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PROBLEM 1.1 
 

KNOWN: Thermal conductivity, thickness and temperature difference across a sheet of rigid 
extruded insulation. 
 
FIND: (a) The heat flux through a 2 m × 2 m sheet of the insulation, and (b) The heat rate 
through the sheet. 
 
SCHEMATIC:       
                             
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) One-dimensional conduction in the x-direction, (2) Steady-state 
conditions, (3) Constant properties. 
 
ANALYSIS: From Equation 1.2 the heat flux is 
 

 1 2
x

T  - TdTq  = -k  = k
dx L

′′  

 
Solving,  
 

 "
x

W 10 Kq  = 0.029  × 
m K 0.02 m⋅

 

 

 x 2
Wq  = 14.5
m

′′           < 

 
The heat rate is  
 

 2
x x 2

Wq  = q A = 14.5  × 4 m  = 58 W
m

′′ ⋅       < 
 
COMMENTS: (1) Be sure to keep in mind the important distinction between the heat flux 
(W/m2) and the heat rate (W). (2) The direction of heat flow is from hot to cold. (3) Note that 
a temperature difference may be expressed in kelvins or degrees Celsius. 
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PROBLEM 1.2  
 
 
KNOWN:  Thickness and thermal conductivity of a wall.  Heat flux applied to one face and 
temperatures of both surfaces. 
 
FIND:  Whether steady-state conditions exist. 
 
SCHEMATIC: 

 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) One-dimensional conduction, (2) Constant properties, (3) No internal energy 
generation. 
  
ANALYSIS:   Under steady-state conditions an energy balance on the control volume shown is  
 

2
in out cond 1 2( ) / 12 W/m K(50 C 30 C) / 0.01 m 24,000 W/mq q q k T T L′′ ′′ ′′= = = − = ⋅ ° − ° =  

 

Since the heat flux in at the left face is only 20 W/m2, the conditions are not steady state.  < 
 

 
COMMENTS:  If the same heat flux is maintained until steady-state conditions are reached, the 
steady-state temperature difference across the wall will be  
 

ΔT = 2/ 20 W/m 0.01 m /12 W/m K 0.0167 Kq L k′′ = × ⋅ =  
 
which is much smaller than the specified temperature difference of 20°C.  
 
 

q” = 20 W/m2

L = 10 mm

k = 12 W/m·KT1 = 50°C

T2 = 30°C

q″cond



PROBLEM 1.3 
 
KNOWN:  Inner surface temperature and thermal conductivity of a concrete wall. 
 
FIND:  Heat loss by conduction through the wall as a function of outer surface temperatures ranging from 
-15 to 38°C. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) One-dimensional conduction in the x-direction, (2) Steady-state conditions, (3) 
Constant properties. 
 
ANALYSIS:  From Fourier’s law, if xq′′  and k are each constant it is evident that the gradient, 

xdT dx q k′′= − , is a constant, and hence the temperature distribution is linear.  The heat flux must be 
constant under one-dimensional, steady-state conditions; and k is approximately constant if it depends 
only weakly on temperature.  The heat flux and heat rate when the outside wall temperature is T2 = -15°C 
are 

 
( ) 21 2

x
25 C 15 CdT T Tq k k 1W m K 133.3W m

dx L 0.30m

− −−′′ = − = = ⋅ =

o o

. (1) 

 2 2
x xq q A 133.3W m 20m 2667 W′′= × = × = . (2) < 

 
Combining Eqs. (1) and (2), the heat rate qx can be determined for the range of outer surface temperature, 
-15 ≤ T2 ≤ 38°C, with different wall thermal conductivities, k. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the concrete wall, k = 1 W/m⋅K, the heat loss varies linearly from +2667 W to -867 W and is zero 
when the inside and outer surface temperatures are the same.  The magnitude of the heat rate increases 
with increasing thermal conductivity. 
 
COMMENTS:  Without steady-state conditions and constant k, the temperature distribution in a plane 
wall would not be linear. 
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PROBLEM 1.4  
KNOWN:  Dimensions, thermal conductivity and surface temperatures of a concrete slab.  Efficiency 
of gas furnace and cost of natural gas.  
FIND:  Daily cost of heat loss.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady state, (2) One-dimensional conduction, (3) Constant properties.  
ANALYSIS:  The rate of heat loss by conduction through the slab is 
 

 ( ) ( )1 2T T 7 Cq k LW 1.4 W / m K 11m 8m 4312 W
t 0.20m
− °

= = ⋅ × =    < 

 
The daily cost of natural gas that must be combusted to compensate for the heat loss is 
 

 ( ) ( )g
d 6f

q C 4312 W $0.02 / MJC t 24 h / d 3600s / h $8.28 / d
0.9 10 J / MJη

×
= Δ = × =

×
  < 

 
COMMENTS:  The loss could be reduced by installing a floor covering with a layer of insulation 
between it and the concrete. 
 



PROBLEM 1.5 
 
 
KNOWN:  Thermal conductivity and thickness of a wall.  Heat flux through wall.  Steady-state 
conditions. 
 
FIND:  Value of temperature gradient in K/m and in °C/m.  
 
SCHEMATIC:   

L = 20 mm

k = 2.3 W/m·K

q”x = 10 W/m2

x  
 
 
ASSUMPTIONS:  (1) One-dimensional conduction, (2) Constant properties. 
 
ANALYSIS:   Under steady-state conditions, 
 

" 210 W/m 4.35 K/m 4.35 C/m
2.3 W/m K

xdT q
dx k

= − = − = − = − °
⋅

   < 

 
Since the K units here represent a temperature difference, and since the temperature difference is the 
same in K and °C units, the temperature gradient value is the same in either units. 

 
 

COMMENTS:  A negative value of temperature gradient means that temperature is decreasing with 
increasing x, corresponding to a positive heat flux in the x-direction. 
 
 



PROBLEM 1.6 
 
KNOWN:  Heat flux and surface temperatures associated with a wood slab of prescribed 
thickness. 
 
FIND:  Thermal conductivity, k, of the wood. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) One-dimensional conduction in the x-direction, (2) Steady-state 
conditions, (3) Constant properties. 
 
ANALYSIS:  Subject to the foregoing assumptions, the thermal conductivity may be 
determined from Fourier’s law, Eq. 1.2.  Rearranging, 
 

 
( )

L W 0.05mk=q 40  
T T m 40-20 C

x 21 2
′′ =

− o  

 
 k = 0.10 W / m K.⋅          < 
 
COMMENTS:  Note that the °C or K temperature units may be used interchangeably when 
evaluating a temperature difference. 
 
 
 
 
 



PROBLEM 1.7 
 
KNOWN:  Inner and outer surface temperatures of a glass window of prescribed dimensions. 
 
FIND:  Heat loss through window. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) One-dimensional conduction in the x-direction, (2) Steady-state 
conditions, (3) Constant properties. 
 
ANALYSIS:  Subject to the foregoing conditions the heat flux may be computed from 
Fourier’s law, Eq. 1.2. 
 

 
( )

T T
q k 

L
15-5 CWq 1.4  

m K 0.005m
q 2800 W/m .

1 2x

x
2x

−
′′ =

′′ =
⋅

′′ =

o
 

 
Since the heat flux is uniform over the surface, the heat loss (rate) is 
 

 
q =  qx A

q =  2800 W / m2  3m2
′′ ×

×
 

 q =  8400 W.          < 
 
COMMENTS:  A linear temperature distribution exists in the glass for the prescribed 
conditions. 
 
 



PROBLEM 1.8 
 
KNOWN:  Net power output, average compressor and turbine temperatures, shaft dimensions and 
thermal conductivity. 
 
FIND:  (a) Comparison of the conduction rate through the shaft to the predicted net power output of 
the device, (b) Plot of the ratio of the shaft conduction heat rate to the anticipated net power output of 
the device over the range 0.005 m ≤ L ≤ 1 m and feasibility of a L = 0.005 m device. 
 
SCHEMATIC: 
 

 
 
 
 
 

 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Net power output is 
proportional to the volume of the gas turbine. 
 
PROPERTIES:  Shaft (given): k = 40 W/m⋅K. 
 
ANALYSIS:   (a) The conduction through the shaft may be evaluated using Fourier’s law, yielding 
 

( ) ( )2 3 2( ) 40W/m K(1000 400) C" / 4 (70 10 m) / 4 92.4W
1m

h c
c

k T Tq q A d
L

π π −− ⋅ − °
= = = × =  

 
The ratio of the conduction heat rate to the net power output is 
 

    6
6

92.4W 18.5 10
5 10 W

qr
P

−= = = ×
×

     < 
 
(b) The volume of the turbine is proportional to L3. Designating La = 1 m, da = 70 mm and Pa as the 
shaft length, shaft diameter, and net power output, respectively, in part (a), 
 

d = da × (L/La); P = Pa × (L/La)3 
 

and the ratio of the conduction heat rate to the net power output is 
 

( ) ( )( )22 2

3 2

3 2 6
6 2

2 2

( ) ( ) ( )/ 4 / / 4 /" 4
( / )

40W/m K(1000 400) C (70 10 m) 1m /5 10 W 18.5 10 m4   = 

h c h c h c
a a a a a

c

a a

k T T k T T k T Td d L L d L Pq A L Lr
P P P L L L

L L

ππ π

π −
−

− − −

= = = =

⋅ − ° × × × ×
=

 

 
Continued… 
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PROBLEM 1.8 (Cont.) 
 
 
The ratio of the shaft conduction to net power is shown below. At L = 0.005 m = 5 mm, the shaft 
conduction to net power output ratio is 0.74. The concept of the very small turbine is not feasible since 
it will be unlikely that the large temperature difference between the compressor and turbine can be 
maintained.                               < 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
COMMENTS:  (1) The thermodynamics analysis does not account for heat transfer effects and is 
therefore meaningful only when heat transfer can be safely ignored, as is the case for the shaft in part 
(a). (2) Successful miniaturization of thermal devices is often hindered by heat transfer effects that 
must be overcome with innovative design. 
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PROBLEM 1.9  
KNOWN:  Width, height, thickness and thermal conductivity of a single pane window and 
the air space of a double pane window.  Representative winter surface temperatures of single 
pane and air space.  
FIND:  Heat loss through single and double pane windows.  
SCHEMATIC:   
 

 
 
 
ASSUMPTIONS:  (1) One-dimensional conduction through glass or air, (2) Steady-state 
conditions, (3) Enclosed air of double pane window is stagnant (negligible buoyancy induced 
motion).  
ANALYSIS:  From Fourier’s law, the heat losses are 
 

Single Pane: ( )T T 35 C21 2q k A 1.4 W/m K 2m 19,600 Wg g L 0.005m
−

= = ⋅ =
o

 < 

 

Double Pane: ( )T T 25 C21 2q k A 0.024 2m 120 Wa a L 0.010 m
−

= = =
o

   < 
 
COMMENTS:  Losses associated with a single pane are unacceptable and would remain 
excessive, even if the thickness of the glass were doubled to match that of the air space.  The 
principal advantage of the double pane construction resides with the low thermal conductivity 
of air (~ 60 times smaller than that of glass).  For a fixed ambient outside air temperature, use 
of the double pane construction would also increase the surface temperature of the glass 
exposed to the room (inside) air. 
 



PROBLEM 1.10 
 
KNOWN:  Dimensions of freezer compartment.  Inner and outer surface temperatures. 
 
FIND:  Thickness of styrofoam insulation needed to maintain heat load below prescribed 
value. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) Perfectly insulated bottom, (2) One-dimensional conduction through 5 
walls of area A = 4m2, (3) Steady-state conditions, (4) Constant properties. 
 
ANALYSIS:  Using Fourier’s law, Eq. 1.2, the heat rate is 
 

 q =  q A =  k T
L

 Atotal′′ ⋅
Δ  

 
Solving for L and recognizing that Atotal = 5×W2, find 
 

 L =  5 k  T W
q

2Δ  

 

 
( ) ( )5  0.03 W/m K 35 - -10 C 4m

L = 
500 W

2⎡ ⎤× ⋅ ⎣ ⎦
o

 

 
 L =  0.054m =  54mm.         < 
 
COMMENTS:  The corners will cause local departures from one-dimensional conduction 
and a slightly larger heat loss. 
 
 



PROBLEM 1.11 
 
 
KNOWN:  Heat flux at one face and air temperature and convection coefficient at other face of plane 
wall.  Temperature of surface exposed to convection. 
 
FIND:  If steady-state conditions exist. If not, whether the temperature is increasing or decreasing. 
 
SCHEMATIC:   

 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) One-dimensional conduction, (2) No internal energy generation. 
 
ANALYSIS:   Conservation of energy for a control volume around the wall gives 
 

st
in out g

dE
E E E

dt
= − +& & &  

 

[ ]st
in in

2 2 2

( ) ( )

20 W/m 20 W/m K(50 C 30 C) 380 W/m

s s

dE
q A hA T T q h T T A

dt
A A

∞ ∞
′′ ′′= − − = − −

= − ⋅ ° − ° = −⎡ ⎤⎣ ⎦

 

 

Since dEst/dt ≠ 0, the system is not at steady-state.       < 
    

Since dEst/dt < 0, the stored energy is decreasing, therefore the wall temperature is decreasing.       < 
 
 
 
COMMENTS:  When the surface temperature of the face exposed to convection cools to 31°C, qin = 
qout and dEst/dt = 0 and the wall will have reached steady-state conditions. 
 
 
 
 
 
 
 

q” = 20 W/m2

Ts = 50°C

h = 20 W/m2·K
T∞ = 30°C

Air

q”conv



PROBLEM 1.12  
KNOWN:  Dimensions and thermal conductivity of food/beverage container.  Inner and outer 
surface temperatures.  
FIND:  Heat flux through container wall and total heat load.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible heat transfer through bottom 
wall, (3) Uniform surface temperatures and one-dimensional conduction through remaining 
walls.  
ANALYSIS:  From Fourier’s law, Eq. 1.2, the heat flux is  

 ( )0.023 W/m K 20 2 CT T 22 1q k 16.6 W/m
L 0.025 m

⋅ −−′′ = = =
o

    < 
 
Since the flux is uniform over each of the five walls through which heat is transferred, the 
heat load is  
 ( )q q A q H 2W 2W W Wtotal 1 2 1 2′′ ′′ ⎡ ⎤= × = + + ×⎣ ⎦  
 
 ( ) ( )2q 16.6 W/m 0.6m 1.6m 1.2m 0.8m 0.6m 35.9 W⎡ ⎤= + + × =⎣ ⎦    < 
 
COMMENTS:  The corners and edges of the container create local departures from one-
dimensional conduction, which increase the heat load.  However, for H, W1, W2 >> L, the 
effect is negligible. 
 



PROBLEM 1.13 
 
KNOWN:  Masonry wall of known thermal conductivity has a heat rate which is 80% of that 
through a composite wall of prescribed thermal conductivity and thickness. 
 
FIND:  Thickness of masonry wall. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) Both walls subjected to same surface temperatures, (2) One-
dimensional conduction, (3) Steady-state conditions, (4) Constant properties. 
 
ANALYSIS:  For steady-state conditions, the conduction heat flux through a one-
dimensional wall follows from Fourier’s law, Eq. 1.2, 
 

 ′′q  =  k T
L
Δ  

 
where ΔT represents the difference in surface temperatures.  Since ΔT is the same for both 
walls, it follows that 
 

 L  =  L  
k
k

  
q
q1 2

1

2

2

1
⋅

′′
′′

.  

 
With the heat fluxes related as 
 
 ′′ = ′′q  0.8 q1 2  
 

 L  =  100mm 0.75 W / m K
0.25 W / m K

  1
0.8

 =  375mm.1
⋅
⋅

×      < 

 
COMMENTS:  Not knowing the temperature difference across the walls, we cannot find the 
value of the heat rate. 
 



PROBLEM 1.14 
 

KNOWN:  Expression for variable thermal conductivity of a wall.  Constant heat flux.  
Temperature at x = 0. 
  
FIND:  Expression for temperature gradient and temperature distribution. 
 
SCHEMATIC:  
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) One-dimensional conduction. 
 
ANALYSIS:  The heat flux is given by Fourier’s law, and is known to be constant, therefore 
 

x
dTq k constant
dx

′′ = − =  

 
Solving for the temperature gradient and substituting the expression for k yields 
 

x xq qdT
dx k ax b

′′ ′′
= − = −

+
     < 

 
This expression can be integrated to find the temperature distribution, as follows: 
 

xqdT dx dx
dx ax b

′′
= −

+∫ ∫  

 
Since xq constant′′ = , we can integrate the right hand side to find 
 

( )xqT ln ax b c
a
′′

= − + +  

 
where c is a constant of integration.  Applying the known condition that T = T1 at x = 0, 
we can solve for c. 

Continued… 
 

 
 

q”

x

k = ax + b

T1



PROBLEM 1.14 (Cont.) 
 
 
 

1

x
1

x
1

T(x 0) T
q ln b c T
a

qc T ln b
a

= =
′′

− + =

′′
= +

 

 
 

Therefore, the temperature distribution is given by 
 

( )x x
1

q qT ln ax b T ln b
a a
′′ ′′

= − + + +     < 

   x
1

q bT ln
a ax b
′′

= +
+

      < 

 
 
COMMENTS:  Temperature distributions are not linear in many situations, such as when the 
thermal conductivity varies spatially or is a function of temperature. Non-linear temperature 
distributions may also evolve if internal energy generation occurs or non-steady conditions exist.  

  
 
 
 



PROBLEM 1.15  
KNOWN:  Thickness, diameter and inner surface temperature of bottom of pan used to boil 
water.  Rate of heat transfer to the pan.  
FIND:  Outer surface temperature of pan for an aluminum and a copper bottom.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) One-dimensional, steady-state conduction through bottom of pan.  
ANALYSIS:  From Fourier’s law, the rate of heat transfer by conduction through the bottom 
of the pan is 
 

 T T1 2q kA
L
−

=  

 
Hence, 
 

 qLT T1 2 kA
= +  

 

where ( )22 2A D / 4 0.2m / 4 0.0314 m .π π= = =  
 

Aluminum: 
( )

( )
600W 0.005 m

T 110 C 110.40 C1 2240 W/m K 0.0314 m
= + =

⋅

o o   < 

 

Copper: ( )

( )
600W 0.005 m

T 110 C 110.24 C1 2390 W/m K 0.0314 m
= + =

⋅

o o   < 

 
COMMENTS:  Although the temperature drop across the bottom is slightly larger for 
aluminum (due to its smaller thermal conductivity), it is sufficiently small to be negligible for 
both materials.  To a good approximation, the bottom may be considered isothermal at T ≈ 
110 °C, which is a desirable feature of pots and pans. 
 



PROBLEM 1.16 
 
KNOWN:  Dimensions and thermal conductivity of a chip.  Power dissipated on one surface. 
 
FIND:  Temperature drop across the chip. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Uniform heat 
dissipation, (4) Negligible heat loss from back and sides, (5) One-dimensional conduction in 
chip. 
 
ANALYSIS:  All of the electrical power dissipated at the back surface of the chip is 
transferred by conduction through the chip.  Hence, from Fourier’s law, 
 

 P =  q =  kA T
t
Δ  

or 
 

 
( )

t P 0.001 m 4 WT = 
kW 150 W/m K 0.005 m2 2
⋅ ×

Δ =
⋅

 

 
 ΔT =  1.1  C.o           < 
 
COMMENTS:  For fixed P, the temperature drop across the chip decreases with increasing k 
and W, as well as with decreasing t. 



PROBLEM 1.17 
 
KNOWN:  Heat flux and convection heat transfer coefficient for boiling water.  Saturation 
temperature and convection heat transfer coefficient for boiling dielectric fluid. 
 
FIND:  Upper surface temperature of plate when water is boiling. Whether plan for minimizing 
surface temperature by using dielectric fluid will work. 
 
SCHEMATIC:   

Tsat,d = 52°C

q" = 20 × 105 W/m2

Tsat,w = 100°C

hw = 20,000 W/m2·K
hd = 3,000 W/m2·K

 
 
 
ASSUMPTIONS:  Steady-state conditions. 
 
PROPERTIES:  Tsat,w = 100°C at p = 1 atm. 
 
ANALYSIS:   According to the problem statement, Newton’s law of cooling can be expressed for a 
boiling process as 
 

sat( )sq h T T′′ = −  
 

Thus, 
 

sat /sT T q h′′= +  
 

When the fluid is water,  
 

5 2

, sat, 3 2

20 10  W/m/ 100 C 200 C
20 10  W/m Ks w w wT T q h ×′′= + = ° + = °

× ⋅
    

 
When the dielectric fluid is used, 
 
 

5 2

, sat, 3 2

20 10  W/m/ 52 C 719 C
3 10  W/m Ks d d dT T q h ×′′= + = ° + = °
× ⋅

    

 
Thus, the technician’s proposed approach will not reduce the surface temperature.  < 
 
COMMENTS:  (1) Even though the dielectric fluid has a lower saturation temperature, this is more 
than offset by the lower heat transfer coefficient associated with the dielectric fluid. The surface 
temperature with the dielectric coolant exceeds the melting temperature of many metals such as 
aluminum and aluminum alloys. (2) Dielectric fluids are, however, employed in applications such as 
immersion cooling of electronic components, where an electrically-conducting fluid such as water 
could not be used. 
 
 



PROBLEM 1.18 
 
KNOWN:  Hand experiencing convection heat transfer with moving air and water. 
 
FIND:  Determine which condition feels colder.  Contrast these results with a heat loss of 30 W/m2 under 
normal room conditions. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) Temperature is uniform over the hand’s surface, (2) Convection coefficient is 
uniform over the hand, and (3) Negligible radiation exchange between hand and surroundings in the case 
of air flow. 
 
ANALYSIS:  The hand will feel colder for the condition which results in the larger heat loss.  The heat 
loss can be determined from Newton’s law of cooling, Eq. 1.3a, written as 
 
 ( )sq h T T∞′′ = −  
 
For the air stream: 
 

 ( )2 2
airq 40 W m K 30 5 K 1,400 W m′′ ⎡ ⎤= ⋅ − − =⎣ ⎦  < 

 
For the water stream: 
 

 ( )2 2
waterq 900 W m K 30 10 K 18,000 W m′′ = ⋅ − =  < 

 
COMMENTS:  The heat loss for the hand in the water stream is an order of magnitude larger than when 
in the air stream for the given temperature and convection coefficient conditions.  In contrast, the heat 
loss in a normal room environment is only 30 W/m2 which is a factor of 400 times less than the loss in the 
air stream.  In the room environment, the hand would feel comfortable; in the air and water streams, as 
you probably know from experience, the hand would feel uncomfortably cold since the heat loss is 
excessively high. 



PROBLEM 1.19 
 
KNOWN:  Power required to maintain the surface temperature of a long, 25-mm diameter cylinder 
with an imbedded electrical heater for different air velocities. 
 
FIND:  (a) Determine the convection coefficient for each of the air velocity conditions and display the 
results graphically, and (b) Assuming that the convection coefficient depends upon air velocity as h = 
CVn, determine the parameters C and n. 
 
SCHEMATIC: 
 

 

V(m/s) 1 2 4 8 12 
′Pe  (W/m) 450 658 983 1507 1963 

h (W/m2⋅K) 22.0 32.2 48.1 73.8 96.1 

 
ASSUMPTIONS:  (1) Temperature is uniform over the cylinder surface, (2) Negligible radiation 
exchange between the cylinder surface and the surroundings, (3) Steady-state conditions. 
 
ANALYSIS:  (a) From an overall energy balance on the cylinder, the power dissipated by the 
electrical heater is transferred by convection to the air stream.  Using Newton’s law of cooling on a per 
unit length basis, 
 
 ( )( )e sP h D T Tπ ∞′ = −  
 
where eP′  is the electrical power dissipated per unit length of the cylinder.  For the V = 1 m/s 
condition, using the data from the table above, find 

 ( ) 2h 450 W m 0.025m 300 40 C 22.0 W m Kπ= × − = ⋅o  < 
 
Repeating the calculations, find the convection coefficients for the remaining conditions which are 
tabulated above and plotted below.  Note that h is not linear with respect to the air velocity. 
 
(b) To determine the (C,n) parameters, we plotted h vs. V on log-log coordinates.  Choosing C = 22.12 
W/m2⋅K(s/m)n, assuring a match at V = 1, we can readily find the exponent n from the slope of the h 
vs. V curve.  From the trials with n = 0.8, 0.6 and 0.5, we recognize that n = 0.6 is a reasonable choice.  

Hence, C = 22.12 and n = 0.6. < 
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COMMENTS: Radiation may not be negligible, depending on surface emissivity. 



PROBLEM 1.20 
 

KNOWN:  Inner and outer surface temperatures of a wall.  Inner and outer air temperatures and 
convection heat transfer coefficients. 
 
FIND:  Heat flux from inner air to wall.  Heat flux from wall to outer air.  Heat flux from wall to 
inner air.  Whether wall is under steady-state conditions. 
 
SCHEMATIC:  
 
 
 
 
 
 
 
   
 
 
 
ASSUMPTIONS:  (1) Negligible radiation, (2) No internal energy generation. 
 
ANALYSIS:  The heat fluxes can be calculated using Newton’s law of cooling.  Convection 
from the inner air to the wall occurs in the positive x-direction: 
 

2 2
x,i w i ,i s,iq h (T T ) 5 W/m K (20 C 16 C) 20 W/m− ∞′′ = − = ⋅ × ° − ° =   < 

 
Convection from the wall to the outer air also occurs in the positive x-direction: 

2 2
x,w o o s,o ,oq h (T T ) 20 W/m K (6 C 5 C) 20 W/m− ∞′′ = − = ⋅ × ° − ° =   < 

 
From the wall to the inner air:  

2 2
w i i s,i ,iq h (T T ) 5 W/m K (16 C 20 C) 20 W/m− ∞′′ = − = ⋅ × ° − ° = −   < 

           
An energy balance on the wall gives 
 

st
in out x,i w x,w o

dE E E A(q q ) 0
dt − −′′ ′′= − = − =& &  

 
Since dEst/dt = 0, the wall could be at steady-state and the spatially-averaged wall temperature is 
not changing.  However, it is possible that stored energy is increasing in one part of the wall and 
decreasing in another, therefore we cannot tell if the wall is at steady-state or not.  If we found 

dEst/dt ≠ 0, we would know the wall was not at steady-state.      < 
 
COMMENTS:  The heat flux from the wall to the inner air is equal and opposite to the heat 
flux from the inner air to the wall.  

Air
T∞,o= 5°C
ho = 20 W/m2·K

Ts,i = 16°C

Ts,o = 6°C

x

q″x,w-o

q″x,i-w

Air
T∞,i= 20°C
hi = 5 W/m2·K

Inner surface

Outer surface

dEst/dt



PROBLEM 1.21  
KNOWN:  Long, 30mm-diameter cylinder with embedded electrical heater; power required 
to maintain a specified surface temperature for water and air flows. 
 

FIND:  Convection coefficients for the water and air flow convection processes, hw and ha, 
respectively. 
 

SCHEMATIC: 

 
ASSUMPTIONS:  (1) Flow is cross-wise over cylinder which is very long in the direction 
normal to flow. 
 

ANALYSIS:  The convection heat rate from the cylinder per unit length of the cylinder has 
the form 
 

 ( ) ( )q  = h D  T Tsπ′ − ∞  
 

and solving for the heat transfer convection coefficient, find 
 

 
( )

qh = .
D T Tsπ

′
− ∞

 

 

Substituting numerical values for the water and air situations: 
 

Water  
( )

28  10  W/mh  =  = 4,570 W/m K
  0.030m 90-25  C

3 2w
π

×
⋅

× o
    < 

 

Air  
( )

400 W/mh  = 65 W/m K.
  0.030m 90-25  C

2a
π

= ⋅
× o

    < 

 

COMMENTS:  Note that the air velocity is 10 times that of the water flow, yet 
 

 hw ≈ 70 × ha. 
 

These values for the convection coefficient are typical for forced convection heat transfer 
with liquids and gases.  See Table 1.1. 



PROBLEM 1.22 
 
KNOWN:  Hot vertical plate suspended in cool, still air.  Change in plate temperature with time at the 
instant when the plate temperature is 225°C. 
 
FIND:  Convection heat transfer coefficient for this condition. 
 
SCHEMATIC: 

 
 
 
 
 
 
 
 

ASSUMPTIONS:  (1) Plate is isothermal, (2) Negligible radiation exchange with surroundings, (3) 
Negligible heat lost through suspension wires. 
 
ANALYSIS:  As shown in the cooling curve above, the plate temperature decreases with time.  The 
condition of interest is for time to.  For a control surface about the plate, the conservation of energy 
requirement is 

( )
out stin

s s p

E  - E  = E
dT2hA T T Mc
dt∞− − =

& & &

     

where As is the surface area of one side of the plate.  Solving for h, find 
 

 
( )

p

s s

Mc -dTh = 
2A T  - T dt∞

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

 
( ) ( )

2
2

3.75 kg × 2770 J/kg Kh = × 0.022 K/s = 6.3 W/m K
2 × 0.3 × 0.3 m 225 - 25 K

⋅
⋅    < 

 
COMMENTS:  (1) Assuming the plate is very highly polished with emissivity of 0.08, determine 
whether radiation exchange with the surroundings at 25°C is negligible compared to convection. 
 
(2) We will later consider the criterion for determining whether the isothermal plate assumption is 
reasonable.  If the thermal conductivity of the present plate were high (such as aluminum or copper), 
the criterion would be satisfied. 

-0.022 K/s-0.022 K/s



PROBLEM 1.23  
KNOWN:  Width, input power and efficiency of a transmission.  Temperature and convection 
coefficient associated with air flow over the casing.  
FIND:  Surface temperature of casing.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady state, (2) Uniform convection coefficient and surface temperature, (3) 
Negligible radiation.  
ANALYSIS:  From Newton’s law of cooling, 
 

 ( ) ( )2
s s sq hA T T 6 hW T T∞ ∞= − = −  

 
where the output power is ηPi and the heat rate is 
 
 ( )i o iq P P P 1 150 hp 746 W / hp 0.07 7833Wη= − = − = × × =  
 
Hence, 
 

 
( )

s 2 22
q 7833 WT T 30 C 102.5 C

6 hW 6 200 W / m K 0.3m
∞= + = ° + = °

× ⋅ ×
  < 

 
COMMENTS:  There will, in fact, be considerable variability of the local convection coefficient over 
the transmission case and the prescribed value represents an average over the surface. 
 



PROBLEM 1.24 
 
KNOWN:  Dimensions of a cartridge heater.  Heater power.  Convection coefficients in air 
and water at a prescribed temperature. 
 

FIND:  Heater surface temperatures in water and air. 
 

SCHEMATIC: 

 
ASSUMPTIONS:  (1)  Steady-state conditions, (2)  All of the electrical power is transferred 
to the fluid by convection, (3)  Negligible heat transfer from ends. 
 

ANALYSIS:  With P = qconv, Newton’s law of cooling yields 
 

( ) ( )P=hA T T h DL T T
PT T .

h DL

s s
s

π

π

− = −

= +
∞ ∞

∞
 

In water, 
 

 T C + 2000 W
5000 W / m K 0.02 m 0.200 ms 2=

⋅ × × ×
20o

π
 

 

 T C + 31.8 C = 51.8 C.s = 20o o o         < 
 

In air, 
 

 T C + 2000 W
50 W / m K 0.02 m 0.200 ms 2=

⋅ × × ×
20o

π
 

 

 T C + 3183 C = 3203 C.s = 20o o o        < 
 
COMMENTS:  (1) Air is much less effective than water as a heat transfer fluid.  Hence, the 
cartridge temperature is much higher in air, so high, in fact, that the cartridge would melt. (2)  
In air, the high cartridge temperature would render radiation significant. 



PROBLEM 1.25  
KNOWN:  Length, diameter and calibration of a hot wire anemometer.  Temperature of air 
stream.  Current, voltage drop and surface temperature of wire for a particular application.  
FIND:  Air velocity  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible heat transfer from the wire by 
natural convection or radiation.  
ANALYSIS:  If all of the electric energy is transferred by convection to the air, the following 
equality must be satisfied 
 
 ( )P EI hA T Telec s= = − ∞  
 
where ( ) 5 2A DL 0.0005m 0.02m 3.14 10 m .π π −= = × = ×  
 
Hence, 
 

 
( ) ( )

EI 5V 0.1A 2h 318 W/m K
5 2A T Ts 3.14 10 m 50 C

×
= = = ⋅

−− ∞ × o
 

 

 ( )25 2 5 2V 6.25 10 h 6.25 10 318 W/m K 6.3 m/s− −= × = × ⋅ =    < 
 
COMMENTS:  The convection coefficient is sufficiently large to render buoyancy (natural 
convection) and radiation effects negligible. 
 



PROBLEM 1.26  
KNOWN:  Chip width and maximum allowable temperature.  Coolant conditions.  
FIND:  Maximum allowable chip power for air and liquid coolants.  
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible heat transfer from sides and 
bottom, (3) Chip is at a uniform temperature (isothermal), (4) Negligible heat transfer by 
radiation in air.  
ANALYSIS:  All of the electrical power dissipated in the chip is transferred by convection to 
the coolant.  Hence,  
 P = q  
and from Newton’s law of cooling,  
 P = hA(T - T∞) = h W2(T - T∞). 
 
In air,  
 Pmax = 200 W/m2

⋅K(0.005 m)2(85 - 15) ° C = 0.35 W.    < 
 
In the dielectric liquid  
 Pmax = 3000 W/m2

⋅K(0.005 m)2(85-15) ° C = 5.25 W.    < 
 
 
COMMENTS:  Relative to liquids, air is a poor heat transfer fluid.  Hence, in air the chip can 
dissipate far less energy than in the dielectric liquid. 



PROBLEM 1.27  
KNOWN:  Upper temperature set point, Tset, of a bimetallic switch and convection heat 
transfer coefficient between clothes dryer air and exposed surface of switch. 
 

FIND:  Electrical power for heater to maintain Tset when air temperature is T∞ = 50°C. 
 

SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Electrical heater is perfectly insulated 
from dryer wall, (3) Heater and switch are isothermal at Tset, (4) Negligible heat transfer from 
sides of heater or switch, (5) Switch surface, As, loses heat only by convection. 
 

ANALYSIS:  Define a control volume around the bimetallic switch which experiences heat 
input from the heater and convection heat transfer to the dryer air.  That is, 
 

 ( )
E  - E  = 0
q  - hA T T 0.

outin
s setelec − =∞

& &
 

 

The electrical power required is, 
 

 ( )q  = hA T Ts setelec − ∞  
 

 ( )q  = 25 W/m K 30 10  m 70 50 K=15 mW.2 -6 2
elec ⋅ × × −     < 

 

COMMENTS:  (1) This type of controller can achieve variable operating air temperatures 
with a single set-point, inexpensive, bimetallic-thermostatic switch by adjusting power levels 
to the heater. 
 

(2) Will the heater power requirement increase or decrease if the insulation pad is other than 
perfect? 



PROBLEM 1.28  
KNOWN:  Length, diameter, surface temperature and emissivity of steam line.  Temperature 
and convection coefficient associated with ambient air.  Efficiency and fuel cost for gas fired 
furnace.  
FIND:  (a) Rate of heat loss, (b) Annual cost of heat loss.  
SCHEMATIC:   
 

 
 
 
 
 
 
 
 

 
ASSUMPTIONS:  (1) Steam line operates continuously throughout year, (2) Net radiation 
transfer is between small surface (steam line) and large enclosure (plant walls).  
ANALYSIS:  (a) From Eqs. (1.3a) and (1.7), the heat loss is  
 ( ) ( )4 4

conv rad s s surq q q A h T T T T∞
⎡ ⎤= + = − + −
⎣ ⎦

εσ  
 
where ( ) 2A DL 0.1m 25m 7.85m .= = × =π π  
 
Hence,  

( ) ( )2 2 8 2 4 4 4 4q 7.85m 10 W/m K 150 25 K 0.8 5.67 10 W/m K 423 298 K−⎡ ⎤= ⋅ − + × × ⋅ −
⎣ ⎦

 
 
 ( ) ( )2 2q 7.85m 1,250 1,095 W/m 9813 8592 W 18,405 W= + = + =    < 
 
(b) The annual energy loss is  
 11E qt 18,405 W 3600 s/h 24h/d 365 d/y 5.80 10  J= = × × × = ×  
 
With a furnace energy consumption of 11

f fE E/ 6.45 10  J,= = ×η  the annual cost of the loss is 
 
 5

g fC C E 0.02 $/MJ 6.45 10 MJ $12,900= = × × =      < 
 
COMMENTS:  The heat loss and related costs are unacceptable and should be reduced by 
insulating the steam line. 
 

= 0.8= 0.8



PROBLEM 1.29  
KNOWN:  Air and wall temperatures of a room.  Surface temperature, convection coefficient 
and emissivity of a person in the room.  
FIND:  Basis for difference in comfort level between summer and winter.  
SCHEMATIC:   
 

 
 
 
 
 
 
 
 

ASSUMPTIONS:  (1) Person may be approximated as a small object in a large enclosure.  
ANALYSIS:  Thermal comfort is linked to heat loss from the human body, and a chilled 
feeling is associated with excessive heat loss.  Because the temperature of the room air is 
fixed, the different summer and winter comfort levels cannot be attributed to convection heat 
transfer from the body.  In both cases, the heat flux is 
 
Summer and Winter: ( ) 2 2q h T T 2 W/m K 12 C 24 W/mconv s′′ = − = ⋅ × =∞

o  
 
However, the heat flux due to radiation will differ, with values of 
 

Summer: ( ) ( )4 4 8 2 4 4 4 4 2q T T 0.9 5.67 10 W/m K 305 300 K 28.3 W/mrad s surεσ −′′ = − = × × ⋅ − =  

 

Winter: ( ) ( )4 4 8 2 4 4 4 4 2q T T 0.9 5.67 10 W/m K 305 287 K 95.4 W/mrad s surεσ −′′ = − = × × ⋅ − =  

 
There is a significant difference between winter and summer radiation fluxes, and the chilled 
condition is attributable to the effect of the colder walls on radiation.  
COMMENTS:  For a representative surface area of A = 1.5 m2, the heat losses are qconv = 
36 W, qrad(summer) = 42.5 W and qrad(winter) = 143.1 W.  The winter time radiation loss is 
significant and if maintained over a 24 h period would amount to 2,950 kcal. 
 



PROBLEM 1.30 
 
KNOWN:  Diameter and emissivity of spherical interplanetary probe.  Power dissipation 
within probe. 
 
FIND:  Probe surface temperature. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible radiation incident on the probe. 
 
ANALYSIS:  Conservation of energy dictates a balance between energy generation within 
the probe and radiation emission from the probe surface.  Hence, at any instant 
 

 -E  +  E  =  0out g
& &  

 

 ε σA T Es s
4

g= &  
 

 
E

T
D

1/ 4
g

s 2επ σ

⎛ ⎞
= ⎜ ⎟
⎜ ⎟
⎝ ⎠

&
 

 

 
( )

150WT
2 40.8 0.5 m 5.67 10

1/ 4

s 2 8 W/m K π

⎛ ⎞
⎜ ⎟=
⎜ ⎟×⎝ ⎠

− ⋅
 

 

 T  K.s = 254 7.           < 
 

COMMENTS:  Incident radiation, as, for example, from the sun, would increase the surface 
temperature. 
 
 



PROBLEM 1.31 
 
KNOWN:  Spherical shaped instrumentation package with prescribed surface emissivity within a 
large space-simulation chamber having walls at 77 K. 
 
FIND:  Acceptable power dissipation for operating the package surface temperature in the range Ts = 
40 to 85°C.  Show graphically the effect of emissivity variations for 0.2 and 0.3. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Uniform surface temperature, (2) Chamber walls are large compared to the 
spherical package, and (3) Steady-state conditions. 
 
ANALYSIS:  From an overall energy balance on the package, the internal power dissipation Pe will 
be transferred by radiation exchange between the package and the chamber walls.  From Eq. 1.7, 
 ( )4 4

rad e s s surq  = P  = εA σ T  - T  

For the condition when Ts = 40°C, with As = πD2 the power dissipation will be 

 ( ) ( )42 2 -8 2 4 4 4
eP  = 0.25 π × 0.10 m × 5.67 ×10  W m K × 40 + 273 - 77 K = 4.3 W⎡ ⎤⋅ ⎢ ⎥⎣ ⎦

           < 

Repeating this calculation for the range 40 ≤ Ts ≤ 85°C, we can obtain the power dissipation as a 
function of surface temperature for the ε = 0.25 condition.  Similarly, with 0.2 or 0.3, the family of 
curves shown below has been obtained. 
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Surface emissivity, eps = 0.3
eps = 0.25
eps = 0.2   

COMMENTS:  (1) As expected, the internal power dissipation increases with increasing emissivity 
and surface temperature.  Because the radiation rate equation is non-linear with respect to temperature, 
the power dissipation will likewise not be linear with surface temperature. 
 
(2) What is the maximum power dissipation that is possible if the surface temperature is not to exceed 
85°C?  What kind of a coating should be applied to the instrument package in order to approach this 
limiting condition? 



PROBLEM 1.32 
 

KNOWN: Hot plate suspended in vacuum and surroundings temperature. Mass, specific heat, area 
and time rate of change of plate temperature. 
 
FIND: (a) The emissivity of the plate, and (b) The rate at which radiation is emitted from the plate. 
 
SCHEMATIC: 
 
                                 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Plate is isothermal and at uniform temperature, (2) Large surroundings, (3) 
Negligible heat loss through suspension wires. 
 
ANALYSIS: For a control volume about the plate, the conservation of energy requirement is 
 
 in out stE  - E  = E& & &          (1) 
 

where   st p
dTE  = Mc
dt

&           (2) 

 
and for large surroundings  4 4

in out sur sE  - E  = Aεσ(T  - T )& &                  (3)             
  
Combining Eqns. (1) through (3) yields 

 p
4 4
sur s

dT
Mc dtε = 
Aσ (T - T )

 

 
Noting that Tsur = 25˚C + 273 K = 298 K and Ts = 225˚C + 273 K = 498 K, we find 

-8 4 4 4
2 4

J K3.75 kg  ×  2770  × (-0.022 )
kg K sε =  = 0.42W2 × 0.3 m × 0.3 m × 5.67 × 10 (498 - 298 ) K

m K

⋅

⋅

   < 

The rate at which radiation is emitted from the plate is  
4

rad,e sq  = εAσT -8 4
2 4
W= 0.42 × 2 × 0.3 m × 0.3 m × 5.67 × 10  × (498 K)

m K⋅
= 264 W  < 

 
COMMENTS: Note the importance of using kelvins when working with radiation heat transfer.  

Ts

&
stE

qrad

qrad

Tsur = 25˚C

Ts = 225˚C

Plate, 0.3 m     0.3 m
M = 3.75 kg, cp = 2770 ⋅J kg K

T(t)

tt0

dT K =  -0.022 sdt

×

Ts

&
stE

qrad

qrad

Ts

&
stE

qrad

qrad

Tsur = 25˚C

Ts = 225˚C

Plate, 0.3 m     0.3 m
M = 3.75 kg, cp = 2770 ⋅J kg K

T(t)

tt0

dT K =  -0.022 sdt
T(t)

tt0

dT K =  -0.022 sdt

×



PROBLEM 1.33 
 
KNOWN:  Exact and approximate expressions for the linearized radiation coefficient, hr and hra, 
respectively. 
 
FIND:  (a) Comparison of the coefficients with ε = 0.05 and 0.9 and surface temperatures which may 
exceed that of the surroundings (Tsur = 25°C) by 10 to 100°C; also comparison with a free convection 
coefficient correlation, (b) Plot of the relative error (hr - rra)/hr as a function of the furnace temperature 
associated with a workpiece at Ts = 25°C having ε = 0.05, 0.2 or 0.9. 
 
ASSUMPTIONS:  (1) Furnace walls are large compared to the workpiece and (2) Steady-state 
conditions. 
 
ANALYSIS:  (a) The linearized radiation coefficient, Eq. 1.9, follows from the radiation exchange 
rate equation, 

 ( )( )2 2
r s sur s surh T T T Tεσ= + +  

If Ts ≈ Tsur, the coefficient may be approximated by the simpler expression 

 ( )3
r,a s surh 4 T T T T 2εσ= = +  

For the condition of ε = 0.05, Ts = Tsur + 10 = 35°C = 308 K and Tsur = 25°C = 298 K, find that 

 ( )( )8 2 4 2 2 3 2
rh 0.05 5.67 10 W m K 308 298 308 298 K 0.32 W m K−= × × ⋅ + + = ⋅  < 

 ( )( )38 2 4 3 2
r,ah 4 0.05 5.67 10 W m K 308 298 2 K 0.32 W m K−= × × × ⋅ + = ⋅  < 

The free convection coefficient with Ts = 35°C and T∞  = Tsur = 25°C, find that 

 ( ) ( )1/ 3 1/ 31/ 3 2
sh 0.98 T 0.98 T T 0.98 308 298 2.1W m K∞= Δ = − = − = ⋅  < 

For the range Ts - Tsur = 10 to 100°C with ε = 0.05 and 0.9, the results for the coefficients are tabulated 
below.  For this range of surface and surroundings temperatures, the radiation and free convection 
coefficients are of comparable magnitude for moderate values of the emissivity, say ε > 0.2.  The 
approximate expression for the linearized radiation coefficient is valid within 2% for these conditions. 
 
(b)  The above expressions for the radiation coefficients, hr and hr,a, are used for the workpiece at Ts = 
25°C placed inside a furnace with walls which may vary from 100 to 1000°C.  The relative error, (hr - 
hra)/hr, will be independent of the surface emissivity and is plotted as a function of Tsur.  For Tsur > 
200°C, the approximate expression provides estimates which are in error more than 5%.  The 
approximate expression should be used with caution, and only for surface and surrounding 
temperature differences of 50 to 100°C. 
   

 
Coefficients (W/m2⋅K) 

Ts (°C) ε hr hr,a h 
35 0.05 0.32 0.32 2.1 

 0.9 5.7 5.7  
135 0.05 0.51 0.50 4.7 

 0.9 9.2 9.0  
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PROBLEM 1.34 
 
KNOWN:  Vacuum enclosure maintained at 77 K by liquid nitrogen shroud while baseplate is 
maintained at 300 K by an electrical heater.  
FIND:  (a) Electrical power required to maintain baseplate, (b) Liquid nitrogen consumption rate, (c) 
Effect on consumption rate if aluminum foil (εp = 0.09) is bonded to baseplate surface. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) No heat losses from backside of heater or sides of 
plate, (3) Vacuum enclosure large compared to baseplate, (4) Enclosure is evacuated with negligible 
convection, (5) Liquid nitrogen (LN2) is heated only by heat transfer to the shroud, and (6) Foil is 
intimately bonded to baseplate.  
PROPERTIES:  Heat of vaporization of liquid nitrogen (given):  125 kJ/kg.  
ANALYSIS:  (a) From an energy balance on the baseplate, 
 & &E  -  E  =  0               q  -  q  =  0in out elec rad  
and using Eq. 1.7 for radiative exchange between the baseplate and shroud, 
 ( )p

4 4
p pelec shq  = A T  - T .ε σ  

Substituting numerical values, with ( )2
p pA  = D / 4 ,π  find 

 ( )( ) ( )2 8 2 4 4 4 4
elecq  = 0.25 0.3 m / 4 5.67 10  W/m K 300  - 77 K 8.1 W.−× ⋅ =π   < 

(b) From an energy balance on the enclosure, radiative transfer heats the liquid nitrogen stream 
causing evaporation, 
 & & &E  -  E  =  0                 q  -  m h  =  0in out rad LN2 fg  
where &mLN2  is the liquid nitrogen consumption rate.  Hence, 

 & /mLN2 =  qrad hfg =  8.1 W / 125 kJ / kg =  6.48 10-5 kg / s = 0.23 kg / h.×  < 

(c) If aluminum foil (εp = 0.09) were bonded to the upper surface of the baseplate, 
 ( ) ( )prad,foil radq  = q /  = 8.1 W 0.09/0.25  = 2.9 Wfε ε  
and the liquid nitrogen consumption rate would be reduced by  
 

(0.25 - 0.09)/0.25 = 64% to 0.083 kg/h.       < 



PROBLEM 1.35 
 
KNOWN:  Resistor connected to a battery operating at a prescribed temperature in air. 
 
FIND:  (a) Considering the resistor as the system, determine corresponding values for ( )inE W& , 

( )gE W& , ( )outE W&  and ( )stE W& .  If a control surface is placed about the entire system, determine 

the values for inE& , gE& , outE& , and stE& .  (b)  Determine the volumetric heat generation rate within 

the resistor, q&  (W/m3), (c)  Neglecting radiation from the resistor, determine  the convection 
coefficient.  
 
SCHEMATIC:    

 
 
ASSUMPTIONS:  (1) Electrical power is dissipated uniformly within the resistor, (2) Temperature of 
the resistor is uniform, (3) Negligible electrical power dissipated in the lead wires, (4) Negligible 
radiation exchange between the resistor and the surroundings, (5) No heat transfer occurs from the 
battery, (5) Steady-state conditions in the resistor. 
 
ANALYSIS:     (a) Referring to Section 1.3.1, the conservation of energy requirement for a control 
volume at an instant of time, Equation 1.12c, is 
 
 in g out stE E E E+ − =& & & &  
 
where in outE , E& &  correspond to surface inflow and outflow processes, respectively.  The energy 

generation term gE&  is associated with conversion of some other energy form (chemical, electrical, 

electromagnetic or nuclear) to thermal energy.  The energy storage term stE&  is associated with 

changes in the internal, kinetic and/or potential energies of the matter in the control volume.  gE& , stE&  

are volumetric phenomena.  The electrical power delivered by the battery is P = VI = 24V×6A = 144 
W. 
 
Control volume: Resistor.  
 

          in outE 0 E 144 W= =& &     < 
          g stE 144W E 0= =& &  
            
The gE&  term is due to conversion of electrical energy to thermal energy.  The term outE&  is due to 

convection from the resistor surface to the air. 
Continued... 

 



 
PROBLEM 1.35 (Cont.) 

 
 
 
Control volume: Battery-Resistor System. 
 

       in outE 0 E 144 W= =& &     < 
       g stE 144W E 0= =& &  
 
 

 

             

 
Since we are considering conservation of thermal and mechanical energy, the conversion of chemical 
energy to electrical energy in the battery is irrelevant, and including the battery in the control volume 
doesn’t change the thermal and mechanical energy terms 
 
(b)  From the energy balance on the resistor with volume, ∀ = (πD2/4)L, 
 

 ( )( )2 5 3
gE q 144W q 0.06m / 4 0.25m q 2.04 10 W m= ∀ = × = ×& & & &π  < 

 
(c)  From the energy balance on the resistor and Newton's law of cooling with As = πDL + 2(πD2/4), 
 
 ( )out cv s sE q hA T T∞= = −&  
 
 ( ) ( )2 2144W h 0.06m 0.25m 2 0.06 m 4 95 25 C⎡ ⎤= × × + × −

⎣ ⎦
oπ π  

 
 [ ] ( )2144W h 0.0471 0.0057 m 95 25 C= + − o  

 2h 39.0W m K= ⋅  < 
 
COMMENTS:  (1) In using the conservation of energy requirement, Equation 1.12c, it is important to 
recognize that inE&  and outE&  will always represent surface processes and gE&  and stE& , volumetric 

processes.  The generation term gE&  is associated with a conversion process from some form of energy 

to thermal energy.  The storage term stE&  represents the rate of change of internal kinetic, and 
potential energy. 
 
(2) From Table 1.1 and the magnitude of the convection coefficient determined from part (c), we 
conclude that the resistor is experiencing forced, rather than free, convection. 
 



PROBLEM 1.36 
 
KNOWN:  Inlet and outlet conditions for flow of water in a vertical tube. 
 
FIND:  (a) Change in combined thermal and flow work, (b) change in mechanical energy, and (c) 
change in total energy of the water from the inlet to the outlet of the tube, (d) heat transfer rate, q. 
 
SCHEMATIC: 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Uniform velocity distributions at the tube inlet and 
outlet. 
 
PROPERTIES:  Table A.6 water (T = 110°C): ρ = 950 kg/m3, (T = (179.9°C + 110 °C)/2 = 145°C): 
cp = 4300 J/kg⋅K, ρ = 919 kg/m3. Other properties are taken from Moran, M.J. and Shapiro, H.N., 
Fundamentals of Engineering Thermodynamics, 6th Edition, John Wiley & Sons, Hoboken, 2008 
including (psat = 10 bar): Tsat = 179.9°C, if = 762.81 kJ/kg; (p = 7 bar, T = 600°C): i = 3700.2 kJ/kg, υ 
= 0.5738 m3/kg. 
 
ANALYSIS:   The steady-flow energy equation, in the absence of work (other than flow work), is 
 

  
( ) ( )
( ) ( )

2 2
in out

2 2
in out

1 1 02 2
1 1 02 2

m u pv V gz m u pv V gz q

m i V gz m i V gz q

+ + + − + + + + =

+ + − + + + =

& &

& &
   (1) 

 
while the conservation of mass principle yields 
 

3

in out2 3 2 2 2
4 4 1.5 kg/s 4 0.5738 m / kg 4 1.5 kg/s0.201 m/s ; 110 m/s

950 kg/m (0.100 m) (0.100 m)
m mV V
D D

υ
ρπ π π π

× × ×
= = = = = =

× × ×

& &

 
(a) The change in the combined thermal and flow work energy from inlet to outlet:  
 

 ( )
,out ,in out in out ,sat in sat( ) ( ) ( ) [ ( )]

                   1.5 kg/s 3700.2 kJ/kg [762.81 kJ/kg 4.3 kJ/kg K (110 179.9) C]
                    = 4.86 MW

i i f pE E m i m i m i m i c T T− = − = − + −

= × − + ⋅ × − °

& & & &

      < 

 
where if,sat is the enthalpy of saturated liquid at the phase change temperature and pressure. 
 
(b) The change in mechanical energy from inlet to outlet is: 
 

Continued… 
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PROBLEM 1.36 (cont.) 

 
 

( ) ( )( )
2 2

,out ,in out in

2 2 2

1 1( ) ( )2 2
1                     1.5 kg/s 110 m/s 0.201 m/s 9.8 m/s 10 m 9.22 kW2

m mE E m V gz m V gz− = + − +

⎡ ⎤= × − + × =⎢ ⎥⎣ ⎦

& &

    < 

(c) The change in the total energy is the summation of the thermal, flow work, and mechanical energy 
change or 
 
 Ein – Eout = 4.86 MW + 9.22 kW = 4.87 MW      < 
 
(d) The total heat transfer rate is the same as the total energy change, q = Ein – Eout = 4.87 MW < 
 
 
COMMENTS:  (1) The change in mechanical energy, consisting of kinetic and potential energy 
components, is negligible compared to the change in thermal and flow work energy. (2) The average 
heat flux at the tube surface is 2" /( ) 4.87MW /( 0.100 m 10 m) 1.55 MW/mq q DLπ π= = × × = , which 
is very large. (3) The change in the velocity of the water is inversely proportional to the change in the 
density. As such, the outlet velocity is very large, and large pressure drops will occur in the vapor 
region of the tube relative to the liquid region of the tube. 



PROBLEM 1.37 
 
KNOWN:  Flow of water in a vertical tube.  Tube dimensions.  Mass flow rate.  Inlet pressure and 
temperature.  Heat rate.  Outlet pressure. 
 
FIND:  (a) Outlet temperature, (b) change in combined thermal and flow work, (c) change in 
mechanical energy, and (d) change in total energy of the water from the inlet to the outlet of the tube. 
 
SCHEMATIC:   

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible change in mechanical energy. (3) 
Uniform velocity distributions at the tube inlet and outlet. 
 
PROPERTIES:  Table A.6 water (T = 110°C): ρ = 950 kg/m3, (T = (179.9°C + 110 °C)/2 = 145°C): 
cp = 4300 J/kg⋅K, ρ = 919 kg/m3. Other properties are taken from Moran, M.J. and Shapiro, H.N., 
Fundamentals of Engineering Thermodynamics, 6th Edition, John Wiley & Sons, Hoboken, 2008 
including (psat = 10 bar): Tsat = 179.9°C, if = 762.81 kJ/kg; (p = 8 bar, i = 3056 kJ/kg): T = 300°C, υ = 
0.3335 m3/kg. 
 
ANALYSIS:   (a) The steady-flow energy equation, in the absence of work (other than flow work), is 
 

  
( ) ( )
( ) ( )

2 2
in out

2 2
in out

1 1 02 2
1 1 02 2

m u pv V gz m u pv V gz q

m i V gz m i V gz q

+ + + − + + + + =

+ + − + + + =

& &

& &
   (1) 

 
Neglecting the change in mechanical energy yields 
 

in out( ) 0m i i q− + =&  
 
The inlet enthalpy is 
 

in ,in in sat( ) 762.81 kJ/kg 4.3 kJ/kg K (110 179.9) C 462.2 kJ/kgf pi i c T T= + − = + ⋅ × − ° =  
 
Thus the outlet enthalpy is 
 

out in / 462.2 kJ/kg 3890 kW /1.5 kg/s 3056 kJ/kgi i q m= + = + =&  
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PROBLEM 1.37 (cont.) 
 
and the outlet temperature can be found from thermodynamic tables at p = 8 bars, i = 3056 kJ/kg, for 
which 
 

Tout = 300°C 
 
 
 (b) The change in the combined thermal and flow work energy from inlet to outlet:  
 
   ,out ,in out in( ) 3.89 MWi iE E m i i q− = − = =&           < 
 
(c) The change in mechanical energy can now be calculated.  First, the outlet specific volume can be 
found from thermodynamic tables at Tout = 300°C, pout = 8 bars, υ = 0.3335 m3/kg.  Next, the 
conservation of mass principle yields 
 

3

in out2 3 2 2 2
4 4 1.5 kg/s 4 0.5738 m / kg 4 1.5 kg/s0.201 m/s ; 63.7 m/s

950 kg/m (0.100 m) (0.100 m)
m mV V
D D

υ
ρπ π π π

× × ×
= = = = = =

× × ×

& &

 
The change in mechanical energy from inlet to outlet is: 
 

( ) ( )( )
2 2

,out ,in out in

2 2 2

1 1( ) ( )2 2
1                     1.5 kg/s 63.7 m/s 0.201 m/s 9.8 m/s 10 m 3.19 kW2

m mE E m V gz m V gz− = + − +

⎡ ⎤= × − + × =⎢ ⎥⎣ ⎦

& &

    < 

 
(d) The change in the total energy is the summation of the thermal, flow work, and mechanical energy 
change or 
 
 Ein – Eout = 3.89 MW + 3.19 kW = 3.89 MW      < 

 
 
COMMENTS:  (1) The change in mechanical energy, consisting of kinetic and potential energy 
components, is negligible compared to the change in thermal and flow work energy. (2) The average 
heat flux at the tube surface is 2" / ( ) 3.89 MW / ( 0.100 m 10 m) 1.24 MW/mq q DLπ π= = × × = , 
which is very large. (3) The change in the velocity of the water is inversely proportional to the change 
in the density. As such, the outlet velocity is very large, and large pressure drops will occur in the 
vapor region of the tube relative to the liquid region of the tube. 



PROBLEM 1.38 
 
KNOWN:  Hot and cold reservoir temperatures of an internally reversible refrigerator.  Thermal 
resistances between refrigerator and hot and cold reservoirs. 
 
FIND:  Expressions for modified Coefficient of Performance and power input of refrigerator. 
 
SCHEMATIC:  
 

 

Internally
reversible
refrigerator

Qin

Qout

W

High temperature 
reservoir

Low temperature 
reservoir

High temperature 
side resistance

Low temperature 
side resistance

Th

Th,i

Tc,i

Tc

Rt,c

Rt,h

qout

qin

·

 
 
ASSUMPTIONS:  (1) Refrigerator is internally reversible, (2) Steady-state operation. 
  
ANALYSIS:   Heat is transferred from the low temperature reservoir (the refrigerated space) at Tc to 
the refrigerator unit, through the resistance Rt,c, with Tc > Tc,i. Heat is rejected from the refrigerator unit 
to the higher temperature reservoir (the surroundings), through the resistance Rt,h, with Th,i > Th.  The 
heat input and output rates can be expressed in a manner analogous to Equations 1.18a and 1.18b. 
 

in , ,( ) /c c i t cq T T R= −       (1) 

out , ,( ) /h i h t hq T T R= −       (2) 

Equations (1) and (2) can be solved for the internal temperatures, to yield 

, out , in ,
1 COP

COP
m

h i h t h h t h
m

T T q R T q R
⎛ ⎞+

= + = + ⎜ ⎟
⎝ ⎠

    (3) 

, in ,c i c t cT T q R= −       (4) 

In Equation (3), qout has been expressed as 

out in
1 COP

COP
m

m

q q
⎛ ⎞+

= ⎜ ⎟
⎝ ⎠

      (5) 

using the definition of COPm given in the problem statement.  The modified Coefficient of 
Performance can then be expressed as 
 

Continued… 

  



PROBLEM 1.38 (Cont.) 
 

 

, in ,

, ,
in , in ,

COP
1 COP

COP

c i c t c
m

h i c i m
h t h c t c

m

T T q R
T T

T q R T q R

−
= =

− ⎛ ⎞+
+ − +⎜ ⎟

⎝ ⎠

     

Manipulating this expression, 
 

( )in , in , in ,COP (1 COP )h c t c m t h m c t cT T q R q R T q R− + + + = −     

Solving for COPm results in 

in tot

in tot

COP c
m

h c

T q R
T T q R

−
=

− +
     < 

From the definition of COPm, the power input can be determined: 
 

in totin
in

in totCOP
h c

m c

T T q RqW q
T q R
− +

= =
−

&     < 

COMMENTS:  As qin or Rtot goes to zero, the Coefficient of Performance approaches the maximum 
Carnot value, COPm = COPC = Tc /(Th - Tc). 
 
 



PROBLEM 1.39 
 
KNOWN:  Hot and cold reservoir temperatures of an internally reversible refrigerator.  Thermal 
resistances between refrigerator and hot and cold reservoirs under clean and dusty conditions.  Desired 
cooling rate. 
 
FIND:  Modified Coefficient of Performance and power input of refrigerator under clean and dusty 
conditions. 
 
SCHEMATIC:  
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Refrigerator is internally reversible, (2) Steady-state operation, (3) Cold side 
thermal resistance does not degrade over time. 
  
ANALYSIS:   According to Problem 1.38, the modified Coefficient of Performance and power input 
are given by 
 

in tot

in tot

COP c
m

h c

T q R
T T q R

−
=

− +
     (1) 

in tot
in

in tot

h c

c

T T q RW q
T q R
− +

=
−

&      (2) 

Under new, clean conditions, with Rtot,n = Rh,n + Rc,n = 0.09 K/W, we find 

,
278 K 750 W 0.09 K/WCOP 2.41

298 K 278 K 750 W 0.09 K/Wm n
− ×

= =
− + ×

   < 

298 K 278 K 750 W 0.09 K/W750 W 312 W
278 K 750 W 0.09 K/WnW − + ×

= =
− ×

&    < 

Under dusty, conditions, with Rtot,d = Rh,d + Rc,n = 0.15 K/W, we find 

,
278 K 750 W 0.15 K/WCOP 1.25

298 K 278 K 750 W 0.15 K/Wm d
− ×

= =
− + ×

   < 
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PROBLEM 1.39 (Cont.) 
 
 
 

298 K 278 K 750 W 0.15 K/W750 W 600 W
278 K 750 W 0.15 K/WdW − + ×

= =
− ×

&    < 

 
COMMENTS:  (1) The cooling rates and power input values are time-averaged quantities.  Since the 
refrigerator does not run constantly, the instantaneous power requirements would be higher than 
calculated.  (2) In practice, when the condenser coils become dusty the power input does not adjust to 
maintain the cooling rate.  Rather, the refrigerator’s duty cycle would increase.  (3) The ideal Carnot 
Coefficient of Performance is COPC = Tc/(Th – Tc) = 14 and the corresponding power input is 54 W.  
(4) This refrigerator’s energy efficiency is poor. Less power would be consumed by more thoroughly 
insulating the refrigerator, and designing the refrigerator to minimize heat gain upon opening its door, 
in order to reduce the cooling rate, qin. 
 
 
 



PROBLEM 1.40  
KNOWN:  Width, surface emissivity and maximum allowable temperature of an electronic chip.  
Temperature of air and surroundings.  Convection coefficient.  
FIND:  (a) Maximum power dissipation for free convection with h(W/m

2
⋅K) = 4.2(T - T∞)

1/4, (b) 

Maximum power dissipation for forced convection with h = 250 W/m
2
⋅K. 

 
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Radiation exchange between a small surface and a 
large enclosure, (3) Negligible heat transfer from sides of chip or from back of chip by conduction 
through the substrate.  
ANALYSIS:  Subject to the foregoing assumptions, electric power dissipation by the chip must be 
balanced by convection and radiation heat transfer from the chip.  Hence, from Eq. (1.10), 

 ( ) ( )4 4P q q hA T T A T Telec conv rad s s surε σ= + = − + −∞  

where ( )22 4 2A L 0.015m 2.25 10 m .−= = = ×  
 
(a) If heat transfer is by natural convection, 

 ( ) ( )( )5 / 4 5 / 42 5/4 4 2q C A T T 4.2 W/m K 2.25 10 m 60K 0.158 Wconv s
−= − = ⋅ × =∞  

 ( ) ( )4 2 8 2 4 4 4 4q 0.60 2.25 10 m 5.67 10  W/m K 358 298 K 0.065 Wrad
− −= × × ⋅ − =  

 P 0.158 W 0.065 W 0.223 Welec = + =       < 
(b) If heat transfer is by forced convection,  
 ( ) ( )( )2 4 2q hA T T 250 W/m K 2.25 10 m 60K 3.375 Wconv s

−= − = ⋅ × =∞  
 
 P 3.375 W 0.065 W 3.44 Welec = + =       < 
 
COMMENTS:  Clearly, radiation and natural convection are inefficient mechanisms for transferring 

heat from the chip.  For Ts = 85°C and T∞ = 25°C, the natural convection coefficient is 11.7 W/m
2
⋅K.  

Even for forced convection with h = 250 W/m
2
⋅K, the power dissipation is well below that associated 

with many of today’s processors.  To provide acceptable cooling, it is often necessary to attach the 
chip to a highly conducting substrate and to thereby provide an additional heat transfer mechanism due 
to conduction from the back surface. 



PROBLEM 1.41  
KNOWN:  Width, input power and efficiency of a transmission.  Temperature and convection 
coefficient for air flow over the casing.  Emissivity of casing and temperature of surroundings.  
FIND:  Surface temperature of casing.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady state, (2) Uniform convection coefficient and surface temperature, (3) 
Radiation exchange with large surroundings.  
ANALYSIS:  Heat transfer from the case must balance heat dissipation in the transmission, which 
may be expressed as q = Pi – Po = Pi (1 - η) = 150 hp × 746 W/hp × 0.07 = 7833 W.  Heat transfer 
from the case is by convection and radiation, in which case 
 

 ( ) ( )4 4
s s s surq A h T T T Tεσ∞
⎡ ⎤= − + −⎢ ⎥⎣ ⎦

 

 
where As = 6 W2.  Hence, 
 

( ) ( ) ( )2 2 2 4 4 4 4
s s

87833W 6 0.30 m 200 W / m K T 303K 0.8 5.67 10 W / m K T 303 K−= ⋅ − + × × ⋅ −⎡ ⎤
⎢ ⎥⎣ ⎦

 

 
A trial-and-error solution yields 
 

 sT 373K 100 C≈ = °          < 
 
COMMENTS:  (1) For Ts ≈ 373 K, qconv ≈ 7,560 W and qrad ≈ 270 W, in which case heat transfer is 
dominated by convection, (2) If radiation is neglected, the corresponding surface temperature is Ts = 
102.5°C. 
 



PROBLEM 1.42 
 
KNOWN:  Process for growing thin, photovoltaic grade silicon sheets. Sheet dimensions and velocity. 
Dimensions, surface temperature and surface emissivity of growth chamber. Surroundings and 
ambient temperatures, and convective heat transfer coefficient. Amount of time-averaged absorbed 
solar irradiation and photovoltaic conversion efficiency. 
 
FIND:  (a) Electric power needed to operate at steady state, (b) Time needed to operate the 
photovoltaic panel to produce enough energy to offset energy consumed during its manufacture. 
 
SCHEMATIC: 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Large surroundings, (3) Constant properties, (4) 
Neglect the presence of the strings. 
 
PROPERTIES:  Table A-1, Silicon (T = 298 K):  c = 712 J/kg⋅K, ρ = 2330 kg/m3, (T = 420 K): c = 
798 J/kg⋅K. 
 
ANALYSIS:   (a) At steady state, the mass of silicon produced per unit time is equal to the mass of 
silicon added to the system per unit time. The amount of silicon produced is 
 

6 3 6
si si si 0.085m 150 10 m 0.020m / min (1/ 60)min/ s 2330kg/m 9.90 10 kg/sm W t V ρ − −= × × × = × × × × × = ×&

 
At steady state, in outE E=& &  where 

6
in elec si, elec elec elec

kg J9.90 10 712 298K 2.10 J/s = +2.10 W
s kg KiE P mcT P P P−= + = + × × × = +

⋅
& &     

and   
 

( )

( )

2 4 4
out si, sur

26

8 4 4
2 2 4

2 / 4 ( ) ( )

kg J       9.9 10 798 420K 2 0.3m / 4 0.35m 0.3m
s kg K

W W        8 (320 298)K+5.67 10 0.9 (420K) (298K) 645 W
m K m K

o s sE mcT D H D h T T T Tπ π εσ

π π

∞

−

−

⎡ ⎤ ⎡ ⎤= + + − + −⎣ ⎦ ⎣ ⎦

⎡ ⎤= × × × + × + × ×⎢ ⎥⎣ ⎦⋅

⎡ ⎤× × − × × × − =⎢ ⎥⋅ ⋅⎣ ⎦

& &

 

 
 
Therefore, 
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PROBLEM 1.42 (Cont.) 
 

 

elec 645 W 2.10 W 643 WP = − =      < 
 

 
(b) The electric energy needed to manufacture the photovoltaic material is 
 

6 2 3 2
elec /( ) 643 W /(0.085 m 0.020 m/min (1/ 60)min/ s) 22.7 10 J/m 22.7 10 kJ/mm s sE P W V= = × × = × = ×

 
 
The time needed to generate Em by the photovoltaic panel is 
 

" 6 2 2 3
sol/ 22.7 10 J/m /(180W / m 0.20) 630 10 s 175 hmt E q η= = × × = × =    < 

 
 
COMMENTS:  (1) The radiation and convection losses are primarily responsible for the electric 
power needed to manufacture the photovoltaic material. Of these, radiation losses dominate, with 
radiation responsible for 87% of the losses. The radiation losses could be reduced by coating the 
exposed surface of the chamber with a low emissivity material. (2) Assuming an electricity cost of 
$0.15/kWh, the electric cost to manufacture the material is 22.7 × 103 kJ/m2 × ($0.15/kWh) × 
(1h/3600s) = $0.95/m2. (3) In this solution, a reference state of 0 K is tacitly assumed for the silicon 
for the energy inflow and outflow terms, however the reference state for the equations for energy 
inflow and outflow cancel. (4) This problem represents a type of life cycle analysis in which the 
energy consumed to manufacture a product is of interest. The analysis presented here does not account 
for the energy that is consumed to produce the silicon powder, the energy used to fabricate the growth 
chamber, or the energy that is used to fabricate and install the photovoltaic panel. The actual time 
needed to offset the energy to manufacture and install the photovoltaic panel will be much greater than 
175 h. See Keoleian and Leis, “Application of Life-cycle Energy Analysis to Photovoltaic Module 
Design, Progress in Photovoltaics: Research and Applications, Vol. 5, pp. 287-300, 1997. 
 
 



PROBLEM 1.43 
 

 
 
KNOWN:  Surface areas, convection heat transfer coefficient, surface emissivity of gear box and 
generator. Temperature of nacelle. Electric power generated by the wind turbine and generator 
efficiency. 
 
FIND:  Gear box and generator surface temperatures. 
 
SCHEMATIC: 

 
 
 
 
 
 

 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Interior of nacelle can be treated as large 
surroundings, (3) Negligible heat transfer between the gear box and the generator. 
 
ANALYSIS:  Heat is generated within both the gear box and the generator. The mechanical work into 
the generator can be determined from the electrical power, P = 2.5 × 106 W, and the efficiency of the 
generator as 
 
   6 6

gen,in gen/ 2.5 10 W / 0.95 2.63 10 WW P η= = × = ×&  
 
Therefore, the heat transfer from the generator is  
 
       6 6 6

gen gen 2.63 10 W 2.5 10 W 0.13 10 Wq W P= − = × − × = ×&  
 
The heat transfer is composed of convection and radiation components. Hence, 
 

 

( ) ( )

( ) ( )( )

4 4
gen gen gen gen

42 8 4
gen gen2 2 4

6

W W      = 4m 40 416K 0.90 5.67 10 416K
m K m K

      = 0.13 10 W

s sq A h T T T T

T T

εσ

−

⎡ ⎤= − + −⎣ ⎦
⎡ ⎤× − + × × −⎢ ⎥⋅ ⋅⎣ ⎦

×

 

The generator surface temperature may be found by using a numerical solver, or by trial-and-error, 
yielding 
 
  Tgen = 785 K = 512°C        < 
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PROBLEM 1.43 (Cont.) 

 
Heat is also generated by the gear box. The heat generated in the gear box may be determined from 
knowledge of the heat generated cumulatively by the gear box and the generator, which is provided in 
Example 3.1 and is q = qgen + qgb =  0.33 × 106 W. Hence, qgb = q - qgen = 0.33 × 106W - 0.13 × 106W = 
0.20 × 106W and 
 
 

 

( ) ( )

( ) ( )( )

4 4
gb gb gb gb

42 8 4
gb gb2 2 4

6

W W      = 6m 40 416K 0.90 5.67 10 416K
m K m K

      = 0.20 10 W

s sq A h T T T T

T T

εσ

−

⎡ ⎤= − + −⎣ ⎦
⎡ ⎤× − + × × −⎢ ⎥⋅ ⋅⎣ ⎦

×

 

which may be solved by trial-and-error or with a numerical solver to find 
 
  Tgb = 791 K = 518°C        < 
 
COMMENTS:  (1) The gear box and generator temperatures are unacceptably high. Thermal 
management must be employed in order to generate power from the wind turbine. (2) The gear box 
and generator temperatures are of similar value. Hence, the assumption that heat transfer between the 
two mechanical devices is small is valid. (3) The radiation and convection heat transfer rates are of 
similar value. For the generator, convection and radiation heat transfer rates are qconv,gen = 5.9 × 104 W 
and qrad,gen = 7.1 × 104 W, respectively. The convection and radiation heat transfer rates are qconv,gb = 
9.0 × 104 W and qrad,gb = 11.0 × 104 W, respectively, for the gear box. It would be a poor assumption to 
neglect either convection or radiation in the analysis. 
 



PROBLEM 1.44 
 
KNOWN:  Radial distribution of heat dissipation in a cylindrical container of radioactive 
wastes.  Surface convection conditions.  
FIND:  Total energy generation rate and surface temperature.  
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible temperature drop across thin 
container wall.  
ANALYSIS:  The rate of energy generation is   

 
( )

( )
r 2

g o o0
2 2

g o o o

E qdV=q 1- r/r 2 rLdr

E 2 Lq r / 2 r / 4

o ⎡ ⎤= ⎢ ⎥⎣ ⎦
= −

∫ ∫& & &

& &

π

π
 

 
or per unit length,  

 & &
.′ =E q r

2g
o o

2π           < 
 
Performing an energy balance for a control surface about the container yields, at an instant,  
 & &′ − ′ =E Eg out 0  
 
and substituting for the convection heat rate per unit length,  

 ( )( )
2

o o
o s

q r
h 2 r T T

2 ∞= −
&π

π  
 

 T T q r
4hs
o o= +∞
&

.          < 
 
COMMENTS:  The temperature within the radioactive wastes increases with decreasing r 
from Ts at ro to a maximum value at the centerline. 



PROBLEM 1.45  
KNOWN:  Thickness and initial temperature of an aluminum plate whose thermal environment is 
changed.  
FIND:  (a) Initial rate of temperature change, (b) Steady-state temperature of plate, (c) Effect of 
emissivity and absorptivity on steady-state temperature.  
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Negligible end effects, (2) Uniform plate temperature at any instant, (3) 
Constant properties, (4) Adiabatic bottom surface, (5) Negligible radiation from surroundings, (6) No 
internal heat generation.  
ANALYSIS:  (a) Applying an energy balance, Eq. 1.12c, at an instant of time to a control volume 
about the plate, in out stE E E− =& & & , it follows for a unit surface area. 

 ( ) ( ) ( ) ( )( ) ( ) ( )2 2 2 2
S S convG 1m E 1m q 1m d dt McT 1m L c dT dtα ρ′′− − = = × . 

Rearranging and substituting from Eqs. 1.3 and 1.5, we obtain 

 ( ) ( )4
S S i idT dt 1 Lc G T h T Tρ α εσ ∞= − − −⎡ ⎤

⎣ ⎦ . 

 ( ) 13dT dt 2700 kg m 0.004 m 900 J kg K
−

= × × ⋅ ×  

 ( ) ( )42 8 2 4 20.8 900 W m 0.25 5.67 10 W m K 298 K 20 W m K 25 20 C−× − × × ⋅ − ⋅ −⎡ ⎤
⎢ ⎥⎣ ⎦

o  

 dT dt 0.052 C s= o .                                                                                                                  <  
(b) Under steady-state conditions, &Est  = 0, and the energy balance reduces to 

 ( )4
S SG T h T Tα εσ ∞= + −                                                                                                     (2) 

 ( )2 8 2 4 4 20.8 900 W m 0.25 5.67 10 W m K T 20 W m K T 293K−× = × × ⋅ × + ⋅ −  

The solution yields T = 321.4 K = 48.4°C.                                                                                            < 
(c) Using the IHT First Law Model for an Isothermal Plane Wall, parametric calculations yield the 
following results. 
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COMMENTS:  The surface radiative properties have a significant effect on the plate temperature, 
which decreases with increasing ε and decreasing αS.  If a low temperature is desired, the plate coating 
should be characterized by a large value of ε/αS.  The temperature also decreases with increasing h. 



PROBLEM 1.46 
 
KNOWN: Blood inlet and outlet temperatures and flow rate.  Dimensions of tubing. 
 
FIND:  Required rate of heat addition and estimate of kinetic and potential energy changes. 
 
SCHEMATIC:    
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Incompressible liquid with negligible kinetic and 
potential energy changes, (3) Blood has properties of water. 
 
PROPERTIES:  Table A.6, Water ( T  ≈ 300 K): cp,f =  4179 J/ kg· K, ρf  = 1/vf = 997 kg/m3.   
 
ANALYSIS:  From an overall energy balance, Equation 1.12e,  

 
p out inq = mc (T - T )&   

where   
3 -6 3 -3

fm = ρ  =  997 kg/m  × 200 m /min × 10  m /m   60 s/min = 3.32 × 10  kg/s∀&& l l  
 
Thus    

-3 o oq = 3.32 × 10  kg/s × 4179 J/kg K × (37 C - 10 C) = 375 W⋅                  < 
 
The velocity in the tube is given by 

-6 3 -3 -3
cV = /A  =  200 m /min × 10  m /m   (60 s/min × 6.4 × 10  m × 1.6 × 10  m)= 0.33 m/s∀& l l  

 
The change in kinetic energy is  

2 -3 2 -41 1
2 2

m( V  - 0) = 3.32 × 10  kg/s ×  × (0.33 m/s)  = 1.8 × 10  W&       < 
 
The change in potential energy is  

-3 2mgz = 3.32 × 10  kg/s × 9.8 m/s  × 2 m = 0.065 W&         < 
 
COMMENT:  The kinetic and potential energy changes are both negligible relative to the thermal 
energy change. 
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PROBLEM 1.47 
 
KNOWN:  Dimensions of a milk carton.  Temperatures of milk carton and surrounding air.  
Convection heat transfer coefficient and surface emissivity. 
 
FIND:  Heat transferred to milk carton for durations of 10, 60, and 300 s. 
 
SCHEMATIC:   
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Negligible heat transfer from bottom surface of milk carton and from top 
surface since it is not in contact with cold milk, (2) Radiation is to large surroundings at the air 
temperature. 
  
ANALYSIS:   The area of the four sides is A = 4L × w = 4(0.2 m × 0.1 m) = 0.08 m2.  Thus, 
 

( )
4 4

conv rad sur

2 2 8 2 4 2 4 4

( ) ( ) ( )

10 W / m K 0.08 m (30 C 5 C) 0.90 5.67 10  W/m K 0.08 m (303 K) (278 K)

20.0 W 10.0 W 30.0 W

s sq q q hA T T A T Tεσ∞

−

= + = − + −

= ⋅ × ° − ° + × × ⋅ × −

= + =

 

 
For a duration of 10 s,  
 

Q = q∆t  = 30.0 W × 10 s = 300 J       < 
 

Similarly, Q = 1800 J and 9000 J for durations of 60 and 300 s, respectively.   < 
 
COMMENTS:  (1) The predicted heat transfer rates do not account for the fact that the milk 
temperature increases with time. If the increase in milk temperature were accounted for, the values of 
Q would be less than calculated. (2) If the coefficient of performance of the refrigerator is 2, COP = 
Q/W = 2, then the required work input to re-cool the milk after leaving it in the kitchen for 300 s is 
4500 J.   At an electricity price of $0.18/kW⋅h, this would cost about $0.0002, which is insignificant.  
Preventing bacterial growth is a more important reason to return the milk to the refrigerator promptly. 
(3) The analysis neglects condensation that might occur on the outside of the milk carton. 
Condensation would increase the rate of heat transfer to the milk significantly, increasing the 
importance of returning the milk to the refrigerator promptly. 
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PROBLEM 1.48 
 
KNOWN:  Daily hot water consumption for a family of four and temperatures associated with ground 
water and water storage tank.  Unit cost of electric power.  Heat pump COP. 
 
FIND:  Annual heating requirement and costs associated with using electric resistance heating or a 
heat pump. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) Process may be modeled as one involving heat addition in a closed system, (2) 
Properties of water are constant. 
 
PROPERTIES:  Table A-6, Water ( avgT  = 308 K):  ρ = 1

fv−  = 993 kg/m3, p,fc  = 4.178 kJ/kg⋅K. 
 
ANALYSIS:  From Eq. 1.12a, the daily heating requirement is daily tQ U Mc T= Δ = Δ  

( )f iVc T Tρ= − .  With V = 100 gal/264.17 gal/m3 = 0.379 m3, 
 

 ( ) ( )3 3
dailyQ 993kg / m 0.379m 4.178kJ/kg K 40 C 62,900kJ= ⋅ =o  

 
The annual heating requirement is then, ( ) 7

annualQ 365days 62,900 kJ/day 2.30 10 kJ= = × , or, 
with 1 kWh = 1 kJ/s (3600 s) = 3600 kJ, 
 

 annualQ 6380kWh=                                                                                                              < 
 
With electric resistance heating, annual elecQ Q=  and the associated cost, C, is 
 

 ( )C 6380kWh $0.18/kWh $1150= =                                                                                    < 
 
If a heat pump is used, ( )annual elecQ COP W .=   Hence, 
 
 ( ) ( )elec annualW Q / COP 6380kWh/ 3 2130 kWh= = =  
 
The corresponding cost is 
 

 ( )C 2130kWh $0.18/kWh $383= =                                                                                     < 
 
COMMENTS:  Although annual operating costs are significantly lower for a heat pump, 
corresponding capital costs are higher.  The feasibility of this approach depends on other factors such 
as geography and seasonal variations in COP, as well as the time value of money.  



PROBLEM 1.49   
 

KNOWN:  Boiling point and latent heat of liquid oxygen.  Diameter and emissivity of container.  Free 
convection coefficient and temperature of surrounding air and walls. 
 
FIND:  Mass evaporation rate. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Temperature of container outer surface equals 
boiling point of oxygen. 
 
ANALYSIS:  (a) Applying mass and energy balances to a control surface about the container, it 
follows that, at any instant, 

 st st
out evap in out conv rad evap

dm dEm = m           E E q q q
dt dt

= − − = − = + −& && & .                   (1a,b) 
 
With hf as the enthalpy of liquid oxygen and hg as the enthalpy of oxygen vapor, we have 

st st f evap out gE m h      q m h= = &                              (2a,b) 
 

Combining Equations (1a) and (2a,b),  Equation (1b) becomes (with hfg = hg – hf) 
out fg conv radm h q q= +&  

( ) ( ) ( )4 4 2
evap conv rad fg s sur s fgm q q h h T T T T D h∞

⎡ ⎤= + = − + −
⎣ ⎦

& εσ π       (3) 

 
( ) ( ) ( )22 8 2 4 4 4 4

evap

10 W m K 298 263 K 0.2 5.67 10 W m K 298 263 K 0.5m
m

214kJ kg

−⋅ − + × × ⋅ −
=
⎡ ⎤
⎣ ⎦&

π
 

 ( ) ( )2 2 3
evapm 350 35.2 W / m 0.785 m 214kJ kg 1.41 10 kg s−= + = ×& .                               < 

 
(b) Using Equation (3), the mass rate of vapor production can be determined for the range of 
emissivity 0.2 to 0.94.  The effect of increasing emissivity is to increase the heat rate into the container 
and, hence, increase the vapor production rate. 
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COMMENTS:  To reduce the loss of oxygen due to vapor production, insulation should be applied to 
the outer surface of the container, in order to reduce qconv and qrad.  Note from the calculations in part 
(a), that heat transfer by convection is greater than by radiation exchange. 



 
PROBLEM 1.50 

 
KNOWN:  Emissivity and solar absorptivity of steel sheet.  Solar irradiation, air temperature and 
convection coefficient.   
 
FIND:  Temperature of the steel sheet to determine cat comfort.  
 
SCHEMATIC:   
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Bottom surface of steel is insulated, (3) Radiation 
from the environment can be treated as radiation from large surroundings, with α = ε, (4) Tsur = T∞. 
  
ANALYSIS:   Performing a control surface energy balance on the top surface of the steel sheet gives 
(on a per unit area basis) 
 

rad conv

4 4
sur

0

( () ) 0S s

S S

S s

G q q

G T T h T T

α

α εσ ∞

′′ ′′− − =

− −− − =
 

 
4

4

2 8 2 4 4 2

2 9 2 4 2

0.65 750 W/m 0.13 5.67 10 7 (

 W/m 10

W/m K ( (289 K) )  W/m K 289 K) 0

2562 7.37  W/m K 7 W/m K 0
s

s

s

s

T T

T T

−

−

× − × × −

×

⋅ − ⋅ − =

− ⋅ − ⋅ =
 

 
Solving this equation for Ts using IHT or other software results in Ts = 350 K = 77°C.  A temperature 
of 60°C is typically safe to touch without being burned. The steel sheet would be uncomfortably hot or 

even cause burning.          <
  
 
COMMENTS:  The individual heat flux terms are 
 

4 4
rad sur

conv

2

2

2

(

( 428 W/m

488 W/m

) 59 W/m

)

s

s

s

s

G

q T T

q h T T

α

εσ

∞

′′

′′ =

=

= − =

= −

 

 
None of these is negligible, although the radiation exchange with the surroundings is smaller than the 
solar radiation and convection terms. 

Air
T∞ = 16°C

h = 7 W/m2·K
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αS = 0.65
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PROBLEM 1.51 
 
KNOWN:  Initial temperature of water and tank volume.  Power dissipation, emissivity, length and 
diameter of submerged heaters.  Expressions for convection coefficient associated with natural 
convection in water and air. 
 
FIND:  (a) Time to raise temperature of water to prescribed value, (b) Heater temperature shortly after 
activation and at conclusion of process, (c) Heater temperature if activated in air. 
 
SCHEMATIC:   
 

 
 
 
 
 
 
ASSUMPTIONS:  (1) Negligible heat loss from tank to surroundings, (2) Water is well-mixed (at a 
uniform, but time varying temperature) during heating, (3) Negligible changes in thermal energy 
storage for heaters, (4) Constant properties, (5) Surroundings afforded by tank wall are large relative 
to heaters. 
 
ANALYSIS:  (a) Application of conservation of energy to a closed system (the water) at an  
instant, Equation (1.12c), with 

st t in 1 out g

t
1 1

E  = dU /dt,   E = 3q ,   E = 0,  and E = 0, 

dU dTyields  = 3q  and ρ c =3q
dt dt

∀

& & & &

 

Hence, ( )
t

10 T
dt c/3q  dT

Tf
i

= ∀∫ ∫ρ  
 

 
( )

( )
3 3 3990 kg/m 10gal 3.79 10 m / gal 4180J/kg K

t 335 295 K 4180 s
3 500 W

−× × ⋅
= − =

×
                < 

 
(b) From Equation (1.3a), the heat rate by convection from each heater is  
 ( ) ( ) ( )4 / 3

1 1 s sq Aq Ah T T DL 370 T T′′= = − = −π  
 

Hence, ( )
3/ 4 3/ 4

1
s 2 4/3

q 500 WT T T T 24 K
370 DL 370 W/m K 0.025 m 0.250 m

⎛ ⎞ ⎛ ⎞= + = + = +⎜ ⎟⎜ ⎟ ⋅ × × ×⎝ ⎠⎝ ⎠π π
 

 
With water temperatures of Ti ≈ 295 K and Tf = 335 K shortly after the start of heating and at the end 

of heating, respectively, Ts,i = 319 K and Ts,f = 359 K                      < 
(c) From Equation (1.10), the heat rate in air is 

 ( ) ( )4 / 3 4 4
1 s s surq DL 0.70 T T T T∞

⎡ ⎤= − + −⎢ ⎥⎣ ⎦
π εσ  

 Substituting the prescribed values of q1, D, L, T∞ = Tsur and ε, an iterative solution yields  

Ts = 830 K            < 
 
COMMENTS:  In part (c) it is presumed that the heater can be operated at Ts = 830 K without 
experiencing burnout.  The much larger value of Ts for air is due to the smaller convection coefficient.  
However, with qconv and qrad equal to 59 W and 441 W, respectively, a significant portion of the heat 
dissipation is effected by radiation. 



PROBLEM 1.52  
KNOWN:  Power consumption, diameter, and inlet and discharge temperatures of a hair dryer. 
 
FIND:  (a) Volumetric flow rate and discharge velocity of heated air, (b) Heat loss from case. 
 
SCHEMATIC:  

 
ASSUMPTIONS:  (1) Steady-state, (2) Constant air properties, (3) Negligible potential and kinetic 
energy changes of air flow, (4) Negligible work done by fan, (5) Negligible heat transfer from casing 
of dryer to ambient air (Part (a)), (6) Radiation exchange between a small surface and a large 
enclosure (Part (b)). 
 
ANALYSIS:  (a) For a control surface about the air flow passage through the dryer, conservation 
of energy for an open system reduces to  
 ( ) ( )i om u pv m u pv q 0+ − + + =& &  
 
where u + pv = i and q = Pelec.  Hence, with ( ) ( )i o p i om i i mc T T ,− = −& &  
 
 ( )p o i elecmc T T P− =&  
 
 

( ) ( )
elec

p o i

P 500 Wm 0.0199 kg/s
c T T 1007 J/kg K 25 C

= = =
− ⋅ o

&  

 
 3

3
m 0.0199 kg/s 0.0181 m / s

1.10 kg/m
∀ = = =

&&
ρ

      < 

 

 
( )

3

o 2 2
c

4 4 0.0181 m / sV 4.7 m/s
A D 0.07 m

∀ ∀ ×
= = = =

& &

π π
     < 

 
(b) Heat transfer from the casing is by convection and radiation, and from Equation (1.10) 
 ( ) ( )4 4

s s s s surq hA T T A T T∞= − + −ε σ  

where ( ) 2
sA DL 0.07 m 0.15 m 0.033 m .= = × =π π   Hence, 

( )( ) ( )2 2 2 8 2 4 4 4 4q 4W/m K 0.033 m 20 C 0.8 0.033 m 5.67 10  W/m K 313 293 K−= ⋅ + × × × ⋅ −o  

 q 2.64 W 3.33 W 5.97 W= + =        < 
 
The heat loss is much less than the electrical power, and the assumption of negligible heat loss is 
justified.  
COMMENTS:  Although the mass flow rate is invariant, the volumetric flow rate increases because 
the air is heated in its passage through the dryer, causing a reduction in the density.  However, for the 
prescribed temperature rise, the change in ρ, and hence the effect on ,∀&  is small. 



PROBLEM 1.53 
 
KNOWN:  Speed, width, thickness and initial and final temperatures of 304 stainless steel in an 
annealing process.  Dimensions of annealing oven and temperature, emissivity and convection 
coefficient of surfaces exposed to ambient air and large surroundings of equivalent temperatures.  
Thickness of pad on which oven rests and pad surface temperatures. 
 
FIND:  Oven operating power. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) steady-state, (2) Constant properties, (3) Negligible changes in kinetic and 
potential energy. 
 
PROPERTIES:  Table A.1, St.St.304 ( )( )i oT T T /2 775K= + = :  ρ = 7900 kg/m3, cp  = 578 J/kg⋅K; 

Table A.3, Concrete, T = 300 K:  kc  = 1.4 W/m⋅K. 
 
ANALYSIS:  The rate of energy addition to the oven must balance the rate of energy transfer to the 
steel sheet and the rate of heat loss from the oven.  Viewing the oven as an open system, Equation 
(1.12e) yields  
 
 elec p o iP q mc (T T )− = −&  
 
where q is the heat transferred from the oven.  With ( )s s sm V W tρ=&  and 

( ) ( ) ( )4 4
o o o o o o s s s surq 2H L 2H W W L h T T T T∞

⎡ ⎤= + + × − + −
⎣ ⎦

ε σ  ( )( )c o o s b ck W L T T /t+ − , 

it follows that 
 ( ) ( ) ( )elec s s s p o i o o o o o oP V W t c T T 2H L 2H W W L= − + + + ×ρ  

           ( ) ( ) ( )( )4 4
s s s sur c o o s b ch T T T T k W L T T /t∞

⎡ ⎤− + − + −
⎣ ⎦

ε σ  

 ( ) ( )3
elecP 7900kg/m 0.01m/s 2m 0.008m 578J/kg K 1250 300 K= × × ⋅ −  

  ( ) ( )22 2m 25m 2 2m 2.4m 2.4m 25m [10W/m K 350 300 K+ × × + × × + × ⋅ −  

( ) ( )( )8 2 4 4 4 40.8 5.67 10 W/m K 350 300 K ] 1.4W/m K 2.4m 25m 350 300 K/0.5m−+ × × ⋅ − + ⋅ × −  

 ( )2 2
elecP 694,000W 169.6m 500 313 W/m 8400W= + + +  

  ( )694,000 84,800 53,100 8400 W 840kW= + + + =  < 
COMMENTS:  Of the total energy input, 83% is transferred to the steel while approximately 
10%, 6% and 1% are lost by convection, radiation and conduction from the oven.  The 
convection and radiation losses can both be reduced by adding insulation to the side and top 
surfaces, which would reduce the corresponding value of Ts.  



PROBLEM 1.54 
 
KNOWN:  Temperatures of small cake as well as oven air and walls.  Convection heat transfer 
coefficient under free and forced convection conditions.  Emissivity of cake batter and pan. 
 
FIND:  Heat flux to cake under free and forced convection conditions. 
 
 
SCHEMATIC:   
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Large surroundings. 
  
ANALYSIS:   The heat flux to the cake pan and batter is due to convection and radiation.  With the 
surface temperature equal to Ti, when the convection feature is disabled, 
 

( )

4 4
conv rad sur

2 8 2 4 4 4

2 2 2

( ) ( ) ( )

3 W / m K(180 C 24 C) 0.97 5.67 10  W/m K (180 273 K) (24 273 K)

470 W / m 1890 W / m 2360 W / m

∞

−

′′ ′′ ′′= + = − + −

= ⋅ ° − ° + × × ⋅ + − +

= + =

fr fr i iq q q h T T T Tεσ

 < 

 
 
When the convection feature is activated, the heat flux is 
 

 ( )

4 4
conv rad sur

2 8 2 4 4 4

2 2 2

( ) ( ) ( )

27 W / m K(180 C 24 C) 0.97 5.67 10  W/m K (180 273 K) (24 273 K)

4210 W / m 1890 W / m 6100 W / m

∞

−

′′ ′′ ′′= + = − + −

= ⋅ ° − ° + × × ⋅ + − +

= + =

fo fo i iq q q h T T T Tεσ

 < 

 
 
COMMENTS:  Under free convection conditions, the convection contribution is about 20% of the 
total heat flux.  When forced convection is activated, convection becomes larger than radiation, 
accounting for 69% of the total heat flux. The cake will bake faster under forced convection 
conditions. 
 

Tsur = 180°C
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T∞ = 180°C
hfr = 3 W/m2·K
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Cake  Ti = 24°C, ε = 0.97
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PROBLEM 1.55 
 
KNOWN:  Hot plate-type wafer thermal processing tool based upon heat transfer modes by 
conduction through gas within the gap and by radiation exchange across gap. 
 
FIND:  (a) Radiative and conduction heat fluxes across gap for specified hot plate and wafer 
temperatures and gap separation; initial time rate of change in wafer temperature for each mode, and 
(b) heat fluxes and initial temperature-time change for gap separations of 0.2, 0.5 and 1.0 mm for hot 
plate temperatures 300 < Th < 1300°C.  Comment on the relative importance of the modes and the 
influence of the gap distance.  Under what conditions could a wafer be heated to 900°C in less than 10 
seconds? 
 
SCHEMATIC: 
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions for flux calculations, (2) Diameter of hot plate and 
wafer much larger than gap spacing, approximating plane, infinite planes, (3) One-dimensional 
conduction through gas, (4) Hot plate and wafer are blackbodies, (5) Negligible heat losses from wafer 
backside, and (6) Wafer temperature is uniform at the onset of heating. 
 
PROPERTIES:  Wafer:  ρ = 2700 kg/m3, c = 875 J/kg⋅K; Gas in gap: k = 0.0436 W/m⋅K. 
 
ANALYSIS:  (a) The radiative heat flux between the hot plate and wafer for Th = 600°C and Tw = 
20° C follows from the rate equation, 
 

( ) ( ) ( )( )4 44 4 8 2 4 4 2
rad h wq T T 5.67 10 W / m K 600 273 20 273 K 32.5 kW / mσ −′′ = − × ⋅ + − + ==    < 

 
The conduction heat flux through the gas in the gap with L = 0.2 mm follows from Fourier’s law, 
 

 
( ) 2h w

cond
600 20 KT Tq k 0.0436 W / m K 126 kW / m

L 0.0002 m
−−′′ = = ⋅ =    < 

 
The initial time rate of change of the wafer can be determined from an energy balance on the wafer at 
the instant of time the heating process begins, 
 

 w
in out st st

i

dTE E E E cd
dt

ρ ⎛ ⎞′′ ′′ ′′ ′′− = = ⎜ ⎟
⎝ ⎠

& & & &  

 
where outE 0′′ =&  and in rad condE q or q .′′ ′′ ′′=&   Substituting numerical values, find 
 

 
3 2

w rad
3i,rad

dT q 32.5 10 W / m 17.6 K / s
dt cd 2700kg / m 875 J / kg K 0.00078 mρ

′′ ×⎞ = = =⎟
⎠ × ⋅ ×

  < 

 

 w cond

i,cond

dT q 68.6 K / s
dt cd

′′⎞ = =⎟
⎠ ρ

       < 

           
Continued ….. 



PROBLEM 1.55 (Cont.) 
 
(b) Using the foregoing equations, the heat fluxes and initial rate of temperature change for each mode 
can be calculated for selected gap separations L and range of hot plate temperatures Th with Tw = 
20°C. 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
In the left-hand graph, the conduction heat flux increases linearly with Th and inversely with L as 
expected.  The radiative heat flux is independent of L and highly non-linear with Th, but does not 
approach that for the highest conduction heat rate until Th approaches 1200°C. 
 
The general trends for the initial temperature-time change, (dTw/dt)i, follow those for the heat fluxes.  
To reach 900°C in 10 s requires an average temperature-time change rate of 90 K/s.  Recognizing that 
(dTw/dt) will decrease with increasing Tw, this rate could be met only with a very high Th and the 
smallest L.  
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PROBLEM 1.56  
KNOWN:  Silicon wafer, radiantly heated by lamps, experiencing an annealing process with known 
backside temperature.  
FIND:  Whether temperature difference across the wafer thickness is less than 2°C in order to avoid 
damaging the wafer.  
SCHEMATIC: 
 

 
 
ASSUMPTIONS:  (1)  Steady-state conditions, (2) One-dimensional conduction in wafer, (3) 
Radiation exchange between upper surface of wafer and surroundings is between a small object and a 
large enclosure, and (4) Vacuum condition in chamber, no  convection.   
PROPERTIES:  Wafer: k = 30 W/m⋅K, 0.65.ε α= =l  
 
ANALYSIS:   Perform a surface energy balance on the upper surface of the wafer to determine 

w,uT .  The processes include the absorbed radiant flux from the lamps, radiation exchange with the 
chamber walls, and conduction through the wafer. 
 
 in outE E 0′′ ′′− =& &  
 
 s rad cdq q q 0α ′′ ′′ ′′− − =l  
 

 ( ) w,u w,4 4
s w,u sur

T T
q T T k 0

L
α εσ

−
′′ − − − =ll  

 
 ( )( )45 2 8 2 4 4 4

w,u0.65 3.0 10 W / m 0.65 5.67 10 W / m K T 27 273 K−× × − × × ⋅ − +  
 
   ( )w,u30W / m K T 997 273 K / 0.00078 m 0⎡ ⎤− ⋅ − + =⎣ ⎦  
 
 w,uT 1273K 1000 C= = °         < 
 
COMMENTS:  (1)  The temperature difference for this steady-state operating condition, 

w,u w,lT T ,−  is larger than 2°C.  Warping of the wafer and inducing slip planes in the crystal structure 
could occur.     
(2)  The radiation exchange rate equation requires that temperature must be expressed in kelvin units.  
Why is it permissible to use kelvin or Celsius temperature units in the conduction rate equation?  
(3)  Note how the surface energy balance, Eq. 1.13, is represented schematically.  It is essential to 
show the control surfaces, and then identify the rate processes associated with the surfaces.  Make 
sure the directions (in or out) of the process are consistent with the energy balance equation. 



PROBLEM 1.57  
KNOWN:  Silicon wafer positioned in furnace with top and bottom surfaces exposed to hot and cool 
zones, respectively.   
FIND:  (a) Initial rate of change of the wafer temperature corresponding to the wafer temperature 

w,iT 300 K,=  and (b) Steady-state temperature reached if the wafer remains in this position.  How 
significant is convection for this situation?  Sketch how you’d expect the wafer temperature to vary as 
a function of vertical distance.  
SCHEMATIC:  
 

 
 
 
 
 
 
 
 
 
 

 
ASSUMPTIONS:  (1) Wafer temperature is uniform, (2) Transient conditions when wafer is initially 
positioned, (3) Hot and cool zones have uniform temperatures, (3) Radiation exchange is between 
small surface (wafer) and large enclosure (chamber, hot or cold zone), and (4) Negligible heat losses 
from wafer to mounting pin holder.   
ANALYSIS:  The energy balance on the wafer illustrated in the schematic above includes convection 
from the upper (u) and lower (l) surfaces with the ambient gas, radiation exchange with the hot- and 
cool-zone (chamber) surroundings, and the rate of energy storage term for the transient condition. 
 in out stE E E′′ ′′ ′′− =& & &  
 
 w

rad,h rad,c conv,u conv,l
dTq q q q cd

dt
′′ ′′ ′′ ′′+ − − = ρ  

 
 ( ) ( ) ( ) ( )4 4 4 4 w

sur,h w sur,c w u w l w
dTT T T T h T T h T T cd

dt∞ ∞− + − − − − − =εσ εσ ρ  
 
(a) For the initial condition, the time rate of temperature change of the wafer is determined using the 
energy balance above with w w,iT T 300 K,= =  
 

( ) ( )8 2 4 4 4 8 2 4 4 4 440.65 5.67 10 W / m K 1500 300 K 0.65 5.67 10 W / m K 330 300 K− −× × ⋅ − + × × ⋅ −  
 
 ( ) ( )2 28W / m K 300 700 K 4W / m K 300 700 K− ⋅ − − ⋅ − =  
 
  32700kg / m 875J / kg K× ⋅ ( )w i0.00078 m dT / dt×  
 
 ( )w idT / dt 104 K / s=         < 
 
(b) For the steady-state condition, the energy storage term is zero, and the energy balance can be 
solved for the steady-state wafer temperature, w w,ssT T .=  
 
           
 

Continued ….. 
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PROBLEM 1.57 (Cont.) 
 

( ) ( )4 4 4 4 4 4
w,ss w,ss0.65 1500 T K 0.65 330 T K− + −σ σ  

 
 ( ) ( )2 2

w,ss w,ss8W / m K T 700 K 4W / m K T 700 K 0− ⋅ − − ⋅ − =  

 w,ssT 1251 K=          < 
 
To determine the relative importance of the convection processes, re-solve the energy balance above 
ignoring those processes to find ( )w w,ssid T / dt 101 K / s and T 1262 K.= =   We conclude that the 
radiation exchange processes control the initial time rate of temperature change and the steady-state 
temperature. 
 
If the wafer were elevated above the present operating position, its temperature would increase, since 
the lower surface would begin to experience radiant exchange with progressively more of the hot zone 
chamber.  Conversely, by lowering the wafer, the upper surface would experience less radiant 
exchange with the hot zone chamber, and its temperature would decrease.  The temperature-distance 
trend might appear as shown in the sketch.    
 
 

 
 
 



PROBLEM 1.58 
 

KNOWN: Electrolytic membrane dimensions, bipolar plate thicknesses, desired operating 
temperature and surroundings as well as air temperatures. 
 
FIND: (a) Electrical power produced by stack that is 200 mm in length for bipolar plate 
thicknesses 1 mm < tbp < 10 mm, (b) Surface temperature of stack for various bipolar plate 
thicknesses, (c) Identify strategies to  promote uniform temperature, identify effect of various air 
and surroundings temperatures, identify membrane most likely to fail. 
. 
 
SCHEMATIC: 
  
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Steady-state conditions, (2) Large surroundings, (3) Surface emissivity and 
absorptivity are the same, (4) Negligible energy entering or leaving the control volume due to gas 
or liquid flows, (5) Negligible energy loss or gain from or to the stack by conduction. 
 
ANALYSIS: The length of the fuel cell is related to the number of membranes and the thickness 
of the membranes and bipolar plates as follows. 
 
 stack m bp m bp bpL = N × t + (N + 1) × t = N × (t + t ) + t  
 
For tbp = 1 mm,  -3 -3 -3 -3200×10  m = N × (0.43×10  m + 1.0×10  m) + 1.0 10  m   ×   

or  N = 139      
 
For tbp= 10 mm, -3 -3 -3 -3200×10  m = N × (0.43×10  m + 10×10  m) + 10 10  m×  

or  N = 18                   
 

(a) For tbp = 1 mm, the electrical power produced by the stack is  
 

STACK cP = E  × I = N × E × I = 139 × 0.6 V × 60 A = 5000 W = 5 kW           < 
 
and the thermal energy produced by the stack is 
 

 g c,gE = N × E = 139 × 45 W = 6,255 W = 6.26 kW& &            < 
 

         
Continued… 
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PROBLEM 1.58 (Cont.) 
 

Proceeding as before for tbp = 10 mm, we find P = 648 W = 0.65 kW; gE& = 810 W = 0.81 kW  <  
 
(b) An energy balance on the control volume yields 

 
g outE - E =0& &   or  g conv radE - A(q + q ) = 0′′ ′′&                          (1) 

 
Substituting Eqs. 1.3a and 1.7 into Eq. (1) yields 
 
 4 4

g s s surE - A[h(T  - T ) + εσ(T  - T )] = 0∞
&                      

 
where A = 4 × L × w + 2 × H × w  

    
  = 4 × 200×10-3 m × 100×10-3m + 2 × 100×10-3 m × 100×10-3 m  = 0.1 m2 

 
For tbp = 1 mm and gE& = 6255 W, 

2 -8 4 4 4
s s sur2 2 4

W W6255 W - 0.1 m [150 (T - 298) K + 0.88 × 5.67×10 (T - T ) K ] 0
m K m K

× × × =
⋅ ⋅

 

The preceding equation may be solved to yield 
 
 Ts = 656 K = 383°C 
 
Therefore, for tbp = 1 mm the surface temperature exceeds the maximum allowable operating 

temperature and the stack must be cooled.             < 
 
For tbp = 10 mm and gE& = 810 W, Ts = 344 K = 71°C and the stack may need to be heated to 

operate at T = 80°C.                                        < 
 
(c) To decrease the stack temperature, the emissivity of the surface may be increased, the bipolar 
plates may be made larger than 100 mm × 100 mm to act as cooling fins, internal channels might 
be machined in the bipolar plates to carry a pumped coolant, and the convection coefficient may 
be increased by using forced convection from a fan.  The stack temperature can be increased by 
insulating the external surfaces of the stack.  

Uniform internal temperatures may be promoted by using materials of high thermal 
conductivity.  The operating temperature of the stack will shift upward as either the surroundings 
or ambient temperature increases.  The membrane that experiences the highest temperature will 
be most likely to fail.  Unfortunately, the highest temperatures are likely to exist near the center 

of the stack, making stack repair difficult and expensive.            < 
 
COMMENTS: (1) There is a tradeoff between the power produced by the stack, and the 
operating temperature of the stack. (2) Manufacture of the bipolar plates becomes difficult, and 
cooling channels are difficult to incorporate into the design, as the bipolar plates become thinner. 
(3) If one membrane fails, the entire stack fails since the membranes are connected in series 
electrically. 



PROBLEM 1.59 
 
KNOWN:  Total rate of heat transfer leaving nacelle (from Example 1.3).  Dimensions and emissivity 
of the nacelle, ambient and surrounding temperatures, convection heat transfer coefficient exterior to 
nacelle.  Temperature of exiting forced air flow. 
 
FIND:  Required mass flow rate of forced air flow. 
 
SCHEMATIC:  

Ts = 30°C

Nacelle

q″conv,iA

q″conv,oA q″radA
Tsur = 20°C

Ts = 30°C

q = 330 kW

q″conv,iA
Cooling Air
Tin, m·

Cooling Air
Tout, m·

T∞ = 25°C

 

ASSUMPTIONS:  (1) Steady-state conditions, (2) Large surroundings, (3) Surface of the nacelle that 
is adjacent to the hub is adiabatic, (4) Forced air exits nacelle at the nacelle surface temperature. 
 
