-Energy Density for Uniaxial Normal Stress



Strain-Energy Density for Shear Stress

The general expression for the strain-energy density of a linearly elastic 

body is



Elastic Strain Energy for Axial Deformation



Elastic Strain Energy for Torsional Deformation



Elastic Strain Energy for Flexural Deformation



A simply supported beam ABC of length L and flexural Rigidity EI supports 

the concentrated load shown. What is the elastic strain energy due to bending 

that is stored in this beam?

Examples



Segmented rod ABC is made of a 
brass that has a yield strength σ Y 
= 124 MPa
and a modulus of elasticity E = 115 
GPa. The diameter of segment (1) 
is 25 mm, and the diameter of 
segment (2) is 15 mm. For the 
loading shown, determine the 
maximum strain energy that can 
be absorbed by the rod if no 
permanent deformation is caused.

Examples



Three identical shafts of identical 
torsional rigidity JG and length L 
are subjected to torques T as 
shown. 

What is the elastic strain energy 
stored in each shaft?

Examples



the conservation-of-energy principle declares that energy in a closed system 
is never created or destroyed—it is only transformed from one state to 
another.

Work–Energy Method for Single Loads



Work–Energy Method for Single Loads

This method described can be used only for structures subjected to a single 

external load, and only the deflection in the direction of the load can be 

determined.



Method of Virtual Work

Work done by a single load on an axial rod



Method of Virtual Work

Work done by two loads on an axial rod



The expressions for the work of concentrated moments are similar in form 
to those of concentrated forces. A concentrated moment does work when it 
rotates through an angle.

The work dW that a concentrated moment M performs as it rotates through 
an incremental angle dθ is given by

and

If the material behaves linearly elastically, the work of a concentrated 
moment as it gradually increases in magnitude from 0 to its maximum value 
M can be expressed as

Method of Virtual Work



and if M remains constant during a rotation θ, the work is given by

Method of Virtual Work



Principle of Virtual Work for Deformable Solids



There are three important provisions in the statement of this principle. 

First, the force system is in equilibrium, both externally and internally. 

Second, the set of deformations is small, implying that the deformations do 
not alter the geometry of the body significantly.

Finally, the deformations of the structure are compatible, meaning that the 
elements of the structure must deform so that they do not break apart or 
become displaced away from the points of support. 

The parts of the body must stay connected after deformation and continue
to satisfy the restraint conditions at the supports. These three conditions 
must always be satisfied in any application of the principle.

Principle of Virtual Work for Deformable Solids



The assembly is in equilibrium for an external virtual load P′ that is applied 
at B. 

Principle of Virtual Work for Deformable Solids



Since joint B is in equilibrium, the virtual external force P′ and the virtual 
internal forces f1 and f2 acting in members (1) and (2), respectively, must 
satisfy the following two equilibrium equations:

Principle of Virtual Work for Deformable Solids



Assume that pin B is given a small real (as opposed to virtual) displacement 
 in the horizontal direction.

Principle of Virtual Work for Deformable Solids

The deformation of the 
two-bar assembly is 
compatible, meaning that 
bars (1) and (2) remain 
connected together at 
joint B and attached
to their respective 
supports at A and C.



The total virtual work for the two-bar assembly is thus equal to the 
algebraic sum of the separate bits of work performed by all the forces acting 
at joint B.

Principle of Virtual Work for Deformable Solids

W = P′ 

W =-f1( cos θ1)

W =-f2( cos θ2)



Principle of Virtual Work for Deformable Solids

W = P′

W =-f1( cos θ1)

W =-f2( cos θ2)



Principle of Virtual Work for Deformable Solids

W = P′ 

W =-f1( cos θ1)

W =-f2( cos θ2)



Principle of Virtual Work for Deformable Solids

Recall:

Thus:



Principle of Virtual Work for Deformable Solids

The term on the left-hand side of the equation represents the virtual 
external work Wve done by the virtual external load P′ acting through the 
real external displacement 

the right-hand side represents the virtual internal work Wvi of the virtual 

internal forces acting through the real internal displacements. Or:



Principle of Virtual Work for Deformable Solids

The general approach used to implement the principle of virtual work to 
determine deflections or deformations in a solid body can be described as 
follows:
• Begin with the solid body to be analyzed. The solid body can be an axial 

member, a torsion member, a beam, a truss, a frame, or some other 
type of deformable solid. Initially, consider the solid body without 
external loads.

• Apply an imaginary or hypothetical virtual external load to the solid 
body at the location where deflections or deformations are to be 
determined. Depending on the situation, this imaginary load may be a 
force, a torque, or a concentrated moment. For convenience, the 
imaginary load is assigned a “unit” magnitude, such as P′ = 1.



Principle of Virtual Work for Deformable Solids

• The virtual load should be applied in the same direction as the desired 
deflection or deformation. For example, if the vertical deflection of a 
specific truss joint is desired, the virtual load should be applied in a 
vertical direction at that truss joint.

• The virtual external load causes virtual internal forces throughout the 
body. These internal forces can be computed by the customary statics-
or mechanics-of-materials techniques for any statically determinate 
system.



Principle of Virtual Work for Deformable Solids

• With the virtual load remaining on the body, apply the actual loads 
(i.e., the real loads) or introduce any specified deformations, such as 
those due to a change in temperature. These real external loads (or 
deformations) create real internal deformations, which can also be 
calculated by the customary mechanics-of-materials techniques for any 
statically determinate system.

