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Implications of Energy Generation
• Involves a local (volumetric) source of thermal energy due to conversion 

from another form of energy in a conducting medium.
• The source may be uniformly distributed, as in the conversion from 

electrical to thermal energy (Ohmic heating):
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or it may be non-uniformly distributed, as in the absorption of radiation 
passing through a semi-transparent medium. For a plane wall,

  a-µ! xq e
• Generation affects the temperature distribution in the medium and 

causes the heat rate to vary with location, thereby precluding inclusion of 
the medium in a thermal circuit.
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The Plane Wall
• Consider one-dimensional, steady-state conduction in a plane wall of constant

k, uniform generation, and asymmetric surface conditions:
• Heat Equation:
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Is the heat flux ¢¢q independent of x?
• General Solution:

( ) ( ) 2
1 2/ 2= - + +!T x q k x C x C (3.45)

What is the form of the temperature distribution for 
0?=!q  > 0?!q 0?<!q
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Plane Wall
Symmetric Surface Conditions or One Surface Insulated:

• What is the temperature gradient at the centerline or 
the insulated surface? Ts1=Ts2=Ts

• Why does the magnitude of the temperature gradient 
increase with increasing x?

• Temperature Distribution:
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Plane Wall
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• How do we determine Ts ? 

2- Overall energy balance on the wall 
→
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How do we determine the heat rate at x = L?
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1- Surface energy balance →



Radial Systems (1 of 2)
Cylindrical (Tube) Wall

Solid Cylinder (Circular Rod)

• Heat Equations:
Cylindrical
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r dr dr

Spherical Wall (Shell)

Solid Sphere

Spherical
2
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Radial Systems (2 of 2)
• Solution for Uniform Generation in a Solid Sphere of Constant k with 

Convection Cooling:
Temperature Distribution
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Surface Temperature

Overall energy balance:
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Or from a surface energy balance:

( )in out cond conv0
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• A summary of temperature distributions is provided in Appendix C for 
plane, cylindrical and spherical walls, as well as for solid cylinders and 
spheres. Note how boundary conditions are specified and how they are used 
to obtain surface temperatures.
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Problem 3.56

9

A composite spherical shell of inner radius r1 = 0.25 m is constructed 
from lead of outer radius r2 = 0.30 m and AISI 302 stainless steel of 
outer radius r3 = 0.31 m. 
The cavity is filled with radioactive wastes that generate heat at a rate 
of 

It is proposed to submerge the container in oceanic water that is at a 
temperature of T∞ = 10°C and provide a uniform convection 
coefficient of h = 500 W/m2 · K at the outer surface of the container. 
Are there any problems associated with this proposal?
Hint: check the inner surface temperature of the Lead



Problem: Radioactive Waste Decay (1 of 2)

Problem 3.56: Suitability of a composite spherical shell for storing radioactive 
wastes in oceanic water.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Steady-state conditions, 
(3) Constant properties at 300K, (4) Negligible contact resistance.

PROPERTIES: Table A-1, Lead: k = 35.3 W/m∙K, MP = 601 K; St.St.: k = 15.1 W/m∙K.

ANALYSIS: From the thermal circuit, it follows that
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Problem: Radioactive Waste Decay (2 of 2)
The thermal resistances are:

( )Pb
1 11 / 4 35.3 W/m K  0.00150 K/W

0.25m 0.30m
R p é ùé ù= ´ × - =ë û ê úë û

( )St.St.
1 11 / 4 15.1 W/m K  0.000567 K/W

0.30m 0.31m
R p é ùé ù= ´ × - =ë û ê úë û

( )2 2 2
conv 1 / 4 0.31 m 500 W/m K 0.00166 K/WR pé ù= ´ ´ × =ê úë û

tot 0.00372 K/WR =

The heat rate is then

( )( )35 35 10  W/m 4 / 3 0.25m 32,725 Wq = p´ =

and the inner surface temperature is
( )tot1 283 K 0.00372 K/W 32,725 W

   405 K MP 601 K

T T R q¥= + = +

= < = <
Hence, from the thermal standpoint, the proposal is adequate.