ANALYSIS:  The total rate of heat transfer leaving the nacelle is known from Example 1.3 to be q = 
0.33 × 106 W = 330 kW.  Heat is removed from the nacelle by radiation and convection from the 
exterior surface of the nacelle (qrad and qconv,o, respectively), and by convection from the interior 
surface to the forced flow of air through the nacelle (qconv,i). An energy balance on the nacelle based 
upon the upper-right part of the schematic yields 
 

rad conv,o conv,i rad conv,o conv,iq q q q A q q q′′ ′′⎡ ⎤= + + = + +⎣ ⎦  

Thus the required rate of heat removal by the forced air is given by 

( ) ( )4 4
conv,i rad conv,o sur4

2

s s
Dq q A q q q DL+ T T h T Tππ εσ ∞

⎡ ⎤ ⎡ ⎤′′ ′′⎡ ⎤= − + = − − + −⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
 

In order to maintain a nacelle surface temperature of Ts = 30°C, the required qconv,i is 

( )

2

conv,i

8 2 4 4 4 4 2

(3 m)330 kW 3 m 6 m
4

0.83 5.67 10  W/m K (273 30) (273 20) K 35 W/m K(30 25)K

330 kW (3 kW 11 kW) 316 kW

q +ππ

−

⎡ ⎤×
= − × × ×⎢ ⎥

⎣ ⎦
⎡ ⎤× × ⋅ + − + + ⋅ −⎣ ⎦
= − + =

 

The required mass flow rate of air can be found by applying an energy balance to the air flowing through the 
nacelle, as shown by the control volume on the lower left of the schematic.  From Equation 1.12e: 

conv,i conv,i

out in

316 kW 63 kg/s
( ) ( ) 1007 J/kg K(30 25)Kp p s

q q
m

c T T c T T∞

= = = =
− − ⋅ −

&       < 

 
Continued... 

 



PROBLEM 1.59 (Cont.) 
 

 
COMMENTS:  (1) With the surface temperature lowered to 30°C, the heat lost by radiation and 
convection from the exterior surface of the nacelle is small, and most of the heat must be removed by 
convection to the interior forced air flow.  (2) The air mass flow rate corresponds to a velocity of 
around 2/ / ( / 4)cV m A m Dρ ρπ= =& & = 7 m/s, using an air density of 1.1 kg/m3 and assuming that 
the air flows through the entire nacelle cross-sectional area.  This would lead to uncomfortable 
working conditions unless the forced air flow were segregated from the working space.  (3) The 
required heat transfer coefficient on the interior surface can be estimated as hi = qconv,i/(πDL(Ts - T∞)) = 
1100 W/m2⋅K.  In Chapter 8, you will learn whether this heat transfer coefficient can be achieved 
under the given conditions. 
 



PROBLEM 1.60 
 
KNOWN:  Rod of prescribed diameter experiencing electrical dissipation from passage of electrical 
current and convection under different air velocity conditions.  See Example 1.4.  
FIND:  Rod temperature as a function of the electrical current for 0 ≤ I ≤ 10 A with convection 
coefficients of 50, 100 and 250 W/m2⋅K.  Will variations in the surface emissivity have a significant 
effect on the rod temperature? 
 
SCHEMATIC:   
 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Uniform rod temperature, (3) Radiation exchange 
between the outer surface of the rod and the surroundings is between a small surface and large 
enclosure.  
ANALYSIS: The energy balance on the rod for steady-state conditions has the form, 
 
 conv rad genq q E′ ′ ′+ = &  
 

 ( ) ( )4 4 2
sur eDh T T D T T I Rπ π εσ∞ ′− + − =  

 
Using this equation in the Workspace of IHT, the rod temperature is calculated and plotted as a 
function of current for selected convection coefficients. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
COMMENTS:  (1) For forced convection over the cylinder, the convection heat transfer coefficient is 
dependent upon air velocity approximately as h ~ V0.6.  Hence, to achieve a 5-fold change in the 
convection coefficient (from 50 to 250 W/m2⋅K), the air velocity must be changed by a factor of 
nearly 15. 
 
          Continued ….. 
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PROBLEM 1.60 (Cont.) 
 
(2) For the condition of I = 4 A with h = 50 W/m2⋅K with T = 63.5°C, the convection and radiation 
exchange rates per unit length are, respectively, conv radq 5.7 W / m and q 0.67 W / m.′ ′= =   We conclude 
that convection is the dominant heat transfer mode and that changes in surface emissivity could have 
only a minor effect.  Will this also be the case if h = 100 or 250 W/m2⋅K? 
 
(3) What would happen to the rod temperature if there was a “loss of coolant” condition where the air 
flow would cease? 
 
(4) The Workspace for the IHT program to calculate the heat losses and perform the parametric 
analysis to generate the graph is shown below.  It is good practice to provide commentary with the 
code making your solution logic clear, and to summarize the results.  It is also good practice to show 
plots in customary units, that is, the units used to prescribe the problem.  As such the graph of the rod 
temperature is shown above with Celsius units, even though the calculations require temperatures in 
kelvins. 
 
 
 

// Energy balance; from Ex. 1.4, Comment 1 
-q'cv - q'rad + Edot'g = 0 
q'cv = pi*D*h*(T - Tinf) 
q'rad = pi*D*eps*sigma*(T^4 - Tsur^4) 
sigma = 5.67e-8 
 
// The generation term has the form 
Edot'g = I^2*R'e 
qdot = I^2*R'e / (pi*D^2/4) 
 
// Input parameters 
D = 0.001 
Tsur = 300 
T_C = T – 273  // Representing temperature in Celsius units using _C subscript 
eps = 0.8 
Tinf = 300 
h = 100 
//h = 50  // Values of coefficient for parameter study 
//h = 250 
I = 5.2   // For graph, sweep over range from 0 to 10 A 
//I = 4   // For evaluation of heat rates with h = 50 W/m^2.K 
R'e = 0.4 
 
/*  Base case results: I = 5.2 A with h = 100 W/m^2.K, find T = 60 C (Comment 2 case). 
Edot'g  T T_C q'cv q'rad qdot  D I R'e 

 Tinf Tsur eps h sigma 
10.82  332.6 59.55 10.23 0.5886 1.377E7  0.001 5.2 0.4 
  300 300 0.8 100 5.67E-8    */ 
 
/* Results: I = 4 A with h = 50 W/m^2.K, find q'cv =  5.7 W/m and q'rad = 0.67 W/m  
Edot'g  T T_C q'cv q'rad qdot D I R'e
 Tinf Tsur eps h sigma 
6.4  336.5 63.47 5.728 0.6721 8.149E6 0.001 4 0.4 
 300 300 0.8 50 5.67E-8      */ 
 



PROBLEM 1.61  
KNOWN:  Long bus bar of prescribed diameter and ambient air and surroundings temperatures.  
Relations for the electrical resistivity and free convection coefficient as a function of temperature.  
 
FIND:  (a) Current carrying capacity of the bus bar if its surface temperature is not to exceed 65°C; 
compare relative importance of convection and radiation exchange heat rates, and (b) Show 
graphically the operating temperature of the bus bar as a function of current for the range 100 ≤ I ≤ 
5000 A for bus-bar diameters of 10, 20 and 40 mm. Plot the ratio of the heat transfer by convection to 
the total heat transfer for these conditions.  
SCHEMATIC: 
 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Bus bar and conduit are very long, (3) Uniform 
bus-bar temperature, (4) Radiation exchange between the outer surface of the bus bar and the conduit 
is between a small surface and a large enclosure.   
PROPERTIES:  Bus-bar material, ( )[ ]e e,o o1 T T ,ρ ρ α= + −  e,o 0.0171 m,ρ μ= Ω⋅  oT 25 C,= °  

10.00396 K .α −=  
 
ANALYSIS: An energy balance on the bus-bar for a unit length as shown in the schematic above has 
the form 
 in out genE E E 0′ ′ ′− + =& & &  

 2
rad conv eq q I R 0′ ′ ′− − + =  

 ( ) ( )4 4 2
sur e cD T T h D T T I / A 0∞− − − − + =επ σ π ρ  

where 2
e e c cR / A and A D / 4.′ = =ρ π   Using the relations for ( )e Tρ  and ( )h T, D ,  and substituting 

numerical values with T = 65°C, find 

( ) [ ] [ ]( )4 48 2 4 4
radq 0.85 0.020m 5.67 10 W / m K 65 273 30 273 K 14.0 W / mπ −′ = × × ⋅ + − + =  < 

 ( )( )2
convq 7.83W / m K 0.020m 65 30 K 17.2W / m′ = ⋅ − =π    < 

where ( ) ( )0.25 0.251.75 1.25 2h 1.21W m K 0.020m 65 30 7.83W / m K−− −= ⋅ ⋅ − = ⋅  

 ( ) ( )22 2 6 2 5 2
eI R I 198.2 10 m / 0.020 m / 4 6.31 10 I W / m− −′ = × Ω ⋅ = ×π  

where ( )6 1
e 0.0171 10 m 1 0.00396K 65 25 K 198.2 m− −⎡ ⎤= × Ω ⋅ + − = Ω ⋅⎣ ⎦ρ μ  

The maximum allowable current capacity and the ratio of the convection to total heat transfer rate are 

 ( )cv cv rad cv totI 700A q / q q q / q 0.55′ ′ ′ ′ ′= + = =    < 
For this operating condition, convection heat transfer is 55% of the total heat transfer. 
 
(b) Using these equations in the Workspace of IHT, the bus-bar operating temperature is calculated 
and plotted as a function of the current for the range 100 ≤ I ≤ 5000 A for diameters of 10, 20 and 40 
mm.  Also shown below is the corresponding graph of the ratio (expressed in percentage units) of the 
heat transfer by convection to the total heat transfer, cv totq / q .′ ′      
          Continued ….. 



PROBLEM 1.61 (Cont.) 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
COMMENTS:  (1) The trade-off between current-carrying capacity, operating temperature and bar 
diameter is shown in the first graph.   If the surface temperature is not to exceed 65°C, the maximum 
current capacities for the 10, 20 and 40-mm diameter bus bars are 260, 700, and 1900 A, respectively.  
(2) From the second graph with cv totq / q′ ′  vs. T, note that the convection heat transfer rate is typically 
comparable to the radiation heat transfer rate. Since the convection heat transfer increases with 
decreasing diameter, the convection transfer rate is relatively smaller for the larger diameter bus bars.    
(3) The Workspace for the IHT program to perform the parametric analysis and generate the graphs is 
shown below.  It is good practice to provide commentary with the code making your solution logic 
clear, and to summarize the results.  
 
//Temperature Information (Celsius unless otherwise indicated) 
Ts = 65 
TsK = Ts + 273 
Tsur = 30 
TsurK = Tsur + 273 
Tinf = 30 
 
//Radiation (Stefan-Boltzmann constant and emissivity) 
sigma = 5.67*10^-8 
eps = 0.85 
 
//Three bus bar diameters (m) 
D1 = 10/1000 
D2 = 20/1000 
D3 = 40/1000 
 
//Electrical resistivity (Ohm-m) 
rhoe = (0.0171*10^-6) *(1 + 0.00396*(Ts - 25)) 
 
//Radiation per unit length (W/m) 
qradp1 = eps*sigma*pi*D1*(TsK^4 - TsurK^4) 
qradp2 = eps*sigma*pi*D2*(TsK^4 - TsurK^4) 
qradp3 = eps*sigma*pi*D3*(TsK^4 - TsurK^4) 
 
//Free convection coefficients (W/m^2K) 
h1 = 1.21*(D1^-0.25)*(Ts - Tinf)^0.25 
h2 = 1.21*(D2^-0.25)*(Ts - Tinf)^0.25 
h3 = 1.21*(D3^-0.25)*(Ts - Tinf)^0.25 

Continued... 
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PROBLEM 1.61 (Cont.) 
 
 
 
//Free convection per unit length (W/m) 
qconvp1 = h1*D1*pi*(Ts - Tinf) 
qconvp2 = h2*D2*pi*(Ts - Tinf) 
qconvp3 = h3*D3*pi*(Ts - Tinf) 
 
//Electrical resistance per unit length (Ohm/m) 
Rep1 = rhoe/Ac1 
Rep2 = rhoe/Ac2 
Rep3 = rhoe/Ac3 
 
//Cross sectional areas (m^2) 
Ac1 = pi*D1*D1/4 
Ac2 = pi*D2*D2/4 
Ac3 = pi*D3*D3/4 
 
//Energy balances (W/m) 
-qradp1-qconvp1+I1*I1*Rep1 = 0 
-qradp2-qconvp2+I2*I2*Rep2 = 0 
-qradp3-qconvp3+I3*I3*Rep3 = 0 
 
//Ratios of convection to total heat transfer 
rat1 = qconvp1/(qconvp1 + qradp1) 
rat2 = qconvp2/(qconvp2 + qradp2) 
rat3 = qconvp3/(qconvp3 + qradp3) 
 
 



PROBLEM 1.62  
KNOWN:  Elapsed times corresponding to a temperature change from 15 to 14°C for a reference 
sphere and test sphere of unknown composition suddenly immersed in a stirred water-ice mixture.  
Mass and specific heat of reference sphere.  
FIND:  Specific heat of the test sphere of known mass.  
SCHEMATIC: 
 

 
 
ASSUMPTIONS:  (1) Spheres are of equal diameter, (2) Spheres experience temperature change 
from 15 to 14°C, (3) Spheres experience same convection heat transfer rate when the time rates of 
surface temperature are observed, (4) At any time, the temperatures of the spheres are uniform, 
(5) Negligible heat loss through the thermocouple wires.   
PROPERTIES:  Reference-grade sphere material: cr = 447 J/kg K. 
 
ANALYSIS:  Apply the conservation of energy requirement at an instant of time, Equation 
1.12c, after a sphere has been immersed in the ice-water mixture at T∞. 
 
 in out stE E E− =& & &  
 

 conv
dTq Mc
dt

− =  
 
where ( )conv sq h A T T .∞= −   Since the temperatures of the spheres are uniform, the change in 
energy storage term can be represented with the time rate of temperature change, dT/dt.  The 
convection heat rates are equal at this instant of time, and hence the change in energy storage 
terms for the reference (r) and test (t) spheres must be equal. 
 

 r r t t
r t

dT dTM c M c
dt dt

⎞ ⎞=⎟ ⎟
⎠ ⎠

 

 
Approximating the instantaneous differential change, dT/dt, by the difference change over a short 
period of time, ΔT/Δt, the specific heat of the test sphere can be calculated.  

 ( ) ( )
t

15 14 K 15 14 K
0.515 kg 447 J / kg K 1.263kg c

6.35s 4.59s
− −

× ⋅ = × ×  

 
 tc 132 J / kg K= ⋅         < 
 
COMMENTS:  Why was it important to perform the experiments with the reference and test 
spheres over the same temperature range (from 15 to 14°C)?  Why does the analysis require that 
the spheres have uniform temperatures at all times?   
 



PROBLEM 1.63 
 
KNOWN:  Dimensions and emissivity of a cell phone charger.  Surface temperature when plugged in.  
Temperature of air and surroundings.  Convection heat transfer coefficient.  Cost of electricity. 
 
FIND:  Daily cost of leaving the charger plugged in when not in use.  
 
SCHEMATIC:   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Convection and radiation are from five exposed 
surfaces of charger, (3) Large surroundings, (4) Negligible heat transfer from back of charger to wall 
and outlet. 
  
ANALYSIS:   At steady-state, an energy balance on the charger gives in 0gE E+ =& & , where gE&  
represents the conversion from electrical to thermal energy.  The exposed area is A = (50 mm × 45 
mm) + 2(50 mm × 20 mm) + 2(45 mm × 20 mm) = 6050 mm2.  Thus, 
 

( )

4 4
conv rad sur

2 8 2 4 4 4 6 2

( ) ( ) ( )

4.5 W / m K(33 C 22 C) 0.92 5.67 10  W/m K (306 K) (293 K) 6050 10  m

0.74 W

g s sE q q hA T T A T Tεσ∞

− −

= + = − + −

⎡ ⎤= ⋅ ° − ° + × × ⋅ − × ×⎣ ⎦
=

&

 
This is the total rate of electricity used while the charger is plugged in.  The daily cost of electricity is 
 

Cost = 0.74 W × $0.18/kW⋅h × 1 kW/1000 W × 24 h/day = $0.0032/day    < 
 
COMMENTS:  (1) The radiation and convection heat fluxes are 73 W/m2 and 50 W/m2, respectively. 
Therefore, both modes of heat transfer are important. (2) The cost of leaving the charger plugged in 
when not in use is small. 
 
 
 
 
 

Eg
·

20 mm
45 mm

50 mm

Tsur = 20°C

qconv

qrad

Air
T∞ = 22°C
h = 4.5 W/m2·K

Ts = 33°C
ε = 0.92



 

PROBLEM 1.64 
 
KNOWN:  Inner surface heating and new environmental conditions associated with a spherical shell of 
prescribed dimensions and material. 
 
FIND:  (a) Governing equation for variation of wall temperature with time.  Initial rate of temperature 
change, (b) Steady-state wall temperature, (c) Effect of convection coefficient on canister temperature. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Negligible temperature gradients in wall, (2) Constant properties, (3) Uniform, 
time-independent heat flux at inner surface. 
 
PROPERTIES:  Table A.1, Stainless Steel, AISI 302:  ρ = 8055 kg/m3, cp  = 535 J/kg⋅K. 
 
ANALYSIS:  (a) Performing an energy balance on the shell at an instant of time, in out stE E E− =& & & .  
Identifying relevant processes and solving for dT/dt, 

 ( ) ( )( ) ( )2 2 3 3
i i o o i p

4 dTq 4 r h 4 r T T r r c
3 dt∞′′ − − = −π π ρ π  

 
( ) ( )2 2

i i o3 3
p o i

dT 3 q r hr T T
dt c r r

∞⎡ ⎤′′= − −⎣ ⎦−ρ
. 

Substituting numerical values for the initial condition, find 

 
( ) ( ) ( )

( ) ( )

2 25
2 2

3 3 3i
3

W W3 10 0.5m 500 0.6m 500 300 K
dT m m K

kg Jdt 8055 510 0.6 0.5 m
kg Km

⎡ ⎤− −⎢ ⎥⎞ ⋅⎣ ⎦=⎟
⎠ ⎡ ⎤−⎢ ⎥⎣ ⎦⋅

 

 
i

dT 0.084K/s
dt

⎞ = −⎟
⎠

. < 

(b)  Under steady-state conditions with stE&  = 0, it follows that 

 ( ) ( )( )2 2
i i oq 4 r h 4 r T T∞′′ = −π π  

 

 
2 25 2

i i
2

o

q r 10 W/m 0.5mT T 300K 439K
h r 0.6m500W/m K∞
⎛ ⎞′′ ⎛ ⎞= + = + =⎜ ⎟ ⎜ ⎟⋅ ⎝ ⎠⎝ ⎠

        < 

        
 
 

Continued ….. 
 



 

PROBLEM 1.64 (Cont.) 
 
(c)  Parametric calculations were performed using the IHT First Law Model for an Isothermal Hollow 
Sphere.  As shown below, there is a sharp increase in temperature with decreasing values of h < 1000 
W/m2⋅K.  For T > 380 K, boiling will occur at the canister surface, and for T > 410 K a condition known 
as film boiling (Chapter 10) will occur.  The condition corresponds to a precipitous reduction in h and 
increase in T. 
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Although the canister remains well below the melting point of stainless steel for h = 100 W/m2⋅K, boiling 
should be avoided, in which case the convection coefficient should be maintained at h > 1000 W/m2⋅K. 
 
COMMENTS:  The governing equation of part (a) is a first order, nonhomogenous differential equation 
with constant coefficients.  Its solution is ( )( )Rt Rt

iS/R 1 e e− −= − +θ θ , where T T∞≡ −θ , 

( )2 3 3
i i p o iS 3q r / c r r′′≡ −ρ , ( )2 3 3

o p o iR 3hr / c r r= −ρ .  Note results for t → ∞ and for S = 0. 



PROBLEM 1.65  
KNOWN:  Frost formation of 2-mm thickness on a freezer compartment.  Surface exposed to 
convection process with ambient air.  
 
FIND:  Time required for the frost to melt, tm. 
 
SCHEMATIC:   
 
 
 
 
 
 
 
 

 
 
ASSUMPTIONS:  (1) Frost is isothermal at the fusion temperature, Tf, (2) The water melt falls away 
from the exposed surface, (3) Frost exchanges radiation with surrounding frost, so net radiation 
exchange is negligible, and (4) Backside surface of frost formation is adiabatic. 
 

PROPERTIES:  Frost, 3
f sf770 kg / m , h 334 kJ / kg.ρ = =  

 
ANALYSIS:  The time tm required to melt a 2-mm thick frost layer may be determined by applying a 
mass balance and an energy balance (Eq 1.12b) over the differential time interval dt to a control 
volume around the frost layer. 
 ( )st out st in outdm m dt          dE E E dt= − = −& &&                (1a,b) 

 
With hf as the enthalpy of the melt and hs as the enthalpy of frost, we have 

st st s out out fdE dm h      E dt m h dt= =& &                            (2a,b) 
 

Combining Eqs. (1a) and (2a,b),  Eq. (1b) becomes (with hsf = hf – hS) 
out sf in conv sm h dt E dt q A dt′′= =&&  

Integrating both sides of the equation with respect to time, find 
( )f s sf o s f mA h x h A T T t∞= −ρ  

 
( )

f sf o
m

f

h xt
h T T∞

=
−

ρ  

 
( )

3 3

m 2
700kg / m 334 10 J / kg 0.002mt 11,690 s 3.2 hour

2W / m K 20 0 K
× × ×

= = =
⋅ −

   < 

 
COMMENTS:  (1) The energy balance could be formulated intuitively by recognizing that the total 
heat in by convection during the time interval ( )m conv mt q t′′ ⋅  must be equal to the total latent energy 
for melting the frost layer ( )o sfx hρ .  This equality is directly comparable to the derived expression 
above for tm. 
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PROBLEM 1.66   
 
KNOWN:  Vertical slab of Woods metal initially at its fusion temperature, Tf, joined to a substrate.  

Exposed surface is irradiated with laser source, G 2(W / m )l . 
 
FIND:  Instantaneous rate of melting per unit area, mm′′&  (kg/s⋅m2), and the material removed in a 
period of 2 s, (a) Neglecting heat transfer from the irradiated surface by convection and radiation 
exchange, and (b) Allowing for convection and radiation exchange. 
 
SCHEMATIC: 
 
 
 
 

 
 
 
 
 
 
ASSUMPTIONS:  (1) Woods metal slab is isothermal at the fusion temperature, Tf, and (2) The melt 
runs off the irradiated surface. 
 
ANALYSIS:  (a) The instantaneous rate of melting per unit area may be determined by applying a 
mass balance and an energy balance (Equation 1.12c) on the metal slab at an instant of time neglecting 
convection and radiation exchange from the irradiated surface. 
 st in out in out stm = m - m      E - E = E′′ ′′ ′′ ′′ ′′ ′′& & && & &                              (1a,b) 
 
With hf as the enthalpy of the melt and hs as the enthalpy of the solid, we have 

st st s out out fE = m h     E = m h  ′′ ′′ ′′ ′′& && &                               (2a,b) 
 

Combining Equations (1a) and (2a,b),  Equation (1b) becomes (with hsf = hf – hs) 
out sf in l lm h  = E = α G′′ ′′&&  

 
Thus the rate of melting is 

 2 -3 2
out l l sfm = α G /h  = 0.4 × 5000W/m 33,000J/kg = 60.6 × 10 kg/s × m′′&                           < 

 
The material removed in a 2s period per unit area is 

 2
2s outM  = m × Δt = 121 g/m′′ ′′&         < 

 
(b) The energy balance considering convection and radiation exchange with the surroundings yields 
 out sf l l cv radm h = α G - q - q′′ ′′ ′′&  

 ( ) ( )2 2
cv fq = h T  - T = 15W/m K 72 - 20 K = 780 W/m∞′′ ⋅  

( ) [ ] [ ]( )4 44 4 -8 2 4 2
rad fq = εσ T - T = 0.4 × 5.67 × 10 W/m K 72 + 273 - 20 + 273 K = 154 W/m   ∞′′ ⋅  

 -3 2 2
out 2sm = 32.3 × 10 kg/s m M  = 64g/m′′ ⋅&                     < 

 
 
COMMENTS:  (1) The effects of heat transfer by convection and radiation reduce the estimate for 
the material removal rate by a factor of two.  The heat transfer by convection is nearly 5 times larger  
than by radiation exchange. 
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PROBLEM 1.66 (Cont.) 
 
 
(2) Suppose the work piece were horizontal, rather than vertical, and the melt puddled on the surface 
rather than ran off.  How would this affect the analysis? 
 
(3) Lasers are common heating sources for metals processing, including the present application of 
melting (heat transfer with phase change), as well as for heating work pieces during milling and 
turning (laser-assisted machining). 



PROBLEM 1.67 
 
KNOWN:  Dimensions, emissivity, and solar absorptivity of solar photovoltaic panel.  Solar 
irradiation, air and surroundings temperature, and convection coefficient.  Expression for conversion 
efficiency. 
 
FIND:  Electrical power output on (a) a still summer day, and (b) a breezy winter day. 
 
SCHEMATIC:   

 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Lower surface of solar panel is insulated, (3) 
Radiation from the environment can be treated as radiation from large surroundings, with α = ε. 
  
ANALYSIS:  Recognize that there is conversion from thermal to electrical energy, therefore there is a 
negative generation term equal to the electrical power.  Performing an energy balance on the solar 
panel gives  

rad conv

4 4
sur

in out

0

( (

0

) ) 0s

g

S S s S S

q q

G T T hA T

E E E

P

A T G Aα εσ ηα∞

− =

− −

− + =

−

⎡ ⎤− − − =⎣ ⎦

& & &

 

Dividing by A, and substituting the expression for η as a function of Tp yields 
4 4

sur( () ) (0.553 0.001 ) 0pS S p p S SG T T h T T T Gα εσ α∞− −⎡ ⎤− − − − =⎣ ⎦  

 
(a)  Substituting the parameter values for a summer day: 

4

4

2 8 2 4 4 2

2

2 8 2 4 2

0.83 700 W/m 0.90 5.67 10 10 (

700 W/m

3799 W/m 10

W/m K ( (308 K) )  W/m K 308 K)

(0.553 0.001 ) 0.83 0

5.1  W/m K 9.42 W/m K 0

p

p

p

p

p

T T

T

T

T

−

−

× − × × −

×

⋅ − ⋅ −

− − × × =

− ⋅ − ⋅ =

 

 
Solving this equation for Tp using IHT or other software results in Tp = 335 K.  The electrical power 
can then be found from 

(0.553 0.001 )S S p S SP G A T G Aηα α= = −  

    -1 2 2(0.553 0.001 K 335 K) 0.83 700 W/m 8 m 1010 W= − × × × × =      < 
       

(b) Repeating the calculation for the winter conditions yields Tp = 270 K, P = 1310 W.      < 
 
COMMENTS:  (1) The conversion efficiency for most photovoltaic materials is higher at lower 
temperatures.  Therefore, for the same solar irradiation, more electrical power is generated in winter 
conditions. (2) The total solar energy generated would generally be less in the winter due to lower 
irradiation values and a shorter day.  

GS = 700 W/m2
Tsur = 35°C or -15°C

Photovoltaic panel, TpP

T∞ = 35°C or -15°C
h = 10 W/m2·K or 30 W/m2·K

αS = 0.83

ε = 0.90



PROBLEM 1.68    
KNOWN:  Hot formed paper egg carton of prescribed mass, surface area, and water content exposed 
to infrared heater providing known radiant flux. 
 
FIND:  Whether water content can be reduced by 10% of the total mass during the 18s period carton 
is on conveyor. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) All the radiant flux from the heater bank causes evaporation of water, (2) 
Negligible heat loss from carton by convection and radiation, (3) Negligible mass loss occurs from 
bottom side. 
 
PROPERTIES:  Water (given):  hfg = 2400 kJ/kg. 
 
ANALYSIS:  Define a control surface about the carton, and write conservation of mass and energy for 
an interval of time, Δt, 
 

( )st out st in outm m t          E E E tΔ = − Δ Δ = − Δ& &&  (1a,b) 
With hf as the enthalpy of the liquid water and hg as the enthalpy 
of water vapor, we have 
 

st st f out out gE m h      E t m h tΔ = Δ Δ = Δ& &    (2a,b) 
Combining Equations (1a) and (2a,b),  Equation (1b) becomes (with hfg = hg – hf) 

 
out fg in h sm h t E t q A t′′Δ = Δ = Δ&&  

where hq′′ is the absorbed radiant heat flux from the heater.  Hence,  
 

out h s fg
2 2m m t q A t h 5000 W/m 0.0625 m 18 s 2400 kJ/kg 0.00234 kg′′Δ = Δ = Δ = × × =&  

 
The chief engineer’s requirement was to remove 10% of the water content, or  
 ΔM M 0.10 = 0.220 kg 0.10 = 0.022 kgreq = × ×  
 
which is nearly an order of magnitude larger than the evaporative loss.  Considering heat losses by 
convection and radiation, the actual water removal from the carton will be less than ΔM.  Hence, the 

purchase should not be recommended, since the desired water removal cannot be achieved. < 

outE&  



PROBLEM 1.69 
 
KNOWN:  Average heat sink temperature when total dissipation is 20 W with prescribed air and 
surroundings temperature, sink surface area and emissivity. 
 
FIND:  Sink temperature when dissipation is 30 W. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) All dissipated power in devices is transferred 
to the sink, (3) Sink is isothermal, (4) Surroundings and air temperature remain the same for both 
power levels, (5) Convection coefficient is the same for both power levels, (6) Heat sink is a small 
surface within a large enclosure, the surroundings. 
 
ANALYSIS:  Define a control volume around the heat sink.  Power dissipated within the devices 
is transferred into the sink, while the sink loses heat to the ambient air and surroundings by 
convection and radiation exchange, respectively. 

 ( ) ( )
E E 0
P hA T T A T T 0.

outin
4 4e s s s s surεσ

− =

− − − − =∞

& &
     (1) 

Consider the situation when Pe = 20 W for which Ts = 42°C; find the value of h. 
 

 ( ) ( )h= P / A T T / T T4 4e s s sur sεσ⎡ ⎤− − −⎢ ⎥⎣ ⎦ ∞  

 ( ) ( )2h= 20 W/0.045 m 0.8 5.67 10  W/m K 315 300 K / 315 300 K8 2 4 4 4 4⎡ ⎤− × × ⋅ − −⎢ ⎥⎣ ⎦
−  

 h = 24.4 W / m K.2 ⋅  
 

For the situation when Pe = 30 W, using this value for h with Eq. (1), obtain 

 ( )30 W - 24.4 W/m K 0.045 m T 300 K2 2 s⋅ × −  

  ( )0.045 m 0.8 5.67 10  W/m K T 300 K 02 8 2 4 4 4 4s− × × × ⋅ − =−  

 ( ) ( )30 1.098 T 300 2.041 10 T 300 .9 4 4s s= − + × −−  

By trial-and-error, find 
 T  K = 49 C.s ≈ 322 o          < 
 
COMMENTS:  (1) It is good practice to express all temperatures in kelvin units when using energy 
balances involving radiation exchange. 
 

(2) Note that we have assumed As is the same for the convection and radiation processes.  Since not all 

portions of the fins are completely exposed to the surroundings, As,rad is less than As,conv = As.  
(3) Is the assumption that the heat sink is isothermal reasonable? 



PROBLEM 1.70  
KNOWN:  Number and power dissipation of PCBs in a computer console.  Convection coefficient 
associated with heat transfer from individual components in a board.  Inlet temperature of cooling air 
and fan power requirement.  Maximum allowable temperature rise of air.  Heat flux from component 
most susceptible to thermal failure. 
 
FIND:  (a) Minimum allowable volumetric flow rate of air, (b) Preferred location and corresponding 
surface temperature of most thermally sensitive component.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state, (2) Constant air properties, (3) Negligible potential and kinetic 
energy changes of air flow, (4) Negligible heat transfer from console to ambient air, (5) Uniform 
convection coefficient for all components. 
 
ANALYSIS:  (a) For a control surface about the air space in the console, conservation of energy for 
an open system, Equation (1.12d), reduces to 
 ( ) ( )t tin outm u pv m u pv q W 0+ − + + − =&& &  
where t b fu pv i, q 5P ,  and W P .+ = = = −&   Hence, with ( ) ( )in out p in outm i i mc T T ,− = −& &  
 
 ( )p out in b fmc T T 5 P P− = +&  
 
For a maximum allowable temperature rise of 15°C, the required mass flow rate is 

 
( ) ( )

3b f

p out in

5 P P 5 20 W 25 Wm 8.28 10 kg/s
c T T 1007 J/kg K 15 C

−+ × +
= = = ×

− ⋅ o
&  

The corresponding volumetric flow rate is 

 
3

3 3
3

m 8.28 10 kg/s 7.13 10 m / s
1.161 kg/m

−
−×

∀ = = = ×
&

ρ
    < 

(b) The component which is most susceptible to thermal failure should be mounted at the bottom of 
one of the PCBs, where the air is coolest.  From the corresponding form of Newton’s law of cooling, 

( )s inq h T T ,′′ = −  the surface temperature is 

 
4 2

s in 2
q 1 10  W/mT T 20 C 70 C
h 200 W/m K
′′ ×

= + = + =
⋅

o o     < 

COMMENTS:  (1) Although the mass flow rate is invariant, the volumetric flow rate increases as the 
air is heated in its passage through the console, causing a reduction in the density.  However, for the 
prescribed temperature rise, the change in ρ, and hence the effect on ,∀&  is small.  (2) If the thermally 
sensitive component were located at the top of a PCB, it would be exposed to warmer air (To = 35°C) 
and the surface temperature would be Ts = 85°C. 



PROBLEM 1.71 
 
KNOWN:  Surface-mount transistor with prescribed dissipation and convection cooling conditions. 
 
FIND:  (a) Case temperature for mounting arrangement with air-gap and conductive paste between case 
and circuit board, (b) Consider options for increasing gE& , subject to the constraint that cT  = 40°C. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Transistor case is isothermal, (3) Upper surface 
experiences convection; negligible losses from edges, (4) Leads provide conduction path between case 
and board, (5) Negligible radiation, (6) Negligible energy generation in leads due to current flow, (7) 
Negligible convection from surface of leads. 
 
PROPERTIES:  (Given):  Air, g,ak  = 0.0263 W/m⋅K; Paste, g,pk  = 0.12 W/m⋅K; Metal leads, kl  = 

25 W/m⋅K. 
 
ANALYSIS:  (a) Define the transistor as the system and identify modes of heat transfer. 
 in out g stE E E E 0− + = Δ =& & & &  

 conv cond,gap lead gq q 3q E 0− − − + =&  

 ( ) c b c b
s c g s c g

T T T ThA T T k A 3k A E 0
t L∞
− −

− − − − + =l
&  

where s 1 2A L L= ×  = 4 × 8 mm2 = 32 × 10-6 m2 and cA  = t × w = 0.25 × 1 mm2 = 25 × 10-8 m2.  
Rearranging and solving for cT , 

 ( ){ } ( )c s g s c b g s g s cT hA T k A /t 3 k A /L T E / hA k A /t 3 k A /L∞ ⎡ ⎤ ⎡ ⎤= + + + + +⎣ ⎦ ⎣ ⎦l l
&  

Substituting numerical values, with the air-gap condition ( g,ak  = 0.0263 W/m⋅K) 

 { ( )2 6 2 6 2 3
cT 50W/m K 32 10 m 20 C 0.0263W/m K 32 10 m /0.2 10 m− − −⎡= ⋅ × × × + ⋅ × × ×⎢⎣

o  

 ( ) }8 2 3 3 3 33 25 W/m K 25 10 m /4 10 m 35 C / 1.600 10 4.208 10 4.688 10 W/K− − − − −+ ⋅ × × × × + × + ×⎤ ⎡ ⎤
⎣ ⎦⎦

o  
 
 cT 47.0 C= o . < 

Continued... 
 

 



 

PROBLEM 1.71 (Cont.) 
 
With the paste condition ( g,pk  = 0.12 W/m⋅K), cT  = 39.9°C.  As expected, the effect of the conductive 

paste is to improve the coupling between the circuit board and the case.  Hence, cT  decreases. 
 
(b) Using the keyboard to enter model equations into the workspace, IHT has been used to perform the 
desired calculations.  For values of kl  = 200 and 400 W/m⋅K and convection coefficients in the range 
from 50 to 250 W/m2⋅K, the energy balance equation may be used to compute the power dissipation for a 
maximum allowable case temperature of 40°C. 
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As indicated by the energy balance, the power dissipation increases linearly with increasing h, as well as 
with increasing kl .  For h = 250 W/m2⋅K (enhanced air cooling) and kl  = 400 W/m⋅K (copper leads), 
the transistor may dissipate up to 0.63 W. 
 
COMMENTS:  Additional benefits may be derived by increasing heat transfer across the gap separating 
the case from the board, perhaps by inserting a highly conductive material in the gap. 



PROBLEM 1.72 
 
KNOWN:  Top surface of car roof absorbs solar flux, S,absq′′ , and experiences for case (a):  convection 
with air at T∞  and for case (b):  the same convection process and radiation emission from the roof. 
 
FIND:  Temperature of the roof,Ts, for the two cases.  Effect of airflow on roof temperature. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible heat transfer to auto interior, (3) Negligible 
radiation from atmosphere. 
 
ANALYSIS:  (a) Apply an energy balance to the control surfaces shown on the schematic.  For an instant 
of time, in outE E−& &  = 0.  Neglecting radiation emission, the relevant processes are convection between 
the plate and the air, convq′′ , and the absorbed solar flux, S,absq′′ .  Considering the roof to have an area 

sA , 
 
 ( )S,abs s s sq A hA T T 0∞′′ ⋅ − − =  
 
 s S,absT T q /h∞ ′′= +  
 

 
2

s 2
800W/mT 20 C 20 C 66.7 C 86.7 C

12W/m K
= + = + =

⋅
o o o o  < 

 
(b)  With radiation emission from the surface, the energy balance has the form 
 
 S,abs s conv sq A q E A 0′′ ⋅ − − ⋅ =  
 
 ( ) 4

S,abs s s s s sq A hA T T A T 0ε σ∞′′ − − − = . 
 
Substituting numerical values, with temperature in absolute units (K), 
 

 ( ) 8 4
s s2 2 2 4

W W W800 12 T 293K 0.8 5.67 10 T 0
m m K m K

−− − − × × =
⋅ ⋅

 

 
 8 4

s s12T 4.536 10 T 4316−+ × =  
 
It follows that Ts = 320 K = 47°C. < 
 
  Continued... 
 

Roof



 

PROBLEM 1.72 (Cont.) 
 
(c) Parametric calculations were performed using the IHT First Law Model for an Isothermal Plane Wall.   
As shown below, the roof temperature depends strongly on the velocity of the auto relative to the ambient 
air.  For a convection coefficient of h = 40 W/m2⋅K, which would be typical for a velocity of 55 mph, the 
roof temperature would exceed the ambient temperature by less than 10°C. 
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COMMENTS:  By considering radiation emission, Ts decreases, as expected.  Note the manner in which 
′′qconv  is formulated using Newton’s law of cooling; since ′′qconv  is shown leaving the control surface, the 

rate equation must be ( )sh T T∞−  and not ( )sh T T∞ − . 



PROBLEM 1.73 
 

KNOWN: Hot plate suspended in a room, plate temperature, room temperature and surroundings 
temperature, convection coefficient and plate emissivity, mass and specific heat of the plate. 
 
FIND: (a) The time rate of change of the plate temperature, and (b) Heat loss by convection and heat 
loss by radiation. 
 
SCHEMATIC: 
                  
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Plate is isothermal and at uniform temperature, (2) Large surroundings, (3) 
Negligible heat loss through suspension wires. 
 
ANALYSIS: For a control volume about the plate, the conservation of energy requirement is  
 
 in out stE - E  = E& & &           (1) 

where  st p
dTE  = Mc
dt

&           (2) 

and 4 4
in out sur s sE  - E  = εAσ(T  - T ) + hA(T  - T )∞
& &       (3) 

 

Combining Eqs. (1) through (3) yields 
4 4
sur s s

p

A[εσ(T  - T ) + h(T  - T )]dT  = 
dt Mc

∞  

Noting that o
surT = 25 C + 273 K = 298 K  and o

sT  = 225 C + 273 K = 498 K , 
 

-8 4 4 4 o o
2 4 2
W W{2×0.3 m×0.3 m[0.42×5.67×10 (498 -298 ) K ]+6.4 ×(25 C-225 C)}dT m K m K=  Jdt 3.75 kg×2770 

kg K

×
⋅ ⋅

⋅

 

 
           = -0.044 K/s          < 
The heat loss by radiation is the first term in the numerator of the preceding expression and is  
 radq  = 230 W           < 
The heat loss by convection is the second term in the preceding expression and is 
 convq  = 230 W          < 
 
COMMENTS: (1) Note the importance of using kelvins when working with radiation heat transfer. 
(2) The temperature difference in Newton’s law of cooling may be expressed in either kelvins or 
degrees Celsius. (3) Radiation and convection losses are of the same magnitude. This is typical of 
many natural convection systems involving gases such as air.   
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PROBLEM 1.74 
 
KNOWN: Daily thermal energy generation, surface area, temperature of the environment, and heat 
transfer coefficient. 
 
FIND: (a) Skin temperature when the temperature of the environment is 20ºC, and (b) Rate of 
perspiration to maintain skin temperature of 33ºC when the temperature of the environment is 33ºC.   
  
SCHEMATIC: 
 

 
 
ASSUMPTIONS: (1) Steady-state conditions, (2) Thermal energy is generated at a constant rate 
throughout the day, (3) Air and surrounding walls are at same temperature, (4) Skin temperature is 
uniform, (5) Bathing suit has no effect on heat loss from body, (6) Heat loss is by convection and 
radiation to the environment, and by perspiration in Part 2. (Heat loss due to respiration, excretion of 
waste, etc., is negligible.), (7) Large surroundings. 
 
PROPERTIES:  Table A.11, skin: ε = 0.95, Table A.6, water (306 K): ρ = 994 kg/m3, hfg = 2421 
kJ/kg.   

 
ANALYSIS:  
(a) The rate of energy generation is: 
 

3
gE 2000 10  cal/day (0.239 cal/J  86,400 s/day)  = 96.9 W= × ×&  

Under steady-state conditions, an energy balance on the human body yields: 
 

g outE  - E = 0& &  

Thus outE& = q = 96.9 W.  Energy outflow is due to convection and net radiation from the surface to the 
environment, Equations 1.3a and 1.7, respectively. 

  
4 4

out s s surE  = hA(T  - T ) + εσA(T  - T )∞
&  

 
Substituting numerical values 

Continued… 
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PROBLEM 1.74 (Cont.) 
 

 
2 2

s
-8 2 4 2 4 4

s

96.9 W = 3 W/m K×1.8 m  × (T  - 293 K) 

             + 0.95 × 5.67 × 10  W/m K  × 1.8 m  × (T  - (293 K) )

⋅

⋅
 

and solving either by trial-and-error or using IHT or other equation solver, we obtain 

sT  = 299 K = 26ºC                       < 
 
Since the comfortable range of skin temperature is typically 32 – 35ºC, we usually wear clothing 
warmer than a bathing suit when the temperature of the environment is 20ºC. 
 
(b) If the skin temperature is 33ºC when the temperature of the environment is 33ºC, there will be no 
heat loss due to convection or radiation.  Thus, all the energy generated must be removed due to 
perspiration:  

 
out fgE  = mh& &  

We find: 
-5

out fgm = E /h  = 96.9 W/2421 kJ/kg = 4.0×10  kg/s&&  
This is the perspiration rate in mass per unit time.  The volumetric rate is: 

5 3 8 3 5 m/ρ = 4.0 10  kg/s / 994 kg/m = 4.0 10  m /s = 4.0 10  /s− − −∀ = × × ×& & l                                < 
 
COMMENTS: (1) In Part 1, heat losses due to convection and radiation are 32.4 W and  
60.4 W, respectively.  Thus, it would not have been reasonable to neglect radiation.  Care must be 
taken to include radiation when the heat transfer coefficient is small, even if the problem statement 
does not give any indication of its importance.  (2) The rate of thermal energy generation is not 
constant throughout the day; it adjusts to maintain a constant core temperature. Thus, the energy 
generation rate may decrease when the temperature of the environment goes up, or increase (for 
example, by shivering) when the temperature of the environment is low.  (3) The skin temperature is 
not uniform over the entire body.  For example, the extremities are usually cooler.  Skin temperature 
also adjusts in response to changes in the environment.  As the temperature of the environment 
increases, more blood flow will be directed near the surface of the skin to increase its temperature, 
thereby increasing heat loss.  (4) If the perspiration rate found in Part 2 was maintained for eight 
hours, the person would lose 1.2 liters of liquid.  This demonstrates the importance of consuming 
sufficient amounts of liquid in warm weather. 



PROBLEM 1.75 
 

KNOWN: Thermal conductivity, thickness and temperature difference across a sheet of rigid 
extruded insulation. Cold wall temperature, surroundings temperature, ambient temperature and 
emissivity. 
 
FIND: (a) The value of the convection heat transfer coefficient on the cold wall side in units of 
W/m2⋅°C or W/m2⋅K, and, (b) The cold wall surface temperature for emissivities over the range 
0.05 ≤ ε ≤ 0.95 for a hot wall temperature of T1 = 30 °C. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) One-dimensional conduction in the x-direction, (2) Steady-state 
conditions, (c) Constant properties, (4) Large surroundings. 
 
ANALYSIS:  
(a) An energy balance on the control surface shown in the schematic yields 
 
 in outE  = E& &  or cond conv radq  = q  + q  
 
Substituting from Fourier’s law, Newton’s law of cooling, and Eq. 1.7 yields 
 

 4 41 2
2 2 sur

T  - Tk  = h(T  - T ) + εσ(T  - T )
L ∞              (1) 

 

or   4 41 2
2 sur

2

T  - T1h =  [k  - εσ(T  - T )]
(T  - T ) L∞

 

 
Substituting values, 

o
-8 4 4 4

o 2 4
1 W (30 - 20) C Wh =  [0.029  ×  - 0.95 × 5.67 × 10 (293  - 320 ) K ]

m K 0.02 m(20 - 5) C m K⋅ ⋅
 

 

 h = 12.2 2

W
m K⋅

                            < 
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PROBLEM 1.75 (Cont.) 
 

(b)  Equation (1) may be solved iteratively to find T2 for any emissivity ε.  IHT was used for this 
purpose, yielding the following. 
 

Surface Temperature vs. Wall Emissivity
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COMMENTS: (1) Note that as the wall emissivity increases, the surface temperature increases 
since the surroundings temperature is relatively hot. (2) The IHT code used in part (b) is shown 
below. (3) It is a good habit to work in temperature units of kelvins when radiation heat transfer is 
included in the solution of the problem. 
 

//Problem 1.75 
 
h = 12.2  //W/m^2·K (convection coefficient) 
L = 0.02  //m (sheet thickness) 
k = 0.029 //W/m·K (thermal conductivity) 
T1 = 30 + 273 //K (hot wall temperature) 
Tsur = 320 //K (surroundings temperature) 
sigma = 5.67*10^-8 //W/m^2·K^4 (Stefan -Boltzmann constant) 
Tinf = 5 + 273 //K (ambient temperature) 
e = 0.95 //emissivity 
 
//Equation (1) is 
 
k*(T1-T2)/L = h*(T2-Tinf) + e*sigma*(T2^4 - Tsur^4) 

 
 



PROBLEM 1.76 
 
KNOWN:  Thickness and thermal conductivity, k, of an oven wall.  Temperature and emissivity, ε, of 
front surface.  Temperature and convection coefficient, h, of air.  Temperature of large surroundings. 
 
FIND:  (a) Temperature of back surface, (b) Effect of variations in k, h and ε. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state, (2) One-dimensional conduction, (3) Radiation exchange with large 
surroundings. 
 
ANALYSIS:  (a) Applying an energy balance, Eq. 1.13 to the front surface and substituting the 
appropriate rate equations, Eqs. 1.2, 1.3a and 1.7, find 
 

 ( ) ( )4 41 2
2 sur2

T Tk h T T T T
L

εσ∞
−

= − + − . 
 
Substituting numerical values, find 
 

( ) ( )1 2 2
0.05 m W 4 48T T 20 100 K

2 40.7 W/m K m K

W
0.8 5.67 10 400 K 300 K 200 K

m K
−− =

⋅ ⋅
+ × × − =

⋅

⎤⎡ ⎡ ⎤
⎥⎢ ⎢ ⎥⎣ ⎦⎣ ⎦

. 

 
Since 2T  = 400 K, it follows that 1T  = 600 K. < 
 
(b) Parametric effects may be evaluated by using the IHT First Law Model for a Nonisothermal Plane 
Wall.  Changes in k strongly influence conditions for k < 20 W/m⋅K, but have a negligible effect for 
larger values, as 2T  approaches 1T  and the heat fluxes approach the corresponding limiting values 
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Continued…



 

PROBLEM 1.76 (Cont.) 
 
The implication is that, for k > 20 W/m⋅K, heat transfer by conduction in the wall is extremely efficient 
relative to heat transfer by convection and radiation, which become the limiting heat transfer processes.  
Larger fluxes could be obtained by increasing ε and h and/or by decreasing T∞  and surT . 
 
With increasing h, the front surface is cooled more effectively ( 2T  decreases), and although radq′′  
decreases, the reduction is exceeded by the increase in convq′′ .  With a reduction in 2T  and fixed values 
of k and L, condq′′  must also increase. 
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The surface temperature also decreases with increasing ε, and the increase in radq′′  exceeds the reduction 
in convq′′ , allowing condq′′  to increase with ε. 
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COMMENTS:  Conservation of energy, of course, dictates that irrespective of the prescribed conditions, 

cond conv radq q q′′ ′′ ′′= + . 



PROBLEM 1.77  
KNOWN:  Temperatures at 10 mm and 20 mm from the surface and in the adjoining airflow for a 
thick stainless steel casting.  
FIND:  Surface convection coefficient, h.  
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) Steady-state, (2) One-dimensional conduction in the x-direction, (3) Constant 
properties, (4) Negligible generation.  
ANALYSIS:  From a surface energy balance, it follows that  
 ′′ = ′′q qcond conv  
 
where the convection rate equation has the form  
 ( )0convq h T T ,∞′′ = −  
 
and ′′qcond  can be evaluated from the temperatures prescribed at surfaces 1 and 2.  That is, from 
Fourier’s law, 

 ( )
( )

1 2
cond

2 1

2
cond 3

T Tq k
x x

50 40 CWq 15 15,000 W/m .
m K 20-10 10 m−

−′′ =
−

−
′′ = =

⋅ ×

o  

 
Since the temperature gradient in the solid must be linear for the prescribed conditions, it follows that  
 To = 60°C. 
 
Hence, the convection coefficient is 

 h = q
T T

cond

0

′′
−∞

 

 h = 15,000 W / m
40 C

 W / m K.
2

2
o

= ⋅375       < 

COMMENTS:  The accuracy of this procedure for measuring h depends strongly on the validity of 
the assumed conditions. 



PROBLEM 1.78 
 
KNOWN:  Duct wall of prescribed thickness and thermal conductivity experiences prescribed heat flux 

oq′′  at outer surface and convection at inner surface with known heat transfer coefficient. 
 
FIND:  (a) Heat flux at outer surface required to maintain inner surface of duct at iT  = 85°C, (b) 
Temperature of outer surface, oT , (c) Effect of h on oT  and oq′′ . 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in wall, (3) Constant 
properties, (4) Backside of heater perfectly insulated, (5) Negligible radiation. 
 
ANALYSIS:  (a) By performing an energy balance on the wall, recognize that o condq q′′ ′′= .  From an energy 

balance on the top surface, it follows that cond conv oq q q′′ ′′ ′′= = .  Hence, using the convection rate equation, 

 ( ) ( )2 2
o conv iq q h T T 100 W / m K 85 30 C 5500W /m∞′′ ′′= = − = ⋅ − =o . < 

(b) Considering the duct wall and applying Fourier’s Law, 

 o i
o

T TTq k k
X L

−Δ′′ = =
Δ

 

 
2

o
o i

q L 5500 W/m 0.010 m
T T 85 C

k 20 W/m K

′′ ×
= + = +

⋅
o  ( )85 2.8 C 87.8 C= + =o o . < 

(c) For iT  = 85°C, the desired results may be obtained by simultaneously solving the energy balance equations 

 o i
o

T T
q k

L
−′′ =  and ( )o i

i
T T

k h T T
L ∞
−

= −  

Using the IHT First Law Model for a Nonisothermal Plane Wall, the following results are obtained. 
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Since convq′′  increases linearly with increasing h, the applied heat flux oq′′  and condq′′ must also increase.  
An increase in condq′′ , which, with fixed k, iT  and L, necessitates an increase in oT . 
 
COMMENTS:  The temperature difference across the wall is small, amounting to a maximum value of 
( )o iT T−  = 5.5°C for h = 200 W/m2⋅K.  If the wall were thinner (L < 10 mm) or made from a material 

with higher conductivity (k > 20 W/m⋅K), this difference would be reduced. 



PROBLEM 1.79  
KNOWN:  Dimensions, average surface temperature and emissivity of heating duct.  Duct air 
inlet temperature and velocity.  Temperature of ambient air and surroundings.  Convection 
coefficient.  
FIND:  (a) Heat loss from duct, (b) Air outlet temperature.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state, (2) Constant air properties, (3) Negligible potential and 
kinetic energy changes of air flow, (4) Radiation exchange between a small surface and a 
large enclosure.  
ANALYSIS:  (a) Heat transfer from the surface of the duct to the ambient air and the 
surroundings is given by Eq. (1.10)  
 ( ) ( )4 4q hA T T A T Ts s s s surε σ= − + −∞  
 
where As = L (2W + 2H) = 15 m (0.7 m + 0.5 m) = 16.5 m2.  Hence, 
 

( ) ( )2 2 2 8 2 4 4 4 4q 4 W/m K 16.5 m 45 C 0.5 16.5 m 5.67 10  W/m K 323 278 K−= ⋅ × + × × × ⋅ −o  
 
 q q q 2970 W 2298 W 5268 Wconv rad= + = + =      < 
 
(b) With i = u + pv, W&  = 0 and the third assumption, Eq. (1.12d) yields,  
 ( ) ( )m i i mc T T qi o p i o− = − =& &  
 
where the sign on q has been reversed to reflect the fact that heat transfer is from the system.  
With ( )3m VA 1.10 kg/m 4 m/s 0.35m 0.20m 0.308 kg/s,cρ= = × × =&  the outlet temperature is 
 

 q 5268 WT T 58 C 41 Co i mc 0.308 kg/s 1008 J/kg Kp
= − = − =

× ⋅
o o

&
    < 

 
COMMENTS:  The temperature drop of the air is large and unacceptable, unless the intent is 
to use the duct to heat the basement.  If not, the duct should be insulated to insure maximum 
delivery of thermal energy to the intended space(s). 
 



PROBLEM 1.80  
KNOWN:  Uninsulated pipe of prescribed diameter, emissivity, and surface temperature in a room 
with fixed wall and air temperatures.  See Example 1.2. 
 
FIND:  (a) Which option to reduce heat loss to the room is more effective: reduce by a factor of two 
the convection coefficient (from 15 to 7.5 W/m2⋅K) or the emissivity (from 0.8 to 0.4) and (b) Show 
graphically the heat loss as a function of the convection coefficient for the range 5 ≤ h ≤ 20  W/m2⋅K 
for emissivities of 0.2, 0.4 and 0.8.  Comment on the relative efficacy of reducing heat losses 
associated with the convection and radiation processes. 
 
SCHEMATIC: 
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Radiation exchange between pipe and the room is 
between a small surface in a much larger enclosure, (3) The surface emissivity and absorptivity are 
equal, and (4) Restriction of the air flow does not alter the radiation exchange process between the 
pipe and the room. 
 
ANALYSIS:  (a) The heat rate from the pipe to the room per unit length is 
 

 ( )( ) ( ) ( )4 4
conv rad s s surq q / L q q h D T T D T Tπ ε π σ∞′ ′ ′ ′= = + = − + −  

 
Substituting numerical values for the two options, the resulting heat rates are calculated and compared 
with those for the conditions of Example 1.2. We conclude that both options are comparably effective. 
 

Conditions      ( )2h W / m K⋅   ε   ( )q W / m′  
 
 Base case, Example 1.2    15  0.8      998 
 Reducing h by factor of 2  7.5  0.8      788 
 Reducing ε by factor of 2   15  0.4      709 
 
(b) Using IHT, the heat loss can be calculated as a function of the convection coefficient for selected  
values of the surface emissivity. 
 
 
 
 
 
 
 
 
 
 
 
 
          Continued ... 
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PROBLEM 1.80 (Cont.) 
 
COMMENTS:  (1) In Example 1.2, Comment 3, we read that the heat rates by convection and 
radiation exchange were comparable for the base case conditions (577 vs. 421 W/m).  It follows that 
reducing the key transport parameter (h or ε) by a factor of two yields comparable reductions in the 
heat loss.  Coating the pipe to reduce the emissivity might be the more practical option as it may be 
difficult to control air movement. 
 
(2) For this pipe size and thermal conditions (Ts and T∞), the minimum possible convection coefficient 
is approximately 7.5 W/m2⋅K, corresponding to free convection heat transfer to quiescent ambient air.  
Larger values of h are a consequence of forced air flow conditions. 
 
(3) The Workspace for the IHT program to calculate the heat loss and generate the graph for the heat 
loss as a function of the convection coefficient for selected emissivities is shown below. It is good 
practice to provide commentary with the code making your solution logic clear, and to summarize the 
results. 
 

// Heat loss per unit pipe length; rate equation from Ex. 1.2 
q' = q'cv + q'rad 
q'cv = pi*D*h*(Ts - Tinf) 
q'rad = pi*D*eps*sigma*(Ts^4 - Tsur^4) 
sigma = 5.67e-8 
 
// Input parameters 
D = 0.07 
Ts_C = 200          // Representing temperatures in Celsius units using _C subscripting 
Ts = Ts_C +273 
Tinf_C = 25 
Tinf = Tinf_C + 273 
h = 15                   // For graph, sweep over range from 5 to 20 
Tsur_C = 25 
Tsur = Tsur_C + 273 
eps = 0.8 
//eps = 0.4            // Values of emissivity for parameter study        
//eps = 0.2 
 
/* Base case results 
Tinf Ts Tsur q' q'cv q'rad D Tinf_C Ts_C Tsur_C
 eps h sigma 
298 473 298 997.9 577.3 420.6 0.07 25 200 25 
 0.8 15 5.67E-8        */ 
 



PROBLEM 1.81  
KNOWN:  Conditions associated with surface cooling of plate glass which is initially at 600°C.  
Maximum allowable temperature gradient in the glass.  
FIND:  Lowest allowable air temperature, T∞. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Surface of glass exchanges radiation with large surroundings at Tsur = T∞, (2) 
One-dimensional conduction in the x-direction.  
ANALYSIS:  The maximum temperature gradient will exist at the surface of the glass and at the 
instant that cooling is initiated.  From the surface energy balance, Eq. 1.13, and the rate equations, 
Eqs. 1.1, 1.3a and 1.7, it follows that  

 ( ) ( )4 4
s s sur

dT-k h T T T T 0
dx

εσ∞− − − − =  
 
or, with (dT/dx)max = -15°C/mm = -15,000°C/m and Tsur = T∞, 
 

 ( )
C

2
W W1.4 15,000 5 873 T K

m K m m K
∞

⎡ ⎤
− − = −⎢ ⎥

⋅ ⎢ ⎥ ⋅⎣ ⎦

o
 

 

     8 4 4 4
2 4
W0.8 5.67 10 873 T K .

m K
−

∞⎡ ⎤+ × × −⎢ ⎥⎣ ⎦⋅
 

T∞ may be obtained from a trial-and-error solution, from which it follows that, for T∞ = 618K, 

 21 000 1275 19 730, , .W
m

W
m

W
m2 2 2≈ +  

Hence the lowest allowable air temperature is  
 T K = 345 C.∞ ≈ 618 o          < 
 
COMMENTS:  (1) Initially, cooling is determined primarily by radiation effects.  
(2) For fixed T∞, the surface temperature gradient would decrease with increasing time into the 

cooling process.  Accordingly, T∞ could be decreasing with increasing time and still keep within the 
maximum allowable temperature gradient. 



PROBLEM 1.82  
KNOWN:  Hot-wall oven, in lieu of infrared lamps, with temperature Tsur =  200°C for heating a 
coated plate to the cure temperature.  See Example 1.9. 
 
FIND:  (a) The plate temperature Ts for prescribed convection conditions and coating emissivity, and 
(b) Calculate and plot Ts as a function of Tsur for the range 150 ≤ Tsur ≤ 250°C for ambient air 
temperatures of 20, 40 and 60°C; identify conditions for which acceptable curing temperatures 
between 100 and 110°C may be maintained.  
 
SCHEMATIC: 
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible heat loss from back surface of plate, (3) 
Plate is small object in large isothermal surroundings (hot oven walls). 
 
ANALYSIS:  (a) The temperature of the plate can be determined from an energy balance on the plate, 
considering radiation exchange with the hot oven walls and convection with the ambient air. 
 in out rad convE E 0 or q q 0′′ ′′ ′′ ′′− = − =& &  

 ( ) ( )4 4
sur s sT T h T T 0εσ ∞− − − =  

 [ ]( ) [ ]( )48 2 4 4 4 2
s s0.5 5.67 10 W / m K 200 273 T K 15 W / m K T 20 273 K 0−× × ⋅ + − − ⋅ − + =  

 sT 357 K 84 C= = °          < 
 
(b) Using the energy balance relation in the Workspace of IHT, the plate temperature can be calculated 
and plotted as a function of oven wall temperature for selected ambient air temperatures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
COMMENTS:  From the graph, acceptable cure temperatures between 100 and 110°C can be  
maintained for these conditions: with T∞ = 20°C when 225 ≤ Tsur ≤ 240°C; with T∞ = 40°C when 205 
≤ Tsur ≤ 220°C; and with T∞ = 60°C when 175 ≤ Tsur ≤ 195°C. 
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PROBLEM 1.83  
KNOWN:  Surface temperature, diameter and emissivity of a hot plate.  Temperature of surroundings 
and ambient air.  Expression for convection coefficient. 
 
FIND:  (a) Operating power for prescribed surface temperature, (b) Effect of surface temperature on 
power requirement and on the relative contributions of radiation and convection to heat transfer from 
the surface.  
SCHEMATIC:   

 
 
 
 
 
 
 
  

ASSUMPTIONS:  (1) Plate is of uniform surface temperature, (2) Walls of room are large relative to 
plate, (3) Negligible heat loss from bottom or sides of plate.  
ANALYSIS:  (a) From an energy balance on the hot plate, Pelec = qconv + qrad = Ap ( )conv radq q .′′ ′′+   

Substituting for the area of the plate and from Eqs. (1.3a) and (1.7), with h = 0.80 (Ts - T∞)
1/3, it 

follows that 
 ( ) ( ) ( )2 4 44 / 3P D / 4  0.80 T T T Telec s s sur= − + −∞

⎡ ⎤
⎢ ⎥⎣ ⎦

π εσ  

 ( ) ( ) ( )8 4 4 22 4 / 3P 0.3m / 4 0.80 175 0.8 5.67 10 473 298  W/melec
−= + × × −⎡ ⎤

⎢ ⎥⎣ ⎦
π  

 2 2 2P 0.0707 m 783 W/m 1913 W/m 55.4 W 135.2 W 190.6 Welec = + = + =⎡ ⎤
⎢ ⎥⎣ ⎦

  < 
(b) As shown graphically, both the radiation and convection heat rates, and hence the requisite electric 
power, increase with increasing surface temperature. 
 
 
 
 
 
 
 
 
 
 
 
 
However, because of its dependence on the fourth power of the surface temperature, the increase in 
radiation is more pronounced.  The significant relative effect of radiation is due to the small 
convection coefficients characteristic of natural convection, with 3.37 ≤ h ≤ 5.2 W/m

2
⋅K for 100 ≤ Ts 

< 300°C.  
COMMENTS:  Radiation losses could be reduced by applying a low emissivity coating to the 
surface, which would have to maintain its integrity over the range of operating temperatures. 
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PROBLEM 1.84  
KNOWN:  Long bus bar of rectangular cross-section and ambient air and surroundings temperatures.  
Relation for the electrical resistivity as a function of temperature.  
 
FIND:  (a) Temperature of the bar with a current of 60,000 A, and (b) Compute and plot the operating 
temperature of the bus bar as a function of the convection coefficient for the range 10 ≤ h ≤ 100 
W/m2⋅K.  Minimum convection coefficient required to maintain a safe-operating temperature below 
120°C.  Will increasing the emissivity significantly affect this result? 
 
SCHEMATIC: 
 

 
 
ASSUMPTIONS:  (1)  Steady-state conditions,  (2) Bus bar is long, (3) Uniform bus-bar temperature, 
(3) Radiation exchange between the outer surface of the bus bar and its surroundings is between a 
small surface and a large enclosure.  
 
PROPERTIES:  Bus-bar material, ( )[ ]e e,o o1 T T ,ρ ρ α= + −  e,o 0.0828 m,ρ μ= Ω ⋅  oT 25 C,= °  

10.0040 K .α −=  
 
ANALYSIS: (a) An energy balance on the bus-bar for a unit length as shown in the schematic above 
has the form 
 
 in out genE E E 0′ ′ ′− + =& & &    2

rad conv eq q I R 0′ ′ ′− − + =  

 ( ) ( )4 4 2
sur e cP T T h P T T I / A 0ε σ ρ∞− − − − + =  

 
where ( ) e e c cP 2 H W , R / A and A H W.ρ′= + = = ×   Substituting numerical values, 

 ( ) [ ]( )48 2 4 4 40.8 2 0.600 0.200 m 5.67 10 W / m K T 30 273 K−− × + × × ⋅ − +  

 ( ) [ ]( )210 W / m K 2 0.600 0.200 m T 30 273 K− ⋅ × + − +  

( ) [ ]( ){ } ( )2 6 1 260, 000 A 0.0828 10 m 1 0.0040 K T 25 273 K / 0.600 0.200 m 0− −+ × Ω ⋅ + − + × =⎡ ⎤
⎣ ⎦  

 
Solving for the bus-bar temperature, find  T 426 K 153 C.= = °     < 
 
(b) Using the energy balance relation in the Workspace of IHT, the bus-bar operating temperature is 
calculated as a function of the convection coefficient for the range 10 ≤ h ≤ 100 W/m2⋅K.  From this 
graph we can determine that to maintain a safe operating temperature below 120°C, the minimum 
convection coefficient required is 
 
 2

minh 16 W / m K.= ⋅         < 
 
          Continued … 



PROBLEM 1.84 (Cont.) 
 
Using the same equations, we can calculate and plot the heat transfer rates by convection and radiation 
as a function of the bus-bar temperature. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Note that convection is the dominant mode for low bus-bar temperatures; that is, for low current flow.  
As the bus-bar temperature increases toward the safe-operating limit (120°C), convection and 
radiation exchange heat transfer rates become comparable.  Notice that the relative importance of the 
radiation exchange rate increases with increasing bus-bar temperature.  
 
COMMENTS:  (1) It follows from the second graph that increasing the surface emissivity will be 
only significant at higher temperatures, especially beyond the safe-operating limit. 
 
(2) The Workspace for the IHT program to perform the parametric analysis and generate the graphs is 
shown below.  It is good practice to provide commentary with the code making your solution logic 
clear, and to summarize the results. 
 

/* Results for base case conditions: 
Ts_C q'cv q'rad rhoe H I Tinf_C Tsur_C W alpha
 eps h 
153.3 1973 1786 1.253E-7 0.6 6E4 30 30 0.2 0.004 
 0.8 10    */ 
 
// Surface energy balance on a per unit length basis 
-q'cv - q'rad + Edot'gen = 0 
q'cv = h * P * (Ts - Tinf) 
P = 2 * (W + H)  // perimeter of the bar experiencing surface heat transfer 
q'rad = eps * sigma * (Ts^4 - Tsur^4) * P 
sigma = 5.67e-8 
Edot'gen = I^2 * Re' 
Re' = rhoe / Ac 
rhoe = rhoeo * ( 1 + alpha * (Ts - Teo)) 
Ac = W * H 
 
// Input parameters 
I = 60000 
alpha = 0.0040  // temperature coefficient, K^-1; typical value for cast aluminum 
rhoeo = 0.0828e-6  // electrical resistivity at the reference temperature, Teo; microohm-m 
Teo = 25 + 273  // reference temperature, K 
W = 0.200 
H = 0.600 
Tinf_C = 30 
Tinf = Tinf_C + 273 
h = 10 
eps = 0.8 
Tsur_C = 30 
Tsur = Tsur_C + 273 
Ts_C = Ts - 273 
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PROBLEM 1.85  
KNOWN:  Solar collector designed to heat water operating under prescribed solar irradiation and loss 
conditions.  
FIND:  (a) Useful heat collected per unit area of the collector, ′′qu ,  (b) Temperature rise of the water 
flow, T To i− ,  and (c) Collector efficiency. 
 
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) No heat losses out sides or back of collector, (3) 
Collector area is small compared to sky surroundings.  
PROPERTIES:  Table A.6, Water (300K): cp = 4179 J/kg⋅K. 
 
ANALYSIS:  (a) Defining the collector as the control volume and writing the conservation of energy 
requirement on a per unit area basis, find that 
 & & & & .E E E Ein out gen st− + =  
Identifying processes as per above right sketch, 
 ′′ − ′′ − ′′ − ′′ =q q q qsolar rad conv u 0  
 
where ′′ = ′′q  qsolar s0 9. ;  that is, 90% of the solar flux is absorbed in the collector (Eq. 1.6).  Using the 
appropriate rate equations, the useful heat rate per unit area is  

( ) ( )

( ) ( )

4 4
u s cp ssky

8 4 4 4
u 2 2 4 2

q 0.9 q T T h T T
W W Wq 0.9 700 0.94 5.67 10 303 263 K 10 30 25 C
m m K m K

εσ ∞

−

′′ ′′= − − − −

′′ = × − × × − − −
⋅ ⋅

o  

 
 ′′ = − − =q  W / m  W / m  W / m  W / mu

2 2 2 2630 194 50 386 .     < 
 
(b) The total useful heat collected is ′′ ⋅q A.u   Defining a control volume about the water tubing, the 
useful heat causes an enthalpy change of the flowing water.  That is, 
 ( )u p i oq A=mc T T         or′′ ⋅ −&  
 
 ( ) 2 2

i oT T 386 W/m 3m / 0.01kg/s 4179J/kg K=27.7 C.− = × × ⋅ o    < 

(c) The efficiency is ( ) ( )2 2
u Sq / q 386 W/m / 700 W/m 0.55 or 55%.η ′′ ′′= = =   < 

 
COMMENTS:  Note how the sky has been treated as large surroundings at a uniform temperature 
Tsky. 



PROBLEM 1.86(a)  
KNOWN:  Solar radiation is incident on an asphalt paving.  
FIND:  Relevant heat transfer processes.  
SCHEMATIC:   

 
 
The relevant processes shown on the schematic include: 
 
′′qS  Incident solar radiation, a large portion of which ′′qS,abs,  is absorbed by the asphalt 

surface, 
 
′′qrad  Radiation emitted by the surface to the air, 

 
′′qconv  Convection heat transfer from the surface to the air, and 

 
′′qcond  Conduction heat transfer from the surface into the asphalt. 

 
Applying the surface energy balance, Eq. 1.13, 
 
 ′′ − ′′ − ′′ = ′′q q q qS,abs rad conv cond .  
 
COMMENTS:  (1) ′′qcond  and ′′qconv  could be evaluated from Eqs. 1.1 and 1.3, respectively. 
 
(2)  It has been assumed that the pavement surface temperature is higher than that of the 

underlying pavement and the air, in which case heat transfer by conduction and 
convection are from the surface. 

 
(3)  For simplicity, radiation incident on the pavement due to atmospheric emission has been 

ignored (see Section 12.8 for a discussion).  Eq. 1.6 may then be used for the absorbed 
solar irradiation and Eq. 1.5 may be used to obtain the emitted radiation ′′qrad . 

 
(4)  With the rate equations, the energy balance becomes 
 

 ( )4
S,abs s s

s

dTq   T h T T k .
dx

ε σ ∞
⎤′′ − − − = − ⎥⎦

 



PROBLEM 1.86(b) 
 
KNOWN:  Physical mechanism for microwave heating. 
 
FIND:  Comparison of (a) cooking in a microwave oven with a conventional radiant or 
convection oven and (b) a microwave clothes dryer with a conventional dryer. 
 
(a) Microwave cooking occurs as a result of volumetric thermal energy generation throughout 
the food, without heating of the food container or the oven wall.  Conventional cooking relies 
on radiant heat transfer from the oven walls and/or convection heat transfer from the air space 
to the surface of the food and subsequent heat transfer by conduction to the core of the food.  
Microwave cooking is more efficient and is achieved in less time. 
 
(b) In a microwave dryer, the microwave radiation would heat the water, but not the fabric, 
directly (the fabric would be heated indirectly by energy transfer from the water).  By heating 
the water, energy would go directly into evaporation, unlike a conventional dryer where the 
walls and air are first heated electrically or by a gas heater, and thermal energy is 
subsequently transferred to the wet clothes.  The microwave dryer would still require a 
rotating drum and air flow to remove the water vapor, but is able to operate more efficiently 
and at lower temperatures.   
 
 
 
 



PROBLEM 1.86 (c) 
 

KNOWN: Water storage tank initial temperature, water initial pressure and temperature, storage 
tank configuration. 
 
FIND: Identify heat transfer processes that will promote freezing of water. Determine effect of 
insulation thickness. Determine effect of wall thickness and tank material. Determine effect of 
transfer tubing material. Discuss optimal tank shape, and effect of applying thin aluminum foil to 
the outside of the tank. 
 
SCHEMATIC: 
 
 
 
      
 
 
 
 
 
 
 
 
 
 

 
ANALYSIS: The thermal response of the water may be analyzed by dividing the cooling process 
into two parts. 
 
Part One. Water and Tank Rapid Response. 
We expect the mass of water to be greater than the mass of the tank. From experience, we would 
not expect the water to completely freeze immediately after filling the tank. Assuming negligible 
heat transfer through the insulation or transfer tubing during this initial rapid water cooling 
period, no heat transfer to the air above the water, and assuming isothermal water and tank 
behavior at any instant in time, an energy balance on a control volume surrounding the water 
would yield 
 
 st,w out,wE  = -E& &                (1) 

 
An energy balance on a control volume surrounding the tank would yield 
 
 in,t st,tE  = E& &                (2) 
 
where out,w in,tE  = E& &                (3) 

 
Combining Eqs. (1) – (3) yields 

Continued… 
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 PROBLEM 1.86 (c) (Cont.) 
 
 

st,w st,t w p,w i,w t p,t i,tE  = -E  = M c (T - T ) = M c (T  - T)⋅ ⋅& &           (4) 
 
where T is the average temperature of the water and tank after the initial filling process.  
For w p,w t p,tM c  >>  M c , i,wT T≈ , thus confirming our expectation. 
 
Part Two. Slow Water Cooling. 
 
The heat transfer processes that would promote water freezing include: 
 
 -heat transfer through the insulation to the cold air 

 -heat loss by conduction upward through the wall of the transfer tubing               < 
 
As the insulation thickness, tins, is increased, Fourier’s law indicates that heat losses from the 

water are decreased, slowing the rate at which the water cools.                          < 
 
As the tank wall thickness, tt, is increased, the tank wall mass increases. This, along with 
increasing the tank wall specific heat, will serve to reduce the average temperature, T , to  
a lower value, as evident by inspecting Eq. (4). This effect, based on the first law of 
thermodynamics, would decrease the time needed to cool the water to the freezing temperature. 
As the tank wall thickness is increased, however, heat losses by conduction through the tank wall 
would decrease as seen by inspection of Fourier’s law, slowing the cooling process. As the tank 
wall thermal conductivity is reduced, this will also decrease the cooling rate of the water. 
Therefore, the effect of the tank wall thickness could increase or decrease the water cooling rate.  
As the thermal conductivity of the transfer tubing is increased, heat losses from the water upward 
through the tube wall will increase. This suggests that use of plastic for the transfer tubing would 

slow the cooling of the water.                                                                                             < 
 
To slow the cooling process, a large water mass to surface area is desired. The mass is 
proportional to the volume of water in the tank, while the heat loss from the tank by convection to 
the cold air and radiation to the surroundings is proportional to the surface area of the tank. A 
spherical tank maximizes the volume-to-area ratio, reducing the rate at which the water 

temperature drops, and would help prevent freezing.                                                                  <                      
 
Heat losses will occur by convection and radiation at the exposed tank area.  The radiation loss, 
according to Eq. 1.7, is proportional to the emissivity of the surface. Aluminum foil is a low 
emissivity material, and therefore a wrap of foil would slow the water cooling process. The 
aluminum foil is very thin and has a high thermal conductivity, therefore by Fourier’s law, there 
would be a very small temperature drop across the thickness of the foil and would not impact the 

cooling rate.                                  <                                   
 
 
 
 



PROBLEM 1.86(d) 
 
KNOWN:  Double-pane windows with foamed insulation inside or outside.  Cold, dry air outside and 
warm, moist air inside. 
 
FIND:  Identify heat transfer processes.  Which configuration is preferred to avoid condensation? 
 
SCHEMATIC:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Insulation on inside of window. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I 

Insulation on outside of window. 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional heat transfer through window 
and insulation. 
  
ANALYSIS:   With the insulation on the inside, heat is transferred from the warm room air to the 
insulation by convection (qconv,1) and from the warm interior surfaces of the room by radiation (qrad,1).  
Heat is then conducted through the insulation (qcond,1).  From there, heat is transferred across the air 
gap between the insulation and the window by free convection (qconv,2) and radiation (qrad,2).  Heat is 
transferred through the first glass pane by conduction (qcond,2).  Heat transfer across the air gap between 
the window panes occurs by free convection (qconv,3) and radiation (qrad,3).  Heat is then transferred 
through the second glass pane by conduction (qcond,3).  From there, heat is transferred to the cold air by 
convection (qconv,4) and to the cold surroundings by radiation (qrad,4).  The same mechanisms occur with 
the insulation on the outside of the window, just in a different order. 
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PROBLEM 1.86(d) (Cont.) 
 

 
Condensation may occur on any surface that is exposed to moist air if the surface temperature is below 
the dewpoint temperature.  Condensation causes an additional heat transfer mechanism because when 
water vapor condenses it releases the enthalpy of vaporization (qcondense), which heats the surface on 
which condensation is occurring.  For example, if condensation occurs on the inside surface of the 
window, this will increase the temperature of that surface and the rate of heat transfer through that 
window pane. The condensation heat transfer processes are not shown on the schematics.  
 
We know that condensation does not occur on the window’s interior pane when there is no insulation 
in place.  If insulation were to be placed on the outside of the window, it will increase the temperature 
difference between the outside air and the window panes, increasing the window pane temperatures.  
Therefore condensation will still not occur.         < 
 
If the insulation is placed on the inside of the window, it will increase the temperature difference 
between the warm room air and the window’s interior pane.  Both the inner surface of the window and 
the side of the insulation facing the window may experience temperatures below the dewpoint 
temperature.  Because the insulation is loosely-fitting, moist air infiltrates the gap between the 
insulation and the inner window pane, and condensation may occur. Liquid water may accumulate and 
cause water damage. To avoid condensation and associated water damage, the insulation should be 

placed on the outside of the window.        < 
 
COMMENTS:  (1) The potential water damage is not caused by window leakage. Any condensation 
problem would be exacerbated by adding more insulation to the inside of the window. (2) The 
potential for condensation damage would be reduced by lowering the humidity in the room, at the risk 
of increasing discomfort and the potential for illness. (3) Moisture may infiltrate through the 
insulation. Even tightly-fitting, improperly placed insulation can lead to condensation and water 
damage. (4) Adding the insulation to the exterior of the window will reduce the possibility of water 
damage due to condensation, but it cannot be easily removed to enjoy a bright winter day. 



PROBLEM 1.86(e)  
KNOWN:  Geometry of a composite insulation consisting of a honeycomb core.  
FIND:  Relevant heat transfer processes.  
SCHEMATIC:   

 
 
The above schematic represents the cross section of a single honeycomb cell and surface 
slabs.  Assumed direction of gravity field is downward.  Assuming that the bottom (inner) 
surface temperature exceeds the top (outer) surface temperature ( )s,i s,oT T ,>  heat transfer is 
in the direction shown. 
 
Heat may be transferred to the inner surface by convection and radiation, whereupon it is 
transferred through the composite by 
 
qcond,i   Conduction through the inner solid slab, 
 
qconv,hc  Free convection through the cellular airspace, 
 
qcond,hc  Conduction through the honeycomb wall, 
 
qrad,hc  Radiation between the honeycomb surfaces, and 
 
qcond,o  Conduction through the outer solid slab. 
 
Heat may then be transferred from the outer surface by convection and radiation.  Note that 
for a single cell under steady state conditions, 
 
 q q q q qrad,i conv,i cond,i conv,hc cond,hc+ = = +  
 
      +q q q qrad,hc cond,o rad,o conv,o= = + . 
 
COMMENTS:  Performance would be enhanced by using materials of low thermal 
conductivity, k, and emissivity, ε.  Evacuating the airspace would enhance performance by 
eliminating heat transfer due to free convection. 
 



PROBLEM 1.86(f)  
KNOWN:  A thermocouple junction is used, with or without a radiation shield, to measure 
the temperature of a gas flowing through a channel.  The wall of the channel is at a 
temperature much less than that of the gas.  
FIND:  (a) Relevant heat transfer processes, (b) Temperature of junction relative to that of 
gas, (c) Effect of radiation shield.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Junction is small relative to channel walls, (2) Steady-state conditions, 
(3) Negligible heat transfer by conduction through the thermocouple leads.  
ANALYSIS:  (a) The relevant heat transfer processes are: 
 
qrad   Net radiation transfer from the junction to the walls, and 
 
qconv   Convection transfer from the gas to the junction. 
 
(b)  From a surface energy balance on the junction, 
 
 q qconv rad=  
 
or from Eqs. 1.3a and 1.7, 
 

 ( ) ( )4 4
g j sjh A T T  A T T .− = −ε σ  

 
To satisfy this equality, it follows that 
 
 T T Ts j g< < .  
 
That is, the junction assumes a temperature between that of the channel wall and the gas, 
thereby sensing a temperature which is less than that of the gas. 
 
(c) The measurement error ( )g jT T−  is reduced by using a radiation shield as shown in the 

schematic.  The junction now exchanges radiation with the shield, whose temperature must 
exceed that of the channel wall.  The radiation loss from the junction is therefore reduced, and 
its temperature more closely approaches that of the gas.  
 



PROBLEM 1.86(g)  
KNOWN:  Fireplace cavity is separated from room air by two glass plates, open at both ends.  
FIND:  Relevant heat transfer processes.  
SCHEMATIC:   

 
 
The relevant heat transfer processes associated with the double-glazed, glass fire screen are: 
 
qrad,1  Radiation from flames and cavity wall, portions of which are absorbed and 

transmitted by the two panes, 
 
qrad,2  Emission from inner surface of inner pane to cavity, 
 
qrad,3  Net radiation exchange between outer surface of inner pane and inner surface 

of outer pane, 
 
qrad,4  Net radiation exchange between outer surface of outer pane and walls of room, 
 
qconv,1  Convection between cavity gases and inner pane, 
 
qconv2  Convection across air space between panes, 
 
qconv,3  Convection from outer surface to room air, 
 
qcond,1  Conduction across inner pane, and 
 
qcond,2  Conduction across outer pane. 
  
COMMENTS:  (1) Much of the luminous portion of the flame radiation is transmitted to the 
room interior. 
 
(2) All convection processes are buoyancy driven (free convection). 
 



PROBLEM 1.86(h) 
 
 
KNOWN:  Thermocouple junction held in small hole in solid material by epoxy.  Solid is hotter than 
surroundings. 
 
FIND:  Identify heat transfer processes.  Will thermocouple junction sense temperature less than, 
equal to, or greater than solid temperature?  How will thermal conductivity of epoxy affect junction 
temperature?  
 
SCHEMATIC:   
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions. 
  
ANALYSIS:   Heat is transferred from the solid material through the epoxy to the thermocouple 
junction by conduction, qcond,1.  Heat is also transferred from the junction along the thermocouple wires 
and their sheathing by conduction (qcond,2 and qcond,3), and from there to the surroundings by convection 
(qconv) and radiation (qrad).  Thus, the junction is heated by the solid and cooled by the surroundings, 
and its temperature will be between the solid temperature and the temperature of the cool gases. 
 

The junction temperature will be less than the solid temperature.     < 
 
Under steady-state conditions, the rate at which heat is transferred to the junction from the solid 
material must equal the rate at which heat is transferred from the junction to the cool gases and 
surroundings.  If we think of this heat transfer rate as fixed, then Equation 1.2 shows that a higher 
thermal conductivity for the epoxy will result in a smaller temperature difference across the epoxy.  
This leads to the thermocouple sensing a temperature that is closer to the solid temperature. 
 
Higher thermal conductivity of epoxy leads to the thermocouple temperature being closer to the solid 

temperature.            < 
 
COMMENTS: (1) High thermal conductivity epoxies are formulated specifically for the purpose of 
affixing thermocouples.  Their thermal conductivity is increased by adding small particles of high 
thermal conductivity materials such as silver. (2) Different types of thermocouple wires are available. 
To further reduce temperature differences between the solid and the thermocouple junction, small 
diameter thermocouple wires of relatively low thermal conductivity, such as chromel and alumel, are 
preferred. (3) Because thermocouple wires are made of different metals, in general qcond,2 ≠ qcond,3.  

Thermocouple
bead

Epoxy

Hot solid

Cool
gasesqcond,1

qcond,2

qcond,3

qconv

qrad



PROBLEM 1.87(a)  
KNOWN:  Room air is separated from ambient air by one or two glass panes.  
FIND:  Relevant heat transfer processes.  
SCHEMATIC:   

 
 
The relevant processes associated with single (above left schematic) and double (above right 
schematic) glass panes include. 
 
qconv,1  Convection from room air to inner surface of first pane, 
 
qrad,1   Net radiation exchange between room walls and inner surface of first pane, 
 
qcond,1  Conduction through first pane, 
 
qconv,s  Convection across airspace between panes, 
 
qrad,s  Net radiation exchange between outer surface of first pane and inner surface of 

second pane (across airspace), 
 
qcond,2  Conduction through a second pane, 
 
qconv,2  Convection from outer surface of single (or second) pane to ambient air, 
 
qrad,2  Net radiation exchange between outer surface of single (or second) pane and 

surroundings such as the ground, and 
 
qS  Incident solar radiation during day; fraction transmitted to room is smaller for 

double pane. 
 
COMMENTS:  Heat loss from the room is significantly reduced by the double pane 
construction. 
 



PROBLEM 1.87(b)  
KNOWN:  Configuration of a flat plate solar collector.  
FIND:  Relevant heat transfer processes with and without a cover plate.  
SCHEMATIC:   

 
 
The relevant processes without (above left schematic) and with (above right schematic) 
include: 
 
qS  Incident solar radiation, a large portion of which is absorbed by the absorber 

plate.  Reduced with use of cover plate (primarily due to reflection off cover 
plate). 

 
qrad,∞  Net radiation exchange between absorber plate or cover plate and 

surroundings, 
 
qconv,∞  Convection from absorber plate or cover plate to ambient air, 
 
qrad,a-c  Net radiation exchange between absorber and cover plates, 
 
qconv,a-c  Convection heat transfer across airspace between absorber and cover plates, 
 
qcond  Conduction through insulation, and 
 
qconv  Convection to working fluid. 
 
COMMENTS:  The cover plate acts to significantly reduce heat losses by convection and 
radiation from the absorber plate to the surroundings. 
 



PROBLEM 1.87(c)  
KNOWN:  Configuration of a solar collector used to heat air for agricultural applications.  
FIND:  Relevant heat transfer processes.  
SCHEMATIC:   

 
 
Assume the temperature of the absorber plates exceeds the ambient air temperature.  At the 
cover plates, the relevant processes are: 
 
qconv,a-i  Convection from inside air to inner surface, 
 
qrad,p-i  Net radiation transfer from absorber plates to inner surface, 
 
qconv,i-o  Convection across airspace between covers, 
 
qrad,i-o  Net radiation transfer from inner to outer cover, 
 
qconv,o-∞  Convection from outer cover to ambient air, 
 
qrad,o   Net radiation transfer from outer cover to surroundings, and 
 
qS   Incident solar radiation. 
 
Additional processes relevant to the absorber plates and airspace are: 
 
qS,t   Solar radiation transmitted by cover plates, 
 
qconv,p-a  Convection from absorber plates to inside air, and 
 
qcond   Conduction through insulation. 
 



PROBLEM 1.87(d)  
KNOWN:  Features of an evacuated tube solar collector.  
FIND:  Relevant heat transfer processes for one of the tubes.  
SCHEMATIC:   

 
 
The relevant heat transfer processes for one of the evacuated tube solar collectors includes: 
 
qS  Incident solar radiation including contribution due to reflection off panel (most 

is transmitted), 
 
qconv,o  Convection heat transfer from outer surface to ambient air, 
 
qrad,o-sur  Net rate of radiation heat exchange between outer surface of outer tube and the 

surroundings, including the panel, 
 
qS,t  Solar radiation transmitted through outer tube and incident on inner tube (most 

is absorbed), 
 
qrad,i-o  Net rate of radiation heat exchange between outer surface of inner tube and 

inner surface of outer tube, and 
 
qconv,i  Convection heat transfer to working fluid. 
 
There is also conduction heat transfer through the inner and outer tube walls.  If the walls are 
thin, the temperature drop across the walls will be small. 
 



PROBLEM 2.1  
KNOWN:  Steady-state, one-dimensional heat conduction through an axisymmetric shape.  
FIND:  Sketch temperature distribution and explain shape of curve.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state, one-dimensional conduction, (2) Constant properties, (3) No 
internal heat generation.  
ANALYSIS:  Performing an energy balance on the object according to Eq. 1.12c, & & ,E Ein out− = 0  it 
follows that 
 
 & &E E qin out x− =  
 
and that q q xx x≠ b g.   That is, the heat rate within the object is everywhere constant.  From Fourier’s 
law, 
 

 q kA dT
dxx x= − ,  

 
and since qx and k are both constants, it follows that 
 

 A dT
dx

Constant.x =  

 
That is, the product of the cross-sectional area normal to the heat rate and temperature gradient 
remains a constant and independent of distance x.  It follows that since Ax increases with x, then 
dT/dx must decrease with increasing x.  Hence, the temperature distribution appears as shown above. 
  
COMMENTS:  (1) Be sure to recognize that dT/dx is the slope of the temperature distribution.  (2) 
What would the distribution be when T2 > T1?  (3) How does the heat flux, ′′qx ,  vary with distance? 



PROBLEM 2.2

KNOWN: Axisymmetric object with varying cross-sectional area and different temperatures at
its two ends, insulated on its sides.

FIND: Shapes of heat flux distribution and temperature distribution.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state, (2) One-dimensional conduction, (3) Constant properties, (4)
Adiabatic sides, (5) No internal heat generation. (6) Surface temperatures T1 and T2 are fixed.

ANALYSIS: For the prescribed conditions, it follows from conservation of energy, Eq. 1.12c,

that for a differential control volume,   .E E or q qin out x x+dx  Hence

qx is independent of x.

Therefore

x x cq q A constant  (1)

where Ac is the cross-sectional area perpendicular to the x-direction. Therefore the heat flux must
be inversely proportional to the cross-sectional area. The radius of the object first increases and
then decreases linearly with x, so the cross-sectional area increases and then decreases as x2. The
resulting heat flux distribution is sketched below.

q"

x L0

0

Continued…

T2T1

x L

T1 T2>dx



PROBLEM 2.2 (Cont.)

To find the temperature distribution, we can use Fourier’s law:

x

dT
q k

dx
   (2)

Therefore the temperature gradient is negative and its magnitude is proportional to the heat flux.
The temperature decreases most rapidly where the heat flux is largest and more slowly where the
heat flux is smaller.

Based on the heat flux plot above we can prepare the sketch of the temperature distribution
below.

T

x L0
0

The temperature distribution is independent of the thermal conductivity. The heat rate and local
heat fluxes are both proportional to the thermal conductivity of the material.

<

COMMENTS: If the heat rate was fixed the temperature difference, T1 - T2, would be inversely
proportional to the thermal conductivity. The temperature distribution would be of the same
shape, but local temperatures T(x) would vary as the thermal conductivity is adjusted.



PROBLEM 2.3  
KNOWN:  Hot water pipe covered with thick layer of insulation.  
FIND:  Sketch temperature distribution and give brief explanation to justify shape.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional (radial) conduction, (3) No 
internal heat generation, (4) Insulation has uniform properties independent of temperature and 
position.  
ANALYSIS:  Fourier’s law, Eq. 2.1, for this one-dimensional (cylindrical) radial system has the form 
 

 ( )r r
dT dTq kA k 2 r
dr dr

π= − = − l  

 
where A r  and r = 2π l l  is the axial length of the pipe-insulation system.  Recognize that for steady-
state conditions with no internal heat generation, an energy balance on the system requires 
& & & & .E E  since E Ein out g st= = = 0   Hence 

 
 qr = Constant. 
 
That is, qr is independent of radius (r).  Since the thermal conductivity is also constant, it follows that 
 

 dTr Constant.
dr

⎡ ⎤ =⎢ ⎥⎣ ⎦
 

 
This relation requires that the product of the radial temperature gradient, dT/dr, and the radius, r, 
remains constant throughout the insulation.  For our situation, the temperature distribution must appear 
as shown in the sketch.  
COMMENTS:  (1) Note that, while qr is a constant and independent of r, ′′qr  is not a constant.  How 
does ′′q rr b g  vary with r?  (2) Recognize that the radial temperature gradient, dT/dr, decreases with 
increasing radius. 



PROBLEM 2.4

KNOWN: A spherical shell with prescribed geometry and surface temperatures.

FIND: Sketch temperature distribution and explain shape of the curve.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in radial (spherical
coordinates) direction, (3) No internal generation, (4) Constant properties.

ANALYSIS: Fourier’s law, Eq. 2.1, for this one-dimensional, radial (spherical coordinate) system
has the form

 2
r r

dT dT
q k A k 4 r

dr dr
   

where Ar is the surface area of a sphere. For steady-state conditions, an energy balance on the system

yields   ,E Ein out since   .E Eg st  0 Hence,

 in out r rq q q q r .  

That is, qr is a constant, independent of the radial coordinate. Since the thermal conductivity is

constant, it follows that

2 dT
r Constant.

dr

 
 

 

This relation requires that the product of the radial temperature gradient, dT/dr, and the radius

squared, r
2
, remains constant throughout the shell. Hence, the temperature distribution appears as

shown in the sketch.

COMMENTS: Note that, for the above conditions,  r rq q r ; that is, qr is everywhere constant.

How does q r vary as a function of radius?



PROBLEM 2.5

KNOWN: Symmetric shape with prescribed variation in cross-sectional area, temperature
distribution and heat rate.

FIND: Expression for the thermal conductivity, k.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in x-direction, (3)
No internal heat generation.

ANALYSIS: Applying the energy balance, Eq. 1.12c, to the system, it follows that, since
  ,E Ein out

 xq Constant f x . 

Using Fourier’s law, Eq. 2.1, with appropriate expressions for Ax and T, yields

   
x x

2 3

dT
q k A

dx
d K

6000W=-k 1-x m 300 1 2x-x .
dx m

 

   
  

Solving for k and recognizing its units are W/mK,

      22

-6000 20
k= .

1 x 2 3x1-x 300 2 3x


    
  

<

COMMENTS: (1) At x = 0, k = 10W/mK and k  as x  1. (2) Recognize that the 1-D
assumption is an approximation which becomes more inappropriate as the area change with x, and
hence two-dimensional effects, become more pronounced.



PROBLEM 2.6

KNOWN: Rod consisting of two materials with same lengths. Ratio of thermal conductivities.

FIND: Sketch temperature and heat flux distributions.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Constant
properties, (3) No internal generation.

ANALYSIS: From Equation 2.19 for steady-state, one-dimensional conduction with constant
properties and no internal heat generation,

0
  

 
  

T
k

x x
or 0





xq

x

From these equations we know that heat flux is constant and the temperature gradient is inversely
proportional to k. Thus, with kA = 0.5kB, we can sketch the temperature and heat flux distributions as
shown below:

COMMENTS: (1) Note the discontinuity in the slope of the temperature distribution at x/L = 0.5.
The constant heat flux is in the negative x-direction. (2) A discontinuity in the temperature distribution
may occur at x/L = 0.5 due the joining of dissimilar materials. We shall address thermal contact
resistances in Chapter 3.

x L

T1 T2T1 < T2

A B

0.5 L



PROBLEM 2.7

KNOWN: End-face temperatures and temperature dependence of k for a truncated cone.

FIND: Variation with axial distance along the cone of q q k, and dT / dx.x x, ,

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction in x (negligible temperature gradients in the r
direction), (2) Steady-state conditions, (3) Adiabatic sides, (4) No internal heat generation.

ANALYSIS: For the prescribed conditions, it follows from conservation of energy, Eq. 1.12c, that

for a differential control volume,   .E E or q qin out x x+dx  Hence

qx is independent of x.

Since A(x) increases with increasing x, it follows that  x xq q / A x  decreases with increasing x.

Since T decreases with increasing x, k increases with increasing x. Hence, from Fourier’s law,

  q k
dT

dx
x ,

it follows that | dT/dx | decreases with increasing x.

COMMENT: How is the analysis changed if the coefficient a has a negative value?

rr



PROBLEM 2.8

KNOWN: Temperature dependence of the thermal conductivity, k(T), for heat transfer through a
plane wall.

FIND: Effect of k(T) on temperature distribution, T(x).

ASSUMPTIONS: (1) One-dimensional conduction, (2) Steady-state conditions, (3) No internal heat
generation.

ANALYSIS: From Fourier’s law and the form of k(T),

 x o
dT dT

q k k aT .
dx dx

      (1)

The shape of the temperature distribution may be inferred from knowledge of d
2
T/dx

2
= d(dT/dx)/dx.

Since qx is independent of x for the prescribed conditions,

 

 

x
o

22

o 2

dq d dT
- k aT 0

dx dx dx

d T dT
k aT a 0.

dxdx

  
   

 

 
    

 

Hence,

o22
2

2
o

k aT=k>0
d T -a dT

where dT
0k aT dxdx dx


 

         

from which it follows that for

a > 0: d T / dx < 02 2

a = 0: d T / dx 02 2 

a < 0: d T / dx > 0.2 2

COMMENTS: The shape of the distribution could also be inferred from Eq. (1). Since T decreases
with increasing x,

a > 0: k decreases with increasing x = > | dT/dx | increases with increasing x

a = 0: k = ko = > dT/dx is constant

a < 0: k increases with increasing x = > | dT/dx | decreases with increasing x.



PROBLEM 2.9 
 
KNOWN: Irradiation and absorptivity of aluminum, glass and aerogel. 
 
FIND: Ability of the protective barrier to withstand the irradiation in terms of the temperature 
gradients that develop in response to the irradiation. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) One-dimensional conduction in the x-direction, (2) Constant properties, (c) 
Negligible emission and convection from the exposed surface. 
 
PROPERTIES: Table A.1, pure aluminum (300 K): kal = 238 W/m⋅K. Table A.3, glass (300 K): 
kgl = 1.4 W/m⋅K. 
 
ANALYSIS: From Eqs. 1.6 and 2.32  
 

 s abs 
x=0

T-k = q  = G = αG
x
∂ ′′
∂

 

or 

     
x=0

T αG= -
x k
∂
∂

 

 
The temperature gradients at x = 0 for the three materials are:    < 
 
 

Material
   x=0T / x  (K/m)∂ ∂   

 aluminum   8.4 x 103  
 glass    6.4 x 106  
 aerogel    1.6 x 109  
 
COMMENT: It is unlikely that the aerogel barrier can sustain the thermal stresses associated 
with the large temperature gradient. Low thermal conductivity solids are prone to large 
temperature gradients, and are often brittle. 

x

G = 10 x 106 W/m2

al

gl

a

0.2
0.9

 α  = 0.8

α =

α =

x

G = 10 x 106 W/m2

al

gl

a

0.2
0.9

 α  = 0.8

α =

α =



PROBLEM 2.10

KNOWN: Wall thickness. Thermal energy generation rate. Temperature distribution. Ambient fluid
temperature.

FIND: Thermal conductivity. Convection heat transfer coefficient.

SCHEMATIC:

ASSUMPTIONS: (1) Steady state, (2) One-dimensional conduction, (3) Constant properties, (4)
Negligible radiation.

ANALYSIS: Under the specified conditions, the heat equation, Equation 2.21, reduces to

2

2
0

d T q

dx k
 


With the given temperature distribution, d2T/dx2 = -2a. Therefore, solving for k gives

3

2

1000 W/m
50 W/m K

2 2 10 C/m

q
k

a
   

 

 <

The convection heat transfer coefficient can be found by applying the boundary condition at x = L (or
at x = -L),

 ( )
x L

dT
k h T L T

dx




  

Therefore

 

2
22 2 50 W/m K 10 C/m 0.05 m

5 W/m K
( ) 30 C 20 C

x L

dT
k

kaLdx
h

T L T b T


 


    

    
    

<

COMMENTS: (1) In Chapter 3, you will learn how to determine the temperature distribution. (2)
The heat transfer coefficient could also have been found from an energy balance on the wall. With

in out 0gE E E     , we find –2hA[T(L) - T∞] + 2 q LA = 0. This yields the same result for h.

x

2L = 100 mm

q = 1000 W/m3▪

T∞ = 20C
h = ?

T∞ = 20C
h = ?

T(x) = a(L2 – x2) + b

qconv

qcond



PROBLEM 2.11

KNOWN: One-dimensional system with prescribed thermal conductivity and thickness.

FIND: Unknowns for various temperature conditions and sketch distribution.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) No internal heat
generation, (4) Constant properties.

ANALYSIS: The rate equation and temperature gradient for this system are

2 1
x

dT dT T T
q k and .

dx dx L


    (1,2)

Using Eqs. (1) and (2), the unknown quantities for each case can be determined.

(a)
 20 50 KdT

280 K/m
dx 0.25m

 
  

2
x

W K
q 50 280 14.0 kW/m .

m K m
     



 
  

(b)
  10 30 KdT

80 K/m
dx 0.25m

  
 

2
x

W K
q 50 80 4.0 kW/m .

m K m
     



 
  

(c) 2
x

W K
q 50 160 8.0 kW/m

m K m
     



 
  

2 1
dT K

T L T 0.25m 160 70 C.
dx m

     
 
  



2T 110 C. 

(d) 2
x

W K
q 50 80 4.0 kW/m

m K m
     



 
  

1 2
dT K

T T L 40 C 0.25m 80
dx m

     
 
  



1T 60 C. 

(e) 2
x

W K
q 50 200 10.0 kW/m

m K m
     



 
  

1 2
dT K

T T L 30 C 0.25m 200 20 C.
dx m

      
 
  

 

<

<

<

<

<

<



PROBLEM 2.12

KNOWN: Plane wall with prescribed thermal conductivity, thickness, and surface temperatures.

FIND: Heat flux, qx , and temperature gradient, dT/dx, for the three different coordinate systems

shown.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional heat flow, (2) Steady-state conditions, (3) No internal
generation, (4) Constant properties.

ANALYSIS: The rate equation for conduction heat transfer is

  q k
dT

dx
x , (1)

where the temperature gradient is constant throughout the wall and of the form

   T L T 0dT
.

dx L


 (2)

Substituting numerical values, find the temperature gradients,

(a)
 2 1 600 400 KdT T T

2000 K/m
dx L 0.100m


   <

(b)
 1 2 400 600 KdT T T

2000 K/m
dx L 0.100m


    <

(c)
 2 1 600 400 KdT T T

2000 K/m.
dx L 0.100m


   <

The heat rates, using Eq. (1) with k = 100 W/mK, are

(a) 2
x

W
q 100 2000 K/m=-200 kW/m

m K
   


<

(b) 2
x

W
q 100 ( 2000 K/m)=+200 kW/m

m K
   


<

(c)   


q
W

m K
K / m = -200 kW / mx

2100 2000 <



PROBLEM 2.13

KNOWN: Temperature distribution in solid cylinder and convection coefficient at cylinder surface.

FIND: Expressions for heat rate at cylinder surface and fluid temperature.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional, radial conduction, (2) Steady-state conditions, (3) Constant
properties.

ANALYSIS: The heat rate from Fourier’s law for the radial (cylindrical) system has the form

q kA
dT

dr
r r  .

Substituting for the temperature distribution, T(r) = a + br
2
,

  2
rq k 2 rL 2br = -4 kbLr .  

At the outer surface ( r = ro), the conduction heat rate is

q kbLrr=r o
2

o
 4 . <

From a surface energy balance at r = ro,

   or=r conv o oq q h 2 r L T r T ,     

Substituting for q r=ro
and solving for T,

  o
o

2kbr
T = T r

h
 

T = a + br
kbr

h
o
2 o

 
2

o o
2k

T = a+br r .
h


 

 
 

<



PROBLEM 2.14

KNOWN: Two-dimensional body with specified thermal conductivity and two isothermal surfaces
of prescribed temperatures; one surface, A, has a prescribed temperature gradient.

FIND: Temperature gradients, T/x and T/y, at the surface B.

SCHEMATIC:

ASSUMPTIONS: (1) Two-dimensional conduction, (2) Steady-state conditions, (3) No heat
generation, (4) Constant properties.

ANALYSIS: At the surface A, the temperature gradient in the x-direction must be zero. That is,

(T/x)A = 0. This follows from the requirement that the heat flux vector must be normal to an

isothermal surface. The heat rate at the surface A is given by Fourier’s law written as

y,A A
A

T W K
q k w 10 2m 30 600W/m.

y m K m






          

On the surface B, it follows that

 BT/ y 0   <

in order to satisfy the requirement that the heat flux vector be normal to the isothermal surface B.
Using the conservation of energy requirement, Eq. 1.12c, on the body, find

      q q or q qy,A x,B x,B y,A0 .

Note that,

x,B B
B

T
q k w

x






    



and hence

 
 y,A

B
B

q 600 W/m
T/ x 60 K/m.

k w 10 W/m K 1m
 

  
  

  
<

COMMENTS: Note that, in using the conservation requirement,    q qin y,A and    q qout x,B.



PROBLEM 2.15

KNOWN: Temperature, size and orientation of Surfaces A and B in a two-dimensional geometry.
Thermal conductivity dependence on temperature.

FIND: Temperature gradient T/y at surface A.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) No volumetric generation, (3) Two-dimensional
conduction.

ANALYSIS: At Surface A, kA = ko + aTA = 10 W/mK – 10-3 W/mK2  273 K = 9.73 W/mK while
at Surface B, kB = ko + aTB = 10 W/mK – 10-3 W/mK2  373 K = 9.63 W/mK. For steady-state

conditions, in outE E  which may be written in terms of Fourier’s law as

B B A A
B A

T T
k A k A

x y

 
  

 

or
9.63 1

30K/m 14.85 K/m
9.73 2

B B

A ABA

T T k A

y x k A

 
    

 
<

COMMENTS: (1) If the thermal conductivity is not temperature-dependent, then the temperature

gradient at A is 15 K/m. (2) Surfaces A and B are both isothermal. Hence, / / 0
A B

T x T y      .

2 m

1 m

A, TA = 0°C

B, TA = 100°C

x

y

k = ko + aT

2 m

1 m

A, TA = 0°C

B, TA = 100°C

x

y

k = ko + aT



PROBLEM 2.16 
 
KNOWN:  A rod of constant thermal conductivity k and variable cross-sectional area Ax(x) = Aoeax 
where Ao and a are constants. 
 
FIND:  (a) Expression for the conduction heat rate, qx(x); use this expression to determine the 
temperature distribution, T(x); and sketch of the temperature distribution, (b) Considering the presence 
of volumetric heat generation rate, ( )oq q exp ax= −& & , obtain an expression for qx(x) when the left 
face, x = 0, is well insulated. 
 
SCHEMATIC:  

 
 
ASSUMPTIONS:  (1) One-dimensional conduction in the rod, (2)  Constant properties, (3) Steady-
state conditions. 
 
ANALYSIS:   Perform an energy balance on the control volume, A(x)⋅dx, 
 
 in out gE E E 0− + =& & &  
 
 ( )x x dxq q q A x dx 0+− + ⋅ ⋅ =&  
 
The conduction heat rate terms can be expressed as a Taylor series and substituting expressions for q&  
and A(x), 
 

 ( ) ( ) ( )x o o
d q q exp ax A exp ax 0

dx
− + − ⋅ =&  (1) 

 

 ( )x
dTq k A x
dx

= − ⋅  (2) 
 
(a) With no internal generation, oq&  = 0, and from Eq. (1) find 
 

 ( )x
d q 0

dx
− =  < 

 
indicating that the heat rate is constant with x.  By combining Eqs. (1) and (2) 
 

 ( ) ( ) 1
d dT dTk A x 0 or A x C

dx dx dx
⎛ ⎞− − ⋅ = ⋅ =⎜ ⎟
⎝ ⎠

 (3) < 

 
Continued... 



 
PROBLEM 2.16 (Cont.) 

 
That is, the product of the cross-sectional area and the temperature gradient is a constant, independent 
of x.  Hence, with T(0) > T(L), the temperature distribution is exponential, and as shown in the sketch 
above.  Separating variables and integrating Eq. (3), the general form for the temperature distribution 
can be determined, 
 

 ( )o 1
dTA exp ax C
dx
⋅ =  

 
 ( )1

1 odT C A exp ax dx−= −  
 

 ( ) ( )1 o 2T x C A a exp ax C= − − +  < 
 
We could use the two temperature boundary conditions, To = T(0) and TL = T(L), to evaluate C1 and 
C2 and, hence, obtain the temperature distribution in terms of To and TL. 
 
(b) With the internal generation, from Eq. (1),  
 

 ( )x o o x o o
d q q A 0 or q q A x

dx
− + = =& &  < 

 
That is, the heat rate increases linearly with x. 
 
COMMENTS:  In part (b), you could determine the temperature distribution using Fourier’s law and 
knowledge of the heat rate dependence upon the x-coordinate.  Give it a try! 



