Suggested Problems from Chapter 3 and 5

3.63 An uncoated, solid cable of length L = 1 m and diameter D = 40 mm is exposed to convection
conditions characterized by h = 55 W/m2 - K and Too = 20°C. Determine the maximum electric
current that can be carried by the cable if it is pure copper, pure aluminum, or pure tin. Calculate
the corresponding minimum wire temperatures. The electrical resistivity is pe = 10 x 10—8 Q - m
for copper and aluminum at their melting points, while the electrical resistivity of tin is pe = 20 x
10—8 Q - m at its melting point.



PROBLEM 3.63

KNOWN: Dimensions and resistivity of current-carrying cable. Temperature and heat transfer
coefficient of environment.

FIND: Maximum operating current and corresponding minimum cable temperature for copper,
aluminum, and tin cables.

SCHEMATIC:
I/"'f T EQ
/ L=1m
T..h / D =2r,=40 mm

/ \ | h=55 W/m?K

N T, = 20°C

— | 4+ )
\ ro| LI\, | |p. =10 < 10 Om (Cu and Al)
\ \/ /  |p, = 20 x 10 Om (Sn)

)

ASSUMPTIONS: (1) Steady-state, (2) Constant properties, (3) Negligible radiation exchange with
surroundings.

PROPERTIES: Given, Cu: po=10x10* Q:m, Al: p,=10x10* Qm, Sn: p,=20x 10° Qm.

Table A.1,Cu: T,, = 1358 K, k=339 W/mK; Al: T,, =933 K, k=218 W/m-K; Sn: T,, =505 K, k=
62.2 W/m-K. Thermal conductivities have been evaluated at highest available temperature.

ANALYSIS: The maximum temperature should not exceed the melting temperature of the material.
The maximum temperature occurs at the centerline and can be found from Equation 3.58 evaluated at
r = 0. The surface temperature can be related to the known environment temperature through Equation
3.60. Thus,

.2
T, T,
Toax = T(r=0)= —31‘; +(;_12+T°° (1)

Or solving for q,

Tmax - Too

dmax = @)
1y / 4k +1, /2h
The heat generation rate depends on the current and resistivity according to:
2
§= PR, _I°(peL/Ac) _Ppe_ Ppe 3)
v LA 2 2
¢ Ag (ﬂ'l'g )

Thus the maximum allowable current is given by:



PROBLEM 3.63 (Cont.)

1/2

) 1/2
Imax =[qﬂl ”r(% = F;max Lo ﬂ'rg “)
Pe pe(ro [k +r, f2h)

The minimum temperature occurs at the surface of the cable, so from Equation 3.60,

. 2

qr, I5 Ak e

minzzﬁ +Top =—TH% e%*'Too )
Zh(frrg)

Evaluating Eqs.(4) and (5) for the properties of copper yields,
1/2

Lpax = (1358-293)K 7x(0.02m)? =9610A <

2
0.02
10x10-8Q.m| _ (002m)°  0.02m
4x339 Wm-K 255 W/m2-K

(9610 A)? x10x1073Q-mx0.02 m

Tmin 5 T293K=1356 K <
2x55 W/m? - K (ﬂ'(0.02 m)z)
Similarly for aluminum,
Ipax =7450A, Tpip =931K <
And for tin,
Ipax =3020A, Tpin =503 K <

COMMENTS: (1) The minimum (surface) temperature is almost equal to the maximum (melting)
temperature; the cable is nearly isothermal. (2) The neglect of radiation is a poor assumption for such
large temperatures. Assuming the surroundings are also at 293 K and the emissivity is one, the ratio of
radiation to convection heat transfer is given by Q.4 / Qeony = O'(T;Lin - Tj}) /Th(Tin — Teo)1=

3.3, 1.2, 0.28 for Cu, Al, and Sn, respectively. If radiation were included in the analysis, it would
enhance heat transfer and increase the current-carrying capacity.



3.64 The air inside a chamber at Too,i = 50°C is heated convectively with hi =20 W/m2 - K by a
200-mm-thick wall having a thermal conductivity of 4 W/m - K and a uniform heat generation of
1000 W/m3. To prevent any heat generated within the wall from being lost to the outside of the
chamber at Too,0 =25°C with ho =5 W/m2 - K, a very thin electrical strip heater is placed on the
outer wall to provide a uniform heat flux, q,.

Strip heater, ¢, —t—Wall, &, ¢
Outside chamber Inside chamber
Tm. o' hn T"" i hi

L. L

(a) Sketch the temperature distribution in the wall on T — x coordinates for the condition where
no heat generated within the wall is lost to the outside of the chamber.

(b) What are the temperatures at the wall boundaries, T(0) and T(L), for the conditions of part
@)?

(c) Determine the value of g, that must be supplied by the strip heater so that all heat generated
within the wall is transferred to the inside of the chamber.

(d) If the heat generation in the wall were switched off while the heat flux to the strip heater
remained constant, what would be the steady-state temperature, T(0), of the outer wall surface?



PROBLEM 3.64
KNOWN: Wall of thermal conductivity k and thickness L with uniform generation q; strip heater

with uniform heat flux qg; prescribed inside and outside air conditions (hj, Teo i, hg, Teo,0)-

FIND: (a) Sketch temperature distribution in wall if none of the heat generated within the wall is lost
to the outside air, (b) Temperatures at the wall boundaries T(0) and T(L) for the prescribed condition,
(c) Value of g required to maintain this condition, (d) Temperature of the outer surface, T(L), if

q=0 but q, corresponds to the value calculated in (c).

SCHEMATIC:
@ @ Wall, 9 =1000W/m?
Strip heater, 9: a k=4W/m-K
<)
Qutside chamber E Inside chamber
D T,i=50°C

el i 11

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Uniform
volumetric generation, (4) Constant properties.

