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Implications of Energy Generation

* Involves a local (volumetric) source of thermal energy due to conversion
from another form of energy in a conducting medium.

* The source may be uniformly distributed, as in the conversion from
electrical to thermal energy (Ohmic heating):
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or it may be non-uniformly distributed, as in the absorption of radiation
passing through a semi-transparent medium. For a plane wall,

(3.43)
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* Generation affects the temperature distribution in the medium and
causes the heat rate to vary with location, thereby precluding inclusion of
the medium in a thermal circuit.




B
The Plane Wall

* Consider one-dimensional, steady-state conduction in a plane wall of constant
k, uniform generation, and asymmetric surface conditions:

* Heat Equation: x
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Is the heat flux ¢" independent of x?
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B
Plane Wall

Symmetric Surface Conditions or One Surface Insulated:
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* What is the temperature gradient at the centerline or
the insulated surface? 1;,=7;,=T;
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*  Why does the magnitude of the temperature gradient ' e > "oy
increase with increasing x? T T T con i T T T
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B
Plane Wall
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How do we determine the heat rate at x = L? (c)




Radial Systems (1 or2)

Cvylindrical (Tube) Wall Spherical Wall (Shell)

Cylindrical Wall
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Solid Cvlinder (Circular Rod) Solid Sphere
* Heat Equations: ,
Spherical

Cvylindrical
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Radial Systems (2 of2)

* Solution for Uniform Generation in a Solid Sphere of Constant & with
Convection Cooling;:

Temperature Distribution Surface Temperature
-3
‘;T q; +C Overall energy balance:

12 .

. 9 . . _ _ q’/;)
T:_ﬂ_Q_FCZ _Eout+Eg_0_)];_];+3h

6k r

r from rf: ner lance:
c;_T|r0 0> C, =0 Or from a surface energy balanc
r . . q
—_ E —-E =0 -1 =71 +—

T(}’;): q”; in qond( ) qconv 3h

gr) (1
T(r)= o [1 = ]+T
* A summary of temperature distributions is provided in Appendix C for
plane, cylindrical and spherical walls, as well as for solid cylinders and

spheres. Note how boundary conditions are specified and how they are used
to obtain surface temperatures.




e
Problem 3.56

A composite spherical shell of inner radius r1 = 0.25 m 1s constructed
from lead of outer radius r2 = 0.30 m and AISI 302 stainless steel of
outer radius 13 = 0.31 m.

The cavity 1s filled with radioactive wastes that generate heat at a rate

of q=5x10 W/m’

It 1s proposed to submerge the container in oceanic water that is at a
temperature of Too = 10°C and provide a uniform convection
coefficient of h = 500 W/m2 - K at the outer surface of the container.
Are there any problems associated with this proposal?

Hint: check the iner surface temperature of the Lead
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Problem: Radioactive Waste Decay (1 of2)

Problem 3.56: Suitability of a composite spherical shell for storing radioactive
wastes in oceanic water.

SCHEMATIC: .0
. b r‘g-zsc‘)’%Om @
Stainless o20.31m T T T/,zsoo W/m’--K
steel 5= T =10°C
Radioactive wastes IMW

M

(4 =5x10°W/m?) ‘hrk nn i)‘fﬂk(l l_:) mry2h

ASSUMPTIONS: (1) One-dimensional conduction, (2) Steady-state conditions,
(3) Constant properties at 300K, (4) Negligible contact resistance.

PROPERTIES: Table A-1, Lead: £ = 35.3 W/m‘K, MP =601 K; St.St.: £ =15.1 W/m-K.

ANALYSIS: From the thermal circuit, 1t follows that

17 - T
g=-1—-2 ZQ[ﬂ”’”ﬁ}
Riot 3
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Problem: Radioactive Waste Decay (2 of2)

The thermal resistances are:

1 B 1
0.25m 0.30m

Rpp =[1/(47x35.3 W/m-K)] { } =0.00150 K/W

11
0.30m  0.31m

Rspst. =[1/(47 %151 W/m-K)] { } =0.000567 K/W

Reony = [1 / (4;; x0.312m? x 500 W/m? K)} =0.00166 K/W

RtOt = 000372 K/W
The heat rate 1s then
g=5x10° W/m> (47 /3)(0.25m)’ =32,725 W

and the inner surface temperature is
Tj = Ty + Riorq = 283 K +0.00372 K/W (32,725 W)

— 405K < MP = 601 K <
Hence, from the thermal standpoint, the proposal is adequate.
COMMENTS: In fabrication, attention should be given to maintaining a good thermal contact. A

protective outer coating should be applied to prevent long term corrosion of the stainless steel. In this
application, thermal contact resistance 1s undesirable.
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e
Problem 3.82

A high-temperature, gas-cooled nuclear reactor consists of a
composite cylindrical wall for which a thorium fuel element (k = 57
W/m - K) (reactor core) 1s encased in graphite (k =3 W/m - K) and
gaseous helium flows through an annular coolant channel. Consider
conditions for which the helium temperature 1s Too = 600 K and the
convection coefficient at the outer surface of the graphite 1s h = 2000
W/m?2 -]

ry=8mm '
Coolant channel with

. helium flow (T, k)
r,=11mm -

r3=14 mm
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e
Problem 3.82

(a) If thermal energy is uniformly generated in the fuel element at a
rate ¢ =10°W/m’. what are the temperatures T1 and T2 at the
inner and outer surfaces, respectively, of the fuel element?