PROBLEM 2.17

KNOWN: Electrical heater sandwiched between two identical cylindrical (30 mm dia.  60 mm

length) samples whose opposite ends contact plates maintained at To.

FIND: (a) Thermal conductivity of SS316 samples for the prescribed conditions (A) and their
average temperature, (b) Thermal conductivity of Armco iron sample for the prescribed conditions
(B), (c) Comment on advantages of experimental arrangement, lateral heat losses, and conditions for

which T1  T2.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional heat transfer in samples, (2) Steady-state conditions, (3)
Negligible contact resistance between materials.

PROPERTIES: Table A.2, Stainless steel 316   ssT=400 K : k 15.2 W/m K;  Armco iron

  ironT=380 K : k 67.2 W/m K. 

ANALYSIS: (a) For Case A recognize that half the heater power will pass through each of the
samples which are presumed identical. Apply Fourier’s law to a sample

q = kA
T

x
c




 

 2c

0.5 100V 0.353A 0.015 mq x
k= 15.0 W/m K.

A T 0.030 m / 4 25.0 C

 
  

  
<

The total temperature drop across the length of the sample is T1(L/x) = 25C (60 mm/15 mm) =

100C. Hence, the heater temperature is Th = 177C. Thus the average temperature of the sample is

 o hT= T T / 2 127 C=400 K.   <

We compare the calculated value of k with the tabulated value (see above) at 400 K and note the good
agreement.

(b) For Case B, we assume that the thermal conductivity of the SS316 sample is the same as that
found in Part (a). The heat rate through the Armco iron sample is

Continued …..



PROBLEM 2.17 (Cont.)

 

 

2

iron heater ss

iron

0.030 m 15.0 C
q q q 100V 0.601A 15.0 W/m K

4 0.015 m
q 60.1 10.6 W=49.5 W


       

 



where

q k A T xss ss c 2 2  / .

Applying Fourier’s law to the iron sample,

 
iron 2

iron 2c 2

q x 49.5 W 0.015 m
k 70.0 W/m K.

A T 0.030 m / 4 15.0 C

 
   

  
<

The total drop across the iron sample is 15C(60/15) = 60C; the heater temperature is (77 + 60)C =
137C. Hence the average temperature of the iron sample is

 T= 137 + 77 C/2=107 C=380 K.
  <

We compare the computed value of k with the tabulated value (see above) at 380 K and note the good
agreement.

(c) The principal advantage of having two identical samples is the assurance that all the electrical
power dissipated in the heater will appear as equivalent heat flows through the samples. With only
one sample, heat can flow from the backside of the heater even though insulated.

Heat leakage out the lateral surfaces of the cylindrically shaped samples will become significant when
the sample thermal conductivity is comparable to that of the insulating material. Hence, the method is
suitable for metallics, but must be used with caution on nonmetallic materials.

For any combination of materials in the upper and lower position, we expect T1 = T2. However, if

the insulation were improperly applied along the lateral surfaces, it is possible that heat leakage will

occur, causing T1  T2.



PROBLEM 2.18 
 
KNOWN: Geometry and steady-state conditions used to measure the thermal conductivity of an 
aerogel sheet. 
 
FIND: (a) Reason the apparatus of Problem 2.17 cannot be used, (b) Thermal conductivity of the 
aerogel, (c) Temperature difference across the aluminum sheets, and (d) Outlet temperature of the 
coolant. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) One-dimensional heat 
transfer. 
 
PROPERTIES: Table A.1, pure aluminum [T = (T1 + Tc,i)/2 = 40°C = 313 K]: kal = 239 W/m⋅K. 
Table A.6, liquid water (25°C = 298 K): cp = 4180 J/kg⋅K. 
 
ANALYSIS: 
 
(a) The apparatus of Problem 2.17 cannot be used because it operates under the assumption that 
the heat transfer is one-dimensional in the axial direction.  Since the aerogel is expected to have 
an extremely small thermal conductivity, the insulation used in Problem 2.17 will likely have a 
higher thermal conductivity than aerogel.  Radial heat losses would be significant, invalidating 
any measured results. 
 
(b) The electrical power is  

 
gE  = V(I) = 10V × 0.125 A = 1.25 W&  

Continued… 

T1 = T2 = 55°C

Heater
leads

Coolant
in (typ.) 
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x
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.
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.
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.



 
PROBLEM 2.18 (Cont.) 

 
The conduction heat rate through each aerogel plate is  
  

2
g c 1

a a
E T  - TdT πDq =  = -k A  = -k ( )( )
2 dx 4 t

&
  

 
or 

 g -3
a 2 2

1 c

2E t 2 × 1.25 W × 0.005 m Wk  =  = = 5.9×10
m KπD (T  - T ) π × (0.15 m)  × (55 - 25)°C ⋅

&
         < 

 
(c) The conduction heat flux through each aluminum plate is the same as through the aerogel. 
Hence, 

  c 1 al
a al

(T  - T ) ΔT-k  = -k
t t

 

or 
-3

a
al 1 c

al

k 5.9×10  W/m KΔT  = (T  - T ) =  × 30°C
k 239 W/m K

⋅
⋅

-3= 0.74×10 °C          < 

 
The temperature difference across the aluminum plate is negligible. Therefore it is not important 
to know the location where the thermocouples are attached. 
 
(d) An energy balance on the water yields 

 
g p c,o c,iE  = mc (T  - T )& &  

 
or 

g
c,o c,i

p

E
T  = T  + 

mc

&

&
 

    1.25 W= 25°C + 11 kg/min ×  min/s × 4180 J/kg K
60

⋅
= 25.02°C          < 

 
COMMENTS: (1) For all practical purposes the aluminum plates may be considered to be 
isothermal. (2) The coolant may be considered to be isothermal. 
 



PROBLEM 2.19

KNOWN: Dimensions of and temperature difference across an aircraft window. Window
materials and cost of energy.

FIND: Heat loss through one window and cost of heating for 130 windows on 8-hour trip.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in the x-
direction, (3) Constant properties.

PROPERTIES: Table A.3, soda lime glass (300 K): kgl = 1.4 W/mK.

ANALYSIS: From Eq. 2.1,

1 2
x

(T - T )dT
q = -kA = k a b

dx L
For glass,

x,g
W 80°C

q = 1.4 × 0.3 m × 0.3 m × = 1010 W
m K 0.01m

 
   

<

The cost associated with heat loss through N windows at a rate of R = $1/kW·h over a t = 
8 h flight time is

g x,g
$ 1kW

C = Nq Rt = 130 × 1010 W × 1 × 8 h × = $1050
kW h 1000W

<

Repeating the calculation for the polycarbonate yields

x,p pq = 151 W, C = $157 <

while for aerogel,

x,a aq = 10.1 W, C = $10 <

COMMENT: Polycarbonate provides significant savings relative to glass. It is also lighter (ρp =
1200 kg/m3) relative to glass (ρg = 2500 kg/m3). The aerogel offers the best thermal performance
and is very light (ρa = 2 kg/m3) but would be relatively expensive.

a = 0.3 m

b = 0.3 m

T
T1

T2
x

qcond

L = 0.01 m

a = 0.3 m

b = 0.3 m

T
T1

T2
x

qcond

L = 0.01 m

k



PROBLEM 2.20

KNOWN: Volume of unknown metal of high thermal conductivity. Known heating rate.

FIND: (a) Differential equation that may be used to determine the temperature response of the metal
to heating. (b) If the model can be used to identify the metal, based upon matching the predicted and
measured thermal responses.

SCHEMATIC:

ASSUMPTIONS: (1) Negligible spatial temperature gradients, (2) Constant properties.

PROPERTIES: Table A.1 (T = 300 K): Aluminum;  = 2702 kg/m3, cp = 903 J/kgK, Gold;  =
19300 kg/m3, cp = 129 J/kgK, Silver;  = 10500 kg/m3, cp = 235 J/kgK.

ANALYSIS: (a) An energy balance on the control volume yields st inE E  which may be written

p
dT

Vc q
dt

  or
1

p p

dT q q

dt Vc V c 
 

The thermal response, dT/dt, may be measured. Alternatively, the expression may be integrated to find
T(t) given the initial temperature, volume, heat rate, and product of the density and specific heat.

(b) For a known metal volume, V, the thermal response to constant heating is determined by the
product of the density and specific heat, cp. This product is listed below for each of the three
candidate materials.

Material  (kg/m3) cp (J/kgK) cp (J/m3K)

Aluminum 2702 903 2.44  106

Gold 19300 129 2.49  106

Silver 10500 235 2.47  106

Because the product of the densities and specific heats are so similar for these four candidate

materials, in general this approach cannot be used to distinguish which material is being heated. <

COMMENTS: (1) By neglecting spatial temperature gradients, the proposed approach is based only
on thermodynamics principles. Therefore, it is limited in its usefulness relative to alternative schemes
discussed in the text such as in Problem 2.23. (2) For many metals, the product of the density and
specific heat lies within a relatively narrow band.

Unknown metal of volume, V

q

Unknown metal of volume, V

q



PROBLEM 2.21

KNOWN: Temperatures of various materials.

FIND: (a) Graph of thermal conductivity, k, versus temperature, T, for pure copper, 2024 aluminum
and AISI 302 stainless steel for 300  T  600 K, (b) Graph of thermal conductivity, k, for helium and
air over the range 300  T  800 K, (c) Graph of kinematic viscosity, , for engine oil, ethylene glycol,
and liquid water for 300  T  360 K, (d) Graph of thermal conductivity, k, versus volume fraction, ,
of a water-Al2O3 nanofluid for 0   0.08 and T = 300 K. Comment on the trends for each case.

ASSUMPTION: (1) Constant nanoparticle properties.

ANALYSIS: (a) Using the IHT workspace of Comment 1 yields

Note the large difference between the thermal conductivities of these metals. Copper conducts thermal
energy effectively, while stainless steels are relatively poor thermal conductors. Also note that,
depending on the metal, the thermal conductivity increases (2024 Aluminum and 302 Stainless Steel)
or decreases (Copper) with temperature.

(b) Using the IHT workspace of Comment 2 yields

Note the high thermal conductivity of helium relative to that of air. As such, He is sometimes used as a
coolant. The thermal conductivity of both gases increases with temperature, as expected from
inspection of Figure 2.8.

Continued…
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PROBLEM 2.21 (Cont.)

(c) Using the IHT workspace of Comment 3 yields

The kinematic viscosities vary by three orders of magnitude between the various liquids. For each case
the kinematic viscosity decreases with temperature.

(d) Using the IHT workspace of Comment 4 yields

Note the increase in the thermal conductivity of the nanofluid with addition of more nanoparticles. The
solid phase usually has a higher thermal conductivity than the liquid phase, as noted in Figures 2.5 and
2.9, respectively.

COMMENTS: (1) The IHT workspace for part (a) is as follows.

// Copper (pure) property functions : From Table A.1
// Units: T(K)
kCu = k_T("Copper",T) // Thermal conductivity,W/m·K

// Aluminum 2024 property functions : From Table A.1
// Units: T(K)
kAl = k_T("Aluminum 2024",T) // Thermal conductivity,W/m·K

// Stainless steel-AISI 302 property functions : From Table A.1
// Units: T(K)
kss = k_T("Stainless Steel-AISI 302",T) // Thermal conductivity,W/m·K

T = 300 // Temperature, K

Continued…
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PROBLEM 2.21 (Cont.)

(2) The IHT workspace for part (b) follows.

// Helium property functions : From Table A.4
// Units: T(K)
kHe = k_T("Helium",T) // Thermal conductivity, W/m·K

// Air property functions : From Table A.4
// Units: T(K); 1 atm pressure
kAir = k_T("Air",T) // Thermal conductivity, W/m·K

T = 300 // Temperature, K

(3) The IHT workspace for part (c) follows.

// Engine Oil property functions : From Table A.5
// Units: T(K)
nuOil = nu_T("Engine Oil",T) // Kinematic viscosity, m^2/s

// Ethylene glycol property functions : From Table A.5
// Units: T(K)
nuEG = nu_T("Ethylene Glycol",T) // Kinematic viscosity, m^2/s

// Water property functions :T dependence, From Table A.6
// Units: T(K), p(bars);
xH2O =0 // Quality (0=sat liquid or 1=sat vapor)
nuH2O = nu_Tx("Water",T,xH2O) // Kinematic viscosity, m^2/s

T = 300 // Temperature, K

(4) The IHT workspace for part (d) follows.

// Water property functions :T dependence, From Table A.6
// Units: T(K), p(bars);
xH2O =0 // Quality (0=sat liquid or 1=sat vapor)
kH2O = k_Tx("Water",T,xH2O) // Thermal conductivity, W/m·K
kbf = kH2O
T = 300

j = 0.01 // Volume fraction of nanoparticles

//Particle Properties

kp = 36 // Thermal conductivity, W/mK

knf = (num/den)*kbf
num = kp + 2*kbf-2*j*(kbf - kp)
den = kp + 2*kbf + j*(kbf - kp)



PROBLEM 2.22

KNOWN: Ideal gas behavior for air, hydrogen and carbon dioxide.

FIND: The thermal conductivity of each gas at 300 K. Compare calculated values to values from
Table A.4.

ASSUMPTIONS: (1) Ideal gas behavior.

PROPERTIES: Table A.4 (T = 300 K): Air; cp = 1007 J/kgK, k = 0.0263 W/m∙K, Hydrogen; cp =
14,310 J/kgK, k = 0.183 W/m∙K, Carbon dioxide; cp = 851 J/kgK, k = 0.0166 W/m∙K. Figure 2.8: 
Air; M = 28.97 kg/kmol, d = 0.372 × 10-9 m, Hydrogen; M = 2.018 kg/kmol, d = 0.274 × 10-9 m,
Carbon Dioxide; M = 44.01 kg/kmol, d = 0.464 × 10-9 m.

ANALYSIS: For air, the ideal gas constant, specific heat at constant volume, and ratio of specific
heats are:

8.315 kJ/kmol K kJ
0.287 ;

28.97 kg/kmol kg K

kJ kJ kJ 1.007
1.007 0.287 0.720 ; 1.399

kg K kg K kg K 0.720

p

v p

v

R

c
c c R

c



  



       
  

R

M

From Equation 2.12

 

2

-23

2 23 -1-9

9 5

4

9 1.399 5 720 J/kg K 28.97 kg/kmol 1.381 10 J/K 300 K
=

4 6.024 10 mol 1000 mol/kmol0.372 10 m

W
0.025

m K

v Bc k T
k

d



 






     


  




M

N

<

The thermal conductivity of air at T = 300 K is 0.0263 W/m∙K. Hence, the computed value is within 5 
% of the reported value.

For hydrogen, the ideal gas constant, specific heat at constant volume, and ratio of specific heats are:

8.315 kJ/kmol K kJ
4.120 ;

2.018 kg/kmol kg K

kJ kJ kJ 14.31
14.31 4.120 10.19 ; 1.404

kg K kg K kg K 10.19

p

v p

v

R

c
c c R

c



  



       
  

R

M

Equation 2.12 may be used to calculate

W
0.173

m K
k 


<

Continued...



PROBLEM 2.22 (Cont.)

The thermal conductivity of hydrogen at T = 300 K is 0.183 W/m∙K. Hence, the computed value is 
within 6 % of the reported value.

For carbon dioxide, the ideal gas constant, specific heat at constant volume, and ratio of specific heats
are:

8.315 kJ/kmol K kJ
0.189 ;

44.01 kg/kmol kg K

kJ kJ kJ 0.851
0.851 0.189 0.662 ; 1.285

kg K kg K kg K 0.662

p

v p

v

R

c
c c R

c



  



       
  

R

M

Equation 2.12 may be used to calculate

W
0.0158

m K
k 


<

The thermal conductivity of carbon dioxide at T = 300 K is 0.0166 W/m∙K. Hence, the computed 
value is within 5 % of the reported value.

COMMENTS: The preceding analysis may be used to estimate the thermal conductivity at various
temperatures. However, the analysis is not valid for extreme temperatures or pressures. For example,
(1) the thermal conductivity is predicted to be independent of the pressure of the gas. As pure vacuum
conditions are approached, the thermal conductivity will suddenly drop to zero, and the preceding
analysis is no longer valid. Also, (2) for temperatures considerably higher or lower than normally-
encountered room temperatures, the agreement between the predicted and actual thermal
conductivities can be poor. For example, for carbon dioxide at T = 600 K, the predicted thermal
conductivity is k = 0.0223 W/m∙K, while the actual (tabular) value is k = 0.0407 W/m∙K. For extreme 
temperatures, thermal correction factors must be included in the predictions of the thermal
conductivity.



PROBLEM 2.23

KNOWN: Identical samples of prescribed diameter, length and density initially at a uniform

temperature Ti, sandwich an electric heater which provides a uniform heat flux qo for a period of

time to. Conditions shortly after energizing and a long time after de-energizing heater are

prescribed.

FIND: Specific heat and thermal conductivity of the test sample material. From these properties,
identify type of material using Table A.1 or A.2.

SCHEMATIC:

ASSUMPTIONS: (1) One dimensional heat transfer in samples, (2) Constant properties, (3)
Negligible heat loss through insulation, (4) Negligible heater mass.

ANALYSIS: Consider a control volume about the samples
and heater, and apply conservation of energy over the time
interval from t = 0 to 

E E E = E Ein out f i  

 o p iP t 0 Mc T T      

where energy inflow is prescribed by the power condition and the final temperature Tf is known.

Solving for cp,

     
o

p 3 2 2i

P t 15 W 120 s
c

M T T 2 3965 kg/m 0.060 / 4 m 0.010 m 33.50-23.00 C

 
 

      


c J / kg Kp  765 <

where M = V = 2(D
2
/4)L is the mass of both samples. The transient thermal response of the

heater is given by

Continued …..



PROBLEM 2.23 (Cont.)

 

 

1/ 2

o i o
p
2

o

p o i

t
T t T 2q

c k

2qt
k=

c T t T





 
   
  

 
 

  

 

2
2

3

30 s 2 2653 W/m
k= 36.0 W/m K

3965 kg/m 765 J/kg K 24.57 - 23.00 C

    
     


<

where

   
2

o 2 2 2s

P P 15 W
q 2653 W/m .

2A 2 D / 4 2 0.060 / 4 m 
    



With the following properties now known,

 = 3965 kg/m
3

cp = 765 J/kgK k = 36 W/mK

entries in Table A.1 are scanned to determine whether these values are typical of a metallic material.
Consider the following,

 metallics with low  generally have higher thermal conductivities,

 specific heats of both types of materials are of similar magnitude,

 the low k value of the sample is typical of poor metallic conductors which generally have
much higher specific heats,

 more than likely, the material is nonmetallic.

From Table A.2, the second entry, polycrystalline aluminum oxide, has properties at 300 K

corresponding to those found for the samples. <



PROBLEM 2.24

KNOWN: Five materials at 300 K.

FIND: Heat capacity, cp. Which material has highest thermal energy storage per unit volume.
Which has lowest cost per unit heat capacity.

ASSUMPTIONS: Constant properties.

PROPERTIES: Table A.3, Common brick (T = 300 K): = 1920 kg/m3, cp = 835 J/kgK. Table
A.1, Plain carbon steel (T = 300 K): = 7854 kg/m3, cp = 434 J/kgK. Table A.5, Engine oil (T = 300
K): = 884.1 kg/m3, cp = 1909 J/kgK. Table A.6, Water (T = 300 K): = 1/vf = 997 kg/m3, cp = 4179
J/kgK. Table A.3, Soil (T = 300 K): = 2050 kg/m3, cp = 1840 J/kgK.

ANALYSIS: The values of heat capacity, cp, are tabulated below.

Material Common
brick

Plain carbon
steel

Engine oil Water Soil

Heat Capacity
(kJ/m3K)

1603 3409 1688 4166 3772

<
Thermal energy storage refers to either sensible or latent energy. The change in sensible energy per
unit volume due to a temperature change ∆T is equal to cp∆T. Thus, for a given temperature change,
the heat capacity values in the table above indicate the relative amount of sensible energy that can be
stored in the material.

Of the materials considered, water has the largest capacity for sensible energy storage. <

Various materials also have the potential for latent energy storage due to either a solid-liquid or liquid-
vapor phase change. Taking water as an example, the latent heat of fusion is
333.7 kJ/kg. With a density of  1000 kg/m3 at 0C, the latent energy per unit volume associated
with the solid-liquid phase transition is 333,700 kJ/m3. This corresponds to an 80C temperature
change in the liquid phase. The latent heat of vaporization for water is very large, 2257 kJ/kg, but it is
generally inconvenient to use a liquid-vapor phase change for thermal energy storage because of the
large volume change.

The two materials with the largest heat capacity are also inexpensive. The consumer price of soil is
around $15 per cubic meter, or around $4 per MJ/K. The consumer price of water is around $0.40 per
cubic meter, or around $0.10 per MJ/K. In a commercial application, soil could probably be obtained
much more inexpensively.

Therefore we conclude that water has the lowest cost per unit heat capacity of the materials

considered. <

COMMENTS: (1) Many materials used for latent thermal energy storage are characterized by
relatively low thermal conductivities. Therefore, although the materials may be attractive from the
thermodynamics point of view, it can be difficult to deliver energy to the solid-liquid or liquid-vapor
interface because of the poor thermal conductivity of the material. Hence, many latent thermal energy
storage applications are severely hampered by heat transfer limitations. (2) Most liquids and solids
have a heat capacity which is in a fairly narrow range of around 1000 – 4000 kJ/m3K. Gases have
heat capacities that are orders of magnitude smaller.



PROBLEM 2.25

KNOWN: Diameter, length, and mass of stainless steel rod, insulated on its exterior surface other
than ends. Temperature distribution.

FIND: Heat flux.

SCHEMATIC:

x

T(x) = 305 K – 10 K (x/L)

L = 100 mm

D = 20 mmStainless steel

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in x-direction, (3)
Constant properties.

ANALYSIS: The heat flux can be found from Fourier’s law,

x

dT
q k

dx
  

Table A.1 gives values for the thermal conductivity of stainless steels, however we are not told which
type of stainless steel the rod is made of, and the thermal conductivity varies between them. We do
know the mass of the rod, and can use this to calculate its density:

3

2 2

0.248 kg
7894 kg/m

/ 4 (0.02 m) 0.1 m/4

M M

V D L


 
   

 

From Table A.1, it appears that the material is AISI 304 stainless steel. The temperature of the rod
varies from 295 K to 305 K. Evaluating the thermal conductivity at 300 K, k = 14.9 W/mK. Thus,

2( / ) 14.9 W/m K 10 K / 0.1 m 1490 W/mx

dT
q k k b L

dx
          <

COMMENTS: If the temperature of the rod varies significantly along its length, the thermal
conductivity will vary along the rod as much or more than the variation in thermal conductivities
between the different stainless steels.



PROBLEM 2.26

KNOWN: Temperature distribution, T(x,y,z), within an infinite, homogeneous body at a given
instant of time.

FIND: Regions where the temperature changes with time.

SCHEMATIC:

ASSUMPTIONS: (1) Constant properties of infinite medium and (2) No internal heat generation.

ANALYSIS: The temperature distribution throughout the medium, at any instant of time, must
satisfy the heat equation. For the three-dimensional cartesian coordinate system, with constant
properties and no internal heat generation, the heat equation, Eq. 2.21, has the form











 





2 2 2 1T

x

T

y

T

z

T

t2 2 2
   . (1)

If T(x,y,z) satisfies this relation, conservation of energy is satisfied at every point in the medium.
Substituting T(x,y,z) into the Eq. (1), first find the gradients, T/x, T/y, and T/z.

     
1 T

2x-y 4y-x+2z 2z+2y .
x y z t

   

    
   

Performing the differentiations,

2 4 2
1

  






T

t
.

Hence,





T

t
 0

which implies that, at the prescribed instant, the temperature is everywhere independent of time. <
COMMENTS: Since we do not know the initial and boundary conditions, we cannot determine the
temperature distribution, T(x,y,z), at any future time. We can only determine that, for this special
instant of time, the temperature will not change.



PROBLEM 2.27  
KNOWN:  Diameter D, thickness L and initial temperature Ti of pan.  Heat rate from stove to bottom 
of pan.  Convection coefficient h and variation of water temperature T∞(t) during Stage 1.  
Temperature TL of pan surface in contact with water during Stage 2. 
 
FIND:  Form of heat equation and boundary conditions associated with the two stages.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) One-dimensional conduction in pan bottom, (2) Heat transfer from stove is 
uniformly distributed over surface of pan in contact with the stove, (3) Constant properties.  
ANALYSIS:    
Stage 1 

Heat Equation:  
2

2
T 1 T

tx α
∂ ∂

=
∂∂

 

 

Boundary Conditions: 
( )

o
o 2x 0

qTk q
x D / 4π=

∂ ′′− = =
∂

 

 

   ( ) ( )
x L

Tk h T L, t T t
x ∞

=

∂
⎡ ⎤− = −⎣ ⎦∂

 

 
Initial Condition: ( ) iT x,0 T=  
 
Stage 2 

Heat Equation:  
2

2
d T 0
dx

=  

 

Boundary Conditions: o
x 0

dTk q
dx =

′′− =  

 
   ( ) LT L T=  

 
COMMENTS:  Stage 1 is a transient process for which T∞(t) must be determined separately.  As a 
first approximation, it could be estimated by neglecting changes in thermal energy storage by the pan 
bottom and assuming that all of the heat transferred from the stove acted to increase thermal energy 
storage within the water.  Hence, with q ≈ Mcp dT∞/dt, where M and cp are the mass and specific heat 
of the water in the pan, T∞(t) ≈ (q/Mcp) t. 



PROBLEM 2.28  
KNOWN:  Steady-state temperature distribution in a cylindrical rod having uniform heat generation 
of & .q  W / m1

3= ×5 107  
 
FIND:  (a) Steady-state centerline and surface heat transfer rates per unit length, ′qr .   (b) Initial time 
rate of change of the centerline and surface temperatures in response to a change in the generation rate 
from 8 3

1 2q  to q  = 10  W/m .& &  
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) One-dimensional conduction in the r direction, (2) Uniform generation, and (3) 
Steady-state for & .q  =  5 10  W / m1

7 3×  
 
ANALYSIS:  (a) From the rate equations for cylindrical coordinates,  

 ′′ = −q k  T
 r

          q = -kA   T
 rr r

∂
∂

∂
∂

.  
 
Hence,  

 ( )r
 Tq k 2 rL
 r

∂π
∂

= −  
 
or  

 ′ = −q kr  T
 rr 2π ∂
∂

         (1) 
 
where ∂T/∂r may be evaluated from the prescribed temperature distribution, T(r).  
At r = 0, the gradient is (∂T/∂r) = 0.  Hence, from Equation (1) the heat rate is  
 ( )rq 0 0.′ =           < 
 
At r = ro, the temperature gradient is 
 

 
( ) ( )( )

o

o

5 5
o2r=r

5

r=r

 T K2 4.167 10 r 2 4.167 10 0.025m
 r m
 T 0.208 10  K/m.
 r

∂
∂
∂
∂

⎡ ⎤⎤ = − × = − ×⎢ ⎥⎥⎦ ⎣ ⎦
⎤ = − ×⎥⎦

 

 
          Continued ….. 



PROBLEM 2.28 (Cont.)  
Hence, the heat rate at the outer surface (r = ro) per unit length is 
 
 ( ) [ ]( ) 5

r oq r 2 30 W/m K 0.025m 0.208 10  K/mπ ⎡ ⎤′ = − ⋅ − ×⎢ ⎥⎣ ⎦
 

 
 ( ) 5

r oq r 0.980 10  W/m.′ = ×         < 
 
(b) Transient (time-dependent) conditions will exist when the generation is changed, and for the 
prescribed assumptions, the temperature is determined by the following form of the heat equation, 
Equation 2.26  

 2 p
1  T  T kr q c
r  r  r  t

∂ ∂ ∂ρ
∂ ∂ ∂

⎡ ⎤ + =⎢ ⎥⎣ ⎦
&  

 
Hence  

 2
p

 T 1 1  T kr q .
 t c r  r  r

∂ ∂ ∂
∂ ρ ∂ ∂

⎡ ⎤⎡ ⎤= +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
&  

 
However, initially (at t = 0), the temperature distribution is given by the prescribed form, T(r) = 800 - 
4.167×10

5
r
2, and 

 

 ( )51  T k kr r -8.334 10 r
r  r  r r  r

∂ ∂ ∂
∂ ∂ ∂

⎡ ⎤ ⎡ ⎤= × ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
 

 

   ( )5k 16.668 10 r
r

= − × ⋅  
 
   5 230 W/m K -16.668 10  K/m⎡ ⎤= ⋅ ×⎢ ⎥⎣ ⎦

 
 
   ( )7 3

15 10  W/m  the original q=q .= − × & &  
 
Hence, everywhere in the wall,  

 7 8 3
3

 T 1 5 10 10  W/m
 t 1100 kg/m 800 J/kg K

∂
∂

⎡ ⎤= − × +⎢ ⎥⎣ ⎦× ⋅
 

 
or  

 ∂
∂
 T
 t

 K / s.= 5682.          < 
  
COMMENTS:  (1) The value of (∂T/∂t) will decrease with increasing time, until a new steady-state 
condition is reached and once again (∂T/∂t) = 0. (2) By applying the energy conservation requirement, 
Equation 1.12c, to a unit length of the rod for the steady-state condition, & & .′ − ′ + ′ =E E Ein out gen 0   

Hence ( ) ( ) ( )2
r r o 1 oq 0 q r q r .π′ ′− = − &  



PROBLEM 2.29

KNOWN: Plane wall with constant properties and uniform volumetric energy generation. Insulated
left face and isothermal right face.

FIND: (a) Expression for the heat flux distribution based upon the heat equation. (b) Expression for
the heat flux distribution based upon a finite control volume.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) Uniform volumetric
generation, (4) One-dimensional conduction.

ANALYSIS: (a) The appropriate form of the heat equation is Eq. 2.19 which may be written as

2

2

d T d dT q

dx dx kdx

 
   

 



The heat equation may be integrated once to yield

1
dT q

x C
dx k

  


and, since
0

0,
x

dT

dx 

 C1 = 0. Therefore, "( )
dT

k q x qx
dx

     <

(b) For the finite control volume, outgE E  , and for a unit cross-sectional area,

( )
x

dT
q k

dx 




  which may be re-arranged to yield "( )
dT

k q x q qx
dx

       <

The expressions for the local heat flux are identical.

COMMENTS: (1) Although the two methods yield identical results, as they must, the heat equation
is more general and can be used to determine temperature and heat flux distributions in more complex
situations. (2) The value of the right face temperature is not needed to solve the problem. Is the value
of Tc needed to determine the temperature distribution?

q
∙

ξ

x

Tc



PROBLEM 2.30  
KNOWN:  Temperature distribution in a one-dimensional wall with prescribed thickness and thermal 
conductivity.  
FIND:  (a) The heat generation rate, &q,  in the wall,  (b) Heat fluxes at the wall faces and relation to &q.  
 
SCHEMATIC:   
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional heat flow, (3) Constant 
properties.  
ANALYSIS:  (a) The appropriate form of the heat equation for steady-state, one-dimensional 
conditions with constant properties is Eq. 2.21 re-written as 

 d dTq=-k
dx dx

⎡ ⎤
⎢ ⎥⎣ ⎦

&  

Substituting the prescribed temperature distribution, 

 ( ) [ ]2d d dq=-k a+bx k 2bx 2bk
dx dx dx

⎡ ⎤ = − = −⎢ ⎥⎣ ⎦
&  

 
 ( )2 5 3q=-2 -2000 C/m 50 W/m K=2.0 10  W/m .× ⋅ ×o&      < 

(b) The heat fluxes at the wall faces can be evaluated from Fourier’s law, 

 ( )x
x

dTq x k .
dx

⎤′′ = − ⎥⎦
 

Using the temperature distribution T(x) to evaluate the gradient, find 

 ( ) 2
x

dq x k a+bx 2kbx.
dx

⎡ ⎤′′ = − = −⎢ ⎥⎣ ⎦
 

The fluxes at x = 0 and x = L are then  
 ( )xq 0 0′′ =           < 
 
 ( ) ( )2

xq L 2kbL=-2 50W/m K -2000 C/m 0.050m′′ = − × ⋅ ×o  
 
 ( ) 2

xq L 10,000 W/m .′′ =         < 
 
COMMENTS:  From an overall energy balance on the wall, it follows that, for a unit area, 

 
( ) ( )

( ) ( )
in out g x x

2x x 5 3

E E E 0          q 0 q L qL=0
q L q 0 10,000 W/m 0q= 2.0 10 W/m .

L 0.050m

′′ ′′− + = − +
′′ ′′− −

= = ×

& & & &

&
 



PROBLEM 2.31  
KNOWN:  Wall thickness, thermal conductivity, temperature distribution, and fluid temperature.  
FIND:  (a) Surface heat rates and rate of change of wall energy storage per unit area, and (b) 
Convection coefficient.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) One-dimensional conduction in x, (2) Constant k.  
ANALYSIS:  (a) From Fourier’s law,   

 ( )x
 Tq k 200 60x k
 x

∂
∂

′′ = − = − ⋅  
 

 ′′ = ′′ = ×
⋅

=q q C
m

W
m K

 W / min x=0
2200 1 200

o

      < 
 
 ( ) 2

out x=Lq q 200 60 0.3 C/m  1 W/m K=182 W/m .′′ ′′= = − × × ⋅o    < 
 
Applying an energy balance to a control volume about the wall, Eq. 1.12c,  

& & &′′ − ′′ = ′′E E Ein out st  
 
 & .′′ = ′′ − ′′ =E q q  W / mst in out

218        < 
 
(b)  Applying a surface energy balance at x = L,  
 ( )outq h T L T∞′′ ⎡ ⎤= −⎣ ⎦  
 

 
( ) ( )

2
outq 182 W/mh=

T L T 142.7-100 C∞

′′
=

− o
 

 
 h = 4.3 W / m K.2 ⋅          < 
 
COMMENTS:  (1) From the heat equation,  
 (∂T/∂t) = (k/ρcp) ∂2T/∂x2 = 60(k/ρcp), 
 
it follows that the temperature is increasing with time at every point in the wall.  
(2) The value of h is small and is typical of free convection in a gas. 



PROBLEM 2.32

KNOWN: Analytical expression for the steady-state temperature distribution of a plane wall
experiencing uniform volumetric heat generation q while convection occurs at both of its surfaces.

FIND: (a) Sketch the temperature distribution, T(x), and identify significant physical features, (b)

Determine q , (c) Determine the surface heat fluxes,  xq L  and  xq L ;  how are these fluxes

related to the generation rate; (d) Calculate the convection coefficients at the surfaces x = L and x =

+L, (e) Obtain an expression for the heat flux distribution,  xq x ; explain significant features of the

distribution; (f) If the source of heat generation is suddenly deactivated ( q = 0), what is the rate of

change of energy stored at this instant; (g) Determine the temperature that the wall will reach
eventually with q 0; determine the energy that must be removed by the fluid per unit area of the wall

to reach this state.

SCHEMATIC:

- L

T(-L)

q (+L)x”q (-L)x”

T(+L)

x +L = 20 mm

= 2600 kg/m3

c = 800 J/kg-Kp

q
.

T = 20 C, ho
roo

T = a + bx + cx2

T = 20 C, ho
loo

Fluid

Fluid

, k = 5 W/m-K
a = 82.0 C, x(m)
b = -210 /m
c = - 2x10 /m

o

4 2

o

o
C

C

ASSUMPTIONS: (1) Steady-state conditions, (2) Uniform volumetric heat generation, (3) Constant
properties.

ANALYSIS: (a) Using the analytical expression in the Workspace of IHT, the temperature
distribution appears as shown below. The significant features include (1) parabolic shape, (2)
maximum does not occur at the mid-plane, T(-5.25 mm) = 83.3C, (3) the gradient at the x = +L
surface is greater than at x = -L. Find also that T(-L) = 78.2C and T(+L) = 69.8C for use in part (d).

(b) Substituting the temperature distribution expression into the appropriate form of the heat diffusion
equation, Eq. 2.21, the rate of volumetric heat generation can be determined.

  2d dT q
0 where T x a bx cx

dx dx k

 
     

 



   
d q q

0 b 2cx 0 2c 0
dx k k

      
 

Continued …..
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PROBLEM 2.32 (Cont.)

 4 2 5 3q 2ck 2 2 10 C / m 5W / m K 2 10 W / m          <

(c) The heat fluxes at the two boundaries can be determined using Fourier’s law and the temperature
distribution expression.

    2
x

dT
q x k where T x a bx cx

dx
     

     x x L
q L k 0 b 2cx b 2cL k


        

   4 2 2
xq L 210 C / m 2 2 10 C / m 0.020m 5 W / m K 2950 W / m              

  
<

    2
xq L b 2cL k 5050 W / m       <

From an overall energy balance on the wall as shown in the sketch below, in out genE E E 0,    

   
?

2 2 2
x xq L q L 2qL 0 or 2950 W / m 5050 W / m 8000 W / m 0          

where 5 3 2
2qL 2 2 10 W / m 0.020 m 8000 W / m ,     so the equality is satisfied

(d) The convection coefficients, hl and hr, for the left- and right-hand boundaries (x = -L and x= +L,
respectively), can be determined from the convection heat fluxes that are equal to the conduction
fluxes at the boundaries. See the surface energy balances in the sketch above. See also part (a) result
for T(-L) and T(+L).

 conv, xq q L  

    2 2
l l lh T T L h 20 78.2 K 2950 W / m h 51W / m K          <

 conv,r xq q L  

    2 2
r r rh T L T h 69.8 20 K 5050 W / m h 101W / m K          <

(e) The expression for the heat flux distribution can be obtained from Fourier’s law with the
temperature distribution

   x
dT

q x k k 0 b 2cx
dx

      

   4 2 5
xq x 5W / m K 210 C / m 2 2 10 C / m x 1050 2 10 x             

  
<

Continued …..
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PROBLEM 2.32 (Cont.)

The distribution is linear with the x-coordinate. The maximum temperature will occur at the location

where  x maxq x 0, 

2
3

max 5 3

1050 W / m
x 5.25 10 m 5.25mm

2 10 W / m

      


<

(f) If the source of the heat generation is suddenly deactivated so that q = 0, the appropriate form of

the heat diffusion equation for the ensuing transient conduction is

p
T T

k c
x x t


   

 
   

At the instant this occurs, the temperature distribution is still T(x) = a + bx + cx
2
. The right-hand term

represents the rate of energy storage per unit volume,

     4 2 5 3
stE k 0 b 2cx k 0 2c 5 W / m K 2 2 10 C / m 2 10 W / m

x


              


 <

(g) With no heat generation, the wall will eventually (t ) come to equilibrium with the fluid,

T(x,) = T = 20C. To determine the energy that must be removed from the wall to reach this state,
apply the conservation of energy requirement over an interval basis, Eq. 1.12b. The “initial” state is

that corresponding to the steady-state temperature distribution, Ti, and the “final” state has Tf = 20C.

We’ve used T as the reference condition for the energy terms.

in out st f i inE E E E E with E 0.          

 
L

out p iL
E c T T dx




  

LL 2 2 3
out p pL L

E c a bx cx T dx c ax bx / 2 cx / 3 T x 


  

                 

3
out pE c 2aL 0 2cL / 3 2T L

       


 3 4 2CoutE 2600kg / m 800J / kg K 2 82 C 0.020m 2 2 10 / m 
         

   3
0.020m / 3 2 20 C 0.020m


 

6 2
outE 4.94 10 J / m   <

COMMENTS: (1) In part (a), note that the temperature gradient is larger at x = + L than at x
= - L. This is consistent with the results of part (c) in which the conduction heat fluxes are
evaluated.

Continued …..



PROBLEM 2.32 (Cont.)

(2) In evaluating the conduction heat fluxes,  xq x , it is important to recognize that this flux

is in the positive x-direction. See how this convention is used in formulating the energy
balance in part (c).

(3) It is good practice to represent energy balances with a schematic, clearly defining the
system or surface, showing the CV or CS with dashed lines, and labeling the processes.
Review again the features in the schematics for the energy balances of parts (c & d).

(4) Re-writing the heat diffusion equation introduced in part (b) as

d dT
k q 0

dx dx

 
    

 


recognize that the term in parenthesis is the heat flux. From the differential equation, note

that if the differential of this term is a constant  q / k , then the term must be a linear function

of the x-coordinate. This agrees with the analysis of part (e).

(5) In part (f), we evaluated stE , the rate of energy change stored in the wall at the instant the

volumetric heat generation was deactivated. Did you notice that 5 3
stE 2 10 W / m   is the

same value of the deactivated q ? How do you explain this?



PROBLEM 2.33

KNOWN: Transient temperature distributions in a plane wall.

FIND: Appropriate forms of heat equation, initial condition, and boundary conditions.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) Negligible radiation.

ANALYSIS: The general form of the heat equation in Cartesian coordinates for constant k is
Equation 2.21. For one-dimensional conduction it reduces to

2

2

1T q T

x k t

 
 

 



At steady state this becomes

2

2
0

d T q

dx k
 


If there is no thermal energy generation the steady-state temperature distribution is linear (or could be
constant). If there is uniform thermal energy generation the steady-state temperature distribution must
be parabolic.

Continued…
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PROBLEM 2.33 (Cont.)

In case (a), the steady-state temperature distribution is constant, therefore there must not be any
thermal energy generation. The heat equation is

2

2

1T T

x t

 


 
<

The initial temperature is uniform throughout the solid, thus the initial condition is

( ,0) iT x T <

At x = 0, the slope of the temperature distribution is zero at all times, therefore the heat flux is zero
(insulated condition). The boundary condition is

0

0
x

T

x 





<

At x = L, the temperature is the same for all t > 0. Therefore the surface temperature is constant:

( , ) sT L t T <

For case (b), the steady-state temperature distribution is not linear and appears to be parabolic,
therefore there is thermal energy generation. The heat equation is

2

2

1T q T

x k t

 
 

 

 <

The initial temperature is uniform, the temperature gradient at x = 0 is zero, and the temperature at x =
L is equal to the initial temperature for all t > 0, therefore the initial and boundary conditions are

( ,0) iT x T ,
0

0
x

T

x 





, ( , ) iT L t T <

With the left side insulated and the right side maintained at the initial temperature, the cause of the
decreasing temperature must be a negative value of thermal energy generation.

In case (c), the steady-state temperature distribution is constant, therefore there is no thermal energy
generation. The heat equation is

2

2

1T T

x t

 


 
<

Continued…



PROBLEM 2.33 (Cont.)

The initial temperature is uniform throughout the solid. At x = 0, the slope of the temperature
distribution is zero at all times. Therefore the initial condition and boundary condition at x = 0 are

( ,0) iT x T ,
0

0
x

T

x 





<

At x = L, neither the temperature nor the temperature gradient are constant for all time. Instead, the
temperature gradient is decreasing with time as the temperature approaches the steady-state
temperature. This corresponds to a convection heat transfer boundary condition. As the surface
temperature approaches the fluid temperature, the heat flux at the surface decreases. The boundary
condition is:

 ( , )
x L

T
k h T L t T

x





  


<

The fluid temperature, T∞, must be higher than the initial solid temperature to cause the solid
temperature to increase.

For case (d), the steady-state temperature distribution is not linear and appears to be parabolic,
therefore there is thermal energy generation. The heat equation is

2

2

1T q T

x k t

 
 

 

 <

Since the temperature is increasing with time and it is not due to heat conduction due to a high surface
temperature, the energy generation must be positive.

The initial temperature is uniform and the temperature gradient at x = 0 is zero. The boundary
condition at x = L is convection. The temperature gradient and heat flux at the surface are increasing
with time as the thermal energy generation causes the temperature to rise further and further above the
fluid temperature. The initial and boundary conditions are:

( ,0) iT x T ,
0

0
x

T

x 





,  ( , )

x L

T
k h T L t T

x





  


<

COMMENTS: 1. You will learn to solve for the temperature distribution in transient conduction in
Chapter 5. 2. Case (b) might correspond to a situation involving a spatially-uniform endothermic
chemical reaction. Such situations, although they can occur, are not common.



PROBLEM 2.34

KNOWN: Steady-state conduction with uniform internal energy generation in a plane wall;
temperature distribution has quadratic form. Surface at x=0 is prescribed and boundary at x = L is
insulated.

FIND: (a) Calculate the internal energy generation rate, q , by applying an overall energy balance to

the wall, (b) Determine the coefficients a, b, and c, by applying the boundary conditions to the
prescribed form of the temperature distribution; plot the temperature distribution and label as Case 1,
(c) Determine new values for a, b, and c for conditions when the convection coefficient is halved, and
the generation rate remains unchanged; plot the temperature distribution and label as Case 2; (d)
Determine new values for a, b, and c for conditions when the generation rate is doubled, and the

convection coefficient remains unchanged (h = 500 W/m
2
K); plot the temperature distribution and

label as Case 3.

SCHEMATIC:

x L = 50 mm

Insulated
boundary

h = 500 W/m -K2
Fluid

T = 20 Co
oo

T(0) = T = 120 Co
o

T(x) = a + bx + cx2

k = 5 W/m-K, q
.

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction with constant
properties and uniform internal generation, and (3) Boundary at x = L is adiabatic.

ANALYSIS: (a) The internal energy generation rate can be calculated from an overall energy balance
on the wall as shown in the schematic below.

in out gen in convE E E 0 where E q          

 oh T T q L 0    (1)

   2 6 3
oq h T T / L 500 W / m K 20 120 C / 0.050 m 1.0 10 W / m          <

T , hoo

q (0)x” q (L)x”

x

x

L

x = L

To To

(a) Overall energy balance (b) Surface energy balances

.
Egen

“

conv
q” conv

q”k, q
.

(b) The coefficients of the temperature distribution, T(x) = a + bx + cx
2
, can be evaluated by applying

the boundary conditions at x = 0 and x = L. See Table 2.2 for representation of the boundary
conditions, and the schematic above for the relevant surface energy balances.

Boundary condition at x = 0, convection surface condition

   in out conv x x
x 0

dT
E E q q 0 0 where q 0 k

dx 

          

   o x 0
h T T k 0 b 2cx 0 

      
 

Continued ...



PROBLEM 2.34 (Cont.)

   2 4
ob h T T / k 500W / m K 20 120 C / 5W / m K 1.0 10 K / m           (2)<

Boundary condition at x = L, adiabatic or insulated surface

   in out x x
x L

dT
E E q L 0 where q L k

dx 

       

 x L
k 0 b 2cx 0


   (3)

 4 5 2c b / 2L 1.0 10 K / m / 2 0.050m 1.0 10 K / m         <

Since the surface temperature at x = 0 is known, T(0) = To = 120C, find

 T 0 120 C a b 0 c 0 or a 120 C         (4)<
Using the foregoing coefficients with the expression for T(x) in the Workspace of IHT, the
temperature distribution can be determined and is plotted as Case 1 in the graph below.

(c) Consider Case 2 when the convection coefficient is halved, h2 = h/2 = 250 W/m
2
K, 6

q 1 10 

W/m
3

and other parameters remain unchanged except that oT 120 C.  We can determine a, b, and c

for the temperature distribution expression by repeating the analyses of parts (a) and (b).

Overall energy balance on the wall, see Eqs. (1,4)

6 3 2
oa T q L / h T 1 10 W / m 0.050m / 250 W / m K 20 C 220 C           <

Surface energy balance at x = 0, see Eq. (2)

   2 4
ob h T T / k 250W / m K 20 220 C / 5W / m K 1.0 10 K / m           <

Surface energy balance at x = L, see Eq. (3)

 4 5 2c b / 2L 1.0 10 K / m / 2 0.050m 1.0 10 K / m         <

The new temperature distribution, T2 (x), is plotted as Case 2 below.

(d) Consider Case 3 when the internal energy volumetric generation rate is doubled,
6 3

3q 2q 2 10 W / m ,    h = 500 W/m
2
K, and other parameters remain unchanged except that

oT 120 C.  Following the same analysis as part (c), the coefficients for the new temperature

distribution, T (x), are

4 5 2a 220 C b 2 10 K / m c 2 10 K / m       <
and the distribution is plotted as Case 3 below.

Continued …



PROBLEM 2.34 (Cont.)

COMMENTS: Note the following features in the family of temperature distributions plotted above.
The temperature gradients at x = L are zero since the boundary is insulated (adiabatic) for all cases.
The shapes of the distributions are all quadratic, with the maximum temperatures at the insulated
boundary.

By halving the convection coefficient for Case 2, we expect the surface temperature To to increase

relative to the Case 1 value, since the same heat flux is removed from the wall  qL but the

convection resistance has increased.

By doubling the generation rate for Case 3, we expect the surface temperature To to increase relative

to the Case 1 value, since double the amount of heat flux is removed from the wall  2qL .

Can you explain why To is the same for Cases 2 and 3, yet the insulated boundary temperatures are
quite different? Can you explain the relative magnitudes of T(L) for the three cases?
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1. h = 500 W/m^2.K, qdot = 1e6 W/m^3
2. h = 250 W/m^2.K, qdot = 1e6 W/m^3
3. h = 500 W/m^2.K, qdot = 2e6 W/m^3



PROBLEM 2.35  
KNOWN:  Three-dimensional system – described by cylindrical coordinates (r,φ,z) – 
experiences transient conduction and internal heat generation.  
FIND:  Heat diffusion equation.  
SCHEMATIC:  See also Fig. 2.12. 

 
 
ASSUMPTIONS:  (1) Homogeneous medium.  
ANALYSIS:  Consider the differential control volume identified above having a volume 
given as V = dr⋅rdφ⋅dz.  From the conservation of energy requirement,  
 q q q q q q E Er r+dr +d z z+dz g st− + − + − + =φ φ φ & & .      (1) 
 
The generation and storage terms, both representing volumetric phenomena, are  
 ( ) ( )g gE qV q dr rd dz      E Vc  T/  t dr rd dz c  T/  t.φ ρ ∂ ∂ ρ φ ∂ ∂= = ⋅ ⋅ = = ⋅ ⋅& && &          (2,3) 
 
Using a Taylor series expansion, we can write  

( ) ( ) ( )r+dr r r +d z+dz z zq q q dr,    q q q d ,     q q q dz.
 r   zφ φ φ φ
∂ ∂ ∂φ
∂ ∂ φ ∂

= + = + = +      (4,5,6) 
 
Using Fourier’s law, the expressions for the conduction heat rates are  
 ( )r rq kA  T/  r k rd dz  T/  r∂ ∂ φ ∂ ∂= − = − ⋅       (7) 
 
 ( )q kA  T/r k dr dz  T/rφ φ∂ ∂φ ∂ ∂φ= − = − ⋅       (8) 
 
 ( )z zq kA  T/  z k dr rd  T/  z.∂ ∂ φ ∂ ∂= − = − ⋅       (9) 
 
Note from the above, right schematic that the gradient in the φ-direction is ∂T/r∂φ and not 
∂T/∂φ.  Substituting Eqs. (2), (3) and (4), (5), (6) into Eq. (1),  

( ) ( ) ( ) ( )r z
 Tq dr q d q dz q dr rd dz dr rd dz c .

 r  z  tφ
∂ ∂ ∂ ∂φ φ ρ φ
∂ ∂φ ∂ ∂

− − − + ⋅ ⋅ = ⋅ ⋅&   (10) 
 
Substituting Eqs. (7), (8) and (9) for the conduction rates, find  

 ( ) ( ) ( ) T  T  Tk rd dz dr k drdz d k dr rd dz
 r  r  r  z  z
∂ ∂ ∂ ∂ ∂ ∂φ φ φ
∂ ∂ ∂ φ ∂φ ∂ ∂

⎡ ⎤⎡ ⎤ ⎡ ⎤− − ⋅ − − − − ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
 

 

   ( ) Tq dr rd dz dr rd dz c .
t

∂φ ρ φ
∂

+ ⋅ ⋅ = ⋅ ⋅&     (11) 
 
Dividing Eq. (11) by the volume of the CV, Eq. 2.26 is obtained.  

 2
1  T 1  T  T  Tkr k k q c
r  r  r  z  z  tr

∂ ∂ ∂ ∂ ∂ ∂ ∂ρ
∂ ∂ ∂φ ∂φ ∂ ∂ ∂

⎡ ⎤⎡ ⎤ ⎡ ⎤+ + + =⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
&    < 



PROBLEM 2.36  
KNOWN:  Three-dimensional system – described by spherical coordinates (r,φ,θ) – experiences 
transient conduction and internal heat generation.  
FIND:  Heat diffusion equation.  
SCHEMATIC:  See Figure 2.13.  
ASSUMPTIONS:  (1) Homogeneous medium.  
ANALYSIS:  The differential control volume is V = dr⋅rsinθdφ⋅rdθ, and the conduction terms are 
identified in Figure 2.13.  Conservation of energy requires  
 q q q q q q E Er r+dr +d +d g st− + − + − + =φ φ φ θ θ θ & & .      (1) 
 
The generation and storage terms, both representing volumetric phenomena, are  

[ ] [ ]g st
T  TE qV q dr r sin d rd         E Vc dr r sin d rd c .
t  t

∂ ∂θ φ θ ρ ρ θ φ θ
∂ ∂

= = ⋅ ⋅ = = ⋅ ⋅& && &         (2,3) 
 
Using a Taylor series expansion, we can write  

( ) ( ) ( )r+dr r r +d +dq q q dr,     q q q d ,     q q q d .
 r φ φ φ φ θ θ θ θ
∂ ∂ ∂φ θ
∂ ∂φ ∂θ

= + = + = +       (4,5,6) 
 
From Fourier’s law, the conduction heat rates have the following forms.  
 [ ]r rq kA  T/  r k r sin d rd  T/  r∂ ∂ θ φ θ ∂ ∂= − = − ⋅      (7) 
 
 [ ]q kA  T/r sin k dr rd  T/r sinφ φ∂ θ∂φ θ ∂ θ∂φ= − = − ⋅     (8) 
 
 [ ]q kA  T/r k dr r sin d  T/r .θ θ∂ ∂θ θ φ ∂ ∂θ= − = − ⋅      (9) 
 
Substituting Eqs. (2), (3) and (4), (5), (6) into Eq. (1), the energy balance becomes  

( ) ( ) ( ) [ ] [ ]r
 T

q dr q d q d +q dr r sin d rd dr r sin d rd c
 r  t

− − − ⋅ ⋅ = ⋅ ⋅&φ θ
∂ ∂ ∂ ∂

φ θ θ φ θ ρ θ φ θ
∂ ∂φ ∂θ ∂

  (10) 
 
Substituting Eqs. (7), (8) and (9) for the conduction rates, find  

 [ ] [ ] T  Tk r sin d rd dr k dr rd d
r  r r sin

⎡ ⎤⎡ ⎤− − ⋅ − − ⋅⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

∂ ∂ ∂ ∂θ φ θ θ φ
∂ ∂ ∂φ θ∂φ

 

 

[ ] [ ] [ ] T  Tk dr r sin d d q dr r sin d rd dr r sin d rd c
r  t

∂ ∂ ∂θ φ θ θ φ θ ρ θ φ θ
∂θ ∂θ ∂

⎡ ⎤− − ⋅ + ⋅ ⋅ = ⋅ ⋅⎢ ⎥⎣ ⎦
&  (11) 

 
Dividing Eq. (11) by the volume of the control volume, V, Eq. 2.29 is obtained.  

2
2 2 2 2
1  T 1  T 1  T  Tkr k k sin q c .

 r  r    tr r sin r  sin

∂ ∂ ∂ ∂ ∂ ∂ ∂θ ρ
∂ ∂ ∂φ ∂ φ ∂θ ∂ θ ∂θ θ

⎡ ⎤⎡ ⎤ ⎡ ⎤+ + + =⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
&  < 

 
COMMENTS:  Note how the temperature gradients in Eqs. (7) - (9) are formulated.  The numerator 
is always ∂T while the denominator is the dimension of the control volume in the specified coordinate 
direction. 



PROBLEM 2.37 
 
KNOWN:  Temperature distribution in a semi-transparent medium subjected to radiative flux. 
 

FIND:  (a) Expressions for the heat flux at the front and rear surfaces, (b) Heat generation rate ( )q x ,&  

(c) Expression for absorbed radiation per unit surface area in terms of A, a, B, C, L, and k. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in medium, (3) 

Constant properties, (4) All laser irradiation is absorbed and can be characterized by an internal 

volumetric heat generation term ( )q x .&  
 
ANALYSIS:  (a) Knowing the temperature distribution, the surface heat fluxes are found using 

Fourier’s law, 
 

 ( ) -ax
x 2

dT A
q k k - a e B

dx ka

  
′′ = − = − − +     

 

 

 Front Surface, x=0:  ( )x
A A

q 0 k + 1 B kB
ka a

   
′′ = − ⋅ + = − +      

  < 

 

 Rear Surface, x=L:  ( ) -aL -aL
x

A A
q L k + e B e kB .

ka a

   
′′ = − + = − +      

 < 

 
(b)  The heat diffusion equation for the medium is 
 

 
d dT q d dT

0     or     q=-k
dx dx k dx dx

   
+ =   

   

&
&  

 

 ( ) -ax -axd A
q x k e B Ae .

dx ka

 
= − + + =  

&       < 

 
(c)  Performing an energy balance on the medium, 
 
 & & &E E Ein out g− + = 0  
 

recognize that &Eg  represents the absorbed irradiation.  On a unit area basis 
 

 ( ) ( ) ( )-aL
g in out x x

A
E E E q 0 q L 1 e .

a
′′ ′′ ′′ ′′ ′′= − + = − + = + −& & &     < 

 

Alternatively, evaluate & ′′Eg  by integration over the volume of the medium, 
 

 ( ) ( )
LL L -ax -ax -aL

g 0 0 0

A A
E q x dx= Ae dx=- e 1 e .

a a
 ′′ = = −  ∫ ∫& &  



PROBLEM 2.38

KNOWN: Cylindrical shell under steady-state conditions with no energy generation.

FIND: Under what conditions is a linear temperature distribution possible.

SCHEMATIC:

ASSUMPTIONS: (1) Steady state conditions. (2) One-dimensional conduction. (3) No internal
energy generation.

ANALYSIS: Under the stated conditions, the heat equation in cylindrical coordinates, Equation 2.26,
reduces to

0
d dT

kr
dr dr

 
 

 

If the temperature distribution is a linear function of r, then the temperature gradient is constant, and
this equation becomes

  0
d

kr
dr



which implies kr = constant, or k ~ 1/r. The only way there could be a linear temperature distribution

in the cylindrical shell is if the thermal conductivity were to vary inversely with r. <

COMMENTS: It is unlikely to encounter or even create a material for which k varies inversely with
the cylindrical radial coordinate r. Assuming linear temperature distributions in radial systems is
nearly always both fundamentally incorrect and physically implausible.

r

T(r)

r1 r2

T(r2)

T(r1) •

•

r1

r2

T(r1)

T(r2)

r1

r2

T(r1)

T(r2)



PROBLEM 2.39

KNOWN: Spherical shell under steady-state conditions with no energy generation.

FIND: Under what conditions is a linear temperature distribution possible.

SCHEMATIC:

ASSUMPTIONS: (1) Steady state, (2) One-dimensional, (3) No heat generation.

ANALYSIS: Under the stated conditions, the heat equation in spherical coordinates, Equation 2.29,
reduces to

2 0
d dT

kr
dr dr

 
 

 

If the temperature distribution is a linear function of r, then the temperature gradient is constant, and
this equation becomes

 2 0
d

kr
dr



which implies kr2 = constant, or k ~ 1/r2. The only way there could be a linear temperature

distribution in the spherical shell is if the thermal conductivity were to vary inversely with r2. <

COMMENTS: It is unlikely to encounter or even create a material for which k varies inversely with
the spherical radial coordinate r in the manner necessary to develop a linear temperature distribution.
Assuming linear temperature distributions in radial systems is nearly always both fundamentally
incorrect and physically implausible.

r

T(r)

r1 r2

T(r2)

T(r1) •

•

r1

r2

T(r1)

T(r2)

r1

r2

T(r1)

T(r2)



PROBLEM 2.40  
KNOWN:  Steady-state temperature distribution in a one-dimensional wall of thermal 
conductivity, T(x) = Ax3 + Bx2 + Cx + D. 
 
FIND:  Expressions for the heat generation rate in the wall and the heat fluxes at the two wall 
faces (x = 0,L).  
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional heat flow, (3) 
Homogeneous medium.  
ANALYSIS:  The appropriate form of the heat diffusion equation for these conditions is  

 d T
dx

q
k

     or     q = -k d T
dx

2

2

2

2+ =
&

& .0  
 
Hence, the generation rate is  

 2d dT dq=-k k 3Ax 2Bx + C + 0
dx dx dx

⎡ ⎤ ⎡ ⎤= − +⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
&  

 
 [ ]q=-k 6Ax + 2B&          < 
 
which is linear with the coordinate x.  The heat fluxes at the wall faces can be evaluated from 
Fourier’s law,  

 2
x

dTq k k 3Ax  + 2Bx + C
dx

⎡ ⎤′′ = − = − ⎢ ⎥⎣ ⎦
 

 
using the expression for the temperature gradient derived above.  Hence, the heat fluxes are:  
Surface x=0:  
 ( )xq 0 kC′′ = −           < 
 
Surface x=L:  
 ( ) 2

xq L k 3AL  +2BL +C .⎡ ⎤′′ = − ⎢ ⎥⎣ ⎦
       < 

 
COMMENTS:  (1) From an overall energy balance on the wall, find  

 ( ) ( ) ( ) ( )
in out g

2
x x g g

2
g

E E  E 0

q 0 q L E kC k 3AL 2BL+C E 0

E 3AkL 2BkL.

′′ ′′ ′′− + =
⎡ ⎤′′ ′′ ′′ ′′− + = − − − + + =⎢ ⎥⎣ ⎦

′′ = − −

& & &

& &

&

 

 
From integration of the volumetric heat rate, we can also find & ′′Eg  as 
 

( ) [ ]
LL L 2

g 0 0 0
2

g

E q x dx= -k 6Ax+2B dx=-k 3Ax 2Bx

E 3AkL 2BkL.

⎡ ⎤′′ = +⎢ ⎥⎣ ⎦
′′ = − −

∫ ∫& &

&
 



PROBLEM 2.41 
 
KNOWN:   Plane wall with no internal energy generation. 
 
FIND:   Determine whether the prescribed temperature distribution is possible; explain your 
reasoning. With the temperatures T(0) = 0°C and T∞  = 20°C  fixed, compute and plot the temperature 
T(L) as a function of the convection coefficient for the range 10 ≤ h ≤ 100 W/m2⋅K. 
 
SCHEMATIC:    

  
ASSUMPTIONS:  (1) One-dimensional conduction, (2) No internal energy generation, (3) Constant 
properties,  (4) No radiation exchange at the surface x = L, and (5) Steady-state conditions. 
 
ANALYSIS:  (a) Is the prescribed temperature distribution possible?  If so, the energy balance at the 
surface x = L as shown above in the Schematic, must be satisfied. 
 ( )in out x cvE E 0 q L q 0′′ ′′− = − =& &  (1,2) 
where the conduction and convection heat fluxes are, respectively, 

( ) ( ) ( ) ( ) 2
x

x L

T L T 0dT
q L k k 4.5 W m K 120 0 C 0.18 m 3000 W m

dx L=

−
′′ = − = − = − ⋅ × − = −⎞

⎟
⎠

o  

 ( )[ ] ( )2 2
cvq h T L T 30 W m K 120 20 C 3000 W m∞′′ = − = ⋅ × − =o  

Substituting the heat flux values into Eq. (2), find (-3000) - (3000) ≠ 0 and therefore, the temperature 
distribution is not possible. 
 
(b) With T(0) = 0°C and T∞  = 20°C, the temperature at the surface x = L, T(L), can be determined 
from an overall energy balance on the wall as shown above in the schematic, 

 
( ) ( ) ( )[ ]in out x cv

T L T 0
E E 0 q (0) q 0 k h T L T 0

L ∞
−

′′ ′′− = − = − − − =& &  

 ( ) ( )24.5 W m K T L 0 C 0.18 m 30 W m K T L 20 C 0− ⋅ − − ⋅ − =⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦

o o  

 T(L) = 10.9°C < 
 
Using this same analysis, T(L) as a function of 
the convection coefficient can be determined 
and plotted.  We don’t expect T(L) to be 
linearly dependent upon h.  Note that as h 
increases to larger values, T(L) approaches T∞ .  
To what value will T(L) approach as h 
decreases? 
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PROBLEM 2.42 
 
KNOWN:   Coal pile of prescribed depth experiencing uniform volumetric generation with 
convection, absorbed irradiation and emission on its upper surface. 
 
FIND:  (a) The appropriate form of the heat diffusion equation (HDE) and whether the prescribed 
temperature distribution satisfies this HDE; conditions at the bottom of the pile, x = 0; sketch of the 
temperature distribution with labeling of key features; (b) Expression for the conduction heat rate at 
the location x = L; expression for the surface temperature Ts based upon a surface energy balance at x 
= L; evaluate sT  and T(0) for the prescribed conditions; (c) Based upon typical daily averages for GS 
and h, compute and plot sT  and T(0) for (1) h = 5 W/m2⋅K with 50 ≤ GS ≤ 500 W/m2,  (2) GS = 400 
W/m2 with 5  ≤ h ≤ 50 W/m2⋅K.   
 
SCHEMATIC:   

  
ASSUMPTIONS:   (1) One-dimensional conduction, (2) Uniform volumetric heat generation, (3) 
Constant properties, (4) Negligible irradiation from the surroundings, and (5) Steady-state conditions. 
 
PROPERTIES:  Table A.3, Coal (300K): k = 0.26 W/m.K 
  
ANALYSIS:   (a) For one-dimensional, steady-state conduction with uniform volumetric heat 
generation and constant properties the heat diffusion equation (HDE) follows from Eq. 2.22, 

 
d dT q 0

dx dx k
⎛ ⎞ + =⎜ ⎟
⎝ ⎠

&
 (1) < 

Substituting the temperature distribution into the HDE, Eq. (1), 

 ( )
2 2

s 2
qL xT x T 1
2k L

⎛ ⎞
⎜ ⎟= + −
⎜ ⎟
⎝ ⎠

&
                             

2

2
d qL 2x q0 0 ? ?0

dx 2k kL

⎡ ⎤⎛ ⎞
+ − + =⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

& &
 (2,3) 

we find that it does indeed satisfy the HDE for all values of x. < 
 
From Eq. (2), note that the temperature distribution must be quadratic, with maximum value at x = 0.  
At x = 0, the heat flux is 
 
 

( )
2

x 2x 0 x 0

dT qL 2xq 0 k k 0 0 0
dx 2k L= =

⎡ ⎤⎛ ⎞⎞′′ = − = − + − =⎢ ⎥⎜ ⎟⎟
⎠ ⎢ ⎥⎝ ⎠⎣ ⎦

&

 
 
so that the gradient at x = 0 is zero.  Hence, the 
bottom is insulated. 
  
 
(b) From an overall energy balance on the pile, the conduction heat flux at the surface must be 
 

 ( )x gq L E qL′′ ′′= =& &  < 
 

Continued... 
 



 
PROBLEM 2.42 (Cont.) 

 
From a surface energy balance per unit area shown in the schematic above, 
 
 in out gE E E 0− + =& & &                                 ( )x conv S,absq L q G E 0′′ ′′− + − =  
 
 ( ) 4

s S sqL h T T 0.95G T 0εσ∞− − + − =&  (4) 
 
 ( )3 2 2 8 2 4 4

s s20 W m 1m 5 W m K T 298 K 0.95 400 W m 0.95 5.67 10 W m K T 0−× − ⋅ − + × − × × ⋅ =  

 sT  = 295.7 K =22.7°C < 
 
From Eq. (2) with x = 0, find 
 

 ( ) ( )232
s

20 W m 1mqLT 0 T 22.7 C 61.1 C
2k 2 0.26 W m K

×
= + = + =

× ⋅
o o&

 (5) < 

 
where the thermal conductivity for coal was obtained from Table A.3. 
 
(c) Two plots are generated using Eq. (4) and (5) for Ts and T(0), respectively; (1) with h = 5 W/m2⋅K 
for 50 ≤ GS ≤ 500 W/m2 and (2) with GS = 400 W/m2 for 5 ≤ h ≤ 50 W/m2⋅K. 
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From the T vs. h plot with GS = 400 W/m2, note that the convection coefficient does not have a major 
influence on the surface or bottom coal pile temperatures.  From the T vs. GS plot with h = 5 W/m2⋅K, 
note that the solar irradiation has a very significant effect on the temperatures.  The fact that Ts is less 
than the ambient air temperature, T∞ , and, in the case of very low values of GS, below freezing, is a 
consequence of the large magnitude of the emissive power E. 
 
COMMENTS:  In our analysis we ignored irradiation from the sky, an environmental radiation effect 

you’ll consider in Chapter 12.  Treated as large isothermal surroundings, Gsky = 4
skyTσ  where Tsky = -

30°C for very clear conditions and nearly air temperature for cloudy conditions.  For low GS 
conditions we should consider Gsky, the effect of which will be to predict higher values for sT  and 
T(0). 



PROBLEM 2.43  
KNOWN:  Cylindrical system with negligible temperature variation in the r,z directions.  
FIND:  (a) Heat equation beginning with a properly defined control volume, (b) Temperature 
distribution T(φ) for steady-state conditions with no internal heat generation and constant properties, 
(c) Heat rate for Part (b) conditions.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) T is independent of r,z, (2) Δr = (ro - ri) << ri.  
ANALYSIS:  (a) Define the control volume as V = ridφ⋅Δr⋅L where L is length normal to page.  Apply 
the conservation of energy requirement, Eq. 1.12c,  
& & & & &E E E E           q q qV = Vc  T

 tin out g st +d− + = − +φ φ φ ρ ∂
∂

    (1,2) 
 

where  ( ) ( )+d
i

 Tq k r L           q q q d .
r   φ φ φ φ φ
∂ ∂ φ
∂ φ ∂ φ

= − Δ ⋅ = +   (3,4) 

 
Eqs. (3) and (4) follow from Fourier’s law, Eq. 2.1, and from Eq. 2.25, respectively.  Combining Eqs. 
(3) and (4) with Eq. (2) and canceling like terms, find  

 2
i

1  T  Tk q= c .
   tr

∂ ∂ ∂ρ
∂ φ ∂ φ ∂

⎛ ⎞
+⎜ ⎟

⎝ ⎠
&        (5) < 

 
Since temperature is independent of r and z, this form agrees with Eq. 2.26.  
(b)  For steady-state conditions with &q = 0,  the heat equation, (5), becomes 
 

 d dTk 0.
d dφ φ

⎡ ⎤
=⎢ ⎥

⎣ ⎦
        (6) 

 
With constant properties, it follows that dT/dφ is constant which implies T(φ) is linear in φ.  That is,  

 ( ) ( ) ( )2 1
2 1 1 2 1

2 1

dT T T 1 1T T      or     T T T T .
d

φ φ
φ φ φ π π

−
= = + − = + −

−
  (7,8) < 

 
(c) The heat rate for the conditions of Part (b) follows from Fourier’s law, Eq. (3), using the 
temperature gradient of Eq. (7).  That is,  

 ( ) ( ) ( )o i
2 1 2 1

i i

r r1 1q k r L T T k L T T .
r rφ π π

⎡ ⎤−⎡ ⎤= − Δ ⋅ + − = − −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
  (9) < 

 
COMMENTS:  Note the expression for the temperature gradient in Fourier’s law, Eq. (3), is 
∂T/ri∂φ not ∂T/∂φ.  For the conditions of Parts (b) and (c), note that qφ is independent of φ; 
this is first indicated by Eq. (6) and confirmed by Eq. (9). 



PROBLEM 2.44  
KNOWN:  Heat diffusion with internal heat generation for one-dimensional cylindrical, 
radial coordinate system.  
FIND:  Heat diffusion equation.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Homogeneous medium.  
ANALYSIS:  Control volume has volume, V = A dr = 2 r dr 1,r ⋅ ⋅ ⋅π  with unit thickness 
normal to page.  Using the conservation of energy requirement, Eq. 1.12c,  

 
& & & &

& .

E E E E

q q qV = Vc  T
t

in out gen st

r r+dr p

− + =

− + ρ ∂
∂

 

 
Fourier’s law, Eq. 2.1, for this one-dimensional coordinate system is  

 q kA  T
 r

k 2 r 1  T
 rr r= − = − × ⋅ ×

∂
∂

π ∂
∂

.  
 
At the outer surface, r + dr, the conduction rate is  

 ( )r+dr r r r
 Tq q q dr=q k 2 r dr.

 r  r  r
∂ ∂ ∂π
∂ ∂ ∂

⎡ ⎤= + + − ⋅ ⋅⎢ ⎥⎣ ⎦
 

 
Hence, the energy balance becomes  

 r r p
 T  Tq q k2 r dr q 2 rdr= 2 rdr c

r  r  t
∂ ∂ ∂π π ρ π
∂ ∂ ∂

⎡ ⎤⎡ ⎤− + − + ⋅ ⋅ ⋅⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
&  

 
Dividing by the factor 2πr dr, we obtain  

 p
1  T  Tkr q= c .
r  r  r  t
∂ ∂ ∂ρ
∂ ∂ ∂

⎡ ⎤ +⎢ ⎥⎣ ⎦
&         < 

 
COMMENTS:  (1) Note how the result compares with Eq. 2.26 when the terms for the φ,z 
coordinates are eliminated.  (2) Recognize that we did not require &q  and k to be independent 
of r. 



PROBLEM 2.45  
KNOWN:  Heat diffusion with internal heat generation for one-dimensional spherical, radial 
coordinate system.  
FIND:  Heat diffusion equation.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Homogeneous medium.  
ANALYSIS:  Control volume has the volume, V = Ar ⋅ dr = 4πr2dr.  Using the conservation 
of energy requirement, Eq. 1.12c,  

 
& & & &

& .

E E E E

q q qV = Vc  T
t

in out gen st

r r+dr p

− + =

− + ρ ∂
∂

 

 
Fourier’s law, Eq. 2.1, for this coordinate system has the form  

 q kA  T
 r

k 4 r  T
 rr r

2= − = − ⋅ ⋅
∂
∂

π ∂
∂

.  
 
At the outer surface, r + dr, the conduction rate is  

 ( ) 2
r+dr r r r

 Tq q q dr q k 4 r dr.
 r  r  r
∂ ∂ ∂π
∂ ∂ ∂

⎡ ⎤= + = + − ⋅ ⋅⎢ ⎥⎣ ⎦
 

 
Hence, the energy balance becomes  

 2 2 2
r r p

T  Tq q k 4 r dr q 4 r dr= 4 r dr c .
r  r  t

∂ ∂ ∂π π ρ π
∂ ∂ ∂

⎡ ⎤⎡ ⎤− + − ⋅ ⋅ + ⋅ ⋅ ⋅⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
&  

 
Dividing by the factor 4 2πr dr,  we obtain 
 

 2
p2

1  T  Tkr q= c .
 r  r  tr

∂ ∂ ∂ρ
∂ ∂ ∂

⎡ ⎤ +⎢ ⎥⎣ ⎦
&        < 

 
COMMENTS:  (1) Note how the result compares with Eq. 2.29 when the terms for the θ,φ 
directions are eliminated.  
(2) Recognize that we did not require &q  and k to be independent of the coordinate r. 



PROBLEM 2.46

KNOWN: Temperature distribution in steam pipe insulation.

FIND: Whether conditions are steady-state or transient. Manner in which heat flux and heat rate
vary with radius.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction in r, (2) Constant properties.

ANALYSIS: From Equation 2.26, the heat equation reduces to

1 T 1 T
r .

r r r t

  

   

 
 

 

Substituting for T(r),

11 T 1 C
r 0.

t r r r

 

  

 
  

 

Hence, steady-state conditions exist. <
From Equation 2.23, the radial component of the heat flux is

    q k
T

r
k

C

r
r

1


.

Hence, q r decreases with increasing  rr q 1/ r . <

At any radial location, the heat rate is

q rLq kC Lr r 1   2 2 

Hence, qr is independent of r. <

COMMENTS: The requirement that qr is invariant with r is consistent with the energy conservation

requirement. If qr is constant, the flux must vary inversely with the area perpendicular to the direction

of heat flow. Hence, q r varies inversely with r.



PROBLEM 2.47 
 
KNOWN:  Inner and outer radii and surface temperatures of a long circular tube with internal energy 
generation. 
 
FIND:  Conditions for which a linear radial temperature distribution may be maintained. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) One-dimensional, steady-state conduction, (2) Constant properties. 
 
ANALYSIS:  For the assumed conditions, Eq. 2.26 reduces to 
 

 
k d dTr q 0
r dr dr

⎛ ⎞ + =⎜ ⎟
⎝ ⎠

&  

 
If q&  = 0 or q&  = constant, it is clearly impossible to have a linear radial temperature distribution.  
However, we may use the heat equation to infer a special form of q& (r) for which dT/dr is a constant (call 
it C1).  It follows that 
 

 ( )1
k d r C q 0
r dr

+ =&  

 1C kq
r

= −&  < 

 
where C1 = (T2 - T1)/(r2 - r1).  Hence, if the generation rate varies inversely with radial location, the radial 
temperature distribution is linear. 
 
COMMENTS:  Conditions for which q& ∝ (1/r) would be unusual. 



PROBLEM 2.48

KNOWN: Radii and thermal conductivity of conducting rod and cladding material. Volumetric rate

of thermal energy generation in the rod. Convection conditions at outer surface.

FIND: Heat equations and boundary conditions for rod and cladding.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in r, (3) Constant
properties.

ANALYSIS: From Equation 2.26, the appropriate forms of the heat equation are

Conducting Rod:

r rk d dT
r q 0

r dr dr

 
  

 
 <

Cladding:

cdTd
r 0.

dr dr

 
 

 
<

Appropriate boundary conditions are:

(a) r r=0dT / dr| 0 <

(b)    r i c iT r T r <

(c)
i i

cr
r r c r

dTdT
k | =k |

dr dr
<

(d)  
o

c
c r c o

dT
- k | h T r T

dr
    <

COMMENTS: Condition (a) corresponds to symmetry at the centerline, while the interface

conditions at r = ri (b,c) correspond to requirements of thermal equilibrium and conservation of

energy. Condition (d) results from conservation of energy at the outer surface. Note that contact
resistance at the interface between the rod and cladding has been neglected.



PROBLEM 2.49

KNOWN: Steady-state temperature distribution for hollow cylindrical solid with volumetric heat
generation.

FIND: (a) Determine the inner radius of the cylinder, ri, (b) Obtain an expression for the volumetric

rate of heat generation, q, (c) Determine the axial distribution of the heat flux at the outer surface,

 r oq r ,, z and the heat rate at this outer surface; is the heat rate in or out of the cylinder; (d)

Determine the radial distribution of the heat flux at the end faces of the cylinder,  z oq r, z  and

 z oq r, z  , and the corresponding heat rates; are the heat rates in or out of the cylinder; (e)

Determine the relationship of the surface heat rates to the heat generation rate; is an overall energy
balance satisfied?

SCHEMATIC:

boundary

Insulated a = 20oC

b = 150 C/mo 2

k = 16 W/m-K

c = -12 Co

d = -300 C/mo 2

T(r,z) = a + br + cln(r) + dz r(m), z(m)2 2

+z = 2.5 mo

-z = 2.5 mo

z

r
ri0 r = 1 mo

ASSUMPTIONS: (1) Steady-state conditions, (2) Two-dimensional conduction with constant
properties and volumetric heat generation.

ANALYSIS: (a) Since the inner boundary, r = ri, is adiabatic, then  r iq r z 0.,  Hence the

temperature gradient in the r-direction must be zero.

i i
ri

T
0 2br c / r 0 0

r

 
     

1/ 21/ 2

i 2

c 12 C
r 0.2 m

2b 2 150 C / m

   
        

    
<

(b) To determine q, substitute the temperature distribution into the heat diffusion equation, Eq. 2.26,

for two-dimensional (r,z), steady-state conduction

1 T T q
r 0

r r r z z k

      
     

      



    
1 q

r 0 2br c / r 0 0 0 0 2dz 0
r r z k

 
        

 



 
1 q

4br 0 2d 0
r k

   


   2 2 3q k 4b 2d 16 W / m K 4 150 C / m 2 300 C / m 0W / m            
 

 <

(c) The heat flux and the heat rate at the outer surface, r = ro, may be calculated using Fourier’s law.

   r o, o o

ro

T
q r z k k 0 2br c / r 0

r


       







Continued …



PROBLEM 2.49 (Cont.)

  2 2

r o,q r z 16 W / m K 2 150 C / m 1 m 12 C /1 m 4608 W / m           
  <

     r o r r o, r o oq r A q r z where A 2 r 2z  

  2

r oq r 4 1 m 2.5 m 4608 W / m 144,765 W       <

Note that the sign of the heat flux and heat rate in the positive r-direction is negative, and hence the
heat flow is into the cylinder.

(d) The heat fluxes and the heat rates at end faces, z = + zo and – zo, may be calculated using Fourier’s
law. The direction of the heat rate in or out of the end face is determined by the sign of the heat flux in
the positive z-direction.

At the upper end face, z = + zo: <

   
o

z o o
z

T
q r, z k k 0 0 0 2dz

z


        







   2 2
z oq r, z 16 W / m K 2 300 C / m 2.5 m 24, 000 W / m          <

     2 2
z o z z o z o iq z A q r, z where A r r    

   2 2 2 2
z oq z 1 0.2 m 24, 000 W / m 72, 382 W      <

Thus, heat flows out of the cylinder.

At the lower end face, z = - zo: <
   z o o

zo

T
q r, z k k 0 0 0 2d( z

z
)




         







    2 2

z oq r, z 16 W / m K 2 300 C / m 2.5 m 24, 000 W / m           <
 z oq z 72,382 W   <

Again, heat flows out of the cylinder.

(e) The heat rates from the surfaces and the volumetric heat generation can be related through an
overall energy balance on the cylinder as shown in the sketch.

r

r
q”(r ,z) = -4,608 W/m2

o

z

z

z

z

q”(r,-z ) = -24,000 W/mo
2

q”(r,+z ) = +24,000 W/mo
2

q (r,-z ) = -72,382 Wo

q (r,+z ) = +72,382 Wo

q ( ) = -144,765 Wr ,zo

z

r

Continued…



PROBLEM 2.49 (Cont.)

in out gen genE E E 0 where E q 0         

   in r oE q r 144,765 W 144,765 W       <

      out z o z oE q z q z 72,382 72,382 W 144,764 W         <

The overall energy balance is satisfied.

COMMENTS: When using Fourier’s law, the heat flux zq denotes the heat flux in the positive z-

direction. At a boundary, the sign of the numerical value will determine whether heat is flowing into
or out of the boundary.



PROBLEM 2.50 
 
KNOWN:   An electric cable with an insulating sleeve experiences convection with adjoining air and 
radiation exchange with large surroundings. 
 
FIND: (a) Verify that prescribed temperature distributions for the cable and insulating sleeve satisfy 
their appropriate heat diffusion equations; sketch temperature distributions labeling key features; (b) 
Applying Fourier's law, verify the conduction heat rate expression for the sleeve, rq′ , in terms of Ts,1 
and Ts,2; apply a surface energy balance to the cable to obtain an alternative expression for rq′  in terms 
of q& and r1; (c) Apply surface energy balance around the outer surface of the sleeve to obtain an 
expression for which Ts,2 can be evaluated;  (d) Determine Ts,1, Ts,2, and To for the specified geometry 
and operating conditions; and (e) Plot Ts,1, Ts,2, and To as a function of the outer radius for the range 
15.5 ≤ r2 ≤ 20 mm. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1)  One-dimensional, radial conduction, (2) Uniform volumetric heat generation 
in cable, (3) Negligible thermal contact resistance between the cable and sleeve,  (4) Constant 
properties in cable and sleeve, (5) Surroundings large compared to the sleeve, and (6) Steady-state 
conditions. 
 
ANALYSIS:   (a) The appropriate forms of the heat diffusion equation (HDE) for the insulation and 
cable are identified.  The temperature distributions are valid if they satisfy the relevant HDE. 
 
Insulation:  The temperature distribution is given as 

 ( ) ( ) ( )
( )

2
s,2 s,1 s,2

1 2

ln r r
T r T T T

ln r r
= + −  (1) 

and the appropriate HDE (radial coordinates, SS, q&  = 0), Eq. 2.26, 
 

 
d dTr 0
dr dr
⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

 

 ( ) ( ) ( )
s,1 s,2

s,1 s,2
1 2 1 2

T Td 1 r dr 0 T T 0
dr ln r r dr ln r r

⎛ ⎞⎡ ⎤ ⎛ ⎞−
+ − = =⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎝ ⎠

 

Hence, the temperature distribution satisfies the HDE. < 
 
 
 

Continued... 
 
 

 



PROBLEM 2.50 (Cont.) 
 

 
Cable:  The temperature distribution is given as 

 ( )
2 2

1
s,1 2c 1

qr rT r T 1
4k r

⎛ ⎞
⎜ ⎟= + −
⎜ ⎟
⎝ ⎠

&
 (2) 

 
and the appropriate HDE (radial coordinates, SS, q&  uniform), Eq. 2.26, 

 
c

1 d dT q
r 0

r dr dr k
+ =⎛ ⎞

⎜ ⎟
⎝ ⎠

&
 

 

 
2

1
2c c1

qr1 d 2r q
r 0 0 0

r dr 4k kr
+ − + =

⎛ ⎞⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎜ ⎟⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

& &
 

 

 
2 2

1
2c c1

qr1 d 2r q
0

r dr 4k kr
− + =
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

& &
 

 

 
2

1
2c c1

qr1 4r q
0

r 4k kr
− + =
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

& &
 

Hence the temperature distribution satisfies the HDE.                                                                        < 
 
The temperature distributions in the cable, 0 ≤ r ≤ r1, and sleeve, r1 ≤ r ≤ r2, and their key features are 
as follows: 
 
(1) Zero gradient, symmetry condition, 
 
(2) Increasing gradient with increasing radius, 
r, because of q& , 
 
(3) Discontinuous gradient of T(r) across 
cable-sleeve interface because of different 
thermal conductivities, 
 
(4) Decreasing gradient with increasing radius, 
r, since heat rate is constant. 

 

 
(b) Using Fourier’s law for the radial-cylindrical coordinate, the heat rate through the insulation 
(sleeve) per unit length is 
 

 r r
dT dT

q kA k2 r
dr dr

π′ ′= − = −  < 
 
and substituting for the temperature distribution, Eq. (1), 
 

 ( ) ( )
( )

( )
s,1 s,2

r s s,1 s,2 s
1 2 2 1

T T1 r
q k 2 r 0 T T 2 k

ln r r ln r r
π π

−
′ = − + − =

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (3) < 

 
Applying an energy balance to a control surface placed around the cable, 
 

Continued... 



 
PROBLEM 2.50 (Cont.) 

 
 
 in outE E 0− =& &  
 
 c rq q 0′∀ − =&  

 
 

where cq∀&  represents the dissipated electrical power in the cable 
 

 ( )2 2
1 r r 1q r q 0 or q qrπ π′ ′− = =& &  (4) < 

 
(c) Applying an energy balance to a control surface placed around the outer surface of the sleeve, 
 
 

in outE E 0− =& &  
  

r conv radq q q 0′ ′ ′− − =  
      

 
 

 ( )( ) ( ) ( )2 4 4
1 2 s,2 2 s,2 surqr h 2 r T T 2 r T T 0π π ε π σ∞− − − − =&  (5) < 

 
This relation can be used to determine Ts,2 in terms of the variables q& , r1, r2, h, T∞, ε and Tsur. 
 
(d) Consider a cable-sleeve system with the following prescribed conditions: 
 

r1 = 15 mm kc = 200 W/m⋅K h = 25 W/m2⋅K ε = 0.9 
r2 = 15.5 mm ks = 0.15 W/m⋅K T∞  = 25°C Tsur = 35°C 

 
For 250 A with eR′  = 0.005 Ω/m, the volumetric heat generation rate is 
 

 ( )2 2 2
e e 1q I R I R rc π′ ′= ∀ =&  

 

 ( ) ( )2 2 2 5 3q 250 A 0.005 / m 0.015 m 4.42 10 W mπ= × Ω × = ×&  
 
Substituting numerical values in appropriate equations, we can evaluate Ts,1, Ts,2 and To.  
Sleeve outer surface temperature, Ts,2:  Using Eq. (5), 
 

 ( ) ( )( )25 3 2
s,24.42 10 W m 0.015m 25 W m K 2 0.0155m T 298Kπ π× × × − ⋅ × × −  

            ( ) ( )8 2 4 4 4 4
s,20.9 2 0.0155m 5.67 10 W m K T 308 K 0π −− × × × × ⋅ − =  

 s,2T 395 K 122 C= = o  < 
 
Sleeve-cable interface temperature, Ts,1:  Using Eqs. (3) and (4), with Ts,2 = 395 K, 

Continued... 
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PROBLEM 2.50 (Cont.) 
 

 

 
( )

( )
s,1 s,22

1 s
2 1

T T
qr 2 k

ln r r
π π

−
=&  

 ( ) ( )
( )
s,125 3 T 395 K

4.42 10 W m 0.015 m 2 0.15 W m K
ln 15.5 15.0

π π
−

× × × = × ⋅  

 s,1T 406 K 133 C= = o  < 
 

Cable centerline temperature, To:  Using Eq. (2) with Ts,1 = 133°C, 
 

 
2

1
o s,1

c

qr
T T(0) T

4k
= = +

&
 

 ( ) ( )25 3
oT 133 C 4.42 10 W m 0.015 m 4 200 W m K 133.1 C= + × × × ⋅ =o o  < 

 
(e) With all other conditions remaining the same, the relations of part (d) can be used to calculate To, 
Ts,1 and Ts,2 as a function of the sleeve outer radius r2 for the range 15.5 ≤ r2 ≤ 20 mm. 

15 16 17 18 19 20

Sleeve outer radius, r2 (mm)

100

120

140

160

180

200

Te
m

pe
ra

tu
re

, T
s1

 o
r T

s2
 (C

)

Inner sleeve, r1
Outer sleeve, r2   

On the plot above To would show the same behavior as Ts,1 since the temperature rise between cable 
center and its surface is 0.12°C.  With increasing r2, we expect Ts,2 to decrease since the heat flux 
decreases with increasing r2.  We expect Ts,1 to increase with increasing r2 since the thermal resistance 
of the sleeve increases. 



PROBLEM 2.51

KNOWN: Temperature distribution in a spherical shell.

FIND: Whether conditions are steady-state or transient. Manner in which heat flux and heat rate
vary with radius.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction in r, (2) Constant properties.

ANALYSIS: From Equation 2.29, the heat equation reduces to

2
2

1 T 1 T
r .

r r tr

  

   

 
 

 

Substituting for T(r),

2 1
2 2

1 T 1 C
r 0.

t rr r

 

  

 
   

 

Hence, steady-state conditions exist. <
From Equation 2.28, the radial component of the heat flux is

1
r 2

CT
q k k .

r r
   





Hence, q r decreases with increasing  2 2
rr q 1/ r .  <

At any radial location, the heat rate is

q r q kCr
2

r 1  4 4  .

Hence, qr is independent of r. <

COMMENTS: The fact that qr is independent of r is consistent with the energy conservation

requirement. If qr is constant, the flux must vary inversely with the area perpendicular to the direction

of heat flow. Hence, q r varies inversely with r
2
.



PROBLEM 2.52  
KNOWN:  Spherical container with an exothermic reaction enclosed by an insulating material whose 
outer surface experiences convection with adjoining air and radiation exchange with large 
surroundings. 
 
FIND:  (a)  Verify that the prescribed temperature distribution for the insulation satisfies the 
appropriate form of the heat diffusion equation; sketch the temperature distribution and label key 
features; (b) Applying Fourier's law, verify the conduction heat rate expression for the insulation layer, 
qr, in terms of Ts,1 and Ts,2; apply a surface energy balance to the container and obtain an alternative 
expression for qr in terms of q&  and r1;  (c) Apply a surface energy balance around the outer surface of 
the insulation to obtain an expression to evaluate Ts,2; (d) Determine Ts,2 for the specified geometry 
and operating conditions;  (e) Compute and plot the variation of Ts,2 as a function of the outer radius 
for the range 201 ≤ r2 ≤ 210 mm; explore approaches for reducing Ts,2 ≤  45°C to eliminate potential 
risk for burn injuries to personnel. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) One-dimensional, radial spherical conduction, (2)  Isothermal reaction in 
container so that To = Ts,1, (2) Negligible thermal contact resistance between the container and 
insulation, (3) Constant properties in the insulation, (4) Surroundings large compared to the insulated 
vessel, and (5) Steady-state conditions. 
 
ANALYSIS:    The appropriate form of the heat diffusion equation (HDE) for the insulation follows 
from Eq. 2.29, 
 

 2
2
1 d dT

r 0
dr drr

=⎛ ⎞
⎜ ⎟
⎝ ⎠

 (1) < 

 
The temperature distribution is given as 
 

 ( ) ( ) ( )
( )

1
s,1 s,1 s,2

1 2

1 r r
T r T T T

1 r r
−

= − −
−

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (2) 

Substitute T(r) into the HDE to see if it is satisfied: 

 ( ) ( )
( )

2
12

s,1 s,22 1 2

0 r r1 d
r 0 T T 0

dr 1 r rr

+
− − =

−

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

 

 

 ( ) ( )
1

s,1 s,22 1 2

r1 d
T T 0

dr 1 r rr
+ − =

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

 < 

 
and since the expression in parenthesis is independent of r, T(r) does indeed satisfy the HDE.  The 
temperature distribution in the insulation and its key features are as follows: 

Continued... 



 
PROBLEM 2.52 (Cont.) 

 
 
(1)  Ts,1 > Ts,2 
 
(2)  Decreasing gradient with increasing radius, 
       r, since the heat rate is constant through 
       the insulation. 

 
 
(b) Using Fourier’s law for the radial-spherical coordinate, the heat rate through the insulation is 
 

 ( )2
r r

dT dT
q kA k 4 r

dr dr
π= − = −  < 

 
and substituting for the temperature distribution, Eq. (2), 
 

 ( ) ( )
( )

2
12

r s,1 s,2
1 2

0 r r
q 4k r 0 T T

1 r r

+
= − − −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

π  

 

 
( )

( ) ( )
s,1 s,2

r
1 2

4 k T T
q

1 r 1 r

π −
=

−
 (3) < 

 
Applying an energy balance to a control surface about the container at r = r1, 
 
 
 in outE E 0− =& &  
 
 rq q 0∀− =&  

 
where q∀&  represents the generated heat in the container, 
 

 ( ) 3
r 1q 4 3 r qπ= &  (4) < 

 
(c) Applying an energy balance to a control surface placed around the outer surface of the insulation, 
 
  
  

in outE E 0− =& &  
 

r conv radq q q 0− − =  
 
 

 
 
 

 ( ) ( )4 4
r s s,2 s s,2 surq hA T T A T T 0ε σ∞− − − − =  (5) < 

 
Continued... 
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where 

 2
s 2A 4 rπ=  (6) 

 
These relations can be used to determine Ts,2 in terms of the variables q& , r1, r2, h, T∞ , ε and Tsur. 
 
(d) Consider the reactor system operating under the following conditions: 
 

r1 = 200 mm h = 5 W/m2⋅K ε = 0.9 
r2 = 208 mm T∞  = 25°C Tsur = 35°C 
k = 0.05 W/m⋅K   

 
The heat generated by the exothermic reaction provides for a volumetric heat generation rate, 
 
 ( ) 3

o o oq q exp A T q 5000 W m A 75 K= − = =& &  (7) 
 
where the temperature of the reaction is that of the inner surface of the insulation, To = Ts,1.  The 
following system of equations will determine the operating conditions for the reactor. 
 
Conduction rate equation, insulation, Eq. (3),  

 
( )

( )
s,1 s,2

r
4 0.05 W m K T T

q
1 0.200 m 1 0.208 m

π × ⋅ −
=

−
 (8) 

 
Heat generated in the reactor, Eqs. (4) and (7),  

 ( )3rq 4 3 0.200 m qπ= &  (9) 
 
 ( )3

s,1q 5000 W m exp 75 K T= −&  (10) 
 
Surface energy balance, insulation, Eqs. (5) and (6),  

 ( ) ( )( )42 8 2 4 4
r s s,2 s s,2q 5 W m K A T 298 K 0.9A 5.67 10 W m K T 308 K 0−− ⋅ − − × ⋅ − =  (11) 

 

 ( )2sA 4 0.208 mπ=  (12) 
 
Solving these equations simultaneously, find that 
 

 s,1 s,2T 94.3 C T 52.5 C= =o o  < 
 
That is, the reactor will be operating at To = Ts,1 = 94.3°C, very close to the desired 95°C operating 
condition. 
 
(e) Using the above system of equations, Eqs. (8)-(12), we have explored the effects of changes in the 
convection coefficient, h, and the insulation thermal conductivity, k, as a function of insulation 
thickness, t = r2 - r1. 

 
Continued... 
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In the Ts,2 vs. (r2 - r1) plot, note that decreasing the thermal conductivity from 0.05 to 0.01 W/m⋅K 
slightly increases Ts,2 while increasing the convection coefficient from 5 to 15 W/m2⋅K markedly 
decreases Ts,2.  Insulation thickness only has a minor effect on Ts,2 for either option.  In the To vs. (r2 - 
r1) plot, note that, for all the options, the effect of increased insulation is to increase the reaction 
temperature.  With k = 0.01 W/m⋅K, the reaction temperature increases beyond 95°C with less than 2 
mm insulation.  For the case with h = 15 W/m2⋅K, the reaction temperature begins to approach 95°C 
with insulation thickness around 10 mm.  We conclude that by selecting the proper insulation 
thickness and controlling the convection coefficient, the reaction could be operated around 95°C such 
that the outer surface temperature would not exceed 45°C. 



PROBLEM 2.53  
KNOWN:  Thin electrical heater dissipating 4000 W/m2 sandwiched between two 25-mm thick plates 
whose surfaces experience convection. 
 
FIND:  (a) On T-x coordinates, sketch the steady-state temperature distribution for -L ≤ × ≤ +L; 
calculate values for the surfaces x =  L and the mid-point, x = 0; label this distribution as Case 1 and 
explain key features; (b)  Case 2: sudden loss of coolant causing existence of adiabatic condition on 
the x = +L surface; sketch temperature distribution on same T-x coordinates as part (a) and calculate 
values for x = 0, ± L; explain key features; (c) Case 3: further loss of coolant and existence of 
adiabatic condition on the x = - L surface; situation goes undetected for 15 minutes at which time 
power to the heater is deactivated; determine the eventual (t → ∞) uniform, steady-state temperature 
distribution; sketch temperature distribution on same T-x coordinates as parts (a,b); and (d) On T-t 
coordinates, sketch the temperature-time history at the plate locations x = 0, ± L during the transient 
period between the steady-state distributions for Case 2 and Case 3; at what location and when will the 
temperature in the system achieve a maximum value? 
 
SCHEMATIC: 
 

 
 
ASSUMPTIONS:  (1) One-dimensional conduction, (2) Constant properties, (3) No internal 
volumetric generation in plates, and (3) Negligible thermal resistance between the heater surfaces and 
the plates.  
ANALYSIS:  (a) Since the system is symmetrical, the heater power results in equal conduction fluxes 
through the plates.  By applying a surface energy balance on the surface x = +L as shown in the 
schematic, determine the temperatures at the mid-point, x = 0, and the exposed surface, x + L.  

  
 in outE E 0− =& &  

 ( ) ( )x conv x oq L q 0 where q L q / 2′′ ′′ ′′ ′′+ − = + =  

 ( )oq / 2 h T L T 0∞′′ ⎡ ⎤− + − =⎣ ⎦  

 ( ) ( )2 2
1 oT L q / 2h T 4000 W / m / 2 400 W / m K 20 C 25 C∞′′+ = + = × ⋅ + ° = °   < 

From Fourier’s law for the conduction flux through the plate, find T(0). 
 ( ) ( )x oq q / 2 k T 0 T L / L′′ ′′ ⎡ ⎤= = − +⎣ ⎦  

 ( ) ( ) ( )2
1 1 oT 0 T L q L / 2k 25 C 4000 W / m K 0.025m / 2 5 W / m K 35 C′′= + + = ° + ⋅ × × ⋅ = °  < 

 
The temperature distribution is shown on the T-x coordinates below and labeled Case 1.  The key 
features of the distribution are its symmetry about the heater plane and its linear dependence with 
distance. 
          Continued … 



PROBLEM 2.53 (Cont.) 
 

 
 
(b) Case 2: sudden loss of coolant with the existence of an adiabatic condition on surface x = +L.  For 
this situation, all the heater power will be conducted to the coolant through the left-hand plate.  From a 
surface energy balance and application of Fourier’s law as done for part (a), find  

 ( ) 2 2
2 oT L q / h T 4000 W / m / 400 W / m K 20 C 30 C∞′′− = + = ⋅ + ° = °   < 

 ( ) ( ) 2
2 2 oT 0 T L q L / k 30 C 4000 W / m 0.025 m / 5 W / m K 50 C′′= − + = ° + × ⋅ = °  < 

The temperature distribution is shown on the T-x coordinates above and labeled Case 2.  The 
distribution is linear in the left-hand plate, with the maximum value at the mid-point.  Since no heat 
flows through the right-hand plate, the gradient must zero and this plate is at the maximum 
temperature as well.  The maximum temperature is higher than for Case 1 because the heat flux 
through the left-hand plate has increased two-fold. 
 
(c) Case 3: sudden loss of coolant occurs at the x = -L surface also.  For this situation, there is no heat 
transfer out of either plate, so that for a 15-minute period, Δto, the heater dissipates 4000 W/m2 and 
then is deactivated.  To determine the eventual, uniform steady-state temperature distribution, apply 
the conservation of energy requirement on a time-interval basis, Eq. 1.12b.  The initial condition 
corresponds to the temperature distribution of Case 2, and the final condition will be a uniform, 
elevated temperature Tf = T3 representing Case 3.  We have used T∞ as the reference condition for the 
energy terms.  
 in out gen st f iE E E E E E′′ ′′ ′′ ′′ ′′ ′′− + = Δ = −        (1) 

Note that in outE E 0′′ ′′− = , and the dissipated electrical energy is 

 ( )2 6 2
gen o oE q t 4000 W / m 15 60 s 3.600 10 J / m′′ ′′= Δ = × = ×     (2) 

For the final condition, 

( )[ ] ( )[ ]
[ ]

3
f f f

4 2
f f

E c 2L T T 2500kg / m 700J / kg K 2 0.025m T 20 C
8.75 10 T 20 J / mE
ρ ∞′′ = − = × ⋅ × − °

= × −′′
 (3) 

where Tf = T3, the final uniform temperature, Case 3.  For the initial condition, 

 ( )[ ] ( )[ ] ( )[ ]{ }L 0 L
i 2 2 2L L 0

E c T x T dx c T x T dx T 0 T dxρ ρ
+ +

∞ ∞ ∞− −
′′ = − = − + −∫ ∫ ∫  (4) 

where ( )2T x  is linear for –L ≤ x ≤ 0 and constant at ( )2T 0  for 0 ≤ x ≤ +L. 

 ( ) ( ) ( ) ( )2 2 2 2T x T 0 T 0 T L x / L L x 0⎡ ⎤= + − − ≤ ≤⎣ ⎦  

 ( ) [ ]2T x 50 C 50 30 Cx / 0.025m= ° + − °  

 ( )2T x 50 C 800x= ° +          (5) 

Substituting for ( )2T x ,  Eq. (5), into Eq. (4) 
          Continued … 



PROBLEM 2.53 (Cont.) 
 

 [ ] ( )0
i 2L

E c 50 800x T dx T 0 T Lρ ∞ ∞−
⎧ ⎫′′ ⎡ ⎤= + − + −⎨ ⎬⎣ ⎦⎩ ⎭∫  

 ( )
02

i 2
L

E c 50x 400x T x T 0 T Lρ ∞ ∞
−

⎧ ⎫⎪ ⎪⎡ ⎤′′ ⎡ ⎤= + − + −⎨ ⎬⎣ ⎦⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭
 

 ( ){ }2
i 2E c 50L 400L T L T 0 T Lρ ∞ ∞⎡ ⎤′′ ⎡ ⎤= − − + + + −⎣ ⎦⎢ ⎥⎣ ⎦

 

 ( ){ }i 2E cL 50 400L T T 0 Tρ ∞ ∞′′ = + − − + −  

 { }3
iE 2500 kg / m 700 J / kg K 0.025 m 50 400 0.025 20 50 20 K′′ = × ⋅ × + − × − + −  

 6 2
iE 2.188 10 J / m′′ = ×         (6) 

Returning to the energy balance, Eq. (1), and substituting Eqs. (2), (3) and (6), find Tf = T3. 

 [ ]6 2 4 6 2
33.600 10 J / m 8.75 10 T 20 2.188 10 J / m× = × − − ×  

 ( )3T 66.1 20 C 86.1 C= + ° = °         < 
The temperature distribution is shown on the T-x coordinates above and labeled Case 3.  The 
distribution is uniform, and considerably higher than the maximum value for Case 2. 
 
(d) The temperature-time history at the plate locations x = 0, ± L during the transient period between 
the distributions for Case 2 and Case 3 are shown on the T-t coordinates below. 
 

 
 
Note the temperatures for the locations at time t = 0 corresponding to the instant when the surface       
x = - L becomes adiabatic.  These temperatures correspond to the distribution for Case 2.  The heater 
remains energized for yet another 15 minutes and then is deactivated.  The midpoint temperature,  
T(0,t), is always the hottest location and the maximum value slightly exceeds the final temperature T3. 



PROBLEM 2.54

KNOWN: One-dimensional system, initially at a uniform temperature Ti, is suddenly
exposed to a uniform heat flux at one boundary, while the other boundary is insulated.

FIND: (a) Proper form of heat equation and boundary and initial conditions, (b) Temperature
distributions for following conditions: initial condition (t  0), and several times after heater
is energized; will a steady-state condition be reached; (c) Heat flux at x = 0, L/2, L as a
function of time; (d) Expression for uniform temperature, Tf, reached after heater has been
switched off following an elapsed time, te, with the heater on.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) No internal heat generation, (3)
Constant properties.

ANALYSIS: (a) The appropriate form of the heat equation follows from Eq. 2.21. Also, the
appropriate boundary and initial conditions are:

Initial condition:   iT x,0 T Uniform temperature



 





2 1T

x

T

t2
 Boundary conditions: x q k T / x)o 0   0  

Lx L T/ x) 0  

(b) The temperature distributions are as follows:

<

No steady-state condition will be reached since   E E and Ein st in is constant.

(c)The heat flux as a function of time for positions x = 0, L/2 and L is as follows:

<
(d) If the heater is energized until t = te and then switched off, the system will eventually

reach a uniform temperature, Tf. Perform an energy balance on the system, Eq. 1.12b, for
an interval of time t = te,

 et
in st in in o s o s e st f i0

E E E Q q A dt q A t E Mc T T      

It follows that   o s e
o s e f i f i

q A t
q A t Mc T T or T T .

Mc


     <



PROBLEM 2.55

KNOWN: Dimensions of one-dimensional plane wall, initial and boundary conditions.

FIND: (a) Differential equation, boundary and initial conditions used to determine T(x,t), (b) Sketch
of the temperature distributions for the initial condition, the steady-state condition, and for two

intermediate times, (c) Sketch of the heat flux " ( , )xq x t at the planes x = 0, -L, and +L, (d) Sketch of the

temperature distributions for the initial condition, the steady-state condition, and for two intermediate

times for h1 twice the previous value, (e) Sketch of the heat flux " ( , )xq x t at the planes x = 0, -L, and +L

for h1 twice the previous value.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional heat transfer, (2) Constant properties, (3) No internal
generation.

ANALYSIS: The differential equation may be found by simplifying the heat equation, Equation
2.21. The simplification yields

2

2

1T T

tx 

 



The initial and boundary conditions are:

( , 0) oT x t T  ; 1 ,1 ( , )
x L

T
k h T T x L t

x





      

; 2 ,2( , )
x L

T
k h T x L t T

x





      

(b) The temperature distributions are shown in the sketch below.

Continued…
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PROBLEM 2.55

The temperature is uniform at the initial time, as required by the initial condition listed in part (a).
Note the temperature gradients at the exposed surfaces are large at early times and decrease in
magnitude as the convective heat flux is reduced, as required by the boundary conditions listed in part
(a). The steady-state temperature distribution is linear. At the steady state,

1 ,1 2 ,2( ) ( )
dT

k h T T x L h T x L T
dx

               

(c) At any time, the heat fluxes at x =  L are identical. The initial heat flux value is " ( )xq x L  =

h1[T,1 – To] = h2[To - T,2]. As time progresses, thermal effects propagate to x = 0, resulting in a
uniform heat flux distribution throughout the wall thickness.

(d) A comparison of the transient response of the system for a doubled value of h1 is shown in the
RHS sketch below. Note that for all but the initial time, temperatures throughout the wall are higher
relative to the case associated with the original value of h1 (LHS). At intermediate times, temperature
gradients at x = -L are larger than temperature gradients at x = +L due to the larger convection heat
transfer coefficient at the left surface.

h1 2h1

Continued…
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0
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0 t
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0
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x =  L

t

qx(x,t)

0
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x =  L

0



PROBLEM 2.55

(e) The heat flux histories are shown in the plot below as dashed lines. The results for part (c) are
replicated as solid lines. Note that at the initial time, the heat flux at the left face is doubled relative to
part (c) because the heat transfer coefficient is doubled. The heat flux at the initial time for the right
face is the same as in part (c). The heat fluxes at the three planes asymptotically approach the steady-
state value given by

1 ,1 2 ,22 ( ) ( )
dT

k h T T x L h T x L T
dx

               

Note that the overall heat flux is not doubled at the steady state since the temperature at the right face
(T(x =  L)) is greater for the case of the doubled LHS heat transfer coefficient, h1.

t

qx(x,t)

0

x = 0

x = - L

x = + L

0 t

qx(x,t)

0

x = 0

x = - L

x = + L

0



PROBLEM 2.56

KNOWN: Plate of thickness 2L, initially at a uniform temperature of Ti = 200C, is suddenly

quenched in a liquid bath of T = 20C with a convection coefficient of 100 W/m
2
K.

FIND: (a) On T-x coordinates, sketch the temperature distributions for the initial condition (t  0), the

steady-state condition (t ), and two intermediate times; (b) On xq t  coordinates, sketch the

variation with time of the heat flux at x = L, (c) Determine the heat flux at x = L and for t = 0; what is
the temperature gradient for this condition; (d) By performing an energy balance on the plate,

determine the amount of energy per unit surface area of the plate (J/m
2
) that is transferred to the bath

over the time required to reach steady-state conditions; and (e) Determine the energy transferred to the
bath during the quenching process using the exponential-decay relation for the surface heat flux.