COMMENTS: In fabrication, attention should be given to maintaining a good thermal contact. A 
protective outer coating should be applied to prevent long term corrosion of the stainless steel. In this 
application, thermal contact resistance is undesirable.
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Problem 3.82
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A high-temperature, gas-cooled nuclear reactor consists of a 
composite cylindrical wall for which a thorium fuel element (k ≈ 57 
W/m · K) (reactor core) is encased in graphite (k ≈ 3 W/m · K) and 
gaseous helium flows through an annular coolant channel. Consider 
conditions for which the helium temperature is T∞ = 600 K and the 
convection coefficient at the outer surface of the graphite is h = 2000 
W/m2 · K.



Problem 3.82

13

(a) If thermal energy is uniformly generated in the fuel element at a 
rate                     , what are the temperatures T1 and T2 at the 
inner and outer surfaces, respectively, of the fuel element?

(b) Compute and plot the temperature distribution in the composite 
wall for 
What is the maximum allowable value of  𝑞̇?

8 310 W/m .=!q

8 8 310 5 10    W/m .£ £ ´!q



Schematic:

Assumptions: (1) Steady-state conditions, (2) One-dimensional conduction, 
(3) Constant properties, (4) Negligible contact resistance, (5) Negligible 
radiation.
Properties: Table A.1, Thorium: 2023 K;  Table A.2, Graphite: 2273 K.= =mp mpT T
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Problem: Nuclear Fuel Rod (2 of 6)
Analysis: (a) The outer surface temperature of the fuel, T2 , may be 
determined from the rate equation 2

tot

¥-¢ =
¢

T Tq
R

where ( )3 2
tot

3

1n / 1 0.0185 m K/W
2 2p p

¢ = + = ×
g

r r
R

k r h
The heat rate may be determined by applying an energy balance to a control 
surface about the fuel element, out =! !

gE E

or, per unit length, out¢ ¢= gE E
• •

Assume that the interior surface of the thorium is adiabatic, it follows that
( )2 2

2 1 17,907 W/mp¢ = - =q q r r
•

Hence, ( )2 tot 17,907 W/m 0.0185 m K/W 600 K 931 K¥¢ ¢= + = × + =T q R T

With zero heat flux at the inner surface of the fuel element, Eq. C.14 yields

2
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Problem: Nuclear Fuel Rod (3 of 6)
Since T1 and T2 are well below the melting points of thorium and graphite, the 
prescribed operating condition is acceptable.
(b) The solution for the temperature distribution in a cylindrical wall with 
generation is
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Boundary conditions at r1 and r2 are used to determine T1 and T2.

( )

( )

2 2
2 1

2 12
21

1 1
1 2 1

1
4

: 0
2 1n /

é ùæ ö
- + -ê úç ÷

è øë û¢¢= = = -

!

! t

qr rk T T
k rqrr r q
r r r

(C.14)

( )
( )

( )

2 2
2 1

2 12
22

2 2 2
2 2 1

1
4

:
2 1n /¥

é ùæ ö
- + -ê úç ÷

è øë û= - = -

!

! t

qr rk T T
k rqrr r U T T
r r r

(C.17)

( ) ( )1 1
2 2 tot 2 tot2p- -¢ ¢ ¢= =U A R r R (3.37)
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Problem: Nuclear Fuel Rod (4 of 6)

The following results are obtained for temperature distributions in the thorium.