(b) Compute and plot the temperature distribution in the composite

wall for 10°<g<5x10° W/m’.
What is the maximum allowable value of g?
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Schematic:
= Coolant
[{ —omm h = 2000 W/m2-K
T..= 600 K
ro =11 mm
Graphite
f3 =14 mm kg =3 W/m-K
T4 i
Thorium (q)
k¢ = 57 W/m-K
T2

Assumptions: (1) Steady-state conditions, (2) One-dimensional conduction,

(3) Constant properties, (4) Negligible contact resistance, (5) Negligible
radiation.

Properties: Table A.1, Thorium: T,y =2023 K; Table A.2, Graphite: 7,,, =2273 K.

14



Problem: Nuclear Fuel Rod 2 ofe¢)

Analysis: (a) The outer surface temperature of the fuel, 7, , may be
determined from the rate equation g = I, -1,
h Rtlot
where In(ry/
fot = Us/m) 10185 m-k/wW
27k, 2rrsh
The heat rate may be determined by applying an energy balance to a control
surface about the fuel element, £ =FE,

or, per unit length, Elw=E,

Assume that the interior surface of the thorium is adiabatic, it follows that
q' = q7z(r22 — rf) =17,907 W/m

Hence, T, = ¢'Riy, + T, =17,907 W/m(0.0185 m-K/W)+ 600 K =931 K

With zero heat flux at the inner surface of the fuel element, Eq. C.14 yields

- 2 2
S . CH L ar; =931 K+25K-18 K=938 K <
4k, v 2k, r1

2
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Problem: Nuclear Fuel Rod ¢ ofe)

Since T; and T, are well below the melting points of thorium and graphite, the
prescribed operating condition is acceptable.

(b) The solution for the temperature distribution in a cylindrical wall with

generation 1s
q'r22 7_2
T(r)=T,+ 7 R

‘ 5

) 2 C.2)
|lan |, A B In(r,/r) (
4kt( r22]+(T2 Tl) In(r, /1)
Boundary conditions at ; and r, are used to determine 7', and 7.
an [ _n (-
o 1{4,@ [l r;j+@ Tl)} (C.14)
r=n 1 =0==7
2 nin(r /1)
an (5 -
i ’{4@ [l ,;]*(Tz Tl)} (C.17)
r=r, UZ(TZ—TOO)——2
2 rin(r /1)

U, =(4R,,) " =(22nRl, )" (3.37)
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Problem: Nuclear Fuel Rod ¢ of¢)

The following results are obtained for temperature distributions in the thorium.

2500

2100

1700 | ; ; | «T,=2023K

1300

Temperature, T(K)

900 -f

500
0.008 0.009 0.01 0.011

Radial location in fuel, r(m)

—6— qdot = 5E8
—A— qdot = 3E8
—8— qdot = 1E8

Operation at g =5x10"W/m’ is clearly unacceptable since the melting point of

thorium would be exceeded. To prevent softening of the material, which would

occur below the melting point, the reactor should not be operated much above
g=3x10°W/m’.

The small radial temperature gradients are attributable to the large value of k,
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e
Problem: Nuclear Fuel Rod ¢ ofe)

Using the value of T, from the foregoing solution and computing 7 from the
surface condition,

/- 27k, (T, - T3)

In (r3 /¥y )
the temperature distribution in the graphite is
T, -T
T,(r)=—2—3_1In| = |+T (3.31)
1n(r2 / r3) 13
2500
g 20 «T, =2273K
s 1700 ~_
g — )
:é; 1300 — — \
— 900 — £
500
0.011 0.012 0.013 0.014

Radial location in graphite, r(m)

—6— qdot = 5E8
—A— qdot = 3E8
—8— qdot = 1E8
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Problem: Nuclear Fuel Rod @ ofe)

Operation at ¢ = 5x10°W/m’ is problematic for the graphite. Larger temperature
gradients are due to the small value of &, .

19



B
Section 3.6

Extended Surfaces

20



Heat Transfer from Extended Surfaces

* An extended surface (also know as a combined conduction-convection system or a
fin) 1s a solid within which heat transfer by conduction is assumed to be one
dimensional, while heat is also transferred by convection (and/or radiation) from the
surface in a direction transverse to that of conduction.

. L
FIGURE 3.12 Combined
conduction and convection in a — 5 o
structural element. s — | |
.
A n
] 0
qx1 Tl T2
T(x)
'>T,>T,

Consider a strut that connects two walls at different temperatures and across which there is
fluid flow. With T1 > T2, temperature gradients in the x-direction sustain heat transfer by
conduction in the strut. However, with T1 > T2 > Too, there is concurrent heat transfer by
convection to the fluid, causing gx, and hence the magnitude of the temperature gradient,
|dT/dx|, to decrease with increasing x.
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Heat Transfer from Extended Surfaces

* Consider the plane wall of Figure 3.13a.