ANALYSIS: (a) If none of the heat generated within the wall is

Lox  £:200mm T T T ;=20Wm2-K

lost to the outside of the chamber, the gradient at x = 0 must be zero. & }r
Since q is uniform, the temperature distribution is parabolic, with P\
T(L) > Too . Toji oo
1::,0 — |
(b) To find temperatures at the boundaries of wall, begin with the 0 y 8 o
general solution to the appropriate form of the heat equation (Eq.3.40).
T(x)=——x% +Cx+Cy (1)
2k
From the first boundary condition,
dT
—| =0 —> (=0, (2)
dx X=0

Two approaches are possible using different forms for the second boundary condition.

Approach No. 1: With boundary condition — T(U) =
__49
T(x)=-—-x"+T (3)

To find Ty, perform an overall energy balance on the wall
Em Eout + E =0

_h[T(L)_Tw,1]+ qL=0 T(L)=T2 =TCD,1 +q?

4)



PROBLEM 3.64 (Cont.)
and from Eq. (3) with x =L and T(L) =T,

: : gL gL

q .2 q .2
T(L)=——-L"+T Ti=Th+=L =Tgi+—+— 5,6
(L)=-2 1oor T=Tp+ it (5.6)
Substituting numerical values into Egs. (4) and (6), find
T, =50°C+1000 W/m> x0.200 m/20 W/m? - K=50°C+10°C=60°C <
Ty = 60°C+1000 W/m® x(0.200 m)* /2 x4 W/m-K=65°C. <

Approach No. 2: Using the boundary condition
dT
o =h[T(L)-T.; ]

—k—
dx

yields the following temperature distribution which can be evaluated at x = 0,L for the required

temperatures,

T(x)= —i(xz —L2)+%+Tm,i.

Tm,0 T0)-T;

(¢) The value of qf when T(0) =T = 65°C OO 7
> 1fh, 2

follows from the circuit

"o Tl - TOO,O
Yo = n,
ql =5 W/m® -K (65-25)° C=200 W/m?. <

(d) With g=0, the situation is represented
by the thermal circuit shown. Hence,

do =da +db “
11-),0 ?o¢ 7;7;:'
, _T-Too | Ti-To, 9, b 7 Ll b 2,
Qo= by L+l
which yields

Ty =55°C. <



3.65 A plane wall of thickness 0.2 m and thermal conductivity 30 W/m - K having uniform
volumetric heat generation of 0.4 MW/m3 is insulated on one side, while the other side is
exposed to a fluid at 92°C. The convection heat transfer coefficient between the wall and the
fluid is 400 W/m2 - K. Determine the maximum temperature in the wall.

PROBLEM 3.65

KNOWN: Plane wall with internal heat generation which is insulated at the inner surface and
subjected to a convection process at the outer surface.

FIND: Maximum temperature in the wall.

SCHEMATIC:
k=30 W/mK
T G = 0.3x105 W/
r
Insulation * TTT To=92°C
. h =400 W/m?-K
Lsx L=02m

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction with uniform
volumetric heat generation, (3) Inner surface is adiabatic.

ANALYSIS: The temperature at the inner surface is given by Eq. 3.48 and is the maximum
temperature within the wall,

T, = L% / 2k+T,.
The outer surface temperature follows from Eq. 3.51,
T, =Ty, +dL/h

T, =92°C+0.4x10° %x 0.2m/400W/m? - K=92°C+200°C=292°C.
m

It follows that

T, =0.4x 100 W/m> x(0.2m)? / 2% 30W/m - K+292°C
T, = 267°C+292°C=559°C. <

COMMENTS: The heat flux leaving the wall can be determined from knowledge of h, Tg

and T, using Newton’s law of cooling.
Qeony = h(Ts — T, ) = 400W/m? - K (292 -92)° C=80kW/m.

This same result can be determined from an energy balance on the entire wall, which has the
form
E g Egyt =0
where
Eg =qAL and Eout = Qtony - A.
Hence,

Qony = 4L=0.4 x 10°W/m? x 0.2m=80kW/m?.



3.66 Large, cylindrical bales of hay used to feed livestock in the winter months are D =2 min
diameter and are stored end-to-end in long rows. Microbial energy generation occurs in the hay
and can be excessive if the farmer bales the hay in a too-wet condition. Assuming the thermal
conductivity of baled hay to be k =0.04 W/m - K, determine the maximum steady-state hay
temperature for dry hay ¢ = 1 W/m3 , moist hay ¢ = 10 W/m3, and wet hay ¢ = 100 W /m3.
Ambient conditions are Too = 0°C and h =25 W/m2 - K.

PROBLEM 3.66

KNOWN: Diameter, thermal conductivity and microbial energy generation rate in cylindrical hay
bales. Ambient conditions.

FIND: The maximum hay temperature for =1, 10, and 100 W/m’.
SCHEMATIC:

— o Air
—=+ T,=0°C,h=25W/m2K

k=0.04 WimK

ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) One-dimensional heat
transfer (4) Uniform volumetric generation, (5) Negligible radiation, (6) Negligible conduction to or
from the ground.

PROPERTIES: k = 0.04 W/mK (given).
ANALYSIS: The surface temperature of the dry hay is (Eq. 3.60)

. 3
T, =Tn+ﬂ=0°C+M=0.02°C <
: 2h 2x25W/m?- K

whereas T, = 0.2°C and 2.0°C for the moist and wet hay, respectively. <

The maximum hay temperature occurs at the centerline, » = 0. From Eq. 3.58, for the dry hay,

-2 3 2
Ty = Loy g, =« IWACXAM)” 4 5500 = 6.27°C <
ak 4x0.04 W/m-K

whereas T = 62.7°C and 627°C for the moist and wet hay, respectively. <

COMMENTS: (1) The hay begins to lose its nutritional value at temperatures exceeding 50°C.
Therefore the center of the moist hay bale will lose some of its nutritional value. (2) The center of the
wet hay bale can experience very high temperatures without combusting due to lack of oxygen internal
to the hay bale. However, when the farmer breaks the bale apart for feeding, oxygen is suddenly
supplied to the hot hay and combustion may occur. (3) The outer surface of the hay bale differs by
only 2°C from the dry to the wet condition, while the centerline temperature differs by over 600
degrees. The farmer cannot anticipate the potential for starting a fire by touching the outer surface of
the hay bale. (4) See Opuku, Tabil, Crerar and Shaw, “Thermal Conductivity and Thermal Diffusivity
of Timothy Hay,” Canadian Biosystems Engineering, Vol. 48, pp. 3.1 - 3.6, 2006 for hay property
information.