0.008 0.009 0.01 0.011

Radial location in fuel, r(m)
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)

qdot = 5E8
qdot = 3E8
qdot = 1E8  

= 2023 K¬ mpT

Operation at 8 35 10 W/m= ´!q is clearly unacceptable since the melting point of
thorium would be exceeded. To prevent softening of the material, which would 
occur below the melting point, the reactor should not be operated much above

8 33 10 W/m .= ´!q

The small radial temperature gradients are attributable to the large value of kt.
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Problem: Nuclear Fuel Rod (5 of 6)
Using the value of T2 from the foregoing solution and computing T3 from the 
surface condition,

( )
( )

2 3

3 2

2
1n /
p -

¢ = gk T T
q

r r

the temperature distribution in the graphite is 
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Problem: Nuclear Fuel Rod (6 of 6)

Operation at 8 35 10 W/m= ´!q is problematic for the graphite. Larger temperature 
gradients are due to the small value of kg .
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Section 3.6

Extended Surfaces

20



Heat Transfer from Extended Surfaces
• An extended surface (also know as a combined conduction-convection system or a 

fin) is a solid within which heat transfer by conduction is assumed to be one 
dimensional, while heat is also transferred by convection (and/or radiation) from the 
surface in a direction transverse to that of conduction.

21

Consider a strut that connects two walls at different temperatures and across which there is 
fluid flow. With T1 > T2, temperature gradients in the x-direction sustain heat transfer by 
conduction in the strut. However, with T1 > T2 > T∞, there is concurrent heat transfer by 
convection to the fluid, causing qx, and hence the magnitude of the temperature gradient, 
|dT/dx|, to decrease with increasing x.

FIGURE 3.12 Combined 
conduction and convection in a 
structural element.



Heat Transfer from Extended Surfaces

22

• Consider the plane wall of Figure 3.13a. 

• If Ts is fixed, there are two ways in which the heat transfer rate may be 
increased. 

1- The convection coefficient h could be increased by increasing the fluid 
velocity, and/or 

2- the fluid temperature T∞ could be reduced. 

• However, there are many situations for which increasing h to the maximum 
possible value is either insufficient to obtain the desired heat transfer rate or 
the associated costs are prohibitive. 



Heat Transfer from Extended Surfaces
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Heat Transfer from Extended Surfaces

24

• Such costs are related to the blower or pump power requirements needed to 
increase h through increased fluid motion. 

• Moreover, the second option of reducing T∞ is often impractical. 

• Examining Figure 3.13b, however, we see that there exists a third option.

• That is, the heat transfer rate may be increased by increasing the surface area 
across which the convection occurs. 

• This may be done by employing fins that extend from the wall into the 
surrounding fluid. 



Heat Transfer from Extended Surfaces

25

• The thermal conductivity of the fin material can have a strong effect on the 
temperature distribution along the fin and therefore influences the degree to 
which the heat transfer rate is enhanced. 

• Ideally, the fin material should have a large thermal conductivity to 
minimize temperature variations from its base to its tip. 

• In the limit of infinite thermal conductivity, the entire fin would be at the 
temperature of the base surface, thereby providing the maximum possible 
heat transfer enhancement.

• Two common finned-tube arrangements are shown in Figure 3.14.



Heat Transfer from Extended Surfaces
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Heat Transfer from Extended Surfaces
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• Different fin configurations are illustrated in Figure 3.15. 

• A straight fin is any extended surface that is attached to a plane wall. 

• It may be of uniform cross-sectional area, or its cross-sectional area 
may vary with the distance x from the wall. 

• An annular fin is one that is circumferentially attached to a cylinder, 
and its cross section varies with radius from the wall of the cylinder. 

• The foregoing fin types have rectangular cross sections, whose area 
may be expressed as a product of the fin thickness t and the width w 
for straight fins or the circumference 2πr for annular fins. 



Heat Transfer from Extended Surfaces
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• In contrast a pin fin, or spine, is an extended surface of circular cross 
section. Pin fins may be of uniform or nonuniform cross section. 

• In any application, selection of a particular fin configuration may 
depend on space, weight, manufacturing, and cost considerations, as 
well as on the extent to which the fins reduce the surface convection 
coefficient and increase the pressure drop associated with flow over the 
fins.