» If Ts is fixed, there are two ways in which the heat transfer rate may be
increased.

1- The convection coefficient h could be increased by increasing the fluid
velocity, and/or

2- the fluid temperature Too could be reduced.

* However, there are many situations for which increasing h to the maximum
possible value 1s either insufficient to obtain the desired heat transfer rate or
the associated costs are prohibitive.

22



Heat Transfer from Extended Surfaces

T, h ,{/

&
A Y

—t>q=hA(T,-T,)

(a) (b)

FIGURE 3.13 Use of fins to enhance heat transfer from a plane wall. (a) Bare surface. (b) Finned surface.
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Heat Transfer from Extended Surfaces

* Such costs are related to the blower or pump power requirements needed to
increase h through increased fluid motion.

* Moreover, the second option of reducing Too i1s often impractical.
* Examining Figure 3.13b, however, we see that there exists a third option.

* That is, the heat transfer rate may be increased by increasing the surface area
across which the convection occurs.

* This may be done by employing fins that extend from the wall into the
surrounding fluid.

24



Heat Transfer from Extended Surfaces

* The thermal conductivity of the fin material can have a strong effect on the
temperature distribution along the fin and therefore influences the degree to
which the heat transfer rate is enhanced.

* Ideally, the fin material should have a large thermal conductivity to
minimize temperature variations from its base to its tip.

* In the limit of infinite thermal conductivity, the entire fin would be at the
temperature of the base surface, thereby providing the maximum possible

heat transfer enhancement.

* Two common finned-tube arrangements are shown in Figure 3.14.

25



Heat Transfer from Extended Surfaces
Liquid flow

Gas flow

FIGURE 3.14 Schematic of typical finned-tube heat exchangers.




Heat Transfer from Extended Surfaces

Different fin configurations are illustrated in Figure 3.15.
A straight fin 1s any extended surface that is attached to a plane wall.

It may be of uniform cross-sectional area, or its cross-sectional area
may vary with the distance x from the wall.

An annular fin 1s one that is circumferentially attached to a cylinder,
and its cross section varies with radius from the wall of the cylinder.

The foregoing fin types have rectangular cross sections, whose area

may be expressed as a product of the fin thickness t and the width w
for straight fins or the circumference 2ar for annular fins.

27



Heat Transfer from Extended Surfaces

In contrast a pin fin, or spine, 1s an extended surface of circular cross
section. Pin fins may be of uniform or nonuniform cross section.

In any application, selection of a particular fin configuration may
depend on space, weight, manufacturing, and cost considerations, as
well as on the extent to which the fins reduce the surface convection

coefficient and increase the pressure drop associated with flow over the
fins.

28



Heat Transfer from Extended Surfaces

— — —

L Lo

(b) (c) (d)

FIGURE 3.15 Fin configurations. (a) Straight fin of uniform cross section. (b) Straight fin of nonuniform cross section. (¢) Annular fin. (d) Pin fin.

29



A General Conduction Analysis

* As engineers we are primarily interested in knowing the extent to
which particular extended surfaces or fin arrangements could improve
heat transfer from a surface to the surrounding fluid.

* To determine the heat transfer rate associated with a fin, we must first
obtain the temperature distribution along the fin.

* As we have done for previous systems, we begin by performing an
energy balance on an appropriate differential element.

* Consider the extended surface of Figure 3.16.

* The analysis 1s simplified if certain assumptions are made.

30



A General Conduction Analysis

We choose to assume one-dimensional conditions in the longitudinal
(x-) direction, even though conduction within the fin is actually two-
dimensional.

The rate at which energy 1s convected to the fluid from any point on
the fin surface must be balanced by the net rate at which energy
reaches that point due to conduction in the transverse (y-, z-) direction.

However, in practice the fin is thin, and temperature changes in the
transverse direction within the fin are small compared with the
temperature difference between the fin and the environment.

Hence, we may assume that the temperature is uniform across the fin
thickness, that 1s, it is only a function of x.

31



A General Conduction Analysis

We will consider steady-state conditions and also assume that the
thermal conductivity is constant, that radiation from the surface is
negligible, that heat generation effects are absent, and that the

convection heat transfer coefficient h 1s uniform over the surface.

32



A General Conduction Analysis

FIGURE 3.16 Energy balance for an extended surface.
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A General Conduction Analysis

4, =4, + dx T dqconv

q =—kA au. . Equation 3.62

_ oy OO o i oy AT
Qypan = KA~ k(A S )dx

dq

conv

= hdA, (T-T,, )= hPdx (T—T,,)
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A General Conduction Analysis

d,, dT\ hP.,_ _
dx\AC dX) k (T Too) 0

d’T, (1dA\dT _ hP
i \A, dx Jdx kA,

(I'-T,)=0 ...Equation3.66

This result provides a general form of the energy equation for an
extended surface. Its solution for appropriate boundary conditions provides
the temperature distribution, which may be used with Equation 3.62 to
calculate the conduction rate at any x.

35



Fins of Uniform Cross-Sectional Area

* To solve Equation 3.66 it is necessary to be more specific about the
geometry.

* We begin with the simplest case of straight rectangular and pin fins of
uniform cross section (Figure 3.17).