SCHEMATIC:

- L x +L = 10 mm

= 2770 kg/m3

c = 875 J/kg-Kp

T , hoo

T(x,t), T(x,0) = T = 200 Ci
oQuenching heat flux

q” = Aexp(-Bt)

A = 1.80x10 W/m4 2

B = 4.126x10 s-3 -1

h = 100 W/m -K2

T = 20 Co
oo

k = 50 W/m-K

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, and (3) No internal heat
generation.

ANALYSIS: (a) The temperature distributions are shown in the sketch below.

Initial, T(x,0)

(a) (b,c,d) 0 t

xq“ (L,t)T(x,t)

0 L x

Ti

t

h(T - T )i
Area represents

energy transferred
during quench

T T(x, )

Steady-state

(b) The heat flux at the surface x = L,  xq L, t , is initially a maximum value, and decreases with

increasing time as shown in the sketch above.

(c) The heat flux at the surface x = L at time t = 0,  xq L, 0 , is equal to the convection heat flux with

the surface temperature as T(L,0) = Ti.

       2 2
x conv iq L, 0 q t 0 h T T 100 W / m K 200 20 C 18.0 kW / m          <

From a surface energy balance as shown in the sketch considering the conduction and convection
fluxes at the surface, the temperature gradient can be calculated.

Continued …



PROBLEM 2.56 (Cont.)

in outE E 0  

     x conv x
x L

T
q L,0 q t 0 0 with q L,0 k

x 

 
       

 

  3 2
conv

L,0

T
q t 0 / k 18 10 W / m / 50 W / m K 360K / m

x

 
        

 
<

T(L,0) = Ti

q (t=0)conv”

T ,hoo
q (L,0)x”

(d) The energy transferred from the plate to the bath over the time required to reach steady-state
conditions can be determined from an energy balance on a time interval basis, Eq. 1.12b. For the

initial state, the plate has a uniform temperature Ti; for the final state, the plate is at the temperature of

the bath, T.

in out st f i inE E E E E with E 0,          

  out p iE c 2L T T   

  3 6 2
outE 2770kg / m 875J / kg K 2 0.010 m 20 200 K 8.73 10 J / m          <

(e) The energy transfer from the plate to the bath during the quenching process can be evaluated from

knowledge of the surface heat flux as a function of time. The area under the curve in the  xq L, t vs.

time plot (see schematic above) represents the energy transferred during the quench process.

  Bt
out xt 0 t 0

E 2 q L, t dt 2 Ae dt
  
 

   

 Bt
out

0

1 1
E 2A e 2A 0 1 2A / B

B B


            

   

4 2 3 1 6 2
outE 2 1.80 10 W / m / 4.126 10 s 8.73 10 J / m        <

COMMENTS: (1) Can you identify and explain the important features in the temperature
distributions of part (a)?

(2) The maximum heat flux from the plate occurs at the instant the quench process begins and is equal
to the convection heat flux. At this instant, the gradient in the plate at the surface is a maximum. If
the gradient is too large, excessive thermal stresses could be induced and cracking could occur.

(3) In this thermodynamic analysis, we were able to determine the energy transferred during the
quenching process. We cannot determine the rate at which cooling of the plate occurs without solving
the heat diffusion equation.



PROBLEM 2.57

KNOWN: Plane wall, initially at a uniform temperature, is suddenly exposed to convective heating.

FIND: (a) Differential equation and initial and boundary conditions which may be used to find the
temperature distribution, T(x,t); (b) Sketch T(x,t) for these conditions: initial (t  0), steady-state, t 
, and two intermediate times; (c) Sketch heat fluxes as a function of time for surface locations; (d)

Expression for total energy transferred to wall per unit volume (J/m
3
).

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) No internal heat
generation.

ANALYSIS: (a) For one-dimensional conduction with constant properties, the heat equation has the
form,



 





2 1T

x

T

t2


 

 

i
0

L

Initial, t 0 : T x,0 T uniform
Boundaries: x=0 T/ x) 0 adiabatic

x=L k T/ x) = h T L,t T convection
 

  

  

   






(b) The temperature distributions are shown on the sketch.

Note that the gradient at x = 0 is always zero, since this boundary is adiabatic. Note also that the
gradient at x = L decreases with time.

(c) The heat flux,  xq x,t , as a function of time, is shown on the sketch for the surfaces x = 0 and x

= L.

Continued …

and the
conditions are:



PROBLEM 2.57 (Cont.)

For the surface at  xx 0, q 0, t 0  since it is adiabatic. At x = L and t = 0,  xq L,0 is a

maximum (in magnitude)

   xq L,0 h T L,0 T  

where T(L,0) = Ti. The temperature difference, and hence the flux, decreases with time.

(d) The total energy transferred to the wall may be expressed as

  
in conv s0

in s 0

E q A dt

E hA T T L,t dt








 





Dividing both sides by AsL, the energy transferred per unit volume is

  3in
0

E h
T T L,t dt J/m

V L




       

COMMENTS: Note that the heat flux at x = L is into the wall and is hence in the negative x
direction.

-

-

-

-



PROBLEM 2.58

KNOWN: Qualitative temperature distributions in two cases.

FIND: For each of two cases, determine which material (A or B) has the higher thermal conductivity,
how the thermal conductivity varies with temperature, description of the heat flux distribution through
the composite wall, effect of simultaneously doubling the wall thickness and thermal conductivity.

SCHEMATIC:

Case 1. Case 2.

ASSUMPTIONS: (1) Steady-state, one-dimensional conditions, (2) Negligible contact resistances,
(3) No internal energy generation.

ANALYSIS: Under steady-state conditions with no internal generation, the conservation of energy

requirement dictates that the heat flux through the wall must be constant. <

For Materials A and B, Fourier’s law is written " "A B
A A B B

dT dT
q k q k

dx dx
     . Therefore,

A B

B A

/
1

/

k dT dx

k dT dx
  and kB < kA for both cases. <

Since the heat flux through the wall is constant, Fourier’s law dictates that lower thermal conductivity
material must exist where temperature gradients are larger. For Case 1, the temperature distributions
are linear. Therefore, the temperature gradient is constant in each material, and the thermal
conductivity of each material must not vary significantly with temperature. For Case 2, Material A, the
temperature gradient is larger at lower temperatures. Hence, for Material A the thermal conductivity
increases with increasing material temperature. For Case 2, Material B, the temperature gradient is
smaller at lower temperatures. Hence, for Material B the thermal conductivity decreases with increases

in material temperature. <

COMMENTS: If you were given information regarding the relative values of the thermal
conductivities and how the thermal conductivities vary with temperature in each material, you should
be able to sketch the temperature distributions provided in the problem statement.

x

LA LBLA LB

kA kB

T(x)

x

LA LBLA LB

kA kB

T(x)



PROBLEM 2.59

KNOWN: Plane wall, initially at a uniform temperature Ti, is suddenly exposed to convection with a

fluid at T at one surface, while the other surface is exposed to a constant heat flux qo .

FIND: (a) Temperature distributions, T(x,t), for initial, steady-state and two intermediate times, (b)
Corresponding heat fluxes on  q xx coordinates, (c) Heat flux at locations x = 0 and x = L as a

function of time, (d) Expression for the steady-state temperature of the heater, T(0,), in terms of

 q T k, h and L.o , ,

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) No heat generation, (3) Constant properties.

ANALYSIS: (a) For T Ti   , the temperature distributions are

Note the constant gradient at x = 0 since  x oq 0 q . 

(b) The heat flux distribution,  xq x,t , is determined from knowledge of the temperature gradients,

evident from Part (a), and Fourier’s law.

(c) On  xq x,t t  coordinates, the heat fluxes at the boundaries are shown above.

(d) Perform a surface energy balance at x = L and an energy balance on the wall:

 cond conv cond oq q h T L, T (1), q q . (2)         
For the wall, under steady-state conditions, Fourier’s law gives

   
o

T 0, T L,dT
q k k . (3)

dx L

  
   

Combine Eqs. (1), (2), (3) to find:

  oq
T 0, T .

1/h L/k



  





PROBLEM 2.60  
KNOWN:  Plane wall, initially at a uniform temperature To, has one surface (x = L) suddenly 

exposed to a convection process (T∞ > To,h), while the other surface (x = 0) is maintained at To.  Also, 
wall experiences uniform volumetric heating &q  such that the maximum steady-state temperature will 

exceed T∞. 
 
FIND:  (a) Sketch temperature distribution (T vs. x) for following conditions:  initial (t ≤ 0), steady-
state (t → ∞), and two intermediate times; also show distribution when there is no heat flow at the x = 
L boundary, (b) Sketch the heat flux ( )xq  vs. t′′  at the boundaries x = 0 and L. 
 
SCHEMATIC:   

 
ASSUMPTIONS:  (1) One-dimensional conduction, (2) Constant properties, (3) Uniform volumetric 

generation, (4) T T  and qo < ∞ &  large enough that T(x,∞) > T∞ for some x. 
 
ANALYSIS:  (a) The initial and boundary conditions for the wall can be written as  
Initial (t ≤ 0):   T(x,0) = To    Uniform temperature 
Boundary:   x = 0   T(0,t) = To   Constant temperature 
 

  ( )
x=L

 Tx L     k h T L,t T
 x

∂
∂ ∞

⎞ ⎡ ⎤= − = −⎟ ⎣ ⎦⎠
  Convection process. 

 
The temperature distributions are shown on the T-x coordinates below.  Note the special condition 
when the heat flux at (x = L) is zero.  
(b) The heat flux as a function of time at the boundaries, ( ) ( )x xq 0, t  and q L,t ,′′ ′′  can be inferred 
from the temperature distributions using Fourier’s law. 
 

  
 
 
 
 
 
 
 
COMMENTS:  Since ( ) oT x, T  for some x and T T ,∞ ∞∞ > >  heat transfer at both boundaries must be 
out of the wall at steady state.  From an overall energy balance at steady state,  

( ) ( )x xq L, q 0, qL.′′ ′′+ ∞ − ∞ = &  

x

0

q (L,0)
h(T T )∞

′′ =
−

x

0

q (L,0)
h(T T )∞

′′ =
−



PROBLEM 2.61

KNOWN: Plane wall, initially at a uniform temperature To, has one surface (x = L) suddenly exposed

to a convection process (T < To, h), while the other surface (x = 0) is maintained at To. Also, wall

experiences uniform volumetric heating q such that the maximum steady-state temperature will

exceed T.

FIND: (a) Sketch temperature distribution (T vs. x) for following conditions: initial (t  0), steady-
state (t ), and two intermediate times; identify key features of the distributions, (b) Sketch the heat

flux  xq vs. t at the boundaries x = 0 and L; identify key features of the distributions.

SCHEMATIC:

x L = 0.1m

T < T , hooo

T(0,t) = To

T(L,t)
.
q(t > 0)

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) Uniform volumetric

generation, (4) oT T and q   large enough that T(x,) > To.

ANALYSIS: (a) The initial and boundary conditions for the wall can be written as

Initial (t  0): T(x,0) = To Uniform temperature

Boundary: x = 0 T(0,t) = To Constant temperature

 
x=L

T
x L k h T L,t T

x







      


Convection process.

The temperature distributions are shown on the T-x coordinates below. Note that the maximum
temperature occurs under steady-state conditions not at the midplane, but to the right toward the
surface experiencing convection. The temperature gradients at x = L increase for t > 0 since the
convection heat rate from the surface increases as the surface temperature increases.

(b) The heat flux as a function of time at the boundaries,    x xq 0, t and q L,t ,  can be inferred

from the temperature distributions using Fourier’s law. At the surface x = L, the convection heat flux

at t = 0 is    x oq L, 0 h T T .
   Because the surface temperature dips slightly at early times, the

convection heat flux decreases slightly, and then increases until the steady-state condition is reached.
For the steady-state condition, heat transfer at both boundaries must be out of the wall. It follows from

an overall energy balance on the wall that    x xq 0, q L,     qL 0. 

Initial, T(x,0)

T(x,t)

To

0 L x

t

T

T(x, )
Steady-state

0

+

-

t

xq“ (x,t)

xq“ (L,t)

qL

xq“ (0,t)

q”(L,0) = h[T(L,0) - T ]
x



PROBLEM 2.62

KNOWN: Qualitative temperature distribution in a composite wall with one material experiencing
uniform volumetric energy generation.

FIND: Which material experiences uniform volumetric generation. The boundary condition at
x = -LA. Temperature distribution if the thermal conductivity of Material A is doubled. Temperature
distribution if the thermal conductivity of Material B is doubled. Whether a contact resistance exists at

the interface between the two materials. Sketch the heat flux distribution " ( )xq x through the composite

wall.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state, one-dimensional conditions, (2) Constant properties.

ANALYSIS: Consider a control volume with the LHS control surface at the interface between the
two materials and the RHS control surface located at an arbitrary location within Material B, as shown
in the schematic. For this control volume, conservation of energy and Fourier’s law may be combined
to yield, for uniform volumetric generation in Material B,

"( ) x
x

dT
q q k

dx 

  


  or
x

dT

dx 




 (1)

The temperature distribution of the problem reflects the preceding proportionality between the
temperature gradient and the distance  , and it is appropriate to assume that uniform volumetric

generation occurs in Material B but not in Material A. <

The boundary condition at x = -LA is associated with perfectly insulated conditions,

A

"
A0 ( )x

x L

dT
q x L k

dx 

     or

A

0
x L

dT

dx 

 <

The temperature distribution in Material A corresponds to "
,A 0xq  , and is independent of its thermal

conductivity. <

Continued...

x

LA LBLA LB

kA kB

T(x) qx





PROBLEM 2.62 (Cont.)

If the volumetric energy generation rate, q , is unchanged, Equation (1) requires that the temperature

gradient everywhere in Material B will be reduced by half if the thermal conductivity of Material B is
doubled. Hence, the difference between the minimum and maximum temperatures in the composite

wall would be reduced by half. <

Since there is no volumetric energy generation in Material A, and since the surface at x = -LA is
insulated, there can be no conduction of energy into or out of Material A at the LHS of the control
volume previously described. Hence, if a contact resistance exists at the interface between Materials A
and B, it would not induce any temperature drop across the interface since there is no heat transfer
across the interface. Therefore, based on the temperature distribution given in the problem statement, it
is impossible to conclude whether a contact resistance exists or not at the interface between Materials

A and B. <

Considering Eq. 1, it follows that the heat flux distribution throughout the composite wall is as shown
in the sketch below.

<

COMMENTS: If you were given information regarding which material experiences internal energy
generation, the boundary condition at x = -LA, the thermal conductivities of both materials, and the
value of the contact resistance, you should be able to sketch the temperature and heat flux
distributions.

x

LB-LA 0

qx


0



PROBLEM 2.63 
 

KNOWN: Size and thermal conductivities of a spherical particle encased by a spherical shell. 
 
FIND: (a) Relationship between dT/dr and r for 0 ≤ r ≤ r1, (b) Relationship between dT/dr and r 
for r1 ≤ r ≤ r2, (c) Sketch of T(r) over the range 0 ≤ r ≤ r2. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) One-dimensional heat 
transfer. 
 
ANALYSIS: 
 
(a) The conservation of energy principle, applied to control volume A, results in  
 

in g out stE  + E  - E = E& & & &               (1) 
 

where 3
g

4E  = q  = q πr
3

∀& & &               (2) 

 
since    stE  0=&  
 

 2
in out r 1

dTE  - E = q A = - (-k )(4πr )
dr

′′& &             (3) 

 
Substituting Eqs. (2) and (3) in Eq. (1) yields 
 

3 2
1

4 dTq πr  + k (4πr ) = 0
3 dr

&  

or 

 
1

dT q r = -
dr 3 k

&                < 
Continued… 

Control volume A

Control volume B
r2

r1
Ambient air

T∞ , h

Chemical reaction

q
.

r

Control volume A

Control volume B
r2

r1
Ambient air

T∞ , h

Chemical reaction

q
.

r



PROBLEM 2.63 (Cont.) 
 
(b) For r > r1, the radial heat rate is constant and is 
 

3
g r 1 1

4E  = q  = q  = q πr
3

∀& & &             (4) 

 
2

in out r 2
dTE  - E  = q A = - (-k )4πr
dr

′′& &            (5) 

 
Substituting Eqs. (4) and (5) into Eq. (1) yields 
 

 2 3
2 1

dT 4k 4πr  + q π r 0
dr 3

=&  

 
or 

 
3
1

2
2

qrdT  = - 
dr 3k r

&
                < 

 
 

(c) The temperature distribution on T-r coordinates is 
  
 

T(r) for r1/r2 = 0.5

0 0.25 0.5 0.75 1

r1/r2

0.8

0.9

1

1.1

T/
T(

r =
 r1

)  
(a

rb
itr

ar
y 

un
its

)

sphere
shell  

 
 
COMMENTS: (1) Note the non-linear temperature distributions in both the particle and the 
shell. (2) The temperature gradient at r = 0 is zero. (3) The discontinuous slope of T(r) at r1/r2 = 
0.5 is a result of k1 = 2k2. 
 



PROBLEM 2.64

KNOWN: Long cylindrical rod with uniform initial temperature immersed in liquid at a lower
temperature.

FIND: Sketch temperature distribution at initial time, steady state, and two intermediate times for two
rods with different thermal conductivities. State boundary conditions at centerline and surface.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction in radial direction, (2) Constant properties, (3)
Fluid temperature remains constant, (4) Convection heat transfer coefficient is constant.

ANALYSIS: Referring to the figure below, first consider Material A of moderate thermal
conductivity. Initially, the rod temperature is uniform at Ti. When the rod is first exposed to the
liquid, heat is transferred from the rod to the fluid due to convection, causing the surface temperature
to decrease. The resulting temperature gradient in the rod causes heat to conduct radially outward, and
the temperature further inside the rod decreases as well. Toward the beginning of this process, the
temperature near the center of the rod is still very close to the initial temperature (see Material A, t1).
As time increases, the temperature everywhere in the rod decreases (see Material A, t2). Eventually, at
steady state, the rod temperature reaches the fluid temperature, T∞.

0 0.2 0.4 0.6 0.8 1

T

r/(D/2)

t2

t1

Ti

T∞

MaterialB

MaterialA

t1

<

Continued…

D

Ti

Material A Material B
A B = A

cA cB = cA

kA kB >> kA
T∞, h

r



PROBLEM 2.64 (Cont.)

The boundary condition at the rod surface expresses a balance between heat reaching the surface by
conduction and heat leaving the surface by convection:

 
/2

( / 2, )
D

T
k h T D t T

r



  


(1) <

From this, it can be seen that the temperature gradient at the surface is negative and its magnitude
decreases with time as the surface temperature approaches the fluid temperature. This is shown for the
two intermediate times for Material A.

Next compare Material A to Material B having a very large thermal conductivity. At time t = 0 when
both rods have the same temperature Ti, it can be seen from the right hand side of Equation (1) that the
heat flux is the same for both materials. Energy is being removed from both rods at the same rate.
However, because of the large thermal conductivity of material B, its temperature gradient is smaller
and its temperature tends to be nearly uniform, as shown in the figure for Material B, t1. Its
temperature is higher at the surface and lower in the center as compared to Material A. Because its
surface temperature stays higher for longer, the heat flux leaving the rod is larger, and overall it cools
faster. At time t2, when Material A’s surface temperature is close to T∞, but it is still warm in the
center, Material B has already reached steady state.

The rod with the higher thermal conductivity reaches steady state sooner. <

The boundary condition at r = 0 expresses radial symmetry:

0

0
T

r





<

The boundary condition at r =D/2 was given in Equation (1).

COMMENTS: The problem of transient conduction in a cylinder will be solved in Chapter 5.



PROBLEM 2.65

KNOWN: Temperature distribution in a plane wall of thickness L experiencing uniform volumetric
heating q having one surface (x = 0) insulated and the other exposed to a convection process

characterized by T and h. Suddenly the volumetric heat generation is deactivated while convection
continues to occur.

FIND: (a) Determine the magnitude of the volumetric energy generation rate associated with the
initial condition, (b) On T-x coordinates, sketch the temperature distributions for the initial condition

(T  0), the steady-state condition (t ), and two intermediate times; (c) On xq - t coordinates,

sketch the variation with time of the heat flux at the boundary exposed to the convection process,

 xq L, t ; calculate the corresponding value of the heat flux at t = 0; and (d) Determine the amount of

energy removed from the wall per unit area (J/m
2
) by the fluid stream as the wall cools from its initial

to steady-state condition.

SCHEMATIC:

x L = 0.1m

Fluid

h = 1000 W/m -K2

T = 20 Co
oo

Insulated
boundary

T(x,0) = a + b x(m)x2

a = 300 Co b = -1.0x10 C/m4 o 2

= 7000 kg/m3

c = 450 J/kg-Kp

k = 90 W/m-K..
q = 0 for t < 0; q = 0 for t > 0

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, and (3) Uniform internal
volumetric heat generation for t < 0.

ANALYSIS: (a) The volumetric heating rate can be determined by substituting the temperature
distribution for the initial condition into the appropriate form of the heat diffusion equation.

  2d dT q
0 where T x,0 a bx

dx dx k

 
    

 



 
d q q

0 2bx 0 2b 0
dx k k

     
 

 4 2 6 3q 2kb 2 90 W / m K 1.0 10 C / m 1.8 10 W / m           <

(b) The temperature distributions are shown in the sketch below.

0 t

xq“ (L,t)

q”(L,0) = h[T(L,0) - T ]x
Initial
T(x,0) = a + bx2

T
(x

,t
),

(
C

)
o

0 L x

300

200

100

t

T T(x, )

Steady-state

Continued …



PROBLEM 2.65 (Cont.)

(c) The heat flux at the exposed surface x = L,  xq L, 0 , is initially a maximum value and decreases

with increasing time as shown in the sketch above. The heat flux at t = 0 is equal to the convection
heat flux with the surface temperature T(L,0). See the surface energy balance represented in the
schematic.

        2 5 2
x convq L, 0 q t 0 h T L, 0 T 1000 W / m K 200 20 C 1.80 10 W / m           <

where    22 4 2T L,0 a bL 300 C 1.0 10 C / m 0.1m 200 C.        

T(L,0) = a + bx2

q (t=0)conv”

T ,hoo
q (L,0)x”

(d) The energy removed from the wall to the fluid as it cools from its initial to steady-state condition
can be determined from an energy balance on a time interval basis, Eq. 1.12b. For the initial state, the

wall has the temperature distribution T(x,0) = a + bx
2
; for the final state, the wall is at the temperature

of the fluid, Tf = T. We have used T as the reference condition for the energy terms.

in out st f i inE E E E E with E 0          

 
x L

out p x 0
E c T x,0 T dx




    

Lx L 2 3
out p px 0 0

E c a bx T dx c ax bx / 3 T x 


 
               

 33 4
outE 7000 kg / m 450J / kg K 300 0.1 1.0 10 0.1 / 3 20 0.1 K m          

  

7 2
outE 7.77 10 J / m   <

COMMENTS: (1) In the temperature distributions of part (a), note these features: initial condition
has quadratic form with zero gradient at the adiabatic boundary; for the steady-state condition, the wall
has reached the temperature of the fluid; for all distributions, the gradient at the adiabatic boundary is
zero; and, the gradient at the exposed boundary decreases with increasing time.

(2) In this thermodynamic analysis, we were able to determine the energy transferred during the
cooling process. However, we cannot determine the rate at which cooling of the wall occurs without
solving the heat diffusion equation.



PROBLEM 2.66

KNOWN: Temperature as a function of position and time in a plane wall suddenly subjected to a
change in surface temperature, while the other surface is insulated.

FIND: (a) Validate the temperature distribution, (b) Heat fluxes at x = 0 and x = L, (c) Sketch of
temperature distribution at selected times and surface heat flux variation with time, (d) Effect of
thermal diffusivity on system response.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction in x, (2) Constant properties.

ANALYSIS: (a) To be valid, the temperature distribution must satisfy the appropriate forms of the
heat equation and boundary conditions. Substituting the distribution into Equation 2.21, it follows
that

 

2

2

22

1 i s 2

T 1 T

tx
t x

C T T exp cos
4 2L 2 LL

 

 
   



    
            

 
2 2

1
i s 2 2

C t x
T T exp cos .

4 4 2 LL L

    



     
                

<

Hence, the heat equation is satisfied. Applying boundary conditions at x = 0 and x = L, it follows that

 
2

1
x=0 i s x=02

T C t x
| T T exp sin | 0

x 2L 4 2 LL

    



   
          

<

and

   
2

s 1 i s x=L s2

t x
T L,t T C T T exp cos | T .

4 2 LL

     
          

<

Hence, the boundary conditions are also satisfied.

(b) The heat flux has the form

 
2

1
x i s 2

T kC t x
q k T T exp sin .

x 2L 4 2 LL

    



                
Continued …



PROBLEM 2.66 (Cont.)

Hence,  xq 0 0,  <

   
2

1
x i s 2

kC t
q L T T exp .

2L 4 L

   
     

 
 

<

(c) The temperature distribution and surface heat flux variations are:

(d) For materials A and B of different ,

 

 
 

2s A
A B2

s B

T x,t T
exp t

T x,t T 4L


 

    
   

      

Hence, if  A B s, T x,t T   more rapidly for Material A. If  A B s, T x,t T   more

rapidly for Material B. <
COMMENTS: Note that the prescribed function for T(x,t) does not reduce to T for t 0.i  For

times at or close to zero, the function is not a valid solution of the problem. At such times, the
solution for T(x,t) must include additional terms. The solution is considered in Section 5.5.1 of the
text.



PROBLEM 2.67

KNOWN: Thickness of composite plane wall consisting of material A in left half and material B in
right half. Exothermic reaction in material A and endothermic reaction in material B, with equal and
opposite heat generation rates. External surfaces are insulated.

FIND: Sketch temperature and heat flux distributions for three thermal conductivity ratios, kA/kB.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Constant
properties.

ANALYSIS: From Equation 2.19 for steady-state, one-dimensional conduction, we find

  
  

  


T
k q

x x
or





xq
q

x

From the second equation, with uniform heat generation rate, we see that 
xq varies linearly with x,

and its slope is + A
q in material A and - A

q in material B. Furthermore, since the wall is insulated on

both exterior surfaces, the heat flux must be zero at x = ±L. Thus, the heat flux is as shown in the
graph below and does not depend on the thermal conductivities. The heat generated in the left half is
conducting to the right and accumulating as it goes. Once it reaches the centerline, it begins to be
consumed by the exothermic reaction and drops to zero at x = L.

-1 -0.5 0 0.5 1

x/L

0

T

qx"

kA = kB

kA = 0.5kB

kA = 2kB

Continued…
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PROBLEM 2.67 (Cont.)

Since


  


x

T
q k

x
, the temperature gradient is negative everywhere, and its magnitude is greatest

where the heat flux is greatest. Thus the slope of the temperature distribution is zero at x = -L, it
becomes more negative as it reaches the center, and then becomes flatter again until it reaches a slope
of zero at x = L. When kA = kB, the temperature distribution has equal and opposite slopes on either
side of the centerline. If kB is held fixed and kA is varied, the results are as shown in the plot above.
Since the temperature gradient is inversely proportional to the thermal conductivity, it is steeper in the
region that has the smaller thermal conductivity. Physically, when thermal conductivity is larger, heat
conducts more readily and causes the temperature to become more uniform.

If B A2  q q , an energy balance on the wall gives:

st
in out

st
A B A( )

  

    

  

   

g

g

dE
E E E

dt

dE
E q q V q V

dt

where V is the volume. Since dEst/dt is non-zero, the wall cannot be at steady-state. With the
exothermic reaction greater than the endothermic reaction, the wall will continuously decrease in

temperature. <

COMMENTS: (1) Given the information in the problem statement, it is not possible to calculate
actual temperatures. There are an infinite number of correct solutions regarding temperature values,
but only one correct solution regarding the shape of the temperature distribution. (2) Chemical
reactions would cease if the temperature became too small. It would not be possible to continually

cool the wall for the case when, initially, B A2  q q .



PROBLEM 2.68

KNOWN: Radius and length of coiled wire in hair dryer. Electric power dissipation in the wire, and
temperature and convection coefficient associated with air flow over the wire.

FIND: (a) Form of heat equation and conditions governing transient, thermal behavior of wire during
start-up, (b) Volumetric rate of thermal energy generation in the wire, (c) Sketch of temperature
distribution at selected times during start-up, (d) Variation with time of heat flux at r = 0 and r = ro.

SCHEMATIC:

r = 1 mmo

q (r )o

L = 0.5 m

ASSUMPTIONS: (1) One-dimensional, radial conduction, (2) Constant properties, (3) Uniform
volumetric heating, (4) Negligible radiation from surface of wire.

ANALYSIS: (a) The general form of the heat equation for cylindrical coordinates is given by Eq.
2.26. For one-dimensional, radial conduction and constant properties, the equation reduces to

pc1 T q T 1 T
r

r r r k k t t

   
  

   

 
 
 

 


<

The initial condition is   iT r,0 T <

The boundary conditions are:
r 0

T / r 0


   <

  
o

o
r r

T
k h T r , t T

r





  


<

(b) The volumetric rate of thermal energy generation is

   

g 8 3elec

2 2
o

E P 500 W
q 3.18 10 W / m

0.001m 0.5mr L 
    




 <

Under steady-state conditions, all of the thermal energy generated within the wire is transferred to the

air by convection. Performing an energy balance for a control surface about the wire, out gE E 0,   

it follows that  o o elec2 r L q r , t P 0.      Hence,

 
 

5 2elec
o

o

P 500 W
q r , t 1.59 10 W / m

2 r L 2 0.001m 0.5m 
       <

Initial, T(r,0)

0 t

q“(0,t)

q“(r ,t)o

qr“
T(r,t)

0 ro r

Ti

t

q“(r , )oSteady-state, T(r, )

COMMENTS: The symmetry condition at r = 0 imposes the requirement that
r 0

T / r 0,


   and

hence  q 0, t 0  throughout the process. The temperature at ro, and hence the convection heat flux,

increases steadily during the start-up, and since conduction to the surface must be balanced by

convection from the surface at all times,
or r

T / r


  also increases during the start-up.



PROBLEM 2.69

KNOWN: Temperature distribution in a composite wall.

FIND: (a) Relative magnitudes of interfacial heat fluxes, (b) Relative magnitudes of thermal
conductivities, and (c) Heat flux as a function of distance x.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Constant
properties.

ANALYSIS: (a) For the prescribed conditions (one-dimensional, steady-state, constant k),
the parabolic temperature distribution in C implies the existence of heat generation. Hence,
since dT/dx increases with decreasing x, the heat flux in C increases with decreasing x.
Hence,

3 4q q 

However, the linear temperature distributions in A and B indicate no generation, in which case

2 3q q 

(b) Since conservation of energy requires that 3,B 3,C B Cq q and dT/dx) dT/dx) ,   it follows

from Fourier’s law that

B Ck k .

Similarly, since 2,A 2,B A Bq q and dT/dx) dT/dx) ,   it follows that

A Bk k .

(c) It follows that the flux distribution appears as shown below.

COMMENTS: Note that, with dT/dx)4,C = 0, the interface at 4 is adiabatic.



 

 

PROBLEM 3.1  
KNOWN:  One-dimensional, plane wall separating hot and cold fluids at T  and T,1 ,2∞ ∞ ,  
respectively.  
FIND:  Temperature distribution, T(x), and heat flux, ′′qx ,  in terms of T  T  h,1 ,2 1∞ ∞, , ,  h2 ,  k 
and L.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) One-dimensional conduction, (2) Steady-state conditions, (3) Constant 
properties, (4) Negligible radiation, (5) No generation.  
ANALYSIS:  For the foregoing conditions, the general solution to the heat diffusion equation 
is of the form, Equation 3.2, 
 ( ) 1 2T x C x C .= +          (1) 
 
The constants of integration, C1 and C2, are determined by using surface energy balance 
conditions at x = 0 and x = L, Equation 2.34, and as illustrated above, 

 ( ) ( )1 ,1 2 ,2
x=0 x=L

dT dTk h T T 0         k h T L T .
dt dx∞ ∞

    − = − − = −     
         (2,3) 

 
For the boundary condition at x = 0, Equation (2), use Equation (1) to find  
 ( ) ( )1 1 ,1 1 2k C 0 h T C 0 C∞ − + = − ⋅ +        (4) 
 
and for the boundary condition at x = L to find  
 ( ) ( )1 2 1 2 ,2k C 0 h C L C T .∞ − + = + −        (5) 
 
Multiply Eq. (4) by h2 and Eq. (5) by h1, and add the equations to obtain C1.  Then substitute 
C1 into Eq. (4) to obtain C2.  The results are 

 
( ) ( ),1 ,2 ,1 ,2

1 2 ,1
1

1 2 1 2

T T T T
C           C T

1 1 L 1 1 Lk h
h h k h h k

∞ ∞ ∞ ∞
∞

− −
= − = − +

   
+ + + +   

   

 

 ( ) ( ),1 ,2
,1

1
1 2

T T x 1T x  T .
k h1 1 L

h h k

∞ ∞
∞

−  
= − + +    + + 

 

      < 

 
From Fourier’s law, the heat flux is a constant and of the form 

 
( ),1 ,2

x 1

1 2

T TdTq k k C .
dx 1 1 L

h h k

∞ ∞−
′′ = − = − = +

 
+ + 

 

      < 



PROBLEM 3.2 
 
 
KNOWN:  Thickness of basement wall. Inner and outer wall temperatures. Thermal conductivity of 
aerated concrete. 
 
FIND:  Thickness of polystyrene insulation needed to reduce heat flux through the stone mix concrete 
wall to that of the aerated concrete wall. Lost annual rental income associated with specification of the 
stone mix concrete wall. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state, one-dimensional conduction, (2) Constant properties, (3) 
Negligible contact resistance. 
 
PROPERTIES:  Table A.3, Stone mix concrete (300 K):  ksm = 1.4 W/m⋅K; Rigid extruded 
polystyrene sheet (285 K, ρ = 35 kg/m3): kps = 0.027 W/m⋅K. Aerated concrete: kac = 0.15 W/m⋅K 
(given). 
 
ANALYSIS:   The heat flux through the aerated concrete is 
   

2" ( ) / 0.15 W/m K (20 C 0 C) / 0.20 m 15 W/mac i oq k T T L= − = ⋅ × ° − ° =   (1) 
 

The heat flux through the stone mix concrete and polystyrene sheet composite wall is 
 

 2 (20 C 0 C)" 15 W/m
( / ) ( / ) ( / 0.027 W/m K) (0.200 m /1.4 W/m K)

i o

ps sm

T Tq
t k L k t

− ° − °
= = =

+ ⋅ + ⋅
 (2) 

 
Hence, t = 0.032 m = 32 mm.         < 
 
The floor space occupied by the polystyrene insulation is A = 0.032 m × (20 m + 30 m) × 2 = 3.2 m2. 
The lost annual revenue associated with specification of the stone mix concrete is ∆R = $50/m2/month 
× 12 months/year × 3.2 m2 = $1920 per year.       < 
 
COMMENTS:  (1) Inclusion of the thermal contact resistance will reduce the value of the required 
insulation thickness. (2) A careful economic analysis would account for the difference in cost of the 
two materials. However, additional costs associated with specification of the stone mix concrete are 
labor costs for installation of the insulation, and the cost of the insulation itself. Additional costs for 
the aerated concrete wall are labor costs for constructing the wall of aerated concrete blocks. (3) 
Lightweight aerated concrete blocks are fabricated of recycled fly ash, a byproduct of coal 
combustion. The low thermal conductivity is due to small air bubbles that are entrapped within the 
solid matrix. 



PROBLEM 3.3 
 
KNOWN:  Temperatures and convection coefficients associated with air at the inner and outer surfaces 
of a rear window. 
 
FIND:  (a) Inner and outer window surface temperatures, Ts,i and Ts,o, and (b) Ts,i and Ts,o as a function of 
the outside air temperature T∞,o and for selected values of outer convection coefficient, ho.  
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction, (3) Negligible radiation 
effects, (4) Constant properties. 
 
PROPERTIES:  Table A-3, Glass (300 K):  k = 1.4 W/m⋅K. 
 
ANALYSIS:  (a) The heat flux may be obtained from Eqs. 3.11 and 3.12, 
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2 2o i
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q

1 L 1 1 0.004 m 1
h k h 1.4 W m K65 W m K 30 W m K

∞ ∞
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2
2

50 C
q 969 W m

0.0154 0.0029 0.0333 m K W
′′ = =

+ + ⋅

o

. 

 
Hence, with ( )i ,i ,oq h T T∞ ∞′′ = − , the inner surface temperature is 
 

 
2

s,i ,i 2i

q 969 W m
T T 40 C 7.7 C

h 30 W m K
∞

′′
= − = − =

⋅

o o  < 

 
Similarly for the outer surface temperature with ( )o s,o ,oq h T T∞′′ = −  find 

 
2

s,o ,o 2o

q 969 W m
T T 10 C 4.9 C

h 65 W m K
∞

′′
= + = − + =

⋅

o o  < 

(b) Using the same analysis, Ts,i and Ts,o have been computed and plotted as a function of the outside air 
temperature, T∞,o, for outer convection coefficients of ho = 2, 65, and 100 W/m2⋅K.  As expected, Ts,i and 
Ts,o are linear with changes in the outside air temperature.  The difference between Ts,i and Ts,o increases 
with increasing convection coefficient, since the heat flux through the window likewise increases.  This 
difference is larger at lower outside air temperatures for the same reason.  Note that with ho = 2 W/m2⋅K, 
Ts,i - Ts,o, is too small to show on the plot. 
  Continued … 



PROBLEM 3.3 (Cont.)  
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COMMENTS:  (1) The largest resistance is that associated with convection at the inner surface.  The 
values of Ts,i and Ts,o could be increased by increasing the value of hi.  
(2) The IHT Thermal Resistance Network Model was used to create a model of the window and generate 
the above plot.  The Workspace is shown below. 
 

// Thermal Resistance Network Model: 
// The Network:  

  
 
// Heat rates into node j,qij, through thermal resistance Rij 
q21 = (T2 - T1) / R21 
q32 = (T3 - T2) / R32 
q43 = (T4 - T3) / R43 
 
// Nodal energy balances 
q1 + q21 = 0 
q2 - q21 + q32 = 0 
q3 - q32 + q43 = 0 
q4 - q43 = 0 
 
/* Assigned variables list: deselect the qi, Rij and Ti which are unknowns; set qi = 0 for embedded nodal points 
at which there is no external source of heat. */ 
T1 =  Tinfo // Outside air temperature, C 
//q1 =  // Heat rate, W  
T2 =  Tso  // Outer surface temperature, C 
q2 =  0  // Heat rate, W; node 2, no external heat source 
T3 =  Tsi  // Inner surface temperature, C 
q3 =  0  // Heat rate, W; node 2, no external heat source 
T4 = Tinfi  // Inside air temperature, C 
//q4 =  // Heat rate, W  
 
// Thermal Resistances: 
R21 =  1 / ( ho * As ) // Convection thermal resistance, K/W; outer surface 
R32 =  L / ( k * As )  // Conduction thermal resistance, K/W; glass 
R43 =  1 / ( hi * As )  // Convection thermal resistance, K/W; inner surface 
 
// Other Assigned Variables: 
Tinfo = -10 // Outside air temperature, C 
ho = 65  // Convection coefficient, W/m^2.K; outer surface 
L = 0.004  // Thickness, m; glass 
k = 1.4  // Thermal conductivity, W/m.K; glass 
Tinfi = 40  // Inside air temperature, C 
hi = 30  // Convection coefficient, W/m^2.K; inner surface 

 As = 1  // Cross-sectional area, m^2; unit area 



PROBLEM 3.4  
KNOWN:  Desired inner surface temperature of rear window with prescribed inside and outside air 
conditions.  
FIND:  (a) Heater power per unit area required to maintain the desired temperature, and (b) Compute and 
plot the electrical power requirement as a function of ,oT∞  for the range -30 ≤ ,oT∞  ≤ 0°C with ho of 2, 

20, 65 and 100 W/m2⋅K.  Comment on heater operation needs for low ho.  If h ~ Vn, where V is the 
vehicle speed and n is a positive exponent, how does the vehicle speed affect the need for heater 
operation?  
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional heat transfer, (3) Uniform heater 
flux, hq′′ , (4) Constant properties, (5) Negligible radiation effects, (6) Negligible film resistance. 
 
PROPERTIES:  Table A-3, Glass (300 K):  k = 1.4 W/m⋅K.  
ANALYSIS:  (a) From an energy balance at the inner surface and the thermal circuit, it follows that for a 
unit surface area, 
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+

⋅ ⋅ ⋅
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(b) The heater electrical power requirement as a function of the exterior air temperature for different 
exterior convection coefficients is shown in the plot.  When ho = 2 W/m2⋅K, the heater is unecessary, 
since the glass is maintained at 15°C by the interior air.  If h ~ Vn, we conclude that, with higher vehicle 
speeds, the exterior convection will increase, requiring increased heat power to maintain the 15°C 
condition. 
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COMMENTS:  With hq′′  = 0, the inner surface temperature with ,oT∞  = -10°C would be given by 

 ,i s,i i

,i ,o i o

T T 1 h 0.10
0.846,

T T 1 h L k 1 h 0.118
∞

∞ ∞

−
= = =

− + +
        or        ( )s,iT 25 C 0.846 35 C 4.6 C= − = −o o o . 



PROBLEM 3.5

KNOWN: Thermal conductivities and thicknesses of original wall, insulation layer, and glass layer.
Interior and exterior air temperatures and convection heat transfer coefficients.

FIND: Heat flux through original and retrofitted walls.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Steady-state conditions, (3) Constant
properties, (4) Negligible contact resistances.

ANALYSIS: The original wall with convection inside and outside can be represented by the
following thermal resistance network, where the resistances are each for a unit area:

Thus the heat flux can be expressed as

, , 2

2 2
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The retrofitted wall has three layers. The thermal circuit can be represented as follows:

Thus the heat flux can be expressed as

, ,

2

2 2

1 1
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COMMENTS: The heat flux has been reduced to approximately one-third of the original value
because of the increased resistance, which is mainly due to the insulation layer.

1/hi Ls/ks 1/ho

T∞i T∞,o

T∞,o

1/hi Ls/ks 1/ho

T∞i

Li/ki Lg/kg

T∞,i =22C
hi = 5 W/m2∙K

T∞,o = - 20C
ho = 25 W/m2∙K

Glass, kg = 1.4 W/m∙K

Insulation, ki = 0.029 W/m∙K

Sheathing, ks = 0.1 W/m∙K

Ls = 25 mm

Li = 25 mm

Lg = 5 mm



PROBLEM 3.6 
 
KNOWN:  Curing of a transparent film by radiant heating with substrate and film surface subjected to 
known thermal conditions. 
 
FIND:  (a) Thermal circuit for this situation, (b) Radiant heat flux, oq′′  (W/m2), to maintain bond at 
curing temperature, To, (c) Compute and plot oq′′  as a function of the film thickness for 0 ≤ Lf ≤ 1 mm, 
and (d) If the film is not transparent, determine oq′′  required to achieve bonding; plot results as a function 
of Lf.  
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional heat flow, (3) All the radiant heat 
flux oq′′  is absorbed at the bond, (4) Negligible contact resistance. 
 
ANALYSIS:  (a) The thermal circuit for 
this situation is shown at the right.  Note 
that terms are written on a per unit area 
basis.  
(b) Using this circuit and performing an energy balance on the film-substrate interface, 
 

 o 1 2q q q′′ ′′ ′′= +                         o o 1
o

cv f s

T T T T
q

R R R
∞− −′′ = +

′′ ′′ ′′+
  

 
where the thermal resistances are 

 2 2
cvR 1 h 1 50 W m K 0.020 m K W′′ = = ⋅ = ⋅  

 2
f f fR L k 0.00025 m 0.025 W m K 0.010 m K W′′ = = ⋅ = ⋅  

 2
s s sR L k 0.001m 0.05 W m K 0.020 m K W′′ = = ⋅ = ⋅  

 
( )

[ ]
( ) ( ) 2 2

o 2 2
60 20 C 60 30 C

q 1333 1500 W m 2833W m
0.020 0.010 m K W 0.020 m K W

− −
′′ = + = + =

+ ⋅ ⋅

o o

 < 

(c) For the transparent film, the radiant flux required to achieve bonding as a function of film thickness Lf 
is shown in the plot below. 
 
(d) If the film is opaque (not transparent), the thermal circuit is shown below.  In order to find oq′′ , it is 
necessary to write two energy balances, one around the Ts node and the second about the To node. 

 .  
 The results of the analysis are plotted below. 
 

Continued... 



 
PROBLEM 3.6 (Cont.) 
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COMMENTS:  (1) When the film is transparent, the radiant flux is absorbed on the bond.  The flux 
required decreases with increasing film thickness.  Physically, how do you explain this?  Why is the 
relationship not linear? 
 
(2)  When the film is opaque, the radiant flux is absorbed on the surface, and the flux required increases 
with increasing thickness of the film.  Physically, how do you explain this?  Why is the relationship 
linear? 
 
(3) The IHT Thermal Resistance Network Model was used to create a model of the film-substrate system 
and generate the above plot.  The Workspace is shown below. 
 

// Thermal Resistance Network 
Model: 

 // The Network: 
  

// Heat rates into node j,qij, through thermal resistance Rij 
q21 = (T2 - T1) / R21 
q32 = (T3 - T2) / R32 
q43 = (T4 - T3) / R43 
 
// Nodal energy balances 
q1 + q21 = 0 
q2 - q21 + q32 = 0 
q3 - q32 + q43 = 0 
q4 - q43 = 0 
 
/* Assigned variables list: deselect the qi, Rij and Ti which are unknowns; set qi = 0 for embedded nodal points 
at which there is no external source of heat. */ 
T1 = Tinf  // Ambient air temperature, C 
//q1 =   // Heat rate, W; film side 
T2 = Ts  // Film surface temperature, C 
q2 = 0  // Radiant flux, W/m^2; zero for part (a) 
T3 = To  // Bond temperature, C 
q3 = qo  // Radiant flux, W/m^2; part (a) 
T4 = Tsub // Substrate temperature, C 
//q4 =   // Heat rate, W; substrate side 
 
// Thermal Resistances: 
R21 =  1 / ( h * As )  // Convection resistance, K/W 
R32 =  Lf / (kf * As)  // Conduction resistance, K/W; film 
R43 =  Ls / (ks * As) // Conduction resistance, K/W; substrate 
 
// Other Assigned Variables: 
Tinf = 20  // Ambient air temperature, C 
h = 50  // Convection coefficient, W/m^2.K 
Lf = 0.00025 // Thickness, m; film 
kf = 0.025  // Thermal conductivity, W/m.K; film 
To = 60  // Cure temperature, C 
Ls = 0.001 // Thickness, m; substrate 
ks = 0.05  // Thermal conductivity, W/m.K; substrate 
Tsub = 30 // Substrate temperature, C 
As = 1  // Cross-sectional area, m^2; unit area 



PROBLEM 3.7  
KNOWN:  Thicknesses and thermal conductivities of refrigerator wall materials.  Inner and outer air 
temperatures and convection coefficients.  
FIND:  Heat gain per surface area.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) One-dimensional heat transfer, (2) Steady-state conditions, (3) Negligible 
contact resistance, (4) Negligible radiation, (5) Constant properties.  
ANALYSIS:  From the thermal circuit, the heat gain per unit surface area is 
 

 
( ) ( ) ( ) ( ) ( )

,o ,i

i p p i i p p o

T T
q

1/ h L / k L / k L / k 1/ h
∞ ∞−

′′ =
+ + + +

 

 

 
( )

( ) ( ) ( )2
25 4 C

q
2 1/ 5W / m K 2 0.003m / 60 W / m K 0.050m / 0.046 W / m K

− °
′′ =

⋅ + ⋅ + ⋅
 

 

 
( )

2
2

21 Cq 14.1 W / m
0.4 0.0001 1.087 m K / W

°′′ = =
+ + ⋅

    < 

 
COMMENTS:  Although the contribution of the panels to the total thermal resistance is negligible, 
that due to convection is not inconsequential and is comparable to the thermal resistance of the 
insulation. 
 



PROBLEM  3.8 
 

 
KNOWN:  Top and bottom temperatures applied to a water layer of known thickness. 
 
FIND:  Steady-state location of the solid-liquid interface. 
 
SCHEMATIC: 
 

 
 
 
 
 

 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Negligible radiation, (4) 
Negligible convection in the liquid. 
 
PROPERTIES:  Table A.6, liquid water (T = 273 K): kf = 0.569 W/m⋅K; Table A.3, ice (T =  0 K), ks 
= 1.88 W/m⋅K.  
 
ANALYSIS:   An energy balance at the control surface shown in the schematic yields 
 
    ( ) / ( ) /( )f h m s m ck T T L k T T t L− = − −  
 
or 
  

 
3

310 10 m 1.31 10 m 1.31 mm
1.88W/m K(0 C ( 4 C)( ) 11 0.569W/m K(2 C 0 C)( )

s m c

f h m

tL
k T T
k T T

−
−×

= = = × =
   ⋅ ° − − °− ++     ⋅ ° − °−   

          < 

 
 
COMMENTS:  (1) Liquid water is opaque to thermal radiation, but ice is semi-transparent. A more 
detailed analysis would account for the effects of radiation. (2) Free convection in the liquid is 
negligible because the density of liquid water at Th = 2°C is greater than the density at Tm = 0°C. 
Water is one of only several liquids that experiences such a density inversion. 
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PROBLEM 3.9 
 
KNOWN:  Design and operating conditions of a heat flux gage. 
 
FIND:  (a) Convection coefficient for water flow (Ts = 27°C) and error associated with neglecting 
conduction in the insulation, (b) Convection coefficient for air flow (Ts = 125°C) and error associated 
with neglecting conduction and radiation, (c) Effect of convection coefficient on error associated with 
neglecting conduction for Ts = 27°C. 
 
SCHEMATIC:   

 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state, (2) One-dimensional conduction, (3) Constant k. 
 
ANALYSIS:  (a) The electric power dissipation is balanced by convection to the water and conduction 
through the insulation.  An energy balance applied to a control surface about the foil therefore yields 
 
 ( ) ( )elec conv cond s s bP q q h T T k T T L∞′′ ′′ ′′= + = − + −  
Hence, 

 
( ) ( )2

elec s b

s

P k T T L 2000 W m 0.04 W m K 2 K 0.01m
h

T T 2 K∞

′′ − − − ⋅
= =

−
 

 
( ) 2

22000 8 W m
h 996 W m K

2 K
−

= = ⋅  < 

 
If conduction is neglected, a value of h = 1000 W/m2⋅K is obtained, with an attendant error of (1000 - 
996)/996 = 0.40% 
 
(b)  In air, energy may also be transferred from the foil surface by radiation, and the energy balance 
yields 
 

 ( ) ( ) ( )4 4
elec conv rad cond s s sur s bP q q q h T T T T k T T Lεσ∞′′ ′′ ′′ ′′= + + = − + − + −  

Hence, 

 
( ) ( )4 4

elec s sur s

s

P T T k T T L
h

T T

εσ ∞

∞

′′ − − − −
=

−
 

 
( )2 8 2 4 4 4 42000 W m 0.15 5.67 10 W m K 398 298 K 0.04 W m K (100 K) / 0.01m

100 K

−− × × ⋅ − − ⋅
=  

 
( ) 2

22000 146 400 W m
14.5 W m K

100 K
− −

= = ⋅  < 

Continued...
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PROBLEM 3.9 (Cont.) 

 
If conduction, radiation, or conduction and radiation are neglected, the corresponding values of h and the 
percentage errors are 18.5 W/m2⋅K (27.6%), 16 W/m2⋅K (10.3%), and 20 W/m2⋅K (37.9%). 
 
(c)  For a fixed value of Ts = 27°C, the conduction loss remains at condq′′  = 8 W/m2, which is also the 
fixed difference between elecP′′  and convq′′ .  Although this difference is not clearly shown in the plot for 
10 ≤ h ≤ 1000 W/m2⋅K, it is revealed in the subplot for 10 ≤ 100 W/m2⋅K. 
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Errors associated with neglecting conduction decrease with increasing h from values which are 
significant for small h (h < 100 W/m2⋅K) to values which are negligible for large h. 
 
COMMENTS:  In liquids (large h), it is an excellent approximation to neglect conduction and assume 
that all of the dissipated power is transferred to the fluid. 



 

 

PROBLEM 3.10  
KNOWN:  A layer of fatty tissue with fixed inside temperature can experience different 
outside convection conditions.  
FIND:  (a) Ratio of heat loss for different convection conditions, (b) Outer surface 
temperature for different convection conditions, and (c) Temperature of still air which 
achieves same cooling as moving air (wind chill effect).  
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) One-dimensional conduction through a plane wall, (2) Steady-state 
conditions, (3) Homogeneous medium with constant properties, (4) No internal heat 
generation (metabolic effects are negligible), (5) Negligible radiation effects. 
 
PROPERTIES:  Table A-3, Tissue, fat layer:  k = 0.2 W/m⋅K.  
ANALYSIS:  The thermal circuit for this situation is 
 

 
 
Hence, the heat rate is 
 

 s,1 s,1

tot

T T T T
q .

R L/kA 1/ hA
∞ ∞− −

= =
+

 

 
Therefore, 
 

 windycalm
windy

calm

L 1
k hq .
L 1q
k h

 +  ′′
=

′′  +  

 

 
Applying a surface energy balance to the outer surface, it also follows that 
 
 cond convq q .′′ ′′=  
 
                   Continued … 



 

 

PROBLEM 3.10 (Cont.)  
Hence,  

 

( ) ( )s,1 s,2 s,2

s,1
s,2

k T T h T T
L

kT T
hLT .k1+
hL

∞

∞

− = −

+
=

 

 
To determine the wind chill effect, we must determine the heat loss for the windy day and use 
it to evaluate the hypothetical ambient air temperature, ′∞T ,  which would provide the same 
heat loss on a calm day, Hence,  

s,1 s,1

windy calm

T T T T
q

L 1 L 1
k h k h

∞ ∞′− −
′′ = =

   + +      

 

 
From these relations, we can now find the results sought:  

(a) 
2calm

windy
2

0.003 m 1
q 0.2 W/m K 0.015 0.015465 W/m K

0.003 m 1q 0.015 0.04
0.2 W/m K 25 W/m K

+
′′ ⋅ +⋅= =
′′ ++

⋅ ⋅

 

 

 calm
windy

q 0.553
q
′′

=
′′

         < 

 

(b) 
( )( )

( )( )

2

s,2 calm
2

0.2 W/m K15 C 36 C
25 W/m K 0.003 m

T 22.1 C0.2 W/m K1
25 W/m K 0.003 m

⋅
− +

⋅
 = = ⋅

+
⋅

 

    < 

 

 
( )( )

( )( )

2

s,2 windy
2

0.2 W/m K15 C 36 C
65 W/m K 0.003m

T 10.8 C0.2 W/m K1
65 W/m K 0.003m

⋅
− +

⋅
 = = ⋅

+
⋅

 

    < 

 

(c) ( ) ( )
( )

0.003/0.2 1/ 25
T 36 C 36 15 C 56.3 C

0.003/ 0.2 1/ 65∞
+

′ = − + = −
+

      < 

 
COMMENTS:  The wind chill effect is equivalent to a decrease of Ts,2 by 11.3°C and 
increase in the heat loss by a factor of (0.553)-1 = 1.81. 



PROBLEM 3.11 
  

KNOWN:  Temperature of the heating island and sensing island, as well as the surrounding silicon 
nitride wafer temperature of Example 3.4. 
 
FIND:  The thermal conductivity of the carbon nanotube, kcn, for the conditions of the problem 
statement and Th = 332.6 K, without evaluating the thermal resistances of the supports. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) One-dimensional heat 
transfer, (4) Isothermal heating and sensing islands, (5) Negligible radiation and convection effects. 
 
 
ANALYSIS:   We begin by defining an excess temperature, θ  ≡ T - T∞ and modifying the thermal 
circuit as shown in the schematic. In the modified circuit, the total thermal resistance, Rtot, represents 
the combined effects of the two beams that support either the heated island or the sensing island.  
 
From the modified thermal circuit, it is evident that an expression for Rtot can be derived as 
 

 q = qh + qs = 
tot tot tot

h s h sT T T T
R R R

θ θ∞ ∞− − +
+ =      or     tot

h sR
q

θ θ+
=          

 
For conduction through the supporting beams of the heated island, and through the carbon nanotube, 
we may write 
  

 
tot cn cn tot cn cn/( ) /( )

h h s h h s
h s

T T T Tq q q
R s k A R s k A

θ θ θ∞− − −
= + = + = +   

 
Substituting the expression for Rtot into the preceding equation, and rearranging the resulting 
expression yields 
 
 

6 6

cn 16 2
cn

1 32.6 K 1 5 10  m 11.3 10  W1 1
32.6 K 8.4 K 32.6 K 8.4 K 1.54 10  m

h

h s h s

sqk
A

θ
θ θ θ θ

− −

−

    × × ×   = − = −       + − + − ×      
 
      = 3113 W/m∙K          < 
 
COMMENTS: (1) The analysis is simplified if the heating island temperature is known. (2) This 
solution is independent of the thermal resistance posed by the support beams, making the measured 
thermal conductivity of the carbon nanotube less susceptible to experimental error.  
 

Rtot Rtot
s

kcnAcn

q

T∞ T∞Th
Ts

qh qs



PROBLEM 3.12 
 
KNOWN:  Dimensions of a thermopane window.  Room and ambient air conditions. 
 
FIND:  (a) Heat loss through window, (b) Effect of variation in outside convection coefficient for 
double and triple pane construction. 
 
SCHEMATIC (Double Pane): 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional heat transfer, (3) Constant 
properties, (4) Neglect radiation effects, (5) Air between glass is stagnant. 
 
PROPERTIES:  Table A-3, Glass (300 K):  kg = 1.4 W/m⋅K;  Table A-4, Air (T = 278 K):  ka = 
0.0245 W/m⋅K. 
 
ANALYSIS:  (a) From the thermal circuit, the heat loss is 

 ,i ,o

i g a g o

T T
q=

1 1 L L L 1
A h k k k h

∞ ∞−

+ + + +
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

( )
2 2 2

20 C 10 C
q

1 1 0.007 m 0.007 m 0.007 m 1
1.4 W m K 0.0245 W m K 1.4 W m K0.4 m 10 W m K 80 W m K

− −
=

+ + + +
⋅ ⋅ ⋅⋅ ⋅

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

o o

 

 
( )

30 C 30 C
q

0.25 0.0125 0.715 0.0125 0.03125 K W 1.021K W
= =

+ + + +

o o

 = 29.4 W < 

(b) For the triple pane window, the additional pane and airspace increase the total resistance from 
1.021 K/W to 1.749 K/W, thereby reducing the heat loss from 29.4 to 17.2 W.  The effect of ho on the 
heat loss is plotted as follows. 
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PROBLEM 3.12 (Cont.) 

 
Changes in ho influence the heat loss at small values of ho, for which the outside convection resistance 
is not negligible relative to the total resistance.  However, the resistance becomes negligible with 
increasing ho, particularly for the triple pane window, and changes in ho have little effect on the heat 
loss. 
 
COMMENTS:  (1) The largest contribution to the thermal resistance is due to conduction across the 
enclosed air.  Note that this air could be in motion due to free convection currents.  If the 
corresponding convection coefficient exceeded 3.5 W/m2⋅K, the thermal resistance would be less than 
that predicted by assuming conduction across stagnant air, thereby increasing the heat loss.   
(2) Determination of the radiation heat loss is complex and will be addressed in Chapters 12 and 13.  
Radiation would increase the heat loss between the room and outside air, but on a sunny day, solar 
radiation transmitted through the window would contribute to heating the room. 



 

 

PROBLEM 3.13  
KNOWN:  Composite wall of a house with prescribed convection processes at inner and 
outer surfaces.  
FIND:  (a) Expression for thermal resistance of house wall, Rtot; (b) Total heat loss, q(W); (c) 
Effect on heat loss due to increase in outside heat transfer convection coefficient, ho; and (d) 
Controlling resistance for heat loss from house.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) One-dimensional conduction, (2) Steady-state conditions, (3) 
Negligible contact resistance.  
PROPERTIES:  Table A-3, ( ) ( )( )i oT T T / 2 20 15 C/2=2.5 C 300K := + = − ≈    Fiberglass 

blanket, 28 kg/m3, kb = 0.038 W/m⋅K; Plywood siding, ks = 0.12 W/m⋅K; Plasterboard, kp = 
0.17 W/m⋅K.  
ANALYSIS:  (a) The expression for the total thermal resistance of the house wall follows 
from Eq. 3.18. 

 p b s
tot

i p b s o

L L L1 1R .
h A k A k A k A h A

= + + + +       < 

(b)  The total heat loss through the house wall is 
 ( )tot i o totq T/R T T / R .= ∆ = −  
 
Substituting numerical values, find  

 

[ ]

tot 2 2 2 2

2 2 2
5 5

tot

1 0.01m 0.10mR
30W/m K 350m 0.17W/m K 350m 0.038W/m K 350m

0.02m 1            
0.12W/m K 350m 60W/m K 350m

R 9.52 16.8 752 47.6 4.76 10  C/W 831 10  C/W− −

= + +
⋅ × ⋅ × ⋅ ×

+ +
⋅ × ⋅ ×

= + + + + × = × 

 

 
The heat loss is then, 

 ( ) -5q= 20- -15 C/831 10  C/W=4.21 kW.  × 
       < 

 
(c) If ho changes from 60 to 300 W/m2⋅K, Ro = 1/hoA changes from 4.76 × 10-5 °C/W to 
0.95 × 10-5 °C/W.  This reduces Rtot to 826 × 10-5 °C/W, which is a 0.6% decrease and hence 
a 0.6% increase in q.  
(d) From the expression for Rtot in part (b), note that the insulation resistance, Lb/kbA, is 
752/830 ≈ 90% of the total resistance.  Hence, this material layer controls the resistance of the 
wall.  From part (c) note that a 5-fold decrease in the outer convection resistance due to an 
increase in the wind velocity has a negligible effect on the heat loss. 



 

 

PROBLEM 3.14  
KNOWN:  Composite wall of a house with prescribed convection processes at inner and 
outer surfaces.  
FIND:  Daily heat loss for prescribed diurnal variation in ambient air temperature.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) One-dimensional, steady-state conduction (negligible change in wall 
thermal energy storage over 24h period), (2) Negligible contact resistance.  
PROPERTIES:  Table A-3, T ≈ 300 K:  Fiberglas blanket (28 kg/m3), kb = 0.038 W/m⋅K; 
Plywood, ks = 0.12 W/m⋅K; Plasterboard, kp = 0.17 W/m⋅K. 
 

ANALYSIS:  The heat loss may be approximated as 
24h

,i ,o

tot0

T T
Q dt where

R
∞ ∞−

= ∫  

 
p b s

tot
i p b s o

tot 2 2 2

tot

L L L1 1 1
R

A h k k k h
1 1 0.01m 0.1m 0.02m 1

R
0.17 W/m K 0.038 W/m K 0.12 W/m K200m 30 W/m K 60 W/m K

R 0.01454 K/W.

= + + + +

= + + + +
⋅ ⋅ ⋅⋅ ⋅

=

 
 
  

 
 
 

 

 
Hence the heat rate is  

 
12h 24h

tot 0 12

1 2 2Q 293 273 5 sin t dt 293 273 11 sin t dt
R 24 24

π π        = − + + − +               
∫ ∫  

 

 
12 24

0 12
W 24 2 t 24 2 tQ 68.8 20t+5 cos 20t+11 cos K h
K 2 24 2 24

π π
π π

        = + ⋅               
 

 

 ( ) ( )60 132Q 68.8 240 1 1 480 240 1 1 W h
π π

    = + − − + − + + ⋅        
 

 
 { }Q 68.8 480-38.2+84.03  W h= ⋅  
 
 8Q=36.18 kW h=1.302 10 J.⋅ ×        < 
 
COMMENTS:  From knowledge of the fuel cost, the total daily heating bill could be 
determined.  For example, at a cost of 0.18$/kW⋅h, the heating bill would be $6.52/day. 



PROBLEM 3.15  
KNOWN:  Dimensions and materials associated with a composite wall (2.5m × 6.5m, 10 studs each 
2.5m high).  
FIND:  Wall thermal resistance.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Temperature of composite depends only on x 
(surfaces normal to x are isothermal), (3) Constant properties, (4) Negligible contact resistance.  
PROPERTIES:  Table A-3 (T ≈ 300K):  Hardwood siding, kA = 0.094 W/m⋅K; Hardwood, 
kB = 0.16 W/m⋅K; Gypsum, kC = 0.17 W/m⋅K; Insulation (glass fiber paper faced, 28 kg/m3), 
kD = 0.038 W/m⋅K. 
 
ANALYSIS:  Using the isothermal surface assumption, the thermal circuit associated with a single 
unit (enclosed by dashed lines) of the wall is  

  

 ( ) ( )A A A
0.008mL / k A 0.0524 K/W

0.094 W/m K 0.65m 2.5m
= =

⋅ ×
 

 

 ( ) ( )B B B
0.13mL / k A 8.125 K/W

0.16 W/m K 0.04m 2.5m
= =

⋅ ×
 

 

 ( ) ( )D D D
0.13mL /k A 2.243 K/W

0.038 W/m K 0.61m 2.5m
= =

⋅ ×
 

 

 ( ) ( )C C C
0.012mL / k A 0.0434 K/W.

0.17 W/m K 0.65m 2.5m
= =

⋅ ×
 

 
The equivalent resistance of the core is  
 ( ) ( )1 1

eq B DR 1/ R 1/ R 1/ 8.125 1/ 2.243 1.758 K/W− −= + = + =  
 
and the total unit resistance is  
 tot,1 A eq CR R R R 1.854 K/W.= + + =  
 
With 10 such units in parallel, the total wall resistance is  

 ( ) 1
tot tot,1R 10 1/ R 0.1854 K/W.

−
= × =       < 

 
COMMENTS:  If surfaces parallel to the heat flow direction are assumed adiabatic, the thermal 
circuit and the value of Rtot will differ. 



PROBLEM 3.16 
 
 
KNOWN:  Dimensions and materials associated with a composite wall (2.5 m × 6.5 m, 10 studs each 
2.5 m high).  
 
FIND:  Wall thermal resistance. 
 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state, one-dimensional conditions, (2) Planes parallel to x are adiabatic, 
(3) Constant properties, (4) Negligible contact resistance. 
 
PROPERTIES: Table A-3 (T ≈ 300 K): Hardwood siding, kA = 0.094 W/m⋅K; Hardwood, kB = 0.16 
W/m⋅K; Gypsum, kC = 0.17 W/m⋅K; Insulation (glass fiber paper faced, 28 kg/m3), kD = 0.038 W/m⋅K. 
 
 
 
ANALYSIS:   Using the 
adiabatic surface assumption, the 
thermal circuit associated with a 
single unit (enclosed by dashed 
lines) of the wall is as shown to 
the right. The various resistances 
are 
 
  

RA,1 = (LA/kAAB) = 0.008 m 0.8511 K/W
0.094 W/m K (0.04 m  2.5 m)

=
⋅ ×

 

RB = (LB/kBAB) = 0.13 m 8.125 K/W
0.16 W/m K (0.04 m  2.5 m)

=
⋅ ×

 

RC,1 = (LC/kCAB) = 0.012 m 0.7059 K/W
0.17 W/m K (0.04 m  2.5 m)

=
⋅ ×

 

RA,2 = (LA/kAAD) = 0.008 m 0.0558 K/W
0.094 W/m K (0.61 m  2.5 m)

=
⋅ ×

 

RD = (LD/kDAD) = 0.13 m 2.243 K/W
0.038 W/m K (0.61 m  2.5 m)

=
⋅ ×

 

RC,2 = (LC/kCAD) = 0.012 m 0.0463 K/W
0.17 W/m K (0.61 m  2.5 m)

=
⋅ ×

 

 
Continued… 

RA,1 = LA/(kAAB)

RB= LB/(kBAB)

RC,1 = LC/(kCAB)

RA,2 = LA/(kAAD)

RD = LD/(kDAD)

RC,2 = LC/(kCAD)

x

0.65 m

LB = LD = 130 mm

LC = 12 mm

LA = 8 mm

Hardwood (B)

Hardwood siding (A)

Gypsum (C)
Insulation
Glass fiber,
paper faced (D)
(28 kg/m3)

40 mm



PROBLEM 3.16 (Cont.) 
 
 
 
The total unit resistance is 
 

Rtot,1 = 
1 1

A,1 B C,1 A,2 D C,2

1 1 1 1+ +
R +R +R R +R +R 0.8511+8.125+0.7059 0.0558+2.243+0.0463

− −⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 
        = 1.888 K/W 
 
With 10 such units in parallel, the total wall resistance is Rtot = (10 × 1/Rtot,1)-1 = 0.1888 K/W.  < 
 
COMMENTS: (1) Contact resistance will increase the overall wall resistance relative to that 
calculated here. (2) The total wall resistance assuming isothermal surfaces normal to the x direction is 
0.1854 K/W, which is within 2 % of the value found in this solution. 



PROBLEM 3.17 
 
KNOWN:  Thickness and thermal conductivity of oven wall insulation.  Exterior air temperature and 
convection heat transfer coefficient.  Interior air temperature and convection heat transfer coefficients 
under free and forced convection conditions. 
 
FIND:  Heat flux through oven walls under free and forced convection conditions.  Impact of forced 
convection on heat loss.  Effect of radiation. 
 
SCHEMATIC:   
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction through walls, (3) 
Thermal resistance of sheet metal layers is negligible, (4) Interior and exterior radiation is to large 
surroundings at the air temperatures, (5) Emissivity is approximately 1.0, (6) Negligible contact 
resistances. 
  
ANALYSIS:   Neglecting radiation, the heat flux through the oven wall can be calculated from 
Equations 3.11 and 3.12 on a per unit area basis. 
 

,int ,ext tot( ) /xq T T R∞ ∞′′ ′′= −  
 
where 
 

tot
int ins ext

1 1LR
h k h

′′ = + +  

 
When forced convection is disabled inside the oven, we have hint = hfr and 
 

tot 2 2
int ins ext

2 2 2 2

1 1 1 0.03 m 1
3 W / m K 0.03 W / m K 2 W / m K

0.33 m K/W 1 m K/W 0.5 m K/W 1.83 m K/W

LR
h k h

′′ = + + = + +
⋅ ⋅ ⋅

= ⋅ + ⋅ + ⋅ = ⋅

 

 
Therefore 
 

2 2
,int ,ext tot( ) / (180 C 23 C) /1.83 m K/W 85.6 W/mxq T T R∞ ∞′′ ′′= − = ° − ° ⋅ =  < 

 
When forced convection is activated inside the oven, we have hint = hfo and 

Continued… 
 

 
 

T∞,i = 180°C
hint = hfr = 3 W/m2∙K

or hfo = 27 W/m2∙K

L = 30 mm

kins = 0.03 W/m∙K

T∞,o = 23°C
hent = 2 W/m2∙K

Tsur, ext

Tsur, int



PROBLEM 3.17 (Cont.) 
 
 

tot 2 2
int ins ext

2 2 2 2

1 1 1 0.03 m 1
27 W / m K 0.03 W / m K 2 W / m K

0.037 m K/W 1 m K/W 0.5 m K/W 1.537 m K/W

LR
h k h

′′ = + + = + +
⋅ ⋅ ⋅

= ⋅ + ⋅ + ⋅ = ⋅

 

 
and 
 

  2 2
,int ,ext tot( ) / (180 C 23 C) /1.537 m K/W 102 W/mxq T T R∞ ∞′′ ′′= − = ° − ° ⋅ =                   < 

 
Operation in forced convection mode increases oven heat loss by around 19%.  Although h int increases 
by a factor of 9, other thermal resistances tend to dominate the total thermal resistance.      < 
 
Radiation at both the inner and outer oven surfaces can be accounted for by combining convection and 
radiation heat transfer in parallel. This results in a total heat transfer coefficient at each surface that is 
the sum of the convection and radiation heat transfer coefficients, see Example 3.1.  Therefore, the 
total thermal resistance can be expressed as 
 

tot
int ,int ins ext ,ext

1 1

r r

LR
h h k h h

′′ = + +
+ +

 

 
The radiation heat transfer coefficient is given by Equation 1.9 and can be approximated as 
 

34rh Tεσ≈  
 

where sur( ) / 2sT T T= + .  We do not know the oven surface temperatures and will approximate both 
surface temperatures as the average of the interior and exterior air temperatures, ,int ,ext( ) / 2sT T T∞ ∞= +  
= 101.5°C ≈ 375 K.  Thus, int 414 KT = and ext 335.5 KT = .  Assuming the emissivity of both surfaces 
is ε ≈ 1, we find 2

,int 16 W/m Krh ≈ ⋅  and 2
,ext 8.6 W/m Krh ≈ ⋅ .  Thus, under free convection conditions, 

 

2
tot 2 2

2 2

1 11 m K/W
(3 16) W/m K (2 8.6) W/m K
(0.053 1 0.094)m K/W 1.17 m K/W

R′′ = + ⋅ +
+ ⋅ + ⋅

= + + ⋅ = ⋅
 

 
and under forced convection conditions, 
 

2 2
tot 2

2 2

1 1 m K/W 0.094 m K/W
(27 16) W/m K
(0.023 1 0.094)m K/W 1.12 m K/W

R′′ = + ⋅ + ⋅
+ ⋅

= + + ⋅ = ⋅

 

 
When radiation is accounted for, the internal and external heat transfer resistances become small 
compared to the thermal resistance of the insulation, and there is little difference between the total 
thermal resistance with or without forced convection inside the oven.                                                < 

 
COMMENTS:  The radiation heat flux can be calculated more accurately by solving for the oven 
interior and exterior surface temperatures, however without knowledge of the surface emissivity there 
is no reason to be so precise.  



 

 

PROBLEM 3.18  
KNOWN:  Thicknesses of three materials which form a composite wall and thermal 
conductivities of two of the materials.  Inner and outer surface temperatures of the composite; 
also, temperature and convection coefficient associated with adjoining gas.  
FIND:  Value of unknown thermal conductivity, kB. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction, (3) Constant 
properties, (4) Negligible contact resistance, (5) Negligible radiation effects.  
ANALYSIS:  Referring to the thermal circuit, the heat flux may be expressed as  

 ( )s,i s,o
CA B

BA B C

T T 600 20 C
q L 0.3 m 0.15 m 0.15 mL L

20 W/m K k 50 W/m Kk k k

− −
′′ = =

+ ++ +
⋅ ⋅



 

 

 2
B

580q = W/m .
0.018+0.15/k

′′         (1) 

 
The heat flux may be obtained from  
 ( ) ( )2

s,iq =h T T 25 W/m K 800-600 C∞′′ − = ⋅       (2) 
 
 2q =5000 W/m .′′  
 
Substituting for the heat flux from Eq. (2) into Eq. (1), find  

B

0.15 580 5800.018 0.018 0.098
k q 5000

= − = − =
′′

 

 
 Bk 1.53 W/m K.= ⋅          < 
 
COMMENTS:  Radiation effects are likely to have a significant influence on the net heat 
flux at the inner surface of the oven. 



PROBLEM 3.19  
KNOWN:  Drying oven wall having material with known thermal conductivity sandwiched between thin 
metal sheets.  Radiation and convection conditions prescribed on inner surface; convection conditions on 
outer surface.  
FIND:  (a) Thermal circuit representing wall and processes and (b) Insulation thickness required to 
maintain outer wall surface at To = 40°C. 
 
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in wall, (3) Thermal 
resistance of metal sheets negligible,(4) Negligible contact resistance.  
ANALYSIS:  (a) The thermal circuit is shown above.  Note labels for the temperatures, thermal 
resistances and the relevant heat fluxes. 
 
(b) Perform energy balances on the i- and o- nodes finding 

,i i o i
rad

cv,i cd

T T T T q 0
R R
∞ − − ′′+ + =
′′ ′′

       (1) 

 

 ,o oi o
cd cv,o

T TT T 0
R R

∞ −−
+ =

′′ ′′
        (2) 

 
where the thermal resistances are 

2
cv,i iR 1/ h 0.0333 m K / W′′ = = ⋅        (3) 

 
 2

cdR L / k L / 0.05 m K / W′′ = = ⋅        (4) 
 
 2

cv,o oR 1/ h 0.100 m K / W′′ = = ⋅        (5) 
 
Substituting numerical values, and solving Eqs. (1) and (2) simultaneously, find 

 L 86 mm=           < 
 
COMMENTS:  (1) The temperature at the inner surface can be found from an energy balance on the       
i-node using the value found for L. 

 ,i i ,o i
rad i

cv,o cd cv,i

T T T T
q 0 T 298.3 C

R R R
∞ ∞− −

′′+ + = = °
′′ ′′ ′′+

 

 
It follows that Ti is close to T∞,i since the wall represents the dominant resistance of the system. 
 
(2) Verify that 2

iq 50 W / m′′ =  and 2
oq 150 W / m .′′ = −   Is the overall energy balance on the system 

satisfied? 



PROBLEM 3.20 
 
 

KNOWN:  Window surface area and thickness, inside and outside heat transfer coefficients, outside 
and passenger compartment temperatures.  
 
FIND:  Heat loss through the windows for high and low inside heat transfer coefficients. 
 
SCHEMATIC: 

qconv,o

qconv,i

T∞,i = 22°C
hi = 5 or 15 W/m2·K

T∞,o = 32°C
ho = 90 W/m2·Kt = 4 mm

Glass, A =  2.6m2

qcond

 
 
 
ASSUMPTIONS:  (1) Steady-state, one-dimensional conduction. (2) Constant properties. (3) 
Negligible radiation. 
 
PROPERTIES: Table A.3, glass (T = 300 K): k = 1.4 W/m⋅K. 
 
ANALYSIS:   The thermal circuit is 
 
 
 
 
 
 
 
from which the heat transfer rate through the windows for hi = 15 W/m2⋅K is 
 

 
( )

, ,

-3

2 2 2 2 2

1 1

32 22 C
  

1 4×10  m 1
15 W/m K 2.6 m 1.4 W/m K×2.6 m 90 W/m K×2.6m

o i

i o

T T
q

t
h A kA h A

∞ ∞−
=
 

+ + 
 

− °
=
 

+ +  ⋅ × ⋅ ⋅ 

 

               
   = 333 W          < 
 

Repeating the calculation for hi = 5 W/m2⋅K yields q = 121 W     < 
 
 
 

Continued… 

T∞,o = 32°C

t

kA

1

ho A

1

ho A

q

T∞,i = 22°C

1

hi A

1

hi A



PROBLEM 3.20 (Cont.) 
 

   
COMMENTS: (1) Assuming an air conditioner COP of 3, controlling the airflow in the passenger 
cabin to reduce the interior convection heat transfer coefficient will reduce the power consumed by the 
air conditioner by ∆P = (333 W – 121 W)/3 = 71 W. (2) A smaller air conditioner can be utilized with 
the lower interior heat transfer coefficient. This will both (a) reduce the cost of the air conditioner and 
(b) reduce the amount of refrigerant in the air conditioning unit. Reduction in the amount of refrigerant 
used will also reduce the level of refrigerant that might leak from the system, potentially reducing 
greenhouse gas emissions. (3) The individual resistance values are Rconv,i = 0.026 K/W, Rcond = 0.0011 
K/W, and Rconv,o = 0.0043 K/W for hi = 15 W/m2⋅K.  



PROBLEM 3.21 
 
KNOWN:  Conditions associated with maintaining heated and cooled conditions within a refrigerator 
compartment. 
 
FIND:  Coefficient of performance (COP). 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state operating conditions, (2) Negligible radiation, (3) Compartment 
completely sealed from ambient air. 
 
ANALYSIS:  The Case (a) experiment is performed to determine the overall thermal resistance to heat 
transfer between the interior of the refrigerator and the ambient air.  Applying an energy balance to a 
control surface about the refrigerator, it follows from Eq. 1.12b that, at any instant, 
 g outE E 0− =& &  

Hence, 
 elec outq q 0− =  

where ( )out ,i ,o tq T T R∞ ∞= − .  It follows that 

 
( ),i ,o

t
elec

T T 90 25 C
R 3.25 C/W

q 20 W
∞ ∞− −

= = =
o

o  

For Case (b), heat transfer from the ambient air to the compartment (the heat load) is balanced by heat 
transfer to the refrigerant (qin = qout).  Hence, the thermal energy transferred from the refrigerator over the 
12 hour period is 

 ,i ,o
out out in

t

T T
Q q t q t t

R
∞ ∞−

= Δ = Δ = Δ  

 
( ) ( )out
25 5 C

Q 12 h 3600s h 266, 000 J
3.25 C W

−
= × =

o

o
 

The coefficient of performance (COP) is therefore 

 out

in

Q 266, 000
COP 2.13

W 125,000
= = =  < 

COMMENTS:  The ideal (Carnot) COP is 

 )
( )

c
ideal

h c

T 278 K
COP 13.9

T T 298 278 K
= = =

− −
 

and the system is operating well below its peak possible performance. 



PROBLEM 3.22 
 
KNOWN:  Total floor space and vertical distance between floors for a square, flat roof building. 
 
FIND:  (a) Expression for width of building which minimizes heat loss, (b) Width and number of floors 
which minimize heat loss for a prescribed floor space and distance between floors.  Corresponding heat 
loss, percent heat loss reduction from 2 floors. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  Negligible heat loss to ground. 
 
ANALYSIS:  (a)  To minimize the heat loss q, the exterior surface area, As, must be minimized.  From 
Fig. (a) 
 
 2 2

s f fA W 4WH W 4WN H= + = +  
where 

 2
f fN A W=  

Hence, 

 2 2 2
s f f f fA W 4WA H W W 4A H W= + = +  

 
The optimum value of W corresponds to 
 

 s f f
2

dA 4A H2W 0
dW W

= − =  

or 

 ( )1/ 3
op f fW 2A H=  < 

 
The competing effects of W on the areas of the roof and sidewalls, and hence the basis for an optimum, is 
shown schematically in Fig. (b). 
 
(b)  For Af = 32,768 m2 and Hf = 4 m, 
 

 ( )1/ 32
opW 2 32,768m 4m 64m= × × =  < 

  Continued … 



PROBLEM 3.22 (Cont.) 
 
Hence, 

 
( )

2
f

f 2 2
A 32,768mN 8
W 64 m

= = =  < 

and 

 ( )
222

s
4 32,768m 4 mq UA T 1W m K 64 m 25 C 307, 200 W

64 m

⎡ ⎤× ×
= Δ = ⋅ + =⎢ ⎥

⎢ ⎥⎣ ⎦

o  < 

 
For Nf = 2,  
 
 W = (Af/Nf)1/2 = (32,768 m2/2)1/2 = 128 m 

 ( )
222 4 32,768m 4 mq 1W m K 128m 25 C 512,000 W

128m

⎡ ⎤× ×
= ⋅ + =⎢ ⎥

⎢ ⎥⎣ ⎦

o  

 

% reduction in q = (512,000 - 307,200)/512,000 = 40% < 
 
COMMENTS:  Even the minimum heat loss is excessive and could be reduced by reducing U. 



PROBLEM 3.23

KNOWN: Dimensions and temperature of a canister containing a solid oxide fuel cell.
Surroundings and ambient temperature.

FIND: (a) Required insulation thickness to keep the equivalent blackbody temperature below 305
K, (b) Canister surface temperature for four cases, (c) Heat flux through the cylindrical walls for
four cases.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) One-dimensional heat
transfer, (4) Large surroundings.

ANALYSIS: The maximum allowable surface temperature may be found by relating the actual
and inferred surface temperatures through the relation

4 4 4 1/4
s b s s b s b sE = E = ε σT  = σT    or   T  = (T / ) (1)

The thermal circuit is

q

Tfc = 800°C

= 1073 K

2 1ln(r / r )

2 kL

Ts

 2

1

h2 r L

r 2

1

h 2 r L

Tsur = 300 K

T∞ = 298 K

q

Tfc = 800°C

= 1073 K

2 1ln(r / r )

2 kL

Ts

 2

1

h2 r L

r 2

1

h 2 r L

Tsur = 300 K

T∞ = 298 K

where, from Eq. 1.9,

2 2
r s s sur s surh = ε σ(T  + T )(T  + T ) (2)

Summing currents at the Ts node yields
Continued…

Tfc = 800°C
r2

r1

t

D = 2r1

= 75 mm

L = 120 mm

Solid oxide
fuel cell

h = 12 W/m2∙K
T∞ = 298 K

Tsur =
300 K

Infrared
detector

Tfc = 800°C
r2

r1

t

D = 2r1

= 75 mm

L = 120 mm

Solid oxide
fuel cell

h = 12 W/m2∙K
T∞ = 298 K

Tsur =
300 K

Infrared
detector



PROBLEM 3.23 (Cont.)

fc s s s sur

2 1

2 r 2

T - T T - T T - T
= +

ln(r / r ) 1 1
2πkL h2πr L h 2πr L



     
     
     

(3)

where

fc s

2 1

T - T
q = L

ln(r / r )

2π / L

 
 
 

(4)

Noting that the insulation thickness is t = r2 - r1, solving Eqs. (2) and (3) simultaneously, and then
solving Eq. (4) yields the following results.

s k (W/m∙K) t(m) Ts(K) q(W)

0.08
0.9
0.08
0.9

0.09
0.09
0.006
0.006

0.0875
0.963
0.0008
0.015

573.5
313.1
573.5
313.1

135
33.75
108.4
10.2

COMMENTS: (1) Use of the low emissivity surface allows surface temperatures to be high
without the fuel cell being detected. (2) The high surface temperature is not safe to the touch. (3)
The low thermal conductivity of the aerogel allows the use of a small insulation thickness relative
to the calcium silicate. (4) Small heat losses and low surface temperatures are desired. The s =
0.9, k = 0.006 case offers the best performance, and the surface need not be kept in a polished
condition to avoid detection.



PROBLEM 3.24

KNOWN: Representative dimensions and thermal conductivities for the layers of fire-fighter’s
protective clothing, a turnout coat.

FIND: (a) Thermal circuit representing the turnout coat; tabulate thermal resistances of the layers
and processes; and (b) For a prescribed radiant heat flux on the fire-side surface and temperature of

Ti = 60C at the inner surface, calculate the fire-side surface temperature, To.

SCHEMATIC:

k (W/m-K)i

L (mm)i 0.8

0.047

1.0 0.55

0.012

1.0 3.5

0.038

Shell Moisture barrier Thermal liner

To

(s) mb (tl)
a b c d

air
gap

air
gap

Fire

Firefighter

T = 66 Ci
o

q = 0.25rad W/cm2

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction through the layers,
(3) Heat is transferred by conduction and radiation exchange across the stagnant air gaps, (3) Constant
properties.

PROPERTIES: Table A-4, Air (470 K, 1 atm): kab = kcd = 0.0387 W/mK.

ANALYSIS: (a) The thermal circuit is shown with labels for the temperatures and thermal
resistances.

qrad
sR”

air,ab

rad,ab

mb

air,cd

rad,cd

R”

R”

R”

R”

R”

tlR”

TaTo Tb Tc Td Ti

The conduction thermal resistances have the form cdR L / k  while the radiation thermal

resistances across the air gaps have the form

rad 3rad avg

1 1
R

h 4 T
  

The linearized radiation coefficient follows from Eqs. 1.8 and 1.9 with  = 1 where Tavg represents
the average temperature of the surfaces comprising the gap

  2 2 3
rad 1 2 avg1 2h T T T T 4 T    

For the radiation thermal resistances tabulated below, we used Tavg = 470 K.

Continued …



PROBLEM 3.24 (Cont.)

Shell Air gap Barrier Air gap Liner Total
(s) (a-b) (mb) (c-d) (tl) (tot)

 2
cdR m K / W  0.01702 0.0222 0.04583 0.0222 0.0921 --

 2
radR m K / W  -- 0.04246 -- 0.04246 -- --

 2
gapR m K / W  -- 0.0146 -- 0.0146 -- --

totalR -- -- -- -- -- 0.1842

From the thermal circuit, the resistance across the gap for the conduction and radiation processes is

gap cd rad

1 1 1

R R R
 

  

and the total thermal resistance of the turn coat is

tot cd,s gap,a b cd,mb gap,c d cd,tlR R R R R R          

(b) If the heat flux through the coat is 0.25 W/cm
2
, the fire-side surface temperature To can be

calculated from the rate equation written in terms of the overall thermal resistance.

 o i totq T T / R  

 
22 2 2

oT 66 C 0.25 W / cm 10 cm / m 0.1842 m K / W     

oT 526 C  <

COMMENTS: (1) From the tabulated results, note that the thermal resistance of the moisture barrier
(mb) is nearly 3 times larger than that for the shell or air gap layers. The thermal liner has the greatest
thermal resistance. (2) The air gap conduction and radiation resistances were calculated based upon

the average temperature of 570 K. This value was determined by setting Tavg = (To + Ti)/2 and

solving the equation set using IHT with kair = kair (Tavg).



PROBLEM 3.25

KNOWN: Values of three individual thermal conduction resistances.

FIND: Which conduction resistance should be reduced by half in order to most effectively reduce the
total conduction resistance.

SCHEMATIC:

Case A Case B

ASSUMPTIONS: (1) Steady-state, one-dimensional conduction, (2) Constant properties.

ANALYSIS: We begin with the series resistance network, Case A. The total thermal resistances
associated with the nominal values of the individual thermal resistances, as well as for situations
where the nominal resistance values are reduced by 50%, are presented in the table below.

Case A R1 (K/W) R2 (K/W) R3 (K/W) Rtot (K/W)

Nominal 1 2 4 7
0.5 2 4 6.5
1 1 4 6

1 2 2 5 <

The reduction in the total thermal resistance is greatest if the value of R3 is reduced from 4 to 2 K/W.

Case B R1 (K/W) R2 (K/W) R3 (K/W) Rtot (K/W)

Nominal 1 2 4 0.5714

0.5 2 4 0.3636 <
1 1 4 0.4444
1 2 2 0.5000

For the resistances in parallel, the reduction in the total thermal resistance is greatest if the value of R1

is reduced from 1 to 0.5 K/W.

Hence, it is not possible to make a recommendation to the chief engineer as to which resistance should
be targeted for reduction without first knowing how the resistances are placed within the resistance
network.

COMMENTS: A common and serious mistake is to assume that the largest thermal resistance
dominates the thermal resistance network. Although this is sometimes the case, careful analysis will
often reveal quicker, and less expensive alternatives to either reduce or increase the total thermal
resistance.

R1 R2 R3

R1

R3

R2



PROBLEM 3.26

KNOWN: Materials and dimensions of a composite wall separating a combustion gas from a
liquid coolant.

FIND: (a) Heat loss per unit area, and (b) Temperature distribution.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional heat transfer, (2) Steady-state conditions, (3)
Constant properties, (4) Negligible radiation effects.

PROPERTIES: Table A-1, St. St. (304)  T 1000K : k = 25.4 W/mK; Table A-2,

Beryllium Oxide (T  1500K): k = 21.5 W/mK.

ANALYSIS: (a) The desired heat flux may be expressed as

 ,1 ,2
2A B

t,c
1 A B 2

T T 2600 100 C
q =

1 L L 1 1 0.01 0.02 1 m .KR 0.05h k k h 50 21.5 25.4 1000 W

  
 

          



2q =34,600 W/m . <
(b) The composite surface temperatures may be obtained by applying appropriate rate

equations. From the fact that  1 ,1 s,1q =h T T ,  it follows that

2

s,1 ,1 2
1

q 34,600 W/m
T T 2600 C 1908 C.

h 50 W/m K



    



 

With   A A s,1 c,1q = k / L T T ,  it also follows that

2
A

c,1 s,1
A

L q 0.01m 34,600 W/m
T T 1908 C 1892 C.

k 21.5 W/m K

 
    


 

Similarly, with  c,1 c,2 t,cq = T T / R 

2

c,2 c,1 t,c 2

m K W
T T R q =1892 C 0.05 34,600 162 C

W m


     

Continued …



PROBLEM 3.26 (Cont.)

and with   B B c,2 s,2q = k / L T T , 

2
B

s,2 c,2
B

L q 0.02m 34,600 W/m
T T 162 C 134.6 C.

k 25.4 W/m K

 
    


 

The temperature distribution is therefore of the following form:

<
COMMENTS: (1) The calculations may be checked by recomputing q from

   2 2
2 s,2 ,2q =h T T 1000W/m K 134.6-100 C=34,600W/m   



(2) The initial estimates of the mean material temperatures are in error, particularly for the
stainless steel. For improved accuracy the calculations should be repeated using k values
corresponding to T  1900C for the oxide and T  115C for the steel.

(3) The major contributions to the total resistance are made by the combustion gas boundary
layer and the contact, where the temperature drops are largest.



PROBLEM 3.27 
 
KNOWN:  Operating conditions for a board mounted chip. 
 
FIND:  (a) Equivalent thermal circuit, (b) Chip temperature, (c) Maximum allowable heat dissipation for 
dielectric liquid (ho = 1000 W/m2⋅K) and air (ho = 100 W/m2⋅K).  Effect of changes in circuit board 
temperature and contact resistance. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction, (3) Negligible chip 
thermal resistance, (4) Negligible radiation, (5) Constant properties. 
 
PROPERTIES:  Table A-2, Aluminum oxide (polycrystalline, 358 K):  kb = 32.4 W/m⋅K. 
 
ANALYSIS:  (a) 

 
(b)  Applying conservation of energy to a control surface about the chip ( )in outE E 0− =& & , 

 c i oq q q 0′′ ′′ ′′− − =  

 
( )
c ,i c ,o

c
i t,c ob

T T T T
q

1 h L k R 1 h
∞ ∞− −

′′ = +
′′+ +

 

With ′′ = ×q W mc 3 104 2 , ho = 1000 W/m2⋅K, kb = 1 W/m⋅K and 4 2
t,cR 10 m K W−′′ = ⋅ , 

 
( ) ( )

4 2 c c
24 2

T 20 C T 20 C
3 10 W m

1 1000 m K W1 40 0.005 1 10 m K W−
− −

× = +
⋅+ + ⋅

o o

 

 ( )4 2 2
c c3 10 W m 33.2T 664 1000T 20,000 W m K× = − + − ⋅  

 1033Tc = 50,664 

 Tc = 49°C. < 
(c)  For Tc = 85°C and ho = 1000 W/m2⋅K, the foregoing energy balance yields 

 2
cq 67,160 W m′′ =  < 

with oq′′  = 65,000 W/m2 and iq′′  = 2160 W/m2.  Replacing the dielectric with air (ho = 100 W/m2⋅K), the 
following results are obtained for different combinations of kb and t,cR′′ . 
 

 
Continued...



 

PROBLEM 3.27 (Cont.) 
 

 
kb (W/m⋅K) t,cR ′′  

(m2⋅K/W) 
iq′′  (W/m2) oq′′  (W/m2) cq′′  (W/m2)  

      
1 10-4 2159 6500 8659  

32.4 10-4 2574 6500 9074  
1 10-5 2166 6500 8666  

32.4 10-5 2583 6500 9083  

 
 

<

 
COMMENTS:  1.  For the conditions of part (b), the total internal resistance is 0.0301 m2⋅K/W, while 
the outer resistance is 0.001 m2⋅K/W.  Hence 
 

 
( )
( )

c ,o oo
i c ,i i

T T Rq 0.0301 30
q 0.001T T R

∞

∞

′′−′′
= = =

′′ ′′−
. 

 
and only approximately 3% of the heat is dissipated through the board. 
 
2.  With ho = 100 W/m2⋅K, the outer resistance increases to 0.01 m2⋅K/W, in which case o i i oq q R R′′ ′′ ′′ ′′=  
= 0.0301/0.01 = 3.1 and now almost 25% of the heat is dissipated through the board.  Hence, although 
measures to reduce iR′′  would have a negligible effect on cq′′  for the liquid coolant, some improvement 
may be gained for air-cooled conditions.  As shown in the table of part (b), use of an aluminum oxide 
board increase iq′′  by 19% (from 2159 to 2574 W/m2) by reducing iR′′  from 0.0301 to 0.0253 m2⋅K/W.  

Because the initial contact resistance ( 4 2
t,cR 10 m K W−′′ = ⋅ ) is already much less than iR′′ , any reduction 

in its value would have a negligible effect on iq′′ .  The largest gain would be realized by increasing hi, 
since the inside convection resistance makes the dominant contribution to the total internal resistance. 



PROBLEM 3.28

KNOWN: Thickness, overall temperature difference, and pressure for two stainless steel
plates.

FIND: (a) Heat flux and (b) Contact plane temperature drop.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional heat transfer, (2) Steady-state conditions, (3)
Constant properties.

PROPERTIES: Table A-1, Stainless Steel (T  400K): k = 16.6 W/mK.

ANALYSIS: (a) With 4 2
t,cR 15 10 m K/W    from Table 3.1 and

4 2L 0.01m
6.02 10 m K/W,

k 16.6 W/m K
   



it follows that

  4 2
tot t,cR 2 L/k R 27 10 m K/W;     

hence

4 2
-4 2

tot

T 100 C
q = 3.70 10 W/m .

R 27 10 m K/W


   

  


<

(b) From the thermal circuit,

4 2
t,cc

-4 2s,1 s,2 tot

RT 15 10 m K/W
0.556.

T T R 27 10 m K/W

  
  

  

Hence,

   c s,1 s,2T 0.556 T T 0.556 100 C 55.6 C.      <

COMMENTS: The contact resistance is significant relative to the conduction resistances.
The value of t,cR would diminish, however, with increasing pressure. Note that there is

considerable uncertainty in the answer since the thermal contact resistance can take on a wide
range of values.



PROBLEM 3.29

KNOWN: Temperatures and convection coefficients associated with fluids at inner and outer
surfaces of a composite wall. Contact resistance, dimensions, and thermal conductivities
associated with wall materials.

FIND: (a) Rate of heat transfer through the wall, (b) Temperature distribution.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional heat transfer, (3)
Negligible radiation, (4) Constant properties.

ANALYSIS: (a) Calculate the total resistance to find the heat rate,

 

A B
tot t,c

1 A B 2

tot

tot

1 L L 1
R R

h A k A k A h A
1 0.01 0.3 0.02 1 K

R
10 5 0.1 5 5 0.04 5 20 5 W

K K
R 0.02 0.02 0.06 0.10 0.01 0.21

W W

    

 
         

     

 ,1 ,2

tot

T T 200 40 C
q= 762 W.

R 0.21 K/W

  
 



<

(b) It follows that

s,1 ,1
1

q 762 W
T T 200 C 184.8 C

h A 50 W/K
     

A
A s,1

2A

qL 762W 0.01m
T T 184.8 C 169.6 C

Wk A
0.1 5m

m K


    




 

B A t,c
K

T T qR 169.6 C 762W 0.06 123.8 C
W

      

B
s,2 B

2B

qL 762W 0.02m
T T 123.8 C 47.6 C

Wk A
0.04 5m

m K


    




 

,2 s,2
2

q 762W
T T 47.6 C 40 C

h A 100W/K
      



PROBLEM 3.30 
 
KNOWN:  Outer and inner surface convection conditions associated with zirconia-coated, Inconel 
turbine blade.  Thicknesses, thermal conductivities, and interfacial resistance of the blade materials.  
Maximum allowable temperature of Inconel. 
 
FIND:  Whether blade operates below maximum temperature.  Temperature distribution in blade, with 
and without the TBC. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) One-dimensional, steady-state conduction in a composite plane wall, (2) Constant 
properties, (3) Negligible radiation. 
 
ANALYSIS:  For a unit area, the total thermal resistance with the TBC is 

 ( ) ( )1 1
tot,w o t,c iZr InR h L k R L k h− −′′ ′′= + + + +  

 ( )3 4 4 4 3 2 3 2
tot,wR 10 3.85 10 10 2 10 2 10 m K W 3.69 10 m K W− − − − − −′′ = + × + + × + × ⋅ = × ⋅  

With a heat flux of 

 ,o ,i 5 2
w 3 2tot,w

T T 1300 K
q 3.52 10 W m

R 3.69 10 m K W

∞ ∞
−

−
′′ = = = ×

′′ × ⋅
 

the inner and outer surface temperatures of the Inconel are 

 ( ) ( )5 2 2
s,i(w) ,i w iT T q h 400 K 3.52 10 W m 500 W m K 1104 K∞ ′′= + = + × ⋅ =  

 
( ) ( ) ( ) ( )3 4 2 5 2

s,o(w) ,i i wInT T 1 h L k q 400 K 2 10 2 10 m K W 3.52 10 W m 1174 K− −
∞ ′′= + + = + × + × ⋅ × =⎡ ⎤⎣ ⎦  

 
Without the TBC, ( )1 1 3 2

tot,wo o iInR h L k h 3.20 10 m K W− − −′′ = + + = × ⋅ , and ( )wo ,o ,i tot,woq T T R∞ ∞′′ ′′= −  = 

(1300 K)/3.20×10-3 m2⋅K/W = 4.06×105 W/m2.  The inner and outer surface temperatures of the Inconel 
are then 

 ( ) ( )5 2 2
s,i(wo) ,i wo iT T q h 400 K 4.06 10 W m 500 W m K 1212 K∞ ′′= + = + × ⋅ =  

( ) ( )[ ] ( ) ( )3 4 2 5 2
s,o(wo) ,i i woInT T 1 h L k q 400 K 2 10 2 10 m K W 4.06 10 W m 1293 K− −

∞ ′′= + + = + × + × ⋅ × =  

 
Continued... 
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Use of the TBC facilitates operation of the Inconel below Tmax = 1250 K. 
 
COMMENTS:  Since the durability of the TBC decreases with increasing temperature, which increases 
with increasing thickness, limits to the thickness are associated with reliability considerations. 



PROBLEM 3.31

KNOWN: Size and surface temperatures of a cubical freezer. Materials, thicknesses and interface
resistances of freezer wall.

FIND: Cooling load.

SCHEMATIC:

t,cR”
t,cR”

L = 100 mmins
L = 6.35 mmst

Cork

L = 6.35 mmal

T = -6 Cs,i
o

Ts,o

T = 22 Cs,o
o

Ts,i

t,cR” = 2.5x10-4 m -K/W2

L /kal al L /kststL /kinsins
q”

W = 3 m

Freezer

ASSUMPTIONS: (1) Steady-state, (2) One-dimensional conduction, (3) Constant properties.

PROPERTIES: Table A-1, Aluminum 2024 (~267K): kal = 173 W/mK. Table A-1, Carbon steel

AISI 1010 (~295K): kst = 64 W/mK. Table A-3 (~300K): kins = 0.039 W/mK.

ANALYSIS: For a unit wall surface area, the total thermal resistance of the composite wall is

al ins st
tot t,c t,c

al ins st

L L L
R R R

k k k
      

2 2
4 4

tot
0.00635m m K 0.100m m K 0.00635m

R 2.5 10 2.5 10
173 W / m K W 0.039 W / m K W 64 W / m K

  
       

  

 5 4 4 5 2 2
totR 3.7 10 2.5 10 2.56 2.5 10 9.9 10 m K / W 2.56 m K / W               

Hence, the heat flux is

 s,o s,i
2 2tot

22 6 CT T W
q 10.9

R 2.56 m K / W m

        
 

and the cooling load is

2 2 2
sq A q 6 W q 54m 10.9 W / m 590 W      <

COMMENT: Thermal resistances associated with the cladding and the adhesive joints are negligible
compared to that of the insulation.



PROBLEM 3.32

KNOWN: Operating conditions, measured temperatures and heat input, and theoretical thermal
conductivity of a carbon nanotube.

FIND: (a) Thermal contact resistance between the carbon nanotube and the heating and sensing
islands, (b) Fraction of total thermal resistance between the heating and sensing islands due to
thermal contact resistance for 5 µm  s  20 µm.

ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) One-dimensional heat
transfer, (4) Isothermal heating and sensing islands, (5) Negligible radiation and convection heat
transfer.

PROPERTIES: kcn,T = 5000 W/m∙K 

ANALYSIS:

(a) The total thermal resistance between the heated and sensing island is

t,tot t,c
cn,T cn

s
R = + 2R

k A

The value of this total resistance is the same as the one posed in Example 3.4 with
kcn =  3113 W/m∙K and Rt,c = 0 or

t,c
cn,T cn cn cn

s s
+ 2R =

k A k A

for which
-6

t,c -16 2
cn cn cn,T

s 1 1 5 × 10 m 1 1
R = - = × -

2A k k 3113 W/m K 5000 W/m K2 × 1.54 × 10 m

   
       

6= 1.97 × 10 K/W <

(b) The fraction of the total resistance due to the thermal contact resistance is

6
t,c

6
-16 2t,c

cn,T cn

2R 2 × 1.97 × 10 K/W
f = =

ss 2 × 1.97 × 10 K/W +2R +
5000 W/m K × 1.54 × 10 mk A

   
      

As evident in the plot below, the fraction of the total thermal resistance due to thermal contact
decreases from 0.38 at s = 5 µm to 0.13 at s = 20 µm.

Continued…
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Fraction of Thermal Resistance due to Contact
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COMMENT: To desensitize the experiment to uncertainty due to the unknown thermal contact
resistance values, a large separation distance between the islands is desired. As the separation
distance becomes large, however, the surface area of the carbon nanotube increases and surface
heat losses by radiation may invalidate the assumption of a linear temperature distribution along
the length of the nanotube. An optimal separation distance exists that will minimize the
undesirable effects of the thermal contact resistances and radiation loss from the surface of the
nanotube.



PROBLEM 3.33

KNOWN: Dimensions, thermal conductivity and emissivity of base plate. Temperature and
convection coefficient of adjoining air. Temperature of surroundings. Maximum allowable
temperature of transistor case. Case-plate interface conditions.

FIND: (a) Maximum allowable power dissipation for an air-filled interface, (b) Effect of convection
coefficient on maximum allowable power dissipation.

SCHEMATIC:

Air

T = 298 Koo
h = 4 W/m -K2

T = 298 Ksur
qcnv

qrad

q
T , = 0.90s,p 

L = 0.006 m W = 0.02 m

A = 2x10 m Rc
-4 2

t,c,

Pelec

<

ASSUMPTIONS: (1) Steady-state, (2) Negligible heat transfer from the enclosure, to the
surroundings. (3) One-dimensional conduction in the base plate, (4) Radiation exchange at surface of
base plate is with large surroundings, (5) Constant thermal conductivity.

PROPERTIES: Aluminum-aluminum interface, air-filled, 10 m roughness, 10
5

N/m
2

contact

pressure (Table 3.1): 4 2
t,cR 2.75 10 m K / W.   

ANALYSIS: (a) With all of the heat dissipation transferred through the base plate,

s,c
elec

tot

T T
P q

R


  (1)

where    
1

tot t,c cnd cnv radR R R 1/ R 1/ R


     

t,c
tot 2 2

c r

R L 1 1
R

A h hkW W

  
    

 
(2)

and    2 2
r s,p sur s,p surh T T T T   (3)

To obtain Ts,p, the following energy balance must be performed on the plate surface,

   s,c s,p 2 2
cnv rad s,p r s,p sur

t,c cnd

T T
q q q hW T T h W T T

R R



      


(4)

With Rt,c = 2.75  10
-4

m
2
K/W/210

-4
m

2
= 1.375 K/W, Rcnd = 0.006 m/(240 W/mK  4  10

-4
m

2
)

= 0.0625 K/W, and the prescribed values of h, W, T = Tsur and , Eq. (4) yields a surface

temperature of Ts,p = 357.6 K = 84.6C and a power dissipation of

Continued …



PROBLEM 3.33 (Cont.)

elecP q 0.268 W  <

The convection and radiation resistances are Rcnv = 625 K/W and Rrad = 345 K/W, where hr = 7.25

W/m
2
K.

(b) With the major contribution to the total resistance made by convection, significant benefit may be
derived by increasing the value of h.

For h = 200 W/m
2
K, Rcnv = 12.5 K/W and Ts,p = 351.6 K, yielding Rrad = 355 K/W. The effect of

radiation is then negligible.

COMMENTS: (1) The plate conduction resistance is negligible, and even for h = 200 W/m
2
K, the

contact resistance is small relative to the convection resistance. However, Rt,c could be rendered
negligible by using indium foil, instead of an air gap, at the interface. From Table 3.1,

4 2
t,cR 0.07 10 m K / W,    in which case Rt,c = 0.035 mK/W.

(2) Because Ac < W
2
, heat transfer by conduction in the plate is actually two-dimensional, rendering

the conduction resistance even smaller.
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PROBLEM 3.34

KNOWN: Oak wood with a grain structure. Grains are highly porous and the wood is dry.

FIND: Fraction of oak cross-section that appears as being grained.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state, one-dimensional conduction, (2) Constant properties, (3) Thermal
conductivity of highly porous grain is that of air.

PROPERTIES: Table A.3, Oak, cross grain (300 K): kcross = 0.17 W/mK; Oak, radial (300 K): krad =
0.19 W/m∙K. Table A.4, Air (300 K): kair = 0.0263 W/m∙K. 

ANALYSIS: The cross grain condition is characterized by the lowest effective thermal conductivity.
Therefore,

cross min

1 1
0.17W/m K

(1 ) / / (1 ) / / 0.0263 W/m Ks f s

k k
k k k   

    
    

(1)

Likewise, the radial condition exhibits the highest effective thermal conductivity. Hence,

rad max 0.19W/m K (1 ) 0.0263 W/m K (1 )f s sk k k k k              (2)

The preceding two equations may be solved simultaneously to determine the two unknowns, ks and ,
yielding

 = 0.022 <

COMMENTS: (1) The predicted value of the solid thermal conductivity is ks = 0.1937 W/m∙K. (2) 
The predicted value of  is rather low. In reality, the thermal conductivity of the grain is greater than
that of air. Doubling the value of kf  to 0.0526 W/m∙K yields  = 0.061, which is consistent with
estimates of  for oak.

x x

T1 T1

T2 T2

Cross grain Radial



PROBLEM 3.35

KNOWN: Density of glass fiber insulation.

FIND: Maximum and minimum possible values of the effective thermal conductivity of the insulation
at T = 300 K, and comparison with the value listed in Table A.3.

SCHEMATIC:

x

T1

T2

ASSUMPTIONS: (1) Constant properties, (2) Negligible radiation, (3) Atmospheric pressure.

PROPERTIES: Table A.3, Glass (plate): kgl = 1.4 W/m∙K, gl = 2500 kg/m3.Glass fiber batt (paper
faced, ins = 28 kg/m3) kins = 0.038 W/m∙K. Table A.4, Air (300 K): kair = 0.0263 W/m∙K, air = 1.1614
kg/m3. Given: ins = 28 kg/m3.