Heat Transfer from Extended Surfaces
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A General Conduction Analysis

30

• As engineers we are primarily interested in knowing the extent to 
which particular extended surfaces or fin arrangements could improve 
heat transfer from a surface to the surrounding fluid. 

• To determine the heat transfer rate associated with a fin, we must first 
obtain the temperature distribution along the fin. 

• As we have done for previous systems, we begin by performing an 
energy balance on an appropriate differential element. 

• Consider the extended surface of Figure 3.16. 

• The analysis is simplified if certain assumptions are made. 



A General Conduction Analysis
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• We choose to assume one-dimensional conditions in the longitudinal 
(x-) direction, even though conduction within the fin is actually two-
dimensional. 

• The rate at which energy is convected to the fluid from any point on 
the fin surface must be balanced by the net rate at which energy 
reaches that point due to conduction in the transverse (y-, z-) direction. 

• However, in practice the fin is thin, and temperature changes in the 
transverse direction within the fin are small compared with the 
temperature difference between the fin and the environment. 

• Hence, we may assume that the temperature is uniform across the fin 
thickness, that is, it is only a function of x. 



A General Conduction Analysis
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• We will consider steady-state conditions and also assume that the 
thermal conductivity is constant, that radiation from the surface is 
negligible, that heat generation effects are absent, and that the 
convection heat transfer coefficient h is uniform over the surface.



A General Conduction Analysis
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A General Conduction Analysis

34

……..Equation 3.62



A General Conduction Analysis

35

This result provides a general form of the energy equation for an 
extended surface. Its solution for appropriate boundary conditions provides 
the temperature distribution, which may be used with Equation 3.62 to 
calculate the conduction rate at any x.

…..Equation 3.66 



Fins of Uniform Cross-Sectional Area

36

• To solve Equation 3.66 it is necessary to be more specific about the 
geometry. 

• We begin with the simplest case of straight rectangular and pin fins of 
uniform cross section (Figure 3.17). 

• Each fin is attached to a base surface of temperature T(0) = Tb and 
extends into a fluid of temperature T∞.



A General Conduction Analysis
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A General Conduction Analysis

38

For the prescribed fins, Ac and P are constant. Accordingly, with dAc/dx 
= 0, Equation 3.66 reduces to

The equation above is a linear, homogeneous, second-order 
differential equation with constant coefficients. Its general solution is 
of the form1



A General Conduction Analysis

39

To evaluate the constants C1 and C2, it is necessary to specify 
appropriate boundary conditions. 

One such condition may be specified in terms of the temperature at the 
base of the fin (x = 0)



A General Conduction Analysis
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• The second condition, specified at the fin tip (x = L), may correspond to 
one of four different physical situations.

• The first condition, Case A, considers convection heat transfer from the fin 
tip. Applying an energy balance to a control surface about this tip (Figure 
3.18), we obtain



A General Conduction Analysis
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FIGURE 3.18 Conduction and convection in a fin of uniform cross section.



A General Conduction Analysis
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The hyperbolic functions

43

The hyperbolic functions are defined as

The derivatives of the hyperbolic functions of the variable u are given as



A General Conduction Analysis

44

Alternatively, conservation of energy indicates that the rate at which heat is 
transferred by convection from the fin must equal the rate at which it is 
conducted through the base of the fin. Accordingly, the alternative 
formulation for qf is



A General Conduction Analysis
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A General Conduction Analysis
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The second tip condition, Case B, corresponds to the assumption that 
convective heat transfer at the fin tip is negligible, in which case the tip 
may be treated as adiabatic and



A General Conduction Analysis
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• Using this expression with Equation 3.74 to solve for C1 and C2 and 
substituting the results into Equation 3.71, we obtain the fin temperature 
distribution, Equation 3.80 of Table 3.4. 

• Using Equation 3.80 with Equation 3.76, the fin heat transfer rate is then 
given by Equation 3.81 of Table 3.4.