* Each fin 1s attached to a base surface of temperature T(0) = Tb and
extends into a fluid of temperature Too.

36



A General Conduction Analysis

y ///} T,,

’:L N / Geony
i Y

T,

—
P =

FIGURE 3.17 Straight fins of uniform cross section. (a) Rectangular fin. (b) Pin fin.
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A General Conduction Analysis

For the prescribed fins, Ac and P are constant. Accordingly, with dAc/dx
= 0, Equation 3.66 reduces to

0x)=Tx)—-T,

2
ET_ hPr_1 y_y

\
dx* kA,
2 2 _ hP
Z_f_m20=0 4 =kAc
X

The equation above is a linear, homogeneous, second-order
differential equation with constant coefficients. Its general solution is

of the form1 0(x) =C; ™ +Cye ™

2
d°T,(1dAN\dT _ AP —0
ix? + (Ao )i~ BT T .



A General Conduction Analysis

To evaluate the constants C1 and C2, it is necessary to specify
appropriate boundary conditions.

One such condition may be specified in terms of the temperature at the
base of the fin (x = 0)

00)=T, —-T,, =6,
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A General Conduction Analysis

* The second condition, specified at the fin tip (x = L), may correspond to
one of four different physical situations.

» The first condition, Case A, considers convection heat transfer from the fin

tip. Applying an energy balance to a control surface about this tip (Figure
3.18), we obtain
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A General Conduction Analysis

Fluid, 7.
9conv
T, /
- m
Gy = gy > A 4| ——> |l —>hadTw) - T.)
" 1)
Ob
>
0
0 L

X
FIGURE 3.18 Conduction and convection in a fin of uniform cross section.
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A General Conduction Analysis

hA,[T(L)-T., 1= —-kA,SL
dxx=L
— _rd0
ho L =-kg|
0, =C; +C,

h(Cie™t +Cye ™) =km (Coe™ - C ™)

0 _ cosh m (L — x) + (h/mk) sinh m (L — x)
0, cosh mL + (h/mk) sinh mL
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The hyperbolic functions

The hyperbolic functions are defined as

e* —e ™ _ sinh x

e +e* cosh x

sinh x = %(e" — ™) cosh x = %(e" +e7*) tanh x =

e ¥ =coshzx —sinhz

e’ = coshzx + sinhx

The derivatives of the hyperbolic functions of the variable u are given as

i(sinh u) = (cosh u) du d (cosh u) = (sinh u) du d (tanh u) = ( 12 )du
dx cosh? u) dX
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A General Conduction Analysis

= k4, %

dT
q,=q, = kA, ——
! b x =0 cdxx=0

€ dx

_ JnPiA g, Sinh mL + (A/mk) cosh mL M = \/hPkA_06,
G ¢ cosh mL + (hlmk) sinh mL

Alternatively, conservation of energy indicates that the rate at which heat 1s
transferred by convection from the fin must equal the rate at which it 1s
conducted through the base of the fin. Accordingly, the alternative
formulation for g,1s

4, = [, hT()=Ty]dA,

q, = fAf ho (x) dA;

44



A General Conduction Analysis

Case

D
0=T-T,

0, =00)=T,

L —T, M= ./hPkA,0,

TABLE 3.4 Temperature distribution and heat rates for fins of uniform cross section

Tip Condition Temperature
(x=1L) Distribution 6/6y,

s cosh m (L — x) + (h/mk) sinh m (L — x)
oy o ] cosh mL + (A/mk) sinh mL
Adiabatic: cosh m (L = x)
de/dX|x=L =0 cosh mL
Prescribed temperature: (0, 6,) sinh mn);1+ sinh m (L — x)
0( L) — GL S1 mL
Infinite fin (L — «): 6(L) = 0 e mx

m* = hPlkA,

Fin Heat
Transfer Rate gy

(3.75) inh mL + (h/mk) cosh mL (3.77)
cosh mL + (h/mk) sinh mL o

(3.80) M tanh mL (3.81)
(3.82) ppleoshmL = 0; 10s) (3.83)
sinh mL
(3.84) M (3.85)

A table of hyperbolic functions is given in Appendix B.1.
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A General Conduction Analysis

The second tip condition, Case B, corresponds to the assumption that

convective heat transfer at the fin tip 1s negligible, in which case the tip
may be treated as adiabatic and

do _
dXx=L =0

Cl emL - C2 e_mL = 0

46



A General Conduction Analysis

» Using this expression with Equation 3.74 to solve for C1 and C2 and
substituting the results into Equation 3.71, we obtain the fin temperature
distribution, Equation 3.80 of Table 3.4.

* Using Equation 3.80 with Equation 3.76, the fin heat transfer rate is then
given by Equation 3.81 of Table 3.4.

* In the same manner, we can obtain the fin temperature distribution and fin
heat transfer rate for Case C, where the temperature is prescribed at the fin

tip.

* That 1s, the second boundary condition 1s (L) = 6L, and the resulting
expressions for the temperature distribution and heat rate are Equations 3.82
and 3.83, respectively, of Table 3.4.
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A General Conduction Analysis

* The very long fin, Case D, is an interesting extension of the preceding
results.