ANALYSIS: The density of the glass fiber insulation may be related to the density of the air and
glass phases, and the volume fraction, , as follows.

ins air gl(1 )     

Therefore,

gl ins

gl air

2500 28
0.989

2500 1.164

 


 

 
  

 

The minimum effective thermal conductivity is

   eff,min

glass air

1 1

1 / / 1 0.989 /1.4 W/m K + 0.989/0.0263 W/m K

0.0265 W/m K

k
k k 

 
    

 

<

The maximum effective thermal conductivity is

   eff,max 1 0.989 0.0263 W/m K 1 0.989 1.4 W/m K

0.0414 W/m K

f sk k k          

 
<

As expected, the predicted minimum and maximum effective thermal conductivities bracket the actual

effective thermal conductivity of kins = 0.038 W/m∙K.      <

COMMENT: Radiation internal to the glass fiber batting may be significant. If so, this will reduce
the insulating capability of the matt.



PROBLEM 3.36

KNOWN: Thermal conductivity of ice cream containing no air at T = -20C. Shape and volume
fraction of air bubbles.

FIND: The thermal conductivity of commercial ice cream characterized by  = 0.20 at T = -20C.

SCHEMATIC:

ASSUMPTIONS: (1) Constant properties, (2) Spherical air bubbles.

PROPERTIES: Table A.4, Air (300 K): kair = 0.0225 W/m∙K. 

ANALYSIS: Maxwell’s expression for the effective thermal conductivity may be used, with kf = kair

and ks = kna. Hence,

 
 

 
 

eff

2 2

2

0.0225 W/m K 2 1.1 W/m K 2 0.2 1.1 W/m K 0.0225 W/m K
1.1 W/m K

0.0225 W/m K 2 1.1 W/m K 0.2 1.1 W/m K 0.0225 W/m K

f s s f

s

f s s f

k k k k
k k

k k k k





   
  

    

          
   

         

       = 0.81 W/m∙K          <

COMMENTS: (1) The reduction in the effective thermal conductivity due to the presence of the air
bubbles is 26%. (2) The predicted thermal conductivity is in good agreement with measured values.
Furthermore, Maxwell’s equation accurately predicts the measured thermal conductivity of ice cream
over the range 0 ≤  ≤ 0.5. The thermal conductivity as well as additional thermophysical properties of 
ice cream containing spherical air bubbles (called overrun ice cream) are available in Cogne, Andrieu,
Laurent, Besson and Noequet, “Experimental Data and Modelling of Thermal Properties of Ice
Cream,” Journal of Food Engineering, Vol. 58, p, 331, 2003.

Ice cream without air Ice cream with spherical
air bubbles

kna = 1.1 W/m∙K  = 0.20



PROBLEM 3.37

KNOWN: Volume fraction of air in stone mix concrete, forming a lightweight aggregate concrete.

FIND: Values of the lightweight aggregate’s thermal conductivity, density and specific heat.

SCHEMATIC:

ASSUMPTIONS: (1) Constant properties.

PROPERTIES: Table A.3 (T = 300 K): Stone mix concrete; ks = 1.4 W/mK, s= 2300 kg/m3, cp,s =
880 J/kgK. Table A.4 (T = 300 K): Air; kf = 0.0263 W/mK, f = 1.1614 kg/m3, cp,f = 1007 J/kgK.

ANALYSIS: Maxwell’s expression for the effective thermal conductivity may be used. Hence,

 
 

 
 

eff ,

2 2

2

0.0263 W/m K 2 1.4 W/m K 2 0.35 1.4 W/m K 0.0263 W/m K
1.4 W/m K

0.0263 W/m K 2 1.4 W/m K 0.35 1.4 W/m K 0.0263 W/m K

f s s f

a s

f s s f

k k k k
k k

k k k k





   
  

    

          
   

         

       = 0.789 W/m∙K          <

Considering the control volume shown in the schematic to be of unit volume, we note that by
conservation of mass, a = s(1 - ) + f = 2300 kg/m3  (1 – 0.35) + 1.1614 kg/m3  0.35 = 1495

kg/m3. <

Similarly, by conservation of energy for the unit volume, a cp,a = 1495 kg/m3 × cp,a = s cp,s (1 - ) +
fcp,f  = 2300 kg/m3  880 J/kgK  (1 – 0.35) + 1.1614 kg/m3  1007 J/kgK  0.35 = 1.32 × 106 J/K.

Therefore, cp,a = 1.32 × 106 J/K/1495 kg/m3 = 880 J/kg∙K      <

COMMENT: The thermal conductivity and density are reduced significantly relative to the stone
mix concrete values.

Stone mix concrete

Air bubble



PROBLEM 3.38

KNOWN: Porosity distribution in a one-dimensional plane wall, (x), thermal conductivities of solid
and fluid, wall thickness, temperature at x = 0, and heat flux.

FIND: Plot of the temperature distribution using the expressions for the maximum and minimum
effective thermal conductivities, Maxwell’s expression, and for the constant property case; keff(x) = ks.

SCHEMATIC:

ASSUMPTIONS: (1) Constant properties within the two phases, (2) Negligible radiation, (3) No
thermal energy generation, (4) Steady state, one-dimensional heat transfer.

PROPERTIES: Given: ks = 10 W/m∙K, kf = 0.1 W/m∙K. 

ANALYSIS: Fourier’s law may be expressed as

"

eff

xdT q

dx k
  (1)

We note that the heat flux is constant. The effective thermal conductivity may be evaluated from the
various formulae as follows.

Maximum effective thermal conductivity:

 eff eff,max 1f sk k k k     (2)

Minimum effective thermal conductivity:

 eff eff,min

1

1 / /s f

k k
k k 

 
 

(3)

Maxwell’s expression:

 
 eff eff,Max

2 2

2

f s s f

s

f s s f

k k k k
k k k

k k k k





   
   

    

(4)

Continued...

x

T(x = 0) = 30C

L = 1 m

(x)=max(x/L)

qx
" =100 W/m2qx
"qx
" =100 W/m2

max= 0.25

ks = 10 W/m∙K

kf = 0.1 W/m∙K



PROBLEM 3.38 (Cont.)

No dispersed phase:

eff sk k (5)

Equations 2, 3, 4, or 5 may be substituted into Equation 1 and the expression may be integrated
numerically using a commercial code. IHT was used to generate the following temperature
distributions.

The constant property solution exhibits a linear temperature distribution.

The introduction of the low thermal conductivity matter within the medium decreases its effective
thermal conductivity. From Equation (1), the temperature gradient must become larger in order to
sustain the imposed heat flux as the effective thermal conductivity decreases. The increased
temperature gradients are evident in the plot.

Predictions using Maxwell’s expression, and the expression for the maximum effective thermal
conductivity are in relatively good agreement. This is because Maxwell’s expression describes
conduction within a porous medium that is characterized by a contiguous solid phase; thermal energy
can be transferred across the entire thickness of the plane wall within the solid phase only. The
concept of a contiguous solid phase is also embedded in the assumptions that were made in deriving
the expression for keff,max. In contrast, the predictions using the expression for the minimum effective
thermal conductivity are not consistent with the other predictions. In deriving the expression for keff,min,
it is assumed that thermal energy must be transferred through the low thermal conductivity fluid phase
as it propagates through the porous wall. The non-contiguous solid phase associated with the
minimum thermal conductivity expression manifests itself as very large temperature gradients through
the plane wall.

Continued...

Temperature Distribution T(x)

0 0.2 0.4 0.6 0.8 1

x(m)

15

20

25

30

35

T
(C

)

Constant Property (keff = ks)
Maxwell's Expression
Expression for keff, max
Expression for keff, min

keff, min
keff, Max

keff, max

keff, cp



PROBLEM 3.38 (Cont.)

COMMENTS: (1) It is important to be cognizant of the morphology of the porous medium before
selecting the appropriate expression for the effective thermal conductivity. (2) The IHT code is shown
below.

//Input phase properties, dimensions, thermal boundary condition, and porosity parameter.

ks = 10 //W/mK
kf = 0.1 //W/mK
L = 1 //m
emax = 0.25 //dimensionless
qflux = 100 //W/m^2
T1 = 30 //Degrees C
eps = emax*(x/L)

//Constant Property Solution
Der(Tcp,x) = -qflux/ks

//Minimum Effective Thermal Conductivity Solution
Der(Tmin,x) = -qflux/keffmin
keffmin = 1/dena
dena=(1-eps)/ks + eps/kf

//Maximum Effective Thermal Conductivity Solution
Der(Tmax,x) = -qflux/keffmax
keffmax = eps*kf + (1 - eps)*ks

//Maxwell’s Expression
Der(TMax,x) = -qflux/keffMax
keffMax = ks*num/denb
num = kf+2*ks-2*eps*(ks-kf)
denb = kf+2*ks+eps*(ks-kf)



PROBLEM 3.39

KNOWN: Conduction in a conical section with prescribed diameter, D, as a function of x in

the form D = ax
1/2

.

FIND: (a) Temperature distribution, T(x), (b) Heat transfer rate, qx.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in x-
direction, (3) No internal heat generation, (4) Constant properties.

PROPERTIES: Table A-1, Pure Aluminum (500K): k= 236 W/mK.

ANALYSIS: (a) Based upon the assumptions, and following the same methodology of

Example 3.4, qx is a constant independent of x. Accordingly,

 
21/2

x
dT dT

q kA k ax / 4
dx dx


 

     
 

(1)

using A = D
2
/4 where D = ax

1/2
. Separating variables and identifying limits,

1 1

x Tx
2 x T

4q dx
dT.

xa k
   (2)

Integrating and solving for T(x) and then for T2,

  x x 2
1 2 12 21 1

4q x 4q x
T x T ln T T ln .

x xa k a k 
    (3,4)

Solving Eq. (4) for qx and then substituting into Eq. (3) gives the results,

   2
x 1 2 1 2q a k T T /1n x / x

4


   (5)

   
 
 

1
1 1 2

1 2

ln x/x
T x T T T .

ln x / x
   <

From Eq. (1) note that (dT/dx)x = Constant. It follows that T(x) has the distribution shown
above.

(b) The heat rate follows from Eq. (5),

 2
x

W 25
q 0.5 m 236 600 400 K/ln 5.76kW.

4 m K 125


    


<



PROBLEM 3.40

KNOWN: Geometry and surface conditions of a truncated solid cone.

FIND: (a) Temperature distribution, (b) Rate of heat transfer across the cone.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in x, (3)
Constant properties.

PROPERTIES: Table A-1, Aluminum (333K): k = 238 W/mK.

ANALYSIS: (a) From Fourier’s law, Eq. 2.1, with  2 2 3A= D / 4 a / 4 x ,  it follows that

x
2 3

4q dx
kdT.

a x
 

Hence, since qx is independent of x,

1 1

x Tx
2 3x T

4q dx
k dT

a x
  

or

 
x

x1

x
12 2

4q 1
k T T .

a 2x

 
    
 

Hence

x
1 2 2 2

1

2q 1 1
T T .

a k x x

 
   
 
 

<

(b) From the foregoing expression, it also follows that

   

   

2
2 1

x 2 2
2 1

-1

x 2 2 -2

a k T T
q

2 1/x 1/ x

1m 238 W/m K 20 100 C
q

2 0.225 0.075 m





 




   

 
 

 
  



xq 189 W. <
COMMENTS: The foregoing results are approximate due to use of a one-dimensional model
in treating what is inherently a two-dimensional problem.



PROBLEM 3.41

KNOWN: Temperature dependence of the thermal conductivity, k.

FIND: Heat flux and form of temperature distribution for a plane wall.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction through a plane wall, (2) Steady-state
conditions, (3) No internal heat generation.

ANALYSIS: For the assumed conditions, qx and A(x) are constant and Eq. 3.26 gives

 

   

1

o

L T
x o0 T

2 2
x o o 1 o 1

q dx k aT dT

1 a
q k T T T T .

L 2

   

 
     

 

 

From Fourier’s law,

 x oq k aT dT/dx.   

Hence, since the product of (ko+aT) and dT/dx) is constant, decreasing T with increasing x

implies,

a > 0: decreasing (ko+aT) and increasing |dT/dx| with increasing x

a = 0: k = ko => constant (dT/dx)

a < 0: increasing (ko+aT) and decreasing |dT/dx| with increasing x.

The temperature distributions appear as shown in the above sketch.



PROBLEM 3.42

KNOWN: Temperature dependence of tube wall thermal conductivity.

FIND: Expressions for heat transfer per unit length and tube wall thermal (conduction)
resistance.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional radial conduction, (3)
No internal heat generation.

ANALYSIS: From Eq. 3.29, the appropriate form of Fourier’s law is

 

 

r r

r

r o

dT dT
q kA k 2 rL

dr dr
dT

q 2 kr
dr

dT
q 2 rk 1 aT .

dr







   

  

   

Separating variables,

 r
o

q dr
k 1 aT dT

2 r


  

and integrating across the wall, find

 

   

o o

i i
To

Ti

r Tr
or T

2
or

o
i

2 2or
o o i o i

i

q dr
k 1+aT dT

2 r

rq aT
ln k T

2 r 2

rq a
ln k T T T T

2 r 2








 

 
   

  
  

     
 

 

 
 
 
o i

r o o i
o i

T Ta
q 2 k 1 T T .

2 ln r / r


 
     

 
<

It follows that the overall thermal resistance per unit length is

 

 

o ii o
t

r
o o i

ln r / rT T
R .

aq
2 k 1 T T

2



  

  
   

<

COMMENT: Note the necessity of the stated assumptions to treating rq as independent of r.



PROBLEM 3.43

KNOWN: Steady-state temperature distribution of convex shape for material with k = ko(1 +

T) where  is a constant and the mid-point temperature is To higher than expected for a

linear temperature distribution.

FIND: Relationship to evaluate  in terms of To and T1, T2 (the temperatures at the

boundaries).

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) No
internal heat generation, (4)  is positive and constant.

ANALYSIS: At any location in the wall, Fourier’s law has the form

 x o
dT

q k 1 T .
dx

    (1)

Since xq is a constant, we can separate Eq. (1), identify appropriate integration limits, and

integrate to obtain

 2

1

L T
x o0 T

q dx k 1 T dT     (2)

2 2
o 2 1

x 2 1
T Tk

q T T .
L 2 2

     
         
    
    

(3)

We could perform the same integration, but with the upper limits at x = L/2, to obtain

2 2
o L/2 1

x L/2 1
T T2k

q T T
L 2 2

     
         
    

   

(4)

where

  1 2
L/2 o

T T
T T L/2 T .

2


    (5)

Setting Eq. (3) equal to Eq. (4), substituting from Eq. (5) for TL/2, and solving for , it

follows that

   

o
22 2

1 2 o2 1

2 T
.

T T / 2 T T / 2 T





      

<



PROBLEM 3.44

KNOWN: Construction and dimensions of a device to measure the temperature of a surface.
Ambient and sensing temperatures, and thermal resistance between the sensing element and the
pivot point.

FIND: (a) Thermal resistance between the surface temperature and the sensing temperature, (b)
Surface temperature for Tsen = 28.5C.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional heat transfer, (3) Negligible
nanoscale effects, (4) Constant properties.

PROPERTIES: Table A.2, polycrystalline silicon dioxide (300 K): k = 1.38 W/mK. Table A.4,
air (300 K): k = 0.0263 W/mK.

ANALYSIS:

(a) At any x location, heat transfer in the x-direction occurs by conduction in the air as well as
conduction in the probe. Applying Fourier’s law,

x a a p p
dT dT

q = - k A - k A
dx dx

(1)

Since the probe radius is r = Dx/2L, the probe area is

2 2 2 2
2

p a p2 2

πD πD πD x
A = x and A = - A = 1 -

4 44L L

 
 
  

(2a, 2b)

Substituting Eqs. (2a) and (2b) into Eq. (1) yields

2
2 2 2

x a p2

πD dT
q = - k (L - x ) + k x

dx4L
 
 

Separating variables and integrating,

Continued…

D = 100 nm

q
Tsen = 28.5°C

r(x)

x L = 50 nm

Air

Silicon
dioxide

D = 100 nm

q
Tsen = 28.5°C

r(x)

x L = 50 nm

Air

Silicon
dioxide



PROBLEM 3.44 (Cont.)

 
sen

surf

TL 2 2

x sen surf2 2 2 2 2
a px=0 T=T

dx πD πD
q = - dT = - T - T

k (L - x ) + k x 4L 4L 

Therefore, the thermal resistance associated with the probe is

L2
surf sen

sen 2 2 2
x a p ax=0

(T - T ) 4L dx
R = =

q πD k L  + (k  - k )x

Carrying out the integration yields

2
p a-1

sen 2
aa p a

k - k4L 1
R = tan

kk (k - k )πD

Substituting values gives

-9

sen -9 2

-1 6

4 × 50 × 10 m 1
R = ×

0.0263 W/m K × (1.38 - 0.0263) W/m Kπ × (100 × 10  m)

(1.38 - 0.0263) W/m K
× tan = 48.3 × 10 K/W

0.0263 W/m K

 




<

(b) The thermal circuit is

Hence,

surf sen sen

sen T

(T - T ) (T - T )
=

R R


6
sen

surf sen sen 6
T

R 48.3 × 10 K/W
T = (T - T ) + T = (28.5 - 25)°C × + 28.5°C

R 5 × 10 K/W


surfT = 62.3°C <

COMMENT: Heat transfer within the probe region will not be one-dimensional and
modification of heat transfer due to nanoscale effects may be important. However, the probe may
be calibrated by measuring the surface temperature of a large isothermal object.

Tsen = 28.5°C
T∞ = 25°C

RT

= 5×106 K/W

Rsen

= 48.3 ×106 K/W

Tsurf

Tsen = 28.5°C
T∞ = 25°C

RT

= 5×106 K/W

Rsen

= 48.3 ×106 K/W

Tsurf



PROBLEM 3.45 
 
KNOWN:  Thickness and inner surface temperature of calcium silicate insulation on a steam pipe.  
Convection and radiation conditions at outer surface. 
 
FIND:  (a)  Heat loss per unit pipe length for prescribed insulation thickness and outer surface 
temperature.  (b)  Heat loss and radial temperature distribution as a function of insulation thickness. 
 
SCHEMATIC: 

 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction, (3) Constant properties. 
 
PROPERTIES:  Table A-3, Calcium Silicate (T = 645 K):  k = 0.089 W/m⋅K. 
 
ANALYSIS:  (a) From Eq. 3.32 with Ts,2 = 490 K, the heat rate per unit length is 
 

 
( )
( )
s,1 s,2

r
2 1

2 k T T
q q L

ln r r

π −
′ = =  

 
( )( )

( )
2 0.089 W m K 800 490 K

q
ln 0.08 m 0.06 m

π ⋅ −
′ =  

 q 603 W m′ = . < 
 
(b)  Performing an energy for a control surface around the outer surface of the insulation, it follows that 
 
 cond conv radq q q′ ′ ′= +  
 

 
( ) ( ) ( )

s,1 s,2 s,2 s,2 sur

2 1 2 2 r

T T T T T T

ln r r 2 k 1 2 r h 1 2 r hπ π π
∞− − −

= +  

 
where ( )( )2 2

r s,2 sur s,2 surh T T T Tεσ= + + .  Solving this equation for Ts,2, the heat rate may be determined 

from 
 
 ( ) ( )2 s,2 r s,2 surq 2 r h T T h T Tπ ∞′ = − + −⎡ ⎤⎣ ⎦  

Continued... 
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and from Eq. 3.31 the temperature distribution is 
 

 
( )

s,1 s,2
s,2

1 2 2

T T r
T(r) ln T

ln r r r

−
= +

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
As shown below, the outer surface temperature of the insulation Ts,2 and the heat loss q′  decay 
precipitously with increasing insulation thickness from values of Ts,2 = Ts,1 = 800 K and q′  = 11,600 
W/m, respectively, at r2 = r1 (no insulation). 
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When plotted as a function of a dimensionless radius, (r - r1)/(r2 - r1), the temperature decay becomes 
more pronounced with increasing r2. 
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Note that T(r2) = Ts,2 increases with decreasing r2 and a linear temperature distribution is approached as r2 
approaches r1. 
 
COMMENTS:  An insulation layer thickness of 20 mm is sufficient to maintain the outer surface 
temperature and heat rate below 350 K and 1000 W/m, respectively. 



PROBLEM 3.46 
 
KNOWN:  Temperature and volume of hot water heater.  Nature of heater insulating material.  Ambient 
air temperature and convection coefficient.  Unit cost of electric power. 
 
FIND:  Heater dimensions and insulation thickness for which annual cost of heat loss is less than $50. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) One-dimensional, steady-state conduction through side and end walls, (2) 
Conduction resistance dominated by insulation, (3) Inner surface temperature is approximately that of the 
water (Ts,1 = 55°C), (4) Constant properties, (5) Negligible radiation due to low emissivity foil covering 
on insulation. 
 
PROPERTIES:  Table A.3, Urethane Foam (T = 300 K):  k = 0.026 W/m⋅K. 
 
ANALYSIS:  To minimize heat loss, tank dimensions which minimize the total surface area, As,t, should 

be selected.  With L = 4∀/πD2, ( )2 2
s,tA DL 2 D 4 4 D D 2π π π= + = ∀ + , and the tank diameter for 

which As,t is an extremum is determined from the requirement 
 
 2

s,tdA dD 4 D D 0π= − ∀ + =  
 
It follows that 
 

 ( ) ( )1/ 3 1/ 3D 4 and L 4π π= ∀ = ∀  
 
With 2 2 3

s,td A dD 8 D 0π= ∀ + > , the foregoing conditions yield the desired minimum in As,t.  Hence, 

for ∀ = 100 gal × 0.00379 m3/gal = 0.379 m3, 

 op opD L 0.784 m= =  < 
For an annual cost of heat loss of $50 and a unit electric power cost of $0.18/kWh 
 
 annualQ $50.00/$0.18/kWh 278  kWh= =  
 
The energy loss rate is therefore 
 
 ( )( )annual

3q Q 278 10 W h /[ 365days 24 h day 31.7 W/(hours per year) ]= = × ⋅ =  
 

Continued...



 
PROBLEM 3.46 (Cont.) 

  
The total heat loss through the side and end walls is 
 

( )
( )

( ) ( )
s,1s,1

2 1
2 2op 2 op op op

2 T TT T
q

1ln r r 1
2 kL h2 r L k D 4 h D 4

δ
π π π π

∞∞ −−
= +

++
 

 
With r1 = Dop/2 = 0.392 m and r2 = r1 + δ, everything is known except for the insulation thickness, δ. 
 

 
( )

( )
( ) ( ) ( )2

55 20 C
q 31.7 W

ln 0.392 δ) 0.392 1
2 0.026 W m K 0.784 m 2 W m K 2 0.392 m δ 0.784 m

(
π π

−
= =

+
+

⋅ ⋅ +

o

 

 

   
( )

( ) ( ) ( ) ( )2 22

2 55 20 C
δ 1

0.026 W m K 0.784 m 4 2 W m K 0.784 m 4π π

−
+

+
⋅ ⋅

o

 

 
Solving by trial and error yields an insulation thickness of 

 δ = 68 mm < 
  
COMMENTS:  Cylindrical containers of aspect ratio L/D = 1 are seldom used because of floor space 
constraints.  Choosing L/D = 2, ∀ = πD3/2 and D = (2∀/π)1/3 = 0.623 m.  Hence, L = 1.245 m, r1 = 
0.312m and r2 = 0.337 m.  It follows that q = 34 W and C = $53.62.  The 7% increase in the annual cost 
of the heat loss is small, providing little justification for using the optimal heater dimensions. 



PROBLEM 3.47

KNOWN: Dimensions of components of a pipe-in-pipe device. Thermal conductivity of materials,
inner and outer heat transfer coefficients, outer fluid temperature.

FIND: (a) Maximum crude oil temperature to not exceed allowable service temperature of
polyurethane. (b) Maximum crude oil temperature to not exceed allowable service temperature of
polyurethane after insertion of aerogel layer.

SCHEMATIC:

Without Aerogel With Aerogel

ASSUMPTIONS: (1) Steady-state, one-dimensional conditions, (2) Negligible contact resistances,
(3) Constant properties.

PROPERTIES: Given, Steel: k = 35 W/mK; polyurethane: k = 0.075 W/mK; aerogel: k = 0.012
W/mK.

ANALYSIS: (a) The thermal resistance network for the case without the aerogel is shown below.
The maximum polyurethane temperature occus at its inner surface.

Equating the heat rate per unit length of tubing from the crude oil to the inner surface of the
polyurethane with the heat rate from the inner surface of the polyurethane to the oceanic waters yields

, max, max, ,

' ' ' ' '
,conv, ,cond, 1 ,cond, ,cond, 2 ,conv,

'
i p p o

t i t s t p t s t o

T T T T
q

R R R R R

  
 

  

which may be rearranged to give

' '
max, , ,conv, ,cond, 1

, max,' ' '
,cond, ,cond, 2 ,conv,

( )( )

( )

p o t i t s
i p

t p t s t o

T T R R
T T

R R R




 
 

 
(1)

Continued…

• • •• • •
T, i

T, o

Tmax,p = 70°C

Rt,conv,i Rt,cond,s1 Rt,cond,p Rt,cond,s2 Rt,conv,o

q

• • •• • •• • •• • •
T, i

T, o

Tmax,p = 70°C

Rt,conv,i Rt,cond,s1 Rt,cond,p Rt,cond,s2 Rt,conv,o

q
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The various thermal resistances are evaluated as follows.

 ' 3 ' 6
,conv, ,cond, 12

ln 150 20 /1501 m K m K
4.716 10 ; 569.2 10

W 2 35W/m K W450W / m K 0.150m
t i t sR R



 
        
    

   ' 3 ' 6
,cond, ,cond, 2

ln 250 / 150 20 ln 250 20 / 250m K m K
818.4 10 ; 350.0 10

2 0.075W/m K W 2 35W/m K W
t p t sR R

 
 

             
     

' 3
,conv, 2

1 m K
2.358 10

W500W/m K 0.270m
t oR



 
  

  

Substituting into Equation (1) yields

  3 6

,
3 6 3

m K m K
70 C ( 5 C) (4.716 10 569.2 10 )

W W 70 C
m K m K m K

(818.4 10 350 10 2.358 10 )
W W W

iT

 


  

 
      

  
  

    
= 70.5C <

(b) The thermal resistance network for the case with the aerogel is shown below.

The thermal resistance values are as before, except the conduction resistance per unit length in the
polyurethane is decreased, since its thickness is reduced relative to part (a). In addition, the conduction
resistance for the aerogel must be evaluated. These two resistances are:

     ' 3 ' 3
,conv, ,cond,

ln 150 20 10 / 150 20 ln 250 /180m K m K
758 10 ; 697 10

2 0.012W/m K W 2 0.075W/m K W
t ag t pR R

 
 

           
     

Incorporating the aerogel resistance, Equation (1) becomes

' ' '
max, , ,conv, ,cond, 1 ,cond,

, max,' ' '
,cond, ,cond, 2 ,conv,

( )( )

( )

p o t i t s t ag
i p

t p t s t o

T T R R R
T T

R R R




  
 

 

Substituting values yields
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  3 6 3

,
3 6 3

m K m K m K
70 C ( 5 C) (4.716 10 569.2 10 758 10 )

W W W 70 C
m K m K m K

(697 10 350 10 2.358 10 )
W W W

iT

  


  

  
        

  
  

    

= 151.8C <

COMMENTS: Assuming the dynamic viscosity of crude oil is similar to that of engine oil, we may
evaluate the viscosity of the oil at the two maximum operating temperatures. From Table A-5 at T =
70.5C = 343 K,  = 0.046 Ns/m2. At T = 151.8C = 425 K,  = 0.517 Ns/m2. The viscosity of the oil
with the aerogel insulation is 0.046/0.517 = 0.09, or only 9% of the viscosity of the oil without the
aerogel. Savings in pumping costs and/or increases in oil production rates could be realized with use
of the aerogel pipe-in-pipe concept.



PROBLEM 3.48

KNOWN: Inner and outer radii of a tube wall which is heated electrically at its outer surface

and is exposed to a fluid of prescribed h and T. Thermal contact resistance between heater
and tube wall and wall inner surface temperature.

FIND: Heater power per unit length required to maintain a heater temperature of 25C.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Constant
properties, (4) Negligible temperature drop across heater.

ANALYSIS: The thermal circuit has the form

Applying an energy balance to a control surface about the heater,

   

 
 

 

 
 

a b
o i o

o i o
t,c

2

q q q
T T T T

q
ln r / r 1/h D

R
2 k

25 10 C25-5 C
q =

ln 75mm/25mm m K 1/ 100 W/m K 0.15m0.01
2 10 W/m K W

q 728 1649 W/m










   
 

  



    
        

  



q =2377 W/m. <

COMMENTS: The conduction, contact and convection resistances are 0.0175, 0.01 and
0.021 m K/W, respectively,



PROBLEM 3.49 
 
KNOWN:  Inner and outer radii of a tube wall which is heated electrically at its outer surface.  Inner and 
outer wall temperatures.  Temperature of fluid adjoining outer wall. 
 
FIND:  Effect of wall thermal conductivity, thermal contact resistance, and convection coefficient on 
total heater power and heat rates to outer fluid and inner surface. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction, (3) Constant properties, 
(4) Negligible temperature drop across heater, (5) Negligible radiation. 
 
ANALYSIS:  Applying an energy balance to a control surface about the heater, 
 
 i oq q q′ ′ ′= +  
 

 ( ) ( )
o i o

o i o
t,c

T T T T
q

ln r r 1 2 r hR
2 k

π
π

∞− −′ = +
′+

 

 
Selecting nominal values of k = 10 W/m⋅K, t,cR′  = 0.01 m⋅K/W and h = 100 W/m2⋅K, the following 
parametric variations are obtained 
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For a prescribed value of h, oq′  is fixed, while iq′ , and hence q′ , increase and decrease, respectively, 
with increasing k and t,cR′ .   These trends are attributable to the effects of k and t,cR′  on the total 

(conduction plus contact) resistance separating the heater from the inner surface.  For fixed k and t,cR′ , 

iq′  is fixed, while oq′ , and hence q′ , increase with increasing h due to a reduction in the convection 
resistance. 
 
COMMENTS:  For the prescribed nominal values of k, t,cR′  and h, the electric power requirement is q′  
= 2377 W/m.  To maintain the prescribed heater temperature, q′  would increase with any changes which 
reduce the conduction, contact and/or convection resistances. 



PROBLEM 3.50

KNOWN: Wall thickness and diameter of stainless steel tube. Inner and outer fluid temperatures
and convection coefficients.

FIND: (a) Heat gain per unit length of tube, (b) Effect of adding a 10 mm thick layer of insulation to
outer surface of tube.

SCHEMATIC:

T = 6 Ci
o

,oo

hi = 400 W/m -K2

Pharmaceutical

Insulation
k = 0.05 W/m-Kins

r = 20 mm2

r = 18 mm1

r = 30 mm3

T = 23 Co
o

,oo
ho = 6 W/m -K2

cond,ssR’ cond,insR’

conv,oR’conv,iR’q’

T i,oo T o,oo

Ambient
air

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional radial conduction, (3) Constant
properties, (4) Negligible contact resistance between tube and insulation, (5) Negligible effect of
radiation.

PROPERTIES: Table A-1, Ss 304 (~280K): kst = 14.2 W/mK.

ANALYSIS: (a) Without the insulation, the total thermal resistance per unit length is

 2 i
tot conv,i cond,st conv,o

1 i st 2 o

ln r / r1 1
R R R R

2 r h 2 k 2 r h
        

  

 

 
   

tot 2 2

ln 20 /181 1
R

2 14.2 W / m K2 0.018m 400 W / m K 2 0.020m 6 W / m K
   

  

 3
totR 0.0221 1.18 10 1.33 m K / W 1.35 m K / W       

The heat gain per unit length is then

 ,o ,i

tot

T T 23 6 C
q 12.6 W / m

R 1.35m K / W

   
   

 
<

(b) With the insulation, the total resistance per unit length is now tot conv,i cond,stR R R    cond,insR

conv,oR , where conv,i cond,stR and R  remain the same. The thermal resistance of the insulation is

   
 

3 2
cond,ins

ins

ln r / r ln 30 / 20
R 1.29 m K / W

2 k 2 0.05 W / m K 
    



and the outer convection resistance is now

 
conv,o 23 o

1 1
R 0.88 m K / W

2 r h 2 0.03m 6 W / m K 
    



The total resistance is now

 3
totR 0.0221 1.18 10 1.29 0.88 m K / W 2.20 m K / W        

Continued …
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and the heat gain per unit length is

,o ,i

tot

T T 17 C
q 7.7 W / m

R 2.20 m K / W

  
   

 

COMMENTS: (1) The validity of assuming negligible radiation may be assessed for the worst case

condition corresponding to the bare tube. Assuming a tube outer surface temperature of Ts = T,i =

279K, large surroundings at Tsur = T,o = 296K, and an emissivity of  = 0.7 (Table A-11), the heat

gain due to net radiation exchange with the surroundings is   4 4
rad 2 sur sq 2 r T T 8.1 W / m.    

Hence, the net rate of heat transfer by radiation to the tube surface is comparable to that by
convection, and the assumption of negligible radiation is inappropriate.

(2) If heat transfer from the air is by natural convection, the value of ho with the insulation would
actually be less than the value for the bare tube, thereby further reducing the heat gain. Use of the
insulation would also increase the outer surface temperature, thereby reducing net radiation transfer
from the surroundings.

(3) The critical radius is rcr = kins/h  8 mm < r2. Hence, as indicated by the calculations, heat
transfer is reduced by the insulation.



PROBLEM 3.51

KNOWN: Diameter, wall thickness and thermal conductivity of steel tubes. Temperature of steam
flowing through the tubes. Thermal conductivity of insulation and emissivity of aluminum sheath.
Temperature of ambient air and surroundings. Convection coefficient at outer surface and maximum
allowable surface temperature.

FIND: (a) Minimum required insulation thickness (r3 – r2) and corresponding heat loss per unit
length, (b) Effect of insulation thickness on outer surface temperature and heat loss.

SCHEMATIC:

T = 575 Ci
o

,oo

Steam

Insulation
k = 0.10 W/m-Kin

Aluminum

Steel
k = 35 W/m-Kstl

r = 180 mm2

r = 150 mm1

r3

T = 27 Co
o

,oo
ho = 6 W/m -K2

Ambient
air

Tsur = 27 Co
Ts,o < 50 Co

= 0.20

ASSUMPTIONS: (1) Steady-state, (2) One-dimensional radial conduction, (3) Negligible contact

resistances at the material interfaces, (4) Negligible steam side convection resistance (T,i = Ts,i), (5)
Negligible conduction resistance for aluminum sheath, (6) Constant properties, (7) Large
surroundings.

ANALYSIS: (a) To determine the insulation thickness, an energy balance must be performed at the

outer surface, where conv,o radq q q .    With  conv,o 3 o s,o ,oq 2 r h T T ,    rad 3q 2 r  

       4 4
s,o sur s,i s,o cond,st cond,ins cond,st 2 1 stT T , q T T / R R , R n r / r / 2 k ,        and cond,insR

 3 2 insn r / r / 2 k ,  it follows that

 
   

   s,i s,o 4 4
3 o s,o ,o s,o sur

2 1 3 2

st ins

2 T T
2 r h T T T T

n r / r n r / r

k k


 

     
  


 

 

   
   2 8 2 4 4 4 4

3
3

2 848 323 K
2 r 6 W / m K 323 300 K 0.20 5.67 10 W / m K 323 300 K

n r / 0.18n 0.18 / 0.15

35 W / m K 0.10 W / m K





       


 

 
 

A trial-and-error solution yields r3 = 0.394 m = 394 mm, in which case the insulation thickness is

ins 3 2t r r 214mm   <
The heat rate is then

 
   

2 848 323 K
q 420 W / m

n 0.18 / 0.15 n 0.394 / 0.18

35 W / m K 0.10 W / m K

 
  


 

 
<

(b) The effects of r3 on Ts,o and q have been computed and are shown below.

Continued …



PROBLEM 3.51 (Cont.)

Beyond r3  0.40 m, there are rapidly diminishing benefits associated with increasing the insulation
thickness.

COMMENTS: Note that the thermal resistance of the insulation is much larger than that for the tube

wall. For the conditions of Part (a), the radiation coefficient is hr = 1.37 W/m, and the heat loss by

radiation is less than 25% of that due to natural convection  radq 78 W / m,  conv,oq 342 W / m . 

cond,stR’

radR’

conv,oR’

R’q’

Ts,o
T = i,i s,Too

q’conv,o

q’rad

Tsur

T o,oo
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PROBLEM 3.52

KNOWN: Thin electrical heater fitted between two concentric cylinders, the outer surface of which
experiences convection.

FIND: (a) Electrical power required to maintain outer surface at a specified temperature, (b)
Temperature at the center.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional, radial conduction, (2) Steady-state conditions, (3) Heater
element has negligible thickness, (4) Negligible contact resistance between cylinders and heater, (5)
Constant properties, (6) No generation.

ANALYSIS: (a) Perform an energy balance on the
composite system to determine the power required

to maintain T(r2) = Ts = 5C.

in out gen stE E E E      

elec convq q 0.   

Using Newton’s law of cooling,

 elec conv 2 sq q h 2 r T T     

   elec 2

W
q 50 2 0.040m 5 15 C=251 W/m.

m K
      



 <

(b) From a control volume about Cylinder A, we recognize that the cylinder must be isothermal, that
is,

T(0) = T(r1).

Represent Cylinder B by a thermal circuit:

 1 s

B

T r T
q =

R






For the cylinder, from Eq. 3.28,

B 2 1 BR ln r / r / 2 k 

giving

 1 s B
W ln 40/20

T r T q R 5 C+251 23.5 C
m 2 1.5 W/m K

    
 

 



Hence, T(0) = T(r1) = 23.5C. <

Note that kA has no influence on the temperature T(0).



PROBLEM 3.53

KNOWN: Electric current and resistance of wire. Wire diameter and emissivity. Thickness,
emissivity and thermal conductivity of coating. Temperature of ambient air and surroundings.
Expression for heat transfer coefficient at surface of the wire or coating.

FIND: (a) Heat generation per unit length and volume of wire, (b) Temperature of uninsulated wire,
(c) Inner and outer surface temperatures of insulation, including the effect of insulation thickness.

SCHEMATIC:

I = 20 A

Insulation

= 0.90i

h = 1.25[(T - T )/D]1/4
oo

’T, R = 0.01 /m, = 0.3elec w Wire

T = 20 Co
,oo

Air

T = 20 Csur
o

T , r = 1 mms,1 1

T , r = 3 mms,2 2

ASSUMPTIONS: (1) Steady-state, (2) One-dimensional radial conduction through insulation, (3)
Constant properties, (4) Negligible contact resistance between insulation and wire, (5) Negligible
radial temperature gradients in wire, (6) Large surroundings.

ANALYSIS: (a) The rates of energy generation per unit length and volume are, respectively,

   22
g elecE I R 20 A 0.01 / m 4 W / m     <

 22 6 3
g c gq E / A 4 E / D 16 W / m / 0.002m 1.27 10 W / m        <

(b) Without the insulation, an energy balance at the surface of the wire yields

   4 4
g conv rad w surE q q q D h T T D T T            

where   1/ 4
h 1.25 T T / D .  Substituting,

       8 2 4 4 4 43 / 4 5 / 4
4 W / m 1.25 0.002m T 293 0.002m 0.3 5.67 10 W / m K T 293 K 


      

and a trial-and-error solution yields

T 331K 58 C   <
(c) Performing an energy balance at the outer surface,

   4 4
g conv rad s,2 i surs,2E q q q D h T T D T T            

       5 / 4 8 2 4 4 4 43/ 4
s,2 s,24 W / m 1.25 0.006m T 293 0.006m 0.9 5.67 10 W / m K T 293 K 


      

and an iterative solution yields the following value of the surface temperature

s,2T 307.8K 34.8 C   <

The inner surface temperature may then be obtained from the following expression for heat transfer
by conduction in the insulation.

Continued …



PROBLEM 3.53 (Cont.)

 
s,i s,2 s,i s,2

cond 2 1 i

T T T T
q

R n r / r / 2 k

 
  

 

  s,i2 0.25 W / m K T 307.8K
4 W

n (3)

 






s,iT 310.6 K 37.6 C   <

As shown below, the effect of increasing the insulation thickness is to reduce, not increase, the
surface temperatures.

This behavior is due to a reduction in the total resistance to heat transfer with increasing r2. Although

the convection, h, and radiation,   2 2
r s,2 sur s,2 surh T T T T ,   coefficients decrease with

increasing r2, the corresponding increase in the surface area is more than sufficient to provide for a

reduction in the total resistance. Even for an insulation thickness of t = 4 mm, h = h + hr = (7.1 + 5.4)

W/m
2
K = 12.5 W/m

2
K, and rcr = k/h = 0.25 W/mK/12.5 W/m

2
K = 0.020m = 20 mm > r2 = 5 mm.

The outer radius of the insulation is therefore well below the critical radius.
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PROBLEM 3.54

KNOWN: Diameter of electrical wire. Thickness and thermal conductivity of rubberized sheath.
Contact resistance between sheath and wire. Convection coefficient and ambient air temperature.
Maximum allowable sheath temperature.

FIND: Maximum allowable power dissipation per unit length of wire. Critical radius of insulation.

SCHEMATIC:

Insulation, t = 2 mm

h = 10 W/m -K2

Wire

T = 20 Co
,oo

Air

condR’ convR’t,cR’

q’ Tw,o Tin,i Tin,o Too

R = 3x10 m -K/Wt,c
-4 2”

E , D = 2 mmgen‘
.

ASSUMPTIONS: (1) Steady-state, (2) One-dimensional radial conduction through insulation, (3)
Constant properties, (4) Negligible radiation exchange with surroundings.

ANALYSIS: The maximum insulation temperature corresponds to its inner surface and is
independent of the contact resistance. From the thermal circuit, we may write

   
in,i in,i

g
cond conv in,o in,i in,o

T T T T
E q

R R n r / r / 2 k 1/ 2 r h 

  
   

    
 




where in,i in,o in,ir D / 2 0.001m, r r t 0.003m,     and in,i maxT T 50 C   yields the maximum

allowable power dissipation. Hence,

 

 

 g,max

2

50 20 C 30 C
E 4.51W / m

n 3 1 1.35 5.31 m K / W

2 0.13 W / m K 2 0.003m 10 W / m K 

  
   

 


  




<

The critical insulation radius is also unaffected by the contact resistance and is given by

cr 2

k 0.13W / m K
r 0.013m 13mm

h 10 W / m K


   


<

Hence, rin,o < rcr and g,maxE could be increased by increasing rin,o up to a value of 13 mm (t = 12

mm).

COMMENTS: The contact resistance affects the temperature of the wire, and for g,maxq E  

4.51W / m, the outer surface temperature of the wire is Tw,o = Tin,i + t,cq R 50 C     4.51W / m

   4 2
3 10 m K / W / 0.002m 50.2 C.


    Hence, the temperature change across the contact

resistance is negligible.



PROBLEM 3.55

KNOWN: Long rod experiencing uniform volumetric generation of thermal energy, q, concentric

with a hollow ceramic cylinder creating an enclosure filled with air. Thermal resistance per unit

length due to radiation exchange between enclosure surfaces is radR . The free convection

coefficient for the enclosure surfaces is h = 20 W/m
2
K.

FIND: (a) Thermal circuit of the system that can be used to calculate the surface temperature of the

rod, Tr; label all temperatures, heat rates and thermal resistances; evaluate the thermal resistances; and
(b) Calculate the surface temperature of the rod.

SCHEMATIC:

Dr

Tr

Ti

Di

D = 20 mmr
D = 40 mmi
D = 120 mmo

Do D

Ceramic, k = 1.75 W/m-K

Air space

Rod

h = 20 W/m -K2

T = 25 Co
o

R = 0.30 m-K/Wrad

q = 2x106 W/m3

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional, radial conduction through the
hollow cylinder, (3) The enclosure surfaces experience free convection and radiation exchange.

ANALYSIS: (a) The thermal circuit is shown below. Note labels for the temperatures, thermal
resistances and the relevant heat fluxes.

Enclosure, radiation exchange (given):

radR 0.30 m K / W  

Enclosure, free convection:

cv,rod 2
r

1 1
R 0.80 m K / W

h D 20 W / m K 0.020m 
    

  

cv,cer 2i

1 1
R 0.40 m K / W

h D 20 W / m K 0.040m 
    

  

Ceramic cylinder, conduction:

   o i
cd

n D / D n 0.120 / 0.040
R 0.10 m K / W

2 k 2 1.75 W / m K 
    

 

 

The thermal resistance between the enclosure surfaces (r-i) due to convection and radiation exchange
is

enc rad cv,rod cv,cer

1 1 1

R R R R
 

   

1

enc
1 1

R m K / W 0.24 m K / W
0.30 0.80 0.40


 

       
The total resistance between the rod surface (r) and the outer surface of the cylinder (o) is

 tot enc cdR R R 0.24 0.1 m K / W 0.34 m K / W        

Continued …



PROBLEM 3.55 (Cont.)

Too

q’

(a) Thermal circuit

R’cv,rod R’cv,cer

R’cdR’rad Ti T = 25 Co
oTr

(b) Overall energy balance on rod

q’

CV

E’g
.

(b) From an energy balance on the rod (see schematic) find Tr.

in out genE E E 0      

q q 0   

   2
r i tot rT T / R q D / 4 0   

   6 3 2
rT 25 K / 0.34 m K / W 2 10 W / m 0.020m / 4 0      

rT 239 C  <

COMMENTS: In evaluating the convection resistance of the air space, it was necessary to define an

average air temperature (T) and consider the convection coefficients for each of the space surfaces.
As you’ll learn later in Chapter 9, correlations are available for directly estimating the convection

coefficient (henc) for the enclosure so that qcv = henc (Tr – Ti).



PROBLEM 3.56 
 
KNOWN:  Tube diameter and refrigerant temperature for evaporator of a refrigerant system.  Convection 
coefficient and temperature of outside air. 
 
FIND:  (a) Rate of heat extraction without frost formation, (b) Effect of frost formation on heat rate, (c) 
Time required for a 2 mm thick frost layer to melt in ambient air for which h = 2 W/m2⋅K and T∞  = 20°C. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) One-dimensional, steady-state conditions, (2) Negligible convection resistance for 
refrigerant flow ( ),i s,1T T∞ = , (3) Negligible tube wall conduction resistance, (4) Negligible radiation 

exchange at outer surface. 
 
ANALYSIS:  (a) The cooling capacity in the defrosted condition (δ = 0) corresponds to the rate of heat 
extraction from the airflow.  Hence, 

 ( ) ( )( )2
1 ,o s,1q h2 r T T 100 W m K 2 0.005 m 3 18 Cπ π∞′ = − = ⋅ × − + o  

 q 47.1W m′ =  < 
(b)  With the frost layer, there is an additional (conduction) resistance to heat transfer, and the extraction 
rate is 

 
( ) ( )

,o s,1 ,o s,1

conv cond 2 2 1

T T T T
q

R R 1 h2 r ln r r 2 kπ π
∞ ∞− −

′ = =
′ ′+ +

 

For 5 ≤ r2 ≤ 9 mm and k = 0.4 W/m⋅K, this expression yields 
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PROBLEM 3.56 (Cont.) 

 
 
The heat extraction, and hence the performance of the evaporator coil, decreases with increasing frost 
layer thickness due to an increase in the total resistance to heat transfer.  Although the convection 
resistance decreases with increasing δ, the reduction is exceeded by the increase in the conduction 
resistance. 
 
(c)  The time tm required to melt a 2 mm thick frost layer may be determined by applying an energy 
balance, Eq. 1.12c, over the differential time interval dt and to a differential control volume extending 
inward from the surface of the layer. 
 
 in st latE dt dE dU= =&  
 
 ( )( ) ( ),o f sf sfh 2 rL T T dt h d h 2 rL drπ ρ ρ π∞ − = − ∀ = −  
 

 ( ) m 1
2

t r
,o f sf0 r

h T T dt h drρ∞ − = −∫ ∫  
 

 
( )

( )
( )( )

( )

3 5
sf 2 1

m 2,o f

700 kg m 3.34 10 J kg 0.002 mh r r
t

h T T 2 W m K 20 0 C

ρ

∞

×−
= =

− ⋅ − o
 

 mt 11,690s 3.25 h= =  < 
 
COMMENTS:  The tube radius r1 exceeds the critical radius rcr = k/h = 0.4 W/m⋅K/100 W/m2⋅K = 0.004 
m, in which case any frost formation will reduce the performance of the coil. 



PROBLEM 3.57 
 
KNOWN:  Conditions associated with a composite wall and a thin electric heater. 
 
FIND:  (a) Equivalent thermal circuit, (b) Expression for heater temperature, (c) Ratio of outer and inner 
heat flows and conditions for which ratio is minimized. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) One-dimensional, steady-state conduction, (2) Constant properties, (3) Isothermal 
heater, (4) Negligible contact resistance(s). 
 
ANALYSIS:  (a) On the basis of a unit axial length, the circuit, thermal resistances, and heat rates are as 
shown in the schematic. 
 
(b) Performing an energy balance for the heater, in outE E=& & , it follows that 
 

 ( )
( ) ( ) ( ) ( )

h ,i h ,o
h 2 i o

1 12 1 3 2
i 1 o 3

B A

T T T T
q 2 r q q

ln r r ln r r
h 2 r h 2 r

2 k 2 k

π
π π

π π

∞ ∞

− −

− −
′′ ′ ′= + = +

+ +
 < 

 
(c) From the circuit, 
 

 
( )
( )

( ) ( )

( ) ( )

1 2 1
i 1h ,oo B

1 3 2i h ,i o 3
A

ln r r
h 2 rT Tq 2 k

ln r rq T T h 2 r
2 k

π
π

π
π

−
∞

−∞

+−′
= ×

′ − +
 < 

 
To reduce o iq q′ ′ , one could increase kB, hi, and r3/r2, while reducing kA, ho and r2/r1. 
 
COMMENTS:  Contact resistances between the heater and materials A and B could be important. 



PROBLEM 3.58

KNOWN: Electric current flow, resistance, diameter and environmental conditions
associated with a cable.

FIND: (a) Surface temperature of bare cable, (b) Cable surface and insulation temperatures
for a thin coating of insulation, (c) Insulation thickness which provides the lowest value of the
maximum insulation temperature. Corresponding value of this temperature.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in r, (3)
Constant properties.

ANALYSIS: (a) The rate at which heat is transferred to the surroundings is fixed by the rate
of heat generation in the cable. Performing an energy balance for a control surface about the

cable, it follows that gE q or, for the bare cable,    2
e i sI R L=h D L T T .   With

   22 4
eq =I R 700A 6 10 / m 294 W/m,      it follows that

   
s 2i

q 294 W/m
T T 30 C+

h D 25 W/m K 0.005m 



  





sT 778.7 C.  <

(b) With a thin coating of insulation, there exist contact and convection resistances to heat
transfer from the cable. The heat transfer rate is determined by heating within the cable,
however, and therefore remains the same.

 

s s

t,c
t,c

i i i
i s

t,c

T T T T
q=

1 R 1R
h D L D L h D L

D T T
q =

R 1/ h

  


 



 



 




 

and solving for the surface temperature, find

 

2 2

s t,c
i

q 1 294 W/m m K m K
T R T 0.02 0.04 30 C

D h 0.005m W W 


           
    



sT 1153 C.  <

Continued …



PROBLEM 3.58 (Cont.)

The insulation temperature is then obtained from

s i

t,c

T T
q=

R



or

 

2

t,c
i s t,c

i

W m K
294 0.02R m WT T qR 1153 C q 1153 C

D L 0.005m 




      

iT 778.7 C.  <
(c) The maximum insulation temperature could be reduced by reducing the resistance to heat transfer

from the outer surface of the insulation. Such a reduction is possible if Di < Dcr. From Example 3.6,

cr 2

k 0.5 W/m K
r 0.02m.

h 25 W/m K


  



Hence, Dcr = 0.04m > Di = 0.005m. To minimize the maximum temperature, which exists at

the inner surface of the insulation, add insulation in the amount

 o i cr i 0.04 0.005 mD D D D
t=

2 2 2

 
 

t = 0.0175m. <
The cable surface temperature may then be obtained from

 

 
 
   

s s
2t,c cr i

i cr
2

T T T 30 C
q =

R ln D / D 1 ln 0.04/0.0050.02 m K/W 1
D 2 k h D W0.005m 2 0.5 W/m K

25 0.04m
m K

    


 
 


   







Hence,

 
s sT 30 C T 30 CW

294
m 1.27+0.66+0.32 m K/W 2.25 m K/W

 
 

 

 

sT 692.5 C 

Recognizing that q = (Ts - Ti)/Rt,c, find

 

2

t,c
i s t,c s

i

W m K
294 0.02R m WT T qR T q 692.5 C

D L 0.005m 




     

iT 318.2 C.  <
COMMENTS: Use of the critical insulation thickness in lieu of a thin coating has the effect of

reducing the maximum insulation temperature from 778.7C to 318.2C. Use of the critical

insulation thickness also reduces the cable surface temperature to 692.5C from 778.7C with no

insulation or from 1153C with a thin coating.



PROBLEM 3.59

KNOWN: Saturated steam conditions in a pipe with prescribed surroundings.

FIND: (a) Heat loss per unit length from bare pipe and from insulated pipe, (b) Pay back
period for insulation.

SCHEMATIC:

Steam Costs:

$4 for 10
9

J

Insulation Cost:
$100 per meter

Operation time:
7500 h/yr

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional heat transfer, (3)
Constant properties, (4) Negligible pipe wall resistance, (5) Negligible steam side convection
resistance (pipe inner surface temperature is equal to steam temperature), (6) Negligible

contact resistance, (7) Tsur = T.

PROPERTIES: Table A-6, Saturated water (p = 20 bar): Tsat = Ts = 486K; Table A-3,

Magnesia, 85% (T  392K): k = 0.058 W/mK.

ANALYSIS: (a) Without the insulation, the heat loss may be expressed in terms of radiation
and convection rates,

    

   
   

4 4
s sur s

8 4 4 4
2 4

2

q = D T T h D T T

W
q =0.8 0.2m 5.67 10 486 298 K

m K
W

+20 0.2m 486-298 K
m K

  









   

  





 q = 1365+2362 W/m=3727 W/m. <

With the insulation, the thermal circuit is of the form

Continued …



PROBLEM 3.59 (Cont.)

From an energy balance at the outer surface of the insulation,

 
   

 
 
 

   

   

cond conv rad

s,i s,o 4 4
o s,o o s,o sur

o i

s,o
s,o2

-8 4 4 4
s,o2 4

q q q

T T
h D T T D T T

ln D / D / 2 k

486 T K W
20 0.3m T 298K

ln 0.3m/0.2m m K
2 0.058 W/m K

W
+0.8 5.67 10 0.3m T 298 K .

m K

 










   


   


 




  


By trial and error, we obtain

Ts,o  305K

in which case

 
 
 

486-305 K
q = 163 W/m.

ln 0.3m/0.2m

2 0.055 W/m K

 



<

(b) The yearly energy savings per unit length of pipe due to use of the insulation is

 
9

Savings Energy Savings Cost

Yr m Yr. Energy
Savings J s h $4

3727 163 3600 7500
Yr m s m h Yr 10 J

Savings
$385/ Yr m.

Yr m

 


    
 

 


The pay back period is then

Insulation Costs $100 / m
Pay Back Period =

Savings/Yr. m $385/Yr m


 

Pay Back Period = 0.26 Yr = 3.1 mo. <
COMMENTS: Such a low pay back period is more than sufficient to justify investing in the
insulation.



PROBLEM 3.60 
 
KNOWN:  Pipe wall temperature and convection conditions associated with water flow through the pipe 
and ice layer formation on the inner surface. 
 
FIND:  Ice layer thickness δ. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) One-dimensional, steady-state conduction, (2) Negligible pipe wall thermal 
resistance, (3) negligible ice/wall contact resistance, (4) Constant k. 
 
PROPERTIES:  Table A.3, Ice (T = 265 K):  k ≈ 1.94 W/m⋅K. 
 
ANALYSIS:  Performing an energy balance for a control surface about the ice/water interface, it follows 
that, for a unit length of pipe, 
 
 conv condq q′ ′=  
 

 ( )( ) ( )
s,i s,o

i 1 ,i s,i
2 1

T T
h 2 r T T

ln r r 2 k
π

π∞
−

− =  

 
Dividing both sides of the equation by r2, 
 

 
( )
( ) ( )( )

s,i s,o2 1
22 1 i 2 ,i s,i

T Tln r r k 1.94 W m K 15 C 0.097
r r h r T T 3 C2000 W m K 0.05m∞

− ⋅
= × = × =

− ⋅

o

o
 

 
The equation is satisfied by r2/r1 = 1.114, in which case r1 = 0.050 m/1.114 = 0.045 m, and the ice layer 
thickness is 

 2 1r r 0.005m 5mmδ = − = =  < 
 
COMMENTS:  With no flow, hi → 0, in which case r1 → 0 and complete blockage could occur.  The 
pipe should be insulated. 



PROBLEM 3.61

KNOWN: Inner surface temperature of insulation blanket comprised of two semi-cylindrical shells of different
materials. Ambient air conditions.

FIND: (a) Equivalent thermal circuit, (b) Total heat loss and material outer surface temperatures.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional, radial conduction, (3) Infinite contact
resistance between materials, (4) Constant properties.

ANALYSIS: (a) The thermal circuit is,

conv,A conv,B 2R R 1/ r h  

 
 2 1

cond A
A

ln r / r
R

k
  <

 
 2 i

cond
B

ln r / r
R

k
 B

The conduction resistances follow from Section 3.3.1 and Eq. 3.33. Each resistance is larger by a factor of 2 than
the result of Eq. 3.28 due to the reduced area.

(b) Evaluating the thermal resistances and the heat rate  A Bq =q q ,  

 
12

convR 0.1m 25 W/m K 0.1273 m K/W


      

 
 

   cond A cond B cond A
ln 0.1m/0.05m

R 0.1103 m K/W R 8 R 0.8825 m K/W
2 W/m K

       
 

   

s,1 s,1

conv convcond A cond B

T T T T
q =

R R R R

  
 

    

 
 

 
 

 
500 300 K 500 300 K

q = 842 198 W/m=1040 W/m.
0.1103+0.1273 m K/W 0.8825+0.1273 m K/W

 
   

 
<

Hence, the temperatures are

   s,1 As,2 A cond A
W m K

T T q R 500K 842 0.1103 407K
m W


       <

   s,1 Bs,2 B cond B
W m K

T T q R 500K 198 0.8825 325K.
m W


       <

COMMENTS: The total heat loss can also be computed from  s,1 equivq = T T / R , 

where     
11 1

equiv conv,A cond(B) conv,Bcond AR R R R R 0.1923 m K/W.

 
        

 
 
 

Hence  q = 500 300 K/0.1923 m K/W=1040 W/m.  



PROBLEM 3.62

KNOWN: Surface temperature of a circular rod coated with Bakelite and adjoining fluid
conditions.

FIND: (a) Critical insulation radius, (b) Heat transfer per unit length for bare rod and for
insulation at critical radius, (c) Insulation thickness needed for 25% heat rate reduction.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in r, (3)
Constant properties, (4) Negligible radiation and contact resistance.

PROPERTIES: Table A-3, Bakelite (300K): k = 1.4 W/mK.

ANALYSIS: (a) From Example 3.6, the critical radius is

cr 2

k 1.4 W/m K
r 0.01m.

h 140 W/m K


  


<

(b) For the bare rod,

   i iq =h D T T  

   
2

W
q =140 0.01m 200 25 C=770 W/m

m K
  



 <

For the critical insulation thickness,

 
 

 

 
i

cr i
2cr

200 25 CT T
q =

ln r / r ln 0.01m/0.005m1 1

2 r h 2 k 2 1.4 W/m K2 0.01m 140 W/m K  

 
 

 
   



 
175 C

q = 909 W/m
0.1137+0.0788 m K/W

 



<

(c) The insulation thickness needed to reduce the heat rate to 577 W/m is obtained from

 
 

 

 
i

i
2

200 25 CT T W
q = 577

ln r/r ln r/0.005m m1 1

2 rh 2 k 2 1.4 W/m K2 r 140 W/m K  

 
  

 
 



From a trial-and-error solution, find
r  0.06 m.

The desired insulation thickness is then

   ir r 0.06 0.005 m=55 mm.     <



PROBLEM 3.63

KNOWN: Geometry of an oil storage tank. Temperature of stored oil and environmental
conditions.

FIND: Heater power required to maintain a prescribed inner surface temperature.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in radial
direction, (3) Constant properties, (4) Negligible radiation.

PROPERTIES: Table A-3, Pyrex (300K): k = 1.4 W/mK.

ANALYSIS: The rate at which heat must be supplied is equal to the loss through the
cylindrical and hemispherical sections. Hence,

cyl hemi cyl spherq=q 2q q q  

or, from Eqs. 3.33 and 3.41,

 
s,i s,i

o i
2o i o o

T T T T
q=

ln D / D 1 1 1 1 1

2 Lk D Lh 2 k D D D h   

  


 
   

 

 

     
 

 
 

 

2

-1
2 2

-3 -3 -3 -3

400 300 K
q=

ln 1.04 1

2 2m 1.4 W/m K 1.04m 2m 10 W/m K

400 300 K
+

1 1
1 0.962 m

2 1.4 W/m K 1.04m 10 W/m K
100K 100K

q=
2.23 10 K/W + 15.30 10 K/W 4.32 10 K/W + 29.43 10

 

 




 



 
 


   

q = 5705W + 2963W = 8668W. <



PROBLEM 3.64 
 
KNOWN:  Diameter of a spherical container used to store liquid oxygen and properties of insulating 
material.  Environmental conditions. 
 
FIND:  (a) Reduction in evaporative oxygen loss associated with a prescribed insulation thickness, (b) 
Effect of insulation thickness on evaporation rate. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state, one-dimensional conduction, (2) Negligible conduction resistance of 
container wall and contact resistance between wall and insulation, (3) Container wall at boiling point of 
liquid oxygen. 
 
ANALYSIS:  (a) Applying an energy balance to a control surface about the insulation, in outE E−& &  = 0, it 
follows that conv rad condq q q q+ = = .  Hence, 
 

 s,2 sur s,2 s,2 s,1

t,conv t,rad t,cond

T T T T T T
q

R R R
∞ − − −

+ = =  (1) 

 

where ( ) 12
t,conv 2R 4 r hπ

−
= , ( ) 12

t,rad 2 rR 4 r hπ
−

= , ( ) ( ) ( )[ ]t,cond 1 2R 1 4 k 1 r 1 rπ= − , and, from Eq. 

1.9, the radiation coefficient is ( )( )2 2
r s,2 sur s,2 surh T T T Tεσ= + + .  With t = 10 mm (r2 = 260 mm), ε = 

0.2 and T∞ = Tsur = 298 K, an iterative solution of the energy balance equation yields Ts,2 ≈ 297.7 K, 
where Rt,conv = 0.118 K/W, Rt,rad = 0.982 K/W and Rt,cond = 76.5 K/W.  With the insulation, it follows that 
the heat gain is 
 
 qw ≈ 2.72 W 
 
Without the insulation, the heat gain is 
 

 s,1 sur s,1
wo

t,conv t,rad

T T T T
q

R R
∞ − −

= +  

 
where, with r2 = r1, Ts,1 = 90 K, Rt,conv = 0.127 K/W and Rt,rad = 3.14 K/W.  Hence, 
 
 qwo = 1702 W 
 
With the oxygen mass evaporation rate given by &m  = q/hfg, the percent reduction in evaporated oxygen is 
 

 wo w wo w

wo wo

m m q q
% Re duction 100% 100%

m q
− −

= × = ×
& &

&
 

Hence, 

 
( )1702 2.7 W

% Re duction 100% 99.8%
1702 W
−

= × =  < 

Continued... 



 
PROBLEM 3.64 (Cont.) 

 
(b) Using Equation (1) to compute Ts,2 and q as a function of r2, the corresponding evaporation rate, &m  = 
q/hfg, may be determined.  Variations of q and &m  with r2 are plotted as follows. 
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Because of its extremely low thermal conductivity, significant benefits are associated with using even a 
thin layer of insulation.  Nearly three-order magnitude reductions in q and &m  are achieved with r2 = 0.26 
m.  With increasing r2, q and &m  decrease from values of 1702 W and 8×10-3 kg/s at r2 = 0.25 m to 0.627 
W and 2.9×10-6 kg/s at r2 = 0.30 m. 
 
COMMENTS:  Laminated metallic-foil/glass-mat insulations are extremely effective and corresponding 
conduction resistances are typically much larger than those normally associated with surface convection 
and radiation. 



PROBLEM 3.65

KNOWN: Dimensions and surface temperatures of a glass or aluminum spherical shell.

FIND: (a) Mid-point temperature within the shell for a glass shell, (b) Mid-point temperature within
the shell for an aluminum shell.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) One-dimensional heat
transfer, (4) No internal energy generation within the shell.

ANALYSIS: (a) The conduction heat rate into the dashed control surface must equal the conduction
heat rate out of the dashed control surface. Hence, from Eq. 3.40

   ,1 ,2

21

4 ( ) 4 ( )

(1/ ) (1/ )(1/ ) (1/ )

s m m s
r

mm

k T T r k T r T
q

r rr r

  
 



or,

,1 ,2

1 2

2 1

1
( )

(1/ ) (1/ ) (1/ ) (1/ )1 1

(1/ ) (1/ ) (1/ ) (1/ )

1
=

1 1

(1/ 0.075m) (1/ 0.1m) (1/0.05m) (1/0.075m)

100 C 45 C

(1/0.05m) (1/ 0.075m)

s s
m

m m

m m

T T
T r

r r r r

r r r r

 
  

         
    


   

       

 


 (1/ 0.075m) (1/ 0.1m)

= 63.3 C <

 
 

 



(b) The temperature distribution is independent of the shell material. Hence, T(rm) = 63.3C <

COMMENTS: (1) The temperature distribution is not linear. Assuming a linear distribution would be
a serious error. (2) The conduction heat rate through the sphere will be much higher for the aluminum
shell since the thermal conductivity of aluminum is much greater than that of glass.

r

D1 = 0.1 m

D2 = 0.2 m

Ts,2 = 45°C

Ts,1 = 100°C

rm = 0.075 m

r

D1 = 0.1 m

D2 = 0.2 m

Ts,2 = 45°C

Ts,1 = 100°C

rm = 0.075 m



PROBLEM 3.66

KNOWN: Sphere of radius ri, covered with insulation whose outer surface is exposed to a

convection process.

FIND: Critical insulation radius, rcr.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional radial (spherical)
conduction, (3) Constant properties, (4) Negligible radiation at surface.

ANALYSIS: The heat rate follows from the thermal circuit shown in the schematic,

 i totq= T T / R

where tot t,conv t,condR R R and 

t,conv 2s

1 1
R

hA 4 hr
  (3.9)

t,cond
i

1 1 1
R

4 k r r

 
  

 
(3.36)

If q is a maximum or minimum, we need to find the condition for which

totd R
0.

dr


It follows that

2 2 3
i

d 1 1 1 1 1 1 1 1
0

dr 4 k r r 4 k 2 h4 hr r r  

    
         

   
giving

cr
k

r 2
h



The second derivative, evaluated at r = rcr, is

cr

tot
3 4

r=r

dRd 1 1 3 1

dr dr 2 k 2 hr r 

 
    

  

   3 3

1 1 3 1 1 1 3
1 0

2 k 2 h 2k/h 2 k 22k/h 2k/h  

   
         

   

Hence, it follows no optimum Rtot exists. We refer to this condition as the critical insulation

radius. See Example 3.6 which considers this situation for a cylindrical system.



PROBLEM 3.67

KNOWN: Thickness of hollow aluminum sphere and insulation layer. Heat rate and inner
surface temperature. Ambient air temperature and convection coefficient.

FIND: Thermal conductivity of insulation.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional radial conduction, (3)
Constant properties, (4) Negligible contact resistance, (5) Negligible radiation exchange at
outer surface.

PROPERTIES: Table A-1, Aluminum (523K): k  230 W/mK.

ANALYSIS: From the thermal circuit,

 

    

1 1

2 31 2tot
2

A1 I 3

2
I

T T T T
q=

1/ r 1/ r1/r 1/ r 1R
4 k 4 k h4 r

250 20 C
q= 80 W

1/0.15 1/ 0.18 1/ 0.18 1/ 0.30 1 K

4 230 4 k W30 4 0.3

  

  

  



 




    
 
 



or

4

I

0.177 230
3.84 10 0.0029 2.875.

k 80
    

Solving for the unknown thermal conductivity, find

kI = 0.062 W/mK. <

COMMENTS: The dominant contribution to the total thermal resistance is made by the

insulation. Hence uncertainties in knowledge of h or kA1 have a negligible effect on the

accuracy of the kI measurement.



PROBLEM 3.68

KNOWN: Dimensions of spherical, stainless steel liquid oxygen (LOX) storage container. Boiling
point and latent heat of fusion of LOX. Environmental temperature.

FIND: Thermal isolation system which maintains boil-off below 1 kg/day.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional, steady-state conditions, (2) Negligible thermal resistances
associated with internal and external convection, conduction in the container wall, and contact between
wall and insulation, (3) Negligible radiation at exterior surface (due to low emissivity insulation
selected), (4) Constant insulation thermal conductivity.

PROPERTIES: Table A.1, 304 Stainless steel (T = 100 K): ks = 9.2 W/mK; Table A.3, Reflective,
aluminum foil-glass paper insulation (T = 150 K): ki = 0.000017 W/mK (see choice of insulation
below).

ANALYSIS: The heat gain associated with a loss of 1 kg/day is

 5
fg

1kg day
q mh 2.13 10 J kg 2.47 W

86, 400s day
   

With an overall temperature difference of  bpT T  = 150 K, the corresponding total thermal

resistance is

tot
T 150 K

R 60.7 K W
q 2.47 W


  

The conduction resistance of the steel wall is

 
4

t,cond,s
s 1 2

1 1 1 1 1 1
R 2.7 10 K W

4 k r r 4 9.2 W m K 0.395 m 0.40 m 

     


   
   

  

With a typical combined radiation and convection heat transfer coefficient of h = 10 W/m2·K, the
resistance between the surface and the environment can be estimated as

 
conv,rad 2

1 1
R K W

2
s 10 W/m K 4 0.40 m

0.05
hA 

  
 

It is clear that these resistances are insufficient, and reliance must be placed on the insulation. A special
insulation of very low thermal conductivity should be selected. The best choice is a highly reflective
foil/glass matted insulation which was developed for cryogenic applications. It follows that

 t,cond,i
i 2 3 3

1 1 1 1 1 1
R 60.7 K W

4 k r r 4 0.000017 W m K 0.40 m r 
    



   
   
   

which yields r3 = 0.4021 m. The minimum insulation thickness is therefore  = (r3 - r2) = 2.1 mm.
COMMENTS: The heat loss could be reduced well below the maximum allowable by adding more
insulation. Also, in view of weight restrictions associated with launching space vehicles, consideration
should be given to fabricating the LOX container from a lighter material.

r1 = 0.395 m

r2 = 0.40 m LOX, Tbp = 90 K, hfg = 213 KJ/kg

r1 = 0.395 m

r2 = 0.40 m LOX, Tbp = 90 K, hfg = 213 KJ/kg



PROBLEM 3.69 
 
KNOWN:  Diameter and surface temperature of a spherical cryoprobe.  Temperature of surrounding 
tissue and effective convection coefficient at interface between frozen and normal tissue. 
 
FIND:  Thickness of frozen tissue layer. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) One-dimensional, steady-state conditions, (2) Negligible contact resistance 
between probe and frozen tissue, (3) Constant properties, (4) Negligible perfusion effects. 
 
ANALYSIS:  Performing an energy balance for a control surface about the phase front, it follows that 
 
 conv condq q 0− =  
Hence, 

 ( )( ) ( ) ( )[ ]
s,2 s,12

2 s,2
1 2
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h 4 r T T
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π∞
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s,2 s,12 2
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1

r r hr 37T T 50 W m K 0.0015 m∞

− ⋅
− = =

− ⋅

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
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⎜ ⎟ ⎢⎜ ⎟ ⎥
⎝ ⎠ ⎝ ⎠⎣ ⎦

 

 
 ( )2 1r r 4.56=  
 
It follows that r2 = 6.84 mm and the thickness of the frozen tissue is 
 

 2 1r r 5.34 mmδ = − =  < 
 



PROBLEM 3.70  
KNOWN:  Inner diameter, wall thickness and thermal conductivity of spherical  vessel containing 
heat generating medium.  Inner surface temperature without insulation.  Thickness and thermal 
conductivity of insulation.  Ambient air temperature and convection coefficient.  
FIND:  (a) Thermal energy generated within vessel, (b) Inner surface temperature of vessel with 
insulation.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state, (2) One-dimensional, radial conduction, (3) Constant properties, 
(4) Negligible contact resistance, (5) Neglect radiation due to relatively low emissivity of stainless 
steel in part (a).  In part (b), insulation resistance dominates.  
ANALYSIS:  (a) From an energy balance performed at an instant for a control surface about the 
pharmaceuticals, gE q,=&  in which case, without the insulation 
 

( )

( ) ( )

s,1
g

222w 1 2 2

T T 50 25 C
E q

1 1 1 11 1 1 1
4 17 W / m K 0.50m 0.51m4 k r r 4 0.51m 6 W / m K4 r h ππ ππ

∞− − °
= = =

− +− +
⋅ ⋅

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

&  

 

 
( )g 4 2

25 CE q 489 W
1.84 10 5.10 10 K / W− −

°
= = =

× + ×
&      < 

(b) With the insulation, 
 

 s,1 2w 1 2 i 2 3 3

1 1 1 1 1 1 1T T q
4 k r r 4 k r r 4 r hπ π π

∞
⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥= + − + − +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

 

 
( ) ( )

4
s,1 2

1 1 1 1 KT 25 C 489 W 1.84 10
4 0.04 0.51 0.53 W4 0.53 6π π

−
⎡ ⎤⎛ ⎞⎢ ⎥= ° + × + − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

 

 4
s,1

KT 25 C 489 W 1.84 10 0.147 0.047 120 C
W

−⎡ ⎤= ° + × + + = °⎢ ⎥⎣ ⎦
   < 

 
COMMENTS:  The thermal resistance associated with the vessel wall is negligible, and without the 
insulation the dominant resistance is due to convection.  The thermal resistance of the insulation is 
approximately three times that due to convection.  Radiation may not be negligible, and would have 
the effect of increasing the heat loss rate (for fixed inner surface temperature) or decreasing the inner 
surface temperature (for fixed heat loss rate).  



PROBLEM 3.71

KNOWN: Spherical tank of 1-m diameter containing an exothermic reaction and is at 200C when

the ambient air is at 25C. Convection coefficient on outer surface is 20 W/m
2
K.

FIND: Determine the thickness of urethane foam required to reduce the exterior temperature to 40C.
Determine the percentage reduction in the heat rate achieved using the insulation.

SCHEMATIC:

TooToT

q

t

RcvR

Ambient air

T = 25 Co
oo

Insulation, k = 0.026 W/m-K

Tank, T = 200 , r = 0.5 mt t
oC

T = 4o 0 Co

h = 20 W/m -K2

t = r - rins o t

r

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional, radial (spherical) conduction
through the insulation, (3) Convection coefficient is the same for bare and insulated exterior surface,
and (4) Negligible radiation exchange between the insulation outer surface and the ambient
surroundings, (5) Negligible contact resistances.

PROPERTIES: Table A-3, urethane, rigid foam (300 K): k = 0.026 W/mK.

ANALYSIS: (a) The heat transfer situation for the heat rate from the tank can be represented by the
thermal circuit shown above. The heat rate from the tank is

t

cd cv

T T
q

R R





where the thermal resistances associated with conduction within the insulation (Eq. 3.41) and
convection for the exterior surface, respectively, are

     t o o o
cd

1/ r 1/ r 1/ 0.5 1/ r 1/ 0.5 1/ r
R K / W

4 k 4 0.026 W / m K 0.3267 

  
  

 

3 2
cv o2 2 2

s o o

1 1 1
R 3.979 10 r K / W

hA 4 hr 4 20 W / m K r 

     
  

To determine the required insulation thickness so that To = 40C, perform an energy balance on the o-
node.

t o o

cd cv

T T T T
0

R R
 

 

 
 

 
3 2

o o

200 40 K 25 40 K
0

1/ 0.5 1/ r / 0.3267 K / W 3.979 10 r K / W

 
 

 

 o o ir 0.5135 m t r r 0.5135 0.5000 m 13.5 mm      <
From the rate equation, for the bare and insulated surfaces, respectively,

 t
o 2

t

200 25 KT T
q 10.99 kW

0.01592 K / W1/ 4 hr

 
  

 
 

t
ins

cd cv

200 25T T
q 0.994 kW

R R 0.161 0.01592 K / W
 

  
 

Hence, the percentage reduction in heat loss achieved with the insulation is,

ins o

o

q q 0.994 10.99
100 100 91%

q 10.99

 
     <

COMMENTS: (1) Contact resistances will reduce the required insulation thickness. (2) Radiation
may be shown to be negligible by considering the case of  = 1.



PROBLEM 3.72

KNOWN: Dimensions and materials used for composite spherical shell. Heat generation
associated with stored material.

FIND: Inner surface temperature, T1, of lead (proposal is flawed if this temperature exceeds

the melting point).

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Steady-state conditions, (3) Constant
properties at 300K, (4) Negligible contact resistance.

PROPERTIES: Table A-1, Lead: k = 35.3 W/mK, MP = 601K; St.St.: 15.1 W/mK.

ANALYSIS: From the thermal circuit, it follows that

31
1

tot

T T 4
q= q r

R 3
  

  
 


Evaluate the thermal resistances,

 Pb
1 1

R 1/ 4 35.3 W/m K 0.00150 K/W
0.25m 0.30m


 

         

 St.St.
1 1

R 1/ 4 15.1 W/m K 0.000567 K/W
0.30m 0.31m


 

         

 2 2 2
convR 1/ 4 0.31 m 500 W/m K 0.00166 K/W     

  

totR 0.00372 K/W.

The heat rate is   35 3q=5 10 W/m 4 / 3 0.25m 32,725 W.  The inner surface

temperature is

 1 totT T R q=283K+0.00372K/W 32,725 W 

1T 405 K < MP = 601K. <
Hence, from the thermal standpoint, the proposal is adequate.

COMMENTS: In fabrication, attention should be given to maintaining a good thermal
contact. A protective outer coating should be applied to prevent long term corrosion of the
stainless steel.



PROBLEM 3.73

KNOWN: Representation of the eye with a contact lens as a composite spherical system subjected to
convection processes at the boundaries.

FIND: (a) Thermal circuits with and without contact lens in place, (b) Heat loss from anterior
chamber for both cases, and (c) Implications of the heat loss calculations.

SCHEMATIC:

r1=10.2mm k1=0.35 W/mK

r2=12.7mm k2=0.80 W/mK

r3=16.5mm

T,i=37C hi=12 W/m
2
K

T,o=21C ho=6 W/m
2
K

ASSUMPTIONS: (1) Steady-state conditions, (2) Eye is represented as 1/3 sphere, (3) Convection

coefficient, ho, unchanged with or without lens present, (4) Negligible contact resistance.

ANALYSIS: (a) Using Eqs. 3.9 and 3.41 to express the resistance terms, the thermal circuits are:

<Without lens:

<With lens:

(b) The heat losses for both cases can be determined as q = (T,i - T,o)/Rt, where Rt is the

thermal resistance from the above circuits.

Without lens:

 
t,wo 2 32 -3

3 3 1 1 1
R m

4 0.35 W/m K 10.2 12.7 1012W/m K4 10.2 10 m





  
 

 

 
  

 
22 -3

3
191.2 K/W+13.2 K/W+246.7 K/W=451.1 K/W

6 W/m K4 12.7 10 m

 

 

With lens: t,w 3

3 1 1 1
R 191.2 K/W+13.2 K/W+ m

4 0.80 W/m K 12.7 16.5 10 
 

 

 
  

 
22 -3

3
191.2 K/W+13.2 K/W+5.41 K/W+146.2 K/W=356.0 K/W

6W/m K4 16.5 10 m

 

 

Hence the heat loss rates from the anterior chamber are

Without lens:  woq 37 21 C/451.1 K/W=35.5mW 
 <

With lens:  wq 37 21 C/356.0 K/W=44.9mW 
 <

(c) The heat loss from the anterior chamber increases by approximately 20% when the contact

lens is in place, implying that the outer radius, r3, is less than the critical radius.



PROBLEM 3.74

KNOWN: Thermal conductivity and inner and outer radii of a hollow sphere subjected to a
uniform heat flux at its outer surface and maintained at a uniform temperature on the inner
surface.

FIND: (a) Expression for radial temperature distribution, (b) Heat flux required to maintain
prescribed surface temperatures.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional radial conduction, (3)
No generation, (4) Constant properties.

ANALYSIS: (a) For the assumptions, the temperature distribution may be obtained by
integrating Fourier’s law, Eq. 3.38. That is,

 
r

r1 s,1 1

r Tr r
s,12r T

q qdr 1
k dT or k T T .

4 4 rr
       

Hence,

  r
s,1

1

q 1 1
T r T

4 k r r

 
   

 

or, with 2
2 r 2q q / 4 r , 

 
2

2 2
s,1

1

q r 1 1
T r T

k r r

  
   

 
<

(b) Applying the above result at r2,

   

 

s,2 s,1 2
2

22
2

2 1

k T T 10 W/m K 50 20 C
q 3000 W/m .

1 1 11 1 0.1mr
0.1 0.05 mr r

  
    

   
     



<

COMMENTS: (1) The desired temperature distribution could also be obtained by solving
the appropriate form of the heat equation,

2d dT
r 0

dr dr

 
 

 

and applying the boundary conditions  
2

1 s,1 2
r

dT
T r T and k q .

dr


  

(2) The negative sign on q2 implies heat transfer in the negative r direction.



PROBLEM 3.75

KNOWN: Volumetric heat generation occurring within the cavity of a spherical shell of
prescribed dimensions. Convection conditions at outer surface.

FIND: Expression for steady-state temperature distribution in shell.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional radial conduction, (2) Steady-state conditions, (3)
Constant properties, (4) Uniform generation within the shell cavity, (5) Negligible radiation.

ANALYSIS: For the prescribed conditions, the appropriate form of the heat equation is

2d dT
r 0

dr dr

 
  

Integrate twice to obtain,

2 1
1 2

dT C
r C and T C .

dr r
    (1,2)

The boundary conditions may be obtained from energy balances at the inner and outer

surfaces. At the inner surface (ri),

    i i

3 2
g cond,i r ii i r

E q 4/3 r q k 4 r dT/dr) dT/dr qr / 3k.         (3)

At the outer surface (ro),

 o
2 2

cond,o o r conv o oq k4 r dT/dr) q h4 r T r T        

   
o

or
dT/dr h/k T r T .     (4)

From Eqs. (1) and (3), 3
1 iC qr / 3k.   From Eqs. (1), (2) and (4)

3 3
i i

22
oo

3 3
i i

2 2 oo

qr qrh
C T

k 3r k3kr

qr qr
C T .

3r k3hr





 
           

 

  

 

 

Hence, the temperature distribution is
3 3
i i

2o o

qr qr1 1
T= T .

3k r r 3hr


 
   

 

 
<

COMMENTS: Note that  .E q q qg cond,i cond,o conv  



PROBLEM 3.76

KNOWN: Spherical tank of 3-m diameter containing LP gas at -60C with 250 mm thickness of
insulation having thermal conductivity of 0.06 W/mK. Ambient air temperature and convection

coefficient on the outer surface are 20C and 6 W/m
2
K, respectively.

FIND: (a) Determine the radial position in the insulation at which the temperature is 0C and (b) If
the insulation is pervious to moisture, what conclusions can be reached about ice formation? What
effect will ice formation have on the heat gain? How can this situation be avoided?

SCHEMATIC:

TooToT

q

t

RcvR

Ambient air

T = 20 Co
oo

Insulation, k = 0.06 W/m-K

Tank, T = -6 , r = 1.5 mt i0 Co

T (r ) =oo oo
o0 C

h = 6 W/m -K2

t = 250 mmins

ri

ro
r

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional, radial (spherical) conduction
through the insulation, and (3) Negligible radiation exchange between the insulation outer surface and
the ambient surroundings, (4) Inner surface of insulation at Tt.

ANALYSIS: (a) The heat transfer situation can be represented by the thermal circuit shown above.
The heat gain to the tank is

 

 
t

3ins cv

20 60 KT T
q 612.4 W

R R 0.1263 4.33 10 K / W




      
  

where the thermal resistances for the insulation (see Table 3.3) and the convection process on the
outer surface are, respectively,

  1
i o

ins
1/1.50 1/1.75 m1/ r 1/ r

R 0.1263 K / W
4 k 4 0.06 W / m K 


  

 

 
3

cv 2 22s o

1 1 1
R 4.33 10 K / W

hA h4 r 6 W / m K 4 1.75 m 

    
 

To determine the location within the insulation where Too (roo) = 0C, use the conduction rate
equation, Eq. 3.41,

 
 

 
1

oo t oo t
oo

i oo i

4 k T T 4 k T T1
q r

1/ r 1/ r r q

 


  
   

  
and substituting numerical values, find

  
1

oo
4 0.06 W / m K 0 60 K1

r 1.687 m
1.5 m 612.4 W




    
   
  

<

(b) With roo = 1.687 m, we’d expect the region of the insulation ri  r  roo to be filled with ice
formations if the insulation is pervious to water vapor. The effect of the ice formation is to

substantially increase the heat gain since kice is nearly twice that of kins, and the ice region is of
thickness (1.687 – 1.50)m = 187 mm. To avoid ice formation, a vapor barrier should be installed at a

radius larger than roo.



PROBLEM 3.77

KNOWN: Radius and heat dissipation of a hemispherical source embedded in a substrate of
prescribed thermal conductivity. Source and substrate boundary conditions.

FIND: Substrate temperature distribution and surface temperature of heat source.

SCHEMATIC:

ASSUMPTIONS: (1) Top surface is adiabatic. Hence, hemispherical source in semi-infinite
medium is equivalent to spherical source in infinite medium (with q = 8 W) and heat transfer
is one-dimensional in the radial direction, (2) Steady-state conditions, (3) Constant properties,
(4) No generation.

ANALYSIS: Heat equation reduces to

 

2 2
12

1 2

1 d dT
r 0 r dT/dr=C

dr drr
T r C / r+C .

 
 

 
 

Boundary conditions:

   o sT T T r T  

Hence, C2 = T and

 s 1 o 1 o sT C / r T and C r T T .     

The temperature distribution has the form

   s oT r T T T r / r    <

and the heat rate is

   2 2
s o o sq=-kAdT/dr k2 r T T r / r k2 r T T  

        

It follows that

 
s -4o

q 4 W
T T 50.9 C

k2 r 125 W/m K 2 10 m 
   





sT 77.9 C.  <

COMMENTS: For the semi-infinite (or infinite) medium approximation to be valid, the
substrate dimensions must be much larger than those of the transistor.



PROBLEM 3.78 
 
KNOWN:  Critical and normal tissue temperatures.  Radius of spherical heat source and radius of tissue 
to be maintained above the critical temperature.  Tissue thermal conductivity. 
 
FIND:  General expression for radial temperature distribution in tissue.  Heat rate required to maintain 
prescribed thermal conditions. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) One-dimensional, steady-state conduction, (2) Constant k, (3) Negligible contact 
resistance. 
 
ANALYSIS:  The appropriate form of the heat equation is 
 

 2
1 d dTr 0

dr drr
⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

 
Integrating twice, 
 

 1
2

dT C
dr r

=  

 

 ( ) 1
2

CT r C
r

= − +  
 

Since T → Tb as r → ∞, C2 = Tb.  At r = ro, q = ( ) o
2
o rk 4 r dT drπ−  = 2 2

o 1 o4 kr C rπ−  = -4πkC1.  

Hence, C1 = -q/4πk and the temperature distribution is 
 

 ( ) b
qT r T

4 krπ
= +  < 

 
It follows that 
 
 ( ) bq 4 kr T r Tπ ⎡ ⎤= −⎣ ⎦  
 
Applying this result at r = rc,  

 ( )( )( )q 4 0.5W m K 0.005m 42 37 C 0.157 Wπ= ⋅ − =o  < 
 
COMMENTS:  At ro = 0.0005 m, T(ro) = ( )o bq 4 kr Tπ⎡ ⎤ +⎣ ⎦  = 87°C.  Proximity of this temperature to 

the boiling point of water suggests the need to operate at a lower power dissipation level. 



PROBLEM 3.79

KNOWN: Wall of thermal conductivity k and thickness L with uniform generation q ; strip heater

with uniform heat flux oq ; prescribed inside and outside air conditions (hi, T,i, ho, T,o).

FIND: (a) Sketch temperature distribution in wall if none of the heat generated within the wall is lost
to the outside air, (b) Temperatures at the wall boundaries T(0) and T(L) for the prescribed condition,
(c) Value of qo required to maintain this condition, (d) Temperature of the outer surface, T(L), if

oq=0 but q corresponds to the value calculated in (c).

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Uniform
volumetric generation, (4) Constant properties.

ANALYSIS: (a) If none of the heat generated within the wall is
lost to the outside of the chamber, the gradient at x = 0 must be zero.
Since q is uniform, the temperature distribution is parabolic, with

T(L) > T,i.

(b) To find temperatures at the boundaries of wall, begin with the
general solution to the appropriate form of the heat equation (Eq.3.40).

  2
1 2

q
T x x C x+C

2k
  


(1)

From the first boundary condition,

x=o 1
dT

0 C 0.
dx

   (2)

Two approaches are possible using different forms for the second boundary condition.

Approach No. 1: With boundary condition   1T 0 T 

  2
1

q
T x x T

2k
  


(3)

To find T1, perform an overall energy balance on the wall

in out gE E E 0    

   ,i 2 ,i
qL

h T L T qL=0 T L T T
h

        


 (4)

Continued …



PROBLEM 3.79 (Cont.)

and from Eq. (3) with x = L and T(L) = T2,

 
2

2 2
1 1 2 ,i

q q qL qL
T L L T or T T L T

2k 2k h 2k
       

   
(5,6)

Substituting numerical values into Eqs. (4) and (6), find

3 2
2T 50 C+1000 W/m 0.200 m/20 W/m K=50 C+10 C=60 C      <

 23
1T 60 C+1000 W/m 0.200 m / 2 4 W/m K=65 C.     <

Approach No. 2: Using the boundary condition

 x=L ,i
dT

k h T L T
dx

    

yields the following temperature distribution which can be evaluated at x = 0,L for the required
temperatures,

   2 2
,i

q qL
T x x L T .

2k h
    

 

(c) The value of oq when T(0) = T1 = 65C

follows from the circuit

1 ,o
o

o

T T
q

1/ h


 

 2 2
oq 5 W/m K 65-25 C=200 W/m .  

 <

(d) With q=0, the situation is represented

by the thermal circuit shown. Hence,

o a bq q q   

1 ,o 1 ,i
o

o i

T T T T
q

1/ h L/k+1/h

  
  

which yields

1T 55 C.  <



PROBLEM 3.80

KNOWN: Cylindrical and spherical shells with uniform heat generation and surface temperatures.

FIND: Radial distributions of temperature, heat flux and heat rate.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional, steady-state conduction, (2) Uniform heat generation, (3)
Constant k.

ANALYSIS: (a) For the cylindrical shell, the appropriate form of the heat equation is

1 d dT q
r 0

r dr dr k
 

 
 
 



The general solution is

  2
1 2

q
T r r C ln r C

4k
   



Applying the boundary conditions, it follows that

  2
1 s,1 1 1 1 2

q
T r T r C ln r C

4k
    



  2
2 s,2 2 1 2 2

q
T r T r C ln r C

4k
    



which may be solved for

      2 2
1 2 1 s,2 s,1 2 1C q/4k r r T T ln r /r    

  


  2
2 s,2 2 1 2C T q 4k r C ln r  

Hence,

           
 

2 2 2 2 2
s,2 2 2 1 s,2 s,1

2 1

ln r/r
T r T q 4k r r q 4k r r T T

ln r /r
       

  
  <

With q k dT/dr   , the heat flux distribution is

 
    

 

2 2
2 1 s,2 s,1

2 1

k q 4k r r T T
q

q r r
2 r ln r /r

  
  

 
  


 <

Continued...



PROBLEM 3.80 (Cont.)

Similarly, with q = qA(r) = q (2rL), the heat rate distribution is

 
    

 

2 2
2 1 s,2 s,12

2 1

2 Lk q 4k r r T T
q r Lqr

ln r /r




  
 

 
  


 <

(b) For the spherical shell, the heat equation and general solution are

2
2

1 d dT q
r 0

dr dr kr
 

 
 
 



  2
1 2T(r) q 6k r C /r C   

Applying the boundary conditions, it follows that

    2
1 s,1 1 1 1 2T r T q 6k r C /r C    

    2
2 s,2 2 1 2 2T r T q 6k r C /r C    

Hence,

         2 2
1 2 1 s,2 s,1 1 2C q 6k r r T T 1 r 1 r     

  


  2
2 s,2 2 1 2C T q 6k r C /r  

and

             
   

2 2 2 2 2
s,2 2 2 1 s,2 s,1

1 2

1 r 1 r
T r T q 6k r r q 6k r r T T

1 r 1 r


      


 
  

  <

With q (r) = - k dT/dr, the heat flux distribution is

 
    

   

2 2
2 1 s,2 s,1

2
1 2

q 6 r r k T T
q 1

q r r
3 1 r 1 r r

  
  



 
  


 <

and, with q =  2q 4 r , the heat rate distribution is

 
    

   

2 2
2 1 s,2 s,13

1 2

4 q 6 r r k T T
4 q

q r r
3 1 r 1 r




  
 



 
  


 <



PROBLEM 3.81

KNOWN: Plane wall with internal heat generation which is insulated at the inner surface and
subjected to a convection process at the outer surface.

FIND: Maximum temperature in the wall.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction with uniform
volumetric heat generation, (3) Inner surface is adiabatic.

ANALYSIS: The temperature at the inner surface is given by Eq. 3.48 and is the maximum
temperature within the wall,

2
o sT qL / 2k+T . 

The outer surface temperature follows from Eq. 3.51,

s
6 2

s 3

T T qL/h
W

T 92 C+0.3 10 0.1m/500W/m K=92 C+60 C=152 C.
m

 

      



It follows that

 26 3
oT 0.3 10 W/m 0.1m / 2 25W/m K+152 C     

oT 60 C+152 C=212 C.    <

COMMENTS: The heat flux leaving the wall can be determined from knowledge of h, Ts

and T using Newton’s law of cooling.

   2 2
conv sq h T T 500W/m K 152 92 C=30kW/m .     



This same result can be determined from an energy balance on the entire wall, which has the
form

g outE E 0  

where

g out convE qAL and E q A.   

Hence,
6 3 2

convq qL=0.3 10 W/m 0.1m=30kW/m .   



PROBLEM 3.82

KNOWN: Diameter, thermal conductivity and microbial energy generation rate in cylindrical hay
bales. Ambient conditions.

FIND: The maximum hay temperature for q = 1, 10, and 100 W/m3.

SCHEMATIC:

D = 2 m

Air
T = 0°C, h = 25 W/m2·K

q = 1, 10 or 100 W/m3
.

r

Ts

k = 0.04 W/m∙K

ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) One-dimensional heat
transfer (4) Uniform volumetric generation, (5) Negligible radiation, (6) Negligible conduction to or
from the ground.

PROPERTIES: k = 0.04 W/mK (given).

ANALYSIS: The surface temperature of the dry hay is (Eq. 3.60)

3

2

1W/m 1m
0 C+ 0.02 C

2 2 25W/m K
o

s
qr

T T
h




     
 

 <

whereas Ts = 0.2C and 2.0C for the moist and wet hay, respectively. <

The maximum hay temperature occurs at the centerline, r = 0. From Eq. 3.58, for the dry hay,

2 3 2

max
1W/m (1m)

0.02 C 6.27 C
4 4 0.04 W/m K

o
s

qr
T T

k


      

 

 <

whereas Tmax = 62.7C and 627C for the moist and wet hay, respectively. <

COMMENTS: (1) The hay begins to lose its nutritional value at temperatures exceeding 50C.
Therefore the center of the moist hay bale will lose some of its nutritional value. (2) The center of the
wet hay bale can experience very high temperatures without combusting due to lack of oxygen internal
to the hay bale. However, when the farmer breaks the bale apart for feeding, oxygen is suddenly
supplied to the hot hay and combustion may occur. (3) The outer surface of the hay bale differs by
only 2C from the dry to the wet condition, while the centerline temperature differs by over 600
degrees. The farmer cannot anticipate the potential for starting a fire by touching the outer surface of
the hay bale. (4) See Opuku, Tabil, Crerar and Shaw, “Thermal Conductivity and Thermal Diffusivity
of Timothy Hay,” Canadian Biosystems Engineering, Vol. 48, pp. 3.1 - 3.6, 2006 for hay property
information.



PROBLEM 3.83

KNOWN: Diameter, thermal conductivity and microbial energy generation rate in cylindrical hay
bales. Thin-walled tube diameter and insertion location. Temperature of flowing water and convective
heat transfer coefficient inside the tube. Ambient conditions.

FIND: (a) Steady-state heat transfer to the water per unit length of tube, (b) Plot of the radial
temperature distribution, T(r), in the hay (c) Plot of the heat transfer to the water per unit length of

tube for bale diameters of 0.2 m  D  2 m for q = 100 W/m3.

SCHEMATIC:

D =2r2 = 2 m

Air
T,o = 0°C, ho = 25 W/m2·K

q = 100 W/m3
.

r

Ts,2

2r1 = 30 mm

Ts,1

T,i = 20°C, hi = 200 W/m2·K

ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) One-dimensional heat
transfer (4) Uniform volumetric generation, (5) Negligible radiation, (6) Negligible conduction to or
from the ground.

PROPERTIES: k = 0.04 W/mK (given).

ANALYSIS: (a) The temperature distribution is found by utilizing the general solution given by
Eq. 3.56 with mixed boundary conditions applied at r1 and r2. Specifically,

at r1:
1

, ,1i i s
r r

dT
k h T T

dr




   
 

at r2:
2

,2 ,o s o
r r

dT
k h T T

dr




    

The solutions are given by Eqs. C.16, C.17, and C.2.

From Eq. C.16,

 

2
, , ,1

2 2
2 1

,2 ,12
2

1 2 1

3 2

3 -3

( ) 200 W/m K (20 C T )

1
4

=
2 ln( / )

100W/m (1m)
0.04W/m K 1

4 0.04W/m K100W/m 15 10 m
=

2

i i s s,1

s s

1

h T T

qr r
k T T

k rqr

r r r

       

  
     

   

 
  







 
3 2

,2 ,12

3

(15 10 m)

(1m)

15 10 m ln(1000 /15)

s sT T




  
    

   

 

(1)

Continued…



PROBLEM 3.83 (Cont.)

From Eq. C.17,

 

2
, ,2 , ,2

2 2
2 1

,2 ,12
22

2 1

3 2 3

3

( ) 25 W/m K ( 0 )

1
4

=
2 2ln( / )

100W/m (1m) (15 10
0.04W/m K 1

4 0.04W/m K100W/m 1m
=

2

o s o s

s s

h T T T C

qr r
k T T

k rqr

r r r

 



     

  
     

   


 

 






 
2

,2 ,12

m)

(1m)

1m ln(1000 /15)

s sT T
  

    
   



(2)

Equations (1) and (2) may be solved simultaneously to yield Ts,1 = 21.54C, Ts,2 = 1.75C. The heat
transfer to the cold fluid per unit length is

2 3
, ,' (2 )( ) 200W / m K 2 15 10 m (21.54 20) 38.7W/mi i s i iq h r T T C  

            <

(b) The radial temperature distribution is evaluated from Eq. C.2 and is shown below.

 

 

2 2 2 2
2 2 1 2

,2 ,2 ,12 2
2 12 2

3 2 2 3 2 3 2

2 2

ln( / )
( ) 1 1

4 4 ln( / )

100W/m (1m) 100W/m (1m) (15 10 m)
= 1.75 C 1 1

4 0.04W/m K 4 0.04W/m K (1m)1m

s s s
qr r qr r r r

T r T T T
k k r rr r

r 

    
             

     

     
               

 

 

3

1.75 C 21.54 C

ln(1m / )

ln(1m /15 10 m)

r


 
   

  




r (m)
10.90.80.70.60.50.40.30.20.10

T
(C

)

400

300

200

100

0

Continued…



PROBLEM 3.83 (Cont.)

Note that the maximum temperature occurs at r  0.35 m.

(c) The rate of heat transfer to the cool fluid, per unit length, is shown versus the bale diameter in the
plot below.

Note that at very small bale diameters, the heat transfer to the inner tube will become negative. That is,
the energy generation in the bale is not sufficient to offset conduction losses from the relatively warm
tube liquid to the relatively cold outside air.

COMMENTS: (1) The energy generated in the bale per unit length is

 2' 2 2 3 2
2 1( ) 100W/m (1m 0.015m ) 314 W/m.gE q r r           Hence, the heat transfer to the

inner tube represents (38.7/314)100 = 12.3% of the total generated. The remaining 87.6% is lost to
the ambient air. (2) The performance could be improved by inserting more tubes, or by stacking the
bales in adjacent rows so that heat losses from the exterior surface would be minimized. (3) Evaluation
of the two constants appearing in the analytical solution (Eq. 3.56) using the two mixed boundary
conditions is very tedious, resulting in a cumbersome expression. Utilization of the results of
Appendix C saves considerable time.

Bale diameter (m)
10.80.60.40.2

In
n
e
r

tu
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e
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a
n
s
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r
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m
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PROBLEM 3.84 
 
KNOWN:  Composite wall with outer surfaces exposed to convection process. 
 
FIND:  (a) Volumetric heat generation and thermal conductivity for material B required for special 
conditions, (b) Plot of temperature distribution, (c) T1 and T2, as well as temperature distributions 
corresponding to loss of coolant condition where h = 0 on surface A. 
 
SCHEMATIC: 

 

 
LA = 30 mm 
LB = 30 mm 
LC = 20 mm 
kA = 25 W/m⋅K 
kC = 50 W/m⋅K

ASSUMPTIONS:  (1) Steady-state, one-dimensional heat transfer, (2) Negligible contact resistance at 
interfaces, (3) Uniform generation in B; zero in A and C. 
 
ANALYSIS:  (a) From an energy balance on wall B, 
 
 in out g stE E E E− + =& & & &  
 
 1 2 Bq q 2qL 0′′ ′′− − + =&  
 
 ( )B 1 2 Bq q q 2L′′ ′′= +& .            (1)  
To determine the heat fluxes, ′′q1  and ′′q2 , construct thermal circuits for A and C: 
 

 
 

( ) ( )1 1 A Aq T T 1 h L k∞′′ = − +  ( ) ( )2 2 C Cq T T L k 1 h∞′′ = − +  

( )1 2
1 0.030 m

q 261 25 C
25 W m K1000 W m K

′′ = − +
⋅⋅

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

o     ( )2 2
0.020 m 1

q 211 25 C
50 W m K 1000 W m K

′′ = − +
⋅ ⋅

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

o  

( ) 2
1q 236 C 0.001 0.0012 m K W′′ = + ⋅o  ( ) 2

2q 186 C 0.0004 0.001 m K W′′ = + ⋅o  
2

1q 107, 273 W m′′ =  2
2q 132,857 W m′′ =  

 
Using the values for 1q′′  and 2q′′  in Eq. (1), find 

 ( )2 6 3
Bq 106,818 132,143 W m 2 0.030 m 4.00 10 W m= + × = ×& . < 

 
To determine kB, use the general form of the temperature (Eq. 3.40) and heat flux distributions in wall B, 
 

 2B B
1 2 x B 1

B B

q q
T(x) x C x C q (x) k x C

2k k
′′= − + + = − − +

⎡ ⎤
⎢ ⎥
⎣ ⎦

& &
 (2,3) 

 
there are 3 unknowns, C1, C2 and kB, which can be evaluated using three conditions, 

Continued... 



 
PROBLEM 3.84 (Cont.) 

 

 ( ) ( )2B
B 1 B 1 B 2

B

q
T L T L C L C

2k
− = = − − − +

&
 where T1 = 261°C (4) 

 

 ( ) ( )2B
B 2 B 1 B 2

B

q
T L T L C L C

2k
+ = = − + + +

&
 where T2 = 211°C (5) 

 

 ( ) ( )B
x B 1 B B 1

B

q
q L q k L C

k
′′ ′′− = − = − − − +

⎡ ⎤
⎢ ⎥⎣ ⎦

&
 where 1q′′  = 107,273 W/m2 (6) 

 
Using IHT to solve Eqs. (4), (5) and (6) simultaneously with Bq&  = 4.00 × 106 W/m3, find 

 Bk 15.3 W m K= ⋅  < 
 
(b) Following the method of analysis in the IHT Example 3.6, User-Defined Functions, the temperature 
distribution is shown in the plot below.  The important features are (1) Distribution is quadratic in B, but 
non-symmetrical; linear in A and C; (2) Because thermal conductivities of the materials are different, 
discontinuities exist at each interface; (3) By comparison of gradients at x = -LB and +LB, find 2q′′  > 1q′′ . 
 
(c) Using the same method of analysis as for Part (c), the temperature distribution is shown in the plot 
below when h = 0 on the surface of A.  Since the left boundary is adiabatic, material A will be isothermal 
at T1.  Find 

 T1 = 835°C            T2 = 360°C < 
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PROBLEM 3.85

KNOWN: Dimensions and properties of a composite wall exposed to convective or insulated
conditions.

FIND: (a) Maximum wall temperature for left face insulated and right face convectively cooled,
(b) Sketch the steady-state temperature distribution of part (a), (c) Sketch the steady-state
temperature distribution with reversed boundary conditions.

SCHEMATIC:

A B C

LA LCLB

x

TS

T∞ = 20°C

h = 10 W/m2•K

LA = 20 mm

LB = 13 mm

LC = 20 mm

kA = 0.24 W/m•K

kB = 0.13 W/m•K

kC = 0.50 W/m•K

Case 1:

Case 2:

qA = 5000 W/m3; qB = qC = 0

qA = qB = 0; qC = 5000 W/m3

.

. .

. .

.

A B C

LA LCLB

x

TS

T∞ = 20°C

h = 10 W/m2•K

LA = 20 mm

LB = 13 mm

LC = 20 mm

kA = 0.24 W/m•K

kB = 0.13 W/m•K

kC = 0.50 W/m•K

Case 1:

Case 2:

qA = 5000 W/m3; qB = qC = 0

qA = qB = 0; qC = 5000 W/m3

.

. .

. .

.

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional heat transfer, (3) Uniform
volumetric energy generation.

ANALYSIS:
(a) The heat flux through materials B and C is constant and is

3 2
A Aq = q (L ) = 5000 W/m × 0.02 m = 100 W/m 

The thermal resistance network that spans from x = LA to the coolant is

The thermal resistances are:
2

t,cR = 0.01m K/w 

2
B

t,cond,B
B

L 0.013 m m K
R = = = 0.1

k 0.13 W/m K W






2
C

t,cond,C
C

L 0.020 m m K
R = = = 0.04

k 0.50 W/m K W






Continued…

T∞
TS

TB(x = LA + LB)

TB (x = LA)

TA (x = LA)

t,cR t,cond,BR t,cond,CRt,cR t,convR

q

TC(x = LA + LB)

T∞
TS

TB(x = LA + LB)

TB (x = LA)

TA (x = LA)

t,cR t,cond,BR t,cond,CRt,cR t,convR

q

TC(x = LA + LB)



PROBLEM 3.85 (Cont.)

2

t,conv 2

1 1 m K
R = = = 0.1

h W10 W/m K






The total thermal resistance is
2

t,tot
m K

R = (0.01 + 0.1 + 0.01 + 0.04 + 0.1) = 0.26
W




Therefore,
2

2
A A t,tot

m K
T (x=L ) = q (R ) + T = 100 W/m × 0.26 + 20°C = 46°C

W



 

The maximum temperature occurs at x = 0 and may be evaluated by using Eq. 3.48 as follows

2 3 2
A A

A A A
A

q L 5000 W/m × (0.02 m)
T (x=0) = T (x=L ) + = 46°C +

2k 2 × 0.24 W/m K



TA(x=0) = Tmax = 50.2°C <

(b) To sketch the temperature distribution, we begin by evaluating the temperatures shown in the
thermal resistance network. Working from the coolant side,

2 2
s t,convT = T + q (R ) = 20°C + 100 W/m × 0.1 m K/W = 30°C   

2 2
C A B s t,cond,CT (x = L + L ) = T + q (R ) = 30°C + 100 W/m × 0.04 m K/W = 34°C  

2
2

B A B C A B t,c
m K

T (x = L + L ) = T (x = L + L ) + q (R ) = 34°C + 100 W/m × 0.01 = 35°C
W


 

2 2
B A B A B t,cond,BT (x = L ) = T (x = L + L ) + q (R ) = 35°C + 100 W/m × 0.1 m K/W = 45°C  

and from part (a), TA(x = LA) = 46°C. The temperature distribution is sketched below.

(c) For case 2, the heat flux in the range 0 ≤ x ≤ LA + LB is zero. Hence the boundary at x = LA +
LB acts as an insulated surface for material C. Therefore, from Eq. 3.43,

2 3 2
C

max c A B s
C

qL 5000 W/m × (0.02m)
T =T (x = L + L ) = T + = 30°C + = 32°C

2k 2 × 0.50 W/m K



The temperature distribution is sketched below.

Continued…



PROBLEM 3.85 (Cont.)

Wall Temperature Distribution

0 0.01 0.02 0.03 0.04 0.05 0.06

x (m)

25

30

35

40

45

50

55

T
(C

)

Case 1 temperature distribution.

Wall Temperture Distribution

0 0.01 0.02 0.03 0.04 0.05 0.06

x (m)

28

29

30

31

32

33

34

T
(C

)

Case 2 temperature distribution.

COMMENTS: If the heat flux due to conduction in the x-direction is zero, the temperature
gradient, dT/dx, must be zero. This is a direct consequence of Fourier’s law, and holds under all
conditions.



PROBLEM 3.86

KNOWN: Diameter, resistivity, thermal conductivity, emissivity, voltage, and maximum temperature
of heater wire. Convection coefficient and air exit temperature. Temperature of surroundings.

FIND: Maximum operating current, heater length and power rating.