• In the same manner, we can obtain the fin temperature distribution and fin 
heat transfer rate for Case C, where the temperature is prescribed at the fin 
tip. 

• That is, the second boundary condition is θ(L) = θL, and the resulting 
expressions for the temperature distribution and heat rate are Equations 3.82 
and 3.83, respectively, of Table 3.4.



A General Conduction Analysis

48

• The very long fin, Case D, is an interesting extension of the preceding 
results. 

• In particular, as, L → ∞, θL → 0 and it is easily verified that the fin 
temperature distribution and heat rate are given by Equations 3.84 and 3.85, 
respectively, of Table 3.4.



EXAMPLE 3.9
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A very long rod 5 mm in diameter has one end maintained at 100°C. The 
surface of the rod is exposed to ambient air at 25°C with a convection heat 
transfer coefficient of 100 W/m2 · K.

Determine the temperature distributions along rods constructed from pure 
copper, 2024 aluminum alloy, and type AISI 316 stainless steel. What are 
the corresponding rates of heat loss from the rods?
Estimate how long the rods must be for the assumption of infinite length 
to yield an accurate estimate of the rate of heat loss.

SOLUTION
Known: A long circular rod exposed to ambient air.



EXAMPLE 3.9
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Find:

Temperature distribution and rate of heat loss when rod is fabricated from 
copper, an aluminum alloy, or stainless steel.
How long rods must be to assume infinite length.



EXAMPLE 3.9
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Schematic:



EXAMPLE 3.9
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Assumptions:
Steady-state conditions.
Temperature is uniform across the rod thickness.
Constant properties.
Negligible radiation exchange with surroundings.
Uniform heat transfer coefficient.
Infinitely long rod.

Properties: Table A.1, copper [T = (Tb + T∞)/2 = 62.5°C ≈ 335 K]: k = 398 
W/m · K. Table A.1, 2024 aluminum (335 K): k = 180 W/m · K. Table A.1, 
stainless steel, AISI 316 (335 K): k = 14 W/m · K.

Analysis:
Subject to the assumption of an infinitely long fin, the temperature 
distributions are determined from Equation 3.84, which may be expressed as



EXAMPLE 3.9
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Substituting for h and D, as well as for the thermal conductivities of copper, 
the aluminum alloy, and the stainless steel, respectively, the values of m are 
14.2, 21.2, and 75.6 m−1. The temperature distributions may then be 
computed and plotted as follows:



EXAMPLE 3.9
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EXAMPLE 3.9

55

To a satisfactory approximation, the expressions provide equivalent results if 
tanh mL ≥ 0.99 or mL ≥ 2.65. Hence a rod may be assumed to be infinitely 
long if



EXAMPLE 3.9
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Results for the aluminum alloy and stainless steel are L∞ = 0.13 m and 
L∞ = 0.04 m, respectively.

Comments:

• The foregoing results suggest that the fin heat transfer rate may be 
accurately predicted from the infinite fin approximation if mL ≥ 2.65. 

• However, can the infinite fin approximation be accurately predicted by 
the temperature distribution T(x)? a larger value of mL would be 
required. 

• This value may be inferred from Equation 3.84 and the requirement 
that the tip temperature be close to the fluid temperature. 



EXAMPLE 3.9
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• For example, if we require that θ(L)/θb = exp(−mL) < 0.01, it follows 
that mL > 4.6, in which case L∞ ≈ 0.33, 0.23, and 0.07 m for the 
copper, aluminum alloy, and stainless steel, respectively. 

• These results are consistent with the distributions plotted in part 1.



Fin Performance Parameters

• Fin Effectiveness: the ratio of the fin heat transfer rate to the 
heat transfer rate that would exist without the fin

,
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Fin Performance Parameters
• Fin Resistance:

59

Combining the expression for the thermal resistance due to convection 
at the exposed base,

If the fin is to enhance heat transfer, its resistance must not exceed that of the 
exposed base.