3.69 An air heater may be fabricated by coiling Nichrome wire and passing air in cross flow over
the wire. Consider a heater fabricated from wire of diameter D = 2 mm, electrical resistivity pe =
10—6 Q - m, thermal conductivity k =25 W/m - K, and emissivity € = 0.20. The heater is
designed to deliver air at a temperature of Too = 60°C under flow conditions that provide a
convection coefficient of h = 250 W/m2 - K for the wire. The temperature of the housing that
encloses the wire and through which the air flows is Tsur = 60°C.

vire Housing, T.
(D, L.P,, ke, Tmax) /_ B Ly
Air
—>
—
\ T., h
AE




PROBLEM 3.69

KNOWN: Diameter, resistivity, thermal conductivity, emissivity, voltage, and maximum temperature
of heater wire. Convection coefficient and air exit temperature. Temperature of surroundings.

FIND: Maximum operating current, heater length and power rating.

SCHEMATIC:

< ‘ T, =60°C
= 2

Nichrome wire <+ w h =250 W/m=-K
D=2mm .
Pe =10 Q-m V=110V () _ T.=1000°C
k - 2052\"0me—|( T - To - Tma,(
£=0.
Tmax = 1200°C

ASSUMPTIONS: (1) Steady-state, (2) Uniform wire temperature, (3) Constant properties, (4)
Radiation exchange with large surroundings.

ANALYSIS: Assuming a uniform wire temperature, Ty, = T(r =0) = T, = T, the maximum
volumetric heat generation may be obtained from Eq. (3.60), but with the total heat transfer
coefficient, hy = h + h;, used in lieu of the convection coefficient h. With

h, =e0(T, +TSU)(T52 +Tfm)= 020x567x10°° W /m” - K* (1273 +333) K(1273% +333%)K* =31.5W /m” -K
hy =(250+31.5)W/m?-K =281.5W/m?-K
2(281.5W/m2-1<)

2hy 8 3
=—(T,-T, )= 940°C)=5.29x10° W /m
max 1 ( 5 03) 0.001m ( )
2 2 2 2
I L/A
Hence, with q:I;{ez (TA c)=I ’gez I"pe 5
c AS (ap?/4)
1/2 1/2
dmax )~ 7D?  [5.20x108W/m3 )~ 7(0.002m) <
Lhax = = = =723A
Pe 4 107°Q-m 4
Also, with AE =1R. =1 (pL/A;),
2
) 110V[ﬁ(0.002m) /4}
L=2E A _ =4.78m <
Inax Pe 72.3A(10_6Q -m)
and the power rating is
Pejec = AE-Ipay =110V(72.3A) = 7950 W =7.95kW <

COMMENTS: To assess the validity of assuming a uniform wire temperature, Eq. (3.58) may be
used to compute the centerline temperature corresponding to q,,,,, and a surface temperature of

. 2 8 3 2
529%108 W /m> (0.001
1000°C. It follows that T, = -0 4T, = > m (0001m)” |\ h0ec = 1005°C. With only a
4k 4(25W/m-K)

5°C temperature difference between the centerline and surface of the wire, the assumption is
excellent.



3.70 Consider the composite wall of Example 3.7. In the Comments section, temperature
distributions in the wall were determined assuming negligible contact resistance between
materials A and B. Compute and plot the temperature distributions if the thermal contact
resistance is .

R, =107 m* -K/W.

PROBLEM 3.70

KNOWN: Composite wall of materials A and B. Wall of material A has uniform generation, while
wall B has no generation. The inner wall of material A is insulated, while the outer surface of
material B experiences convection cooling. Thermal contact resistance between the materials is

Ri = 107 m? K/W. See Example 3.7 that considers the case without contact resistance.

FIND: Compute and plot the temperature distribution in the composite wall.
SCHEMATIC:

=D R} = 104 m2-K/wW
To % . T2 ka kg
Insulation — To = 30°C
: h = 1000 W/m2-K T1a Tig
da = 1.5x106 W/m3 4s =0 Tia T T2 Tw
ka = 75 W/m-K , kg = 150 W/m-K —> S AAN S AANASAAANS

La =50 mm —>|_>—H— " Lg =20 mm gx(La) = E‘ALA Ric R,::und,B Rieonv
ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction with constant
properties, and (3) Inner surface of material A is adiabatic.

ANALYSIS: From the analysis of Example 3.8, we know the temperature distribution in material A
is parabolic with zero slope at the inner boundary, and that the distribution in material B is linear. At
the interface between the two materials, x = L 5, the temperature distribution will show a
discontinuity.

élL2 x2
TA(x):ﬁ 1—LT +Tjp 0<x<Ly
A

X—LA

Tg (x)=Tig —(Tig - T2) Lao<x<Lp+Lp

Ly
Considering the thermal circuit above (see also Example 3.8) including the thermal contact resistance,
Tia - T. Tig — T, Ty —T,
q'=qLy =t e o — B 2T o
Riot Rcond,B +Reony Rconv

find Ta(0) = 147.5°C, T14 = 122.5°C, T1g = 115°C, and T3 = 105°C. Using the foregoing equations
in IHT, the temperature distributions for each of the materials can be calculated and are plotted on the
graph belﬁw. Effect of thermal contact resistance on temperature distribution
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COMMENTS: (1) The effect of the thermal contact resistance between the materials is to increase
the maximum temperature of the system.

(2) Can you explain why the temperature distribution in the material B is not affected by the presence
of the thermal contact resistance at the materials’ interface?



3.92 A thin flat plate of length L, thickness t, and width W >> L is thermally joined to two large
heat sinks that are maintained at a temperature To. The bottom of the plate is well insulated,
while the net heat flux to the top surface of the plate is known to have a uniform value of g,,.

- >
. -"

Heat 9o Heat

sink * ¢ * * *ﬁ ¢ sink

o o

—— PR V——
- . - -
A Sadi-h W R G YA T E FE N
DR B AR A T S B L *H g

!

