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Introduction
• In this chapter we treat situations for 

which heat is transferred by diffusion 
under one-dimensional, steady-state 
conditions. 

• The term one-dimensional refers to the 
fact that temperature gradients exist 
along only a single coordinate 
direction, and heat transfer occurs 
exclusively in that direction.

• The system is characterized by steady-state conditions if the temperature 
at each point is independent of time.

• Despite their inherent simplicity, one-dimensional, steady-state models 
may be used to accurately represent numerous engineering systems.



• We begin our consideration of one-dimensional, steady-state 
conduction by discussing heat transfer with no internal generation 
of thermal energy (Sections 3.1 through 3.4). 

• The objective is to determine expressions for the temperature 
distribution and heat transfer rate in common (planar, cylindrical, 
and spherical) geometries. 

• For such geometries, an additional objective is to introduce the concept 
of thermal resistance and to show how thermal circuits may be used to 
model heat flow, much as electrical circuits are used for current flow. 

• The effect of internal heat generation is treated in Section 3.5, and 
again our objective is to obtain expressions for temperature 
distributions and heat transfer rates. 



• In Section 3.6, we consider the special case of one-dimensional, 
steady-state conduction for extended surfaces. 

• In their most common form, these surfaces are termed fins and are used 
to enhance heat transfer by convection to an adjoining fluid. 

• In addition to determining related temperature distributions and heat 
rates, our objective is to introduce performance parameters that may be 
used to determine their efficacy.



• For one-dimensional conduction in a plane wall, temperature is a 
function of the x-coordinate only and heat is transferred exclusively 
in this direction. 

• In Figure 3.1a, a plane wall separates two fluids of different 
temperatures. 

• Heat transfer occurs by convection from the hot fluid at T∞,1 to one 
surface of the wall at Ts,1, by conduction through the wall, and by 
convection from the other surface of the wall at Ts,2 to the cold fluid 
at T∞,2

The Plane Wall



FIGURE 3.1 Heat 
transfer through a plane 
wall. 
(a) Temperature 

distribution. 
(b) Equivalent thermal 

circuit.



• We begin by considering conditions within the wall. 

• We first determine the temperature distribution, from which we 
can then obtain the conduction heat transfer rate.



Temperature Distribution
• The temperature distribution in the wall can be determined by 

solving the heat equation with the proper boundary conditions. 

• For steady-state conditions with no distributed source or sink of 
energy within the wall, the appropriate form of the heat equation is

• Hence, for one-dimensional, steady-state conduction in a plane wall 
with no heat generation, the heat flux is a constant, independent of x. 



If the thermal conductivity of the wall material is assumed to be 
constant, the equation may be integrated twice to obtain the general 
solution

To obtain the constants of integration, C1 and C2, boundary conditions 
must be introduced. We choose to apply conditions of the first kind at 
x = 0 and x = L, in which case

Applying the condition at x = 0 to the general solution, it follows that



Similarly, at x = L,

in which case

Substituting into the general solution, the temperature distribution 
is then



From this result it is evident that, for one-dimensional, steady-state 
conduction in a plane wall with no heat generation and constant thermal 
conductivity, the temperature varies linearly with x.

Now that we have the temperature distribution, we may use Fourier's 
law, Equation 2.1, to determine the conduction heat transfer rate. That 
is,



• The equations indicate that both the heat rate qx and heat flux  
are constants, independent of x.

• In the foregoing paragraphs we have used the standard approach to 
solving conduction problems. 

• That is, the general solution for the temperature distribution is first 
obtained by solving the appropriate form of the heat equation. 

• The boundary conditions are then applied to obtain the particular 
solution, which is used with Fourier's law to determine the heat 
transfer rate. 



• Note that we have opted to prescribe surface temperatures at x = 0 
and x = L as boundary conditions, even though it is the fluid 
temperatures, not the surface temperatures, that are typically known.

• However, since adjoining fluid and surface temperatures are easily 
related through a surface energy balance (see Section 1.3.1), it is a 
simple matter to express Equations 3.3 through 3.5 in terms of fluid, 
rather than surface, temperatures. 

• Alternatively, equivalent results could be obtained directly by using 
the surface energy balances as boundary conditions of the third kind 
in evaluating the constants of Equation 3.2 (see Problem 3.1).