Fin Performance Parameters 
• Fin Efficiency: is the actual fin heat transfer rate, qf, divided by 

the maximum possible heat transfer rate.

where 0 ≤ nf ≤ 1

For a straight fin of uniform cross section and an adiabatic tip:
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Corrected Fin Lengths

61

• More accurate predictions may be obtained by using the adiabatic tip
result, with a corrected fin length of the form Lc = L + (t/2) for a
rectangular fin and Lc = L + (D/4) for a pin fin.

• The correction is based on assuming equivalence between heat transfer
from the actual fin with tip convection and heat transfer from a longer,
hypothetical fin with an adiabatic tip.

• Hence, with tip convection, the fin heat rate may be approximated as



Corrected Fin Lengths
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Fins of Nonuniform Cross-Sectional Area

63

• The second term of Equation 3.66 must be retained for fins of 
nonuniform cross-sectional area

• The solutions are no longer in the form of simple exponential or 
hyperbolic functions. 

• As a special case, consider the annular fin

• Although the fin thickness is uniform (t is independent of r), the cross-
sectional area, Ac = 2πrt, varies with r. 

• Replacing x by r in Equation 3.66 and expressing the surface area as

the general form of the fin equation reduces to



64

Consider the annular fin:

Fins of Nonuniform Cross-Sectional Area

xà r
Ac = 2πrt,

with m2 ≡ 2h/kt and 
θ ≡ T − T∞,



65

Fins of Nonuniform Cross-Sectional Area
The foregoing expression is a modified Bessel equation of order zero, and 
its general solution is of the form

where I0 and K0 are modified, zero-order Bessel functions of the first and 
second kinds, respectively. If the temperature at the base of the fin is 
prescribed, θ(r1) = θb, and an adiabatic tip is presumed, dθ/dr|r2 = 0, C1 and 
C2 may be evaluated to yield a temperature distribution of the form

where I1(mr) = d[I0(mr)]/d(mr) and K1(mr) = −d[K0(mr)]/d(mr) are modified, 
first-order Bessel functions of the first and second kinds, respectively. The 
Bessel functions are tabulated in Appendix B.



66

With the fin heat transfer rate expressed as:

This result may be applied for an active (convicting) tip, if the tip radius r2 is 
replaced by a corrected radius of the form r2c = r2 + (t/2). 

Fins of Nonuniform Cross-Sectional Area



67

Expressions for nf are provided in Table 3.5 for common 
geometries.

Consider a triangular fin:
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Expressions for nf are provided in Table 3.5 for common 
geometries.

Consider a triangular fin:
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Expressions for nf are provided in Table 3.5 for common 
geometries.

Consider a triangular fin:
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Fin Arrays
• Representative arrays of

(a) rectangular and
(b) annular fins.

o Total surface area:

o Total heat rate:

,
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70

o Overall surface efficiency ηo



Fin Arrays

71

• In contrast to the fin efficiency ηf, which characterizes the performance 
of a single fin, the overall surface efficiency ηo characterizes an array 
of fins and the base surface to which they are attached. 

• where S designates the fin pitch



Fin Arrays
o Overall surface efficiency and resistance:
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• Equivalent Thermal Circuit:
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Fin Arrays • Effect of Surface Contact Resistance:
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EXAMPLE 3.10
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The engine cylinder of a motorcycle is constructed of 2024-T6 aluminum 
alloy and is of height H = 100 mm and outer diameter D = 2r1 = 50 mm. 

Under typical operating conditions, qt = 2 kW of heat is transferred from 
the cylinder to ambient air at 300 K, with a convection coefficient of 75 
W/m2 · K. 

Annular fins are integrally cast with the cylinder to reduce the cylinder 
temperature. 

Consider ten equally-spaced fins, each of which are of thickness t = 4 mm 
and length L = 20 mm. What reduction in the cylinder temperature can be 
achieved by use of the fins?
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SOLUTION

Known: Operating conditions of a finned motorcycle cylinder.