(a) Derive the differential equation that determines the steady-state temperature distribution T(x)
in the plate.

(b) Solve the foregoing equation for the temperature distribution, and obtain an expression for
the rate of heat transfer from the plate to the heat sinks.



PROBLEM 3.92

KNOWN: Dimensions of a plate insulated on its bottom and thermally joined to heat sinks at its
ends. Net heat flux at top surface.

FIND: (a) Differential equation which determines temperature distribution in plate, (b) Temperature
distribution and heat loss to heat sinks.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state, (2) One-dimensional conduction in x (W,L>>t), (3) Constant
properties, (4) Uniform surface heat flux, (5) Adiabatic bottom, (6) Negligible contact resistance.

ANALYSIS: (a) Applying conservation of energy to the differential control volume, qx + dq
= Qx +dx» Where qy+dx = qx * (dqyx/dx) dx and dq=q5 (W-dx). Hence,
(dgx /dx)—qy W=0. From Fourier’s law, qx =—k(t- W) dT/dx. Hence, the differential

equation for the temperature distribution is

2 "
_i ktwd_T _q:) W:O d—T+q_0=0 <
dx dx dx? kt

(b) Integrating twice, the general solution is,

T(x) =—;—l§tx2 +Cy x+Cy

and appropriate boundary conditions are T(0) = T,, and T(L) = T,. Hence, T, =C»,, and

T,=-d0 12 c1+C,  and ;= 3ok
2kt 2kt
Hence, the temperature distribution is
__i( 2_ ) <
T(x)= x“—-Lx|+T,.
Applying Fourier’s law at x =0,and at x =L,
9o L qo WL
0)=-k(Wt) dT/dx)x=g = kWt| —— -— =———
a(0) = k(W) dTidx)—g [kt“x 2L=o 2
o L qoWL
L)=-k(Wt)dT/dx)x=1 = -kWt| - | | x—— =+90—
L) =W TR [kt“ JFL 2
Hence the heat loss from the plates is q=2(qyWL/2) = qg WL. <

COMMENTS: (1) Note signs associated with q(0) and q(L). (2) Note symmetry about x =
L/2. Alternative boundary conditions are T(0) = T, and dT/dx)yx=1,/2=0.



3.97 A rod of diameter D = 25 mm and thermal conductivity k = 60 W/m - K protrudes normally
from a furnace wall that is at Tw = 200°C and is covered by insulation of thickness Lins = 200
mm. The rod is welded to the furnace wall and is used as a hanger for supporting instrumentation
cables. To avoid damaging the cables, the temperature of the rod at its exposed surface, To, must
be maintained below a specified operating limit of Tmax = 100°C. The ambient air temperature
is Too = 25°C, and the convection coefficient is h =15 W/m2 - K.

\:_‘.:: =4 Air

SRS I v -

:A : .—‘—;:;’."(_j»* 7“ ()

TS s - S D
Hot furnace — baied /1 S— |

wall L 1-"""// 39 ot
w0270 % S Insulation
‘—Lms_’j“ L, -

(a) Derive an expression for the exposed surface temperature To as a function of the prescribed
thermal and geometrical parameters. The rod has an exposed length Lo, and its tip is well
insulated.

(b)Computer Icon Will a rod with Lo = 200 mm meet the specified operating limit? If not, what
design parameters would you change? Consider another material, increasing the thickness of the
insulation, and increasing the rod length. Also, consider how you might attach the base of the rod
to the furnace wall as a means to reduce To.



PROBLEM 3.97

KNOWN: Rod protruding normally from a furnace wall covered with insulation of thickness L
with the length L, exposed to convection with ambient air.

FIND: (a) An expression for the exposed surface temperature T, as a function of the prescribed
thermal and geometrical parameters. (b) Will a rod of L, = 100 mm meet the specified operating
limit, Ty < 100°C? If not, what design parameters would you change?

SCHEMATIC:

Insulation
s Too= 25 °C
h=15W/m2 +K

o 2 1

Furnace wall, _
w=200°C

Toi 100 °C ROd, D=25mm
k=60 W/m-K

Lins =200 mm — — Lg—

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in rod, (3) Negligible
thermal contact resistance between the rod and hot furnace wall, (4) Insulated section of rod, L,
experiences no lateral heat losses, (5) Convection coefficient uniform over the exposed portion of the
rod, L,, (6) Adiabatic tip condition for the rod and (7) Negligible radiation exchange between rod
and its surroundings.

ANALYSIS: (a) The rod can be modeled as a thermal network comprised of two resistances in
series: the portion of the rod, L;,, covered by insulation, R, and the portion of the rod, L,,
experiencing convection, and behaving as a fin with an adiabatic tip condition, Rg,. For the insulated
section:

Rins =Lins/kAc W SN
f Ao Ra.
For the fin, Table 3.4, Case B, Eq. 3.81, ! s e
1
(hPkA. )" “ tanh(mL,)
m = (hP/kA, )2 A, =7D?/4 P=7D (3.4,5)
From the thermal network, by inspection,
T, -T, Ty =T R
L LW = To=Te + fin (Tw ~T) (6)<
Rfin Rins +Rfin Rins + Rfin
(b) Substituting numerical values into Egs. (1) - (6) with L, = 200 mm,
o 6.298 e o
T, =25°C+——————(200-25)" C=109°C <
6.790 +6.298
0.200
R, = = =6.790K/W A, = 7(0.025m)? /4 = 4909x107 m?

- /
60W/m-Kx4.909x104 m?
2/, 2\1/2
Rg, =1 (0.0347w /K ) tanh (6.324x 0.200) = 6.298K /W

(hPkA )= (15 W/ m? K2 (0.025m) x 60 W/m K x 4.909 % 10_4m2) - 00347 W2 /K>

Continued...