• At this point we note that, for the special case of one-dimensional heat 
transfer with no internal energy generation and with constant 
properties, a very important concept is suggested by Equation 3.4. 

• In particular, an analogy exists between the diffusion of heat and 
electrical charge. 

• Just as an electrical resistance is associated with the conduction of 
electricity, a thermal resistance may be associated with the 
conduction of heat. 

• Defining resistance as the ratio of a driving potential to the 
corresponding transfer rate, the thermal resistance for conduction in a 
plane wall is

Thermal Resistance



Similarly, for electrical conduction in the same system, Ohm's law 
provides an electrical resistance of the form

The analogy analogy exists between the heat transfer by convection 
and electrical charge as well. A thermal resistance may also be 
associated with heat transfer by convection at a surface. From 
Newton's law of cooling,



The thermal resistance for convection is then

Circuit representations provide a useful tool for both conceptualizing 
and quantifying heat transfer problems. The equivalent thermal circuit 
for the plane wall with convection surface conditions is shown in 
Figure 3.1b. The heat transfer rate may be determined from separate 
consideration of each element in the network. Since qx is constant 
throughout the network, it follows that



In terms of the overall temperature difference, T∞,1 − T∞,2, and the 
total thermal resistance, Rtot, the heat transfer rate may also be 
expressed as

Because the conduction and convection resistances are in series and 
may be summed, it follows that

Radiation exchange between the surface and surroundings may also 
be important if the convection heat transfer coefficient is small. A 
thermal resistance for radiation may be defined as the following



• For radiation between a surface and large surroundings, hr is 
determined Chapter 1. 

• Surface radiation and convection resistances act in parallel, 
and if T∞ = Tsur, they may be combined to obtain a single, 
effective surface resistance.



The Composite Wall
• Equivalent thermal circuits may also be used for more complex 

systems, such as composite walls. 

• Such walls may involve any number of series and parallel thermal 
resistances due to layers of different materials. 

• Consider the series composite wall of Figure 3.2. The one-
dimensional heat transfer rate for this system may be expressed as





where T∞,1 − T∞,4 is the overall temperature difference, and the 
summation includes all thermal re

Alternatively, the heat transfer rate can be related to the temperature 
difference and resistance associated with each element. For example,



With composite systems, it is often convenient to work with an overall 
heat transfer coefficient U, which is defined by an expression 
analogous to Newton's law of cooling. Accordingly,

where ΔT is the overall temperature difference. The overall heat 
transfer coefficient is related to the total thermal resistance, and from 
Equations 3.14 and 3.17 we see that UA = 1/Rtot. Hence, for the 
composite wall of Figure 3.2,

In general, we may write



• Composite walls may also be characterized by series–parallel 
configurations, such as that shown in Figure 3.3. 

• Although the heat flow is now multidimensional, it is often reasonable to 
assume one-dimensional conditions. 

• Subject to this assumption, two different thermal circuits may be used. 

• For case (a) it is presumed that surfaces normal to the x-direction are 
isothermal, whereas for case (b) it is assumed that surfaces parallel to the 
x-direction are adiabatic. 

• Different results are obtained for Rtot, and the corresponding values of q 
bracket the actual heat transfer rate. 

• These differences increase with increasing |kF − kG|, as 
multidimensional effects become more significant.



FIGURE 3.3 Equivalent 
thermal circuits for a series–
parallel composite wall.





Contact Resistance
• Although neglected until now, it is important to recognize that, in 

composite systems, the temperature drop across the interface 
between materials may be appreciable. 

• This temperature change is attributed to what is known as the 
thermal contact resistance, Rt,c. 

• The effect is shown in Figure 3.4, and for a unit area of the 
interface, the resistance is defined as



FIGURE 3.4 Temperature drop due to thermal contact resistance.



• The existence of a finite contact resistance is due principally to 
surface roughness effects. 

• Contact spots are interspersed with gaps that are, in most instances, 
air filled. 

• Heat transfer is therefore due to conduction across the actual 
contact area and to conduction and/or radiation across the gaps.

• The contact resistance may be viewed as two parallel resistances: 
that due to the contact spots and that due to the gaps. 