SCHEMATIC:

T = 50 Co
oo

h = 250 W/m -K2

T =o Tmax

Nichrome wire
D = 1 mm, L

I

= 10 -me
-6 

k = 25 W/m-K
= 0.20

T = 1200 Cmax
o

Air

V = 110 V T 1200 Cs
o

Tsur = 50 Co

ASSUMPTIONS: (1) Steady-state, (2) Uniform wire temperature, (3) Constant properties, (4)
Radiation exchange with large surroundings.

ANALYSIS: Assuming a uniform wire temperature, Tmax = T(r = 0)  To  Ts, the maximum
volumetric heat generation may be obtained from Eq. (3.60), but with the total heat transfer

coefficient, ht = h + hr, used in lieu of the convection coefficient h. With

      
2

2 2 8 2 4 2 2 2
r s sur s surh T T T T 0.20 5.67 10 W / m K 1473 323 K 1473 323 K 46.3 W / m K


          

  2 2
th 250 46.3 W / m K 296.3W / m K    

 
 

 
2

9 3t
max s

o

2 296.3W / m K2h
q T T 1150 C 1.36 10 W / m

r 0.0005m



     

Hence, with
 

 

22 2 2
e ce e e

2 22c c

I L / AI R I I
q

LA A D / 4

  



   




 
1/ 21/ 2 22 9 3

max
max 6e

0.001mq D 1.36 10 W / m
I 29.0A

4 410 m



 

   
         

 <

Also, with E = I Re = I (eL/Ac),

 

 

2

c
6max e

110 V 0.001m / 4
E A

L 2.98m
I 29.0 A 10 m



 

 
      


<

and the power rating is

 elec maxP E I 110V 29A 3190 W 3.19kW      <

COMMENTS: To assess the validity of assuming a uniform wire temperature, Eq. (3.58) may be

used to compute the centerline temperature corresponding to maxq and a surface temperature of

1200C. It follows that
 

 

9 32 2
o

o s
1.36 10 W / m 0.0005mq r

T T 1200 C 1203 C.
4 k 4 25 W / m K


      




With only a

3C temperature difference between the centerline and surface of the wire, the assumption is
excellent.



PROBLEM 3.87

KNOWN: Composite wall of materials A and B. Wall of material A has uniform generation, while
wall B has no generation. The inner wall of material A is insulated, while the outer surface of
material B experiences convection cooling. Thermal contact resistance between the materials is

4 2
t,cR 10 m K / W

   . See Example 3.7 that considers the case without contact resistance.

FIND: Compute and plot the temperature distribution in the composite wall.

SCHEMATIC:

cond,BR”q (L ) =x A LA” qA
.

convR”t,cR”

T1A T1B T2 Too

t,cR” = 10 m -K/W-4 2

kBkA

T1A T1B

q = 0
k = 150 W/m-K

B

B

.
q = 1.5x10 W/m
k = 75 W/m-K

A
6 3

A

. A B

L = 50 mmA

Insulation

x
L = 20 mmB

T = 30 Co
oo

T0 T2

h = 1000 W/m -K2

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction with constant
properties, and (3) Inner surface of material A is adiabatic.

ANALYSIS: From the analysis of Example 3.8, we know the temperature distribution in material A
is parabolic with zero slope at the inner boundary, and that the distribution in material B is linear. At
the interface between the two materials, x = LA, the temperature distribution will show a
discontinuity.

 
2 2
A

A 1A A2
A A

q L x
T x 1 T 0 x L

2 k L
    

 
 
 
 



    A
B 1B 1B 2 A A B

B

x L
T x T T T L x L L

L


    

Considering the thermal circuit above (see also Example 3.8) including the thermal contact resistance,

1A 1B 2
A

tot cond,B conv conv

T T T T T T
q q L

R R R R

    
    

   


find TA(0) = 147.5C, T1A = 122.5C, T1B = 115C, and T2 = 105C. Using the foregoing equations
in IHT, the temperature distributions for each of the materials can be calculated and are plotted on the
graph below.

COMMENTS: (1) The effect of the thermal contact resistance between the materials is to increase
the maximum temperature of the system.

(2) Can you explain why the temperature distribution in the material B is not affected by the presence
of the thermal contact resistance at the materials’ interface?

Effect of thermal contact resistance on temperature distribution

0 10 20 30 40 50 60 70

x (mm)

100

110

120

130

140

150

T
(C

)



PROBLEM 3.88

KNOWN: One dimensional plane wall with uniform thermal energy generation and cold surface
temperature Ts,1.

FIND: (a) Expression for the heat flux to the cold wall and hot surface temperature, (b) Comparison
of the heat flux of part (a) with that associated with a plane wall with no energy generation and wall
temperatures of Ts,1 and Ts,2.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) One-dimensional heat
transfer, (4) Uniform volumetric generation.

ANALYSIS: From Eq. (3.46) and the discussion beneath Eq. (3.49) the temperature distribution is

2 2

,12
( ) 1

2
s

qL x
T x T

k L

 
    

 


(1)

(a) Equation (1) may be used to find an expression for the temperature gradient

2

2

d ( ) 2

d 2

T x qL x qx

x k kL

 
    

 

 

Therefore, the heat flux at the cold (x = L) surface is

"( )
x L

dT
q x L k qL

dx 

     <

The temperature of the hot surface may be found from Eq. (1) and is

2

,2 ,1( 0)
2

s s
qL

T T x T
k

   
 <

(b) For the plane wall without energy generation, and with surface temperatures Ts,1 and Ts,2,

 
2

,1 ,1,2 ,1 12" "( )
2 2

s ss s

qL
T TT T qLkq k k q x L

L L

 
  

     
 
 
 


 <

Hence, the heat flux with uniform thermal energy generation is twice that which would be calculated
for a plane wall without energy generation based upon the difference between the actual hot and cold
surface temperatures.

Ts,1

x

L

Ts,2

q
.

Ts,1

x

L

Ts,2

q
.



PROBLEM 3.89

KNOWN: Plane wall of thickness 2L, thermal conductivity k with uniform energy generation q.

For case 1, boundary at x = -L is perfectly insulated, while boundary at x = +L is maintained at To =

50C. For case 2, the boundary conditions are the same, but a thin dielectric strip with thermal

resistance 2
tR 0.0005 m K / W   is inserted at the mid-plane.

FIND: (a) Sketch the temperature distribution for case 1 on T-x coordinates and describe key
features; identify and calculate the maximum temperature in the wall, (b) Sketch the temperature
distribution for case 2 on the same T-x coordinates and describe the key features; (c) What is the
temperature difference between the two walls at x = 0 for case 2? And (d) What is the location of the
maximum temperature of the composite wall in case 2; calculate this temperature.

SCHEMATIC:

To q = 5x10 W/m6 3
.

T = 50o
oC

R” = 0.0005 m -K/W2
t

BA

-L x +L

q,k
.

q,k
.

L = 20 mm

k = 50 W/m-K

-L x +L

q,k
.

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in the plane and
composite walls, and (3) Constant properties.

ANALYSIS: (a) For case 1, the temperature distribution, T1(x) vs. x, is parabolic as shown in the
schematic below and the gradient is zero at the insulated boundary, x = -L. From Eq. 3.48 (see
discussion after Eq. 3.49),

   
   2 26 3

1 1
q 2L 5 10 W / m 2 0.020 m

T L T L 80 C
2k 2 50 W / m K

 
      

 



and since T1(+L) = To = 50C, the maximum temperature occurs at x = -L,

   1 1T L T L 80 C 130 C      

(b) For case 2, the temperature distribution, T2(x) vs. x, is piece-wise parabolic, with zero gradient at

x = -L and a drop across the dielectric strip, TAB. The temperature gradients at either side of the
dielectric strip are equal.

kk

q (0)x”

TAB

x = 0

A

Part (d) Surface energy balance

T(x)

0
x

-L +L

T (0)1

T (0)2

To

T (x)1

T (x)2

TAB

Parts (a,b)
Temperature distributions

(c) For case 2, the temperature drop across the thin dielectric strip follows from the surface energy
balance shown above.

   x AB t xq 0 T / R q 0 qL     

2 6 3
AB tT R qL 0.0005 m K / W 5 10 W / m 0.020 m 50 C.        

(d) For case 2, the maximum temperature in the composite wall occurs at x = -L, with the value,

   2 1 ABT L T L T 130 C 50 C 180 C           <



PROBLEM 3.90

KNOWN: Geometry and boundary conditions of a nuclear fuel element.

FIND: (a) Expression for the temperature distribution in the fuel, (b) Form of temperature
distribution for the entire system.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional heat transfer, (2) Steady-state conditions, (3)
Uniform generation, (4) Constant properties, (5) Negligible contact resistance between fuel
and cladding.

ANALYSIS: (a) The general solution to the heat equation, Eq. 3.44,

 
2

2
f

d T q
0 L x +L

kdx
    


is 2
1 2

f

q
T x C x+C .

2k
  



The insulated wall at x = - (L+b) dictates that the heat flux at x = - L is zero (for an energy

balance applied to a control volume about the wall, in outE E 0).   Hence

  1 1
f fx L

dT q qL
L C 0 or C

dx k k


      



 

2
2

f f

q qL
T x x+C .

2k k
  

 
(1)

The value of Ts,1 may be determined from the energy conservation requirement that

g cond convE q q ,  or on a unit area basis.

     s
s,1 s,2 s,2

k
q 2L T T h T T .

b
   

Hence,

   
s,1 s,2 s,2

s

q 2 Lb q 2L
T T where T T

k h
   

 

   
s,1

s

q 2 Lb q 2L
T T .

k h
  

 

Continued …



PROBLEM 3.90 (Cont.)

Hence from Eq. (1),

 
     2

s,1 2
s f

q Lq 2 Lb q 2 L 3
T L T T C

k h 2 k
      

 

which yields

2
s f

2b 2 3 L
C T qL

k h 2 k


 
    

 


Hence, the temperature distribution for  L x +L   is

2

f f s f

q qL 2b 2 3 L
T x x+qL T

2k k k h 2 k


 
      

 

 
 <

(b) For the temperature distribution shown below,

 

 

maxL b x L: dT/dx=0, T=T
L x +L: | dT/dx | with x

+L x L+b: dT/dx is const.

    
    
 



PROBLEM 3.91

KNOWN: Thermal conductivity, heat generation and thickness of fuel element. Thickness and
thermal conductivity of cladding. Surface convection conditions.

FIND: (a) Temperature distribution in fuel element with one surface insulated and the other cooled
by convection. Largest and smallest temperatures and corresponding locations. (b) Same as part (a)
but with equivalent convection conditions at both surfaces, (c) Plot of temperature distributions.

SCHEMATIC:

L = 0.15 m b = 0.003 m

Fuel, q = 2x10 W/m , k = 60 W/m-K7
f

3.

T = 200 Co
oo

h = 10,000 W/m -K2

Cladding
k = 15 W/m-Ks

Insulated
surface
(part a)

ASSUMPTIONS: (1) One-dimensional heat transfer, (2) Steady-state, (3) Uniform generation, (4)
Constant properties, (5) Negligible contact resistance.

ANALYSIS: (a) From Eq. C.1,

 
2 2

s,2 s,1 s,1 s,2
2f

T T T Tq L x x
T x 1

2k 2 L 2L

   
    
 
 


(1)

With an insulated surface at x = -L, Eq. C.10 yields

2

s,1 s,2
f

2q L
T T

k
 


(2)

and with convection at x = L + b, Eq. C.13 yields

   f
s,2 s,2 s,1

k
U T T q L T T

2L
   

 
2

s,1 s,2 s,2
f f

2LU 2q L
T T T T

k k
   


(3)

where U
-1

= h
-1

+ b/ks. Subtracting Eq. (2) from Eq. (3),

 
2

s,2
f f

2LU 4q L
0 T T

k k
  



s,2
2qL

T T
U

 


(4)

Continued …

15 mm



PROBLEM 3.91 (Cont.)

Alternatively, this result could have been found from an energy balance on the wall which equates the
generated heat to the heat leaving at L+b,

s,22qL U(T T ) 

Substituting Eq. (4) into Eq. (2)

s,1
f

L 1
T T 2qL

k U


 
   

 
 (5)

Substituting Eqs. (4) and (5) into Eq. (1),

  2

f f f

q qL 2 3 L
T x x x qL T

2k k U 2 k


 
      

 

 


Or,

  2

f f s f

q qL 2b 2 3 L
T x x x qL T

2k k k h 2 k


 
       

 

 
 (6) <

The maximum temperature occurs at x = - L and is

 
s f

b 1 L
T L 2qL T

k h k


 
     

 


  7 3

2

0.003m 1 0.015 m
T L 2 2 10 W / m 0.015 m 200 C 530 C

15 W / m K 60 W / m K10, 000 W / m K

          
 

 
  
 

<

The lowest temperature is at x = + L and is

 
2

f s f

3 qL 2b 2 3 L
T L qL T 380 C

2 k k h 2 k


 
         

 


 <

(b) If a convection condition is maintained at x = - L, Eq. C.12 reduces to

   f
s,1 s,2 s,1

k
U T T qL T T

2L
     

 
2

s,1 s,2 s,1
f f

2LU 2qL
T T T T

k k
   


(7)

Subtracting Eq. (7) from Eq. (3),

 s,2 s,1 s,1 s,2
f

2 LU
0 T T T T or T T

k
     

Hence, from Eq. (7)

Continued …



PROBLEM 3.91 (Cont.)

s,1 s,2
s

qL 1 b
T T T qL T

U h k
 

 
      

 


 (8)

Substituting into Eq. (1), the temperature distribution is

 
2 2

2f s

qL x 1 b
T x 1 qL T

2 k h kL


   
          


 (9) <

The maximum temperature is at x = 0 and is

 
 7 3 2

7 3

2

2 10 W / m 0.015 m 1 0.003 m
T 0 2 10 W / m 0.015 m 200 C

2 60 W / m K 15 W / m K10, 000 W / m K


      

  

 
  
 

 T 0 37.5 C 90 C 200 C 327.5 C        <

The minimum temperature at x =  L is

 7 3
s,1 s,2 2

1 0.003m
T T 2 10 W / m 0.015m 200 C 290 C

15 W / m K10,000 W / m K

 
        
  

<

(c) The temperature distributions are as shown.

The amount of heat generation is the same for both cases, but the ability to transfer heat from both
surfaces for case (b) results in lower temperatures throughout the fuel element.

COMMENTS: Note that for case (a), the temperature in the insulated cladding is constant and

equivalent to Ts,1 = 530C.
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PROBLEM 3.92 

KNOWN:  Wall of thermal conductivity k and thickness L with uniform generation and strip heater with 
uniform heat flux oq′′ ; prescribed inside and outside air conditions ( ,iT∞ , hi, ,oT∞ , ho).  Strip heater acts 
to guard against heat losses from the wall to the outside. 
 
FIND:   Compute and plot oq′′  and T(0) as a function of q&  for 200 ≤  q&  ≤ 2000 W/m3 and ,iT∞  = 30, 50 

and 70°C. 
 
SCHEMATIC:  
 

 
 
 
 
 

 
ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Uniform volumetric 
generation, (4) Constant properties. 
  
ANALYSIS:   If no heat generated within the 
wall will be lost to the outside of the chamber, 
the gradient at the position x = 0 must be zero.  
Since q&  is uniform, the temperature distribution 
must be parabolic as shown in the sketch. 

          
To determine the required heater flux oq′′  as a function of the operation conditions q&  and ,iT∞ , the 
analysis begins by considering the temperature distribution in the wall and then surface energy balances at 
the two wall surfaces.  The analysis is organized for easy treatment with equation-solving software. 
 
Temperature distribution in the wall, T(x):  The general solution for the temperature distribution in the 
wall is, Eq. 3.45, 
 

 2
1 2

q
T(x) x C x C

2k
= − + +

&
 

 
and the guard condition at the outer wall, x = 0, requires that the conduction heat flux be zero.  Using 
Fourier’s law, 

 ( )x 1
x 0

dT
q (0) k kC 1dx

0 C 0
=

′′ = − = − = =  (1) 

At the outer wall, x = 0, 
 2T(0) C=  (2) 
 
Heater energy balance, x = 0: 
 
 in g outE E E 0+ − =& & &  
 
 ( )o cv,o0 q q 0xq 0′′ ′′+ − ′′− =  (3) 
 

( ) ( )cv,o ,o xq h T(0) T , q 0 0o ∞′′ ′′= − =  (4a,b)          

Continued...



PROBLEM 3.92 (Cont.) 

Surface energy balance, x = L: 
 
 in outE E 0− =& &  
 
 x cv,iq (L) q 0′′ ′′− =  (5) 
 

 x
x L

q (L) k qL
dT
dx =

′′ = − = + &  (6) 
         

 
 cv,i ,iq h T(L) Ti ∞′′ = −⎡ ⎤⎣ ⎦  
 

 ( )2
cv,i ,i

q
q h L T

2k
T 0i ∞′′ = − + −⎡ ⎤

⎢ ⎥⎣ ⎦
&

 (7) 

 
Solving Eqs. (3) through (7) simultaneously with appropriate numerical values and performing the 
parametric analysis, the results are plotted below. 
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From the first plot, the heater flux oq′′  is a linear function of the volumetric generation rate q& .  As 
expected, the higher q&  and ,iT∞ , the higher the heat flux required to maintain the guard condition ( xq′′ (0) 

= 0).  Notice that for any q&  condition, equal changes in ,iT∞  result in equal changes in the required oq′′ .  
The outer wall temperature T(0) is also linearly dependent upon q& .  From our knowledge of the 
temperature distribution, it follows that for any q&  condition, the outer wall temperature T(0) will track 
changes in ,iT∞ . 
 



PROBLEM 3.93

KNOWN: Plane wall with prescribed nonuniform volumetric generation having one
boundary insulated and the other isothermal.

FIND: Temperature distribution, T(x), in terms of x, L, k, o oq and T .

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in x-
direction, (3) Constant properties.

ANALYSIS: The appropriate form the heat diffusion equation is

d dT q
0.

dx dx k

 
  

 



Noting that    oq q x q 1 x/L ,     substitute for  q x into the above equation, separate

variables and then integrate,

2
o o

1
q qdT x dT x

d 1 dx x C .
dx k L dx k 2L

    
          

      

 

Separate variables and integrate again to obtain the general form of the temperature
distribution in the wall,

 
2 2 3

o o
1 1 2

q qx x x
dT x dx+C dx T x C x+C .

k 2L k 2 6L

   
         

      

 

Identify the boundary conditions at x = 0 and x = L to evaluate C1 and C2. At x = 0,

   o
o 1 2 2 o

q
T 0 T 0 0 C 0 C hence, C T

k
       



At x = L,

2
o o

1 1
x=L

q q LdT L
0 L C hence, C

dx k 2L 2k

 
      

   

 

The temperature distribution is

 
2 3

o o
o

q q Lx x
T x x+T .

k 2 6L 2k

 
    

  

  <

COMMENTS: It is good practice to test the final result for satisfying BCs. The heat flux at
x = 0 can be found using Fourier’s law or from an overall energy balance

L
out g out o0

E E qdV to obtain q q L/2.     



PROBLEM 3.94

KNOWN: Distribution of volumetric heating and surface conditions associated with a quartz
window.

FIND: Temperature distribution in the quartz.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3)
Negligible radiation emission and convection at inner surface (x = 0) and negligible emission
from outer surface, (4) Constant properties.

ANALYSIS: The appropriate form of the heat equation for the quartz is obtained by
substituting the prescribed form of q into Eq. 3.44.

 2
o - x

2

1 qd T
e 0

kdx

  
 

Integrating,

   o - x - x
1 o 1 2

1 q 1dT
e C T q e C x+C

dx k k
  



 
     

Boundary Conditions:  
x=o o

x=L

k dT/dx) q
k dT/dx) h T L T





 
    

Hence, at x = 0:
 

o 1 o

1 o

1-
k q C q

k
C q / k




 
    

 
 

At x = L:

   - L - L
o 1 o 1 2

1- 1-
k q e C h - q e C L+C T

k k
  




   
        

   

Substituting for C1 and solving for C2,

 
 o 1-- L - Lo o

2

qq q L
C 1 1 e e T .

h k k

 




         

Hence,  
 

   o - L - x - Lo o1 q q q
T x e e L x 1 1 e T .

k k h
  





                  

<

COMMENTS: The temperature distribution depends strongly on the radiative coefficients, 
and . For   or  = 1, the heating occurs entirely at x = 0 (no volumetric heating).



PROBLEM 3.95

KNOWN: Radial distribution of heat dissipation in a cylindrical container of radioactive
wastes. Surface convection conditions.

FIND: Radial temperature distribution.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Constant
properties, (4) Negligible temperature drop across container wall.

ANALYSIS: The appropriate form of the heat equation is

2
o

2
o

q1 d dT q r
r 1

r dr dr k k r

  
           



2 4 2 4
o o o o

1 1 22 2
o o

q r q r q r q rdT
r C T C ln r+C .

dr 2k 4k4kr 16kr
       

   

From the boundary conditions,

  or=0 1 r=r o
dT dT

| 0 C 0 k | h T r T
dr dr

       

2 2
o o o o o o o o

2
q r q r q r q r

h C T
2 4 4k 16k



 
       

  

   

2
o o o o

2
q r 3q r

C T .
4h 16k

  
 

Hence

 
2 42

o o o o

o o

q r q r 3 1 r 1 r
T r T .

4h k 16 4 r 16 r


    
        
     

  <

COMMENTS: Applying the above result at ro yields

   s o o oT T r T q r / 4h   

The same result may be obtained by applying an energy balance to a control surface about the

container, where g convE q . The maximum temperature exists at r = 0.



PROBLEM 3.96

KNOWN: Cylindrical shell with uniform volumetric generation is insulated at inner surface
and exposed to convection on the outer surface.

FIND: (a) Temperature distribution in the shell in terms of i or , r , q, h, T and k, (b)

Expression for the heat rate per unit length at the outer radius,  oq r .

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional radial (cylindrical)
conduction in shell, (3) Uniform generation, (4) Constant properties.

ANALYSIS: (a) The general form of the temperature distribution and boundary conditions
are

  2
1 2

q
T r r C ln r+C

4k
  



at r = ri:

i

2
i 1 1 i

ir

dT q 1 q
0 r C 0 C r

dr 2k r 2k


     



 

at r = ro:  
o

o
r

dT
k h T r T surface energy balance

dr



     



2 2 2
o o o 2i i

o

q q 1 q q
-k r r h r r ln r C T

2k 2k r 4k 2k


     
            

      

   

2 22
o oi i

2 o
o o

qr qrr r1
C 1 ln r T

2h r 2k 2 r


      
           
         

 

Hence,

   
22

2 2 oi i
o

o o

qr qr rq r
T r r r ln 1 T .

4k 2k r 2h r


    
         
     

  <

(b) From an overall energy balance on the shell,

   2 2
r o g o iq r E q r r .     <

Alternatively, the heat rate may be found using Fourier’s law and the temperature distribution,

     
o

2
2 2i

r o o o o i
or

qrdT q 1
q r k 2 r 2 kr r 0 0 q r r

dr 2k 2k r
  

 
            

 
 






PROBLEM 3.97 
 
KNOWN:  Energy generation in an aluminum-clad, thorium fuel rod under specified operating 
conditions. 
 
FIND:  (a) Whether prescribed operating conditions are acceptable, (b) Effect of &q  and h on acceptable 
operating conditions. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) One-dimensional conduction in r-direction, (2) Steady-state conditions, (3) 
Constant properties, (4) Negligible temperature gradients in aluminum and contact resistance between 
aluminum and thorium. 
 
PROPERTIES:  Table A-1, Aluminum, pure:  M.P. = 933 K; Table A-1, Thorium:  M.P. = 2023 K, k ≈ 
60 W/m⋅K. 
 
ANALYSIS:  (a) System failure would occur if the melting point of either the thorium or the aluminum 
were exceeded.  From Eq. 3.58, the maximum thorium temperature, which exists at r = 0, is 
 

 
2
o

s Th,max
qr

T(0) T T
4k

= + =
&

 
 
where, from the energy balance equation, Eq. 3.60, the surface temperature, which is also the aluminum 
temperature, is 
 

 o
s Al

qr
T T T

2h∞= + =
&

 

Hence, 

 
8 3

Al s 2
7 10 W m 0.0125 m

T T 95 C 720 C 993K
14,000 W m K

× ×
= = + = =

⋅

o o  

 
( )28 3

Th,max
7 10 W m 0.0125m

T 993K 1449 K
4 60 W m K

×
= + =

× ⋅
 < 

 
Although TTh,max < M.P.Th and the thorium would not melt, Tal > M.P.Al and the cladding would melt 
under the proposed operating conditions.  The problem could be eliminated by decreasing q& or ro, 
increasing h or using a cladding material with a higher melting point. 
 
(b) Using the one-dimensional, steady-state conduction model (solid cylinder) of the IHT software, the 
following radial temperature distributions were obtained for parametric variations in q&  and h. 

 
Continued... 



PROBLEM 3.97 (Cont.)  
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For h = 10,000 W/m2⋅K, which represents a reasonable upper limit with water cooling, the temperature of 
the aluminum would be well below its melting point for q&  = 7 × 108 W/m3, but would be close to the 
melting point for &q  = 8 × 108 W/m3 and would exceed it for q&  = 9 × 108 W/m3.  Hence, under the best of 
conditions, q&  ≈ 7 × 108 W/m3 corresponds to the maximum allowable energy generation.  However, if 
coolant flow conditions are constrained to provide values of h < 10,000 W/m2⋅K, volumetric heating 
would have to be reduced.  Even for q&  as low as 2 × 108 W/m3, operation could not be sustained for h = 
2000 W/m2⋅K. 
 
 The effects of q&  and h on the centerline and surface temperatures are shown below. 
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For h = 2000 and 5000 W/m2⋅K, the melting point of thorium would be approached for q&  ≈ 4.4 × 108 and 
8.5 × 108 W/m3, respectively.  For h = 2000, 5000 and 10,000 W/m2⋅K, the melting point of aluminum 
would be approached for q&  ≈ 1.6 × 108, 4.3 × 108 and 8.7 × 108 W/m3.  Hence, the envelope of acceptable 
operating conditions must call for a reduction in q&  with decreasing h, from a maximum of q&  ≈ 7 × 108 
W/m3 for h = 10,000 W/m2⋅K. 
 
COMMENTS:  Note the problem which would arise in the event of a loss of coolant, for which case h 
would decrease drastically. 



PROBLEM 3.98 
 
KNOWN:  Radii and thermal conductivities of reactor fuel element and cladding.  Fuel heat generation 
rate.  Temperature and convection coefficient of coolant. 
 
FIND:  (a) Expressions for temperature distributions in fuel and cladding, (b) Maximum fuel element 
temperature for prescribed conditions, (c) Effect of h on temperature distribution. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction, (3) Negligible contact 
resistance, (4) Constant properties. 
 
ANALYSIS:  (a) From Eqs. 3.54 and 3.28, the heat equations for the fuel (f) and cladding (c) are 
 

 ( ) ( )cf
1 1 2

dTdT1 d q 1 d
r 0 r r r 0 r r r

r dr dr r dr drfk
= − ≤ ≤ = ≤ ≤⎛ ⎞⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

&
 

 
Hence, integrating both equations twice, 
 

 
2

f 1 1
f 2

f f f f

dT qr C qr C
T ln r C

dr 2k k r 4k k
= − + = − + +

& &
 (1,2) 

 

 c 3 3
c 4

c c

dT C C
T ln r C

dr k r k
= = +  (3,4) 

 
The corresponding boundary conditions are: 
 
 ) ( ) ( )f f 1 c 1r 0dT dr 0 T r T r= = =  (5,6) 
 

 ( )[ ]
1 1 2

c c
f c c c 2

r r r r r r

dT dTdTfk k k h T r T
dr dr dr ∞

= = =
− = − − = −⎞ ⎞⎞

⎟ ⎟ ⎟
⎠ ⎠ ⎠

 (7,8) 

 
Note that Eqs. (7) and (8) are obtained from surface energy balances at r1 and r2, respectively.  Applying 
Eq. (5) to Eq. (1), it follows that C1 = 0.  Hence, 

 
2

f 2
f

qr
T C

4k
= − +

&
 (9) 

From Eq. (6), it follows that 
 

 
2

3 11
2 4

f c

C ln rqr
C C

4k k
− + = +
&

 (10) 

Continued... 



 
PROBLEM 3.98 (Cont.) 

 
Also, from Eq. (7), 

 
2

31 1
3

1

Cqr qr
or C

2 r 2
= − = −

& &
 (11) 

Finally, from Eq. (8), 3 3
2 4

2 c

C C
h ln r C T

r k ∞− = + −
⎡ ⎤
⎢ ⎥
⎣ ⎦

 or, substituting for C3 and solving for C4 

 
2 2

1 1
4 2

2 c

qr qr
C ln r T

2r h 2k ∞= + +
& &

 (12) 

Substituting Eqs. (11) and (12) into (10), it follows that 

 
2 2 2 2

1 1 1 1 1
2 2

f c 2 c

qr qr ln r qr qr
C ln r T

4k 2k 2r h 2k ∞= − + + +
& & & &

 

 
2 2 2

1 1 2 1
2

f c 1 2

qr qr r qr
C ln T

4k 2k r 2r h ∞= + + +
& & &

 (13) 

Substituting Eq. (13) into (9), 

 ( )
2 2

2 2 1 2 1
f 1

f c 1 2

q qr r qr
T r r ln T

4k 2k r 2r h ∞= − + + +
& & &

 (14)< 

Substituting Eqs. (11) and (12) into (4), 

 
2 2

1 2 1
c

c 2

qr r qr
T ln T

2k r 2r h ∞= + +
& &

. (15)< 

(b) Applying Eq. (14) at r = 0, the maximum fuel temperature for h = 2000 W/m2⋅K is 

 ( ) ( ) ( )2 28 3 8 3

f
2 10 W m 0.006 m 2 10 W m 0.006 m 0.009 m

T 0 ln
4 2 W m K 2 25 W m K 0.006 m

× × × ×
= +

× ⋅ × ⋅
 

                   
( )

( )

28 3

2
2 10 W m 0.006 m

300 K
2 0.009 m 2000 W m K

×
+ +

× ⋅
 

 ( ) ( )fT 0 900 58.4 200 300 K 1458 K= + + + = . < 
(c) Temperature distributions for the prescribed values of h are as follows: 
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PROBLEM 3.98 (Cont.) 

 
Clearly, the ability to control the maximum fuel temperature by increasing h is limited, and even for h → 
∞, Tf(0) exceeds 1000 K.  The overall temperature drop, Tf(0) - T∞, is influenced principally by the low 
thermal conductivity of the fuel material. 
 

COMMENTS:  For the prescribed conditions, Eq. (14) yields, Tf(0) - Tf(r1) = 2
1 fqr 4k&  = (2×108 

W/m3)(0.006 m)3/8 W/m⋅K = 900 K, in which case, with no cladding and h → ∞, Tf(0) = 1200 K.  To 
reduce Tf(0) below 1000 K for the prescribed material, it is necessary to reduce q& . 



PROBLEM 3.99 
 
KNOWN:  Dimensions and properties of tubular heater and external insulation.  Internal and external 
convection conditions.  Maximum allowable tube temperature. 
 
FIND:  (a) Maximum allowable heater current for adiabatic outer surface, (3) Effect of internal 
convection coefficient on heater temperature distribution, (c) Extent of heat loss at outer surface. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) One-dimensional, steady-state conditions, (2) Constant properties, (3) Uniform 
heat generation, (4) Negligible radiation at outer surface, (5) Negligible contact resistance. 
 
ANALYSIS:  (a) From Eqs. 7 and 10, respectively, of Example 3.8, we know that 
 

 ( )2 2 22
s,2 s,1 2 2 1
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q r q
T T r ln r r

2k r 4k
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 (1) 

and 
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Hence, eliminating Ts,1, we obtain 
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Substituting the prescribed conditions (h1 = 100 W/m2⋅K), 
 

 ( ) ( )4 3 3
s,2 ,1T T 1.237 10 m K W q W m−

∞− = × ⋅ &  
 
Hence, with Tmax corresponding to Ts,2, the maximum allowable value of &q  is 

 6 3
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−
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  Continued … 



PROBLEM 3.99 (Cont.) 
 
(b) Using the one-dimensional, steady-state conduction model of IHT (hollow cylinder; convection at 
inner surface and adiabatic outer surface), the following temperature distributions were obtained. 
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The results are consistent with key implications of Eqs. (1) and (2), namely that the value of h1 has no 
effect on the temperature drop across the tube (Ts,2 - Ts,1 = 30 K, irrespective of h1), while Ts,1 decreases 
with increasing h1.  For h1 = 100, 500 and 1000 W/m2⋅K, respectively, the ratio of the temperature drop 
between the inner surface and the air to the temperature drop across the tube, (Ts,1 - T∞,1)/(Ts,2 - Ts,1), 
decreases from 970/30 = 32.3 to 194/30 = 6.5 and 97/30 = 3.2.  Because the outer surface is insulated, the 
heat rate to the airflow is fixed by the value of q&  and, irrespective of h1, 

 ( ) ( )2 2
1 2 1q r r r q 15, 240 Wπ′ = − = −&  < 

(c) Heat loss from the outer surface of the tube to the surroundings depends on the total thermal resistance 

 
( )3 2

tot
i 3 2

ln r r 1
R

2 Lk 2 r Lhπ π
= +  

or, for a unit area on surface 2, 

 ( ) ( )2 3 2 2
tot,2 2 tot

i 3 2

r ln r r r
R 2 r L R

k r h
π′′ = = +  

Again using the capabilities of IHT (hollow cylinder; convection at inner surface and heat transfer from 
outer surface through tot,2R′′ ), the following temperature distributions were determined for the tube and 
insulation. 
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PROBLEM 3.99 (Cont.) 
 
Heat losses through the insulation, ( )2q r′ , are 4250 and 3890 W/m for δ = 25 and 50 mm, respectively, 
with corresponding values of ( )1q r′  equal to -10,990 and -11,350 W/m.  Comparing the tube temperature 
distributions with those predicted for an adiabatic outer surface, it is evident that the losses reduce tube 
wall temperatures predicted for the adiabatic surface and also shift the maximum temperature from r = 
0.035 m to r ≈ 0.033 m.  Although the tube outer and insulation inner surface temperatures, Ts,2 = T(r2), 
increase with increasing insulation thickness, Fig. (c), the insulation outer surface temperature decreases. 
 
COMMENTS:  If the intent is to maximize heat transfer to the airflow, heat losses to the ambient should 
be reduced by selecting an insulation material with a significantly smaller thermal conductivity. 



PROBLEM 3.100 
 
KNOWN:  Materials, dimensions, properties and operating conditions of a gas-cooled nuclear reactor. 
 
FIND:  (a) Inner and outer surface temperatures of fuel element, (b) Temperature distributions for 
different heat generation rates and maximum allowable generation rate. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction, (3) Constant properties, 
(4) Negligible contact resistance, (5) Negligible radiation. 
 
PROPERTIES:  Table A.1, Thorium:  Tmp ≈ 2000 K; Table A.2, Graphite:  Tmp ≈ 2300 K. 
 
ANALYSIS:  (a) The outer surface temperature of the fuel, T2, may be determined from the rate equation 
 

 2

tot

T T
q

R
∞−′ =

′
 

where 

 
( ) ( )

( ) ( )( )
3 2

tot 2g 3

ln r r ln 14 111 1
R 0.0185 m K W

2 k 2 r h 2 3 W m K 2 0.014 m 2000 W m Kπ π π π
′ = + = + = ⋅

⋅ ⋅
 

 
and the heat rate per unit length may be determined by applying an energy balance to a control surface 
about the fuel element.  Since the interior surface of the element is essentially adiabatic, it follows that 
 

 ( ) ( )2 2 8 3 2 2 2
2 1q q r r 10 W m 0.011 0.008 m 17,907 W mπ π′ = − = × − =&  

Hence, 

 ( )2 totT q R T 17,907 W m 0.0185 m K W 600 K 931K∞′ ′= + = ⋅ + =  < 
 
With zero heat flux at the inner surface of the fuel element, Eq. C.14 yields 
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1 2 2t t 12
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( ) ( )2 28 3 8 32

1
10 W m 0.011m 10 W m 0.008 m0.008 0.011

T 931K 1 ln
4 57 W m K 0.011 2 57 W m K 0.008

= + − −
× ⋅ × ⋅

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
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PROBLEM 3.100 (Cont.) 

 

 1T 931K 25 K 18 K 938 K= + − =  < 
 
(b) The temperature distributions may be obtained by using the IHT model for one-dimensional, steady-
state conduction in a hollow tube.  For the fuel element ( q&  > 0), an adiabatic surface condition is 
prescribed at r1, while heat transfer from the outer surface at r2 to the coolant is governed by the thermal 
resistance tot,2 2 totR 2 r Rπ′′ ′=  = 2π(0.011 m)0.0185 m⋅K/W = 0.00128 m2⋅K/W.  For the graphite ( q&  = 0), 
the value of T2 obtained from the foregoing solution is prescribed as an inner boundary condition at r2, 
while a convection condition is prescribed at the outer surface (r3).  For 1 × 108 ≤ q&  ≤ 5 × 108 W/m3, the 
following distributions are obtained. 
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The comparatively large value of kt yields small temperature variations across the fuel element, 
while the small value of kg results in large temperature variations across the graphite.  Operation 
at q&  = 5 × 108 W/m3 is clearly unacceptable, since the melting points of thorium and graphite are 
exceeded and approached, respectively.  To prevent softening of the materials, which would occur below 
their melting points, the reactor should not be operated much above q&  = 3 × 108 W/m3. 
 
COMMENTS:  A contact resistance at the thorium/graphite interface would increase temperatures in the 
fuel element, thereby reducing the maximum allowable value of q& . 



PROBLEM 3.101

KNOWN: Long rod experiencing uniform volumetric generation encapsulated by a circular
sleeve exposed to convection.

FIND: (a) Temperature at the interface between rod and sleeve and on the outer surface, (b)
Temperature at center of rod.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional radial conduction in rod and sleeve, (2) Steady-state
conditions, (3) Uniform volumetric generation in rod, (4) Negligible contact resistance
between rod and sleeve.

ANALYSIS: (a) Construct a thermal circuit for the sleeve,

where

 22 3
gen 1q =E q D / 4 24,000 W/m 0.20 m / 4 754.0 W/m        

   2 1 2
s

s

ln r / r ln 400/200
R 2.758 10 m K/W

2 k 2 4 W/m K 
     

 

2
conv 22

1 1
R 3.183 10 m K/W

h D 25 W/m K 0.400 m 

    
  

The rate equation can be written as

1 2

s conv conv

T T T T
q =

R R R
  

 
  

   -2 2
s convq R R 27 C+754 W/m 2.758 10 3.183 10 K/W m=71.8 C1T T            <

-2
2 convT T q R 27 C+754 W/m 3.183 10 m K/W=51.0 C.         <

(b) The temperature at the center of the rod is

 
 22 3

1
o 1

r

qr 24,000 W/m 0.100 m
T 0 T T 71.8 C=192 C.

4k 4 0.5 W/m K
    

 
 

<

COMMENTS: The thermal resistances due to conduction in the sleeve and convection are

comparable. Will increasing the sleeve outer diameter cause the surface temperature T2 to

increase or decrease?



PROBLEM 3.102

KNOWN: Radius, thermal conductivity, heat generation and convection conditions
associated with a solid sphere.

FIND: Temperature distribution.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional radial conduction, (3)
Constant properties, (4) Uniform heat generation.

ANALYSIS: Integrating the appropriate form of the heat diffusion equation,

2
2 2

2

1 d dT d dT qr
kr q=0 or r

dr dr dr dr kr

   
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 

 
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1
2

qr C
T r C .

6k r
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

The boundary conditions are: 1
r=0

dT
0 hence C 0, and

dr


 



 
o

o
r

dT
k h T r T .

dr



    



Substituting into the second boundary condition (r = ro), find

2 2
o o o o

2 2
qr qr qr qr

h - C T C T .
3 6k 3h 6k

 

 
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The temperature distribution has the form

   2 2 o
o

qrq
T r r r T .

6k 3h
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 <

COMMENTS: To verify the above result, obtain T(ro) = Ts,

o
s

qr
T T

3h
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

Applying energy balance to the control volume about the sphere,
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PROBLEM 3.103

KNOWN: Radial distribution of heat dissipation of a spherical container of radioactive
wastes. Surface convection conditions.

FIND: Radial temperature distribution.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Constant
properties, (4) Negligible temperature drop across container wall.

ANALYSIS: The appropriate form of the heat equation is

2
2 o

2 o

q1 d dT q r
r 1 .

dr dr k k rr
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From the boundary conditions,
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COMMENTS: Applying the above result at ro yields

   s o o oT T r T 2r q /15h .   

The same result may be obtained by applying an energy balance to a control surface about the

container, where g convE q . The maximum temperature exists at r = 0.



PROBLEM 3.104 
 
KNOWN:  Dimensions and thermal conductivity of a spherical container.  Thermal conductivity and 
volumetric energy generation within the container.  Outer convection conditions. 
 
FIND:  (a) Outer surface temperature, (b) Container inner surface temperature, (c) Temperature 
distribution within and center temperature of the wastes, (d) Feasibility of operating at twice the energy 
generation rate. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) One-dimensional radial 
conduction. 
 
ANALYSIS:  (a) For a control volume which includes the container, conservation of energy yields 

g outE E 0− =& & , or convqV q 0− =& .  Hence 

 ( )( ) ( )3 2
i o s,oq 4 3 r h4 r T Tπ π ∞= −&  

and with q&  = 105 W/m3, 

 
( )
( )

35 23
i

s,o 2 22
o

10 W m 0.5 mqr
T T 25 C 36.6 C

3hr 3000 W m K 0.6 m
∞= + = + =

⋅

o o&
. < 

(b) Performing a surface energy balance at the outer surface, in outE E 0− =& &  or cond convq q 0− = .  
Hence 

 
( )

( ) ( ) ( )ss s,i s,o 2
o s,o

i o

4 k T T
h4 r T T

1 r 1 r

π
π ∞

−
= −

−
 

 ( ) ( ) ( )
2

o
s,i s,o o s,o

ss i

rh 1000 W m K
T T 1 r T T 36.6 C 0.2 0.6 m 11.6 C 129.4 C

k r 15 W m K∞
⋅

= + − − = + =
⋅

⎛ ⎞
⎜ ⎟
⎝ ⎠

o o o .< 

(c) The heat equation in spherical coordinates is 

 2 2
rw

d dT
k r qr 0

dr dr
+ =⎛ ⎞

⎜ ⎟
⎝ ⎠

& . 

Solving, 

 ( )
3 2

2 1
1 2

rw rw

dT qr qr C
r C and T r C

dr 3k 6k r
= − + = − − +

& &
 

Applying the boundary conditions, 

 
r 0

dT
0

dr =
=  and ( )i s,iT r T=  

 C1 = 0 and 2
2 s,i i rwC T qr 6k= + & . 

Continued... 
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Hence 

 ( ) ( )2 2
s,i i

rw

q
T r T r r

6k
= + −

&
  < 

At r = 0, 

 ( ) ( )
( )

25 32
i

s,i
rw

10 W m 0.5 mqr
T 0 T 129.4 C 337.7 C

6k 6 20 W m K
= + = + =

⋅
o o&

 < 

 
(d) The feasibility assessment may be performed by using the IHT model for one-dimensional, steady-
state conduction in a solid sphere, with the surface boundary condition prescribed in terms of the total 
thermal resistance 
 

 ( ) ( ) ( )[ ] 22
i i o2 i

tot,i i tot cnd,i cnv,i
ss o

r 1 r 1 r 1 r
R 4 r R R R

k h r
π

−
′′ ′′ ′′= = + = +

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
where, for ro = 0.6 m and h = 1000 W/m2⋅K, cnd,iR′′  = 5.56 × 10-3 m2⋅K/W, cnv,iR′′  = 6.94 × 10-4 m2⋅K/W, 

and tot,iR′′  = 6.25 × 10-3 m2⋅K/W.  Results for the center temperature are shown below. 
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ro = 0.54 m
ro = 0.60 m  

 
Clearly, even with ro = 0.54 m = ro,min and h = 10,000 W/m2⋅K (a practical upper limit), T(0) > 475°C and 
the desired condition can not be met.  The corresponding resistances are cnd,iR′′  = 2.47 × 10-3 m2⋅K/W, 

cnv,iR′′  = 8.57 × 10-5 m2⋅K/W, and tot,iR′′  = 2.56 × 10-3 m2⋅K/W.  The conduction resistance remains 

dominant, and the effect of reducing cnv,iR′′  by increasing h is small.  The proposed extension is not 
feasible. 
 
COMMENTS:  A value of q&  = 1.79 × 105 W/m3 would allow for operation at T(0) = 475°C with ro = 
0.54 m and h = 10,000 W/m2⋅K. 



PROBLEM 3.105 
 
KNOWN:   Carton of apples, modeled as 80-mm diameter spheres, ventilated with air at 5°C and 
experiencing internal volumetric heat generation at a rate of 4000 J/kg⋅day. 
 
FIND:  (a) The apple center and surface temperatures when the convection coefficient is 7.5 W/m2⋅K, and 
(b) Compute and plot the apple temperatures as a function of air velocity, V,  for the range 0.1 ≤ V ≤ 1 
m/s, when the convection coefficient has the form h = C1V0.425, where C1 = 10.1 W/m2⋅K⋅(m/s)0.425. 
 
SCHEMATIC:   

 
ASSUMPTIONS:  (1)  Apples can be modeled as spheres, (2) Each apple experiences flow of  
ventilation air at T∞  = 5°C,  (3) One-dimensional radial conduction, (4) Constant properties and (5) 
Uniform heat generation. 
 
ANALYSIS:   (a) From Eq. C.24, the temperature distribution in a solid sphere (apple) with uniform 
generation is 

 
2 2
o

s2
o

qr r
T(r) 1 T

6k r
= − +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

&
 (1) 

To determine Ts, perform an energy balance on the apple as shown in the sketch above, with volume V = 
4 3 3πro , 
 in out g cvE E E 0 q q 0− + = − + ∀ =& & & &  

 ( )( ) ( )2 3
o s oh 4 r T T q 4 r 3 0π π∞− − + =&  (2) 

 ( )( ) ( )2 2 2 3 3 3
s7.5 W m K 4 0.040 m T 5 C 38.9 W m 4 0.040 m 3 0π π− ⋅ × − + × =o  

 
where the volumetric generation rate is 
 q 4000 J kg day= ⋅&  
 
 ( ) ( )3q 4000 J kg day 840 kg m 1day 24 hr 1hr 3600s= ⋅ × × ×&  
 
 3q 38.9 W m=&  
 
and solving for Ts, find 

 sT 5.14 C= o  < 
From Eq. (1), at r = 0, with Ts, find 

 
3 2 238.9 W m 0.040 m

T(0) 5.14 C 0.12 C 5.14 C 5.26 C
6 0.5 W m K

×
= + = + =

× ⋅
o o o o  < 
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(b) With the convection coefficient depending upon velocity, 
 
 0.425

1h C V=  
 
with C1 = 10.1 W/m2⋅K⋅(m/s)0.425, and using the energy balance of Eq. (2), calculate and plot Ts as a 
function of ventilation air velocity V.  With very low velocities, the center temperature is nearly 0.5°C 
higher than the air.  From our earlier calculation we know that T(0) - Ts = 0.12°C and is independent of 
V. 
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COMMENTS:  (1) While the temperature within the apple is nearly isothermal, the center temperature 
will track the ventilation air temperature which will increase as it passes through stacks of cartons. 
 
(2) The IHT Workspace used to determine Ts for the base condition and generate the above plot is shown 
below. 
 

// The temperature distribution, Eq (1), 
T_r = qdot * ro^2 / (4 * k) * ( 1- r^2/ro^2 )  +  Ts 
 
// Energy balance on the apple, Eq (2)   
- qcv + qdot * Vol = 0 
Vol = 4 / 3 * pi *  ro ^3 
 
// Convection rate equation: 
qcv = h* As * ( Ts - Tinf ) 
As = 4 * pi * ro^2 
 
// Generation rate: 
qdot = qdotm * (1/24) * (1/3600) * rho       // Generation rate, W/m^3; Conversions: days/h and h/sec 
 
// Assigned variables: 
ro = 0.080   // Radius of apple, m 
k = 0.5   // Thermal conductivity, W/m.K 
qdotm = 4000            // Generation rate, J/kg.K 
rho = 840   // Specific heat, J/kg.K 
r = 0                         // Center, m; location for T(0) 
h =  7.5                   // Convection coefficient, W/m^2.K; base case, V = 0.5 m/s 
//h = C1 * V^0.425        // Correlation 
//C1 = 10.1 
//V = 0.5                      // Air velocity, m/s; range 0.1 to 1 m/s 
Tinf = 5   // Air temperature, C 

 
 
 



PROBLEM 3.106

KNOWN: Plane wall, long cylinder and sphere, each with characteristic length a, thermal
conductivity k and uniform volumetric energy generation rate q.

FIND: (a) On the same graph, plot the dimensionless temperature, [    T x or r T a ]/[ q a
2
/2k], vs.

the dimensionless characteristic length, x/a or r/a, for each shape; (b) Which shape has the smallest
temperature difference between the center and the surface? Explain this behavior by comparing the
ratio of the volume-to-surface area; and (c) Which shape would be preferred for use as a nuclear fuel
element? Explain why?

SCHEMATIC:

a a
x r

Plane wall Long cylinder Sphere

r = a

q,k
.

q,k
.

q,k
.T(a) = Ts T(a) = TsT(a) = Ts

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Constant
properties and (4) Uniform volumetric generation.

ANALYSIS: (a) For each of the shapes, with T(a) = Ts, the dimensionless temperature distributions
can be written by inspection from results in Appendix C.3.

Plane wall, Eq. C.22
  2

s
2

T x T x
1

aqa / 2k

  
   

 

Long cylinder, Eq. C.23
  2

s
2

T r T 1 r
1

2 aqa / 2k

   
    

   

Sphere, Eq. C.24
  2

s
2

T r T 1 r
1

3 aqa / 2k

   
    

   

The dimensionless temperature distributions using the foregoing expressions are shown in the graph
below.

Dimensionless temperature distribution
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PROBLEM 3.106 (Cont.)

(b) The sphere shape has the smallest temperature difference between the center and surface, T(0) –

T(a). The ratio of volume-to-surface-area, /As, for each of the shapes is

Plane wall
 
 s

a 1 1
a

A 1 1


 



Long cylinder
2

s

a 1 a

A 2 a 1 2





 
 



Sphere
3

2
s

4 a / 3 a

A 34 a






 

The smaller the /As ratio, the smaller the temperature difference, T(0) – T(a).

(c) The sphere would be the preferred element shape since, for a given /As ratio, which controls the
generation and transfer rates, the sphere will operate at the lowest temperature.



PROBLEM 3.107

KNOWN: Radius, thickness, and incident flux for a radiation heat gauge.

FIND: Expression relating incident flux to temperature difference between center and edge of
gauge.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in r (negligible
temperature drop across foil thickness), (3) Constant properties, (4) Uniform incident flux, (5)
Negligible heat loss from foil due to radiation exchange with enclosure wall, (6) Negligible contact
resistance between foil and heat sink.

ANALYSIS: Applying energy conservation to a circular ring extending from r to r + dr,

    r
r i r+dr r r+dr r

dT dq
q q 2 rdr q , q k 2 rt , q q dr.

dr dr
      

Rearranging, find that

   i
d dT

q 2 rdr k2 rt dr
dr dr

 
 

   
 

id dT q
r r.

dr dr kt

 
  

 

Integrating,

 
2 2

i i
1 1 2

dT q r q r
r C and T r C lnr+C .

dr 2kt 4kt

 
     

With dT/dr|r=0 =0, C1 = 0 and with T(r = R) = T(R),

   
2 2

i i
2 2

q R q R
T R C or C T R .

4kt 4kt

 
    

Hence, the temperature distribution is

     2 2iq
T r R r T R .

4kt


  

Applying this result at r = 0, it follows that

   i 2 2

4kt 4kt
q T 0 T R T.

R R
       <

COMMENTS: This technique allows for determination of a radiation flux from
measurement of a temperature difference. It becomes inaccurate if emission from the foil
becomes significant.



PROBLEM 3.108

KNOWN: Net radiative flux to absorber plate.

FIND: (a) Maximum absorber plate temperature, (b) Rate of energy collected per tube.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional (x) conduction along
absorber plate, (3) Uniform radiation absorption at plate surface, (4) Negligible losses by
conduction through insulation, (5) Negligible losses by convection at absorber plate surface,
(6) Temperature of absorber plate at x = 0 is approximately that of the water.

PROPERTIES: Table A-1, Aluminum alloy (2024-T6): k  180 W/mK.

ANALYSIS: The absorber plate acts as an extended surface (a conduction-radiation system),
and a differential equation which governs its temperature distribution may be obtained by
applying Eq.1.11b to a differential control volume. For a unit length of tube

 x rad x+dxq q dx q 0.    

With x
x+dx x

dq
q q dx

dx


  

and x
dT

q kt
dx

  

it follows that,

rad
d dT

q kt 0
dx dx

      

2
rad

2

qd T
0

ktdx


 

Integrating twice it follows that, the general solution for the temperature distribution has the
form,

  2rad
1 2

q
T x x C x+C .

2kt


  

Continued …
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The boundary conditions are:

  w 2 w

rad
1

x=L/2

T 0 T C T

dT q L
0 C

dx 2kt

 


 

Hence,

   rad
w

q
T x x L x T .

2kt


  

The maximum absorber plate temperature, which is at x = L/2, is therefore

 
2

rad
max w

q L
T T L/2 T .

8kt


  

The rate of energy collection per tube may be obtained by applying Fourier’s law at x = 0.
That is, energy is transferred to the tubes via conduction through the absorber plate. Hence,

x=0

dT
q =2 k t

dx

 
  

 

where the factor of two arises due to heat transfer from both sides of the tube. Hence,

radq = Lq . 

Hence

 

 

2
2

max

W
800 0.2m

mT 60 C
W

8 180 0.006m
m K

 
 
  



or maxT 63.7 C  <

and 2q 0.2m 800 W/m   

or q 160 W/m.   <

COMMENTS: Convection losses in the typical flat plate collector, which is not evacuated,
would reduce the value of q .



PROBLEM 3.109

KNOWN: Diameter and base temperature of a silicon carbide nanowire, required temperature of
the catalyst tip.

FIND: Maximum length of a nanowire that may be grown under specified conditions.

SCHEMATIC:

ASSUMPTIONS: (1) Nanowire stops growing when Tc = T(x = L) = 3000 K, (2) Constant
properties, (3) One-dimensional heat transfer, (4) Convection from the tip of the nanowire, (5)
Nanowire grows very slowly, (6) Negligible impact of nanoscale heat transfer effects.

PROPERTIES: Table A.2, silicon carbide (1500 K): k = 30 W/mK.

ANALYSIS: The tip of the nanowire is initially at T = 2400 K, and increases in temperature as
the nanowire becomes longer. At steady-state, the tip reaches T = 3000 K. The temperature
distribution at steady-state is given by Eq. 3.75:

b

θ cosh m (L - x) + (h / mk) sinh m (L - x)
=

θ cosh mL + (h / mk) sinh mL
(1)

where
1/21/2 1/2 5 2

3 -1
-9

c

hP 4h 4 × 10 W/m K
m = = = = 943 × 10 m

kA kD 30 W/m K × 15 × 10 m

    
          

and
5 2

-3
3 -1

h 10 W/m K
= = 3.53 × 10

mk 943 × 10 m × 30 W/m K





Equation 1, evaluated at x = L, is

3 -3 3
b

θ (3000 - 8000) K 1
= = 0.893 =

θ (2400 - 8000) K cosh (943 × 10 × L) + 3.53 × 10 sinh (943 × 10 × L)

A trial-and-error solution yields L = 510 × 10-9 m = 510 nm <

Continued…

L

D = 15 × 10-9 m
x

Tb = 2400 K

2400 K ≤ Tc ≤ 3000 K

T∞ = 8000 K

h = 105 W/m2∙K
L

D = 15 × 10-9 m
x

Tb = 2400 K

2400 K ≤ Tc ≤ 3000 K

T∞ = 8000 K

h = 105 W/m2∙K



PROBLEM 3.109 (Cont.)

COMMENTS: (1) The importance of radiation heat transfer may be ascertained by evaluating
Eq. 1.9. Assuming large surroundings at a temperature of Tsur = 8000 K and an emissivity of
unity, the radiation heat transfer coefficient at the fin tip is

2 2
r sur sur

-8 2 4 2 2 4 2

h  = εσ(T(x = L) + T ) T (x=L) + T

= 5.67 × 10 W/m K × (3000 K + 8000 K) × (3000 K) + (8000 K) = 4.5 × 10 W/m K

 
 

  
 

We see that hr < h, but radiation may be important. (2) The thermal conductivity has been
evaluated at 1500 K and extrapolated to a much higher temperature. More accurate values of the
thermal conductivity, accounting for the high temperature and possible nanoscale heat transfer
effects, are desirable. (3) If the nanowire were to grow rapidly, the transient temperature
distribution within the nanowire would need to be evaluated.



PROBLEM 3.110

KNOWN: Process for growing thin, photovoltaic grade silicon sheets. Sheet dimensions, ambient
temperature and heat transfer coefficient.

FIND: The velocity at which the silicon sheet can be extracted from the pool of molten silicon.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state, one-dimensional conditions, (2) Negligible radiation heat
transfer, (3) Silicon sheet behaves as an infinite fin, (4) Constant properties, (5) Neglect advection
inside the silicon sheet, (6) Neglect the presence of the strings, (7) Molten silicon is isothermal at the
melting point (1685 K).

PROPERTIES: Table A-1, Silicon (T = (1685 K + 800 K)/2 = 1243 K): k = 25.3 W/mK, = 2330
kg/m3, hsl = 1.8  106 J/kg (given).

ANALYSIS: The velocity is expected to be very small. Therefore, heat transfer within the silicon
sheet may be considered to be by conduction only. In addition, thermal energy is generated due to
solidification at the solid-liquid interface, and must be removed by conduction along the silicon sheet.
Therefore,

si si si sl condslmh W t V h q  (1)

From Table 3.4 for an infinite fin

cond 2( ) ( )f c b si si si si fq q M hPkA h W t kW t T T       (2)

Combining Equations (1) and (2) yields

 

 

si si si si
si

si si sl

2 6 6

3 -6 6

2 ( )

2 7.5W/m K (0.085m 150 10 m) 25.3W/m K 0.085m 150 10 m
1685K 800K

2330kg/m 0.085m 150 10 m 1.8 10 J/kg

f

h W t kW t
V T T

W t h


 


 

         
 

    

-6= 335 10 m/s 1000mm/m 60s/min = 20.1 mm/min   <
Continued...
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Wsi = 85 mm
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sheet



PROBLEM 3.110 (Cont.)

COMMENTS: (1) The rate at which the photovoltaic sheet can be manufactured is limited by heat
transfer effects. If the velocity were increased above the value calculated, the solid sheet would be
lifted out of the molten pool of silicon, and the manufacturing process would stop. If the velocity were
below the value calculated, the solid-liquid interface would begin to propagate downward into the
pool, increasing the thickness of the silicon sheet. (2) As the thickness of the photovoltaic sheet is
reduced, less silicon is needed to fabricate a solar panel, reducing manufacturing costs, reducing
energy consumption in the manufacturing process, and conserving natural resources. Equally
important, as the thickness of the sheet is reduced, the velocity at which the sheet can be pulled from
the pool of molten silicon can be increased, resulting in production of more photovoltaic surface area
per unit time.



PROBLEM 3.111

KNOWN: Surface conditions and thickness of a solar collector absorber plate. Temperature of
working fluid.

FIND: (a) Differential equation which governs plate temperature distribution, (b) Form of the
temperature distribution.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Adiabatic
bottom surface, (4) Uniform radiation flux and convection coefficient at top, (5) Temperature of
absorber plate at x = 0 corresponds to that of working fluid.

ANALYSIS: (a) Performing an energy balance on the differential control volume,

x rad x+dx convq dq q dq     

where
 

 

x+dx x x
rad rad
conv

q q dq / dx dx
dq q dx
dq h T T dx

   
  
   

Hence,    rad xq dx= dq / dx dx+h T T dx.  

From Fourier’s law, the conduction heat rate per unit width is

 
2

rad
x 2

qd T h
q k t dT/dx T T 0.

kT ktdx



       <

(b) Defining 2 2 2 2T T ,d T/dx d / dx    and the differential equation becomes,

2
rad

2

qd h
0.

kt ktdx





  

It is a second-order, differential equation with constant coefficients and a source term, and its general
solution is of the form

+ x - x 2
1 2C e C e S/    

where  1/ 2
radh/kt , S=q / kt. 

Appropriate boundary conditions are:

  o o x=L
0 T T , d /dx 0.     

Hence, 2
o 1 2C C S/   

+ L - L 2 L
1 2 2 1x=L

d /dx C e C e 0 C C e       

Hence,        2 2 L 2 -2 L
1 0 2 0C S/ / 1 e C S/ / 1 e         

 
x - x

2 2
0 2 L -2 L

e e
S/ S/ .

1+e 1+e

 

 
   

 
    

  

<



PROBLEM 3.112

KNOWN: Dimensions of a plate insulated on its bottom and thermally joined to heat sinks at its
ends. Net heat flux at top surface.

FIND: (a) Differential equation which determines temperature distribution in plate, (b) Temperature
distribution and heat loss to heat sinks.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state, (2) One-dimensional conduction in x (W,L>>t), (3) Constant
properties, (4) Uniform surface heat flux, (5) Adiabatic bottom, (6) Negligible contact resistance.

ANALYSIS: (a) Applying conservation of energy to the differential control volume, qx + dq

= qx +dx, where qx+dx = qx + (dqx/dx) dx and  odq=q W dx .  Hence,  x odq / dx q W=0.

From Fourier’s law,  xq k t W dT/dx.   Hence, the differential equation for the

temperature distribution is

2
o

o 2

qd dT d T
ktW q W=0 0.

dx dx ktdx

 
    

 
<

(b) Integrating twice, the general solution is,

  2o
1 2

q
T x x C x +C

2kt


  

and appropriate boundary conditions are T(0) = To, and T(L) = To. Hence, To = C2, and

2o o
o 1 2 1

q q L
T L C L+C and C .

2kt 2kt

 
   

Hence, the temperature distribution is

   2o
o

q
T x x Lx T .

2kt


    <

Applying Fourier’s law at x = 0, and at x = L,

   
x=0

o o
x=0

q q WLL
q 0 k Wt dT/dx) kWt x

kt 2 2

    
          

  

   
x=L

o o
x=L

q q WLL
q L k Wt dT/dx) kWt x

kt 2 2

    
            

Hence the heat loss from the plates is  o oq=2 q WL/2 q WL.  <

COMMENTS: (1) Note signs associated with q(0) and q(L). (2) Note symmetry about x =

L/2. Alternative boundary conditions are T(0) = To and dT/dx)x=L/2=0.



PROBLEM 3.113 
 
KNOWN:  Dimensions and surface conditions of a plate thermally joined at its ends to heat sinks at 
different temperatures.  Heat flux into top of plate.  Convection conditions beneath plate. 
 
FIND:  (a) Differential equation which determines temperature distribution in plate, (b) Temperature 
distribution and an expression for the heat rate from the plate to the sinks, and (c) Compute and plot 
temperature distribution and heat rates corresponding to changes in different parameters. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in x (W,L >> t), (3) 
Constant properties, (4) Uniform surface heat flux and convection coefficient, (5) Negligible contact 
resistance. 
 
ANALYSIS:  (a) Applying conservation of energy to the differential control volume 
 x o x dx convq dq q dq++ = +  
where 
 ( )x dx x xq q dq dx dx+ = +                         ( )( )convdq h T T W dx∞= − ⋅  
Hence, 

 ( ) ( ) ( )( )x o x xq q W dx q dq dx dx h T T W dx∞′′+ ⋅ = + + − ⋅                   ( )x
o

dq
hW T T q W

dx ∞ ′′+ − = . 

Using Fourier’s law, ( )xq k t W dT dx= − ⋅ , 

 ( )
2

o2
d T

ktW hW T T q
dx

W∞ ′′− + − =                        ( )
2

o
2

qd T h
T T 0

kt ktdx
∞

′′
− − + = . < 

(b) Introducing T Tθ ∞≡ − , the differential equation becomes 

 
2

o
2

qd h
0

kt ktdx

θ
θ

′′
− + = . 

This differential equation is of second order with constant coefficients and a source term.  With 
2 h ktλ ≡  and oS q kt′′≡ , it follows that the general solution is of the form 

 x x 2
1 2C e C e Sλ λθ λ+ −= + + . (1) 

Appropriate boundary conditions are:     o o L L(0) T T (L) T Tθ θ θ θ∞ ∞= − ≡ = − ≡  (2,3) 
 
Substituting the boundary conditions, Eqs. (2,3) into the general solution, Eq. (1), 

 0 0 2
o 1 2C e C e Sθ λ= + +                         L L 2

L 1 2C e C e Sλ λθ λ+ −= + +  (4,5) 
To solve for C2, multiply Eq. (4) by -e+λL and add the result to Eq. (5), 

 ( ) ( )L L L 2 L
o L 2e C e e S e 1λ λ λ λθ θ λ+ + − +− + = − + + − +  

 ( ) ( ) ( )L 2 L L L
2 L oC e S e 1 e eλ λ λ λθ θ λ+ + + −= − − − + − +⎡ ⎤

⎢ ⎥⎣ ⎦
 (6) 

 
Continued... 



 
PROBLEM 3.113 (Cont.) 

 
Substituting for C2 from Eq. (6) into Eq. (4), find 

 ( ) ( ) ( ){ }L 2 L L L 2
1 o L oC e S e 1 e e Sλ λ λ λθ θ θ λ λ+ + + −= − − − − + − + −⎡ ⎤

⎢ ⎥⎣ ⎦
 (7) 

 
Using C1 and C2 from Eqs. (6,7) and Eq. (1), the temperature distribution can be expressed as 

( )
( )

( )
( ) ( ) ( )

( ) ( )x L L x
o L 2

sinh x sinh x sinh x S
(x) e e 1 e 1 e

sinh L sinh L sinh L
λ λ λ λλ λ λ

θ θ θ
λ λ λ λ

+ + + += − + + − − + −
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (8)< 

 
The heat rate from the plate is ( ) ( )p x xq q 0 q L= − +  and using Fourier’s law, the conduction heat rates, 

with Ac = W⋅t, are 

 ( )
( ) ( )

L
0

x c c o L
x 0

d e
q 0 kA kA e

dx sinh L sinh L

λθ λ
λ λ θ θ

λ λ=
= − = − − +

⎧⎡ ⎤⎪⎞ ⎢ ⎥⎨⎟
⎠ ⎢ ⎥⎪⎣ ⎦⎩

 

  
( )

L

2
1 e S
sinh L

λ
λ λ

λ λ

+−
+ − −

⎫⎡ ⎤ ⎪
⎢ ⎥ ⎬
⎢ ⎥ ⎪⎣ ⎦ ⎭

 < 

 ( )
( )

( ) ( )
( )

L
L

x c c o L
x L

cosh Ld e
q L kA kA e cosh L

dx sinh L sinh L

λ
λ λ λθ

λ λ λ θ θ
λ λ=

= − = − − +
⎧⎡ ⎤⎪⎞ ⎢ ⎥⎨⎟

⎠ ⎢ ⎥⎪⎣ ⎦⎩
 

  
( )

( )
L

L
2

1 e S
cosh L e

sinh L

λ
λλ λ λ

λ λ

+
+−

+ − −
⎫⎡ ⎤ ⎪

⎢ ⎥ ⎬
⎢ ⎥ ⎪⎣ ⎦ ⎭

 < 

 
(c) For the prescribed base-case conditions listed below, the temperature distribution (solid line) is shown 
in the accompanying plot.  As expected, the maximum temperature does not occur at the midpoint, but 
slightly toward the x-origin.  The sink heat rates are 

 ( ) ( )x xq 0 17.22 W q L 23.62 W′′ ′′= − =  < 
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q''o = 20,000 W/m^2;  h = 50 W/m^2.K
q''o = 30,000 W/m^2;  h = 50 W/m^2.K
q''o = 20,000 W/m^2;  h = 200 W/m^2.K
q''o =  4927 W/m^2 with q''x(0) = 0; h = 200 W/m^2.K   

The additional temperature distributions on the plot correspond to changes in the following parameters, 
with all the remaining parameters unchanged:  (i) oq′′  = 30,000 W/m2, (ii) h = 200 W/m2⋅K, (iii) the value 
of oq′′  for which xq′′ (0) = 0 with h = 200 W/m2⋅K.  The condition for the last curve is oq′′  = 4927 W/m2 
for which the temperature gradient at x = 0 is zero. 
 
Base case conditions are: oq′′  = 20,000 W/m2, To = 100°C, TL = 35°C, T∞ = 25°C, k = 25 W/m⋅K, h = 50 
W/m2⋅K, L = 100 mm, t = 5 mm, W = 30 mm. 



PROBLEM 3.114

KNOWN: Wire diameters associated with a thermocouple junction, value of the convection heat
transfer coefficient.

FIND: Minimum wire lengths necessary to ensure the junction temperature is at the gas temperature.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state, one-dimensional conditions, (2) Negligible radiation heat
transfer, (3) Constant properties, (4) Infinitely long fin behavior.

PROPERTIES: Table A-1, Copper ( T = 300 K): k = 401 W/mK; Constantan ( T = 300 K): k = 23
W/mK; Given, Chromel: k = 19 W/mK; Alumel: k = 29 W/mK.

ANALYSIS: To ensure the junction temperature is at the gas temperature (that is, the junction
temperature is not influenced by the sting temperature) we require the two wires to behave as infinitely
long fins. From Example 3.9, Comment 1, the requirement is,

1/2 1/2
1 2

1 24.6 ; 4.6c ck A k A
L L

hP hP

   
    

   

where L = L1 + L2. With Ac = D2/4 =  (125  10-6m)2/4 = 12.27  10-9m2 and P = D =   125 
10-6 m = 393  10-6 m, we may calculate the following values of L1, L2, and L.

Material L1 (mm) L2 (mm)

(1) Copper 19.5 -
(2) Constantan - 4.70

L = L1 + L2 24.2 mm <

(1) Chromel 4.24 -
(2) Alumel - 5.23

L = L1 + L2 9.47 mm <

COMMENTS: Use of the chromel-alumel thermocouple junction leads to a substantial reduction in
the size of the measurement device, while simultaneously minimizing measurement error associated
with conduction along the wires to or from the sting.

h = 700 W/m2∙K
T

L2

Sting

L1

Thermocouple junction

L

D = 125 m

x1

x2



PROBLEM 3.115 
 
KNOWN:  Thin plastic film being bonded to a metal strip by laser heating method; strip dimensions and 
thermophysical properties are prescribed as are laser heating flux and convection conditions. 
 
FIND:  (a) Expression for temperature distribution for the region with the plastic strip, -w1/2 ≤ x ≤ w1/2, 
(b) Temperature at the center (x = 0) and the edge of the plastic strip (x = ± w1/2) when the laser flux is 
10,000 W/m2; (c) Plot the temperature distribution for the strip and point out special features. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in x-direction only, (3) 
Plastic film has negligible thermal resistance, (4) Upper and lower surfaces have uniform convection 
coefficients, (5) Edges of metal strip are at air temperature (T∞), that is, strip behaves as infinite fin so that 
w2 → ∞, (6) All the incident laser heating flux oq′′  is absorbed by the film, (7) Negligible radiation heat 
transfer. 
 
PROPERTIES:  Metal strip (given):  ρ = 7850 kg/m3, cp = 435 J/kg⋅m3, k = 60 W/m⋅K. 
 
ANALYSIS:  (a) The strip-plastic film arrangement can be modeled as an infinite fin of uniform cross 
section a portion of which is exposed to the laser heat flux on the upper surface.  The general solutions for 
the two regions of the strip, in terms of ( )T x Tθ ∞≡ − , are 

 10 x w 2≤ ≤  ( ) mx mx 2
1 1 2x C e C e M mθ + −= + +  (1) 

  ( )1/ 2
o c oM q P 2kA q kd m 2h kd′′ ′′= = =  (2,3) 

 1w 2 x≤ ≤ ∞  ( ) mx mx
2 3 4x C e C eθ + −= + . (4) 

Four boundary conditions can be identified to evaluate the constants: 

At x = 0: ( ) 0 01
1 2 1 2

d
0 0 C me C me 0 C C

dx

θ −= = − + → =  (5) 

At x = w1/2: ( ) ( )1 2 1w 2 w 2θ θ=   

  1 1 1 1mw 2 mw 2 mw 2 mw 22
1 2 3 4C e C e M m C e C e+ − + −+ + = +  (6) 

At x = w1/2: ( ) ( )1 1 2 1d w 2 / dx d w 2 / dxθ θ=   

  1 1 1 1mw 2 mw 2 mw 2 mw 2
1 2 3 4mC e mC e 0 mC e mC e+ − + −− + = −  (7) 

At x → ∞: ( )2 3 4 30 C e C e C 0θ ∞ −∞∞ = = + → =  (8) 
With C3 = 0 and C1 = C2, combine Eqs. (6 and 7) to eliminate C4 to find 

 
1

2

1 2 mw 2
M m

C C
2e

= = − . (9) 

and using Eq. (6) with Eq. (9) find 

 ( ) 1mx / 22
4 1C M m sinh mw 2 e−=  (10) 

 
Continued... 



 
PROBLEM 3.115 (Cont.) 

 
Hence, the temperature distribution in the region (1) under the plastic film, 0 ≤ x ≤ w1/2, is 

 ( ) ( ) ( )1
1

2
mw 2mx mx

1 mw 2 2 2
M m M M

x e e 1 e cosh mx
m m2e

−+ −= − + + = −θ  (11) < 

and for the region (2), x ≥ w1/2, 

 ( ) ( ) mx
2 12

M
x sinh mw 2 e

m
θ −=  (12) 

(b) Substituting numerical values into the temperature distribution expression above, θ1(0) and θ1(w1/2) 
can be determined.  First evaluate the following parameters: 

 2 2M 10, 000 W m 60 W m K 0.00125 m 133, 333 K m= ⋅ × =  

 ( )1/ 22 1m 2 10 W m K 60 W m K 0.00125 m 16.33 m−= × ⋅ ⋅ × =  

Hence, for the midpoint x = 0, 

 ( )
( )

( ) ( )
2

1
1 21

133, 333 K m
0 1 exp 16.33 m 0.020 m cosh 0 139.3 K

16.33 m

θ −

−
= − − × × =⎡ ⎤

⎣ ⎦  

 ( ) ( )1 1T 0 0 T 139.3 K 25 C 164.3 Cθ ∞= + = + =o o . < 
 
For the position x = w1/2 = 0.020 m, 

 ( ) ( )1
1 1w 2 500.0 1 0.721cosh 16.33 m 0.020 m 120.1Kθ −= − × =⎡ ⎤

⎣ ⎦  

 ( )1 1T w 2 120.1K 25 C 145.1 C= + =o o . < 
 
(c) The temperature distributions, θ1(x) and θ2(x), are shown in the plot below.  Using IHT, Eqs. (11) and 
(12) were entered into the workspace and a graph created.  The special features are noted: 
 
(1) No gradient at midpoint, x = 0; symmetrical 
distribution. 
 
(2) No discontinuity of gradient at w1/2  
(20 mm). 
 
(3) Temperature excess and gradient approach 
zero with increasing value of x. 
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Region 1 - constant heat flux, q''o
Region 2 - x >= w1/2   

COMMENTS:  How wide must the strip be in order to satisfy the infinite fin approximation such that θ2 
(x → ∞) = 0?  For x = 200 mm, find θ2(200 mm) = 6.3°C; this would be a poor approximation.  When x = 
300 mm, θ2(300 mm) = 1.2°C; hence when w2/2 = 300 mm, the strip is a reasonable approximation to an 
infinite fin. 



PROBLEM 3.116

KNOWN: Thermal conductivity, diameter and length of a wire which is annealed by passing an
electrical current through the wire.

FIND: (a) Steady-state temperature distribution along wire, (b) Maximum wire temperature, (c)
Average wire temperature.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction along the wire, (3)
Constant properties, (4) Negligible radiation, (5) Uniform convection coefficient h.

ANALYSIS: (a) Applying conservation of energy to a differential control volume,

x g conv x+dxq E dq q 0   

 2x
x+dx x x

dq
q q dx q k D / 4 dT/dx

dx
   

     2
conv gdq h D dx T T E q D / 4 dx.    

Hence,

       
2

2 2
2

d T
k D / 4 dx+q D / 4 dx h Ddx T T 0

dx
     

or, with T T ,  
2

2

d 4h q
0

kD kdx


  



The solution (general and particular) to this nonhomogeneous equation is of the form

mx -mx
1 2 2

q
C e C e

km
   



where m2 = (4h/kD). The boundary conditions are:

0 0
1 2 1 2

x=0

d
0 m C e mC e C C

dx
    



   
2

mL -mL
1 1 22 mL -mL

q q/km
L 0 C e e C C

km e e



      



 

Continued...



PROBLEM 3.116 (Cont.)

The temperature distribution has the form

mx -mx

2 mL -mL 2

q e e q cosh mx
T T 1 T 1 .

cosh mLkm e +e km
 

   
        

   

  <

(b) The maximum wire temperature exists at x = 0. Hence,

max 2 2

cosh(0) 1
( 0) 1 1

cosh( ) cosh( )

q q
T T x T T

mL mLkm km
 

   
          

   

  <

(c) The average wire temperature may be obtained by evaluating the expression

20 0

1 1 cosh( )
( ) 1

cosh( )

L L

x x

q mx
T T x dx T dx

L L mLkm


 

  
     

  
 



2 3
tanh( )

q q
T mL

km Lkm
  

  <

COMMENTS: (1) This process is commonly used to anneal wire and spring products. It is also used
for flow measurement based upon the principle that the maximum or average wire temperature varies
with the value of m and, hence, the convective heat transfer coefficient h and, ultimately, the fluid

velocity. (2) To check the result of part (a), note that T(L) = T(-L) = T.



PROBLEM 3.117

KNOWN: Electric power input and mechanical power output of a motor. Dimensions of housing, mounting pad
and connecting shaft needed for heat transfer calculations. Temperature of ambient air, tip of shaft, and base of
pad.

FIND: Housing temperature.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in pad and shaft, (3) Constant
properties, (4) Negligible radiation.

ANALYSIS: Conservation of energy yields

elec mech h p sP P q q q 0    

 
 h2 L b

h h h h p p s
T T cosh mL /

q h A T T , q k W , q M
t sinh mL

 


 
   

   
1/ 221/ 22 3

L s s s s h0, mL 4h L / k D , M= D h k T T .
4


 

 
   
 
 

Hence
   

 

1/ 2
2 3

s s h

s 1/ 22
s s

/ 4 D h k T T
q

tanh 4h L / k D

 
    



Substituting, and solving for (Th - T),

    
elec mech

h 1/ 2 1/ 22 2 3 2
h h p s s s s

P P
T T

h A k W / t+ / 4 D h k / tanh 4h L / k D



 



    
1/ 2 1/ 22 3 2

s s s s/ 4 D h k 6.08 W/K, 4h L / k D 3.87, tanhmL=0.999  

 

   

3 4

h 2

25 15 10 W 10 W
T T

20+4.90+6.15 W/K10 2+0.5 0.7 / 0.05 6.08 / 0.999 W/K


 
  

  
  

h hT T 322.1K T 347.1 C    <

COMMENTS: (1) Th is large enough to provide significant heat loss by radiation from the

housing. Assuming an emissivity of 0.8 and surroundings at 25C,  4 4
rad h surhq A T T  = 4347

W, which compares with  conv h hq hA T T 5390 W.   Radiation has the effect of

decreasing Th. (2) The infinite fin approximation, qs = M, is excellent.



PROBLEM 3.118

KNOWN: Dimensions, convective conditions, bipolar plate, hydrogen and air temperatures
within a fuel cell.

FIND: (a) The differential equation governing the membrane temperature distribution, T(x), (b)
Solution of the equation of part (a), (c) Temperature distributions associated with carbon
nanotube loadings of 0 and 10 volume percent.

SCHEMATIC:

Hydrogen Air

t = 0.42 mm
Tbp = 80°C

2L = 3 mm

Air: Ta = 80°C

ha = 35 W/m2∙K

Hydrogen: Th = 80°C

hh = 235 W/m2∙K

x

qconv,h qconv,a

q
.

Hydrogen Air

t = 0.42 mm
Tbp = 80°C

2L = 3 mm

Air: Ta = 80°C

ha = 35 W/m2∙K

Hydrogen: Th = 80°C

hh = 235 W/m2∙K

x

qconv,h qconv,a

q
.

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional heat transfer, (3) Uniform
volumetric energy generation, (4) Negligible contact resistance.

ANALYSIS:
(a) Performing an energy balance on the differential control volume,

x g x + dx conv,a conv,hq + dq = q + dq + dq     (1)

x + dx x xq = q + (dq dx)dx  

where gdq = q t dx   , conv,a a adq = h (T - T )dx , conv,h h h)dq = h (T - T dx

Noting that Ta = Th, Eq, (1) becomes

 x a a h h x a h hq t dx = (dq / dx)dx + h (T - T )dx + h (T - T )dx = (dq /dx)dx + (h + h )(T - T ) dx  

From Fourier’s law,

xq = - kt dT/dx

and  
2

a h a2
eff,x eff,x

d T 1 q
- (h + h )(T - T ) + 0

k t kdx


 <

Continued…



PROBLEM 3.118 (Cont.)

(b) Defining aθ = T - T and
2 2

2 2

d T d θ
=

dx dx
, the differential equation becomes

2
a h

2
eff,x eff,x

(h + h )d θ q
- θ +  = 0

k t kdx



This is the second-order, differential equation, and its general solution is of the form

+λx -λx 2
1 2θ = C e  + C e  + S / λ

where

1/2

a h

eff,x eff,x

h + h q
λ =  ,  S = 

k t k

 
  
 



Appropriate boundary conditions are:

0 0 x = Lθ(0) = T  - T  = θ ,   dθ dx) = 0.

Hence, 2
0 1 2θ  = C  + C  + S/λ

+λL -λL 2λL
x = L 1 2 2 1dθ dx)  = C λe  - C λe  = 0         C  = C e

Hence,        2 2λL 2 -2λL
1 0 2 0C  = θ  - S / λ 1 + e          C  = θ  - S / λ 1 + e

λx -λx
2 2

0 2λL -2λL

e e
θ = (θ  - S / λ )  +  + S / λ .

1 + e 1 + e

 
 
  

<

(c) For 2 2
a h eff,xh = 35 W/m K , h = 235 W/m K and k = 0.79 W/m K  

1/22 2
-1

-3

35 W/m K + 235 W/m K
λ =  = 902 m

0.79 W/m K × 0.42 × 10 m

  
 

  

For
6 3

6 3 6 210 × 10 W/m
q = 10 × 10 W/m , S = = 12.7 × 10 K/m

0.79 W/m K


The temperature distribution without, and with carbon nanotube loading, is shown below. <

Continued…



PROBLEM 3.118 (Cont.)

keff,x = 0.79 W/m^2K

0 0.3 0.6 0.9 1.2 1.5

x (mm)

80

82

84

86

88

90

T
(C

)

Without carbon nanotube loading.

keff,x = 15.1 W/m^2K

0 0.3 0.6 0.9 1.2 1.5

x (mm)

80

82

84

86

88

90

T
(C

)

With carbon nanotube loading.

COMMENTS: (1) The carbon nanotubes appear to be effective in reducing the maximum
temperature of the membrane. (2) Contact resistances between the bipolar plates and the
membrane can be large. Hence, the actual membrane temperature will be higher than indicated
with this analysis.



PROBLEM 3.119

KNOWN: Rod (D, k, 2L) that is perfectly insulated over the portion of its length –L  x  0 and

experiences convection (T, h) over the portion 0  x  + L. One end is maintained at T1 and the

other is separated from a heat sink at T3 with an interfacial thermal contact resistance tcR .

FIND: (a) Sketch the temperature distribution T vs. x and identify key features; assume T1 > T3 >

T2; (b) Derive an expression for the mid-point temperature T2 in terms of thermal and geometric

parameters of the system, (c) Using numerical values, calculate T2 and plot the temperature
distribution. Describe key features and compare to your sketch of part (a).

SCHEMATIC:

“

D = 5 mm
L = 50 mm
k = 100 W/m-K
R = 4x10 m -K/Wtc

-4 2

Rtc“T = 20 Co
oo

Insulation h = 500 W/m -K2

Rod, D, k

T = 200 C1
o

T = 100 C3
o

T2

Air

-L 0 +L
x

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in rod for –L  x  0,
(3) Rod behaves as one-dimensional extended surface for 0  x  +L, (4) Constant properties.

ANALYSIS: (a) The sketch for the temperature distribution is shown below. Over the insulated
portion of the rod, the temperature distribution is linear. A temperature drop occurs across the
thermal contact resistance at x = +L. The distribution over the exposed portion of the rod is non-
linear. The minimum temperature of the system could occur in this portion of the rod.

T(x)

0
x

-L +L

T3

Too

T2

T1 Linear

Non-linear

Matching temperature
and gradients

(b) To derive an expression for T2, begin with the general solution from the conduction analysis for a
fin of uniform cross-sectional area, Eq. 3.71.

  mx mx
1 2x C e C e 0 x L      (1)

where m = (hP/kAc)
1/2

and  = T(x) - T. The arbitrary constants are determined from the boundary
conditions.

At x = 0, thermal resistance of rod

 1
x c c 1 1

x 0

0d
q (0) kA kA T T

dx L





    

 


 0 0 0 0
1 2 1 1 2

1
mC e m C e C e C e

L
            

(2)

Continued …
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q (0)x”

x = 0

Rtc“

q (L)x”

x = L

3

1 

At x=L, thermal contact resistance

 
  3

x c 3 3
tc cx L

Ld
q +L kA T T

dx R / A





    



 


mL mL mL mL
1 2 1 2 3

tc

1
k mC e mC e C e C e

R
              

(3)

Eqs. (2) and (3) cannot be rearranged easily to find explicit forms for C1 and C2. The constraints will

be evaluated numerically in part (c). Knowing C1 and C2, Eq. (1) gives

  0 0
2 2 1 20 T T C e C e       (4)

(c) With Eqs. (1-4) in the IHT Workspace using numerical values shown in the schematic, find T2 =

62.1C. The temperature distribution is shown in the graph below.

Temperature distribution in rod

-50 -30 -10 10 30 50

x-coordinate, x (mm)

0

50

100

150

200

T
e

m
p

e
ra

tu
re

,
T

(x
)

(C
)

COMMENTS: (1) The purpose of asking you to sketch the temperature distribution in part (a) was
to give you the opportunity to identify the relevant thermal processes and come to an understanding of
the system behavior.

(2) Sketch the temperature distributions for the following conditions and explain their key features:

(a) tcR 0,  (b) tcR ,   and (c) the exposed portion of the rod behaves as an infinitely long fin;

that is, k is very large.



PROBLEM 3.120

KNOWN: Trench length and nanotube diameter. Laser irradiation of known power at two distinct
axial locations. Measured nanotube temperatures at the trench half-width. Nanotube thermal
conductivity. Island temperature.

FIND: Thermal contact resistances at the left and right ends of the nanotube.

SCHEMATIC:

s = 5 m



s/2
= 2.5 m

Laser irradiationTemperature measurement

Rt,c,L Rt,c,R

T = Tsur = 300 K

Carbon nanotube
D = 14 nm

= 1.5 or 3.5 m

q = 10 W

ASSUMPTIONS: (1) Steady-state, one-dimensional conduction. (2) Constant properties. (3)
Negligible radiation and convection losses.

ANALYSIS: Thermal circuits may be drawn for the two laser irradiation locations as follows. The
top circuit corresponds to irradiation on the left half of the nanotube. The bottom circuit corresponds
to irradiation of the right half of the nanotube.

The following equations may be written for irradiation of the left side of the nanotube (top circuit).

,1 ,1l rq q q  (1)

max,1
,1

1
, ,

l

t c l
cn cn

T T
q

R
k A







(2)

Continued…

T T

T2 = 326.4 K

Rt,c,rRt,c,l

qr,2ql,2

Tmax,1

Tmax,2

T T

q = 10 W
T1 = 324.5 K

Rt,c,rRt,c,l

qr,1ql,1 1

kcnAcn

s/2 - 1

kcnAcn

s/2

kcnAcn

q = 10 W

s/2

kcnAcn

2- s/2

kcnAcn

s - 2

kcnAcn

T T

T2 = 326.4 K

Rt,c,rRt,c,l

qr,2ql,2

Tmax,1

Tmax,2

T T

q = 10 W
T1 = 324.5 K

Rt,c,rRt,c,l

qr,1ql,1 1

kcnAcn

s/2 - 1

kcnAcn

s/2

kcnAcn

T T

q = 10 W
T1 = 324.5 K

Rt,c,rRt,c,l

qr,1ql,1 1

kcnAcn

s/2 - 1

kcnAcn

s/2 - 1

kcnAcn

s/2

kcnAcn

s/2

kcnAcn

q = 10 W

s/2

kcnAcn

s/2

kcnAcn

2- s/2

kcnAcn

2- s/2

kcnAcn

s - 2

kcnAcn



PROBLEM 3.120 (Cont.)

max,1
,1

1
, ,

/ 2 / 2r

t c r
cn cn cn cn

T T
q

s s
R

k A k A







 
(3)

1
,1

, ,
/ 2r

t c r
cn cn

T T
q

s
R

k A





(4)

For irradiation of the right side of the nanotube (bottom circuit),

,2 ,2l rq q q  (5)

max,2
,2

2
, ,

/ 2 / 2l

t c l
cn cn cn cn

T T
q

s s
R

k A k A







 

(6)

2
,2

, ,
/ 2l

t c l
cn cn

T T
q

s
R

k A





(7)

max,2
,2

2
, ,

r

t c r
cn cn

T T
q

s
R

k A








(8)

With kcn = 3100 W/mK, Acn = 1.54  10-16 m2, 1 = 1.5 m, T1 = 324.5 K, 2 = 3.5 m, and T2 = 326.4
K, Equations (1) through (8) may be solved simultaneously to yield

Tmax,1 = 331.0 K, ql,1 = 6.896  10-6 W, qr,1 = 3.104  10-6 W
Tmax,2 = 334.8 K, ql,2 = 4.00  10-6 W, qr,2 = 6.00  10-6 W

and

Rt,c,l = 1.35  106 K/W ; Rt,c,r = 2.65  106 K/W <

COMMENTS: (1) Assuming large surroundings, the maximum possible radiation loss is associated

with blackbody behavior and Tmax,1. For this situation, qrad,max = Ds( 4
max,2T - 4

surT ) = 5.67  10-8

W/m2K4    14  10-9 m  5  10-6 m  (334.84 – 3004)K4 = 55  10-10 W. This is much less than the
laser irradiation. Therefore, radiation heat transfer is negligible. (2) The carbon nanotube is not placed
symmetrically between the two islands. It is difficult to place a carbon nanotube with such accuracy.



PROBLEM 3.121 
 
KNOWN:  Temperature sensing probe of thermal conductivity k, length L and diameter D is mounted 
on a duct wall; portion of probe Li is exposed to water stream at ,iT∞  while other end is exposed to 

ambient air at ,oT∞ ; convection coefficients hi and ho are prescribed. 
 
FIND:  (a) Expression for the measurement error, err tip ,iT T T∞Δ = − , (b) For prescribed ,iT∞  and 

,oT∞ , calculate errTΔ  for immersion to total length ratios of 0.225, 0.425, and 0.625, (c) Compute 

and plot the effects of probe thermal conductivity and water velocity (hi) on errTΔ . 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in probe, (3) Probe is 
thermally isolated from the duct, (4) Convection coefficients are uniform over their respective regions. 
 
PROPERTIES:  Probe material (given):  k = 177 W/m⋅K. 
 
ANALYSIS:  (a) To derive an expression for 

errTΔ  = Ttip - ,iT∞ , we need to determine the 
temperature distribution in the immersed 
length of the probe Ti(x).  Consider the probe 
to consist of two regions:  0 ≤ xi ≤ Li, the 
immersed portion, and 0 ≤ xo ≤ (L - Li), the 
ambient-air portion where the origin 
corresponds to the location of the duct wall.  
Use the results for the temperature distribution 
and fin heat rate of Case A, Table 3.4: 

 

 
Temperature distribution in region i: 

 
( ) ( )( ) ( ) ( )

( ) ( ) ( )
i i i i i i ii i ,ii

b,i o ,i i i i i i i

cosh m L x h m k sinh L xT x T
T T cosh m L h m k sinh m L

θ
θ

∞

∞

− + −−
= =

− +
 (1) 

and the tip temperature, Ttip = Ti(Li) at xi = Li, is 

 
( ) ( ) ( )

( ) ( ) ( )
tip ,i i i

o ,i i i i i i i

T T cosh 0 h m k sinh 0
A

T T cosh m L h m k sinh m L
∞

∞

− +
= =

− +
 (2) 

and hence 

 ( )err tip ,i o ,iT T T A T T∞ ∞Δ = − = −  (3) < 
 
where To is the temperature at xi = xo = 0 which at present is unknown, but can be found by setting the 
fin heat rates equal, that is, 
 
 q qf o f i, ,= −  (4) 

Continued... 



 
PROBLEM 3.121 (Cont.) 

 

 ( ) ( )1/ 2 1/ 2
o c b,o i c b,ih PkA B h PkA Cθ θ⋅ = − ⋅  

 
Solving for To, find 
 

 
( )
( )

1/ 21/ 2
b,o o ,o i c i

1/ 2b,i o ,i oo c

T T h PkA C h C
T T h Bh PkA B

θ
θ

∞

∞

− ⎛ ⎞
= = − = −⎜ ⎟− ⎝ ⎠

 

 

 
1/ 2 1/ 2

i i
o ,o ,i

o o

h C h CT T T 1
h B h B∞ ∞

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥= + +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
 (5) 

 
where the constants B and C are, 
 

 
( ) ( ) ( )
( ) ( ) ( )

o o o o o o

o o o o o o

sinh m L h m k cosh m L
B

cosh m L h m k sinh m L
+

=
+

 (6) 

 

 
( ) ( ) ( )
( ) ( ) ( )

i i i i i i

i i i i i i

sinh m L h m k cosh m L
C

cosh m L h m k sinh m L
+

=
+

 (7) 

 
(b) To calculate the immersion error for prescribed immersion lengths, Li/L = 0.225, 0.425 and 0.625, 
we use Eq. (3) as well as Eqs. (2, 6, 7 and 5) for A, B, C, and To, respectively.  Results of these 
calculations are summarized below. 
 

Li/L Lo (mm) Li (mm) A B C To (°C) ΔTerr (°C)  
0.225 155 45 0.2328 0.5865 0.9731 76.7 -0.76 < 
0.425 115 85 0.0396 0.4639 0.992 77.5 -0.10 < 
0.625 75 125 0.0067 0.3205 0.9999 78.2 -0.01 < 

 
 
(c) The probe behaves as a fin having 
ends exposed to the cool ambient air and 
the hot ambient water whose 
temperature is to be measured.  As 
shown above, the probe is more accurate 
when more of its length is exposed to 
the water.  If the thermal conductivity is 
decreased, heat transfer along the probe 
length is likewise decreased, the tip 
temperature will be closer to the water 
temperature.  If the velocity of the water 
decreases, the convection coefficient  
will decrease, and the difference 
between the tip and water temperatures 
will increase. 
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)

Base case:  k = 177 W/m.K; ho = 1100 W/m^2.K
Low velocity flow:  k = 177 W/m.K; ho = 500 W/m^2.K
Low conductivity probe:  k = 50 W/m.K; ho = 1100 W/m^2.K  



PROBLEM 3.122 
 
KNOWN:   Rod protruding normally from a furnace wall covered with insulation of thickness Lins 
with the length Lo exposed to convection with ambient air.  
 
FIND:   (a) An expression for the exposed surface temperature To as a function of the prescribed 
thermal and geometrical parameters.  (b)  Will a rod of Lo = 100 mm meet the specified operating 
limit, T0 ≤ 100°C?   If not, what design parameters would you change? 
 
SCHEMATIC:    

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in rod, (3) Negligible 
thermal contact resistance between the rod and hot furnace wall,  (4) Insulated section of rod, Lins, 
experiences no lateral heat losses, (5) Convection coefficient uniform over the exposed portion of the 
rod, Lo,  (6) Adiabatic tip condition for the rod and (7) Negligible radiation exchange between rod and 
its surroundings. 
 
ANALYSIS:   (a) The rod can be modeled as a thermal network comprised of two resistances in 
series:  the portion of the rod, Lins, covered by insulation, Rins, and the portion of the rod, Lo, 
experiencing convection, and behaving as a fin with an adiabatic tip condition, Rfin.  For the insulated 
section: 
 
 ins ins cR L kA=  (1) 
 
For the fin, Table 3.4, Case B, Eq. 3.81,  

 
( ) ( )

fin b f 1/ 2
c o

1
R q

hPkA tanh mL
θ= =  (2) 

 ( )1/ 2 2
c cm hP kA A D 4 P Dπ π= = =  (3,4,5) 

From the thermal network, by inspection, 

 ( )o w fin
o w

fin ins fin ins fin

T T T T R
T T T T

R R R R R
∞ ∞

∞ ∞
− −

= = + −
+ +

 (6) < 

(b) Substituting numerical values into Eqs. (1) - (6) with Lo = 200 mm, 

 ( )o
6.298

T 25 C 200 25 C 109 C
6.790 6.298

= + − =
+

oo o  < 

( ) 4 22
ins c4 2

0.200 m
R 6.790 K W A 0.025 m 4 4.909 10 m

60 W m K 4.909 10 m
π −

−
= = = = ×

⋅ × ×
 

 ( ) ( )
1/ 22 2

finR 1 0.0347 W K tanh 6.324 0.200 6.298 K W= × =  

 ( ) ( )( )2 4 2 2 2
chPkA 15 W m K 0.025 m 60 W m K 4.909 10 m 0.0347 W Kπ −= ⋅ × × ⋅ × × =  

Continued... 
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 ( ) ( )( )1/ 22 4 2 11/ 2
cm hP kA 15 W m K 0.025 m 60 W m K 4.909 10 m 6.324 mπ − −= = ⋅ × ⋅ × × =  

Consider the following design changes aimed at reducing To ≤ 100°C.  (1) Increasing length of the fin 
portions:  with Lo = 400 and 600 mm, To is 102.8°C and 102.3°C, respectively.  Hence, increasing Lo 
will reduce To only modestly.  (2) Decreasing the thermal conductivity:  backsolving the above 
equation set with T0 = 100°C, find the required thermal conductivity is k = 14 W/m⋅K.  Hence, we 
could select a stainless steel alloy; see Table A.1.  (3) Increasing the insulation thickness:  find that for 
To = 100°C, the required insulation thickness would be Lins = 211 mm.  This design solution might be 
physically and economically unattractive.  (4) A very practical solution would be to introduce thermal 
contact resistance between the rod base and the furnace wall by “tack welding” (rather than a 
continuous bead around the rod circumference) the rod in two or three places.  (5) A less practical 
solution would be to increase the convection coefficient, since to do so, would require an air handling 
unit.   (6) Using a tube rather than a rod will decrease Ac.   For a 3 mm tube wall and 25 mm outside 
diameter, Ac = 2.07 × 10-4 m2, Rins = 16.103 K/W and Rfin = 8.61 K/W, yielding To = 86°C.  
(conduction within the air inside the tube is neglected). 
 
COMMENTS:  (1) Would replacing the rod by a thick-walled tube provide a practical solution? 
 
(2) The IHT Thermal Resistance Network Model and the Thermal Resistance Tool for a fin with an 
adiabatic tip were used to create a model of the rod.  The Workspace is shown below. 
 

// Thermal Resistance Network Model: 
// The Network: 

    
  
// Heat rates into node j,qij, through thermal resistance Rij 
q21 = (T2 - T1) / R21 
q32 = (T3 - T2) / R32 
 
// Nodal energy balances 
q1 + q21 = 0 
q2 - q21 + q32 = 0 
q3 - q32 = 0 
 
/* Assigned variables list: deselect the qi, Rij and Ti which are unknowns; set qi = 0 for embedded nodal 
points at which there is no external source of heat. */ 
T1 = Tw  // Furnace wall temperature, C 
//q1 =   // Heat rate, W 
T2 = To  // To, beginning of rod exposed length 
q2 =  0  // Heat rate, W; node 2; no external heat source 
T3 =  Tinf  // Ambient air temperature, C 
//q3 =   // Heat rate, W 
 
// Thermal Resistances: 
// Rod - conduction resistance 
R21 =  Lins / (k * Ac)       // Conduction resistance, K/W 
Ac = pi * D^2 / 4  // Cross sectional area of rod, m^2 
// Thermal Resistance Tools - Fin with Adiabatic Tip: 
R32 =  Rfin  //  Resistance of fin, K/W 
/* Thermal resistance of a fin of uniform cross sectional area Ac, perimeter P, length L, and thermal 
conductivity k with an adiabatic tip condition experiencing convection with a fluid at Tinf and coefficient h, */ 
Rfin = 1/ ( tanh (m*Lo) * (h * P * k * Ac ) ^ (1/2) )              // Case B, Table 3.4 
m = sqrt(h*P / (k*Ac)) 
P = pi * D                        // Perimeter, m 
// Other Assigned Variables: 
Tw = 200  // Furnace wall temperature, C 
k = 60   // Rod thermal conductivity, W/m.K 
Lins = 0.200 // Insulated length, m 
D = 0.025  // Rod diameter, m 
h = 15  // Convection coefficient, W/m^2.K 
Tinf = 25  // Ambient air temperature,C 

 Lo = 0.200 // Exposed length, m 



PROBLEM 3.123

KNOWN: Rod (D, k, 2L) inserted into a perfectly insulating wall, exposing one-half of its length to

an airstream (T, h). An electromagnetic field induces a uniform volumetric energy generation  q

in the imbedded portion.

FIND: (a) Derive an expression for Tb at the base of the exposed half of the rod; the exposed region
may be approximated as a very long fin; (b) Derive an expression for To at the end of the imbedded
half of the rod, and (c) Using numerical values, plot the temperature distribution in the rod and
describe its key features. Does the rod behave as a very long fin?

SCHEMATIC:

q
.

-L
+Lx

T = 20 Co
oo

h = 100 W/m -K2To Tb

Rod

D = 5 mm
L = 50 mm
k = 25 W/m-K
q = 1x10 W/m6 3.

-L

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in imbedded portion
of rod, (3) Imbedded portion of rod is perfectly insulated, (4) Exposed portion of rod behaves as an
infinitely long fin, and (5) Constant properties.

ANALYSIS: (a) Since the exposed portion of the rod (0  x  + L) behaves as an infinite fin, the fin
heat rate using Eq. 3.85 is

     1/ 2
x f c bq 0 q M hPkA T T    (1)

From an energy balance on the imbedded portion of the rod,

f cq q A L  (2)

Combining Eqs. (1) and (2), with P = D and Ac = D
2
/4, find

   1/ 2 1/ 21/ 2
b f c cT T q hPkA T qA L hPk

 
      (3) <

(b) The imbedded portion of the rod (-L  x  0) experiences one-dimensional heat transfer with
uniform q . From Eq. 3.48,

2

o b
qL

T T
2k

 
 <

(c) The temperature distribution T(x) for the rod is piecewise parabolic and exponential,

 
22

b
qL x

T x T L x 0
2k L

    
 
 
 



 
 

b

T x T
exp mx 0 x L

T T






    



where  1/ 2
m hP / kAc .

Continued …



PROBLEM 3.123 (Cont.)

The gradient at x = 0 will be continuous since we used this condition in evaluating Tb. The

distribution is shown below with To = 105.4C and Tb = 55.4C.

T(x) over embedded and exposed portions of rod
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COMMENTS: The assumption that the rod behaves as an infinitely long fin is accurate; we
see from the figure above that the temperature approaches the ambient temperature near the
end of the rod.



PROBLEM 3.124

KNOWN: Very long rod (D, k) subjected to induction heating experiences uniform volumetric

generation  q over the center, 30-mm long portion. The unheated portions experience convection

(T, h).

FIND: Calculate the temperature of the rod at the mid-point of the heated portion within the coil, To,

and at the edge of the heated portion, Tb.

SCHEMATIC:

L = 15 mm
x Very long rod, 5 mm dia.

q = 7.5x10 W/m6 3.

k = 25 W/m-K
x = 0 x = L Fin

q
.

q (L) = qx f”

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction with uniform q in

portion of rod within the coil; no convection from lateral surface of rod, (3) Exposed portions of rod
behave as infinitely long fins, and (4) Constant properties, (5) Neglect radiation.

ANALYSIS: The portion of the rod within the coil, 0  x  + L, experiences one-dimensional
conduction with uniform generation. From Eq. 3.48,

2

o b
qL

T T
2k

 


(1)

The portion of the rod beyond the coil, L  x  , behaves as an infinitely long fin for which the heat
rate from Eq. 3.85 is

     1/ 2
f x c bq q L hPkA T T   (2)

where P = D and Ac = D
2
/4. From an overall energy balance on the imbedded portion of the rod as

illustrated in the schematic above, find the heat rate as

in out genE E E 0    

f cq qA L 0  

f cq qA L  (3)

Combining Eqs. (1-3),

  1/ 21/ 2
b cT T qA L hPk


   (4)

 
2

1/ 21/ 2
o c

qL
T T qA L hPk

2k


  


 (5)

and substituting numerical values find

o bT 305 C T 272 C    <
COMMENT: Assuming 0.8  and Tsur = T∞ = 20°C, hrad = 14.6 W/m2·K. Hence, radiation is 
significant and would serve to substantially reduce both To and Tb.



PROBLEM 3.125 
 
KNOWN:  Dimensions, end temperatures and volumetric heating of wire leads.  Convection coefficient 
and ambient temperature. 
 
FIND:  (a) Equation governing temperature distribution in the leads, (b) Form of the temperature 
distribution. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state, (2) One-dimensional conduction in x, (3) Uniform volumetric 
heating, (4) Uniform h (both sides), (5) Negligible radiation, (6) Constant properties. 
 
ANALYSIS:  (a) Performing an energy balance for the differential control volume, 
 in out gE E E 0− + =& & &                                  x x dx convq q dq qdV 0+− − + =&  

 ( )c c c c
dT dT d dTkA kA kA dx hPdx T T qA dx 0
dx dx dx dx ∞

⎡ ⎤⎛ ⎞− − − − − − + =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
&  

 ( )
2

2 c

d T hP qT T 0
kA kdx

∞− − + =
&

 < 

(b)  With a reduced temperature defined as ( )cT T qA /hP∞Θ ≡ − − &  and 2
cm hP/kA≡ , the differential 

equation may be rendered homogeneous, with a general solution and boundary conditions as shown 

 
2

2
2

d m 0
dx

Θ
− Θ =                               ( ) mx mx

1 2x C e C e−Θ = +  

 b 1 2C CΘ = +                                   mL mL
c 1 2C e C e−Θ = +  

it follows that 

 
mL

b c
1 mL mL

eC
e e

−

−
Θ −Θ

=
−

 
mL

c b
2 mL mL

eC
e e−
Θ −Θ

=
−

 

 ( )
( ) ( )mL mx mL mx

b c c b
mL mL

e e e e
x

e e

− −

−

Θ −Θ + Θ −Θ
Θ =

−
 < 

 
COMMENTS:  If q&  is large and h is small, temperatures within the lead may readily exceed the 
prescribed boundary temperatures. 



PROBLEM 3.126 
 
KNOWN:  Dimensions and thermal conductivity of a gas turbine blade.  Temperature and convection 
coefficient of gas stream.  Temperature of blade base and maximum allowable blade temperature. 
 
FIND:  (a) Whether blade operating conditions are acceptable, (b) Heat transfer to blade coolant. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1)  One-dimensional, steady-state conduction in blade, (2) Constant k, (3) Adiabatic 
blade tip, (4) Negligible radiation. 
 
ANALYSIS:  Conditions in the blade are determined by Case B of Table 3.4. 
 
(a) With the maximum temperature existing at x = L, Eq. 3.80 yields 
 

 
( )
b

T L T 1
T T cosh mL

∞

∞

−
=

−
 

 

 ( ) ( )1/ 21/ 2 2 4 2
cm hP/kA 250W/m K 0.11m/20W/m K 6 10 m−= = ⋅ × ⋅ × ×  

 
 m = 47.87 m-1    and    mL = 47.87 m-1 × 0.05 m = 2.39 
 
From Table B.1, cosh mL = 5.51.  Hence, 
 

 ( )T L 1200 C (300 1200) C/5.51 1037 C= + − =o o o  < 
 
and the operating conditions are acceptable. 
 

(b) With ( ) ( ) ( )1/ 22 4 21/ 2
c bM hPkA 250W/m K 0.11m 20W/m K 6 10 m 900 C 517W−= Θ = ⋅ × × ⋅ × × − = −o , Eq. 

3.81 and Table B.1 yield 
 
 ( )fq M tanh mL 517W 0.983 508W= = − = −  
 

Hence, b fq q 508W= − =  < 
 
COMMENTS:  Radiation losses from the blade surface and convection from the tip will contribute to 
reducing the blade temperatures. 



PROBLEM 3.127 
 
KNOWN:  Dimensions of disc/shaft assembly.  Applied angular velocity, force, and torque.  Thermal 
conductivity and inner temperature of disc. 
 
FIND:  (a) Expression for the friction coefficient μ, (b) Radial temperature distribution in disc, (c) Value 
of μ for prescribed conditions. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional radial conduction, (3) Constant k, 
(4) Uniform disc contact pressure p, (5) All frictional heat dissipation is transferred to shaft from base of 
disc. 
 
ANALYSIS:  (a) The normal force acting on a differential ring extending from r to r+dr on the contact 
surface of the disc may be expressed as ndF p2 rdrπ= .  Hence, the tangential force is tdF p2 rdrμ π= , 
in which case the torque may be expressed as 

 2d 2 pr drτ πμ=  
For the entire disc, it follows that  

 2r 2 3
2o

22 p r dr pr
3
πτ πμ μ= =∫  

where 2
2p F rπ= .  Hence, 

 
2

3
2 Fr

τμ =  < 

(b) Performing an energy balance on a differential control volume in the disc, it follows that 
 cond,r fric cond,r drq dq q 0++ − =  

With ( )2 2
fric 2dq d 2 F r r drω τ μ ω= = , ( )cond,r dr cond,r cond,rq q dq dr dr+ = + , and 

( )cond,rq k 2 rt dT drπ= − , it follows that 

 ( ) ( )2 2
2

d rdT dr
2 F r r dr 2 kt dr 0

dr
μ ω π+ =  

or 

 
( ) 2

2
2

d rdT dr F r
dr ktr

μ ω

π
= −  

Integrating twice,  
 Continued... 