/ 1/2

m = (hP/kA, )% = (15 W/m? K x7(0.025m),/ 60 W/m- K x4.90910~ mz) =6324m"!
Consider the following design changes aimed at reducing T, < 100°C. (1) Increasing length of the fin
portions: with L, =400 and 600 mm, T, is 102.8°C and 102.3°C, respectively. Hence, increasing L,
will reduce T, only modestly. (2) Decreasing the thermal conductivity: backsolving the above
equation set with T, = 100°C, find the required thermal conductivity is k = 14 W/m-K. Hence, we
could select a stainless steel alloy; see Table A.1. (3) Increasing the insulation thickness: find that
for T, = 100°C, the required insulation thickness would be Li,s =211 mm. This design solution might
be physically and economically unattractive. (4) A very practical solution would be to introduce
thermal contact resistance between the rod base and the furnace wall by “tack welding” (rather than a
continuous bead around the rod circumference) the rod in two or three places. (5) A less practical
solution would be to increase the convection coefficient, since to do so, would require an air handling
unit. (6) Using a tube rather than a rod will decrease A;. For a 3 mm tube wall and 25 mm outside
diameter, A, =2.07 x 10* m?, R;,, = 16.103 K/W and Ry, = 8.61 K/W, yielding T, = 86°C.
(conduction within the air inside the tube is neglected).



3.113 Finned passages are frequently formed between parallel plates to enhance convection heat
transfer in compact heat exchanger cores. An important application is in electronic equipment
cooling, where one or more air-cooled stacks are placed between heat-dissipating electrical
components. Consider a single stack of rectangular fins of length L and thickness t, with
convection conditions corresponding to h and Too.

(a) Obtain expressions for the fin heat transfer rates, gf,o and gf,L, in terms of the base
temperatures, To and TL.

(b) In a specific application, a stack that is 200 mm wide and 100 mm deep contains 50 fins, each
of length L = 12 mm. The entire stack is made from aluminum, which is everywhere 1.0 mm
thick. If temperature limitations associated with electrical components joined to opposite plates
dictate maximum allowable plate temperatures of To = 400 K and TL = 350 K, what are the
corresponding maximum power dissipations if h =150 W/m2 - K and Too = 300 K?

fe——200 mMm——"\—




PROBLEM 3.113

KNOWN: Arrangement of fins between parallel plates. Temperature and convection coefficient of
air flow in finned passages. Maximum allowable plate temperatures.

FIND: (a) Expressions relating fin heat transfer rates to end temperatures, (b) Maximum power
dissipation for each plate.

SCHEMATIC:
r—7;= 400K

Plate dimensions:

D=100mm x W=200 mm Let2my %o g — ;{- I“.%OVC&}:TZ' K
x t=1mmm; Ne=50 2ot felmm
)

LT ==50K

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in fins, (3) Constant

properties, (4) Negligible radiation, (5) Uniform h, (6) Negligible variation in T, (7) Negligible
contact resistance.

PROPERTIES: Table A.1, Aluminum (pure), 375 K: k=240 W/m-K.

ANALYSIS: (a) The general solution for the temperature distribution in a fin is
6(x)=T(x)-Tyn = Cie™ +Cpe™

Boundary conditions: 0(0)=6, =T, — T, O(L)=6p =T -

Hence 0,=C1+Cy o, = Cleml‘ + Cze'mL
oL =Cre™ +(6, -Cp)e ™"

pr— -n]ll -n]l‘
X ¢, =g, 00 0™ g

emL . e-mL mL mL mL mL

m(x-L) m(Lx)

+6,e
emL _ e-mL

0o [70) ) gy e

f(x)=
® "

9()():

The fin heat transfer rate is then

qu—kACd—Tz—th —?meoshm(L—x)+£coshmx .
dx sinh mL sinh mL

_ gLe'mX

mx
Hence 9()() = L

6ysinh m(L-x)+ 1 sinh mx
sinh mL .

o, 7
Hence dfo = th( ot _ L% ) <
’ tanh ml.  sinh mL

‘IfL:th[ ‘9011:1 b J <
? sinhmL tanh mL

Continued ...



PROBLEM 3.113 (Cont.)

(b) =

240 W/m-Kx0.1 mx0.001 m

e V2 (150 W/m? -K (2x0.1 m+2x0.001 m) - 1
- =355m"
kA,

mL =35.5m x0.012 m=043
sinh mL = 0.439 tanh mL = 0.401 6, =100 K 6 =50K

dfo =240 W/m-Kx0.1 mx0.001 m
’ 0.401 0.439

100Kx355m™ 50 Kx35.5 m‘lJ

qfo =1154 W (from the top plate)
1

- -1
geL =240 W/m K x0.1 mx0,001 m| -0 Kx33.5m 50K x35.5m
’ 0.439 0.401

qf,L =87.8 W. (into the bottom plate)

Maximum power dissipations are therefore
do,max = Nfdfo +(W — th)Dth‘0
do,max =50x115.4 W+(O.200—50x0.001)m><0.1 mx150 W/m? -K x100 K
do.max = 5770 W+225 W =5995 W <
qL,max = ~NfafL + (W - th)Dh(?o
qL,max = —90x87.8W + (0.200—50x 0.00I)mx 0.1 mx150 W/m? -K x50 K

qL,max = —4390 W+112W = -4278 W. <

COMMENTS: (1) It is of interest to determine the air velocity needed to prevent excessive heating of the air as

it passes between the plates. If the air temperature change is restricted to AT o, = 5 K, its flowrate must be
Qtot 1717 W

Mjy = = =0.34 kg/s.

cpAT, 1007 J/kg-Kx5K

Its mean velocity is then

m,; 0.34 kg/s
Vai_l' - alr g/

- - =163 m/s.
PairAc  1.16 kg/m® x0.012 m(0.2-50x0.001) m

Such a velocity would be impossible to maintain. To reduce it to a reasonable value, e.g. 10

m/s, A would have to be increased substantially by increasing W (and hence the space
between fins) and by increasing L. The present configuration is impractical from the
standpoint that 1717 W could not be transferred to air in such a small volume.

(2) A negative value of qq _m,x implies that the bottom plate must be cooled externally to
maintain the plate at 350 K.



3.122 Heat is uniformly generated at the rate of 2 x 105 W/m3 in a wall of thermal conductivity
25 W/m - K and thickness 60 mm. The wall is exposed to convection on both sides, with
different heat transfer coefficients and temperatures as shown. There are straight rectangular fins
on the right-hand side of the wall, with dimensions as shown and thermal conductivity of 250
W/m - K. What is the maximum temperature that will occur in the wall?