• The contact area is typically small, and, especially for rough 
surfaces, the major contribution to the resistance is made by the 
gaps



• For solids whose thermal conductivities exceed that of the interfacial 
fluid, the contact resistance may be reduced by increasing the area of 
the contact spots. 

• Such an increase may be affected by increasing the contact 
pressure and/or by reducing the roughness of the mating 
surfaces. 

• The contact resistance may also be reduced by selecting an 
interfacial fluid of large thermal conductivity. 

• In this respect, no fluid (an evacuated interface) eliminates 
conduction across the gap, thereby increasing the contact resistance. 



• The effect of loading on metallic interfaces can be seen in Table 
3.1a, which presents an approximate range of thermal resistances 
under vacuum conditions. 

• The effect of interfacial fluid on the thermal resistance of an 
aluminum interface is shown in Table 3.1b.



TABLE 3.1 Thermal contact resistance for (a) metallic interfaces under vacuum 
conditions and (b) aluminum interface (10-μm surface roughness, 105 N/m2) with 
different interfacial fluids [1]



• Contrary to the results of Table 3.1, many applications involve 
contact between dissimilar solids and/or a wide range of 
possible interstitial (filler) materials (Table 3.2). 

• Any interstitial substance that fills the gap between 
contacting surfaces and whose thermal conductivity exceeds 
that of air will decrease the contact resistance. 

• Two classes of materials that are well suited for this purpose are 
soft metals and thermal greases. 

• The metals, which include indium, lead, tin, and silver, may 
be inserted as a thin foil or applied as a thin coating to one of 
the parent materials. 



• Silicon-based thermal greases are attractive on the basis of 
their ability to completely fill the interstices with a material 
whose thermal conductivity is as much as 50 times that of air.



• Unlike the foregoing interfaces, which are not permanent, 
many interfaces involve permanently bonded joints. 

• The joint could be formed from an epoxy, a soft solder rich in 
lead, or a hard solder such as a gold/tin alloy. 

• Due to interface resistances between the parent and bonding 
materials, the actual thermal resistance of the joint exceeds the 
theoretical value (L/k) computed from the thickness L and 
thermal conductivity k of the joint material. 

• The thermal resistance of epoxied and soldered joints is also 
adversely affected by voids and cracks, which may form during 
manufacture or as a result of thermal cycling during normal 
operation.



• Comprehensive reviews of thermal contact resistance results and 
models are provided by Snaith et al. [3], Madhusudana and 
Fletcher [7], and Yovanovich [8].



Porous Media
• In many applications, heat transfer occurs within porous media 

that are combinations of a stationary solid and a fluid. 

• When the fluid is either a gas or a liquid which fills the pores of 
the material, the resulting porous medium is said to be 
saturated. 

• In contrast, all three phases coexist in an unsaturated porous 
medium. 

• Examples of porous media:











• A saturated porous medium that consists of a stationary solid phase 
through which a fluid flows is referred to as a packed bed and is 
discussed in Section 7.8.

• Consider a saturated porous medium that is subjected to surface 
temperatures T1 at x = 0 and T2 at x = L, as shown in Figure 3.5a. 
After steady-state conditions are reached and if T1 > T2, the heat 
rate may be expressed as



FIGURE 3.5 A porous medium. (a) The medium and its properties. (b) Series 
thermal resistance representation. (c) Parallel resistance representation.



• where keff is an effective thermal conductivity. 

• This equation is valid if fluid motion, as well as radiation heat 
transfer within the medium, are negligible. 

• The effective thermal conductivity varies with the porosity or void 
fraction of the medium ε which is defined as the volume of fluid 
relative to the total volume (solid and fluid).

• In addition, keff depends on the thermal conductivities of each of 
the phases and, in this discussion, it is assumed ks > kf.                                                                                                                            

• The detailed solid phase geometry, for example the size distribution 
and packing arrangement of individual powder particles, also 
affects the value of keff. 



• Contact resistances that might evolve at interfaces between 
adjacent solid particles can impact the value of keff. 

• As discussed in Section 2.2.1, nanoscale phenomena might also 
influence the effective thermal conductivity. 

• Despite the complexity of the situation, the value of the effective 
thermal conductivity may be bracketed by considering the composite 
walls of Figures 3.5b and 3.5c. 