  

PROBLEM 3.127 (Cont.) 
 

 2 1
2
2

dT F Cr
dr r3 ktr

μ ω

π
= − +  

 

 3
1 22

2

FT r C nr C
9 ktr

μ ω

π
= − + +l  

 
Since the disc is well insulated at 

22 rr r , dT dr 0= =  and 
 

 2
1

F rC
3 kt
μ ω
π

=  
 
With ( )1 1T r T= , it also follows that 
 

 3
2 1 1 112

2

FC T r C nr
9 ktr

μ ω

π
= + − l  

 
Hence, 
 

 ( ) ( )3 3 2
1 12 12

F F r rT r T r r n
3 kt r9 ktr

μ ω μ ω
ππ

= − − + l  < 

 
(c) For the prescribed conditions, 
 

 
( )

3 8N m 0.333
2 200N 0.18m

μ ⋅
= =  < 

 
Since the maximum temperature occurs at r = r2,  

 ( )
3

2 1 2 2
max 2 1

2 1

F r r F r rT T r T 1 n
9 kt r 3 kt r
μ ω μ ω
π π

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= = − − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
l  

 
With ( ) ( )2F r 3 kt 0.333 200N 40rad/s 0.18m 3 15W/m K 0.012m 282.7 Cμ ω π π= × × × × ⋅ × = o , 
 

 
3

max
282.7 C 0.02 0.18T 80 C 1 282.7 C n

3 0.18 0.02

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

o
o o l  

 

 maxT 80 C 94.1 C 621.1 C 607 C= − + =o o o o  < 
 
COMMENTS:  The maximum temperature is excessive, and the disks should be actively cooled (by 
convection) at their outer surfaces. 
 
 



PROBLEM 3.128

KNOWN: Extended surface of rectangular cross-section with heat flow in the longitudinal direction.

FIND: Determine the conditions for which the transverse (y-direction) temperature difference is
negligible compared to the temperature difference between the surface and the environment, such that
the 1-D analysis of Section 3.6.1 is valid by finding: (a) An expression for the conduction heat flux at

the surface,  yq t , in terms of Ts and To, assuming the transverse temperature distribution is

parabolic, (b) An expression for the convection heat flux at the surface for the x-location; equate the

two expressions, and identify the parameter that determines the ratio (To – Ts)/(Ts - T); and (c)
Developing a criterion for the validity of the 1-D assumption used to model an extended surface.

SCHEMATIC:

Tb Ts(x)

x
2t

t

y

x

Too,h

To(x)

qcv”

”q (t)y

Temperature distribution at any x-location
At an x-location,
surface energy balance

Ts(x) To(x)
0

y

t
Ts(x)

y

tTo(x)

2To(x)T(y)
=

-
-

ASSUMPTIONS: (1) Steady-state conditions, (2) Uniform convection coefficient and (3) Constant
properties.

ANALYSIS: (a) Referring to the schematics above, the conduction heat flux at the surface y = t at
any x-location follows from Fourier’s law using the parabolic transverse temperature distribution.

         y s o s o2
y t y t

T 2y 2k
q t k k T x T x T x T x

y tt 

 
                   

(1)

(b) The convection heat flux at the surface of any x-location follows from the rate equation

 cv sq h T x T     (2)

Performing a surface energy balance as represented schematically above, equating Eqs. (1) and (2)
provides

 y cvq t q 

     s o s
2k

T x T x h T x T
t

         

   
   

s o

s

T x T x ht
0.5 0.5 Bi

T x T x k


   


(3)

where Bi = ht/k, the Biot number, represents the ratio of the conduction to the convection thermal
resistances,

cd

cv

R t / k
Bi

R 1/ h


 


(4)

(c) The transverse temperature difference (Ts – To) will be negligible compared to the temperature

difference between the surface and the environment (Ts - T) when Bi << 1, say, 0.1, an order of
magnitude smaller. This is the criterion to validate the one-dimensional assumption used to model
extended surfaces.

COMMENTS: The coefficient 0.5 in Eq. (3) is a consequence of the parabolic distribution
assumption. This distribution represents the simplest polynomial expression that could approximate
the real distribution.



PROBLEM 3.129

KNOWN: Long, aluminum cylinder acts as an extended surface.

FIND: (a) Increase in heat transfer if diameter is tripled and (b) Increase in heat transfer if
copper is used in place of aluminum.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Constant
properties, (4) Uniform convection coefficient, (5) Rod is infinitely long.

PROPERTIES: Table A-1, Aluminum (pure): k = 240 W/mK; Table A-1, Copper (pure): k
= 400 W/mK.

ANALYSIS: (a) For an infinitely long fin, the fin heat rate from Table 3.4 is

 1/ 2
f c bq M hPkA  

   
1/ 2 1/ 22 3/2

f b bq h D k D / 4 hk D .
2


    

where P = D and Ac = D
2
/4 for the circular cross-section. Note that qf  D

3/2
. Hence, if

the diameter is tripled,

 

 

f 3D 3/ 2

f D

q
3 5.2

q
 

and there is a 420% increase in heat transfer. <

(b) In changing from aluminum to copper, since qf  k
1/2

, it follows that

 
 

1/ 2 1/ 2
f Cu

f A1

q Cu k 400
1.29

q A1 k 240

   
     

  

and there is a 29% increase in the heat transfer rate. <

COMMENTS: (1) Because fin effectiveness is enhanced by maximizing P/Ac = 4/D, the use

of a larger number of small diameter fins is preferred to a single large diameter fin.

(2) From the standpoint of cost, weight and machinability, aluminum is preferred over copper.



PROBLEM 3.130

KNOWN: Length, diameter, base temperature and environmental conditions associated with a brass rod.

FIND: Temperature at specified distances along the rod.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Constant properties, (4)
Negligible radiation, (5) Uniform convection coefficient h.

PROPERTIES: Table A-1, Brass  T 110 C : k 133 W/m K.  

ANALYSIS: Evaluate first the fin parameter

1/ 21/ 2 1/ 2 1/ 2 2

2c

hP h D 4h 4 30 W/m K
m

kA kD 133 W/m K 0.005mk D / 4





       
                   

-1m 13.43 m .

Hence, m L = (13.43)0.1 = 1.34 and from the results of Example 3.9, it is advisable not to make the
infinite rod approximation. Thus from Table 3.4, the temperature distribution has the form

     
  b

cosh m L x h/mk sinh m L x

cosh mL + h/mk sinh mL
 

  


Evaluating the hyperbolic functions, cosh mL = 2.04 and sinh mL = 1.78, and the parameter

 

2

-1

h 30 W/m K
0.0168,

mk 13.43m 133 W/m K


 



with b = 180C the temperature distribution has the form

     cosh m L x 0.0168 sinh m L x
180 C .

2.07


  
 

The temperatures at the prescribed locations are tabulated below.

x(m) cosh m(L-x) sinh m(L-x)  T(C)

x1 = 0.025 1.55 1.19 136.5 156.5 <

x2 = 0.05 1.24 0.725 108.9 128.9 <

L = 0.10 1.00 0.00 87.0 107.0 <

COMMENTS: If the rod were approximated as infinitely long: T(x1) = 148.7C, T(x2) =

112.0C, and T(L) = 67.0C. The assumption would therefore result in significant
underestimates of the rod temperature.



PROBLEM 3.131

KNOWN: Thickness, length, thermal conductivity, and base temperature of a rectangular fin. Fluid
temperature and convection coefficient.

FIND: (a) Heat rate per unit width, efficiency, effectiveness, thermal resistance, and tip temperature
for different tip conditions, (b) Effect of convection coefficient and thermal conductivity on the heat
rate.

SCHEMATIC:

T = 25 Co
oo

h = 100 W/m -K2
Aluminum alloy

k = 180 W/m-K

t = 1 mm

T = 100 Cb
o

Air

L = 10 mm

ASSUMPTIONS: (1) Steady-state, (2) One-dimensional conduction along fin, (3) Constant
properties, (4) Negligible radiation, (5) Uniform convection coefficient, (6) Fin width is much longer
than thickness (w >> t).

ANALYSIS: (a) The fin heat transfer rate for Cases A, B and D are given by Eqs. (3.77), (3.81) and

(3.85), where M  (2 hw
2
tk)

1/2
(Tb - T) = (2  100 W/m

2
K  0.001m  180 W/mK)

1/2
(75C) w =

450 w W, m (2h/kt)
1/2

= (200 W/m
2
K/180 W/mK 0.001m)

1/2
= 33.3m

-1
, mL  33.3m

-1
 0.010m

= 0.333, and (h/mk)  (100 W/m
2
K/33.3m

-1
 180 W/mK) = 0.0167. From Table B-1, it follows

that sinh mL  0.340, cosh mL  1.057, and tanh mL  0.321. From knowledge of qf, Eqs. (3.91),
(3.86) and (3.88) yield

 
bf f

f f t,f
b b f

q q
, , R

h 2L t ht q


 

 

 
 




Case A: From Eq. (3.77), (3.91), (3.86), (3.88) and (3.75),

 

 f
sinh mL h / mk cosh mLM 0.340 0.0167 1.057

q 450 W / m 151W / m
w cosh mL h / mk sinh mL 1.057 0.0167 0.340

  
   

  
<

 
f 2

151W / m
0.96

100 W / m K 0.021m 75 C
  

 
<

 
f t,f2

151W / m 75 C
20.2, R 0.50 m K / W

151W / m100 W / m K 0.001m 75 C


    

 
 <

 
   

b 75 C
T L T 25 C 95.6 C

cosh mL h / mk sinh mL 1.057 0.0167 0.340





      

 
<

Case B: From Eqs. (3.81), (3.91), (3.86), (3.88) and (3.80)

 f
M

q tanh mL 450 W / m 0.321 144 W / m
w

    <

f f t,f0.92, 19.3, R 0.52 m K / W     <

  b 75 C
T L T 25 C 96.0 C

cosh mL 1.057





       <

Continued …



PROBLEM 3.131 (Cont.)

Case D (L ): From Eqs. (3.85), (3.91), (3.86), (3.88) and (3.84)

f
M

q 450 W / m
w

   <

 f f t,f0, 60.0, R 0.167 m K / W, T L T 25 C  
       <

(b) The effect of h on the heat rate is shown below for the aluminum and stainless steel fins.

For both materials, there is little difference between the Case A and B results over the entire range of
h. The difference (percentage) increases with decreasing h and increasing k, but even for the worst

case condition (h = 10 W/m
2
K, k = 180 W/mK), the heat rate for Case A (15.7 W/m) is only slightly

larger than that for Case B (14.9 W/m). For aluminum, the heat rate is significantly over-predicted by
the infinite fin approximation over the entire range of h. For stainless steel, it is over-predicted for

small values of h, but results for all three cases are within 1% for h > 500 W/m
2
K.

COMMENTS: From the results of Part (a), we see there is a slight reduction in performance

(smaller values of f f fq , and ,  as well as a larger value of t,fR ) associated with insulating the tip.

Although f = 0 for the infinite fin, fq and f are substantially larger than results for L = 10 mm,

indicating that performance may be significantly improved by increasing L.

Variation of qf' with h (k=180 W/m.K)
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PROBLEM 3.132

KNOWN: Thermal conductivity and diameter of a pin fin. Value of the heat transfer coefficient and
fin efficiency.

FIND: (a) Length of fin, (b) Fin effectiveness.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state, one-dimensional conditions, (2) Negligible radiation heat
transfer, (3) Constant properties, (4) Convection from fin tip.

PROPERTIES: Given, Aluminum Alloy: k = 160 W/mK.

ANALYSIS: For an active fin tip, the efficiency may be expressed in terms of the corrected fin
length as:

tanh( )c
f

c

mL

mL
 

where  2 3 1/ 4 / 4 220W/m K / 160W/m K 4 10 m 37.1mcm hP kA h kD          

Hence,
-1

1

tanh(37.1m )
0.65

37.1m
c

f
c

L

L





 


which may be solved by trial-and-error (or by using IHT) to

yield Lc = 0.0362 m = 36.2 mm. The fin length is therefore, L = Lc – D/4 = 0.0362 m – 0.004m/4 =

0.0352 m = 35.2 mm. <

The fin effectiveness is:

,

, , ,

tanh( )tanh( ) 2
tanh( )

/

c b cf c
f c

c b b c b b c b

hPkA mLq M mL
mL

hA hA hA hD k


 
   

1 3

2 3

2
tanh(37.1m 36.2 10 m)

220W/m K 4 10 m

160W/m K

 


  

  



= 23.5 <

COMMENTS: The values of the fin effectiveness and fin efficiency are independent of the base or
fluid temperatures.

L

D = 4 mm
f = 0.65

h = 220 W/m2•K

x

k = 160 W/m∙K



PROBLEM 3.133

KNOWN: Thickness, length, thermal conductivity, and base temperature of a rectangular fin. Fluid
temperature and convection coefficient.

FIND: (a) Heat rate per unit width, efficiency, effectiveness, thermal resistance, and tip temperature
for different tip conditions, (b) Effect of fin length and thermal conductivity on the heat rate.

SCHEMATIC:

T = 25 Co
oo

h = 100 W/m -K2
Aluminum alloy

k = 180 W/m-K

t = 1 mm

T = 100 Cb
o

Air

L = 10 mm

ASSUMPTIONS: (1) Steady-state, (2) One-dimensional conduction along fin, (3) Constant
properties, (4) Negligible radiation, (5) Uniform convection coefficient, (6) Fin width is much longer
than thickness (w >> t).

ANALYSIS: (a) The fin heat transfer rate for Cases A, B and D are given by Eqs. (3.77), (3.81) and

(3.85), where M  (2 hw
2
tk)

1/2
(Tb - T) = (2  100 W/m

2
K  0.001m  180 W/mK)

1/2
(75C) w =

450 w W, m (2h/kt)
1/2

= (200 W/m
2
K/180 W/mK 0.001m)

1/2
= 33.3m

-1
, mL  33.3m

-1
 0.010m

= 0.333, and (h/mk)  (100 W/m
2
K/33.3m

-1
 180 W/mK) = 0.0167. From Table B-1, it follows

that sinh mL  0.340, cosh mL  1.057, and tanh mL  0.321. From knowledge of qf, Eqs. (3.91),
(3.86) and (3.88) yield

 
bf f

f f t,f
b b f

q q
, , R

h 2L t ht q


 

 

 
  



Case A: From Eq. (3.77), (3.91), (3.86), (3.88) and (3.75),

 

 f
sinh mL h / mk cosh mLM 0.340 0.0167 1.057

q 450 W / m 151W / m
w cosh mL h / mk sinh mL 1.057 0.0167 0.340

  
   

  
<

 
f 2

151W / m
0.96

100 W / m K 0.021m 75 C
  

 
<

 
f t,f2

151W / m 75 C
20.1, R 0.50 m K / W

151W / m100 W / m K 0.001m 75 C



    

 
<

 
   

b 75 C
T L T 25 C 95.6 C

cosh mL h / mk sinh mL 1.057 0.0167 0.340





      

 
<

Case B: From Eqs. (3.81), (3.91), (3.86), (3.88) and (3.80)

 f
M

q tanh mL 450 W / m 0.321 144 W / m
w

    <

f f t,f0.92, 19.2, R 0.52 m K / W      <

  b 75 C
T L T 25 C 96.0 C

cosh mL 1.057





       <

Continued …..



PROBLEM 3.133 (Cont.)

Case D (L ): From Eqs. (3.85), (3.91), (3.86), (3.88) and (3.84)

f
M

q 450 W / m
w

   <

 f f t,f0, 60.0, R 0.167 m K / W, T L T 25 C  
       <

(b) The effect of L on the heat rate is shown below for the aluminum and stainless steel fins.

For both materials, differences between the Case A and B results diminish with increasing L and are
within 1% of each other at L  27 mm and L  13 mm for the aluminum and steel, respectively. At L
= 3 mm, results differ by 14% and 13% for the aluminum and steel, respectively. The Case A and B
results approach those of the infinite fin approximation more quickly for stainless steel due to the
larger temperature gradients, |dT/dx|, for the smaller value of k.

COMMENTS: From the results of Part (a), we see there is a slight reduction in performance

(smaller values of f f fq , and ,  as well as a larger value of t,fR ) associated with insulating the tip.

Although f = 0 for the infinite fin, fq and f are substantially larger than results for L = 10 mm,

indicating that performance may be significantly improved by increasing L.

Variation of qf' with L (k=180 W/m.K)
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PROBLEM 3.134

KNOWN: Length, thickness and temperature of straight fins of rectangular, triangular and parabolic
profiles. Ambient air temperature and convection coefficient.

FIND: Heat rate per unit width, efficiency and volume of each fin.

SCHEMATIC:

T = 20 Co
oo

h = 50 W/m -K2

T = 100b
oC

Aluminum alloy
k = 185 W/m-K

Triangular Parabolic

Air

Rectangular
Lc = L + t/2 = 16.5 mm

t = 3 mm L = 15 mm

ASSUMPTIONS: (1) Steady-state, (2) One-dimensional conduction, (3) Constant properties, (4)
Negligible radiation, (5) Uniform convection coefficient.

ANALYSIS: For each fin,

f max f f b pq q hA , V A      

where f depends on the value of m = (2h/kt)
1/2

= (100 W/m
2
K/185 W/mK  0.003m)

1/2
= 13.4m

-1

and the product mL = 13.4m
-1
 0.015m = 0.201 or mLc = 0.222. Expressions for f, fA and Ap are

obtained from Table 3-5.

Rectangular Fin:

c
f f c

c

tanh mL 0.218
0.982, A 2 L 0.033m

mL 0.222
      <

   2 5 2q 0.982 50 W / m K 0.033m 80 C 129.6 W / m, V tL 4.5 10 m        <

Triangular Fin:

 

   
 

1/ 22 21
f f

0

I 2mL1 0.205
0.978, A 2 L t / 2 0.030m

mL I 2 mL 0.201 1.042
       

 
<

     2 5 2
q 0.978 50 W / m K 0.030m 80 C 117.3 W / m, V t / 2 L 2.25 10 m

        <

Parabolic Fin:

 
   2

f f 1 11/ 22

2
0.963, A C L L / t ln t / L C 0.030m

4 mL 1 1

      

 

 
  

 
  

<

     2 5 2
fq 0.963 50 W / m K 0.030m 80 C 115.6 W / m, V t / 3 L 1.5 10 m        <

COMMENTS: Although the heat rate is slightly larger (~10%) for the rectangular fin than for the
triangular or parabolic fins, the heat rate per unit volume (or mass) is larger and largest for the
triangular and parabolic fins, respectively.



PROBLEM 3.135

KNOWN: Thermal conditions, base thickness, thermal conductivity, and length of a straight
rectangular fin.

FIND: (a) Length of triangular straight fin needed to produce the same fin heat rate. Ratio of
rectangular straight fin mass to triangular straight fin mass. (b) Repeat part (a) for a parabolic straight
fin.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state, one-dimensional conduction, (2) Constant properties, (3)
Negligible radiation.

PROPERTIES: Aluminum 2024: Given: k = 185 W/mK, Table A.1:  = 2770 kg/m3.

ANALYSIS: For each of the fins, m = (2h/kt)1/2 = (2  50 W/m2K/185 W/mK  0.003 m)1/2 =
13.42 m-1 and, for fins of unit width, Ac,b = tb = 0.003 m  1 m = 0.003 m2. Combining the definition of
the fin effectiveness, f = qf/(hAc,bb) and the fin efficiency, f = qf/hAfb, yields

f = fAf/Ac,b (1)

Rectangular Fin: From Table 3.5, Lc = L + t/2 = 0.015m + 0.003m/2 = 0.0165m, f = tanh mLc/(mLc) =
tanh 13.42m-1 0.0165m/(13.42m-1 0.0165m) = 0.9839, Af = 2wLc = 2  1m  0.0165m = 0.033m2.
Hence, f1 = 0.9839  0.033m2/0.003m2 = 10.83. The mass of the rectangular fin is M1 = tL = 2770
kg/m3  0.003 m  0.015 m = 0.125 kg.

(a) Triangular Fin: From Table 3.5,

Af = 2w[L2
2 + (t/2)2]1/2 = 2  1m  [L2

2 + (0.0015m)2]1/2 (2a)
f = I1(2mL2)/[mL2I0(2mL2)] = I1(2  13.42m-1L2)/[ 13.42m-1L2I0(213.42m-1L2)] (2b)

Equating f2 = f1 = 10.83, and solving Equations (1) and 2(a, b) simultaneously yields

L2 = 0.0166m = 16.6mm <

from which M2 = (t/2)L2 = 2770 kg/m3  0.0015 m  0.0166 m = 0.069 kg; M2/M1 = 0.069kg/0.126kg

= 0.55. <

Continued…

T = 20°C
h = 50 W/m2·K

L1 = 15 mm

t = 3 mm

Tb = 100°C

T = 20°C
h = 50 W/m2·K

L2 = ?

t = 3 mm

Tb = 100°C

T = 20°C
h = 50 W/m2·K

L3 = ?

t = 3 mm

Tb = 100°C

Rectangular fin Triangular fin Parabolic fin



PROBLEM 3.135 (Cont.)

(b) Parabolic Fin: From Table 3.5,

C1 = [1 + (t/L3)
2]1/2 = [1 + (0.003m/L3)

2]1/2 (3a)
Af = w[C1L3 + (L3

2/t)ln(t/L3 + C1)] = 1m[C1L3 + (L3
2/0.003m)ln(0.003m/L3 + C1)] (3b)

f = 2/{[4(mL3)
2 + 1]1/2 + 1} = 2/{[4(13.42m-1L3)

2 + 1]1/2 + 1} (3c)

Equating f3 = f1 = 10.83, and solving Equations (1) and 3(a - c) simultaneously yields

L3 = 0.0169m = 16.9mm <

The mass of the parabolic fin is found from

3
3 3 / 3 2770kg / m 1m 0.003m / 3 0.0468kgpM A w wtL      

and M3/M1 = 0.0468kg/0.126kg = 0.37. <

COMMENTS: (1) The lengths of the three fins are all similar. This is because the fin efficiencies are
all near unity (R = 0.984, T = 0.976, P = 0.953) yielding fins of almost constant base temperature.
(2) Use of triangular and parabolic fins is appropriate when weight savings is important, such as in
aerospace applications. (3) Reduction in cost due to reduction in the amount of raw material used is
usually offset by higher manufacturing cost for the triangular and parabolic fins.



PROBLEM 3.136

KNOWN: Melting point of solder used to join two long copper rods.

FIND: Minimum power needed to solder the rods.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction along the
rods, (3) Constant properties, (4) No internal heat generation, (5) Negligible radiation
exchange with surroundings, (6) Uniform h, and (7) Infinitely long rods.

PROPERTIES: Table A-1: Copper  T 650 25 C 600K: k 379 W/m K.    


ANALYSIS: The junction must be maintained at 650C while energy is transferred by
conduction from the junction (along both rods). The minimum power is twice the fin heat rate
for an infinitely long fin,

   1/ 2
min f c bq 2q 2 hPkA T T .  

Substituting numerical values,

     
1/ 2

2
min 2

W W
q 2 10 0.01m 379 0.01m 650 25 C.

m K 4m K




  
      



Therefore,

minq 120.9 W. <

COMMENTS: Radiation losses from the rods may be significant, particularly near the
junction, thereby requiring a larger power input to maintain the junction at 650C.



PROBLEM 3.137

KNOWN: Dimensions and end temperatures of pin fins.

FIND: (a) Heat transfer by convection from a single fin and (b) Total heat transfer from a 1

m
2

surface with fins mounted on 4mm centers.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state, (2) One-dimensional conduction along rod, (3) Constant
properties, (4) No internal heat generation, (5) Negligible radiation.

PROPERTIES: Table A-1, Copper, pure (323K): k  400 W/mK.

ANALYSIS: (a) By applying conservation of energy to the fin, it follows that

conv cond,i cond,oq q q 

where the conduction rates may be evaluated from knowledge of the temperature distribution.
The general solution for the temperature distribution is

  mx -mx
1 2x C e C e T T .     

The boundary conditions are (0)  o = 100C and (L) = 0. Hence

o 1 2C C  

mL -mL
1 20 C e C e 

Therefore, 2mL
2 1C C e

2mL
o o

1 22mL 2mL

e
C , C

1 e 1 e

 
  

 

and the temperature distribution has the form

mx 2mL-mxo
2mL

e e .
1 e


     

The conduction heat rate can be evaluated by Fourier’s law,

mx 2mL-mxc o
cond c 2mL

kAd
q kA m e e

dx 1 e

        

or, with  1/ 2
cm hP/kA ,

 1/ 2
o c mx 2mL-mx

cond 2mL

hPkA
q e e .

1 e

      

Continued …



PROBLEM 3.137 (Cont.)

Hence at x = 0,

   
1/ 2

o c 2mL
cond,i 2mL

hPkA
q 1 e

1 e


  



at x = L

   
1/ 2

o c mL
cond,o 2mL

hPkA
q 2e

1 e


 



Evaluating the fin parameters:

1/ 21/ 2 1/ 2 2
-1

c

hP 4h 4 100 W/m K
m 31.62 m

kA kD 400 W/m K 0.001m

     
               

   

1/ 2 1/ 22 2
1/ 2 33 3

c 2

W W W
hPkA D hk 0.001m 100 400 9.93 10

4 4 m K Km K

        


   
   
      

-1 mL 2mLmL 31.62 m 0.025m 0.791, e 2.204, e 4.865    

The conduction heat rates are

 -3

cond,i

100K 9.93 10 W/K
q 5.865 1.507 W

3.865

 
  



 -3

cond,o

100K 9.93 10 W/K
q 4.408 1.133 W

-3.865

 
  

and from the conservation relation,

convq 1.507 W 1.133 W 0.374 W.   <
(b) The total heat transfer rate is the heat transfer from N = 250250 = 62,500 rods and the

heat transfer from the remaining (bare) surface (A = 1m
2

- NAc). Hence,

   2 2
cond,i oq N q hA 62,500 1.507 W 100W/m K 0.951 m 100K    

4 4 5q 9.42 10 W+0.95 10 W=1.037 10 W.   

COMMENTS: (1) The fins, which cover only 5% of the surface area, provide for more than
90% of the heat transfer from the surface.

(2) The fin effectiveness, cond,i c oq / hA ,  is  = 192, and the fin efficiency,

 conv oq / h DL , is 0.48.    

(3) The temperature distribution, (x)/o, and the conduction term, qcond,i, could have been

obtained directly from Eqs. 3.82 and 3.83, respectively.

(4) Heat transfer by convection from a single fin could also have been obtained from Eq. 3.78.



PROBLEM 3.138

KNOWN: Dimensions of a nanospring, dependence of pitch upon temperature.

FIND: Actuation distance of the spring in response to heating of its end, accuracy to which the
actuation length can be controlled.

SCHEMATIC:

x

L

s = 25 nm

D = 15 nm

Tb = 50°C

T = 25°C

2r = 60 nm

Lc = 425 nm

h = 106 W/m2∙K

x

L

s = 25 nm

D = 15 nm

Tb = 50°C

T = 25°C

2r = 60 nm

Lc = 425 nm

h = 106 W/m2∙K

ASSUMPTIONS: (1) Constant properties, (2) Steady-state conditions, (3) One-dimensional heat
transfer, (4) Adiabatic tip, (5) Negligible radiation heat transfer, (6) Negligible impact of
nanoscale heat transfer effects.

PROPERTIES: Table A.2, silicon carbide (300 K): k = 490 W/mK.

ANALYSIS: When the nanospring is at Ti = 25°C, the spring length is

-9 -9

i
22 2 -9

-9 2

s Lc 25 × 10 m 425 × 10 m
L = = ×

2π 2πSr + ( ) 25 × 10 m)2π (30 × 10 m) +
2π

 
 
 

-9= 55.9 × 10 m = 55.9 nm

Since the average spring pitch varies linearly with the average temperature, the average pitch of
the heated spring is

i i
ds

s = s + (T - T )
dT

(1)

The average excess temperature is
cL

c x=0

1
θ = T - T  = θ(x)dx

L
  where, from Eq. 3.80,

Continued…



PROBLEM 3.138 (Cont.)

c

c

L
Lb b

c 0
c c cx=0

θ θcosh m (L - x)
θ  =   dx = - sinh m(L  - x)

L cosh ml mL (cosh mL )

b b
c c

c c c

θ θ
θ  =  × (0 - sinh mL ) = tanh (mL )

mL (cosh mL ) mL

For a particular spring,

1/21/2 1/2 6 2
-9

c c c -9
c

hP 4h 4 × 10 W/m K
mL = L = L = × 425 × 10 m = 0.314

kA kD 490 W/m K × 15 × 10 m

    
          

Therefore
(50 - 25)°C

θ =  tanh (0.314) = 24.2°C
0.314

and T = θ + T  = 24.2°C + 25°C = 49.2°C

From Eq. (1),
-9 -9 -9s = 25 × 10 m + 0.1 × 10 m/K × (49.2 - 25)°C = 27.4 × 10 m

Therefore,
-9 -9

-9
2

-9-9 2 2

27.4 × 10 m 425 × 10 m
L = × = 61.1 × 10 m = 61.1 nm

2π 27.4 × 10 m(30 × 10 m) + ( )
2π

and the actuation length is

2 iΔL = L  - L  = 61.1 nm - 55.9 nm = 5.2 nm <

If the base temperature can be controlled to within 1 degree Celsius, the resolution of the

actuation length is:
1 degree C

R = ΔL × = 0.2 nm
25 degree C

<

COMMENTS: (1) The actuation distance and its resolution are extremely small. (2) Application
of other tip conditions will lead to different predictions of the actuation distance.



PROBLEM 3.139

KNOWN: Positions of equal temperature on two long rods of the same diameter, but
different thermal conductivity, which are exposed to the same base temperature and ambient
air conditions.

FIND: Thermal conductivity of rod B, kB.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) Rods are infinitely long fins of uniform
cross-sectional area, (3) Uniform heat transfer coefficient, (4) Constant properties.

ANALYSIS: The temperature distribution for the infinite fin has the form

  1/ 2
-mx

b o c

T x T hP
e m .

T T kA








  
    

  
(1,2)

For the two positions prescribed, xA and xB, it was observed that

       A A B B A A B BT x T x or x x .   (3)

Since b is identical for both rods, Eq. (1) with the equality of Eq. (3) requires that

A A B Bm x m x

Substituting for m from Eq. (2) gives

1/ 2 1/ 2

A B
A c B c

hP hP
x x .

k A k A

   
   

   

Recognizing that h, P and Ac are identical for each rod and rearranging,

2
B

B A
A

x
k k

x

 
  
 

2

B
0.075m

k 70 W/m K 17.5 W/m K.
0.15m

 
      

<

COMMENTS: This approach has been used as a method for determining the thermal
conductivity. It has the attractive feature of not requiring power or temperature
measurements, assuming of course, a reference material of known thermal conductivity is
available.



PROBLEM 3.140

KNOWN: Dimension and length of an aluminum pin fin. Base and ambient temperatures, value
of the convection heat transfer coefficient.

FIND: (a) Fin heat transfer rate with an adiabatic tip, (b) Fin heat transfer rate when the fin tip is
cooled below the ambient temperature, (c) Temperature distribution along the fin for parts (a) and
(b), (d) Fin heat rates for 0  h  1000 W/m2K.

SCHEMATIC:

Tb = 50°C

L = 40 mm

D = 2 mmT∞ = 25°C

h = 1000 W/m2∙K

k = 140 W/m∙K

(a) dT/dx (x = L) = 0

(b) T(x = L) = 0°C

Tb = 50°C

L = 40 mm

D = 2 mmT∞ = 25°C

h = 1000 W/m2∙K

k = 140 W/m∙K

(a) dT/dx (x = L) = 0

(b) T(x = L) = 0°C

ASSUMPTIONS: (1) Constant properties, (2) Steady-state conditions, (3) One-dimensional heat
transfer, (4) Negligible radiation heat transfer.

ANALYSIS:
(a) The fin heat transfer rate is given by Eq. 3.81; qf = M tanh ml where

c b

2 -3 -3 2

M = hPkA  θ

     = 1000W/m K × π × 2 × 10  m × 140 W/m K × π × (2 × 10 m) /4 × (50 - 25)°C

= 1.314 W

 

and

2 -3
-1

2 -3 2
c

hP 1000 W/m K × π × 2 × 10  m
m = = = 119.5 m

kA 140 W/m K × π × (2 × 10  m) /4





Therefore, -1 -3
fq = 1.314 W tanh (119.5 m × 40 × 10 m) = 1.314 W <

(b) For the case where T(x = L) = 0°C, the fin heat transfer rate is

L b
f

(cosh ml - θ /θ )
q = M

sinh ml

-1 -3

-1 -3

cosh (119.5 m × 40 × 10 m ) - (0 - 25)°C / (50 - 25)°C
= 1.314 W × = 1.336 W

sinh (119.5 m × 40 × 10 m)
<

(c) The temperature distributions are found by plotting Eqs. 3.80 and 3.82 over the range 0 ≤ x ≤ 
40 mm. Note, that for the adiabatic tip case, the tip temperature is nearly equal to the

Continued…



PROBLEM 3.140 (Cont.)

ambient temperature. For the cooled tip, the temperature distribution is anti-symmetric about x =
½ L. For the cooled tip case and h = 0, the temperature distribution in the fin would be linear,

corresponding to one-dimensional conduction in the fin. <

(d) The fin heat rate distributions are shown below. For adiabatic tip and h = 0, qf = 0. For the
case of the cooled tip and negligible convection, the fin heat rate is

   2 -3 2 -3
f c bq  = kA (T(x=L) - T ) / L = 140 W/m K × π × (2 × 10 m) / 4 × (0 - 50)°C / 40 × 10 m

= 0.549 W.

As the convection coefficient increases, the temperatures at x = ½ L approach T(x = ½ L) = 25°C
for both the adiabatic and cooled tip cases, resulting in nearly the same fin heat transfer rates.
Equations 3.76 and 3.78 would yield the same result for the cooled tip case since heat lost by
convection over the range 0 ≤ x ≤ 20 mm would be exactly offset by the heat gain by convection 
over the range 20 mm ≤ x ≤ 40 mm, and heat loss at x = L by conduction is equal to heat gain at x 

= 0 by conduction. <



PROBLEM 3.141

KNOWN: Base temperature, ambient fluid conditions, and temperatures at a prescribed
distance from the base for two long rods, with one of known thermal conductivity.

FIND: Thermal conductivity of other rod.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state, (2) One-dimensional conduction along rods, (3) Constant
properties, (4) Negligible radiation, (5) Negligible contact resistance at base, (6) Infinitely
long rods, (7) Rods are identical except for their thermal conductivity.

ANALYSIS: With the assumption of infinitely long rods, the temperature distribution is

-mx

b b

T T
e

T T









 



or

1/ 2

b

T T hP
ln mx x

T T kA




  
      

Hence, for the two rods,

A
1/ 2

b B

AB

b

T T
ln

T T k

kT T
ln

T T









 
       
   
 

 

 

A

1/ 2b1/2 1/2
B A

B

b

T T 75 25ln lnT T 100 25k k 200 7.524
60 25T T lnln

100 25T T









  
 

    
 

   

Bk 56.6 W/m K.  <

COMMENTS: Providing conditions for the two rods may be maintained nearly identical, the
above method provides a convenient means of measuring the thermal conductivity of solids.



PROBLEM 3.142

KNOWN: Arrangement of fins between parallel plates. Temperature and convection coefficient of
air flow in finned passages. Maximum allowable plate temperatures.

FIND: (a) Expressions relating fin heat transfer rates to end temperatures, (b) Maximum power
dissipation for each plate.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in fins, (3) Constant

properties, (4) Negligible radiation, (5) Uniform h, (6) Negligible variation in T, (7) Negligible
contact resistance.

PROPERTIES: Table A.1, Aluminum (pure), 375 K: k = 240 W/mK.

ANALYSIS: (a) The general solution for the temperature distribution in a fin is

    mx -mx
1 2x T x T C e C e    

Boundary conditions:    o o L L0 T T , L T T .         

Hence mL -mL
o 1 2 L 1 2C C C e C e    

 mL -mL
L 1 o 1C e C e   

-mL -mL mL
L o L o o L

1 2 omL -mL mL -mL mL -mL

e e e
C C .

e e e e e e

     


  
   

  

Hence  
   m x-L m L-xmx -mx

L o o L
mL -mL

e e e e
x

e e

   


  




 

     m L-x -m L-x mx -mx
o L

mL -mL

e e e e

x
e e

 



 
    



 
 o Lsinh m L-x sinh mx

x .
sinh mL

 





The fin heat transfer rate is then

 o L
f c

mdT m
q kA kDt cosh m L x cosh mx .

dx sinh mL sinh mL

  
       

 

Hence o L
f,o

m m
q kDt

tanh mL sinh mL

 
 

 
 
 

<

o L
f,L

m m
q kDt .

sinh mL tanh mL

 
 

 
 
 

<

Continued …



PROBLEM 3.142 (Cont.)

(b)
 

1/ 21/ 2 2
-1

c

150 W/m K 2 0.1 m+2 0.001 mhP
m= 35.5 m

kA 240 W/m K 0.1 m 0.001 m

    
   
      

-1mL 35.5 m 0.012 m 0.43  

o Lsinh mL 0.439 tanh mL 0.401 100 K 50 K    

-1 -1

f,o
100 K 35.5 m 50 K 35.5 m

q 240 W/m K 0.1 m 0.001 m
0.401 0.439

  
     
 
 

f,oq 115.4 W (from the top plate)

-1 -1

f,L
100 K 35.5 m 50 K 35.5 m

q 240 W/m K 0.1 m 0.001 m
0.439 0.401

  
     
 
 

f,Lq 87.8 W. (into the bottom plate)

Maximum power dissipations are therefore

 o,max f f,o f oq N q W N t Dh  

  2
o,maxq 50 115.4 W+ 0.200 50 0.001 m 0.1 m 150 W/m K 100 K       

o,maxq 5770 W+225 W 5995 W  <

 L,max f f,L f oq N q W N t Dh   

  2
L,maxq 50 87.8W 0.200 50 0.001 m 0.1 m 150 W/m K 50 K         

L,maxq 4390 W+112W 4278 W.    <

COMMENTS: (1) It is of interest to determine the air velocity needed to prevent excessive heating of the air

as it passes between the plates. If the air temperature change is restricted to T = 5 K, its flowrate must be

tot
air

p

q 1717 W
m 0.34 kg/s.

c T 1007 J/kg K 5 K
  

  


Its mean velocity is then

 
air

air 3air c

m 0.34 kg/s
V 163 m/s.

A 1.16 kg/m 0.012 m 0.2 50 0.001 m
  

  



Such a velocity would be impossible to maintain. To reduce it to a reasonable value, e.g. 10

m/s, Ac would have to be increased substantially by increasing W (and hence the space

between fins) and by increasing L. The present configuration is impractical from the
standpoint that 1717 W could not be transferred to air in such a small volume.

(2) A negative value of qL,max implies that the bottom plate must be cooled externally to

maintain the plate at 350 K.



PROBLEM 3.143 
 
KNOWN:  Conditions associated with an array of straight rectangular fins. 
 
FIND:  Thermal resistance of the array. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Constant properties, (2) Uniform convection coefficient, (3) Symmetry about 
midplane. 
ANALYSIS:  (a) Considering a one-half section of the array, the corresponding resistance is 

 ( ) 1
t,o o tR hAη −=  

where t f bA NA A= + .  With S = 4 mm and t = 1 mm, it follows that N = W1/S = 250, fA  = 
2(L/2)W2 = 0.008 m2, Ab = W2(W1 - Nt) = 0.75 m2, and At = 2.75 m2. 
The overall surface efficiency is  

 ( )f
o f

t

NA
1 1

A
η η= − −  

where the fin efficiency is 

 
( )

( )f
tanh m L 2

m L 2
η =      and       

( )1/ 2 1/ 2 1/ 2
12

c 2

h 2t 2WhP 2h
m 38.7m

kA ktW kt
−+

= = ≈ =
⎛ ⎞ ⎡ ⎤ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎢ ⎥ ⎝ ⎠⎣ ⎦⎝ ⎠
 

With m(L/2) = 0.155, it follows that fη  = 0.992 and oη  = 0.994.  Hence 

 ( ) 12 2 3
t,oR 0.994 150W/m K 2.75m 2.44 10 K/W

− −= × ⋅ × = ×  < 

(b) The requirements that t ≥ 0.5 m and (S - t) > 2 mm are based on manufacturing and flow passage 
restriction constraints.  Repeating the foregoing calculations for representative values of t and (S - t), 
we obtain 
 

S (mm) N t (mm) Rt,o (K/W) 
2.5 400 0.5 0.00169 
3 333 0.5 0.00193 
3 333 1 0.00202 
4 250 0.5 0.00234 
4 250 2 0.00268 
5 200 0.5 0.00269 
5 200 3 0.00334 

 
COMMENTS:  Clearly, the thermal performance of the fin array improves (Rt,o decreases) with 
increasing N.  Because ηf ≈ 1 for the entire range of conditions, there is a slight degradation in 
performance (Rt,o increases) with increasing t and fixed N.  The reduced performance is associated 
with the reduction in surface area of the exposed base.  Note that the overall thermal resistance for the 
entire fin array (top and bottom) is Rt,o/2 = 1.22 × 10-2 K/W. 



PROBLEM 3.144

KNOWN: Dimensions and maximum allowable temperature of an electronic chip. Thermal contact
resistance between chip and heat sink. Dimensions and thermal conductivity of heat sink.
Temperature and convection coefficient associated with air flow through the heat sink.

FIND: (a) Maximum allowable chip power for heat sink with prescribed number of fins, fin
thickness, and fin pitch, and (b) Effect of fin thickness/number and convection coefficient on
performance.

SCHEMATIC:

T = 20 Co
ooAir

k = 180 W/m-K

T = 85 Cc
o

t,cR” = 2x10 m -K/W-6 2

h = 100 W/m -K2

L = 15 mmf

L = 3 mmb

W = 20 mm

S  = 1.8 mm

t Tc

qc
Rt,c

Rt,b

Rt,o

Too

ASSUMPTIONS: (1) Steady-state, (2) One-dimensional heat transfer, (3) Isothermal chip, (4)
Negligible heat transfer from top surface of chip, (5) Negligible temperature rise for air flow, (6)
Uniform convection coefficient associated with air flow through channels and over outer surfaces of
heat sink, (7) Negligible radiation.

ANALYSIS: (a) From the thermal circuit,

c c
c

tot t,c t,b t,o

T T T T
q

R R R R
  

 
 

where  2 6 2 2
t,c t,cR R / W 2 10 m K / W / 0.02m 0.005 K / W

     and  2
t,b bR L / k W

 W / m K
2

0.003m /180 0.02m 0.042 K / W.  From Eqs. (3.108), (3.107), and (3.104)

 f
t,o o f t f b

o t t

1 N A
R , 1 1 , A N A A

h A A
 


     

where Af = 2WLf = 2  0.02m  0.015m = 6  10
-4

m
2

and Ab = W
2

– N(tW) = (0.02m)
2

– 11(0.182

 10
-3

m  0.02m) = 3.6  10
-4

m
2
. With mLf = (2h/kt)

1/2
Lf = (200 W/m

2
K/180 W/mK  0.182 

10
-3

m)
1/2

(0.015m) = 1.17, tanh mLf = 0.824 and Eq. (3.92) yields

f
f

f

tanh mL 0.824
0.704

mL 1.17
   

It follows that At = 6.96  10
-3

m
2
, o = 0.719, Rt,o = 2.00 K/W, and

 
 c

85 20 C
q 31.8 W

0.005 0.042 2.00 K / W

 
 

 
<

(b) The following results are obtained from parametric calculations performed to explore the effect of
decreasing the number of fins and increasing the fin thickness.

Continued …

W = 20 mm



PROBLEM 3.144 (Cont.)

N t(mm) f Rt,o (K/W) qc (W) At (m
2
)

6 1.833 0.957 2.76 23.2 0.00378
7 1.314 0.941 2.40 26.6 0.00442
8 0.925 0.919 2.15 29.7 0.00505
9 0.622 0.885 1.97 32.2 0.00569

10 0.380 0.826 1.89 33.5 0.00632
11 0.182 0.704 2.00 31.8 0.00696

Although f (and o) increases with decreasing N (increasing t), there is a reduction in At which

yields a minimum in Rt,o, and hence a maximum value of qc, for N = 10. For N = 11, the effect of h
on the performance of the heat sink is shown below.

With increasing h from 100 to 1000 W/m
2
K, Rt,o decreases from 2.00 to 0.47 K/W, despite a

decrease in f (and o) from 0.704 (0.719) to 0.269 (0.309). The corresponding increase in qc is
significant.

COMMENTS: (1) The heat sink significantly increases the allowable heat dissipation. If it were not
used and heat was simply transferred by convection from the surface of the chip with h = 100

W/m
2
K, Rtot = 2.05 K/W from Part (a) would be replaced by Rcnv = 1/hW

2
= 25 K/W, yielding qc =

2.60 W. (2) The air temperature will increase as it flows through the heat sink. Therefore the required
air velocity will be greater than determined here. See Problem 11.89.

Heat rate as a function of convection coefficient (N=11)
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PROBLEM 3.145

KNOWN: Dimensions of electronics package and finned nano-heat sink. Temperature and heat
transfer coefficient of coolant.

FIND: Maximum heat rate to maintain temperature below 85°C for finned and un-finned packages.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state, (2) Negligible temperature variation across fin thickness, (3)
Constant properties, (4) Uniform heat transfer coefficient, (5) Negligible contact resistance, (6)
Negligible heat loss from edges of package.

PROPERTIES: Table A.2, Silicon carbide (T ≈ 300 K): k = 490 W/m∙K. 

ANALYSIS: (a) The thermal circuit for the un-finned package is

where
-9

cond -6 2

d 100 × 10 m
R = = = 2.04 K/W

kA 490 W m K × (10 × 10 m)

5
conv 5 2 -6 2

1 1
R = = = 1 × 10 K/W

hA 10 W m K × (10 × 10 m)

Thus -3t
5

cond conv

(T - T ) (85°C - 20°C)
q = 2 = 2 = 1.30 × 10 W

R + R (2.04 + 10 ) K/W

 <

Continued…
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Unfinned Nano-finned

d = 100 nm

D = 15 nm

L = 300 nm

W = 10 m

h = 1105 W/m2·K,
T = 20ºC

h,T

h,T

h, TTt = 85ºC



PROBLEM 3.145 (Cont.)

For the finned nano-heat sink, the convection resistance is replaced by a fin array thermal resistance:

From Equations 3.108, 3.107, and 3.104

f
t,o o f t f b

o t t

NA1
R = , η  = 1 -  (1 - η ),   A  = NA  + A

η hA A

where -9 -9 -14 2
f cA  = πDL  = πD(L + D/4) = π × 15 × 10  m × (300 + 15/4) × 10 m = 1.43 × 10 m ,

2 2 -6 2 -9 2 -11 2
bA  = W  - NπD /4 = (10 × 10  m)  - 40,000 × π × (15 × 10 m) /4 = 9.29 × 10 m , and

-14 2 -11 2 -10 2
tA = 40,000 × 1.43 × 10 m + 9.29 × 10 m = 6.65 × 10 m . Then with

1/2 5 2 -9 1/2 -9 -2
c cmL = (4h/kD) L = (4 × 10 W/m ·K / 490 W/m·K × 15 × 10 m) × 304 × 10 m = 7.09 10 ,

-2
c

f -2
c

tanh(mL ) tanh(7.09 × 10 )
η  =  =  = 0.998

mL 7.09 × 10

It follows that
-14 2

o -10 2

40,000 × 1.43 × 10 m
η  = 1 -  (1 - 0.998) = 0.999

6.65 × 10 m
and

4
t,o 5 2 -10 2

1
R = = 1.50 10 K/W

0.999 × 10 W m K × 6.65 × 10 m




Therefore

-3t
4

cond t,o

(T - T ) (85°C - 20°C)
q = 2 = 2 = 8.64 10 W

R + R 2.04 K/W + 1.50 10 K/W
 


<

COMMENTS: (1) The conduction resistance of the silicon carbide sheets is negligible. (2) The fins
increase the allowable heat rate significantly. (3) We have neglected the contact resistance between
the electronics and the silicon carbide sheets. If it dominates, the fins will not be effective in
increasing the allowable heat rate. Little is known about contact resistance at the nanoscale.

T∞

Rt,o
Rcond Rcond Rt,o

T∞

q

q/2q/2

Tt

T∞

Rt,o
Rcond Rcond Rt,o

T∞

q

q/2q/2

Tt



PROBLEM 3.146

KNOWN: Geometry and cooling arrangement for a chip-circuit board arrangement.
Maximum chip temperature.

FIND: (a) Equivalent thermal circuit, (b) Maximum chip heat rate.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional heat transfer in chip-
board assembly, (3) Negligible pin-chip contact resistance, (4) Constant properties, (5)
Negligible chip thermal resistance, (6) Uniform chip temperature.

PROPERTIES: Table A.1, Copper (300 K): k  400 W/mK.

ANALYSIS: (a) The thermal circuit is

 

   

ob
f 1/ 2

f
o c,f o

cosh mL+ h / mk sinh mL
R

16q 16 h PkA sinh mL+ h / mk cosh mL


 

  

(b) The maximum chip heat rate is

c f b iq 16q q q .  

Evaluate these parameters

1/ 21/ 21/ 2 2
-1o o

c,f p

h P 4h 4 1000 W/m K
m 81.7 m

kA kD 400 W/m K 0.0015 m

     
                 

 -1mL 81.7 m 0.015 m 1.23, sinh mL 1.57, cosh mL 1.86    

 
2

o -1

1000 W/m K
h /mk 0.0306

81.7 m 400 W/m K


 

 

 
1/ 22

o p p bM h D k D / 4  

    
1/ 232 2M 1000 W/m K / 4 0.0015 m 400 W/m K 55 C 3.17 W.    

  


Continued …

16



PROBLEM 3.146 (Cont.)

The fin heat rate is

 
 

o
f

o

sinh mL+ h /mk cosh mL 1.57+0.0306 1.86
q M 3.17 W

cosh mL+ h /mk sinh mL 1.86+0.0306 1.57


 



fq 2.703 W.

The heat rate from the chip top by convection is

    2 22
b o b bq h A 1000 W/m K 0.0127 m 16 / 4 0.0015 m 55 C     

  


bq 7.32 W.

The convection heat rate from the board is

  

   
 

2
c ,i

i -4 2
i t,c b b c

0.0127 m 55 CT T
q

1/h R L / k 1/ A 1/40+10 0.005 /1 m K/W


 

   



iq 0.29 W.

Hence, the maximum chip heat rate is

   cq 16 2.703 7.32 0.29 W 43.25 7.32 0.29 W       

cq 50.9 W. <

COMMENTS: (1) The fins are extremely effective in enhancing heat transfer from the chip

(assuming negligible contact resistance). Their effectiveness is  2
f p o bq / D / 4 h 2.703   

W/0.097 W = 27.8

(2) Without the fins, qc = 1000 W/m
2
K(0.0127 m)

2
55C + 0.29 W = 9.16 W. Hence the fins

provide for a (50.9 W/9.16 W)  100% = 555% enhancement of heat transfer.

(3) With the fins, the chip heat flux is 50.9 W/(0.0127 m)
2

or 5 2
cq 3.16 10 W/m 31.6   

W/cm
2
.

(4) If the infinite fin approximation is made, qf = M = 3.17 W, and the actual fin heat transfer

is overestimated by 17%.



PROBLEM 3.147

KNOWN: Geometry of a cast iron burner with and without fins. Room temperature, combustion
temperature, heat transfer coefficient at the top burner surface, heat transfer coefficient at the bottom
burner surface, emissivity of burner coating, thermal conductivity of cast iron.

FIND: Temperature of the top burner surface with and without fins.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state, one-dimensional conditions, (2) Constant properties, (3)
Convection from fin tip, (4) Large surroundings at top and bottom of burner.

PROPERTIES: Given, Cast iron: k = 65 W/mK.

ANALYSIS: Evaluating the radiation heat transfer from the combustion products to the bottom of
the burner as qrad,b = (D2/4)(Tsur,b

4 – Tb
4), the total heat transfer to the bottom of the burner’s base is

 4 4
, , sur,( ) ( )b f b f b b b b b b t b bq N h A T T h A T T A T T        (1)

where Ab = D2/4 – Ntw = (0.200m)2/4 - 8 0.005 m  0.080 m = 0.0282 m2 is the base area without
fins and At = D2/4 = (0.2m)2/4 = 0.0314 m2. The total heat transfer from the top surface is

 4 4
, sur,( )t t t t t t t tq h A T T A T T    (2)

One-dimensional conduction through the base of the burner is

 base / ( )t b b tq kA L T T  (3)

At steady state, the heat rates must be equal,

base;b t tq q q q  (4, 5)

Continued…

w = 80 mm

D = 200 mm

Tsur,b = 450C

Tsur,t = 20C

Lb = 10 mm
Lf = 25 mm

t = 5 mm

hb = 50 W/m2K
T,b = 450C

ht = 40 W/m2K, T,t = 20C

TtTb

w = 80 mm

D = 200 mm

Tsur,b = 450C

Tsur,t = 20C

Lb = 10 mm
Lf = 25 mm

t = 5 mm

hb = 50 W/m2K
T,b = 450C

hb = 50 W/m2K
T,b = 450C

ht = 40 W/m2K, T,t = 20Cht = 40 W/m2K, T,t = 20C

TtTb

 = 0.95
k = 65 W/m∙K



PROBLEM 3.147 (Cont.)

The fin efficiency may be evaluated using Table 3.5. The corrected fin length is Lc = Lf + t/2 = 25 mm
+ 5 mm/2 = 27.5 mm = 27.5  10-3 m. The fin area is Af = 2wLc = 2  0.080 m  27.5  10-3 m =

0.0044 m2. The value of m is 2 -3 12 / 2 50W / m K /65W / m K 5 10 m 17.54mbm h kt        

Finally, the fin efficiency is

1 3

1 3

tanh tanh(17.54m 27.5 10 m)
0.93

17.54m 27.5 10 m
c

f
c

mL

mL


 

 

 
  

 

Substituting values listed in the schematic, along with values of the various areas, the fin efficiency,
and N = 8 into Eqs. (1) through (5) and solving simultaneously yields

Tt = 601.7 K = 328.7C <

For a burner without fins, Eq. (1) is replaced by

 4 4
, sur,( )b b t b b t b bq h A T T A T T    (6)

Substituting values and solving Eqs. (2) through (6) simultaneously yields

Tt = 570.5 K = 297.5C <

COMMENTS: (1) Adding fins to the bottom of the burner increases the steady-state top temperature
by approximately 30 degrees Celsius. (2) The finned burner heat rate is q = 597.2 W, while without
fins the heat rate is q = 515.5 W. Hence, the fins increase the heat rate available for cooking. (3)
Radiation heat transfer is significant. With fins, radiation accounts for 35% of the heat rate at the top
surface and 40% at the bottom surface. Without fins, radiation accounts for 32% at the top surface and
54% at the bottom surface. (4) In general, the treatment of radiation for finned surfaces, such as at the
bottom surface of the finned burner is justified, as will be discussed in Chapter 13.



PROBLEM 3.148 
 
KNOWN:  Geometry of pin fin array used as heat sink for a computer chip.  Array convection and chip 
substrate conditions. 
 
FIND:  Effect of pin diameter, spacing and length on maximum allowable chip power dissipation. 
 
SCHEMATIC: 

 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional heat transfer in chip-board 
assembly, (3) Negligible pin-chip contact resistance, (4) Constant properties, (5) Negligible chip thermal 
resistance, (6) Uniform chip temperature. 
 
ANALYSIS:  The total power dissipation is c i tq q q= + , where 

 
( )

c ,i
i

i t,c b b c

T T
q 0.3W

1 h R L k A
∞−

= =
′′+ +

 

and 

 c ,o
t

t,o

T T
q

R
∞−

=  

The resistance of the pin array is 

 ( ) 1
t,o o o tR h Aη −=  

where 

 ( )f
o f

t

NA
1 1

A
η η= − −  

 t f bA NA A= +  

 ( )f p c p p pA D L D L D /4π π= = +  

Subject to the constraint that N Dp
1 2 9/ ≤  mm, the foregoing expressions may be used to compute qt as a 

function of Dp  for Lp  = 15 mm and values of N = 16, 25 and 36.  Using the IHT Performance 
Calculation, Extended Surface Model for the Pin Fin Array, we obtain 

Continued... 
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N = 36
N = 25
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Clearly, it is desirable to maximize the number of pins and the pin diameter, so long as flow passages are 
not constricted to the point of requiring an excessive pressure drop to maintain the prescribed convection 
coefficient.  The maximum heat rate for the fin array (qt  = 33.1 W) corresponds to N = 36 and Dp  = 1.5 
mm.  Further improvement could be obtained by using N = 49 pins of diameter Dp  = 1.286 mm, which 
yield qt  = 37.7 W. 
 
Exploring the effect of pL  for N = 36 and Dp  = 1.5 mm, we obtain 
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N = 36, Dp = 1.5 mm  
Clearly, there are benefits to increasing pL , although the effect diminishes due to an attendant reduction 

in fη  (from fη  = 0.887 for pL  = 15 mm to fη  = 0.471 for Lp  = 50 mm).  Although a heat dissipation 

rate of tq  = 56.7 W is obtained for pL  = 50 mm, package volume constraints could preclude such a 

large fin length. 
 
COMMENTS:  By increasing N, pD  and/or pL , the total surface area of the array, tA , is increased, 

thereby reducing the array thermal resistance, t,oR .  The effects of pD  and N are shown for pL  = 15 

mm. 
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PROBLEM 3.149 
 
KNOWN:  Diameter and internal fin configuration of copper tubes submerged in water.  Tube wall 
temperature and temperature and convection coefficient of gas flow through the tube. 
 
FIND:  Rate of heat transfer per tube length. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state, (2) One-dimensional fin conduction, (3) Constant properties, (4) 
Negligible radiation, (5) Uniform convection coefficient, (6) Tube wall may be unfolded and represented 
as a plane wall with four straight, rectangular fins, each with an adiabatic tip (since, by symmetry, there 
can be no heat flow along the fins where they cross). 
 
ANALYSIS:  The rate of heat transfer per unit tube length is: 
 ( )t o t g sq hA T Tη′ ′= −  

 ( )f
o f

t

NA
1 1

A
η η

′
= − −

′
 

 ( )fNA 4 2L 8 0.025m 0.20m′ = × = =  
 ( ) ( )t f bA NA A 0.20m D 4t 0.20m 0.05m 4 0.005m 0.337mπ π′ ′ ′= + = + − = + × − × =  
For an adiabatic fin tip, 

 
( )( )

f
f

max g s

q M tanh mL
q h 2L 1 T T

η = =
⋅ −

 

( ) ( )[ ] ( ) ( ) ( ) ( )
1/ 21/ 2 2 2

g sM h2 1m t k 1m t T T 30 W m K 2m 400 W m K 0.005m 400K 4382W= + × − ≈ ⋅ ⋅ =⎡ ⎤
⎣ ⎦  

 ( )[ ] ( )[ ]{ } ( )

( )

1/ 2
2

1/ 2
2

30 W m K 2m
mL h2 1m t k 1m t L 0.025m 0.137

400 W m K 0.005m

⋅
= + × ≈ =

⋅

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Hence, tanh mL = 0.136, and 

 
( )

( )( )
f 2 2

4382W 0.136 595W
0.992

600W30 W m K 0.05m 400K
η = = =

⋅
 

 ( )o
0.20

1 1 0.992 0.995
0.337

η = − − =  

 ( ) ( )2
tq 0.995 30 W m K 0.337m 400K 4025 W m′ = ⋅ =  

 
COMMENTS:  Alternatively, ( )( )t f t f g sq 4q h A A T T′ ′ ′ ′= + − − .  Hence, q′  = 4(595 W/m) + 30 

W/m2⋅K (0.137 m)(400 K) = (2380 + 1644) W/m = 4024 W/m. 



PROBLEM 3.150 
 
KNOWN:  Copper heat sink dimensions and convection conditions. 
 
FIND:  (a) Maximum allowable heat dissipation for a prescribed chip temperature and interfacial 
chip/heat-sink contact resistance, (b) Effect of fin length and width on heat dissipation. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional heat transfer in chip-heat sink 
assembly, (3) Constant k, (4) Negligible chip thermal resistance, (5) Negligible heat transfer from back 
of chip, (6) Uniform chip temperature. 
 
ANALYSIS:  (a) For the prescribed system, the chip power dissipation may be expressed as 

 c
c

t,c cond,b t,o

T T
q

R R R
∞−

=
+ +

 

where 
( )

6 2
t,c

t,c 2 2
c

R 5 10 m K W
R 0.0195 K W

W 0.016m

−′′ × ⋅
= = =  

 
( )

b
cond,b 2 2

c

L 0.003m
R 0.0293K W

kW 400 W m K 0.016m
= = =

⋅
 

The thermal resistance of the fin array is 

 ( ) 1
t,o o tR hAη −=  

where ( )f
o f

t

NA
1 1

A
η η= − −  

and ( ) ( )2 2
t f b c cA NA A N 4wL W Nw= + = + −  

Continued... 
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With w = 0.25 mm, S = 0.50 mm, fL  = 6 mm, N = 1024, and 3

c fL L w 4 6.063 10−≈ + = ×  m, it 

follows that 6 2
fA 6.06 10 m−= ×  and 3 2

tA 6.40 10 m−= × .  The fin efficiency is 
 

 c
f

c

tanh mL
mL

η =  

 

where ( ) ( )1/ 2 1/ 2
cm hP kA 4h kw= =  = 245 m-1 and mLc = 1.49.  It follows that fη  = 0.608 and 

oη  = 0.619, in which case 
 

 ( )2 3 2
t,oR 0.619 1500 W m K 6.40 10 m 0.168K W−= × ⋅ × × =  

 
and the maximum allowable heat dissipation is 
 

 
( )

( )c
85 25 C

q 276W
0.0195 0.0293 0.168 K W

−
= =

+ +

o

 < 

 
(b) The IHT Performance Calculation, Extended Surface Model for the Pin Fin Array has been used 
to determine cq  as a function of fL  for four different cases, each of which is characterized by the 
closest allowable fin spacing of (S - w) = 0.25 mm. 
 

Case w (mm) S (mm) N 
A 0.25 0.50 1024 
B 0.35 0.60 711 
C 0.45 0.70 522 
D 0.55 0.80 400 

6 7 8 9 10

Fin length, Lf(mm)
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280
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at
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 q

c(
W

)

w = 0.25 mm, S = 0.50 mm, N =1024
w = 0.35 mm, S = 0.60 mm, N =  711
w = 0.45 mm, S = 0.70 mm, N =  522
w = 0.55 mm, S = 0.80 mm, N =  400   

With increasing w and hence decreasing N, there is a reduction in the total area At  associated with 
heat transfer from the fin array.  However, for Cases A through C, the reduction in tA  is more than 
balanced by an increase in fη  (and oη ), causing a reduction in t,oR  and hence an increase in cq .  

As the fin efficiency approaches its limiting value of fη  = 1, reductions in tA  due to increasing w 
are no longer balanced by increases in fη , and cq  begins to decrease.  Hence there is an optimum 
value of w, which depends on fL .  For the conditions of this problem, fL  = 10 mm and w = 0.55 
mm provide the largest heat dissipation. 



Problem 3.151 
 
KNOWN:   Two finned heat sinks, Designs A and B, prescribed by the number of fins in the array, N, 
fin dimensions of square cross-section, w, and length, L, with different convection coefficients, h.   
 
FIND:  Determine which fin arrangement is superior.  Calculate the heat rate, qf, efficiency, ηf, and 
effectiveness, εf, of a single fin, as well as, the total heat rate, qt, and overall efficiency, ηo, of the 
array.  Also, compare the total heat rates per unit volume. 
 
SCHEMATIC:   

 
 

 Fin dimensions  Convection 
 Cross section Length Number of coefficient 

Design w x w (mm) L (mm) fins (W/m2⋅K) 
A 3 x 3 30 6 x 9 125 
B 1 x 1 7 14 x 17 375 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in fins, (3) 
Convection coefficient is uniform over fin and prime surfaces, (4) Fin tips experience convection,  and 
(5) Constant properties.  
 
ANALYSIS:   Following the treatment of Section 3.6.5, the overall efficiency of the array, Eq. 
(3.103), is 
 

 t t
o

max t b

q q
q hA

η
θ

= =  (1) 

 
where At is the total surface area, the sum of the exposed portion of the base (prime area) plus the fin 
surfaces, Eq. 3.104, 
 
 t f bA N A A= ⋅ +  (2) 
 
where the surface area of a single fin and the prime area are 

 ( ) 2
fA 4 L w w= × +  (3) 

 b cA b1 b2 N A= × − ⋅  (4) 
Combining Eqs. (1) and (2), the total heat rate for the array is 
 t f f b b bq N hA hAη θ θ= +  (5) 
where ηf is the efficiency of a single fin.  From Table 3.4, Case A, for the tip condition with 
convection, the single fin efficiency based upon Eq. 3.91, 
 

 f
f

f b

q
hA

η
θ

=  (6) 
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where 

 
( )
( )f

sinh(mL) h mk cosh(mL)
q M

cosh(mL) h mk sinh(mL)
+

=
+

 (7) 

 

 ( ) ( )1/ 2 1/ 2 2
c b c cM hPkA m hP kA P 4w A wθ= = = =  (8,9,10) 

 
The single fin effectiveness, from Eq. 3.86, 
 

 f
f

c b

q
hA

ε
θ

=  (11) 

 
Additionally, we want to compare the performance of the designs with respect to the array volume,  
 
 ( )f t tq q q b1 b2 L′′′ = ∀ = ⋅ ⋅  (12) 
 
The above analysis was organized for easy treatment with equation-solving software.  Solving Eqs. (1) 
through (11) simultaneously with appropriate numerical values, the results are tabulated below. 
 
Design qt qf ηo ηf εf ′′′qf  
 (W) (W)    (W/m3) 
A 113 1.80 0.804 0.779 31.9 1.25×106 
B 165 0.475 0.909 0.873 25.3 7.81×106 
 
COMMENTS:  (1) Both designs have good efficiencies and effectiveness.  Clearly, Design B is 
superior because the heat rate is nearly 50% larger than Design A for the same board footprint.  
Further, the space requirement for Design B is four times less (∀ = 2.12×10-5 vs. 9.06×10-5 m3) and the 
heat rate per unit volume is 6 times greater. 
 
(2) Design A features 54 fins compared to 238 fins for Design B.  Also very significant to the 
performance comparison is the magnitude of the convection coefficient which is 3 times larger for 
Design B.  Estimating convection coefficients for fin arrays (and tube banks) is discussed in Chapter 
7.6.  Of concern is how the upstream fins alter the flow past the downstream fins and whether the 
convection coefficient is uniform over the array. 
 
(3) The IHT Extended Surfaces Model, for a Rectangular Pin Fin Array could have been used to solve 
this problem. 
 



PROBLEM 3.152 
 
KNOWN:  Dimensions of a fin array and dust layer.  Aluminum and dust thermal conductivities.  
Base temperature.  Air temperature and heat transfer coefficient.  
 
FIND:  Allowable heat rate for dust layer thickness in the range of 0 ≤ Ld ≤ 5 mm.  
SCHEMATIC:   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state, (2) Negligible temperature variation across fin thickness, (3) 
Constant properties, (4) Uniform heat transfer coefficient, including over fin tips. 
 
ANALYSIS:  There are two heat transfer paths, one through the dust and into the air, and the other 
through the fin.  The thermal circuit is 
 
 
 
 
 
 
The thermal resistances are given by 

 d d
d,cond

d d d p c

L LR  =  = 
k A k (A  - NA )

 

 
where Ap = 53 × 10-3  m × 57 × 10-3 m = 3.02 ×10-3 m2 ,  N = 14 × 17 = 238 and Ac = w2 = 10-6 m2. 

 conv
d

1R  = 
hA

,  d
f,cond

f c

LR  = 
k NA

   and t,f
fins

R
R  = 

N
 

 
where from Equation 3.88 

 b
t,f

f

θR  = 
q

 

 
where qf  is given by Equation 3.77,  

 f f f
t,f 3

f f f

cosh(mL ) + (h / mk ) sinh(mL )R  = 
4hw k  (sinh(mL ) + (h / mk ) cosh(mL ))
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Here,     m = (4h / kfw)1/2  = (4 × 375 W/m2·K / 175 W/m·K × 10-3 m)1/2 = 92.6 m-1 
 
and      Lf  =  L - Ld. 
 
Finally,  
  q = qdust + qfin 

       =   b b

d,cond conv f,cond fins

T  - T T  - T +  
R  + R R  + R

∞ ∞  

 
Performing the calculation for a dust layer thickness of Ld = 5 mm yields 
 
 Rd,cond = 56.1 K/W 
  
 Rconv = 0.958 K/W 
 
 Rf,cond  =  0.120 K/W 
  
 Rt,f = 301 K/W,  Rfins = 1.26 K/W 
 

75°C - 25°C 75°C - 25°Cq =  +  = 0.876 W + 36.1 W = 37.0 W
(56.1 + 0.958) K/W 0.120 + 1.26

 
<

 

 
The figure shows the variation of the allowable heat rate as the dust layer thickness varies. 
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COMMENTS:  The figure below shows the two contributions to the heat rate, qdust and qfin.  The heat 
transfer through the dust layer decreases rapidly as the dust layer thickness increases and insulates the 
surface.  The fin heat transfer also decreases with increasing dust layer thickness as more of the fin 
surface is insulated by the dust.                                                                                            Continued… 
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PROBLEM 3.153 
 
KNOWN:  Long rod with internal volumetric generation covered by an electrically insulating sleeve and 
supported with a ribbed spider. 
 
FIND:  Combination of convection coefficient, spider design, and sleeve thermal conductivity which 
enhances volumetric heating subject to a maximum centerline temperature of 100°C. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional radial heat transfer in rod, sleeve 
and hub, (3) Negligible interfacial contact resistances, (4) Constant properties, (5) Adiabatic outer 
surface. 
 
ANALYSIS:  The system heat rate per unit length may be expressed as 

 ( )2 1
o

sleeve hub t,o

T Tq q r
R R R

π ∞−′ = =
′ ′ ′+ +

&  

where 

 
( )1 o

sleeve
s

ln r r
R

2 kπ
′ = , 

( )2 1 4
hub

r

ln r r
R 3.168 10 m K W

2 kπ
−′ = = × ⋅ , t,o

o t

1R
hAη

′ =
′

, 

 ( )f
o f

t

NA1 1
A

η η
′

= − −
′

, ( )f 3 2A 2 r r′ = − , ( )t f 3A NA 2 r Ntπ′ ′= + − , 

 
( )

( )
3 2

f
3 2

tanh m r r
m r r

η
−

=
−

, ( )1/ 2
rm 2h k t= . 

The rod centerline temperature is related to T1 through 

 ( )
2
o

o 1
qrT T 0 T
4k

= = +
&

 

Calculations may be expedited by using the IHT Performance Calculation, Extended Surface Model for 
the Straight Fin Array.  For base case conditions of ks = 0.5 W/m⋅K, h = 20 W/m2⋅K, t = 4 mm and N = 
12, sleeveR′  = 0.0580 m⋅K/W, t,oR′  = 0.0826 m⋅K/W, ηf = 0.990, q′  = 387 W/m, and q&  = 1.23 × 106 
W/m3.  As shown below, q&  may be increased by increasing h, where h = 250 W/m2⋅K represents a 
reasonable upper limit for airflow.  However, a more than 10-fold increase in h yields only a 63% 
increase in q& . 
 

Continued... 
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t = 4 mm, N = 12, ks = 0.5 W/m.K   
The difficulty is that, by significantly increasing h, the thermal resistance of the fin array is reduced to 
0.00727 m⋅K/W, rendering the sleeve the dominant contributor to the total resistance. 
 
Similar results are obtained when N and t are varied.  For values of t = 2, 3 and 4 mm, variations of N in 
the respective ranges 12 ≤ N ≤ 26, 12 ≤ N ≤ 21 and 12 ≤ N ≤ 17 were considered.  The upper limit on N 
was fixed by requiring that (S - t) ≥ 2 mm to avoid an excessive resistance to airflow between the ribs.  As 
shown below, the effect of increasing N is small, and there is little difference between results for the three 
values of t. 
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t = 2 mm, N: 12 - 26, h = 250 W/m^2.K
t = 3 mm, N: 12 - 21, h = 250 W/m^2.K
t = 4 mm, N: 12 -17, h = 250 W/m^2.K   

In contrast, significant improvement is associated with changing the sleeve material, and it is only 
necessary to have ks ≈ 25 W/m⋅K (e.g. a boron sleeve) to approach an upper limit to the influence of ks. 
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t = 4 mm, N = 12, h = 250 W/m^2.K   
For h = 250 W/m2⋅K and ks = 25 W/m⋅K, only a slight improvement is obtained by increasing N.  Hence, 
the recommended conditions are: 

 2
sh 250 W m K, k 25 W m K, N 12, t 4mm= ⋅ = ⋅ = =  < 

 
COMMENTS:  The upper limit to q&  is reached as the total thermal resistance approaches zero, in which 

case T1 → T∞.  Hence ( ) 2 6 3
max o oq 4k T T r 4.5 10 W m∞= − = ×&  . 



PROBLEM 3.154 
 
KNOWN:  Geometrical and convection conditions of internally finned, concentric tube air heater. 
 
FIND:  (a) Thermal circuit, (b) Heat rate per unit tube length, (c) Effect of changes in fin array. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional heat transfer in radial direction, (3) 
Constant k, (4) Adiabatic outer surface. 
 
ANALYSIS:  (a) For the thermal circuit shown schematically, 

 ( ) 1
conv,i i 1R h 2 rπ −′ = ,          ( )cond 2 1R ln r r 2 kπ′ = , and            ( ) 1

t,o o o tR h Aη −′ ′= , 
where 

( )f
o f

t

NA
1 1

A
η η

′
= − −

′
,    ( )f 3 2A 2L 2 r r′ = = − ,    ( )t f 2A NA 2 r Ntπ′ ′= + − , and    f

tanh mL
mL

η = . 

(b) 
( ),i ,o

conv,i cond t,o

T T
q

R R R
∞ ∞−

′ =
′ ′ ′+ +

 

Substituting the known conditions, it follows that 

 ( ) 12 3
conv,iR 5000 W m K 2 0.013m 2.45 10 m K Wπ

− −′ = ⋅ × × = × ⋅  

 ( ) ( ) 3
condR ln 0.016m 0.013m 2 20 W m K 1.65 10 m K Wπ −′ = ⋅ = × ⋅  

 ( ) 12 3
t,oR 0.575 200 W m K 0.461m 18.86 10 m K W

− −′ = × ⋅ × = × ⋅  

where fη  = 0.490.  Hence, 

 ( )
( ) 3

90 25 C
q 2831W m

2.45 1.65 18.86 10 m K W−
−

′ = =
+ + × ⋅

o

 < 

(c) The small value of fη  suggests that some benefit may be gained by increasing t, as well as by 
increasing N.  With the requirement that Nt ≤ 50 mm, we use the IHT Performance Calculation, Extended 
Surface Model for the Straight Fin Array to consider the following range of conditions:  t = 2 mm, 12 ≤ N 
≤ 25; t = 3 mm, 8 ≤ N ≤ 16; t = 4 mm, 6 ≤ N ≤ 12; t = 5 mm, 5 ≤ N ≤ 10.  Calculations based on the 
foregoing model are plotted as follows. 

Continued... 
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By increasing t from 2 to 5 mm, fη  increases from 0.410 to 0.598.  Hence, for fixed N, q′  increases with 
increasing t.  However, from the standpoint of maximizing tq′ , it is clearly preferable to use the larger 
number of thinner fins.  Hence, subject to the prescribed constraint, we would choose t = 2 mm and N = 
25, for which q′  = 4880 W/m. 
 
COMMENTS:  (1) The air side resistance makes the dominant contribution to the total resistance, and 
efforts to increase q′  by reducing t,oR′  are well directed.  (2) A fin thickness any smaller than 2 mm 
would be difficult to manufacture. 



PROBLEM 3.155  
KNOWN:  Dimensions and number of rectangular aluminum fins.  Convection coefficient with and without 
fins.  
FIND:  Percentage increase in heat transfer resulting from use of fins.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction, (3) Constant properties, (4) 
Negligible radiation, (5) Negligible fin contact resistance, (6) Uniform convection coefficient.  
PROPERTIES:  Table A-1, Aluminum, pure:  k ≈ 240 W/m⋅K.  
ANALYSIS:  Evaluate the fin parameters 
 cL L+t/2 0.05025m= =  

 -3 -6 2
p cA L t 0.05025m 0.5 10 m=25.13 10  m= = × × ×  

 

 ( ) ( )
1/ 221/ 2 3/ 23/2

c w p -6 2
30 W/m KL h / kA 0.05025m   

240 W/m K 25.13 10 m

⎡ ⎤⋅
= ⎢ ⎥

⎢ ⎥⋅ × ×⎣ ⎦
 

 

 ( )1/ 23/2
c w pL h / kA 0.794=  

 
It follows from Fig. 3.19 that ηf ≈ 0.72.  Hence, 
 f f max w bq q 0.72 h 2wL η θ= =  
 
 ( ) ( )2

f b bq 0.72 30 W/m K 2 0.05m w 2.16 W/m K w θ θ= × ⋅ × × × = ⋅  
 
With the fins, the heat transfer from the walls is 
 ( )w f w bq N q 1 Nt w h  θ= + −  
 

 ( ) ( ) ( )4 2
w b b

Wq 250 2.16 w 1m 250 5 10 m 30 W/m K w 
m K

θ θ−= × + − × × × ⋅
⋅

 
 

 ( ) ( )w b b
Wq 540 26.3 w 566 w .

m K
θ θ= + =

⋅
 

 
Without the fins, qwo = hwo 1m × w θb = 40 w θb.  Hence the percentage increase in heat 
transfer is 

 ( ) bw wo
wo b

566 40 w q q 13.15 1315%
q 40 w 

θ
θ

−−
= = =      < 

 
COMMENTS:  If the infinite fin approximation is made, it follows that qf = (hPkAc)1/2 θb 
=[hw2wkwt]1/2 θb = (30 × 2 × 240 × 5×10-4)1/2 w θb = 2.68 w θb.  Hence, qf is 
overestimated. 



PROBLEM 3.156 
 
KNOWN:  Wall with known heat generation rate, thermal conductivity, and thickness.  
Dimensions and thermal conductivity of fins.  Heat transfer coefficients and environment 
temperatures. 
 
FIND:  Maximum temperature. 
 
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Wall surface temperatures are uniform. (3) No 
contact resistance between fins and wall, (4) Heat transfer from the fin tips can be neglected. 
 
ANALYSIS: The temperature distribution in a wall with uniform volumetric heat generation and 
specified temperature boundary conditions is, from Equation 3.46 
 

2 2
s,2 s,1 s,1 s,2

2

T  - T T  + TqL x xT(x) = 1 -  +  + 
2k 2 L 2L

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

&  (1) 

 
The heat transfer rates at the two surfaces, for a wall section of area A, can be found from Fourier’s 
law: 

s,2 s,1
s,1

x = - L

T  - TdTq  = - kA = - qLA - kA
dx 2L

&  (2) 

 
s,2 s,1

s,2
x = L

T  - TdTq  = - kA = qLA - kA
dx 2L

&  (3) 

 
We can express these same heat transfer rates alternatively, as follows: 

s,1 1 1 s,1q  = h A(T  - T )   (4) 

s,2 2 t s,2 2 oq  = h A (T  - T )η      (5) 
 
where oη  is given by Equation 3.107.  Equating the two expressions for s,1q , Equations (2) and (4), 
and equating the expressions for s,2q , Equations (3) and (5), and solving for Ts,1 and Ts,2 yields 

Continued… 

qs,1 
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T1 = 30ºC 
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2 1 1 2 2 2

s,1
1 2

1 2

k k k + h A h T  + h AT  +  + h A qL
2L 2L LT  = 

kh kh A + h h A + 
2L 2L

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

% % % &

%
%

 

 

1 1 1 2 2 1

s,2
1 2

1 2

k k kh T  +  + h h AT  +  + h qL
2L 2L LT  = 

kh kh A + h h A + 
2L 2L

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

% &

%
%

 

 
where 

( )t o t f
f

A η A NAA =  =  - 1 - η
A A A

%  

 
Performing the calculations: 

2
-12 2

f c f

h P 2h 2 × 12 W/m Km =  =  =  = 6.9 m
k A k t 250 W/m  K × 0.002 m

⋅
⋅

 

 

( ) ( )-1
f

f -1
f

tanh 6.9 m  × 0.02 mtanh mL
η  =  =  = 0.994

mL 6.9 m × 0.02 m
 

 
f f fNA N2wL 2L 2 × 0.02 m =  =  =  = 10.0

A ( t)Nw δ + t 0.004 mδ +
 

 
t bf f fA ANA NA NAδNw δ 0.002 m =  +  =  +  =  +  = 10. +  = 10.5

A A A A (δ+t)Nw A δ + t 0.004 m
 

 
( )A = 10.5 - 10. 1 - 0.994  = 10.4%  

 
2 2

2h A = 12 W/m K × 10.4 = 125 W/m  K⋅ ⋅%  
 

2k 25 W/m K =  = 417 W/m K
2L 0.06 m

⋅
⋅  

Thus

( )

( ) ( )

2 2

2 2
s,1

2 5 3 22

417 125  W/m K 50 W/m K 30 C (417 50
T = + 417 W/m K 125 W/m K 15 C + 50 × 125

2 417 125  W/m K 2 10  W/m 0.03 m + 417 × 125) W/m K

⎛ ⎞⎛ ⎞+ ⋅ × ⋅ × ° ×⎜ ⎟⎜ ⎟
⎜ ⎟⋅ × ⋅ × °⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟+ × + ⋅ × × × ⎜ ⎟⋅⎝ ⎠ ⎝ ⎠

 
Continued… 
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 Ts,1 = 92.7ºC 
 
Similarly, 

Ts,2 = 85.8ºC 
 
The location of the maximum temperature in the wall can be found by setting the gradient of the 
temperature (from Equation (1)) to zero: 

s,2 s,1T  - TdT qx = -  +  = 0
dx k 2L

&  

Thus, s,2 s,1
max

T  - T
x  = k

2Lq&
.  Substituting this back into the temperature distribution,  

( )22
s,2 s,1 s,1 s,2

max 2

k T  - T T  + TqLT  =  +  + 
2k 28L q
&

&
 

( )25 3 2

2 5 3
25 W/m  K 85.8°C - 92.7°C2 × 10  W/m  × (0.03 m)=  +  

2 × 25 W/m  K 8 × (0.03 m)  × 2 × 10  W/m
92.7°C + 85.8°C              +  = 93.7°C

2

⋅
⋅           

<
 

 



PROBLEM 3.157 
 
KNOWN:  Dimensions, base temperature and environmental conditions associated with a triangular, 
aluminum fin. 
 
FIND:  (a) Fin efficiency and effectiveness, (b) Heat dissipation per unit width. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction, (3) Constant properties, 
(4) Negligible radiation and base contact resistance, (5) Uniform convection coefficient. 
 
PROPERTIES:  Table A-1, Aluminum, pure (T ≈ 400 K):  k = 240 W/m⋅K. 
 
ANALYSIS:  (a) With Lc = L = 0.006 m, find 

 ( )( ) 6 2
pA Lt 2 0.006 m 0.002 m 2 6 10 m−= = = × , 

 ( ) ( )
1/ 221/ 2 3/ 23 / 2

c p 6 2
40 W m K

L h kA 0.006 m 0.077
240 W m K 6 10 m−

⋅
= =

⋅ × ×

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

and from Fig. 3.19, the fin efficiency is 

 f 0.99η ≈ . < 
From Eq. 3.91 and Table 3.5, the fin heat rate is 

 ( )
1/ 222

f f max f f (tri) b f bq q hA 2 hw L t 2η η θ η θ= = = +⎡ ⎤
⎢ ⎥⎣ ⎦

. 

From Eq. 3.86, the fin effectiveness is 

 
( )

( )
( )

1/ 2 1/ 22 22 2
f b ff

f
c,b b b

2 hw L t 2 2 L t 2q
hA h w t t

+ +
= = =

⋅

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

η θ η
ε

θ θ
 

 

 
( ) ( )

1/ 22 2

f
2 0.99 0.006 0.002 2 m

6.02
0.002 m

ε
× +

= =
⎡ ⎤
⎢ ⎥⎣ ⎦  < 

 
(b) The heat dissipation per unit width is 

 ( ) ( )
1/ 222

f f f bq q w 2 h L t 2η θ′ = = +⎡ ⎤
⎢ ⎥⎣ ⎦

 

 ( ) ( ) ( )
1/ 22 22

fq 2 0.99 40 W m K 0.006 0.002 2 m 250 20 C 110.8 W m′ = × × ⋅ + × − =⎡ ⎤
⎢ ⎥⎣ ⎦

o . < 
 
COMMENTS:  The parabolic profile is known to provide the maximum heat dissipation per unit fin 
mass. 



PROBLEM 3.158 
 
KNOWN:  Dimensions and base temperature of an annular, aluminum fin of rectangular profile.  
Ambient air conditions. 
 
FIND:  (a) Fin heat loss, (b) Heat loss per unit length of tube with 200 fins spaced at 5 mm increments. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction, (3) Constant properties, 
(4) Negligible radiation and contact resistance, (5) Uniform convection coefficient. 
 
PROPERTIES:  Table A-1, Aluminum, pure (T ≈ 400 K):  k = 240 W/m⋅K. 
 
ANALYSIS:  (a) The fin parameters for use with Figure 3.20 are 
 
 ( )2c 2r r t 2 12.5mm 10 mm 0.5mm 23mm 0.023m= + = + + = =  
 
 2c 1 cr r 1.84 L L t 2 10.5mm 0.0105m= = + = =  
 
 5 2

p cA L t 0.0105m 0.001m 1.05 10 m−= = × = ×  
 

 ( ) ( )
1/ 221/ 2 3/ 23/ 2

c p 5 2
25W m KL h kA 0.0105m 0.15

240 W m K 1.05 10 m−

⎛ ⎞⋅⎜ ⎟= =
⎜ ⎟⋅ × ×⎝ ⎠

. 

 
Hence, the fin effectiveness is ηf ≈ 0.97, and from Eq. 3.91 and Fig. 3.6, the fin heat rate is 
 

 ( )2 2
f f max f f (ann) b f b2,c 1q q hA 2 h r rη η θ πη θ= = = −  

 ( ) ( )2 22
fq 2 0.97 25W m K 0.023m 0.0125m 225 C 12.8Wπ ⎡ ⎤= × × ⋅ × − =⎢ ⎥⎣ ⎦

o . < 
 
(b) Recognizing that there are N = 200 fins per meter length of the tube, the total heat rate considering 
contributions due to the fin and base (unfinned) surfaces is 
 
 ( )f 1 bq N q h 1 N t 2 rπ θ′ ′ ′= + −  
 

 ( ) ( )1 2 1q 200m 12.8W 25W m K 1 200m 0.001m 2 0.0125m 225 Cπ− −′ = × + ⋅ − × × × o  

 ( )q 2560 W 353W m 2.91kW m′ = + = . < 
 
COMMENTS:  Note that, while covering only 20% of the tube surface area, the tubes account for more 
than 85% of the total heat dissipation. 



PROBLEM 3.159 
 
KNOWN:  Dimensions and base temperature of aluminum fins of rectangular profile.  Ambient air 
conditions. 
 
FIND:  (a) Fin efficiency and effectiveness, (b) Rate of heat transfer per unit length of tube. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional radial conduction in fins, (3) 
Constant properties, (4) Negligible radiation, (5) Negligible base contact resistance, (6) Uniform 
convection coefficient. 
 
PROPERTIES:  Table A-1, Aluminum, pure (T ≈ 400 K):  k = 240 W/m⋅K. 
 
ANALYSIS:  (a) The fin parameters for use with Figure 3.20 are 
 
 2c 2r r t 2 40 mm 2 mm 0.042 m= + = + =  cL L t 2 15 mm 2 mm 0.017 m= + = + =  
 
 2c 1r r 0.042 m 0.025 m 1.68= =  5 2

p cA L t 0.017 m 0.004 m 6.8 10 m−= = × = ×  
 

 ( ) ( )
1/ 21/ 2 3/ 23 / 2 2 5 2

c pL h kA 0.017 m 40 W m K 240 W m K 6.8 10 m 0.11−= ⋅ ⋅ × × =⎡ ⎤
⎣ ⎦  

 
The fin efficiency is ηf ≈ 0.97.  From Eq. 3.91, 
 

 2 2
f f max f f (ann) b f 2c 1 bq q hA 2 h r rη η θ πη θ= = = −⎡ ⎤

⎣ ⎦
 

 ( ) ( )2 22 2
fq 2 0.97 40 W m K 0.042 0.025 m 180 C 50 Wπ= × × ⋅ − × =⎡ ⎤

⎢ ⎥⎣ ⎦
o  < 

 
From Eq. 3.86, the fin effectiveness is 
 

 
( )( )

f
f 2c,b b

q 50 W
11.05

hA 40 W m K 2 0.025 m 0.004 m 180 C
ε

θ π
= = =

⋅ o
 < 

 
(b) The rate of heat transfer per unit length is 
 
 ( )( )f 1 bq N q h 1 N t 2 rπ θ′ ′ ′= + −  
 
 ( )( )2q 125 50 W m 40 W m K 1 125 0.004 2 0.025 m 180 Cπ′ = × + ⋅ − × × × o  

 ( )q 6250 565 W m 6.82 kW m′ = + =  < 
 
COMMENTS:  Note the dominant contribution made by the fins to the total heat transfer. 
 



PROBLEM 3.160

KNOWN: Dimensions and materials of a finned (annular) cylinder wall. Heat flux and
ambient air conditions. Contact resistance.

FIND: Surface and interface temperatures (a) without and (b) with an interface contact
resistance.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional, steady-state conditions, (2) Constant properties, (3)
Uniform h over surfaces, (4) Negligible radiation.

ANALYSIS: The analysis may be performed per unit length of cylinder or for a 4 mm long
section. The following calculations are based on a unit length. The inner surface temperature
may be obtained from

  5 2i
i i

tot

T T
q q 2 r 10 W/m 2 0.06 m 37,700 W/m

R
 

      


where   1
tot c t,c w equiv equiv f bR R R R R ; R 1/ R 1/ R .

            

cR , Conduction resistance of cylinder wall:

   
 

1 i 4
c

ln r / r ln 66/60
R 3.034 10 m K/W

2 k 2 50 W/m K 
     



R t,c , Contact resistance:

4 2 4
t,c t,c 1R R / 2 r 10 m K/W/2 0.066 m 2.411 10 m K/W         

wR , Conduction resistance of aluminum base:

   b 1 5
w

ln r / r ln 70/66
R 3.902 10 m K/W

2 k 2 240 W/m K 
     

 

bR , Resistance of prime or unfinned surface:

 
4

b 2b

1 1
R 454.7 10 m K/W

hA 100 W/m K 0.5 2 0.07 m

     
   

fR , Resistance of fins: The fin resistance may be determined from

b
f

f f f

T T 1
R

q hA


  
 

The fin efficiency may be obtained from Fig. 3.20,

2c o cr r t/2 0.096 m L L+t/2 0.026 m    

Continued …



PROBLEM 3.160 (Cont.)

 
1/ 25 2 3/2

p c 2c 1 c pA L t 5.2 10 m r / r 1.45 L h/kA 0.375    

Fig. 3.20  f  0.88.

The total fin surface area per meter length

   2 2 -1 2 2 2
f o bA 250 r r 2 250 m 2 0.096 0.07 m 6.78 m.          

      

Hence
12 4

fR 0.88 100 W/m K 6.78 m 16.8 10 m K/W
           

 4 4
equiv1/ R 1/16.8 10 1/ 454.7 10 W/m K 617.2 W/m K        

4
equivR 16.2 10 m K/W.   

Neglecting the contact resistance,

  4 4
totR 3.034 0.390 16.2 10 m K/W 19.6 10 m K/W        

-4
i totT q R T 37,700 W/m 19.6 10 m K/W+320 K 393.9 K        <

-4
1 i wT T q R 393.9 K 37,700 W/m 3.034 10 m K/W 382.5 K         <

-5
b 1 bT T q R 382.5 K 37,700 W/m 3.902 10 m K/W 381.0 K.         <

Including the contact resistance,

 4 4 4
totR 19.6 10 2.411 10 m K/W 22.0 10 m K/W          

-4
iT 37,700 W/m 22.0 10 m K/W+320 K 402.9 K     <

-4
1,iT 402.9 K 37,700 W/m 3.034 10 m K/W 391.5 K      <

-4
1,oT 391.5 K 37,700 W/m 2.411 10 m K/W 382.4 K      <

-5
bT 382.4 K 37,700 W/m 3.902 10 m K/W 380.9 K.      <

COMMENTS: (1) The effect of the contact resistance is small.

(2) The effect of including the aluminum fins may be determined by computing Ti without the

fins. In this case tot c convR R R ,    where

 
4

conv 21

1 1
R 241.1 10 m K/W.

h2 r 100 W/m K 2 0.066 m 

     


Hence, 4
totR 244.1 10 m K/W,   and

-4
i totT q R T 37,700 W/m 244.1 10 m K/W+320 K 1240 K.       

Hence, the fins have a significant effect on reducing the cylinder temperature.

(3) The overall surface efficiency is

    o f t f1 A / A 1 1 6.78 m/7.00 m 1 0.88 0.884.        

It follows that o o t bq = h A 37,700 W/m,    which agrees with the prescribed value.



PROBLEM 3.161 
 
KNOWN:  Dimensions and materials of a finned (annular) cylinder wall.  Combustion gas and ambient 
air conditions.  Contact resistance. 
 
FIND:  (a) Heat rate per unit length and surface and interface temperatures, (b) Effect of increasing the 
fin thickness. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) One-dimensional, steady-state conditions, (2) Constant properties, (3) Uniform h 
over surfaces, (4) Negligible radiation. 
 
ANALYSIS:  (a) The heat rate per unit length is 

 g

tot

T T
q

R
∞−

′ =
′

 

where tot g w t,c b t,oR R R R R R′ ′ ′ ′ ′ ′= + + + + , and 

 ( ) ( ) 11 2
g g iR h 2 r 150 W m K 2 0.06m 0.0177m K Wπ π

−−
′ = = ⋅ × × = ⋅ , 

 
( ) ( )

( )
41 i

w
w

ln r r ln 66 60
R 3.03 10 m K W

2 k 2 50 W m Kπ π
−′ = = = × ⋅

⋅
, 

 ( ) 4 2 4
t,c t,c 1R R 2 r 10 m K W 2 0.066m 2.41 10 m K Wπ π− −′ ′′= = ⋅ × = × ⋅  

 
( ) ( ) 5b 1

b
ln r r ln 70 66

R 3.90 10 m K W
2 k 2 240 W m Kπ π

−′ = = = × ⋅
× ⋅

, 

 ( ) 1
t,o o tR hAη −′= , 

 ( )f
o f

t

N A
1 1

A
η η

′
= − −

′
, 

 ( )2 2
f oc bA 2 r rπ= −  

 ( )t f bA N A 1 N t 2 rπ′ ′ ′= + −  

 
( )

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

b 1 b 1 oc 1 b 1 oc
f 2 2 0 1 1 oc 0 b 1 ococ b

2r m K mr I mr I mr K mr
I mr K mr K mr I mrr r

η
−

=
+−

 

 ( ) ( )1/ 2
oc or r t 2 , m 2h kt= + =  

Continued... 
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Once the heat rate is determined from the foregoing expressions, the desired interface temperatures may 
be obtained from 
 
 i g gT T q R′ ′= −  
 
 ( )1,i g g wT T q R R′ ′ ′= − +  
 
 ( )1,o g g w t,cT T q R R R′ ′ ′ ′= − + +  
 
 ( )b g g w t,c bT T q R R R R′ ′ ′ ′ ′= − + + +  
 
For the specified conditions we obtain tA′  = 7.00 m, fη  = 0.902, oη  = 0.906 and t,oR′  = 0.00158 
m⋅K/W.  It follows that 
 
 q 39,300 W m′ =  < 

 i 1,i 1,o bT 405K, T 393K, T 384K, T 382K= = = =  < 
 
(b) The Performance Calculation, Extended Surface Model for the Circular Fin Array may be used to 
assess the effects of fin thickness and spacing.  Increasing the fin thickness to t = 3 mm, with δ = 2 mm, 
reduces the number of fins per unit length to 200.  Hence, although the fin efficiency increases (ηf  = 
0.930), the reduction in the total surface area ( tA′  = 5.72 m) yields an increase in the resistance of the fin 
array ( ′Rt o,  = 0.00188 m⋅K/W), and hence a reduction in the heat rate ( q′  = 38,700 W/m) and an increase 
in the interface temperatures ( iT  = 415 K, 1,iT  = 404 K, 1,oT  = 394 K, and bT  = 393 K). 
 
COMMENTS:  Because the gas convection resistance exceeds all other resistances by at least an order of 
magnitude, incremental changes in t,oR  will not have a significant effect on ′q  or the interface 
temperatures. 



PROBLEM 3.162

KNOWN: Dimensions of finned aluminum sleeve inserted over a transistor. Contact resistance between
sleeve and transistor. Surface convection conditions and temperature of transistor case.

FIND: (a) Rate of heat transfer from sleeve and (b) Measures for increasing heat dissipation.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) Negligible heat transfer from the top and bottom
surfaces of the transistor, (3) One-dimensional radial conduction, (4) Constant properties, (5) Negligible
radiation.

ANALYSIS:
(a) The circuit must account for the contact resistance, conduction in the sleeve, convection from the
exposed base, and conduction/convection from the fins.

Thermal resistances for the contact joint and sleeve are
-3 2

t,c
t,c

1

R 0.6 × 10 m K/W
R = = = 9.55 K/W

2πr H 2π(0.0025 m)(0.004 m)

 

2 1
t,sleeve

ln(r /r ) ln(3.5/2.5)
R = = = 0.0669 K/W

2πkH 2π(200 W/m K)(0.004 m)

For a single fin, Rt,f = b f/ q , where from Table 3.4, with tip convection,

Continued…

T1

Rt,c Rt,sleeve

Tb T∞

Rt,f(12)

Rt,b

T1

Rt,c Rt,sleeve

Tb T∞
T1

Rt,c Rt,sleeve

Tb T∞

Rt,f(12)

Rt,b

T∞ = 20°C
h = 30 W/m2∙K

H = 4 mm

t,cR = 0.6 ×10-3 m2∙K/W

T1 = 80°C

t = 0.8 mm

r1 = 2.5 mm

r3 = 11.5 mm

r2 = 3.5 mm

k = 200 W/m∙K

T∞ = 20°C
h = 30 W/m2∙K

H = 4 mm

t,cR = 0.6 ×10-3 m2∙K/W

T1 = 80°C

t = 0.8 mm

r1 = 2.5 mm

r3 = 11.5 mm

r2 = 3.5 mm

k = 200 W/m∙K
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1/2
f c b

sinh(mL) + (h/mk)cosh(mL)
q  = (hPkA ) θ

cosh(mL) + (h/mk)sinh(mL)

with P = 2(H + t) = 9.6 mm = 0.0096 m and Ac = t  H = 3.2  10-6 m2,
1/21/2 2

-1
-6 2

c

hP 30 W/m K × 0.0096 m
m = = = 21.2 m

kA 200 W/m K × 3.2 × 10 m

   
       

-1mL = 21.2 m × 0.008 m = 0.170

2

-1

h 30 W/m K
= = 0.00707

mk 21.2 m × 200 W/m K





and
1/2 2 6 2 1/2

c(hPkA ) = (30 W/m K × 0.0096 m × 200 W/m K × 3.2 × 10 m ) = 0.0136 W/K 

Use of Table B.1 yields, for a single fin

t,f
1.014 + 0.00707 × 0.171

R = = 421 K/W
0.0136 W/K (0.171 + 0.00707 × 1.014)

Hence, for 12 fins,

t,f
t,f(12)

R
R = = 35.1 K/W

12

For the exposed base,

t,b
2

1
R =

h(2πr  - 12t)H 2

1
=

30 W/m K (2π × 0.0035 - 12 × 0.0008)m × 0.004 m
= 673 K/W

With
-1-1 -1

t,oR = (35.1) + (673) = 33.3 K/W 
 

it follows that

totR = (9.55 + 0.0669 + 33.3) K/W = 43.0 K/W

and

1
t

tot

T - T (80 - 20)°C
q = = = 1.40 W

R 43.0 K/W
 <

(b) With 2r2 = 0.022 m and Nt = 0.0096 m, the existing gap between fins is extremely small (0.96 mm).

Hence, by increasing N and/or t, it would become even more difficult to maintain satisfactory airflow
between the fins, and this option is not particularly attractive.

Because the fin efficiency for the prescribed conditions is close to unity ( 1
f f t,fη (hA R ) = 0.992),

there is little advantage to replacing the aluminum with a material of higher thermal conductivity (e.g. Cu
Continued…
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with k ~ 400 W/mK). However, the large value of fη suggests that significant benefit could be gained

by increasing the fin length, L = r r3 2 .

It is also evident that the thermal contact resistance is large, and from Table 3.2, it’s clear that a
significant reduction could be effected by using indium foil or a conducting grease in the contact zone.
Specifically, a reduction of t,cR from 0.610-3 to 10-4 or even 10-5 m2K/W is certainly feasible.

Table 1.1 suggests that, by increasing the velocity of air flowing over the fins, a larger convection
coefficient may be achieved. A value of h = 100 W/m2K would not be unreasonable.

As options for enhancing heat transfer, we therefore enter the foregoing equations into IHT to explore the
effect of parameter variations over the ranges 8  L  20 mm, 10-5  t,cR  0.610-3 m2K/W and

30  h  100 W/m2K. As shown below, there is a significant enhancement in heat transfer associated
with reducing t,cR from 0.610-3 to 10-4 m2K/W, for which t,cR decreases from 9.55 to 1.59 K/W. At

this value of t,cR , the reduction in t,oR from 33.3 to 14.8 K/W which accompanies an increase in L

from 8 to 20 mm becomes significant, yielding a heat rate of q t = 3.65 W for t,cR = 10-4 m2K/W and L

= 20 mm. However, since t,o t,cR R , little benefit is gained by further reducing t,cR to 10-5 m2K/W.

0.008 0.01 0.012 0.014 0.016 0.018 0.02

Fin length, L (m)

0

1

2

3

4

5

H
e

a
t
ra

te
,
q

t
(W

)

h = 30 W/m^2.K, R"t,c = 0.6e-3 m^2.K/W
h = 30 W/m^2.K, R"t,c = 1.0e-4 m^2.K/W
h = 30 W/m^2.K, R"t,c = 1.0e-5 m^2.K/W

To derive benefit from a reduction in t,cR to 10-5 m2K/W, an additional reduction in t,oR must be made.

This can be achieved by increasing h, and for L = 20 mm and h = 100 W/m2K, t,oR = 5.0 K/W. With

t,cR = 10-5 m2K/W, a value of tq = 11.5 W may be achieved.

Continued…
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0.008 0.01 0.012 0.014 0.016 0.018 0.02

Fin length, L (m)

0

4

8

12

H
e

a
t

ra
te

,
q

t
(W

)

h = 30 W/m^2.K, R"t,c = 1.0e-5 m^2.K/W
h = 50 W/m^2.K, R"t,c = 1.0e-5 m^2.K/W
h = 100 W/m^2.K, R"t,c = 1.0e-5 m^2.K/W

COMMENTS: (1) Without the finned sleeve, the convection resistance of the transistor case is Rtran =
(2r1Hh)-1 = 531 K/W. Hence there is considerable advantage to using the fins. (2) If an adiabatic fin
tip is assumed, tanh(mL) = 0.168 and Rt,f = 437. Hence the error in the fin resistance is 4% relative to the
actual convecting tip. (3) With f = 0.992, Equation 3.102 yields o = 0.992, from which it follows that
Rt,o = (ohAt)

-1 = 33.3 K/W. This result is, of course, identical to that obtained in the foregoing
determination of Rt,o. (4) In assessing options for enhancing heat transfer, the limiting (largest)
resistance(s) should be identified and efforts directed at their reduction.



PROBLEM 3.163 
 
KNOWN:  Internal and external convection conditions for an internally finned tube.  Fin/tube dimensions 
and contact resistance. 
 
FIND:  Heat rate per unit tube length and corresponding effects of the contact resistance, number of fins, 
and fin/tube material. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional heat transfer, (3) Constant 
properties, (4) Negligible radiation, (5) Uniform convection coefficient on finned surfaces, (6) Tube wall 
may be unfolded and approximated as a plane surface with N straight rectangular fins. 
 
PROPERTIES:  Copper:  k = 400 W/m⋅K;   St.St.:  k = 20 W/m⋅K. 
 
ANALYSIS:  The heat rate per unit length may be expressed as 

 g w

t,o(c) cond conv,o

T T
q

R R R

−
′ =

′ ′ ′+ +
 

where 

 ( )t,o(c) o(c) g tR h Aη ′= ,    f f
o(c)

t 1

NA
1 1

A C
η

η
′

= − −
′
⎛ ⎞
⎜ ⎟
⎝ ⎠

,    ( )1 f g f t,c c,bC 1 h A R Aη ′ ′′ ′= + , 

 ( )t f 1A NA 2 r Ntπ′ ′= + − ,     f 1A 2r′ = ,    ( )1/ 2
f 1 1 gtanh mr mr , m 2h ktη = =      c,bA t′ = , 

 
( )2 1

cond
ln r r

R
2 kπ

′ = ,   and    ( ) 1
conv,o 2 wR 2 r hπ −′ = . 

 
Using the IHT Performance Calculation, Extended Surface Model for the Straight Fin Array, the 
following results were obtained.  For the base case, q′  = 3857 W/m, where t,o(c)R′  = 0.101 m⋅K/W, 

condR′  = 7.25 × 10-5 m⋅K/W and conv,oR′  = 0.00265 m⋅K/W.  If the contact resistance is eliminated 

( t,cR′′  = 0), ′q  = 3922 W/m, where t,oR′  = 0.0993 m⋅K/W.  If the number of fins is increased to N = 8, 

q′  = 5799 W/m, with t,o(c)R′  = 0.063 m⋅K/W.  If the material is changed to stainless steel, q′  = 3591 

W/m, with t,o(c)R′  = 0.107 m⋅K/W and condR′  = 0.00145 m⋅K/W. 
 
COMMENTS:  The small reduction in ′q  associated with use of stainless steel is perhaps surprising, in 
view of the large reduction in k.  However, because gh  is small, the reduction in k does not significantly 

reduce the fin efficiency ( fη  changes from 0.994 to 0.891).  Hence, the heat rate remains large.  The 
influence of k would become more pronounced with increasing gh . 



PROBLEM 3.164 
 
KNOWN:  Design and operating conditions of a tubular, air/water heater. 
 
FIND:  (a) Expressions for heat rate per unit length at inner and outer surfaces, (b) Expressions for inner 
and outer surface temperatures, (c) Surface heat rates and temperatures as a function of volumetric 
heating q&  for prescribed conditions.  Upper limit to q& . 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state, (2) Constant properties, (3) One-dimensional heat transfer. 
 
PROPERTIES:  Table A-1:  Aluminum, T = 300 K, ak  = 237 W/m⋅K. 
 
ANALYSIS:  (a) Applying Equation C.8 to the inner and outer surfaces, it follows that 

 ( )
( ) ( )

2 2
2 s o i

i i s,o s,i2o i s o

2 k qr r
q r q r 1 T T

ln r r 4k r

π
π′ = − − + −

⎡ ⎤⎛ ⎞
⎢ ⎜ ⎟ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

&
&  < 

 ( )
( ) ( )

2 2
2 s o i

o o s,o s,i2o i s o

2 k qr r
q r q r 1 T T

ln r r 4k r

π
π′ = − − + −

⎡ ⎤⎛ ⎞
⎢ ⎜ ⎟ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

&
&  < 

(b) From Equations C.16 and C.17, energy balances at the inner and outer surfaces are of the form 

 ( )
( )

( )

2 2
o i

s s,o s,i2s oi
i ,i s,i

i o i

qr r
k 1 T T

4k rqr
h T T

2 r ln r r∞

− + −

− = −

⎡ ⎤⎛ ⎞
⎢ ⎜ ⎟ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

&

&
 < 

 ( )
( )

( )

2 2
o i

s s,o s,i2s oo
o s,o ,o

o o i

qr r
k 1 T T

4k rqr
U T T

2 r ln r r∞

− + −

− = −

⎡ ⎤⎛ ⎞
⎢ ⎜ ⎟ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

&

&
 < 

Accounting for the fin array and the contact resistance, Equation 3.109 may be used to cast the overall 
heat transfer coefficient oU  in the form 

 
( )

( )
o t

o o(c) o
w t,o(c) ww s,o ,o

q r A1
U h

A R AA T T
η

∞

′ ′
= = =

′ ′ ′′ −
 

where o(c)η  is determined from Equations 3.110a,b and w oA 2 rπ′ = . 

Continued... 
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(c)  For the prescribed conditions and a representative range of 107 ≤ q&  ≤ 108 W/m3, use of the relations 
of part (b) with the capabilities of the IHT Performance Calculation Extended Surface Model for a 
Circular Fin Array yields the following graphical results. 
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It is in this range that the upper limit of s,iT  = 373 K is exceeded for q&  = 4.9 × 107 W/m3, while the 

corresponding value of s,oT  = 379 K is well below the prescribed upper limit.  The expressions of part 
(a) yield the following results for the surface heat rates, where heat transfer in the negative r direction 
corresponds to ( )iq r′  < 0. 
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For q&  = 4.9 × 107 W/m3, ( )iq r′  = -2.30 × 104 W/m and ( )oq r′  = 1.93 × 104 W/m. 
 
COMMENTS:  The foregoing design provides for comparable heat transfer to the air and water streams.  
This result is a consequence of the nearly equivalent thermal resistances associated with heat transfer 

from the inner and outer surfaces.  Specifically, ( ) 1
conv,i i iR h 2 rπ −′ =  = 0.00318 m⋅K/W is slightly 

smaller than t,o(c)R′  = 0.00411 m⋅K/W, in which case ( )iq r′  is slightly larger than ( )oq r′ , while s,iT  

is slightly smaller than s,oT .  Note that the solution must satisfy the energy conservation requirement, 

( ) ( ) ( )2 2
o i oir r q q r q rπ ′ ′− = +& . 