[1 L'= 20 mm -
k = 25 WimeK =2 mm
G =2 X 105 W/m?
=20 el — hy = 12 W/m?2-K
-1 g =2 mm T.,=15°C
2L =60 mm
k,= 250 W/mK
|




B AR AR R JITE e e

KNOWN: Wall with known heat generation rate, thermal conductivity, and thickness.
Dimensions and thermal conductivity of fins. Heat transfer coefficients and environment
temperatures.

FIND: Maximum temperature.

SCHEMATIC:
T T
o ** L=20mm
k = 25 W/m-K < >
q =2x10°W/m° t=2mm
o o h,= 12 Wim*K
— 2= m-
y 8=2mm T, = 15°C
hy = 50 W/m*K ke = 250 W/m-K
Ty =30°C 2L =60 mm

ASSUMPTIONS: (1) Steady-state conditions, (2) Wall surface temperatures are uniform. (3) No
contact resistance between fins and wall, (4) Heat transfer from the fin tips can be neglected.

ANALYSIS: The temperature distribution in a wall with uniform volumetric heat generation and
specified temperature boundary conditions is, from Equation 3.46

by 2\ T,-T T, +T
T(x)=£[l-x—}+ 5,22 S.l%+ 3,12 5,2 )

The heat transfer rates at the two surfaces, for a wall section of area A, can be found from Fourier’s
law:

dT . T2 - Ty
=-kA— =-qLA-kA——— 2
ds,1 xl ¢ ~ @)
dT . Ts 2" Ts 1
=_kA| =gLA-kA-S2 sl 3
Cls,z dx oL q oL ( )
We can express these same heat transfer rates alternatively, as follows:
95,1 = AT, - T ) 4)
452 =hA(T; - T, )

where 1, is given by Equation 3.107. Equating the two expressions for q,, Equations (2) and (4),
and equating the expressions for q; , , Equations (3) and (5), and solving for T, and T yields

Continued...



PROBLEM 3.122 (Cont.)

X +h,A |h,T, + ihZAT2 .- h,A |gL
o o \2L 2L L
sl =
khy +hh,A+ kh,A
2L

k k ~ k .
—th] + [E +h1]h2AT2 + [E + hl)qL

2L
T2 = kh - kh,A
2L‘+h1h2A+ 2
where
- Am, A, NA
A=tlo =22t ZT
A A A( )

Performing the calculations:
2
[P _ b, :\/ 2x12WmPK o
kA, \kt V250 W/m -Kx0.002m

tanh(mL,) tanh(6.9m™ x 0.02 m)
 mL,  69m'x002m

ne =0.99%4

NA; _ N2wL; _ 2L, _2%0.02m _

A (B3+)Nw &+t  0.004m

10.0

A _NA A, _NA;  8Nw _NA; 5 _ o 0002m _ o
A A A A  (B+)Nw A B+t 0.004 m
A=10.5-10.(1-0.994) =10.4
h,A=12 W/m® K x 10.4 =125 W/m? - K
Kk _25WmK _ 10 wim? .k
2L 0.06m
Thus
(417+125) W/m’-K x50 W/m*-K x30°C (417x50
T, = | +417 W/m* - K x125 W/m*-K x15°C +50 x 125
+(2x417+125) W/m*-Kx2x10° W/m’x0.03 m +417 x 125) (W,mz ,K)z

Continued. ..



T,1 = 92.7°C

Similarly,
T, =85.8°C

The location of the maximum temperature in the wall can be found by setting the gradient of the
temperature (from Equation (1)) to zero:

£ _ élX Ts,Z - Ts.l

-4 ===

dx k 2L

Ts 2" Ts 1 : . : : s e .

Thus, x,, = kT . Substituting this back into the temperature distribution,
q
2

T _ éle i k(TS,Z _TS,l) 4 T+ To
_ 2x10° Wim® x (0.03m)* | 25 W/m- K(85.8°C - 92.7°C)"

2%x25W/m- K 8 x (0.03 m)? x 2 x 10° W/m>

N 92.7°C + 85.8°C
2

=93.7°C <



3.125 It is proposed to air-cool the cylinders of a combustion chamber by joining an aluminum
casing with annular fins (k = 240 W/m - K) to the cylinder wall (k = 50 W/m - K).

Cylinder wall—)  — Aluminum casing
T; I T,
. .
WW\/\/V\/JCI [ | I}_ N
—B T5=2mm
q,"—» [ T
— - [ '
[ |
, 111
-—v—/\/\’\r\_/\.—\/‘
¢, = 60 mm ————» T, h
i ns 66 mm >
4 r, =70 mm
i' r, =95 mm >




PROBLEM 3.125

KNOWN: Dimensions and materials of a finned (annular) cylinder wall. Heat flux and
ambient air conditions. Contact resistance.

FIND: Surface and interface temperatures (a) without and (b) with an interface contact
resistance.

SCHEMATIC:
| T Ty _—k=50W[m-K

—ri=60mm>] t=2owrm T =320K
ry =6bmm &=2mm h 100W[m2-K
I
14=70mm AI uminu
e Y.
2210 W)m2

ASSUMPTIONS: (1) One-dimensional, steady-state conditions, (2) Constant properties, (3)
Uniform h over surfaces, (4) Negligible radiation.

ANALYSIS: The analysis may be performed per unit length of cylinder or for a 4 mm long
section. The following calculations are based on a unit length. The inner surface temperature
may be obtained from

_T-Ty

Riot
where Riop =Rf + R + Ry +Roquivi Requiv =(1/Rf +1/Rp) "

© _ gf (27 1) =10° W/m? x27x0.06 m = 37,700 W/m

R¢, Conduction resistance of cylinder wall:
R = In(n /1) _ In (66/60)
2r k 27:(50 me-K)

R}t ¢, Contact resistance:

=3.034x10~% m-K/W

Ric=R}c/271=10" m? K/W/27x0.066 m=2.411x10"* m-K/W
R’y , Conduction resistance of aluminum base:
R = In(n, frl) _ In (70f66)
2n k 272x240 W/m-K
RY,, Resistance of prime or unfinned surface:
1 1
hAL 100 W/m2 -K x0.5x27(0.07 m)

=3.902x10™°> m-K/W

R} = =4547x10" m K/W

R¥, Resistance of fins: The fin resistance may be determined from
T, -Te 1
A mehAf
The fin efficiency may be obtained from Fig. 3.20,
De=I,+t/2=009%m L;=L+t/2=0.026 m

Rf =

Continued ...