• In Figure 3.5b, the medium is modeled as an equivalent, series 
composite wall consisting of a fluid region of length εL and a solid 
region of length (1 − ε)L. 



• Applying the previous equations to this model for which there is no 
convection (h1 = h2 = 0) and only two conduction terms, it follows 
that

Alternatively, the medium of Figure 3.5a could be described by the 
equivalent, parallel composite wall consisting of a fluid region of width 
εw and a solid region of width (1 − ε)w, as shown in Figure 3.5c. 
Combining Equation 3.21 with an expression for the equivalent 
resistance of two resistors in parallel gives



• While Equations 3.23 and 3.24 provide the minimum and maximum 
possible values of keff, more accurate expressions have been derived 
for specific composite systems within which nanoscale effects are 
negligible. 

• Maxwell [9] derived an expression for the effective electrical 
conductivity of a solid matrix interspersed with uniformly 
distributed, noncontacting spherical inclusions. 

• After doing the analogy between the electrical and thermal 
systems, Maxwell's result may be used to determine the effective 
thermal conductivity of a saturated porous medium consisting of an 
interconnected solid phase within which a dilute distribution of 
spherical fluid regions exists, resulting in an expression of the form 
[10]





• Equation 3.25 is valid for relatively small porosities (ε ≲ 0.25) as 
shown schematically in Figure 3.5a [11]. 

• It is equivalent to the expression introduced in Example 2.2 for a fluid 
that contains a dilute mixture of solid particles, but with reversal of the 
fluid and solid.

• When analyzing conduction within porous media, it is important to 
consider the potential directional dependence of the effective thermal 
conductivity. 

• For example, the media represented in Figure 3.5b or Figure 3.5c 
would not be characterized by isotropic properties, since the 
effective thermal conductivity in the x-direction is clearly different 
from values of keff in the vertical direction. 



• Hence, although Equations 3.23 and 3.24 can be used to bracket the 
actual value of the effective thermal conductivity, they will generally 
overpredict the possible range of keff for isotropic media. 

• For isotropic media, expressions have been developed to determine the 
minimum and maximum possible effective thermal conductivities 
based solely on knowledge of the porosity and the thermal 
conductivities of the solid and fluid. 



In Example 1.6, we calculated the rate of heat loss from a human 
body in air and water environments. 

Now we consider the same conditions except that the surroundings 
(air or water) are at 10°C. To reduce the rate of heat loss, the person 
wears special sporting gear (snow suit or wet suit) made from silica 
aerogel insulation with an extremely low thermal conductivity of 
0.014 W/m · K. The emissivity of the outer surface of the snow and 
wet suits is 0.95. What thickness of aerogel insulation is needed to 
reduce the rate of heat loss to 100 W (a typical metabolic heat 
generation rate) in air and water? What are the resulting skin 
temperatures?

EXAMPLE 3.1



SOLUTION

Known: Inner surface temperature of a skin/fat layer of known 
thickness, thermal conductivity, and surface area. Thermal 
conductivity and emissivity of snow and wet suits. Ambient 
conditions.
Find: Insulation thickness needed to reduce rate of heat loss to 100 
W and corresponding skin temperature.





Assumptions:

• Steady-state conditions.
• One-dimensional heat transfer by conduction through the skin/fat 

and insulation layers.
• Contact resistance is negligible.
• Thermal conductivities are uniform.
• Radiation exchange between the skin surface and the surroundings 

is between a small surface and a large enclosure at the air 
temperature.

• Liquid water is opaque to thermal radiation.
• Solar radiation is negligible.
• Body is completely immersed in water in part 2.



Analysis: The thermal circuit can be constructed by recognizing that 
resistance to heat flow is associated with conduction through the 
skin/fat and insulation layers as well as convection and radiation at the 
outer surface. Accordingly, the circuit and the resistances are of the 
following form (with hr = 0 for water):



The total thermal resistance needed to achieve the desired rate of 
heat loss is found from Equation 3.19,

The total resistance between the inside of the skin/fat layer and the 
cold surroundings includes conduction resistances for the skin/fat 
and insulation layers as well as an effective resistance associated 
with convection and radiation, which act in parallel. Hence,



This equation can be solved for the insulation thickness.