• As the solid body deflects or deforms in response to the real loads, the 
virtual external load and the virtual internal forces are displaced by 
some real amount. Consequently, the virtual external load and the 
virtual internal forces perform work. However, the virtual external load 
was present on the body, and the virtual internal forces were present 
in the body, before the real loads were applied. Accordingly, the work 
performed by them does not include the factor ½. 



Principle of Virtual Work for Deformable Solids

• Conservation of energy requires that the virtual external work equal 
the virtual internal work. From this relationship, the desired real 
external deflection or deformation can be determined.

Recalling that work is defined as the product of a force and a displacement:



Principle of Virtual Work for Deformable Solids

the method of virtual work employs two independent systems: 
(a) a virtual-force system and 
(b) the real system of loads (or other effects) that create the deformations 

to be determined. 

To compute the deflection (or slope) at any location in a solid body or 
structure, a virtual-force system is chosen so that the desired deflection (or 
rotation) will be the only unknown



Deflections of Beams by the Virtual-Work Method

Assume that the vertical deflection of the beam at point B is desired. To 
determine this deflection, a virtual external unit load will first be applied to 
the beam at B in the direction of the desired deflection, as shown. 



Deflections of Beams by the Virtual-Work Method

If the beam is then subjected 
to the deformations created 
by the real external loads, the 
virtual external work 
performed by the virtual 
external load as the beam 
moves downward through the 
real deflection  will be

To obtain the virtual internal work, the 
internal work of a beam is related to the 
moment and the rotation angle  of the 
beam.



Deflections of Beams by the Virtual-Work Method

Consider a differential beam element dx located at a distance x from the left 
support. When the real external loads are applied to the beam, bending
moments M rotate the plane sections of the beam segment dx through an 
angle:



Deflections of Beams by the Virtual-Work Method

When the beam with the virtual unit load is subjected to the real rotations
caused by the external loading, the virtual internal bending moment m acting
on the element dx performs virtual work as the element undergoes the real 
rotation dθ.

For beam element dx, the virtual internal 
work dWvi performed by the virtual 
internal moment m as the element 
rotates through the real internal rotation 
angle dθ is

Internal work of virtual 

moment m



Deflections of Beams by the Virtual-Work Method

The total virtual internal work done on the beam is then:

Which is the amount of virtual strain energy that is stored in the beam.

The virtual external work can be equated to the virtual internal work, giving 
the virtual-work equation for beam deflections: 



Deflections of Beams by the Virtual-Work Method

The slope of a beam can be expressed in terms of its angular rotation θ 
(measured in radians) as 

Assume that the angular 
rotation θ of the beam at 
point C is desired. 

To determine θ, a virtual 
external unit moment will 
first be applied to the beam 
at C in the direction of the anticipated slope. 



Deflections of Beams by the Virtual-Work Method

If this beam is then subjected to the 
deformations created by the real external 
loads, the virtual external work Wve

performed by the virtual external moment 
as the beam rotates counterclockwise 
through the real beam angular rotation θ is                                



Deflections of Beams by the Virtual-Work Method

Important NOTE
The internal work performed by virtual shear forces acting through real shear 
deformations has been neglected. Consequently, the virtual-work expressions 
do not account for shear deformations in beams. 

However, shear deformations are very small for most common beams (with 
the exception of very deep beams), and they can be neglected in ordinary 
analyses.



Deflections of Beams by the Virtual-Work Method

Question:
What to do when a single integration over the entire length of the beam may 
not be possible?



Procedure for Analysis

1. Real System: Draw a beam diagram showing all real loads.

2. Virtual System: Draw a diagram of the beam with all real loads removed. If 
a beam deflection is to be determined, apply a unit load at the location 
desired for the deflection. If a beam slope is to be determined, apply a unit 
moment at the desired location.

3. Subdivide the Beam: Examine both the real and virtual load systems. Also, 
consider any variations of the flexural rigidity EI that may exist in the beam. 
Divide the beam into segments so that the equations for the real and virtual 
loadings, as well as the flexural rigidity EI, are continuous in each segment.



Procedure for Analysis

4. Derive Moment Equations: For each segment of the beam, formulate an 
equation for the bending moment m produced by the virtual external load. 
Formulate a second equation expressing the variation in the bending moment 
M produced in the beam by the real external loads. Note that the same x 
coordinate must be used in both equations. The origin for the x coordinate 
may be located anywhere on the beam and should be chosen so that the 
number of terms in the equation is minimized. Use the standard Convention 
for bending-moment signs for both the virtual and real internal-moment 
equations.



Procedure for Analysis

5. Virtual-Work Equation: Determine the desired beam deflection by 
applying Equation or compute the desired beam slope. If the beam has been 
divided into segments, then you can evaluate the integral on by algebraically 
adding the integrals for all segments of the beam. It is, of course, important 
to retain the algebraic sign of each integral calculated within a segment.

If the algebraic sum of all of the integrals for the beam is positive, then  or θ
is in the same direction as the virtual unit load or virtual unit moment. 

If a negative value is obtained, then the deflection or slope acts opposite to 
the direction of the virtual unit load or virtual unit moment.



Examples

Calculate (a) the deflection and (b) the slope at end A of the cantilever beam 
shown. Assume that EI is constant.







Examples

Calculate the deflection at end C of the cantilever beam shown. Assume that 
E = 70 GPa for the entire beam.



Examples

Compute the deflection at point C for the simply supported beam shown. 
Assume that EI = 3.4 × 105 kN⋅m2.
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