PROBLEM 3.125 (Cont.)
1/2
Ap=Lct=52x107"m? rc/n=145 L*(bkA,) ~=0375

Fig. 3.20 > n¢= 0.88.
The total fin surface area per meter length

Al = 250[::(;3 - S)XZ} ~250 m’! [2;;(0.0962 —0.072)}1112 ~6.78 m.
-1
Hence R} =|:O.88><100 W/m? -Kx6.78 m] =16.8x10"* m-K/W
1/ Requiy =(l/16.8x10’4 +1f454.7x10‘4)W/m-K=617.2 W/m-K

Requiv =162x107 m-K/W.
Neglecting the contact resistance,

Riot =(3.034+0390+16.2)10 m-K/W =19.6x10™ m -K/W
T, = qR}og + Top =37,700 Wmx19.6x107* m-K/W+320 K =393.9 K <

T =T, —q'RY =393.9 K —37,700 W/mx3.034x10™ m-K/W =382.5 K <

A

Ty =Ty —q'R}, =382.5K -37,700 W/mx3.902x10™ m-K/W =381.0 K.
Including the contact resistance,

Rot =(19..5><10‘4 +2.411x10‘4)m-1<fw =22.0x107* m-K/W

T; =37,700 Wimx22.0x10% m-K/W+320 K = 402.9 K

Ty ; =402.9 K —37,700 W/mx3.034x10°* m-K/W =391.5K

Tj o =391.5 K-37,700 W/mx2.411x10% m-K/W =3824 K

A A A A

Ty =382.4 K—-37,700 W/mx3.902 x 10'5 m-K/W =380.9 K.
COMMENTS: (1) The effect of the contact resistance is small.

(2) The effect of including the aluminum fins may be determined by computing T; without the
fins. In this case Riy =Rg +Rigny, Where

1 1

Ry = - - =241.1x10~% m-K/W.
h27 1 100 W/m~-K 27(0.066 m)

Hence, Ryt = 244.1x10* m-K/W, and
T, = q'Ripq + Ty = 37,700 W/mx244.1x10* m-K/W+320 K =1240 K.

Hence, the fins have a significant effect on reducing the cylinder temperature.

(3) The overall surface efficiency is
Mo =1—(A} /A't)(l— T?f) =1-6.78 m/7.00 m(1—0.88) =0.884.

It follows that q'=1,h,At6}, =37,700 W/m, which agrees with the prescribed value.



5.4 A thin stainless steel disk of thickness b and outer radius ro has been heat treated to a high,
uniform initial temperature of Ti. The disk is then placed upon a small stand and allowed to cool.
The ambient air and surroundings are at Too and Tsur, respectively. The convection coefficients
on the top and bottom disk surfaces, ht and hb, are known, as is the plate emissivity, €. Derive a
differential equation that could be solved to determine the transient thermal response of the disk,
T(r, t). List the appropriate initial and boundary conditions. Assume adiabatic conditions at r =
ro.

Side view




KNOWN: Stainless steel disk of known thickness, radius, emissivity, and initial temperature.
Environment and surroundings temperatures and heat transfer coefficients.

FIND: Derive differential equation governing transient temperature distribution, 7(r,f). List initial and
boundary conditions.

SCHEMATIC:

Initial temperature, T; h, T,

|
. I
Side view : h, T,
I
I

Top view

ASSUMPTIONS: (1) Uniform properties. (2) Temperature is nearly uniform across the disk thickness.
(3) The surroundings are large relative to the disk. (4) Convection and radiation from the rim are
negligible because it is so thin.

ANALYSIS: Consider a differential WT I
control volume that is a ring of width dr . B N
and thickness b, as shown. Assuming the T I
. . b S -
temperature variation through the

|
thickness is negligible, and applying o [ / / A4 cony,
conservation of energy to the differential Side view i @ cdo-
q,

control volume:

- . dEs b dQCon\',
Ein - Eoul = dft » st ’

oT
qr - qr+dr - dqconv,b - dqconv,r - dqmd = pCVE

where

V =2zrdrb, q,=-k2zrb G_T, 4., =9, + %, dr, ¢,-q,.,= 9 k2;rrba—T dr
or or or or

Aq o = hy 27rdr(T -T), aq o, = h2xrdr(T -T)), dq,,=¢ecdrrdr(T - T;:I)

Combining these terms,

O k2L \ar - [4,(T ~T,) + h(T ~T,) + 2e0(T* ~ T}, | 27rdr = pc2zrdrb or
or or ot

Dividing by 2zrdrbyields the differential equation for T(r.f):
Continued. ..



5.7 Steel balls 10 mm in diameter are annealed by heating to 1150 K and then slowly cooling to
450 K in an air environment for which Too =325 K and h = 25 W/m2 - K. Assuming the
properties of the steel to be k =40 W/m - K, p = 7800 kg/m3, and ¢ = 600 J/kg - K, estimate the
time required for the cooling process.

PROBLEM 5.7
KNOWN: Diameter and initial temperature of steel balls cooling in air.

FIND: Time required to cool to a prescribed temperature.

SCHEMATIC:
D=00Im Steel, Ti=1150K
k=40W/m-K
p=7800kg[/m>
e 111 L0 dlek
h = 25 W/m?- K

ASSUMPTIONS: (1) Negligible radiation effects, (2) Constant properties.
ANALYSIS: Applying Eq. 5.10 to a sphere (L, =1,/3),

2
i~ PLe _ h(r, /3) _ 25 W/m* -K (0.005 m/3) 0,001,
k k 40 W/m-K

Hence, the temperature of the steel remains approximately uniform during the cooling
process, and the lumped capacitance method may be used. From Egs. 5.4 and 5.5,

3
PV, T-Ty =p(”D /6)01" 1 T~ Too
hAy  T-Ty hz D? T-Te

7800 kg/m> (0.01 m)600 J/kg-K 1 1150325
6x25 W/m? -K 450-325

t=589s =0.164 h <

COMMENTS: Due to the large value of T;, radiation effects are likely to be significant
during the early portion of the transient. The effect is to shorten the cooling time.