* In particular, as, L — oo, OL — 0 and 1t 1s easily verified that the fin
temperature distribution and heat rate are given by Equations 3.84 and 3.85,
respectively, of Table 3.4.
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EXAMPLE 3.9

A very long rod 5 mm in diameter has one end maintained at 100°C. The

surface of the rod is exposed to ambient air at 25°C with a convection heat
transfer coefficient of 100 W/m? - K.

Determine the temperature distributions along rods constructed from pure
copper, 2024 aluminum alloy, and type AISI 316 stainless steel. What are
the corresponding rates of heat loss from the rods?

Estimate how long the rods must be for the assumption of infinite length
to yield an accurate estimate of the rate of heat loss.

SOLUTION
Known: A long circular rod exposed to ambient air.
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-
EXAMPLE 3.9

Find:

Temperature distribution and rate of heat loss when rod is fabricated from
copper, an aluminum alloy, or stainless steel.

How long rods must be to assume infinite length.
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-
EXAMPLE 3.9

Schematic:

/ Air
' | i / T. = 25°C
LT,, — ’/ h = 100 W/m?K

R

) Lk. L—o, D =5 mm




-
EXAMPLE 3.9

Assumptions:

Steady-state conditions.

Temperature 1s uniform across the rod thickness.
Constant properties.

Negligible radiation exchange with surroundings.
Uniform heat transfer coefficient.

Infinitely long rod.

Properties: Table A.1, copper [T = (Tb + Tw)/2 = 62.5°C =~ 335 K]: k =398
W/m - K. Table A.1, 2024 aluminum (335 K): k = 180 W/m - K. Table A.1,
stainless steel, AISI 316 (335 K): k=14 W/m - K.

Analysis:
Subject to the assumption of an infinitely long fin, the temperature
distributions are determined from Equation 3.84, which may be expressed as
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-
EXAMPLE 3.9

T=T, +T, — T, e ™

where m = (hP/kA,)"2 = (4h/kD)/2

Substituting for h and D, as well as for the thermal conductivities of copper,
the aluminum alloy, and the stainless steel, respectively, the values of m are
14.2,21.2, and 75.6 m—1. The temperature distributions may then be
computed and plotted as follows:
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EXAMPLE 3.9

100

80

T (°C)
o)
O

0 50 100 150 200 250 300
x (mm)
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-
EXAMPLE 3.9

To a satisfactory approximation, the expressions provide equivalent results 1f
tanh mL > 0.99 or mL > 2.65. Hence a rod may be assumed to be infinitely
long if

1/2
L>L, =20- 2.65(kAC)

hP

) 12
398 W/m - K X (#/4)(0.005 m) ] =0.19m

L, =265 >
100 W/m? - K X 7(0.005 m)
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-
EXAMPLE 3.9

Results for the aluminum alloy and stainless steel are Loo = 0.13 m and
Loo = 0.04 m, respectively.

Comments:

* The foregoing results suggest that the fin heat transfer rate may be
accurately predicted from the infinite fin approximation if mL > 2.65.

* However, can the infinite fin approximation be accurately predicted by
the temperature distribution T(x)? a larger value of mL would be
required.

* This value may be inferred from Equation 3.84 and the requirement
that the tip temperature be close to the fluid temperature.
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-
EXAMPLE 3.9

* For example, if we require that 0(L)/0b = exp(—mL) < 0.01, 1t follows
that mL > 4.6, in which case Loo = (0.33, 0.23, and 0.07 m for the
copper, aluminum alloy, and stainless steel, respectively.

* These results are consistent with the distributions plotted in part 1.
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Fin Performance Parameters

* Fin Effectiveness: the ratio of the fin heat transfer rate to the
heat transfer rate that would exist without the fin

qs
hAc,be

g, Twithd hThkandl 4 /P

EfE
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Fin Performance Parameters

 Fin Resistance:

Combining the expression for the thermal resistance due to convection

at the exposed base, 1
t,b — h Ac, b

o =R

f R, ;

If the fin 1s to enhance heat transfer, its resistance must not exceed that of the
exposed base.
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Fin Performance Parameters

* Fin Efficiency: is the actual fin heat transfer rate, qf, divided by
the maximum possible heat transfer rate.

q q q
S z - S whereOSnfSI
dox NA f T, -T,) hA f 0,

47

For a straight fin of uniform cross section and an adiabatic tip:

n =Mtanth=tanth

1
R =
tf hAfI]f
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-
Corrected Fin Lengths

* More accurate predictions may be obtained by using the adiabatic tip
result, with a corrected fin length of the form Lc = L + (t/2) for a
rectangular fin and Lc = L + (D/4) for a pin fin.

* The correction 1s based on assuming equivalence between heat transfer
from the actual fin with tip convection and heat transfer from a longer,
hypothetical fin with an adiabatic tip.

* Hence, with tip convection, the fin heat rate may be approximated as

q; = M tanh mL,
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-
Corrected Fin Lengths

and the corresponding efficiency as

_tanh mL, (3.95)
Ny = "L

Errors associated with the approximation are negligible if (ht/k) or (hD/2k) = 0.0625 [15].