Find: Reduction in cylinder temperature associated with using fins

EXAMPLE 3.10
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Schematic:

EXAMPLE 3.10
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EXAMPLE 3.10
Assumptions:

• Steady-state conditions.
• Temperature is uniform across the fin thickness.
• Constant properties.
• Negligible radiation exchange with surroundings.
• Uniform convection coefficient over surface (with or without fins).

Properties: Table A.1, 2024-T6 aluminum (T ≈ 550 K): k = 186 W/m · K.

Analysis: With the fins in place, Equation 3.106 can be rearranged to 
determine an expression for the cylinder temperature



78

EXAMPLE 3.10



Comments:
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• From Table A.1, the melting temperature of 2024-T6 aluminum is 775 K 
= 502°C. The engine must be equipped with fins to avoid failure.

• The fins are of high efficiency. Assuming isothermal fins (ηf = 1), the 
cylinder temperature would be Tb = T∞ + qt/hAt = 272°C, which is only 
slightly lower than the predicted temperature.

• Further reduction in the cylinder temperature could be achieved by 
adding more fins. Prescribing a fin clearance of 2 mm at each end of the 
array and a minimum fin gap of 4 mm, the maximum allowable number 
of fins is Nmax = H/S = 0.10 m/(0.004 + 0.004) m = 12.5, which we 
round down to Nmax = 12. Use of 12 fins reduces the cylinder 
temperature to Tb = 245°C.

• The assumed temperature of 550 K (277°C) that was used to evaluate 
the thermal conductivity is reasonable.



Fin Arrays
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Problem 3.99
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Turbine blades mounted to a rotating disc in a gas turbine engine are exposed to a 
gas stream that is at T∞ = 1200°C and maintains a convection coefficient of h = 250 
W/m2 · K over the blade. 

The blades, which are fabricated from Inconel, k ≈ 20 W/m · K, have a length of L 
= 50 mm. The blade profile has a uniform cross-sectional area of Ac = 6 × 10−4 m2 
and a perimeter of P = 110 mm. A proposed blade-cooling scheme, which involves 
routing air through the supporting disc, is able to maintain the base of each blade at 
a temperature of Tb = 300°C.

(a) If the maximum allowable blade temperature is 1050°C and the blade tip may be 
assumed to be adiabatic, is the proposed cooling scheme satisfactory?

(b) For the proposed cooling scheme, what is the rate at which heat is transferred 
from each blade to the coolant?



Problem 3.99
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Problem: Turbine Blade Cooling (1 of 2)
Problem 3.99: Assessment of cooling scheme for gas turbine blade. Determination of whether 

blade temperatures are less than the maximum allowable value (1050°C) for 
prescribed operating conditions and evaluation of blade cooling rate.

SCEHMATIC:

ASSUMPTIONS: (1) One-dimensional, steady-state conduction in blade, (2) Constant k, (3)Adiabatic 
blade tip, (4) Negligible radiation.
ANALYSIS: Conditions in the blade are determined by Case B (adiabatic tip) of Table 3.4.
(a) With the maximum temperature existing at x = L, Equation 3.80 yields

( ) 1
coshb

T L T
T T mL

¥

¥

-
=

-

( )
1/2

1/22 4 2 1

1

250 / 0.11 / 20 / 6 10 47.87

47.87 0.05 2.39
c

hPm W m K m W m K m m
kA

mL m m

- -

-

æ ö
= = × ´ × ´ ´ =ç ÷
è ø
= ´ =
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Problem: Turbine Blade Cooling (2 of 2)

From Table B.1 (or by calculation), cosh mL = cosh (2.39) = 5.51 Hence,

1200 C (300 1200) C( ) 1037 C
5.51

T L ° + - °
= = °

and, subject to the assumption of an adiabatic tip, the operating conditions are acceptable.