5.8 Consider the steel balls of Problem 5.7, except now the air temperature increases with time as
Too(t) = 325 K + at, where a = 0.1875 K/s.

(a) Sketch the ball temperature versus time for 0 <t <1 h. Also show the ambient temperature,
Too, in your graph. Explain special features of the ball temperature behavior.

(b) Find an expression for the ball temperature as a function of time T(t), and plot the ball
temperature for 0 <t <1 h. Was your sketch correct?

KNOWN: Diameter and initial temperature of steel balls in air. Expression for the air
temperature versus time.

FIND: (a) Expression for the sphere temperature, T(t), (b) Graph of T(t) and explanation of
special features.

SCHEMATIC:
D=00Im Steel, T;=1150K
k=40Wfm-K
p=7800kg[m3
T.(1) = 325K + at T T T c=600 JjkgK
h = 25 W/m?- K

ASSUMPTIONS: (1) Constant properties, (2) Negligible radiation heat transfer.
PROPERTIES: Given: k = 40 W/mK, p = 7800 kg/m’, ¢ = 600 J/kg'K.

ANALYSIS:
(a) Applying Equation 5.10 to a sphere (L. =1,/3),
hL, _ h(,/3) _ 25 W/m? K (0.005 m/3)

Bi =
k k 40 W/m-K

=0.001

Hence, the temperature of the steel sphere remains approximately uniform during the cooling
process. Equation 5.2 is written, with T,, = T, + at, as

-hA (T -T,-at) :ch{:l—T

. hA
Letting 0 =T - T,, dT=d0 and - hA (0 - at) = chd—B or @®_. C(0 - at) where C= —2
dt dt pVve

The solution may be written as the sum of the homogeneous and particular solutions,
0=0, +6, where 6, =cjexp(- Ct).

Assuming 0, = {(t)0y, , we substitute into the differential equation to find
% = Cat exp(Ct)/c, from which f=a (t - 1/C) exp(Ct)/c;.

Thus, the complete solution is
0 = c,exp(- Ct) + a(t - 1/C) and applying the initial condition we find

T=(T, - T, +a/C) exp(- Ct) + a(t - 1/C) + T, <



(b) The ambient and sphere temperatures for 0 < t <3600 s are shown in the plot below.

Sphere and Ambient Temperatures

12007 = Sphere Terrperature
—de Ammbient Temperature

1,000

T(C)

600

200 . T . . 1
0 €00 1,200 1,800 2,400 3,000 3.600

time (s)

Jote that:

1) For small times (t < 300s) the sphere temperature decreases rapidly,

2)att~850s, T =T, and, from Equation 5.2, dT/dt =0,

3)att >850s, T<T,,

4) at large time, T — T,, and dT/dt are constant.

_OMMENTS: Unless the air environment of Problem 5.7 is cooled, the air temperature will

ncrease in temperature as energy is transferred from the balls. However, the actual air
emperature versus time may not be linear.



5.10 A steel sphere (AISI 1010), 100 mm in diameter, is coated with a dielectric material layer of
thickness 2 mm and thermal conductivity 0.04 W/m - K. The coated sphere is initially at a
uniform temperature of 500°C and is suddenly quenched in a large oil bath for which Too =
100°C and h = 3000 W/m2 - K. Estimate the time required for the coated sphere temperature to
reach 150°C. Hint: Neglect the effect of energy storage in the dielectric material, since its
thermal capacitance (pcV) is small compared to that of the steel sphere.

KNOWN: Solid steel sphere (AISI 1010), coated with dielectric layer of prescribed thickness and
thermal conductivity. Coated sphere, initially at uniform temperature, is suddenly quenched in an oil
bath.

FIND: Time required for sphere to reach 150°C.
SCHEMATIC:

@Didecﬁic
layer
Sphere, D = 100 mm k 004'W/m
AISI 1010 steel, T T ~ fet-2.mm
T,= T() = 500°C T.=100°C

h: 3000W/mé K

PROPERTIES: Table A-1, AISI 1010 Steel (T = [500+ 150]° Cl2=325C=~ 6001():

p=7832 kg/m>, ¢ =559 J/kg K, k = 48.8 W/m-K.

ASSUMPTIONS: (1) Steel sphere is space-wise isothermal, (2) Dielectric layer has negligible
thermal capacitance compared to steel sphere, (3) Layer is thin compared to radius of sphere, (4)
Constant properties, (5) Neglect contact resistance between steel and coating.

ANALYSIS: The thermal resistance to heat transfer from the sphere is due to the dielectric layer and
the convection coefficient. That is,

2
Rr=fyplo 000m L (0050+0.00033)=0.0503™ K

k h 004Wm-K 3000 Wm2.-K

or in terms of an overall coefficient, U=1/R" =19.87 W/m2 -K. The effective Biot number is
UL. U(rp/3) 19.87 W/m?-Kx(0.100/6)m

Bio=— C= = =0.0068
k k 48.8 Wm-K

where the characteristic length is L =rg/3 for the sphere. Since Big < 0.1, the lumped capacitance
approach is applicable. Hence, Eq. 5.5 is appropriate with h replaced by U,

t_&{i} mﬁ&{i} o T(0)-To.

UlAs| 6, U|lAg| T(t)-
Substituting numerical values with (V/Ag) =r,/3 = D/6,
_ 7832 kg/m? x559 Jikg-K [O.IOOm:| 1 (500-100)°C
19.87 Wm? -K 6 (150-100)° C

t=7623s=2.12 h. <

COMMENTS: (1) Note from calculation of R"” that the resistance of the dielectric layer dominates
and therefore nearly all the temperature drop occurs across the layer.