Air:
The radiation heat transfer coefficient is approximated as having the 
same value as in Example 1.6: hr = 5.9 W/m2 · K.



Water:



Comments:

• The silica aerogel is a porous material that is only about 5% solid. 

• Its thermal conductivity is less than the thermal conductivity of the 
gas that fills its pores. 

• As explained in Section 2.2, the reason for this seemingly 
impossible result is that the pore size is about 20 nm, which reduces 
the mean free path of the gas and hence decreases its thermal 
conductivity.

• By reducing the rate of heat loss to 100 W, a person could remain in 
the cold environments indefinitely without becoming chilled. 



• The skin temperature of 34.4°C would feel comfortable.

• In the water case, the thermal resistance of the insulation dominates
and all other resistances can be neglected.

• The convection heat transfer coefficient associated with the air 
depends on the wind conditions, and it can vary over a broad range. 
As it changes, so will the outer surface temperature of the insulation 
layer. Since the radiation heat transfer coefficient depends on this 
temperature, it will also vary. We can perform a more complete 
analysis that takes this into account. The radiation heat transfer 
coefficient is given by Equation 1.9:



Here Ts,o is the outer surface temperature of the insulation layer, which 
can be calculated from

where, from the problem solution:

Using all the values from above, these three equations have been solved 
for values of h in the range 0 ≤ h ≤ 100 W/m2 · K, and the required 
insulation thickness is represented graphically.





• Increasing h reduces the corresponding convection resistance, which 
then requires additional insulation to maintain the heat transfer rate 
at 100 W. 

• Once the heat transfer coefficient exceeds approximately 60 W/m2 · 
K, the convection resistance is negligible and further increases in h 
have little effect on the required insulation thickness.

• The outer surface temperature and radiation heat transfer coefficient 
can also be calculated. As h increases from 0 to 100 W/m2 · K, Ts,o
decreases from 294 to 284 K, while hr decreases from 5.2 to 4.9 
W/m2 · K. 



• The initial estimate of hr = 5.9 W/m2 · K was not highly accurate. 
Using this more complete model of the radiation heat transfer, with 
h = 2 W/m2 · K, the radiation heat transfer coefficient is 5.1 W/m2 · 
K, and the required insulation thickness is 4.2 mm, close to the 
value calculated in the first part of the problem.



An Alternative Conduction Analysis





The diagram shows a conical section fabricated from pyroceram. It is 
of circular cross section with the diameter D = ax, where a = 0.25. The 
small end is at x1 = 50 mm and the large end at x2 = 250 mm. The end 
temperatures are T1 = 400 K and T2 = 600 K, while the lateral surface 
is well insulated.

EXAMPLE 3.5



• Derive an expression for the temperature distribution T(x) in 
symbolic form, assuming one-dimensional conditions. 

• Sketch the temperature distribution.
• Calculate the heat rate qx through the cone.

SOLUTION
Known: Conduction in a circular conical section having a diameter 
D = ax, where a = 0.25.

Find:
Temperature distribution T(x).
Heat transfer rate qx.



Schematic:



Assumptions:

Steady-state conditions.
One-dimensional conduction in the x-direction.
No internal heat generation.
Constant properties.

Properties: Table A.2, pyroceram (500 K): k = 3.46 W/m · K.
Analysis:

Since heat conduction occurs under steady-state, one-dimensional 
conditions with no internal heat generation, the heat transfer rate qx
is a constant independent of x. Accordingly, Fourier's law, Equation 
2.1, may be used to determine the temperature distribution



Integrating from x1 to any x within the cone, and recalling that qx
and k are constants, it follows that



Although qx is a constant, it is as yet an unknown. However, it may 
be determined by evaluating the above expression at x = x2, where 
T(x2) = T2. Hence





Note that, since dT/dx = −4qx/kπa2x2 from Fourier's law, it follows 
that the temperature gradient and heat flux decrease with increasing 
x.
Substituting numerical values into the foregoing result for the heat 
transfer rate, it follows that

Comments: When the parameter a increases, the cross-sectional area 
changes more rapidly with distance, causing the one-dimensional 
assumption to become less appropriate.



Radial Systems











The Sphere





Equations Summary 