1/2 2 4 2 1/2(b) with ( ) (250W/m K 0.11m 20W/m K 6 10 m ) ( 900 ) 517W,c bM hPkA Cq -= = × ´ ´ × ´ ´ - ° = -

Equation 3.81 and Table B.1 yield

qf= M tanh mL = −517W(0.983) = −508W
Hence,

qb = −qf = 508 W <

Heat transfer is to the base of the blade. 
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Problem 3.114 
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An isothermal silicon chip of width W = 20 mm on a side is soldered to an 
aluminum heat sink (k = 180 W/m · K) of equivalent width. 

The heat sink has a base thickness of Lb = 3 mm and an array of rectangular 
fins, each of length Lf = 15 mm. Airflow at T∞ = 20°C is maintained 
through channels formed by the fins and a cover plate, and for a convection 
coefficient of h = 100 W/m2 · K, a minimum fin spacing of 1.8 mm is 
dictated by limitations on the flow pressure drop. The solder joint has a 
thermal resistance of 



Problem 3.114 
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Problem 3.114 
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Consider limitations for which the array has N = 11 fins, the fin thickness t = 
0.182 mm, and pitch S = 1.982. If the maximum allowable chip temperature 
is Tc = 85°C, what is the corresponding value of the chip power qc? An 
adiabatic fin tip condition may be assumed, and airflow along the outer 
surfaces of the heat sink may be assumed to provide a convection coefficient 
equivalent to that associated with airflow through the channels.



Problem: Chip Heat Sink (1 of 4)
Problem 3.114: Determination of maximum allowable power qc for a 20 mm × 20 mm electronic 

chip whose temperature is not to exceed Tc = 85°C, when the chip is attached to 
an air-cooled heat sink with N = 11 fins of prescribed dimensions.        

Schematic:

Assumptions: (1) Steady-state, (2) One-dimensional heat transfer, (3) Isothermal chip, (4) 
Negligible heat transfer from top surface of chip, (5) Negligible temperature rise for air flow, (6) 
Uniform convection coefficient associated with air flow through channels and over outer surface 
of heat sink, (7) Negligible radiation, (8) Adiabatic fin tips.
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Problem: Chip Heat Sink (2 of 4)

Analysis: (a) From the thermal circuit,

, , ,

c c
c

tot t c t b t o

T T T Tq
R R R R
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= =

+ +

6 2
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, 2 2
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t c
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= = =
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2

, 2
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W
b
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L

R
k

= = × =
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Problem: Chip Heat Sink (3 of 4)

From Equations (3.108), (3.107), and (3.104)

,
1 , 1 (1 )f

t o o f
o t t

NA
R

hA A
h h

h
= = - -

4 22 2 0.02m 0.015m 6 10 mf fA WL -= = ´ ´ = ´
2 2 3 4 2( ) (0.02m) 11(0.182 10 m 0.02m) 3.6 10 mbA W N tW - -= - = - ´ ´ = ´

3 26.96 10 mt f bA NA A -= + = ´
1/21/2 2

32 200W/m KWith 0.182 10 m (0.015m) 1.17,  tanh 0.824 and 
180 W/m K

Equation (3.94) yields

f f f
hmL L mL
kt

-æ ö×æ ö= = ´ ´ = =ç ÷ç ÷ ×è ø è ø

tanh 0.824 0.704
1.17

f
f

f
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h = = =

, 2.00K/W,  andt oR = 0.719,oh =

                        

(85 20) C 31.8 W
(0.005 0.042 2.00)K/W

contact base fin array resistances

cq
°-

= =
+ +
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Problem: Chip Heat Sink (4 of 4)

Comments: The heat sink significantly increases the allowable heat dissipation.  If it 
were not used and heat was simply transferred by convection from the surface of the chip 
with 2

tot100W/m K, 2.05 K/Wh R= × = from Part (a) would be replaced by 
2

conv 1 / 25K/W,  yielding 2.60W.cR hW q= = =
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