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Application to Beams
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A = displacement of a point on the beam
P = external force applied to the beam in the direction of D and expressed as
a variable
M = internal bending moment in the beam, expressed as a function of x and
caused by both the force P and the loads on the beam
| = moment of inertia of the beam cross section about the neutral axis
E = elastic modulus of the beam
= length of the beam
© = rotation angle (or slope) of the beam at a point
M’ = a concentrated moment applied to the beam in the direction of O at
the point of interest and expressed as a variable.




Example 01

Use Castigliano’s second theorem to determine (a) the deflection and (b) the
slope at end A of the cantilever beam shown. Assume that El is constant.
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Example 01

Since no external concentrated loads or concentrated moments act at A,
dummy loads will be required for this problem.

To determine the deflection at end A, a dummy load P acting downward will
be applied at A.

An expression for the internal moment M in the beam will be derived in
terms of both the actual distributed load w and the dummy load P.
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Example 01

The expression for M will then be differentiated with respect to P to obtain
oM/oP.

Next, the value P = 0 will be substituted in the expression for M, and then
the latter will be multiplied by the partial derivative 0M/0P.

Finally, the resulting expression will be integrated over the beam
length L to obtain the beam deflection at A.
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Example 01

A similar procedure will then be used to determine the beam slope at A.

The dummy load for this calculation will be a concentrated moment M’
applied at A.
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Example 01

(a) Calculation of Deflection: To determine the downward deflection of the
cantilever beam, apply a dummy load P downward at A.

Draw a free-body diagram around end A of the beam. The origin of the x
coordinate system will be placed at A.
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Example 01

From the diagram, derive the following equation for the internal bending
moment M:
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Substitute P = 0 into the bending-moment equation to obtain

w2 P
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Castigliano’s second theorem applied to beam deflections is expressed by:
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Now integrate this expression over the beam length L to determine the
vertical beam deflection at A:

w2 Since the result is a positive value, the
Ay = \L deflection occurs in the direction assumed
SEI for the dummy load P - that is, downward.




Example 01

(b) Calculation of slope: To determine the angular rotation of the cantilever
beam at A, a dummy concentrated moment M’ will be applied.

Because the beam is expected to slope upward from A, the dummy moment
will be applied counterclockwise in this instance.
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Example 02

Compute the deflection at point C for the simply supported beam shown.
Assume that El = 3.4 x 105 kN - m?.
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Example 02

180 k

uuuuluuu'l'l

B € D
I5m | 1.5m

Beam Diagrams Module

X
(m) 0

m =]
Click on an area for more details

LLLLL

Reactions

300.00

-15.00\

-150.00

ElfS

Moment Diagram




Example 02 180 kN

Since the deflection is desired at C 45 kN/m

and no external load acts at that llllllll llllllll

location, a dummy load P will be

required at C. A E‘ B £ D E
L Im ISm | I.5m 3m _l

With dummy load P placed at C,
the bending-moment equation will be discontinuous at points B, C, and D.

Therefore, this beam must be considered in four segments: AB, BC, CD, and DE.

To facilitate the derivation of moment equations, it will be convenient to locate
the origin of the x coordinate system at A for segments AB and BC, and at E for
segments CD and DE.



Example 02

To organize the calculation, it will
also be convenient to summarize
the relevant equations in a tabular
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x Coordinate oM
— M
Beam Limits P J oM (M J dx
Segment Origin (m) (kN -m?) dP )\ EI
AB A 0-3 —11.25x7 + 150x} [,122.188 kN-m?
El
BC A 3—4.5 —11.25x35 + 60x35 + 270x, 1,875.762 kKN - m’
El
CD E 3-4.5 —11.25x35 + 142.5x — 101.25x3 1,550.918 kN-m?
El
DE E 0-3 75x3 675.0 kN-m’
El
5,223.868 kKN -m’?
El
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~5,223.868 kN-m? - 5,223.368 kN-m?

EI  34x10% kKN-m?
s Ar =153643%x 107 m = 1536 mm |
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Calculate the vertical displacement of point C (A¢ ) using Castigliano's theorem. Neglect the strain
energy due to shear.
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Factors | Energy Equation General Energy | General Deflection
Load Type Involved | Constant Factors Equation Equation
Axial P E A Ut% U= :%dx ﬁ=:f-%}?ﬁdx
Bending M, E, I U=% U= i%—}dx A=ﬁ'£§%dx
Torsion T,G K'|\U-= % U= ;‘%}dx A= j:ﬂ%ﬁ—mdx
Transverse shear|V, G, A | U = % U= ﬁ%dx g = [LOXE0) 4

(rectangular
section)
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first compute Energy, then Partial Derivative to get deflection

Here 2 types of loading: Bending and  Shear

magnitude @ X: M=-§x and V:%
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actors | Energy EquationGeneral Energy | General Deflection
Load Type volved | Constant Factors| Equation Equation
(1) 2) ET 4 (5)
: ML LM{(3M/oQ)

Bendi M, E W — =

ending CE T |U SET a J.n FI dx
Transverse shearlV, G, A (U = 3VEL A* = ILwdx
(rectangular 3GA o 5GA
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1. Energy: here it has two components:

A (L2 M? L 3V?
U=2], 2% +J 5GA >
L2 P?x? L 3(P/2)?
—2j 3£Idx+ 0 5GA e
P2 sz 3 P2
=1E1)o ZDGA.[ dx
P:L? 3P?L

+
(23=8)*3*4 = 96-- — ~96EI ' 20GA

2. Partial Derivatives for deflection:

~ 9P 48E1  10GA
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P =5000 N

Ih=50mm
2500 N [e———200 mm 2500 N —* —=b=25mm
[, =400 mm

_PL*  3PL
o= 88EI T 1064
{ 5000(0.400)° o 3(5000)(0.400)
9
48(207 X 10°) [25(1520)3 10-12] 10(80 X 10°)(0.025)(0. 050)

=((1.237 X 107) + (6.000 X 107) /m = 1.297 X 10*m
A

ﬁénsverse shear contributes only <% to deflecﬂ




Example 05

+90° bend cantilever beam
shear neglected

%,

Use of “Dummy Load” Q=0
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+90° bend cantilever beam h
shear neglected
}'
I{dx‘:_" P

1
Use of “Dummy Load” Q=0 ¥

«Shear neglected => only 4 energy components:

BEN
BEN

1)
2)
3) TEN
4)

COMPRESSION portionb_c: P

D
D

S

NG portion a_b: M_,,=Py

NG portion b_c: M,,.=Qx +Ph
portion b_c: Myc=QX (Tension and Compression

ON portion a_b: Q } mostly negligible if torsion
and bending are present)
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_ _PL L P¢ (L P(anaQ)
Axial FEA \U=>22 2 Lzaa A= o™ Ea
. _ ML LM* _ [LM(3M/5Q)
Bending M, E, 1 |U 2ET U= 0 ZEIdr A= e i dx
h Map(0M25/0Q) L My (9M,13Q) . [ L(99/00Q) L P(0P[3Q)
o= 0 E] dy+L} El Jﬂ EA dx+jﬂ EA dx
b (Py)(D) L(Ox + Ph)x Oh L P(0)
+ dx + =—
S al A Ray> EA + o Fa &

0 = 0: 5= o+[ -——dx+0+0
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