C

If the width of a rectangular fin is much larger than its thickness, w » t, the perimeter may be approximated as P = 2w,
and

172 1/2
2
mL, = (—k’ff ) L, = (k_’t‘ L,
C

Multiplying numerator and denominator by L!/? and introducing a corrected fin profile area, Ap = L¢t, it follows that

1/2
T =( 2h ) 132 (3.96)
c kAp c
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Fins of Nonuniform Cross-Sectional Area

The second term of Equation 3.66 must be retained for fins of
nonuniform cross-sectional area

The solutions are no longer in the form of simple exponential or
hyperbolic functions.

As a special case, consider the annular fin

Although the fin thickness is uniform (t is independent of r), the cross-
sectional area, Ac = 2mrt, varies with r.

Replacing x by r in Equation 3.66 and expressing the surface area as

A, =21 (r2 = r% )

the general form of the fin equation reduces to
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Fins of Nonuniform Cross-Sectional Area

Consider the annular fin:

-
.
0

dT+(1dA )dT hP

dx? \A. dx Jdx kA,
X2r
Ac =2nrt, Ay =2m (r2 — r%)

d*T  1dT 2h
2 T T

with m? = 2h/kt and
O0=T— Too,

d* 0 1d6
dr? rdr

—m?0=0
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Fins of Nonuniform Cross-Sectional Area

The foregoing expression is a modified Bessel equation of order zero, and
its general solution is of the form

0 (r)=C; Iy(mr)+ C, Ky (mr)

where [, and K, are modified, zero-order Bessel functions of the first and
second kinds, respectively. If the temperature at the base of the fin is
prescribed, 0(r,) = 0, and an adiabatic tip 1s presumed, d0/dr|r, =0, C1 and
C2 may be evaluated to yield a temperature distribution of the form

o _ Io (mr)K, (mry) + Ky (mr)I, (mry)
0, Io(mry)K,(mry)+ Ky,(mry)I,(mry)

where [,(m,) = d[Iy(m,)]/d(m,) and K,(m,) = —d[K,(m,)]/d(m,) are modified,
first-order Bessel functions of the first and second kinds, respectively. The
Bessel functions are tabulated in Appendix B.
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Fins of Nonuniform Cross-Sectional Area

With the fin heat transfer rate exnressed as:

= —kAy S

= — k(2 S

r=r

s

r=r1

0. = 2kr 1 mKl (mry )1, (mry) — I, (mr{)K; (mry)
f 1% Ko (mry)I, (mry) + Iy (mry )K, (mry)

. = 9z __2r Ky (mr))Iy(mry) = I (mry )K; (mry)
I hox (r% —rf)e,, m(r% —r%)KO(m"l ) (mry) + I (mry )Ky (mr)

This result may be applied for an active (convicting) tip, if the tip radius r2 is
replaced by a corrected radius of the form r,, =r, + (t/2).
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Fin Performance Parameters

Expressions for n, are provided in Table 3.5 for common
geometries.

Consider a triangular fin:

— 1 1,(2mL)
7 mL 1,(2mL)
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n, (%)

1.0 1.9

2.0 X
LY?(hlkA )"

FIGURE 3.19 Efficiency of straight fins (rectangular, triangular, and parabolic profiles)
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ro/r; = 1 (straight rectangular fin) 98
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60
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&
40 |
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20 ! —f: L.=L+1t?2
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n
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L¥%(h/kA )"

FIGURE 3.20 Efficiency of annular fins of rectangular profile.
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Fin Arrays

* Representative arrays of i
(a) rectangular and

(b) annular fins. . | v o s
o Overall surface efficiency n, ¢ i P = _34

9, 9, 2

> 4@ ™

f

To =G a  hA,0,

I~
>

o Total surface area: | w ’ /r - 4 ——
- 3
A, = NA; + A, \ of =
(a) (h)
o Total heat rate:
G
1,0
NA;
q, = h[anAf + (A; — NA;)]0, = hA;| 1 —A—(l — nf) 0,
t
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-
Fin Arrays

* In contrast to the fin efficiency #; which characterizes the performance
of a single fin, the overall surface efficiency 7, characterizes an array

of fins and the base surface to which they are attached.

* where S designates the fin pitch
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-
Fin Arrays

o Overall surface efficiency and resistance:

NA,
7, = _A_<1_77f) (3.107)
f
R = Hb _ 1 (3.108)
t,0
Qt 770 hAt
* Equivalent Thermal Circuit:
(NnhA )
o = Ng;
Tb ‘\ oT,
T gy
—— VW —
(A, -NAJY!
> Gy
L A A A A A S
(n,hA) !

(a)
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Fln Al‘l‘ays o Effect of Surface Contact Resistance:

R,
. Rr JINA_, (N hA)!
l-. VAo AN
3 = | D‘\fq’ ’
=4 Tho— —oT.
T | o )
‘I" AMAN———————
2 (hA, -NANT
6, _, ' 4 a
qt — no(c)hAteb = ’ ‘ . h /]
t,o(¢) Ty VAN T
(M fiA)*
NAg ()
a, = hINn Ay + (4 = NAIO, = ha [ 1-——LA=n,) |0,
t
(3.110a)
. NAf { n,
o(c) At Cl
R" (3.110b)
C =1+nhd,| —=
Ac,b
R (c) = ! (3.109)
h4 |
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-
EXAMPLE 3.10

The engine cylinder of a motorcycle is constructed of 2024-T6 aluminum
alloy and 1s of height H= 100 mm and outer diameter D = 2r; = 50 mm.

Under typical operating conditions, g, = 2 kW of heat is transferred from

the cylinder to ambient air at 300 K, with a convection coefficient of 75
W/m? - K.

Annular fins are integrally cast with the cylinder to reduce the cylinder
temperature.

Consider ten equally-spaced fins, each of which are of thickness t =4 mm
and length L = 20 mm. What reduction in the cylinder temperature can be
achieved by use of the fins?
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EXAMPLE 3.10
SOLUTION

Known: Operating conditions of a finned motorcycle cylinder.

Find: Reduction in cylinder temperature associated with using fins
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-
EXAMPLE 3.10

Cross section

Schematic: (2024 T6 Al alloy)
Y S ’ |
.l. . ¥
S T
T ' t=4mm
H =100 mm .
T._=300K
h =75 W/m2K
Tb ]
—
<« Air
] (_
y

' ry =25 mm
i—:]: L=20mm
; r, = 45 mm
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EXAMPLE 3.10

Assumptions:

» Steady-state conditions.
* Temperature is uniform across the fin thickness.

* Constant properties.
* Negligible radiation exchange with surroundings.
* Uniform convection coefficient over surface (with or without fins).

Properties: Table A.1, 2024-T6 aluminum (T = 550 K): k=186 W/m - K.

Analysis: With the fins in place, Equation 3.106 can be rearranged to
determine an expression for the cylinder temperature
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-
EXAMPLE 3.10

T 2

where A, =2z (2, — r*) = 22{(0.047 m)* — (0.025 m)’ ] = 0.00995 m* and, from Equation 3.104, A; = NAs +
27try (H - Nt) = 0.0995 m? + 271(0.025 m) [0.10 m — 0.04 m] = 0.109 m?. With r,./r; = 1.88, L, = 0.022 m, A

= 8.8 x 1079 m?, we obtain Lg’ € (h/kA, )12 = 0.221. Hence, from Figure 3.20 (or Equation 3.96), the fin
efficiency is 175~ 0.96. With the fins, the cylinder temperature is

T, =27°C + 2000 W = 282°C
75 W/m? - K x 0.109 m2[ 10 x 0.00995 m® _ 0.96)]
0.109 m?
Without the fins, the cylinder temperature would be
_ 9 — 770 2000 W _ 0
Towo =T + fzmr gy = 27°C + = 1725°C

75 W/m? - K (27 % 0.025 m x 0.10 m)
Therefore, the reduction in cylinder temperature is

AT, =T, o — T, = 1725°C — 282°C = 1443°C
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Comments:
* From Table A.1, the melting temperature of 2024-T6 aluminum is 775 K
= 502°C. The engine must be equipped with fins to avoid failure.

* The fins are of high efficiency. Assuming isothermal fins (nf = 1), the
cylinder temperature would be Tb = Too + qt/hAt = 272°C, which is only
slightly lower than the predicted temperature.

* Further reduction in the cylinder temperature could be achieved by
adding more fins. Prescribing a fin clearance of 2 mm at each end of the
array and a minimum fin gap of 4 mm, the maximum allowable number
of fins 1s Nmax = H/S = 0.10 m/(0.004 + 0.004) m = 12.5, which we
round down to Nmax = 12. Use of 12 fins reduces the cylinder
temperature to Tb = 245°C.

* The assumed temperature of 550 K (277°C) that was used to evaluate
the thermal conductivity is reasonable.
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-
Fin Arrays

NA;
q, = hINn, As + (4 = NApIO, = ha,|1-—L(1-n,)|6,

t
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e
Problem 3.99

Turbine blades mounted to a rotating disc in a gas turbine engine are exposed to a

gas stream that is at Too = 1200°C and maintains a convection coefficient of h =250
W/m? - K over the blade.

The blades, which are fabricated from Inconel, k =20 W/m - K, have a length of L

= 50 mm. The blade profile has a uniform cross-sectional area of Ac =6 x 10~ m2
and a perimeter of P =110 mm. A proposed blade-cooling scheme, which involves

routing air through the supporting disc, is able to maintain the base of each blade at
a temperature of Tb = 300°C.

(a) If the maximum allowable blade temperature is 1050°C and the blade tip may be
assumed to be adiabatic, is the proposed cooling scheme satisfactory?

(b) For the proposed cooling scheme, what is the rate at which heat is transferred
from each blade to the coolant?

81



e
Problem 3.99

Blade tip

r
~ Gas steam 3
— w7
X
1

Rotating
disk

P — c— o

Air coolant
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Problem: Turbine Blade Cooling (1 of2)

Problem 3.99:  Assessment of cooling scheme for gas turbine blade. Determination of whether
blade temperatures are less than the maximum allowable value (1050°C) for
prescribed operating conditions and evaluation of blade cooling rate.

SCEHMATIC: - 000

/7
h=250 Wim>K //”

~—T,=300°C j/ Disc
i v9

ASSUMPTIONS: (1) One-dimensional, steady-state conduction in blade, (2) Constant k, (3)Adiabatic
blade tip, (4) Negligible radiation.

ANALYSIS: Conditions in the blade are determined by Case B (adiabatic tip) of Table 3.4.
(a) With the maximum temperature existing at x = L, Equation 3.80 yields

r-r, 1
T,-T,  coshmL

Turbine blade, o o
k=20W/m-K,AC=6x10 m<,
P=0.11m

1/2
mzuf] 2(250W/m2~K><O.11m/20W/m-K><6><104m2)1/2 —4787m"

[4

mL =47.87m ' x0.05m =2.39

Copyright ©2017-2019 John Wiley & Sons, Inc. 83



Problem: Turbine Blade Cooling (2 of2)

From Table B.1 (or by calculation), cosh mL = cosh (2.39) = 5.51 Hence,

1200°C + (300 —1200)°C
5.51

T(L) = =1037°C

and, subject to the assumption of an adiabatic tip, the operating conditions are acceptable.

(b) with M = (hPkA,)"* 0, = (250W/m” - K x 0.11m x 20W/m - K x 6 x 10~ m*)"*(=900°C) = -517W,

Equation 3.81 and Table B.1 yield
qr= M tanh mL = =517W(0.983) = —508W
Hence,

qb=—qf=508W <

Heat transfer 1s to the base of the blade.

Copyright ©2017-2019 John Wiley & Sons, Inc. 84



e
Problem 3.114

An 1sothermal silicon chip of width W = 20 mm on a side 1s soldered to an
aluminum heat sink (k = 180 W/m - K) of equivalent width.

The heat sink has a base thickness of L, = 3 mm and an array of rectangular
fins, each of length L= 15 mm. Airflow at Too = 20°C is maintained
through channels formed by the fins and a cover plate, and for a convection
coefficient of h = 100 W/m2 - K, a minimum fin spacing of 1.8 mm is
dictated by limitations on the flow pressure drop. The solder joint has a
thermal resistance of

R} = 2x10-6 m2-K/W
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Problem 3.114




e
Problem 3.114

Consider limitations for which the array has N = 11 fins, the fin thickness t =
0.182 mm, and pitch S = 1.982. If the maximum allowable chip temperature
is Tc = 85°C, what is the corresponding value of the chip power qc? An
adiabatic fin tip condition may be assumed, and airflow along the outer
surfaces of the heat sink may be assumed to provide a convection coefficient
equivalent to that associated with airflow through the channels.
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Problem: Chip Heat Sink (1 of 4)

Problem 3.114: Determination of maximum allowable power q. for a 20 mm x 20 mm electronic
chip whose temperature is not to exceed 7.= 85°C, when the chip is attached to
an air-cooled heat sink with N = 11 fins of prescribed dimensions.

Schematic:
/ T. =85°C
W=20mm R} = 2x10° m2-K/W
_,/ k= 180 W/m-K
Lp=3mm =

T J}H ﬂ‘a {3 T Rip 5
HF LRl |/| —> AWAIWAAN
L - Rt,c I_"\)t.o
Tm=20°C S —> €= 5=18mm
h =100 W/mZK

Assumptions: (1) Steady-state, (2) One-dimensional heat transfer, (3) Isothermal chip, (4)
Negligible heat transfer from top surface of chip, (5) Negligible temperature rise for air flow, (6)
Uniform convection coefficient associated with air flow through channels and over outer surface
of heat sink, (7) Negligible radiation, (8) Adiabatic fin tips.
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Problem: Chip Heat Sink (2 of 4)

Analysis: (a) From the thermal circuit,

g = T -T, T -T,
‘ Rtot Rt,c + Rt,b + Rt,o
R" %2
R, =—e L 2107 KW _ 4 605 1w
W (0.02m)
R, = b__ =0.003m/180 W/m-K(0.02m)* = 0.042K/W
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Problem: Chip Heat Sink (3 of 4)

From Equations (3.108), (3.107), and (3.104)
1 NA
R =——n =1-—L(-
t,0 ﬂohAt 770 At ( nf)
A, =2WL, =2x0.02mx0.015m = 6x10*m’
A, =W? = N@W)=(0.02m)* —11(0.182x10° mx 0.02m) = 3.6 x10*m’

A = NA, + 4, = 6.96x10" m’

kt 180 W/m-K
Equation (3.94) yields

B tanthf ~0.824
Tr= 117

1/2 5 1/2
Witthf{ﬁj Lf{ZOOW/m Kx0.182x103mj (0.015m) =117, tanhmL, = 0.824 and

=0.704
S

R, =2.00K/W, and 7, =0.719,

_ (85-20)'C _
(0.005+0.042 +2.00)K/W
contact base fin array resistances

q. 31.8 W
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Problem: Chip Heat Sink (4 of 4)

Comments: The heat sink significantly increases the allowable heat dissipation. If it
were not used and heat was simply transferred by convection from the surface of the chip
with 7 =100W/m* -K,R,, =2.05 K/W from Part (a) would be replaced by

R =1/hW? =25K/W, yielding g. =2.60W.

conv
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