PROBLEM 3.165 
 
KNOWN:  Dimensions and thermal conductivities of a muscle layer and a skin/fat layer.  Skin 
emissivity and surface area.  Metabolic heat generation rate and perfusion rate within the muscle 
layer.  Core body and arterial temperatures.  Blood density and specific heat.  Ambient conditions. 
  
FIND:  Perspiration rate to maintain same skin temperature as in Example 3.12. 
  
SCHEMATIC:   

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional heat transfer through the 
muscle and skin/fat layers, (3) Metabolic heat generation rate, perfusion rate, arterial temperature, 
blood properties, and thermal conductivities are all uniform, (4) Radiation heat transfer 
coefficient is known from Example 1.7, (5) Solar radiation is negligible, (6) Conditions are the 
same everywhere on the torso, limbs, etc., (7) Perspiration on skin has a negligible effect on heat 
transfer from the skin to the environment, that is, it adds a negligible thermal resistance and 
doesn’t change the emissivity. 
 
ANALYSIS:  First we need to find the skin temperature, Ts, for the conditions of Example 3.12, 
in the air environment.  Both q and Ti, the interface temperature between the muscle and the 
skin/fat layer, are known.  The rate of heat transfer across the skin/fat layer is given by 

( )sf i s

sf

k A T T
q

L
−

=   (1) 

Thus, the skin temperature is 
sf

s i 2
sf

qL 142 W × 0.003 mT  = T  -  = 34.8°C -  = 34.0°C
k A 0.3 W/m K × 1.8 m⋅

  

Now the heat transfer rate will change because of the increased metabolic heat generation rate.  
Heat transfer in the muscle layer is governed by Equation 3.114.  In Example 3.12, this equation  
was solved subject to specified temperature boundary conditions, and the rate at which heat 
leaves the muscle and enters the skin/fat layer was found to be 
 

m

i c m
m cx = L

m

(θ /θ )coshmL  - 1q  = - k Amθ
sinhmL

%
%

%
 (2) 

Continued… 

Air 

km =  
0.5 W/m·K 

Tc = 37ºC 

ksf = 0.3 W/m·K 

Muscle Skin/fat 

Lm = 30 mm Lsf = 3 mm 

Tsur = 24ºC 
ε = 0.95

Ti = 34.8ºC 
mq&  = 5600 W/m3 

ω = 0.0005 s-1 

pq&  

x 

T∞ = 297 K 
h = 2 W/m2⋅K 

Ts



PROBLEM 3.165 (Cont.) 
 
This must equal the rate at which heat is transferred across the skin/fat layer, given by Equation 
(1).  Equating Equations 1 and 2 and solving for Ti, recalling that Ti also appears in θi, yields 

sf m
s m m c a m

sf b b
i

sf
m m m

sf

L qT sinhmL  + k m θ  + T  + coshmL
k ωρ c

T  = LsinhmL  + k m coshmL
k

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

&
% % %

% % %
 

where 
1/2-1 3 -1

b b mm = ωρ c /k  = 0.0005 s  × 1000 kg/m  ×  3600 J/kg K 0.5 W/m K = 60 m⎡ ⎤⋅ ⋅⎣ ⎦%  

 
-1

msinh(mL ) = sinh(60 m  × 0.03 m) = 2.94% ;   -1
mcosh(mL ) = cosh(60 m  × 0.03 m) = 3.11%  

 
3

m m
c c a -1 3

b b b b

q q 5600 W/mθ  = T  - T  -  = -  = -  = - 3.11 K
ωρ c ωρ c 0.0005 s  × 1000 kg/m  × 3600 J/kg K⋅
& &

 
The excess temperature can be expressed in kelvins or degrees Celsius, since it is a 
temperature difference.  Thus 

( )-1

i
-1

i

0.003 m34.0°C × 2.94 + 0.5 W/m K × 60 m  × -3.11°C + 37°C + 3.11°C  × 3.11
0.3 W/m KT  = 0.003 m2.94 + 0.5 W/m K × 60 m  ×  × 3.11

0.3 W/m K
T  = 35.2°C

⋅ ⎡ ⎤⎣ ⎦⋅

⋅
⋅

 

 
and again from Equation (1) 

( ) 2
sf i s

sf

k A T  - T 0.3 W/m K × 1.8 m (35.2°C - 34.0°C)q =  =  = 222 W
L 0.003 m

⋅   

 
Since the skin temperature is unchanged from Example 3.12, the rate of heat transfer to the 
environment by convection and radiation will remain the same, and is therefore still 142 W.  The 
difference of 80 W must be removed from the skin by perspiration, therefore 

per per fgq  = m h  = 80 W&   
 
Assuming the properties of perspiration are the same as that of water, evaluated at the skin 
temperature of 307 K, then from Table A.6 hfg = 2421 kJ/kg and ρ = 994 kg/m3.  Thus the volume 
rate of perspiration is 

 per per -8 3 -5
3 3

fg

m q 80 W =  =  =  = 3.3 × 10  m /s  =  3.3 × 10  /s
ρ ρh 994 kg/m  × 2421 × 10  J/kg

∀
&

& l  < 

 
COMMENTS: (1) This is a moderate rate of perspiration.  In one hour, it would account for 
around 0.1 l . (2) In reality, our bodies adjust in many ways to maintain core and skin 
temperatures.  Exercise will likely cause an increase in perfusion rate near the skin surface, to 
locally elevate the temperature and increase the rate of heat transfer to the environment. 



PROBLEM 3.166 
 
KNOWN:  Dimensions and thermal conductivities of a muscle layer and a skin/fat layer.  Skin 
emissivity and surface area.  Skin temperature.  Perfusion rate within the muscle layer.  Core 
body and arterial temperatures.  Blood density and specific heat.  Ambient conditions. 
  
FIND: Metabolic heat generation rate to maintain skin temperature at 33ºC. 
  
SCHEMATIC: 
 

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional heat transfer through the 
muscle and skin/fat layers, (3) Metabolic heat generation rate, perfusion rate, arterial temperature, 
blood properties, and thermal conductivities are all uniform, (4) Solar radiation is negligible, (5) 
Conditions are the same everywhere on the torso, limbs, etc. 
 
ANALYSIS:  Since we know the skin temperature and environment temperature, we can find the 
heat loss rate from the skin surface to the environment: 

 ( )
4 4

s s sur
2 2 -8 2 4 2 4 4 4

q = hA (T  - T ) + εσA(T  - T )

= 2 W/m K × 1.8 m (33 - 15)°C + 0.95 × 5.67 × 10  W/m K  × 1.8 m 306 - 288 K

= 248 W

∞

⋅ ⋅  

 
We can then find Ti, the interface temperature between the skin/fat layer and the muscle layer, by 
analyzing heat transfer through the skin/fat layer: 
 

sf
i s 2

sf

qL 248 W × 0.003 mT  = T  +  = 33°C +  = 34.4°C
k A 0.3 W/m K × 1.8 m⋅

 

 
Heat transfer in the muscle layer is governed by Equation 3.114.  In Example 3.12, this equation 
was solved subject to specified surface temperature boundary conditions, and the rate at which 
heat leaves the muscle and enters the skin/fat layer was found to be 
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i m c
m

m

θ coshmL  - θq = - k Am
sinhmL

%
%

%
 

 
This must equal the rate at which heat is transferred across the skin/fat layer, as calculated above.  
Inserting the definitions of θi and θc, we can solve for the metabolic heat generation rate: 

m i a m c a
m

m b b
m

q sinhmL  + (T  - T )coshmL + (T  - T )
k Amq  = ωρ c

coshmL  + 1

% %
%

&
%

 (1) 

   
where 

1/2-1 3 -1
b b mm = ωρ c /k  = 0.0005 s  × 1000 kg/m  × 3600 J/kg K 0.5 W/m K = 60 m⎡ ⎤⋅ ⋅⎣ ⎦%  

 
-1

msinh(mL ) = sinh(60 m  × 0.03 m) = 2.94% ;   -1
mcosh(mL ) = cosh(60 m  × 0.03 m) = 3.11%  

 
With Tc = Ta, Equation (1) yields 

    

-1 3
m

2 -1

q  = 0.0005 s  × 1000 kg/m  × 3600 J/kg K 
248 W × 2.94 + (34.4 - 37)°C × 3.11

0.5 W/m K × 1.8 m  × 60 m            ×   
3.11 + 1

⋅

⎡ ⎤
⎢ ⎥⋅⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

&

 

      = 2341 W/m3               < 
  
 
COMMENT: (1) Shivering can increase the metabolic heat generation rate by up to five to six 
times the resting metabolic rate.  The value found here is approximately three times the metabolic 
heat generation rate given in Example 3.12, so it is well within what can be produced by 
shivering. (2) In the water environment, even with the original 24ºC water temperature, shivering 
would be insufficient to maintain a comfortable skin temperature. 



PROBLEM 3.167

KNOWN: Dimensions and thermal conductivities of a muscle layer and a skin/fat layer.
Metabolic heat generation rate and perfusion rate within the muscle layer. Arterial temperature.
Blood density and specific heat. Ambient conditions.

FIND: Heat loss rate from body and temperature at inner surface of the skin/fat layer.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional heat transfer through the
muscle and skin/fat layers, (3) Metabolic heat generation rate, perfusion rate, arterial temperature,
blood properties, and thermal conductivities are all uniform, (4) Radiation heat transfer
coefficient is known from Example 1.6.

ANALYSIS:
(a) Conduction with heat generation is expressed in radial coordinates by Equation 3.54. With
metabolic heat generation and perfusion, this becomes

m b b aq  + ωρ c (T  - T)1 d dT
r + = 0

r dr dr k

 
 
 

 <

The boundary conditions of symmetry at the centerline and specified temperature at the outer
surface of the muscle are expressed as

1 i
r = 0

dT
= 0, T(r ) = T

dr
<

Defining an excess temperature, a m b bθ T - T  - q /ωρ c  , the differential equation becomes

21 d dθ
r - m θ = 0

r dr dr

 
 
 



Continued…
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where 2
b bm = ωρ c /k . The general solution to the differential equation is given in Section 3.6.4

as

1 0 2 0θ = c I (mr) + c K (mr) 

Applying the boundary condition at r = 0 yields

1 1 2 1
r = 0 r = 0

dT dθ
= = c mI (0) - c mK (0) = 0

dr dr
 

Since K1(0) is infinite, we must have c2 = 0. Applying the specified temperature boundary
condition at r = r1 yields

m
1 i 1 i a i 1 0 1

b b

q
T(r ) = T , θ(r ) = T  - T  - θ  = c I (mr )

 ωρ c





Solving for c1 we now have the complete solution for :

0
i

0 1

I (mr)
θ = θ

I (mr )




(1) <

(b) The heat flux at the outer surface of the muscle is given by

1 1

1 1
i m m m i

0 1r = r r = r

I (mr )dT dθ
q  = - k = - k = - k θ m

dr dr I (mr )






(2)

This must be equated to the heat flux through the skin/fat layer and into the environment. In
terms of the heat transfer rate per unit length of forearm, iq , and the total resistance for a unit

length, totR ,

i i
i

1 1 tot

q T - T1
q = =

2πr 2πr R





(3)

As in Example 3.1 and for exposure of the skin to the air, totR accounts for conduction through

the skin/fat layer in series with heat transfer by convection and radiation, which act in parallel
with each other. Here the conduction resistance is for a radial geometry. Thus, it is

-1

2 1 2 1
tot

sf 2 r sf 2 r

ln(r /r ) ln(r /r )1 1 1 1 1
R = + + = +

2πk 2πr 1/h 1/h 2πk 2πr h + h

   
    

   

Using the values from Example 1.7 for air,

tot 2

ln(0.053 m/0.05 m) 1 1
R = + = 0.41 m K/W

2 × π × 0.3 W/m K 2 × π × 0.053 m (2 + 5.9) W/m K

 
     

Combining Equations 2 and 3 yields
Continued…



PROBLEM 3.167 (Cont.)

1 1 i
m i

0 1 1 tot

I (mr ) T - T1
- k θ m  = 

I (mr ) 2πr R









This expression can be solved for Ti, recalling that Ti also appears in i.

m
0 1 m 1 tot a 1 1

b b
i

0 1 m 1 tot 1 1

q
T I (mr ) + k 2πr mR T  + I (mr )

ωρ c
T =

I (mr ) + k 2πr mR I (mr )



 
  
 




  

  

where
1/2-1 3 -1

b b mm = ωρ c /k  = 0.0005 s  × 1000 kg/m  × 3600 J/kg K 0.5 W/m K = 60 m  
 



3
m

-1 3
b b

q 700 W/m
= = 0.389 K

ωρ c 0.0005 s × 1000 kg/m × 3600 J/kg K



and from Table B.5

-1
0 1 0 0I (mr ) = I (60 m × 0.05 m) = I (3) = 4.88 ; -1

1 1 1 1I (mr ) = I (60 m × 0.05 m) = I (3) = 3.95

Thus,

 

-1 -1
i

24°C × 4.88 + 0.5 W/m K 4.88 + 0.5 W/m K

T  = × 2 × π × 0.05 m × 60 m × 2 × π × 0.05 m × 60 m = 34.2°C

× 0.41 m K/W × 3.95× 0.41 m K/W 37 + 0.389 °C × 3.95

     
    
    
         

<

(c) The maximum temperature occurs at the centerline of the forearm, r = 0, thus from Equation
1, with I0(0) = 1,

 

m m
a i a

b b b b 0 1

q q 1
T = T + + T - T -

ωρ c ωρ c I (mr )

1
= 37°C + 0.389°C + 34.2°C - 37°C - 0.389°C × = 36.7°C

4.88

 
 
 

 

 <

COMMENTS: (1) The maximum temperature is very close to the core body temperature
of 37ºC, as would be expected. (2) Pennes [17] conducted an experimental investigation
of the temperature distribution in human forearms, by inserting thermocouples into living
subjects.



PROBLEM 3.168

KNOWN: Thermoelectric module properties and performance, as given in Example 3.13.

FIND: (a) The thermodynamic efficiency, therm ≡ PM=1/q1, (b) the figure of merit ZT for one module,
and the thermoelectric efficiency, TE. (c) the Carnot efficiency, Carnot = 1 - T2/T1, (d) the value of TE

based upon the inappropriate use of T∞,1 and T∞,2 (e) the thermoelectric efficiency based upon the correct
usage of T1 and T2 in Equation 3.128, and the Carnot efficiency for the case where h1 = h2 → ∞. 

ASSUMPTIONS: (1) Steady-state, one-dimensional conduction, (2) Negligible contact resistances, (3)
Negligible radiation exchange and gas phase conduction inside the module, (4) Negligible conduction
resistance due to metallic contacts and ceramic insulators, (5) The properties of the two semiconductors
are identical and Sp = - Sn.

ANALYSIS: (a) From Example 3.13 the electrical power per module is PM = 1 = Ptot/M = 46.9 W/48 =
0.9773 W. The heat input to one module may be evaluated from Equation 3 of the solution to the example
problem as

 2 2 2
1 1 ,1 1( ) 40 W/m K (0.054m) 550 273)K (173 273)K 43.92 Wq hW T T           

Therefore, the thermodynamic efficiency is therm = PM = 1/q1 = 0.9773 W/43.92 W = 0.022 <

(b) From Equations 3.121 and 3.125 (or 3.122 and 3.126), we note that

,eff / 0.1435 volts/K /100 0.001435 volts/Kp n p nS S N   

and

5 2
,eff 5

, 3

4 1.2 10 m
9.6 10 m

2 2 100 2.5 10 m
e s

e s

R A

NL







 
    

  

From Section 3.8, S = Sp = - Sn and for Sp = - Sn, S = Sp = Sp-n/2 = 0.0007175 volts/K,

2 2
-1

5
,

(0.0007175 volts/K)
0.004469 K

9.6 10 m 1.2 W/m Ke s

S
Z

k 
  

    

For T1 = 173C + 273 K = 446 K and T2 = 134C + 273 K = 407 K, as determined in the example problem,

the average module temperature is 1 2( ) / 2 = (446 K 407 K) / 2 = 426.5 KT T T   . Therefore, the

figure of merit is

10.004469 K 426.5 K 1.908.ZT    <

The thermoelectric efficiency is therefore,

Continued...
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-1
2

-1
1 2 1

1 1 407 K 1 1.908K 1
1 1 0.024

446 K 1 1.908K 407 K / 446 K1 /
TE

T ZT

T ZT T T


      
       

     
<

We note that the thermodynamic efficiency is less than the thermoelectric efficiency based uo the figure of
merit and the surface temperatures of the module. The thermoelectric efficiency is the maximum possible
efficiency for the case when the load resistance is optimized.

(c) The Carnot efficiency is Carnot = 1 - 407K /446 K = 0.087 <

(d) The value of TE based upon T∞,1 = 550C + 273 K = 823 K, T∞,2 = 105C + 273 K = 378 K, and
10.004469 K 600.5 K 2.684ZT    is

,2

,1 ,2 ,1

1 1 378 K 1 2.684 1
1 1 0.21

823 K 1 2.684 378 K /823 K1 /
TE

T ZT

T ZT T T
 

  

      
             

<

(e) For h1 = h2 → ∞, the surface temperatures of the module are T1 = T∞,1 = 823 K and T2 = T∞,2 = 378 K,
respectively. Therefore, from part (d) TE = 0.21. The Carnot efficiency is Carnot = 1 - 378 K/823 K =

0.54. <

COMMENTS: (1) The conversion efficiency for the thermoelectric modules of Example 3.13 is quite
small, approximately 2%. (2) The conversion efficiency can be increased by an order of magnitude (to
21%) by utilizing thermal management approaches that will increase the temperature difference across the
module. (c) The incorrect usage of T∞,1 and T∞,2  in the expression for the thermoelectric efficiency as in
part (d) provides an efficiency (21%) that far exceeds the Carnot efficiency of 8.7% found in part (c).
Hence, use of the incorrect temperatures in the thermoelectric efficiency expression can lead to grossly
exaggerated levels of thermodynamic performance that violate the second law of thermodynamics.
Reporting the efficiency of a thermoelectric module or thermoelectric material based upon fluid (or
surrounding) temperatures is meaningless.



PROBLEM 3.169

KNOWN: Dimensions of thermoelectric module and heat sinks. Convection conditions, heat sink
thermal conductivity, thermoelectric module performance parameters, load electrical resistance.
Contact resistance between thermoelectric module and heat sinks.

FIND: (a) Sketch of the equivalent thermal circuit and electrical power generated without the heat
sinks. (b) Sketch of the equivalent thermal circuit and electrical power generated with the heat sinks.

SCHEMATIC:

Thermoelectric module

2L=5mm

Re,load = 4 Air
T,1, = 450C
h1 = 80W/m2K

Air
T,2 = 20C,
h2 = 80 W/m2K

W = 54 mm

Thermoelectric module

2L=5mm

Re,load = 4 Air
T,1, = 450C
h1 = 80W/m2K

Air
T,2 = 20C,
h2 = 80 W/m2K

Air
T,2 = 20C,
h2 = 80 W/m2K

W = 54 mm

(a) (b)

ASSUMPTIONS: (1) Steady-state, one-dimensional conduction, (2) Constant properties, (3)
Negligible radiation, (4) Adiabatic fin tips for part (b), (5) Convection coefficients same in parts (a)
and (b) and the same on the sides of the fin arrays.

ANALYSIS: (a) Without the heat sinks, the equivalent thermal circuit is shown in Figure 3.24b as
replicated below.

<
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Rt,cond,mod
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T2
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ISp-n,effT1- I2Re,eff

ISp-n,effT2+ I2Re,eff

ISp-n,eff(T1 – T2) - 2I2Re,eff

=
I2Re,load

Thermoelectric
module

Thermoelectric module
Lb = 4 mm

Lf = 20 mm

S = 5.182 mm

2L=5mm

Re,load = 4 

Cover plate

Heat sink 2,
k = 180 W/m∙K

Heat
sink 1

k = 180 W/m2K

Air
T,1, = 450C
h1 = 80W/m2K

Air
T,2 = 20C,
h2 = 80 W/m2K

Solder,

" 6 2
, 2.5 10 m K/Wt cR   

Cover plate

t = 2.182 mm

Thermoelectric module
Lb = 4 mm

Lf = 20 mm

S = 5.182 mm

2L=5mm

Re,load = 4 

Cover plate

Heat sink 2,
k = 180 W/m∙K

Heat
sink 1

k = 180 W/m2K

Air
T,1, = 450C
h1 = 80W/m2K

Air
T,2 = 20C,
h2 = 80 W/m2K

Solder,

" 6 2
, 2.5 10 m K/Wt cR   

Cover plate

t = 2.182 mm
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The analysis can proceed as in Example 3.13. The conduction resistance of one module is the same as
in the example, namely

-3

,cond,mod 5 2
,

2.5 × 10 m
1.736 K/W

100 1.2 10 m 1.2 W/m K
t

c s s

L
R

NA k 
  

   

From Equations 3.125 and 3.126,

2 21 2
1 1 2 - ,eff 1 ,eff 1

,cond,mod

( )1
( ) 0.1435 V/K 4

1.736 K/W
p n e

t

T T
q T T IS T I R I T I

R


           (1)

2 21 2
2 1 2 - ,eff 2 ,eff 2

,cond,mod

( )1
( ) 0.1435 V/K 4

1.736 K/W
p n e

t

T T
q T T IS T I R I T I

R


           (2)

Newton’s law of cooling may be written at each surface as

 2 2 2
1 1 ,1 1 1( ) 80 W/m K (0.054 m) 450 + 273 K -q hW T T T          (3)

 2 2 2
2 2 2 ,2 2( ) 80 W/m K (0.054 m) 20 + 273 Kq h W T T T          (4)

The electric power produced by a single module, PN, is equal to the electric power dissipated in the load
resistance. Equating the expression for PN from Equation 3.127 to the electric power dissipated in the load
gives

2 2
- ,eff 1 2 ,eff ,load( ) 2N p n e eP IS T T I R I R   

2 2
1 20.1435 V/K ( ) 2 4 4I T T I I         (5)

Equations 1 through 5 may be solved simultaneously, for example using IHT, to yield I = 0.38 A, and

PN = I2Re,load = (0.38 A)2 × 4  = 0.59 W <

(b) The thermal circuit associated with the thermoelectric module is unchanged, but each convection
resistance must be replaced with the total thermal resistance, Rtot, associated with the contact
resistance, fin array base, and overall resistance of the fin array, as shown below. Also, qconv,1 and
qconv,2 have been replaced with the more general terms q1 and q2.

Continued…
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The total thermal resistance is given by

, ,

tot base ,2 2 2

1t c t c b
t o

o t

R R L
R R R

W W kW hA

 
     

where Equation 3.108 has been used to express the overall fin resistance. From Equations 3.104,
3.107, and 3.94,

tanh
( 1) ( ) 2

f

o t b f f f

f

mL
A A NA N W S t NWL

mL
      

where
2 1/ 2 / 2 80 W/m K / (180 W/m K 0.002182 m) 20.2 mcm hP kA h kt        

Thus,
1

2

1

tanh(20.2 m 0.02 m)
10 0.054 m 0.003 m 2 11 0.054 m 0.020 m 0.0242 m

20.2 m 0.02 m
o tA






       



The total thermal resistance is then

6

tot 2 2 2 2

2.5 10 K/W 0.004 m 1
0.526 K/W

(0.054 m) 180 W/m K(0.054 m) 0.0242 m 80 W/m K
R


   

  

Continued…
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The system of equations from part (a) applies here, except that Equations 3 and 4 are replaced by the
revised versions

 ,1 1 1

1

tot

450 + 273 K

0.526 K/W

T T T
q

R

  
  (3r)

 2 ,2 2

2

tot

20 + 273 K

0.526 K/W

T T T
q

R

 
  (4r)

Equations 1, 2, 3r, 4r, and 5 may be solved simultaneously to yield I = 2.04 A, and

PN = I2Re,load = (2.04 A)2 × 4  = 16.7 W <

This is 28 times larger than the result of part (a). <

COMMENTS: By adding the two heat sinks to the thermoelectric module, the power produced by the
module increases by a factor of 28. Not only does the power depend on the semiconductor properties
of the thermoelectric material, but also strongly on the thermal management of the module through, as
in this problem, addition of heat sinks.



PROBLEM 3.170

KNOWN: Dimensions of thermoelectric module. Convection conditions, thermoelectric module
performance parameters, load electrical resistance, contact resistance between thermoelectric module
and stove surface, emissivity of the exposed surface of the thermoelectric module, temperature of
surroundings.

FIND: Sketch of the equivalent thermal circuit and electrical power generated by the module.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state, one-dimensional conduction, (2) Constant properties, (3) Large
surroundings.

ANALYSIS: The portion of the equivalent thermal circuit that describes the thermoelectric module is
the same as shown in Figure 3.24b. However, the external thermal resistances are different. The high
temperature side of the TEM is exposed to the stove surface through a contact resistance, Rt,c. The low
temperature side exchanges heat with the surroundings through radiation and convection. Since T∞ =
Tsur, the radiation and convection thermal resistances can be combined into a single resistance, Rrad,conv,
as shown below. Also, qconv,1 and qconv,2 have been replaced with the more general terms q1 and q2.

<

Continued…
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T∞ = Tsur
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ISp-n,effT2+ I2Re,eff
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stove
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" 6 2
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Tsur = 25C

T∞ = 25C
h = 15 W/m2∙K

2L = 5 mm
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 = 0.9
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The two external resistances can be calculated as follows:

2 6 2 2 3
, , / 5 10 m K/W / (0.054 m) 1.71 10 K/Wt c t cR R W       

2
rad,conv conv1/ [( ) ]rR h h W 

2 2
2 sur 2 sur( )( )rh T T T T   (1)

The radiation heat transfer coefficient, hr, depends on the unknown TEM surface temperature, T2.
This can be left as an unknown in solving the simultaneous equations.

The analysis proceeds as in Example 3.13. The conduction resistance of one module is the same as in
the example, namely
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From Equations 3.125 and 3.126,
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Additional relationships can be written by considering heat transfer through the external resistances.

  3
1 1 , 1( ) / 375 + 273 K - /1.71 10 K/Ws t cq T T R T       (4)

 

2
2 2 rad,conv 2

2 2
2

( ) / ( )( )

25 + 273 K (15 W/m K ) (0.054 m)

r

r

q T T R T T h h W

T h

     

       

(5)

The electric power produced by the single module, PN, is equal to the electric power dissipated in the load
resistance. Equating the expression for PN from Equation 3.127 to the electric power dissipated in the load
gives

2 2
- ,eff 1 2 ,eff ,load( ) 2N p n e eP IS T T I R I R   

2 2
1 20.1435 V/K ( ) 2 4 3I T T I I         (6)

Continued…
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Equations 1 through 6 may be solved simultaneously, for example using IHT, to yield I = 0.27 A, and

PN = I2Re,load = (0.27 A)2 × 3  = 0.22 W <

COMMENTS: (1) Radiation is significant. If radiation heat transfer were neglected, the electrical
power output would be decreased to 0.036 W. (2) The electrical power output is quite low. The power
output could be raised by increasing the temperature difference across the module. For example, the
electrical power could be used to rotate a small fan to increase the value of the heat transfer
coefficient. If h were to increase to 30 W/m2∙K, for example, the electrical power would increase to 
0.40 W. A tradeoff exists between the extra power provided by the fan and the power needed to
operate the fan.



PROBLEM 3.171

KNOWN: Thermal energy generation rate. Dimensions of thermoelectric modules and total number
of modules. Thermoelectric module performance parameters, load electrical resistance, emissivity of
the exposed surface of the thermoelectric modules, deep space temperature.

FIND: Electrical power generated by the device. Surface temperatures of the modules.

SCHEMATIC:

W = 54 mm

2L = 5 mm

Insulation

Thermoelectric
module, 

Heat source,
= 1, 10, 100 kW

Re, load = 250 

gE

Tsur = 4 K

ASSUMPTIONS: (1) Steady-state, one-dimensional conduction, (2) Constant properties, (3) Large
surroundings.

ANALYSIS: The portion of the equivalent thermal circuit that describes the thermoelectric module is
the same as shown in Figure 3.24b. The energy generated in the uranium is known, and under steady-

state conditions q1 = /gE M . As a consequence, knowledge of the thermal resistance between the

uranium and the inner surface of the TEMs is not needed. The low temperature side of the TEMs
exchanges heat with the surroundings through radiation. Thus, the equivalent thermal circuit is as
shown below. Note that qconv,1 and qconv,2 have been replaced with the more general terms q1 and q2.

<

Continued…
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The analysis proceeds as in Example 3.13. The conduction resistance of one module is the same as in
the example, namely
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From Equations 3.125 and 3.126,
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An additional relationship can be written by considering heat transfer by radiation to deep space.

2 2
2 2 sur 2( ) (0.054 m) ( 4 K)r rq h W T T h T      (3)

where

2 2 8 2 2 2
2 sur 2 sur 2 2( )( ) 0.93 5.67 10 W/m K ( 4 K) ( (4 K) )rh T T T T T T            (4)

The radiation heat transfer coefficient, hr, depends on the unknown TEM surface temperature, T2.
This can be left as an unknown in solving the simultaneous equations.

The electric power produced by all 80 modules, Ptot, is equal to the electric power dissipated in the
load resistance. Making use of Equation 3.127 and equating the total electrical power generated in the
M modules to the electric power dissipated in the load gives

2
tot ,loadN eP MP I R 

2 2
- ,eff 1 2 ,eff ,load( ) 2p n e eM IS T T I R I R    

2 2
1 280 0.1435 V/K ( ) 2 4 250I T T I I           (5)

With q1 known from q1 = /gE M , Equations 1 through 5 can be solved for the five unknowns, T1, T2,

I, q2, and hr. Solving the equations numerically using IHT yields the following results for the three

different values of gE :

Continued…



PROBLEM 3.171 (Cont.)

gE (kW) I (A) Ptot (W) T2 (K)  = PN/q1

1 0.10 2.63 534 0.0026
10 0.67 114 947 0.011
100 3.99 3990 1671 0.040

<

COMMENTS: (1) The temperature for the highest thermal energy generation rate is unacceptably
high. (2) The electrical energy generated by the device is relatively high, but the efficiency is quite
low. The efficiency increases as a function of the thermal generation rate because of larger
temperature differences across the module, which are T = 8, 52, and 310 K for the low, medium and
high energy generation rates. (3) Numerical solution of the equations requires a good initial guess.
One can be obtained by assuming that the current is zero, resulting in q1 = q2 and enabling direct
calculation of the temperatures due to conduction across the TEM and radiation to the surroundings.
(4) In this application, thermal generation can occur continuously for many years, providing reliable
electrical power to the satellite over its lifetime. (5) What steps could be taken to increase the electrical
power generated for each thermal energy generation rate?



PROBLEM 3.172

KNOWN: Net radiation heat flux on absorber plate. Dimensions of thermoelectric modules, total
number of modules, spacing of module rows. Thermoelectric module performance parameters, load
electrical resistance. Water temperature and heat transfer coefficient.

FIND: Electrical power produced by one row of thermoelectric modules. Heat transfer rate to water.

SCHEMATIC:
Cover
plate

Evacuated
space

Absorber
plate

InsulationWater
Tw = 40C
h = 45 W/m2∙K

Lsep = 0.5 m

W = 54 mm
qrad = 800 W/m2

Thermoelectric
module

ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) Negligible losses through
insulation, (4) Negligible losses by convection at absorber plate surface, (5) High thermal conductivity
tube wall creates uniform temperature around the tube perimeter, (6) Tubes of square cross section. (7)
Water temperature remains at 40C.

ANALYSIS: The heat absorbed in the absorber plate is known, and under steady-state conditions all
of this heat must conduct along the absorber plate and enter the thermoelectric modules, so that the
heat associated with one module is given by

2
1 rad sep 800 W/m 0.5 m 0.054 m 21.6 Wq q L W    

The portion of the equivalent thermal circuit that describes the thermoelectric module is the same as
shown in Figure 3.24b, see below. The low temperature side of the TEMs exchanges heat with the
water through convection. Note that qconv,1 has been replaced with the more general term q1.

Rt,cond,mod

T1

q1

T2

qconv,2

Rt,conv,2

Tw

ISp-n,effT1- I2Re,eff

ISp-n,effT2+ I2Re,eff

ISp-n,eff(T1 – T2) - 2I2Re,eff

=
I2Re,load

Thermoelectric
module

Continued…
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The analysis proceeds as in Example 3.13. The conduction resistance of one module is the same as in
the example, namely
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From Equations 3.125 and 3.126,
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An additional relationship can be written by considering heat transfer by convection to the water. It is
assumed that heat exiting the thermoelectric modules conducts around the perimeter of the square tube
wall and enters the water uniformly over the entire tube wall area,

2 2 2
2 2 24 ( ) 4 45 W/m K (0.054 m) ( (40 273) K)wq hW T T T         (3)

The electric power produced by all M = 20 modules, Ptot, is equal to the electric power dissipated in
the load resistance. Making use of Equation 3.127, and equating the total electrical power generated in
the M modules to the electric power dissipated in the load gives

2
tot ,loadN eP MP I R 

2 2
- ,eff 1 2 ,eff ,load( ) 2p n e eM IS T T I R I R    

2 2
1 220 0.1435 V/K ( ) 2 4 60I T T I I           (4)

With q1 known, Equations 1 through 4 can be solved for the four unknowns, T1, T2, I, and q2. Then Ptot

can be found from 2
tot ,loadeP I R . Solving the equations numerically using IHT yields

T1 = 371 K, T2 = 354 K, I = 0.22 A, q2 = 21.5 W, PN = 0.15 W

These are the values for a single module. For an entire row:

q1,tot = 20q1 = 432 W
q2,tot = 20q2 = 429 W

Ptot = 3 W

Thus, each row of modules generates 3.0 W of electricity and supplies 429 W to heat water. <

COMMENTS: (1) This technology provides combined hot water and electricity generation and could
potentially displace photovoltaics. If hot water is stored in a thermal energy storage unit, it can be
used to generate electricity 24 hours per day, exploiting nighttime radiation loss to the cold sky. (2)
The heat entering the water will cause the water temperature to increase along a row of modules. This
would have to be accounted for in a more accurate analysis. (3) The electrical conversion efficiency is
Ptot/Mq1 = 0.0069. This efficiency can be improved significantly with careful thermal design. For
example, doubling the tube spacing to Lsep = 1 m more than triples the electric power generated to Ptot

= 10.4 W. Can you explain why?



PROBLEM 3.173 
 
 
KNOWN:  Size and temperatures of parallel aluminum plates. Spacing between the plates. Air 
between the plates. 
 
FIND:  The conduction heat transfer through the air. 
 
SCHEMATIC: 
 

 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Ideal gas behavior. 
 
PROPERTIES: Table A.4 (T = 300 K): Air; cp = 1007 J/kg⋅K, k = 0.0263 W/m·K. Figure 2.8: Air; M 
= 28.97 kg/kmol, d = 0.372 × 10-9 m. 
 
ANALYSIS: For air, the ideal gas constant, specific heat at constant volume, and ratio of specific 
heats are: 
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From Equation 2.11 the mean free path of air is 
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For L = 1 mm,  
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Hence, the conduction heat rate is 

Continued... 

x
L = 1 mm, 1 μm, or 1 nm

Ts,1 = 305 K

Ts,2 = 295 K

Air

Aluminum
plates
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For L = 1 μm,  
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Hence, the conduction heat rate is 
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For L = 10 nm,  
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Hence, the conduction heat rate is 
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COMMENT:   If the molecule-surface collision resistance were to be neglected, the heat rates would 
be q = 0.0263 W, 26.3 W, and 2632 W for the L = 1 mm, 1 mm and 10 nm plate spacings, respectively. 
Hence, molecule-surface collisions are negligible for large plate spacings, and dominant at small plate 
spacings.  
  



PROBLEM 3.174

KNOWN: Air or helium between steel and aluminum parallel plates, respectively. Gas temperature
and pressure. Thermal accommodation coefficient values.

FIND: The separation distance, L, above which Rt,m-s/Rt,m-m is less than 0.01 for (a) air and (b) helium.

SCHEMATIC:

ASSUMPTIONS: (1) Ideal gas behavior, (2) One-dimensional conduction.

PROPERTIES: Table A.4 (T = 300 K): Air; cp = 1007 J/kgK, k = 0.0263 W/m∙K. He; cp = 5193
J/kgK, k = 0.170 W/m∙K  Figure 2.8: Air; M = 28.97 kg/kmol, d = 0.372 × 10-9 m. He; M = 4.003
kg/kmol, d = 0.219 × 10-9 m.

ANALYSIS:

(a) For air, the ideal gas constant, specific heat at constant volume, and ratio of specific heats are:

8.315 kJ/kmol K kJ
0.287 ;

28.97 kg/kmol kg K

kJ kJ kJ 1.007
1.007 0.287 0.720 ; 1.399

kg K kg K kg K 0.720
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v p
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c c R
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

       
  

R

M

From Equation 2.11 the mean free path of air is
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From Section 3.9.1, the plate separation, L, is
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PROBLEM 3.174 (Cont.)

(b) For He, the ideal gas constant, specific heat at constant volume, and ratio of specific heats are:

8.315 kJ/kmol K kJ
2.077 ;

4.003 kg/kmol kg K

kJ kJ kJ 5.193
5.193 2.077 3.116 ; 1.667

kg K kg K kg K 3.116
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The mean free path is
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The plate separation, L, is
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COMMENTS: The critical plate separation associated with helium is 7.1  10-3 m/ 24.7  10-6 m =
290 times greater than that for air. The thermal resistance associated with molecule-surface
interactions can become significant for gases of small molecular diameter and for gas-surface material
combinations that have a small thermal accommodation coefficient, even at relatively large plate
separation distances (7.1 mm).



PROBLEM 3.175

KNOWN: Thickness of of parallel aluminum plates and air layers. Wall surface temperatures.

FIND: The conduction heat flux through (a) aluminum wall, (b) air layer, (c) air layer contained
between two aluminum sheets and (d) composite wall consisting of 8 aluminum sheets and 7 air
layers.

SCHEMATIC:

ASSUMPTIONS: (1) Ideal gas behavior. (2) Nanoscale effects within the solid are not important.

PROPERTIES: Table A.4 (T = 300 K): Air; cp = 1007 J/kgK, kAir = 0.0263 W/m∙K. Figure 2.8: Air; 
M = 28.97 kg/kmol, d = 0.372 × 10-9 m. Table A.1 (T = 300 K): Pure Aluminum, kAl = 237 W/m∙K. 

ANALYSIS:

(a) Case A: Aluminum Wall

For Ltot = 600 m, the heat flux is

   Al ,1 ,2" 5 2

6
tot

237 W/m K 301 K 299 K
7.9 10 W/m

600 10 m

s s

x

k T T
q

L 

  
   


<

Similarly, for Ltot = 600 nm, the heat flux is "
xq = 7.9 × 108 W/m2 <
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(b) Case B: Air Layer

For Ltot = 600 m, the heat flux is

   Air ,1 ,2" 2

6
tot

0.0263 W/m K 301 K 299 K
87.7 W/m

600 10 m

s s

x

k T T
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  


<

Similarly, for Ltot = 600 nm, the heat flux is "
xq = 87.7 × 103 W/m2 <

(c) Case C: Air Layer between two Aluminum Sheets

This case involves a resistance due to molecule-molecule interactions, as well as molecule-surface
collisions. For air, the ideal gas constant, specific heat at constant volume, and ratio of specific heats
are:

8.315 kJ/kmol K kJ
0.287 ;

28.97 kg/kmol kg K

kJ kJ kJ 1.007
1.007 0.287 0.720 ; 1.399

kg K kg K kg K 0.720
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From Equation 2.11 the mean free path of air is
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For Ltot = 600 m, the air layer is L = Ltot - 2 = 600 m - 2 × 40 m = 520 m thick.
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In addition, the aluminum sheets pose a cumulative thermal resistance of
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Hence, the conduction heat flux is
Continued...
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 
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For Ltot = 600 nm, the air layer is L = Ltot - 2 = 600 nm - 2 × 40 nm = 520 nm thick.
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The aluminum sheets pose a cumulative thermal resistance of
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Hence, the conduction heat flux is
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(d) Case D: Seven Air Layers between Eight Aluminum Sheets

This case involves multiple resistances due to molecule-molecule interactions, as well as molecule-
surface collisions at multiple surfaces.

For Ltot = 600 m, each air layer is L = Ltot × (1/15)= 600 m × (1/15) = 40 m thick. Hence, for each
air layer
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In addition, the aluminum sheets pose a cumulative thermal resistance of
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Hence, the conduction heat flux is
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For Ltot = 600 nm, each air layer is L = Ltot × (1/15)= 600 nm × (1/15) = 40 nm thick. Hence, for each
air layer
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In addition, the aluminum sheets pose a cumulative thermal resistance of
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Hence, the conduction heat flux is
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The predicted heat fluxes are summarized below.

Case Ltot = 600 m Ltot = 600 nm

A " 5 27.9 10 W/m Kxq    " 8 27.9 10 W/m Kxq   

B " 287.7 W/m Kxq   " 3 287.7 10 W/m Kxq   

C " 2101 W/m Kxq   " 3 268.6 10 W/m Kxq   

D " 2186.7 W/m Kxq   " 3 226.2 10 W/m Kxq   

Continued...



PROBLEM 3.175 (Cont.)

COMMENTS: (1) For the Ltot = 600 m cases, it is readily evident that the highest heat flux
corresponds to Case A in which conduction occurs exclusively through the high thermal conductivity
aluminum. The lowest heat flux is associated with conduction through the pure air layer (Case B). For
the case involving two aluminum sheets (Case C) the heat flux is increased relative to Case B
primarily in response to replacing some low thermal conductivity air with high thermal conductivity
metal. However, as more aluminum sheets are added, the thermal resistance across the entire layer is
reduced, leading to increases in the heat flux for Case D. In each case, the resistance posed by
molecule-surface interactions is not significant. Specifically, heat transfer rates for Cases C and D,
calculated without accounting for the molecule-surface collisions, are 101 W/m2 and 187.8 W/m2,
respectively.

(2) For the Ltot = 600 nm cases, we again observe that the largest heat flux is associated with
conduction exclusively within the aluminum (Case A). However, consideration of the other three
cases reveals nanoscale behavior that would be unexpected from the macroscale point-of-view.
Specifically, Case B involving conduction through pure air is no longer characterized by the lowest
heat flux. Rather, we observe that as more sheets of high thermal conductivity metal are added to the
composite layer, the heat flux is reduced, with the minimum heat flux associated with the most
aluminum sheets, Case D. The reduction in the conduction resistance due to the replacement of low
thermal conductivity air with high thermal conductivity metal is more than offset with the increase in
the total thermal resistance that is associated with molecule-surface interactions at the interfaces
between the aluminum sheets and the air. The molecule-surface interactions can have a profound
effect on nanoscale heat transfer.

(3) Nanoscale effects could become important in the solid as the thickness of the solid approaches the
mean free path. See Table 2.1.



PROBLEM 3.176

KNOWN: Knudsen number, specific heat ratio and thermal accommodation coefficient for an ideal
gas and solid surface.

FIND: Expression for the the ratio of the thermal resistance due to molecule-surface collisions to the
thermal resistance associated with molecule-molecule collisions, Rt,m-s/Rt,m-m.

ASSUMPTIONS: (1) Ideal gas behavior.

ANALYSIS: The expressions for Rt,m-m and Rt,m-s are
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Associating the critical Knudsen number, Kncrit, with Rt,m-s/Rt,m-m = 0.01, we may plot the value of the
critical Knudsen number for  = 1.4 and 1.67 over the range 0.01 ≤ t ≤ 1 as shown below. 
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COMMENTS: (1) Relatively large Knudsen numbers are associated with more significant surface-
molecule collisions. (2) The critical Knudsen number is relatively insensitive to the specific heat ratio,
.



PROBLEM 3.177

KNOWN: Thickness of alternating tungsten and aluminum oxide layers, interface thermal resistance,
thermal conductivities of tungsten and aluminum oxide thin films.

FIND: (a) Effective thermal conductivity of the nanolaminate. Comparison with bulk thermal
conductivities of aluminum oxide and tungsten, (b) Effective thermal conductivity of the nanolaminate
using bulk values of the thermal conductivity of aluminum oxide and tungsten.

SCHEMATIC:

x

 = 0.5 nm

2

Tungsten

Aluminum oxide

x

 = 0.5 nm

2

Tungsten

Aluminum oxide

Interfaces

Nanolaminate

ASSUMPTIONS: (1) Steady-state, one-dimensional conditions, (2) Constant properties.

PROPERTIES: Table A.1, tungsten (300 K): kT = 174 W/mK. Table A.2, aluminum oxide (300 K):
kA = 36 W/mK.

ANALYSIS: (a) Consider a unit cell consisting of one layer of aluminum oxide, one layer of
tungsten, and two interfaces of unit cell thickness 2 = 1.0 nm as shown in the schematic. The sum of
the thermal resistances is
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The effective thermal conductivity is
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The value of the effective thermal conductivity is 0.123/174  100 = 0.07% that of bulk tungsten and
0.123/36  100 = 0.34% that of bulk aluminum oxide.

(b) Repeating part (a) using kT = 174 W/mK and kA = 36 W/mK yields keff = 0.129
W

m K
<

COMMENTS: (1) The effective thermal conductivity is dominated by the interface resistances and
is relatively insensitive to the thermal conductivity of the two materials. Although the interface
resistance is very small compared to typical contact resistance values (see Table 3.2), by using
extremely thin layer thicknesses, many such interfaces may be packed into the laminated structure,
resulting in very small values of the effective or bulk thermal conductivity. The material service
temperature would be limited to values less than approximately 1000C, due to the tendency of the
material to lose thermal stability at high temperatures and, in turn, lose its nanolaminated structure. (2)
See Costescu, Cahill, Fabreguette, Sechrist, and George, “Ultra-Low Thermal Conductivity in
W/AL2O3 Nanolaminates,” Science, Vol. 303, pp. 989 – 990, 2004, for additional information.



PROBLEM 3.178

KNOWN: Dimensions of and temperature difference applied across thin gold film.

FIND: (a) Energy conducted along the film, (b) Plot the thermal conductivity along and across
the thin dimension of the film, for film thicknesses 30  L  140 nm.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction in the x- and y-directions, (2) Steady-state
conditions, (3) Constant properties, (4) Thermal conductivity not affected by nanoscale effects
associated with 250 nm dimension.

PROPERTIES: Table A.1, gold (bulk, 300 K): k = 317 W/mK.

ANALYSIS:
a) From Fourier’s law,

1 2
y y

dT T - T
q = -kA = k Lb[ ]

dy a
(1)

From Eq. 2.9b,

y mfpk = k [1 - 2λ  / (3 L)] (2)

Combining Eqs. (1) and (2), and using the value of mfpλ = 31 nm from Table 2.1 yields

1 2
y mfp

T - T
q = k[1 - 2λ  / (3πL)]Lb[ ]

a
-9

-9 -9
-9 -6

W 2×31×10 m 20°C
= 317 × [1 - ] × 60 × 10 m × 250 × 10 m ×

m K 3×π×60×10 m 1 × 10 m

= 85  10-6 W = 85 µW <

(b) The spanwise thermal conductivity may be found from Eq. 2.9a,

x mfpk = k[1 - λ  / (3L)] (3)
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The plot is shown below.

COMMENT: Nanoscale effects become less significant as the thickness of the film is increased.

ky
kx



PROBLEM 4.1  
KNOWN:  Method of separation of variables for two-dimensional, steady-state conduction.  
FIND:  Show that negative or zero values of λ2, the separation constant, result in solutions which 
cannot satisfy the boundary conditions.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Two-dimensional, steady-state conduction, (2) Constant properties.  
ANALYSIS:  From Section 4.2, identification of the separation constant λ2 leads to the two ordinary 
differential equations, 4.6 and 4.7, having the forms 

 
2 2

2 2
2 2

d X d YX 0               Y 0
dx dy

+ = − =λ λ               (1,2) 

and the temperature distribution is  ( ) ( ) ( )x,y X x Y y .= ⋅θ     (3) 
 
Consider now the situation when λ2 = 0.  From Eqs. (1), (2), and (3), find that 
 ( ) ( ) ( )1 2 3 4 1 2 3 4X C C x,      Y C C y     and     x,y C C x  C C y .= + = + = + +θ   (4) 
 
Evaluate the constants - C1, C2, C3 and C4 - by substitution of the boundary conditions: 

 
( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )

1 2 3 4 1

2 3 4 3

2 4 2

4

x 0 :           0,y C C 0 C C y 0              C 0
y 0 :           x,0 0 C x C C 0 0                C 0
x L:         L,0 0 C L 0 C y 0                   C 0
y W:        x,W 0 0 x 0 C W 1       

= = + ⋅ + ⋅ = =
= = + ⋅ + ⋅ = =
= = + ⋅ + ⋅ = =
= = + ⋅ + ⋅ =

θ
θ
θ
θ              0 1≠

 

 
The last boundary condition leads to an impossibility (0 ≠ 1).  We therefore conclude that a λ2 value of 
zero will not result in a form of the temperature distribution which will satisfy the boundary 
conditions.  Consider now the situation when λ2 < 0.  The solutions to Eqs. (1) and (2) will be 
 - x + x

5 6 7 8X C e C e ,                Y C cos y C sin y= + = +λ λ λ λ             (5,6) 
 
and ( ) [ ]- x + x

5 6 7 8x,y C e C e  C cos y C sin y .⎡ ⎤= + +⎣ ⎦
λ λθ λ λ      (7) 

 
Evaluate the constants for the boundary conditions. 

 
( ) [ ]
( ) [ ]

- x - x
5 6 7 8 7

0 0
5 6 8 8

y 0 :      x,0 C e C e  C cos 0 C sin 0 0          C 0

x 0 :      0,y C e C e  0 C sin y 0                        C 0

⎡ ⎤= = + + = =⎣ ⎦
⎡ ⎤= = + + = =⎣ ⎦

λ λθ

θ λ
 

 
If C8 = 0, a trivial solution results or C5 = -C6. 
 ( ) -xL +xL

5 8x L:      L,y C e e  C sin y 0.⎡ ⎤= = − =⎣ ⎦θ λ  

 
From the last boundary condition, we require C5 or C8 is zero; either case leads to a trivial solution 
with either no x or y dependence. 



PROBLEM 4.2 
 
KNOWN:  Two-dimensional rectangular plate subjected to prescribed uniform temperature boundary 
conditions. 
 
FIND:  Temperature at the mid-point using the exact solution considering the first five non-zero terms; 
assess error resulting from using only first three terms.  Plot the temperature distributions T(x,0.5) and 
T(1,y). 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Two-dimensional, steady-state conduction, (2)  Constant properties. 
 
ANALYSIS:  From Section 4.2, the temperature distribution is 

 ( ) ( ) ( )
( )

n 1
1

2 1 n 1

1 1 sinh n y LT T 2 n xx, y sin
T T n L sinh n W L

θ ππθ
π π

+

=

− +− ⎛ ⎞≡ = ⋅⎜ ⎟− ⎝ ⎠
∑ . (1,4.19) 

Considering now the point (x,y) = (1.0,0.5) and recognizing x/L = 1/2, y/L = 1/4 and W/L = 1/2, 

 ( ) ( ) ( )
( )

n 1
1

2 1 n 1

1 1 sinh n 4T T 2 n1,0.5 sin
T T n 2 sinh n 2

θ ππθ
π π

+

=

− +− ⎛ ⎞≡ = ⋅⎜ ⎟− ⎝ ⎠
∑ . 

When n is even (2, 4, 6 ...), the corresponding term is zero; hence we need only consider n = 1, 3, 5, 7 and 
9 as the first five non-zero terms. 

 ( ) ( )
( )

( )
( )

sinh 4 sinh 3 42 2 31,0.5 2sin sin
2 sinh 2 3 2 sinh 3 2

π ππ πθ
π π π
⎧⎪ ⎛ ⎞ ⎛ ⎞= + +⎨ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎪⎩
 

           
( )
( )

( )
( )

( )
( )

sinh 5 4 sinh 7 4 sinh 9 42 5 2 7 2 9sin sin sin
5 2 sinh 5 2 7 2 sinh 7 2 9 2 sinh 9 2

π π ππ π π
π π π

⎫⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎪⎭

 

 ( ) [ ]21,0.5 0.755 0.063 0.008 0.001 0.000 0.445θ
π

= − + − + =  (2) 

 ( ) ( )( ) ( )2 1 1T 1,0.5 1,0.5 T T T 0.445 150 50 50 94.5 Cθ= − + = − + = o . < 

If only the first three terms of the series, Eq. (2), are considered, the result will be θ(1,0.5) = 0.46; that is, 
there is less than a 0.2% effect. 
 
Using Eq. (1), and writing out the first five 
terms of the series, expressions for θ(x,0.5) or 
T(x,0.5) and θ(1,y) or T(1,y) were keyboarded 
into the IHT workspace and evaluated for 
sweeps over the x or y variable. Note that for 
T(1,y), that as y → 1, the upper boundary, 
T(1,1) is greater than 150°C.  Upon examination 
of the magnitudes of terms, it becomes evident 
that more than 5 terms are required to provide an 
accurate solution. 

0 0.2 0.4 0.6 0.8 1

x or y coordinate (m)

50

70

90

110

130

150

T(
x,

0.
5)

 o
r T

(1
,y

), 
C

T(1,y)
T(x,0.5)  



 
PROBLEM 4.3 

 
KNOWN:  Temperature distribution in the two-dimensional rectangular plate of Problem 4.2. 
 
FIND:  Expression for the heat rate per unit thickness from the lower surface (0 ≤ x ≤ 2, 0) and result 
based on first five non-zero terms of the infinite series. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Two-dimensional, steady-state conduction, (2) Constant properties. 
 
ANALYSIS:  The heat rate per unit thickness from the plate along the lower surface is 
 

 ( ) ( )
x 2 x 2 x 2

out y 2 1
y 0x 0 x 0 x 0 y 0

Tq dq x,0 k dx k T T dx
y y

∂ ∂θ
∂ ∂

= = =

== = = =

′ ′= − = − − = −∫ ∫ ∫  (1) 

 
where from the solution to Problem 4.2, 
 

 
( ) ( )

( )

n 1
1

2 1 n 1

1 1 sinh n y LT T 2 n xsin
T T n L sinh n W L

ππθ
π π

+∞

=

− +− ⎛ ⎞≡ = ⎜ ⎟− ⎝ ⎠
∑ . (2) 

 
Evaluate the gradient of θ from Eq. (2) and substitute into Eq. (1) to obtain 
 

 ( ) ( ) ( ) ( )
( )

n 1x 2
out 2 1

n 1 y 0x 0

1 1 n L cosh n y L2 n xq k T T sin dx
n L sinh n W L

π ππ
π π

+= ∞

= ==

− + ⎛ ⎞′ = − ⎜ ⎟
⎝ ⎠

∑∫  

 

 ( ) ( )
( )

n 1 2
out 2 1

x 0n 1

1 12 1 n xq k T T cos
n sinh n W L L

π
π π

+∞

==

⎡ ⎤− + ⎛ ⎞⎢ ⎥′ = − − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑  

 

 ( ) ( )
( ) ( )

n 1
out 2 1

n 1

1 12 1q k T T 1 cos n
n sinh n L

π
π π

+∞

=

− +
′ ⎡ ⎤= − −⎣ ⎦∑  < 

 
To evaluate the first five, non-zero terms, recognize that since cos(nπ) = 1 for n = 2, 4, 6 ..., only the n-
odd terms will be non-zero.  Hence, 
 
  Continued … 



 
PROBLEM 4.3 (Cont.) 

 

 ( ) ( )
( ) ( ) ( )

( ) ( )
2 4

out
1 1 1 12 1 1q 50 W m K 150 50 C 2 2

1 sinh 2 3 sinh 3 2π π π

⎧ − + − +⎪′ = ⋅ − ⋅ + ⋅ ⋅⎨
⎪⎩

o  

 

  
( )

( )
( ) ( )

( )
( ) ( )

( )
( )

6 8 101 1 1 1 1 11 1 1
2 2 2

5 sinh 5 2 7 sinh 7 2 9 sinh 9 2π π π
− + − + − +

+ ⋅ + ⋅ + ⋅
⎫⎪
⎬
⎪⎭

 

 [ ]outq 3.183kW m 1.738 0.024 0.00062 (...) 5.611kW m′ = + + + =  < 
 
 
COMMENTS:  If the foregoing procedure were used to evaluate the heat rate into the upper surface,  

( )
x 2

in y
x 0

q dq x, W
=

=

′ ′= − ∫ , it would follow that 

 

 ( ) ( ) ( ) ( )
n 1

in 2 1
n 1

1 12q k T T coth n 2 1 cos n
n

π π
π

+∞

=

− +
′ ⎡ ⎤= − −⎣ ⎦∑  

 

However, with coth(nπ/2) ≥ 1, irrespective of the value of n, and with ( )n 1

n 1
1 1 n

∞
+

=
− +⎡ ⎤

⎢ ⎥⎣ ⎦∑  being a 

divergent series, the complete series does not converge and inq′ → ∞ .  This physically untenable 
condition results from the temperature discontinuities imposed at the upper left and right corners. 



PROBLEM 4.4  
KNOWN:  Rectangular plate subjected to prescribed boundary conditions.  
FIND:  Steady-state temperature distribution.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state, 2-D conduction, (2) Constant properties.  
ANALYSIS:  The solution follows the method of Section 4.2.  The product solution is  
 ( ) ( ) ( ) ( )( )- y + y

1 2 3 4T x,y X x Y y C cos x C sin x C e C eλ λλ λ= ⋅ = + +  
 
and the boundary conditions are:  T(0,y) = 0,  T(a,y) = 0,  T(x,0) = 0,  T(x.b) = Ax.  Applying 
BC#1, T(0,y) = 0, find C1 = 0.  Applying BC#2, T(a,y) = 0, find that λ = nπ/a with n = 1,2,….  
Applying BC#3, T(x,0) = 0, find that C3 = -C4.  Hence, the product solution is 

 ( ) ( ) ( ) ( )+ y - y
2 4

nT x,y X x Y y C C  sin x  e e .
a

λ λπ⎡ ⎤= ⋅ = −⎢ ⎥⎣ ⎦
 

Combining constants and using superposition, find 

 ( ) n
n 1

n x n yT x,y  C  sin  sinh .
a a
π π∞

=

⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑  

To evaluate Cn and satisfy BC#4, use orthogonal functions with Equation 4.16 to find 

 
a a 2

n 0 0
n x n b n xC  Ax sin dx/sinh   sin  dx,

a a a
π π π⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⋅ ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫ ∫  

noting that y = b.  The numerator, denominator and Cn, respectively, are: 

( )[ ] ( )
a2 2 2a n+1

0
0

n x a n x ax n x Aa Aa
A  x sin dx A sin cos cos n 1 ,

a n a n a n n
π π π

π
π π π π

⋅ ⋅ = − = − = −
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

∫  

 

 
aa 2

0 0

n b n x n b 1 a 2n x a n b
sinh sin dx sinh  x sin sinh ,

a a a 2 4n a 2 a
⋅ = − = ⋅⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦∫
π π π π π

π
 

 

  ( ) ( )
2 n+1 n+1

n
Aa a n b n bC 1 / sinh 2Aa 1 / n  sinh .
n 2 a a

π ππ
π

⎡ ⎤ ⎡ ⎤= − = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

Hence, the temperature distribution is 

 ( ) ( )n+1

n 1

n ysinh12 Aa n x aT x,y  sin  .
n bn a sinh

a

π
π

ππ

∞

=

⎡ ⎤
⎢ ⎥− ⎡ ⎤ ⎣ ⎦= ⋅ ⎢ ⎥ ⎡ ⎤⎣ ⎦
⎢ ⎥⎣ ⎦

∑     < 

 



PROBLEM 4.5 
 
KNOWN:  Boundary conditions on four sides of a rectangular plate. 
 
FIND:  Temperature distribution. 
 
SCHEMATIC: 
 

 
ASSUMPTIONS:  (1) Two-dimensional, steady-state conduction, (2) Constant properties. 
 
ANALYSIS:  This problem differs from the one solved in Section 4.2 only in the boundary 
condition at the top surface.  Defining θ = T – T∞, the differential equation and boundary 
conditions are 

2 2

2 2
θ θ +  = 0

x y
∂ ∂
∂ ∂

 

 

s
y W

θθ(0, y) 0     θ(L, y) 0     θ(x,0) 0    k q     
y =

∂ ′′= = = =
∂

 (1a,b,c,d) 

 
The solution is identical to that in Section 4.2 through Equation (4.11), 

n
n=1

nπx nπyθ = C sin sinh
L L

∞

∑   (2) 

 
To determine Cn, we now apply the top surface boundary condition, Equation (1d).  
Differentiating Equation (2) yields 

 
          Continued… 

0 
0 x 

L 

 y 

W 

T1 T1 

T1 

sq′′  



PROBLEM 4.5 (Cont.) 
 

 

n
n=1y=W

θ nπ nπx nπW= C sin cosh
y L L L

∞∂
∂ ∑   (3) 

 
Substituting this into Equation (1d) results in 
 

s
n

n=1

q nπx = A sin
k L

∞′′
∑   (4) 

 
where An = Cn(nπ/L)cosh(nπW/L).  The principles expressed in Equations (4.13) through (4.16) 
still apply, but now with reference to Equation (4) and Equation (4.14), we should choose 

sf(x) = q /k′′ , n
nπxg (x) = sin
L

.  Equation (4.16) then becomes 

 
L

s
n+1

0 s
n L

2

0

q nπxsin dx
k L q 2 (-1) + 1A  =  = 

k π nnπxsin dx
L

′′

′′∫

∫
 

 
Thus 
 

n+1
s

n 2 2
q L (-1) + 1C  = 2
k n π cosh(nπW/L)
′′   (5) 

 
The solution is given by Equation (2) with Cn defined by Equation (5). 
 
 
 
 
 
 
 



PROBLEM 4.6  
KNOWN:  Uniform media of prescribed geometry.  
FIND:  (a) Shape factor expressions from thermal resistance relations for the plane wall, cylindrical 
shell and spherical shell, (b) Shape factor expression for the isothermal sphere of diameter D buried in 
an infinite medium.  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Uniform properties.  
ANALYSIS:  (a) The relationship between the shape factor and thermal resistance of a shape follows 
from their definitions in terms of heat rates and overall temperature differences. 

 ( ) ( ) t
t

Tq kS T        4.20 ,         q         3.19 ,        S 1/ kR
R
Δ

= Δ = =        (4.21) 

Using the thermal resistance relations developed in Chapter 3, their corresponding shape factors are: 
    
 

Plane wall:   t
L AR                S .

kA L
= =   < 

 

Cylindrical shell:   ( )2 1
t

2 1

ln r / r 2 LR           S
2 Lk lnr / r .

= =
π

π
 < 

(L into the page) 
 

Spherical shell:  t
1 2 1 2

1 1 1 4R         S .
4 k r r l/r l/r

⎡ ⎤
= − =⎢ ⎥ −⎣ ⎦

π
π

          < 

 
(b)  The shape factor for the sphere of diameter D in an 
infinite medium can be derived using the alternative  
conduction analysis of Section 3.2.  For this situation, qr is 
a constant and Fourier’s law has the form 

 ( )2
r

dTq k 4  r .
dr

= − π  

Separate variables, identify limits and integrate.  

( )r r r
D / 2 T 2 12

D/2

T2
1

q q qdr 1 2dT          0 T T
4 k 4 k r 4 k Dr

∞∞ ⎡ ⎤ ⎡ ⎤− = − − = − − = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∫∫

π π π
 

 ( )r 1 2
Dq 4 k T T           or          S 2 D.
2

⎡ ⎤= − =⎢ ⎥⎣ ⎦
π π       < 

 
COMMENTS:  Note that the result for the buried sphere, S = 2πD, can be obtained from the 
expression for the spherical shell with r2 = ∞.  Also, the shape factor expression for the “isothermal 
sphere buried in a semi-infinite medium” presented in Table 4.1 provides the same result with z → ∞. 
 



PROBLEM 4.7 
 
 

KNOWN:  Diameters and temperatures of horizontal circular cylinders. Eccentricity factor. Heat 
transfer rate per unit length. Fluid thermal conductivity. 
 
FIND:  Effective thermal conductivity. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Constant properties, (2) Steady state conditions. 
 
PROPERTIES: Given: k = 0.255 W/m⋅K.  
 
ANALYSIS: In the absence of free convection the conduction heat transfer per unit length may be found 
by using the shape factor expression and applying Case 7 of Table 4.1. Hence 
 
 

( ) ( ) ( )

( ) ( ) ( )
1 2'

cond 1 2 2 2 2 2 2 23 3 31
1

3 3

2 2 0.255 W/m K 53 15 C

4 60 10 m 20 10  m 4 10 10  mcosh
cosh2

2 60 10  m 20 10  m

k T TSq k T T
L D d z

Dd

π π
− − −−

−
− −

− × ⋅ − °
= − = =

⎛ ⎞ ⎛ ⎞+ − × + × − × ×⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟⎝ ⎠ × × × ×⎜ ⎟
⎝ ⎠

      = 63.3 W/m 
 
The free convection heat transfer rate is 
 

 ( )'
conv eff 1 2 110 W/mSq k T T

L
= − =   

 
Therefore the effective thermal conductivity is  
 

  conv
eff

cond

110 W/m0.255 W/m K 0.44 W/m K
63.3 W/m

qk k
q

= = ⋅ ⋅ = ⋅    <  

       
COMMENTS: Buoyancy-induced fluid motion increases the heat transfer rate between the 
cylinders by 74%. 

z = 10 mm

D = 60 mm
d = 20 mm

T2=15°C

T1= 53°C

g



PROBLEM 4.8 
 
KNOWN:  Boundary conditions on four sides of a square plate. 
 
FIND:  Expressions for shape factors associated with the maximum and average top surface 
temperatures.  Values of these shape factors.  The maximum and average temperatures for 
specified conditions. 
 
SCHEMATIC: 

ASSUMPTIONS:  (1) Two-dimensional, steady-state conduction, (2) Constant properties. 
 
ANALYSIS:  We must first find the temperature distribution as in Problem 4.5.  Problem 4.5 
differs from the problem solved in Section 4.2 only in the boundary condition at the top surface.  
Defining θ = T – T∞, the differential equation and boundary conditions are 

2 2

2 2
θ θ +  = 0

x y
∂ ∂
∂ ∂

 

 

s
y W

θθ(0, y) 0     θ(L, y) 0     θ(x,0) 0    k q     
y =

∂ ′′= = = =
∂

 (1a,b,c,d) 

 
The solution is identical to that in Section 4.2 through Equation (4.11), 

n
n=1

nπx nπyθ = C sin sinh
L L

∞

∑   (2) 

 
To determine Cn, we now apply the top surface boundary condition, Equation (1d).  
Differentiating Equation (2) yields 
 

n
n=1y=W

θ nπ nπx nπW= C sin cosh
y L L L

∞∂
∂ ∑   (3) 

 
Continued … 
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PROBLEM 4.8 (Cont.) 
 
 
Substituting this into Equation (1d) results in 

s
n

n=1

q nπx = A sin
k L

∞′′
∑   (4) 

 
where An = Cn(nπ/L)cosh(nπW/L).  The principles expressed in Equations (4.13) through (4.16) 
still apply, but now with reference to Equation (4) and Equation (4.14), we should choose 

sf(x) = q /k′′ , n
nπxg (x) = sin
L

.  Equation (4.16) then becomes 

 
L

s
n+1

0 s
n L

2

0

q nπxsin dx
k L q 2 (-1) + 1A  =  = 

k π nnπxsin dx
L

′′

′′∫

∫
 

 
Thus 
 

n+1
s

n 2 2
q L (-1) + 1C  = 2
k n π cosh(nπW/L)
′′   (5) 

 
The solution is given by Equation (2) with Cn defined by Equation (5).  We now proceed to 
evaluate the shape factors. 
 
(a) The maximum top surface temperature occurs at the midpoint of that surface, x = W/2, y = W.  
From Equation (2) with L = W, 
 

(n-1)/2
2,max 1 n n

n=1 n odd

nπθ(W/2,W) = T - T  = C sin  sinh nπ = C (-1) sinh nπ
2

∞

∑ ∑  

 
where 
 

n+1
s

n 2 2
q W (-1) + 1C  = 2

k n π cosh nπ
′′

 

 
Thus 
 

 
-1 -1n+1 (n-1)/2

(n-1)/2s
max 2 2 2 2

2,max 1 n odd n odd

q Wd 2 (-1) + 1 4 (-1)S  =  = (-1) tanh nπ = tanh nπ
k(T  - T ) d dn π n π

⎡ ⎤ ⎡ ⎤′′
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑     < 

 
where d is the depth of the rectangle into the page. 
            Continued… 



PROBLEM 4.8 (Cont.) 
 
 (b) The average top surface temperature is given by 
 

W n

2 1 n n
n=1 n=10

1 nπx 1 - (-1)θ(y = W) = T - T  = C sin  dx sinh nπ = C  sinh nπ
W W nπ

∞ ∞

∑ ∑∫  

 
Thus 
 

-1 -1n+1 n
s

3 3 3 3
2 1 n=1 n odd

q Wd 2 [(-1) + 1][1- (-1) ] 8 1S =  = tanh nπ  = tanh nπ
k(T - T ) d dn π n π

∞⎡ ⎤ ⎡ ⎤′′
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦
∑ ∑                < 

 
(c)  Evaluating the expressions for the shape factors yields 
 

-1(n-1)/2
max

2 2
n odd

S (-1) = 4 tanh nπ =
d n π

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
∑ 2.70   < 

 
-1

3 3
n odd

S 1 = 8 tanh nπ
d n π

⎡ ⎤
⎢ ⎥
⎣ ⎦
∑  = 3.70     < 

 
The temperatures can then be found from 
 

2
s

2,max 1 1
max max

q Wdq 1000 W/m  × 0.01 mT  = T  +  = T  +  = 0°C +  = 0.19°C
S k S k 2.70 × 20 W/m K

′′
⋅

 < 

 
2

s
2 1 1

q Wdq 1000 W/m  × 0.01 mT  = T  +  = T  +  = 0°C +  = 0.14°C
Sk Sk 3.70 × 20 W/m K

′′
⋅

  < 

 
 



PROBLEM 4.9  
KNOWN:  Heat generation in a buried spherical container.  
FIND:  (a) Outer surface temperature of the container, (b) Representative isotherms and heat 
flow lines.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Soil is a homogeneous medium with 
constant properties.  
PROPERTIES:  Table A-3, Soil (300K): k = 0.52 W/m⋅K.  
ANALYSIS:  (a) From an energy balance on the container, gq E= &  and from the first entry in 
Table 4.1,  

 ( )1 2
2 Dq k T T .

l D/4z
π

= −
−

 
 
Hence,  

 
( )1 2

q 1 D/4z 500W 1 2m/40mT T 20 C+ 92.7 CWk 2 D 2 2m0.52
m K

π π
− −

= + = =

⋅

o o    < 

 
(b) The isotherms may be viewed as spherical surfaces whose center moves downward with 
increasing radius.  The surface of the soil is an isotherm for which the center is at z = ∞. 
 

 



PROBLEM 4.10  
KNOWN:  Shape of objects at surface of semi-infinite medium.  
 
FIND:  Shape factors between object at temperature T1 and semi-infinite medium at temperature T2.   
SCHEMATIC:   

 
           (a)          (b)       (c) 
 
 
ASSUMPTIONS:  (1) Steady-state, (2) Medium is semi-infinite, (3) Constant properties, (4) Surface 
of semi-infinite medium is adiabatic. 
 
ANALYSIS:  Cases 12 -15 of Table 4.1 all pertain to objects buried in an infinite medium.  Since they 
all possess symmetry about a horizontal plane that bisects the object, they are equivalent to the cases 
given in this problem for which the horizontal plane is adiabatic.  In particular, the heat flux is the 
same for the cases of this problem as for the cases of Table 4.1.  Note, that when we use Table 4.1 to 
determine the dimensionless conduction heat rate, *

ssq , we must be consistent and use the surface area 
of the “entire” object of Table 4.1, not the “half” object of this problem.  Then 

 
*
ss 1 2

s c

q k(T  - T )qq  =  = 
A L

′′  

where 1/2
c sL  = (A 4π)   and As is the area given in Table 4.1 

 
When we calculate the shape factors we must account for the fact that the surface areas and heat 
transfer rates for the objects of this problem are half as much as for the objects of Table 4.1. 

 
* * 1/2

s ss s ss s

1 2 1 2 c

q A 2 q A q (4πA )qS =  =  =  = 
k(T  - T ) k(T  - T ) 2L 2

′′
 

 
where As is still the area in table 4.1 and the 2 in the denominator accounts for the area being halved. 
Thus, finally,  
 * 1/2

ss sS = q (πA )  

(a) 2 1/2S = 1 (π πD )  = πD⋅ ⋅          < 
(b) 

1/222 2 πDS = π = 2D
π 2

⎛ ⎞
⋅⎜ ⎟⎜ ⎟

⎝ ⎠
                    < 

This agrees with Table 4.1a, Case 10. 

(c) 2 1/2S = 0.932(π 2D )  = 2π (0.932)D = 2.34D⋅       < 
 

(d) The height of the “whole object” is d = 2D. Thus 

( ) 1/22S = 0.961 π 2D + 4D 2D  = 10π (0.961)D = 5.39D⎡ ⎤⋅
⎣ ⎦

    < 

D

T2 

T1 

D

T2 

T1 D

T2 

T1 



PROBLEM 4.11 
 

KNOWN:  Diameters and temperatures of spherical particles that are in contact.  
 
FIND:  Heat transfer rate. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Constant properties, (2) Isothermal particles. 
 
PROPERTIES: Table A.4, Air (300 K): k = 0.0263 W/m⋅K.  
 
ANALYSIS: By symmetry, the vertical plane at the particle contact point is at temperature Tp = (T1 + 
T2)/2 = 300 K. Therefore, conduction between the particles q12 is equal to conduction from particle 1 
to the plane, q1p = Sk(T1 – Tp). The shape factor is that of Case 1 of Table 4.1 evaluated at z = D/2 
yielding S = 4πD. Therefore, 
 

6 -61 2
12 1p 14 4 100 10 m 0.0263 W/m K 0.1 K = 3.3 10  W  = 3.3 W

2
T Tq q Dk Tπ π μ−+⎛ ⎞= = − = × × × ⋅ × ×⎜ ⎟

⎝ ⎠
  < 

  
       
COMMENTS: (1) The air thermal conductivity in the vicinity of the contact point would be 
reduced by nanoscale effects such as those described in Chapter 2. In applying the shape factor of 
Case 1 of Table 4.1 to the z = D/2 situation we have implicitly assumed that nanoscale effects are 
negligible. See B. Gebhart, Heat Conduction and Mass Diffusion, McGraw-Hill, 1993 for an 
appropriate treatment of nanoscale phenomena for this geometry. (2) The effective thermal 
conductivity of porous media composed of high thermal conductivity particles, such as packed metal 
powder layers, may be estimated by accounting for the particle size and packing distribution and using 
an analysis such as the one presented here. 

T1= 300.1 K T2= 299.9 K

Air

D = 100 μm

Tp



PROBLEM 4.12 
 
 
KNOWN:  Dimensions of a two-dimensional object, applied boundary conditions and thermal 
conductivity.  
 
FIND:  (a) Shape factor for the object if the dimensions are a = 10 mm, b = 12 mm. (b) Shape factor 
for a = 10 mm, b = 15 mm. (c) Shape factor for cases (a) and (b) using the alternative conduction 
analysis (d) For T1 = 100°C and T2 = 60°C, determine the heat transfer rate per unit depth for k = 15 
W/m⋅K for cases (a) and (b).  
 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties. 
 
PROPERTIES:  Given: k = 15 W/m⋅K. 
 
ANALYSIS:  (a) The geometry and applied boundary conditions correspond to Case 11 of Table 
4.1(a).  Noting that the diagonals of the square channel of Case 11 are adiabats, the shape factor for 
b/a = W/w = 12/10 = 1.2 is one-fourth the shape factor given in Table 4.1(a), 
 

  2 2.00 2.00 0.10m0.25 1.097
0.785ln( / ) ln( / ) ln(1.2)

L LS
W w W w

π ×
= × = = =    < 

 
(b) For b/a = W/w = 15/10 = 1.5, 
 

        2 1.69 1.69 0.10m0.25 0.480
0.930ln( / ) 0.050 ln( / ) 0.0534 ln(1.5) 0.0534

L LS
W w W w
π ×

= × = = =
− − −

   < 

 
(c) From the one-dimensional alternative conduction analysis with the top surface described by y = x 
and A = 2yL,   
 

2x
dT dTq kA kLx
dx dx

= − = −  

 
Separating variables and integrating yields 
 

  
2

1

2
Tb

xx a T

dx kL dT
x q

=

= −∫ ∫   or  1 2
2ln( / ) ( )kLb a T Tqx

= −  

 
Hence, S1-D = 2L/[ln(b/a)].  

Continued… 

x

y

T1= 100°C

T2 = 60°C

θ = π/2

a

b

a = 10 mm

b = 12, 15 mm

k = 15 W/m·K

L = 100 mm

x

y

T1= 100°C

T2 = 60°C

θ = π/2

a

b

a = 10 mm

b = 12, 15 mm

k = 15 W/m·K

x

y

T1= 100°C

T2 = 60°C

θ = π/2

a

b

a = 10 mm

b = 12, 15 mm

k = 15 W/m·K

L = 100 mm



PROBLEM 4.12 (Cont.) 
 
 
For b/a = 1.2, S1-D = 2 × 0.1m/[ln(1.2)] =  1.097. For b/a = 1.5, S1-D = 2 × 0.1m/[ln(1.5)] = 0.493. < 
            
As b/a becomes small, the influence of the lateral edges is diminished and one-dimensional conditions 
are approached. Hence, the shape factor estimated using the one-dimensional alternative conduction 
solution is nearly the same as for the two-dimensional shape factor for b/a = 1.2. As b/a is increased, 
the lateral edge effects become more important, and the shape factors obtained by the two methods 
begin to diverge in value. As two-dimensional conduction in the object becomes more pronounced, the 
heat transfer rate is decreased relative to that associated with the assumed one-dimensional conditions. 
 
(d) For b/a = 1.2, the heat transfer rate is 
 
  1 2( ) 1.097 15 W / m K (100 60) C 658 Wq Sk T T= − = × ⋅ × − ° =    < 
 
for b/a = 1.5, the heat transfer rate is 
 

1 2( ) 0.480 15 W / m K (100 60) C 288 Wq Sk T T= − = × ⋅ × − ° =    < 
 
  
COMMENTS:  The heat transfer rate is independent of the individual values of a or b. As either b or 
a is increased while maintaining a fixed b/a ratio, the cross-sectional area for heat transfer increases, 
but the increase is offset by increased thickness through which the conduction occurs. The offsetting 
effects balance one another, and the net result is no change in the heat transfer rate.  



PROBLEM 4.13  
KNOWN:  Electrical heater of cylindrical shape inserted into a hole drilled normal to the 
surface of a large block of material with prescribed thermal conductivity.  
FIND:  Temperature reached when heater dissipates 50 W with the block at 25°C.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Block approximates semi-infinite medium 
with constant properties, (3) Negligible heat loss to surroundings above block surface, (4) 
Heater can be approximated as isothermal at T1. 
 
ANALYSIS:  The temperature of the heater surface follows from the rate equation written as  
 T1 = T2 + q/kS 
 
where S can be estimated from the conduction shape factor given in Table 4.1 for a “vertical 
cylinder in a semi-infinite medium,”  
 ( )S 2 L/ n 4L/D .π= l  
 
Substituting numerical values, find  

 4 0.1mS 2 0.1m/ n 0.143m.
0.005m

π ×⎡ ⎤= × =⎢ ⎥⎣ ⎦
l  

 
The temperature of the heater is then  
 T1 = 25°C + 50 W/(5 W/m⋅K × 0.143m) = 94.9°C.     < 
 
COMMENTS:  (1) Note that the heater has L >> D, which is a requirement of the shape 
factor expression.  
(2) Our calculation presumes there is negligible thermal contact resistance between the heater 
and the medium.  In practice, this would not be the case unless a conducting paste were used.  
(3) Since L >> D, assumption (3) is reasonable.  
(4) This configuration has been used to determine the thermal conductivity of materials from 
measurement of q and T1. 



PROBLEM 4.14  
KNOWN:  Surface temperatures of two parallel pipe lines buried in soil.  
FIND:  Heat transfer per unit length between the pipe lines.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Two-dimensional conduction, (3) 
Constant properties, (4) Pipe lines are buried very deeply, approximating burial in an infinite 
medium, (5) Pipe length >> D1 or D2 and w > D1 or D2. 
 
ANALYSIS:  The heat transfer rate per unit length from the hot pipe to the cool pipe is  

 ( )1 2
q Sq k T T .
L L

′ = = −  
 
The shape factor S for this configuration is given in Table 4.1 as  

 
2 2 2

-1 1 2
1 2

2 LS .
4w D D

cosh
2D D

π
=

⎡ ⎤− −
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
Substituting numerical values,  

 

( ) ( ) ( )2 2 2
1 -14 0.5m 0.1m 0.075mS 2 / cosh 2 / cosh (65.63)

L 2 0.1m 0.075m
S 2 / 4.88 1.29.
L

π π

π

−
⎡ ⎤× − −⎢ ⎥= =

× ×⎢ ⎥
⎣ ⎦

= =

 

 
Hence, the heat rate per unit length is  
 ( )q 1.29 0.5W/m K 175 5 C 110 W/m.′ = × ⋅ − =o      < 
 
COMMENTS:  The heat gain to the cooler pipe line will be larger than 110 W/m if the soil 
temperature is greater than 5°C.  How would you estimate the heat gain if the soil were at 
25°C? 
 



PROBLEM 4.15 
 

 
KNOWN:  Dimensions and temperature of water droplet.  
 
FIND:  Time for droplet to freeze completely. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Constant properties, (2) Negligible convection and radiation, (3) Isothermal 
water particle, (4) Semi-infinite medium. 
 
PROPERTIES: Table A.4, Air (265 K): ka = 0.0235 W/m⋅K. Table A.6, Liquid water (273 K): ρw = 
1000 kg/m3. 
 
ANALYSIS: An energy balance on the droplet yields 
 

 
cond mp( )

w sf

s

V hEt
q Sk T T

ρΔ
= =

−
     (1) 

 
The shape factor S is that of Case 1 of Table 4.1 with z = D/2    
 

 
2 4

1 / 4
DS D

D z
π π= =

−
     (2) 

 
Combining Equations (1) and (2) with the expression for the droplet volume V = πD3/6 yields 
 

 
2 6 2 3(100 10  m) 1000 kg/m 334,000 J/kg 0.39 s

24 ( ) 24 0.0235 W/m K 15 K
w sf

a mp s

D h
t

k T T
ρ −× × ×

= = =
− × ⋅ ×

  < 

 
 
 
COMMENTS: (1) Solidification might initiate in the lower region of the droplet. The ice that forms 
would pose an additional conduction resistance between the cold metal surface and the liquid water. 
This would increase the time needed for the droplet to solidify completely. (2) The air thermal 
conductivity in the vicinity of the contact point would be reduced by the nanoscale effects described in 
Chapter 2. In applying this shape factor for the z = D/2 case we have implicitly assumed that nanoscale 
effects are negligible. See B. Gebhart, Heat Conduction and Mass Diffusion, McGraw-Hill, 1993. 

D = 100 μm
Tmp = 0°C

Ts= -15°C

Air Water droplet

Non-wetting metal

qcond



PROBLEM 4.16  
KNOWN:  Tube embedded in the center plane of a concrete slab.  
FIND:  The shape factor and heat transfer rate per unit length using the appropriate tabulated relation,  
  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Two-dimensional conduction, (2) Steady-state conditions, (3) Constant 
properties, (4) Concrete slab infinitely long in horizontal plane, L >> z.  
PROPERTIES:  Table A-3, Concrete, stone mix (300K):  k = 1.4 W/m⋅K.  
ANALYSIS:  If we relax the restriction that z >> D/2, the embedded tube-slab system corresponds to 
the fifth case of Table 4.1.  Hence,  

 
( )
2 LS

n 8z/  D
π
π

=
l

 
 
where L is the length of the system normal to the page, z is the half-thickness of the slab and D is the 
diameter of the tube.  Substituting numerical values, find  
 ( )S 2 L/ n 8 50mm/ 50mm 6.72L.π π= × =l  
 
Hence, the heat rate per unit length is  

 ( ) ( )1 2
q S Wq k T T 6.72 1.4 85 20 C 612 W.
L L m K

′ = = − = × − =
⋅

o  
 
 



PROBLEM 4.17  
KNOWN:  Dimensions and boundary temperatures of a steam pipe embedded in a concrete 
casing.  
FIND:  Heat loss per unit length.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible steam side convection 
resistance, pipe wall resistance and contact resistance (T1 = 450K), (3) Constant properties. 
 
PROPERTIES:  Table A-3, Concrete (300K):  k = 1.4 W/m⋅K.  
ANALYSIS:  The heat rate can be expressed as  
 ( )1-2 1 2q Sk T Sk T T= Δ = −  
 
From Table 4.1, the shape factor is  

 2 LS .
1.08 wn

D

π
=

⎡ ⎤
⎢ ⎥⎣ ⎦

l

 

 
Hence,  

 
( )1 22 k T Tqq
1.08 wL n

D

π −⎡ ⎤′ = =⎢ ⎥ ⎡ ⎤⎣ ⎦
⎢ ⎥⎣ ⎦

l

 

 

 ( )2 1.4W/m K 450 300 K
q 1122 W/m.

1.08 1.5mn
0.5m

π × ⋅ × −
′ = =

×⎡ ⎤
⎢ ⎥⎣ ⎦

l

    < 

 
COMMENTS:  Having neglected the steam side convection resistance, the pipe wall 
resistance, and the contact resistance, the foregoing result overestimates the actual heat loss. 
 



PROBLEM 4.18 
 

KNOWN: Power, size and shape of laser beam. Material properties. 
 

FIND: Maximum surface temperature for a Gaussian beam, maximum temperature for a flat 
beam, and average temperature for a flat beam. 
 
SCHEMATIC: 

 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) Semi-infinite medium, 
(4) Negligible heat loss from the top surface. 
 
ANALYSIS: The shape factor is defined in Eq. 4.20 and is q = SkΔT1-2                      (1) 
 
From the problem statement and Section 4.3, the shape factors for the three cases are: 
 

Beam Shape Shape Factor T1,avg or T1,max 
Gaussian 

Flat 

Flat 

b2 rπ  

brπ  
2

b3 r /8π  

T1,max 

T1,max 

T1,avg 
 
For the Gaussian beam, -3 -6

1S  = 2 π  × 0.1 × 10  m = 354 × 10  m  

For the flat beam (max. temperature), -3 -6
2S  =  × 0.1 × 10  m = 314 × 10  mπ  

For the flat beam (avg. temperature), 2 -3 -6
3S  = (3/8)  × 0.1 × 10  m = 370 × 10  m×π  

The temperature at the heated surface for the three cases is evaluated from Eq. (1) as 
  
 1 2 2T  = T  + q/Sk = T + P /Skα  

For the Gaussian beam, -6
1,maxT  = 25°C + 1 W × 0.45 / (354 × 10  m × 27 W/m K) = 72.1°C⋅  < 

For the flat beam (Tmax), -6
1,maxT  = 25°C + 1 W × 0.45 / (314 × 10  m × 27 W/m K) = 78.1°C⋅ < 

For the flat beam (Tavg), -6
1,avgT  = 25°C + 1 W × 0.45 / (370 × 10  m × 27 W/m K) = 70.0°C⋅  < 

 
COMMENTS: (1) The maximum temperature occurs at r = 0 for all cases. For the flat beam, the 
maximum temperature exceeds the average temperature by 78.1 – 70.0 = 8.1 degrees Celsius.  

P = 1W

rb = 0.1 mm rb

FlatGaussian

Tmax Tmax

T2 = 25°C

k = 27 W/m•K

α = 0.45

′′′q′′′q

P = 1W

rb = 0.1 mm rb

FlatGaussian

Tmax Tmax

T2 = 25°C

k = 27 W/m•K

α = 0.45

′′′q′′′q



PROBLEM 4.19  
KNOWN:  Thin-walled copper tube enclosed by an eccentric cylindrical shell; intervening space 
filled with insulation.  
FIND:  Heat loss per unit length of tube; compare result with that of a concentric tube-shell 
arrangement.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Thermal resistances of 
copper tube wall and outer shell wall are negligible, (4) Two-dimensional conduction in insulation.  
ANALYSIS:  The heat loss per unit length written in terms of the shape factor S is 

( )( )1 2q k S/ T T′ = −l  and from Table 4.1 for this geometry, 
 

 
2 2 2

-1S D d 4z2 / cosh .
2Dd

π
⎡ ⎤+ −

= ⎢ ⎥
⎢ ⎥⎣ ⎦l

 

 
Substituting numerical values, all dimensions in mm,  

 ( ) ( )
22 2

-1 -1120 30 4 20S 2 / cosh 2 / cosh 1.903 4.991.
2 120 30

π π
⎡ ⎤+ −⎢ ⎥= = =

× ×⎢ ⎥
⎣ ⎦

l
 

 
Hence, the heat loss is  
 ( )q 0.05W/m K 4.991 85 35 C 12.5 W/m.′ = ⋅ × − =o      < 
 
If the copper tube were concentric with 
the shell, but all other conditions were 
the same, the heat loss would be    

 
( )

( )
1 2

c
2 1

2  k T T
q

n D / D
π −

′ =
l

 
 
using Eq. 3.27.  Substituting numerical 
values,  

( ) ( )120
c 30

Wq 2 0.05 85 35 C/ n /
m K

π′ = × −
⋅

o
l  

 
cq 11.3 W/m.′ =  

 
COMMENTS:  As expected, the heat loss with the eccentric arrangement is larger than that for the 
concentric arrangement.  The effect of the eccentricity is to increase the heat loss by (12.5 - 11.3)/11.3 
≈ 11%. 
 



PROBLEM 4.20  
KNOWN:  Cubical furnace, 350 mm external dimensions, with 50 mm thick walls.  
FIND:  The heat loss, q(W).  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Two-dimensional conduction, (3) 
Constant properties.  
PROPERTIES:  Table A-3, Fireclay brick ( )( )1 2T T T / 2 610K :  k 1.1 W/m K.= + = ≈ ⋅  
 
ANALYSIS:  Using relations for the shape factor from Table 4.1,  

 Plane Walls (6)  
2

W
A 0.25 0.25mS 1.25m
L 0.05m

×
= = =  

 
 Edges (12)   ES 0.54D 0.54 0.25m 0.14m= = × =  
 
 Corners (8)   CS 0.15L 0.15 0.05m 0.008m.= = × =  
 
The heat rate in terms of the shape factors is  

 
( ) ( ) ( )

( ) ( )
1 2 W E C 1 2q kS T T k 6S 12S 8S  T T
Wq 1.1 6 1.25m+12 0.14m+8 0.008m  600 75 C

m K

= − = + + −

= × × × −
⋅

o  

 
 q 5.30 kW.=           < 
 
COMMENTS:  Note that the restrictions for SE and SC have been met. 
 



PROBLEM 4.21 
 

KNOWN: Relation between maximum material temperature and its location, and scanning 
velocities. 
 
FIND: (a) Required laser power to achieve a desired operating temperature for given material, 
beam size and velocity, (b) Lag distance separating the center of the beam and the location of 
maximum temperature, (c) Plot of the required laser power for velocities in the range 0 ≤ U ≤ 2 
m/s. 
 
SCHEMATIC: 

rb = 0.1 mm

Tmax= 200°C
= 2000 kg/m3

c = 800 J/kg•K 

k = 27 W/m•K

T2 = 25°C

U = 2 m/s

′′q

δ

ρ

α = 0.45

rb = 0.1 mm

Tmax= 200°C
= 2000 kg/m3

c = 800 J/kg•K 

k = 27 W/m•K

T2 = 25°C

U = 2 m/s

′′q

δ

ρ

α = 0.45

 
 
ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) Semi-infinite medium, 
(4) Negligible heat loss from the top surface. 
 
ANALYSIS: The thermal diffusivity of the materials is  
 
 3 -6 2= k/ρc = 27 W/m K / (2000 kg/m 800 J/kg K) = 16.9 × 10  m /sα ⋅ ⋅ ⋅  
 
(a) The Peclet number is 

 
-6 2

bPe = Ur  / 2  = 2 m/s × 0.0001 m / ( 2  × 16.9 × 10  m /s) = 8.38α  
 
Since this value of the Peclet number is within the range of the correlation provided in the 
problem statement, the maximum temperature corresponding to a stationary beam delivering the 
same power would be 
 

 

2
1,max,U=0 1,maxU 0 2 2

2

T  = (1 + 0.301Pe - 0.0108Pe ) (T  - T ) + T

                 = (1 + 0.301 × 8.37 - 0.0108 × 8.37 ) × (200 - 25)°C + 25°C
                 = 509°C.

≠

 

  
 
From Eq. 4.20 and Problem 4.18 we know that (with the symbol α̂ now representing the 
absorptivity, since α is used for thermal diffusivity) 

Continued… 



            
PROBLEM 4.21 (Cont.) 

 
 

1-2 b 1-2ˆ ˆP = SkΔT  / α = 2 πr kΔT / = 2 π  × 0.0001 m × 27 W/m K × (509 - 25)°C / 0.45
   = 10.3 W 

α ⋅           <  
 
(b) The lag distance is  

-6 2
1.55 1.55α 16.9 × 10  m /sδ = 0.944 Pe  = 0.944 ×  × 8.37  = 0.21 mm

U 2 m/s
          < 

 
(c) The plot of the required laser power versus scanning velocity is shown below.  

 
Laser Power vs Scanning Velocity

0 0.4 0.8 1.2 1.6 2

U (m/s)

2

4

6

8

10

12

P 
(W

)

 
 
COMMENTS: (1) The required laser power increases as the scanning velocity increases since 
more material must be heated at higher scanning velocities. (2) The relative motion between the 
laser beam and the heated material represents an advection process. Advective effects will be 
dealt with extensively in Chapters 6 through 9.  
 



PROBLEM 4.22 
 
KNOWN:  Dimensions of stainless steel pillar and nominal glass temperatures. Contact resistance 
between pillar and glass. 
 
FIND:  Conduction rate through the pillar. 
 
SCHEMATIC:   

Gap
Pillar

Glass, T1 = 20°C

Glass, T2 = -10°C

L = 0.2 mm
D = 0.15 mm

Contact resistance, Rt,c = 1.5 × 10-6 m2·K/W

Contact resistance

"
 

ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Negligible radiation, (4) 
Two-dimensional conduction, (5) Glass behaves as a semi-infinite medium. 
 
PROPERTIES: Table A.1, AISI 302 stainless steel (300 K): kp = 15.1 W/m⋅K. Table A.3, plate glass 
(300 K): kg = 1.4 W/m⋅K. 
 
ANALYSIS: Conduction through the pillar results in a depression of the glass temperature adjacent 
to the pillar. This is associated with a constriction resistance within each glass sheet. Therefore, the 
resistance network consists of two constriction resistances, two contact resistances, and a conduction 
resistance through the pillar as shown below. 
 
  
 
 
 
 
Using the shape factor for Case 10 of Table 4.1(a) the resistances are: 
 

3
,cons 1/( ) 1/(2 ) 1/(2 0.15 10 m 1.4 W/m K) 2381 K/Wt g gR Sk Dk −= = = × × × ⋅ =  

( )2" 6 2 3
,c , / 1.5 10 m K/W / 0.15 10 m / 4 84.88 K/Wt t c pR R A π− −⎡ ⎤= = × ⋅ × × =⎢ ⎥⎣ ⎦

 

( ) ( )22 3 3
,cond / / / 4 0.2 10  m / 15.1 W/m K 0.15 10  m / 4 749.5 K/Wt p p p pR L k A L k Dπ π− −⎡ ⎤= = = × ⋅ × × × =⎢ ⎥⎣ ⎦

Therefore, the total resistance is 
 
Rtot = 2(Rt,cons + Rt,c) + Rt,cond = 2 × (2381 K/W + 84.88 K/W) + 749.5 K/W = 5681 K/W 
 
and the conduction through an individual pillar is 
 

q = (T1 – T2)/Rtot = [20 – (-10)°C]/[5681 K/W] = 5.28 × 10-3 W = 5.28 mW   < 
 
COMMENTS: (1) Constriction of the heat flow within the glass poses the largest resistance to heat 
transfer. (2) Radiation between the two glass sheets exists, and may be important in determining the 
overall heat transfer through the window. (3) Extremely high vacuum between the two glass sheets is 
required to eliminate conduction within the gap. (4) See Manz, Brunner and Wullschleger, “Triple 
Vacuum Glazing: Heat Transfer and Basic Design Constraints,” Solar Energy, Vol. 80, pp. 1632-
1642, 2006 for more information.  

Rt,cons Rt,c Rt,cond

T1 T2

Rt,c Rt,consRt,cons Rt,c Rt,cond

T1 T2

Rt,c Rt,cons

q



PROBLEM 4.23  
KNOWN:  Temperature, diameter and burial depth of an insulated pipe.  
FIND:  Heat loss per unit length of pipe.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction through 
insulation, two-dimensional through soil, (3) Constant properties, (4) Negligible oil 
convection and pipe wall conduction resistances.  
PROPERTIES:  Table A-3, Soil (300K):  k = 0.52 W/m⋅K; Table A-3, Cellular glass (365K):  
k = 0.069 W/m⋅K.  
ANALYSIS:  The heat rate can be expressed as  

 1 2
tot

T Tq
R
−

=  
 
where the thermal resistance is Rtot = Rins + Rsoil.  From Equation 3.33,  

 ( ) ( )2 1
ins

ins

n D / D n 0.7m/0.5m 0.776m K/WR .
2  Lk 2  L 0.069 W/m K Lπ π

⋅
= = =

× ⋅
l l

 
 
From Equation 4.21 and Table 4.1,  

 ( ) ( )
( )

-1 -1
2

soil
soil soil

cosh 2z/D cosh 3/ 0.71 0.653R m K/W.
Sk 2  Lk 2 0.52 W/m K L L

= = = = ⋅
× ⋅π π

 
 
Hence,  

 ( )
( )

120 0 C Wq 84 L1 m K m0.776 0.653
L W

−
= = ×

⋅+

o

 

 
 q q/L 84 W/m.′ = =          < 
 
COMMENTS:  (1) Contributions of the soil and insulation to the total resistance are 
approximately the same.  The heat loss may be reduced by burying the pipe deeper or adding 
more insulation.  
(2) The convection resistance associated with the oil flow through the pipe may be significant, 
in which case the foregoing result would overestimate the heat loss.  A calculation of this 
resistance may be based on results presented in Chapter 8.  
(3) Since z > 3D/2, the shape factor for the soil can also be evaluated from S = 2πL/ nl (4z/D) 
of Table 4.1, and an equivalent result is obtained. 
 



PROBLEM 4.24  
KNOWN:  Operating conditions of a buried superconducting cable.  
FIND:  Required cooling load.  
SCHEMATIC:    

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Two-dimensional 
conduction in soil, (4) One-dimensional conduction in insulation, (5) Pipe inner surface is at 
liquid nitrogen temperature.   
ANALYSIS:  The heat rate per unit length is  

 

( )( ) ( )

g n

g I
g n

1
g o o i i

T T
q

R R
T T

q
k 2 /ln 4z/D ln D / D / 2  k

−

−
′ =

′ ′+
−

′ =
⎡ ⎤ +⎣ ⎦π π

 

 
where Tables 3.3 and 4.1 have been used to evaluate the insulation and ground resistances, 
respectively.  Hence,  

 

( )
( ) ( )( ) ( )

( )

1
300 77 K

q
1.2 W/m K 2 / ln 8/0.2 ln 2 / 2 0.005 W/m K

223 Kq
0.489+22.064 m K/W

π π
−

−
′ =

⎡ ⎤⋅ + × ⋅⎣ ⎦
′ =

⋅

 

 
 q 9.9 W/m.′ =          < 
 
COMMENTS:  The heat gain is small and the dominant contribution to the thermal 
resistance is made by the insulation. 
 



PROBLEM 4.25 
 

 
KNOWN:  Dimensions and temperature of thermocouple bead and wires. Manipulator temperature, 
distance between bead and surface.  
 
FIND:  Surface temperature. 
 
SCHEMATIC: 

D = 120 μm
Ttc = 29°C

Ts

Air

Thermocouple
bead

z = 100μm

∼
∼∼∼ L = 300μm

Manipulator, Tm = 23°C

d = 25μm

qcond,a

qcond,Al qcond,Ch

 
ASSUMPTIONS:  (1) Constant properties, (2) Negligible radiation and convection, (3) Isothermal 
thermocouple bead, (4) Air behaves as a semi-infinite medium, (5) Steady state conditions. 
 
PROPERTIES: Table A.4, Air (310 K): ka = 0.027 W/m⋅K.  
 
ANALYSIS: An energy balance on the thermocouple bead yields 
 cond,air cond,Al cond,Chq q q= +      (1) 
 
where the conduction heat transfer rates through the alumel and chromel wires are denoted as qcond,Al 
and qcond.Ch, respectively. Conduction from the surface through the air to the thermocouple bead, 
qcond,air, may be determined by use of the shape factor S = (2πD)/(1 - D/4z)of Case 1 of Table 4.1. 
Therefore, Equation (1) may be written as   
  

( ) ( ) ( )
2 2

Al Ch4 4a s tc tc m tc m
d dSk T T k T T k T T
L L

π π
− = − + −    (2) 

 
which may be rearranged to yield 
 

( ) ( )

( ) ( )
( ) ( )

2

Al Ch

26

6 6

1 / 4
2 4

25 10  m1 120/ 4 100
     = 29 W/m K 29 23 C 19W/m K 29 23 C 29 C

2 120 10 m 0.027 W/m K 4 300 10  m
    

s tc m tc m tc
a

D z dT k T T k T T T
Dk L

−

− −

−
⎡ ⎤= ⋅ − + − +⎣ ⎦

×− ×
⎡ ⎤⋅ ⋅ − ° + ⋅ − ° + °⎣ ⎦× × × ⋅ × ×

     = 45.2°C           < 
 

Continued… 



 
PROBLEM 4.25 (Cont.) 

 
 
COMMENTS: The required surface temperature to induce the specified thermocouple temperature 
and its dependence on the separation distance, z, is shown below. As expected, the required surface 
temperature becomes greater as the separation distance increases.  
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PROBLEM 4.26 
 
KNOWN:  Dimensions, thermal conductivity and inner surface temperature of furnace wall.  Ambient 
conditions. 
 
FIND:  Heat loss. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state, (2) Uniform convection coefficient over entire outer surface of 
container, (3) Negligible radiation losses. 
 
ANALYSIS:  From the thermal circuit, the heat loss is 
 

 s,i

cond(2D) conv

T T
q

R R
∞−

=
+

 

 
where Rconv = 1/hAs,o = 1/6(hW2) = 1/6[5 W/m2⋅K(5 m)2] = 0.00133 K/W.  From Equation (4.21), the two-
dimensional conduction resistance is 
 

 cond(2D)
1R

Sk
=  

 
where the shape factor S must include the effects of conduction through the 8 corners, 12 edges and 6 
plane walls.  Hence, using the relations for Cases 8 and 9 of Table 4.1, 
 
 ( ) ( ) s,iS 8 0.15L 12 0.54 W 2L 6 A L= + × − +  
 
where As,i = (W - 2L)2.  Hence, 
 
 ( ) ( ) ( )S 8 0.15 0.35 12 0.54 4.30 6 52.83 m⎡ ⎤= × + × +⎣ ⎦  
 
 ( )S 0.42 27.86 316.98 m 345.26m= + + =  
 
and Rcond(2D) = 1/(345.26 m × 1.4 W/m⋅K) = 0.00207 K/W.  Hence 
 

 
( )

( )
1100 25 C

q 316kW
0.00207 0.00133 K W

−
= =

+

o

 < 

 
COMMENTS:  The heat loss is extremely large and measures should be taken to insulate the furnace.  
Radiation losses may be significant, leading to larger heat losses. 



PROBLEM 4.27  
KNOWN:  Platen heated by passage of hot fluid in poor thermal contact with cover plates 
exposed to cooler ambient air.  
FIND:  (a) Heat rate per unit thickness from each channel, iq ,′  (b) Surface temperature of 

cover plate, Ts, (c) i sq  and T′  if lower surface is perfectly insulated, (d) Effect of changing 
centerline spacing on i sq  and T′  
 
SCHEMATIC:   
            D=15 mm      Lo=60 mm 

LA=30 mm LB=7.5 mm 
 Ti=150°C hi=1000 W/m2

⋅K 
 T∞=25°C ho=200 W/m2

⋅K 
 kA=20 W/m⋅K   kB=75 W/m⋅K 
 4 2

t,cR 2.0 10 m K/W−′′ = × ⋅  
 

ASSUMPTIONS:  (1) Steady-state conditions, (2) Two-dimensional conduction in platen, 
but one-dimensional in coverplate, (3) Temperature of interfaces between A and B is uniform, 
(4) Constant properties.  
ANALYSIS:  (a) The heat rate per unit thickness from each channel can be determined from 
the following thermal circuit representing the quarter section shown. 
 

 
 
The value for the shape factor is S 1.06′ =  as determined from the flux plot shown on the next 
page.  Hence, the heat rate is 
 ( )i i totq 4 T T / R∞′ ′= −         (1) 

 
( )
( ) ( )

( )

2
tot

4 2

2

R [1/1000 W/m K 0.015m/4 1/ 20 W/m K 1.06
        2.0 10 m K/W/ 0.060m/2 0.0075m/75 W/m K 0.060m/2
        1/ 200 W/m K 0.060m/2 ]

π
−

′ = ⋅ + ⋅ ×
+ × ⋅ + ⋅
+ ⋅

 

 [ ]tot
tot

R 0.085 0.047 0.0067 0.0033 0.1667 m K/W
R 0.309 m K/W
′ = + + + + ⋅
′ = ⋅  

 ( )iq 4 150 25 K/0.309 m K/W 1.62 kW/m.′ = − ⋅ =      < 
(b) The surface temperature of the cover plate also follows from the thermal circuit as 

 
( )

s
i

o o

T Tq / 4
1/h L / 2

∞−′ =          (2) 
 
          Continued … 



PROBLEM 4.27 (Cont.)  

 
( )

i
s

o o

q 1 1.62 kWT T 25 C 0.167 m K/W
4 h L / 2 4∞
′

= + = + × ⋅o  
 
 sT 25 C 67.6 C 93 C.= + ≈o o o         < 
 
(c,d) The effect of the centerline spacing on i sq  and T′  can be understood by examining the 
relative magnitudes of the thermal resistances.  The dominant resistance is that due to the 
ambient air convection process which is inversely related to the spacing Lo.  Hence, from 
Equation (1), the heat rate will increase nearly linearly with an increase in Lo,  

 
( )i o

tot o o

1 1q ~ ~ L .
R 1/ h L / 2

′ ≈
′

 
 
From Eq. (2), find  

 
( )

-1 -1i
s i o o o

o o

q 1T T T ~ q L ~ L L 1.
4 h L / 2∞
′

′Δ = − = ⋅ ⋅ ≈  
 
Hence we conclude that ΔT will not increase with a change in Lo.  Does this seem 
reasonable?  What effect does Lo have on Assumptions (2) and (3)?  
If the lower surface were insulated, the heat rate would be decreased nearly by half.  This 
follows again from the fact that the overall resistance is dominated by the surface convection 
process.  The temperature difference, Ts - T∞, would only increase slightly. 
 

 



PROBLEM 4.28  
KNOWN:  Dimensions and surface temperatures of a square channel.  Number of chips mounted on 
outer surface and chip thermal contact resistance. 
 
FIND:  Heat dissipation per chip and chip temperature.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady state, (2) Approximately uniform channel inner and outer surface 
temperatures, (3) Two-dimensional conduction through channel wall (negligible end-wall effects), (4) 
Constant thermal conductivity. 
 
ANALYSIS:  The total heat rate is determined by the two-dimensional conduction resistance of the 
channel wall, q = (T2 – T1)/Rt,cond(2D), with the resistance determined by using Equation 4.21 with Case 
11 of Table 4.1.  For W/w = 1.6 > 1.4 
 

 
( )

( )t,cond(2D)
0.930 ln W / w 0.050 0.387

R 0.00160 K / W
2 L k 2 0.160m 240 W / m Kπ π

−
= = =

⋅
 

 
The heat rate per chip is then 
 

 
( )

( )
( )

2 1
c

t,cond 2D

50 20 CT Tq 156.3 W
N R 120 0.0016 K / W

− °−
= = =     < 

 
and, with qc = (Tc – T2)/Rt,c, the chip temperature is 
 
 ( )c 2 t,c cT T R q 50 C 0.2 K / W 156.3 W 81.3 C= + = ° + = °     < 
 
COMMENTS:  (1) By acting to spread heat flow lines away from a chip, the channel wall provides 
an excellent heat sink for dissipating heat generated by the chip.  However, recognize that, in practice, 
there will be temperature variations on the inner and outer surfaces of the channel, and if the 
prescribed values of T1 and T2 represent minimum and maximum inner and outer surface temperatures, 
respectively, the rate is overestimated by the foregoing analysis.  (2) The shape factor may also be 
determined by combining the expression for a plane wall with the result of Case 8 (Table 4.1).  With    
S = [4(wL)/((W-w)/2)] + 4(0.54 L) = 2.479 m, Rt,cond(2D) = 1/(Sk) = 0.00168 K/W. 
 



PROBLEM 4.29  
KNOWN:  Dimensions and thermal conductivity of concrete duct.  Convection conditions of ambient 
air.  Inlet temperature of water flow through the duct.  
FIND:  (a) Heat loss per duct length near inlet, (b) Minimum allowable flow rate corresponding to 
maximum allowable temperature rise of water.  
SCHEMATIC:   

 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady state, (2) Negligible water-side convection resistance, pipe wall 
conduction resistance, and pipe/concrete contact resistance (temperature at inner surface of concrete 
corresponds to that of water), (3) Constant properties, (4) Negligible flow work and kinetic and 
potential energy changes.  
ANALYSIS:  (a) From the thermal circuit, the heat loss per unit length near the entrance is 
 

 
( ) ( )

( )

i i
convcond 2D

T T T Tq
ln 1.08w / DR R 1

2 k h 4wπ

∞ ∞− −′ = =
′ ′+

+
 

 
where ( )cond 2DR′  is obtained by using the shape factor of Case 6 from Table 4.1 with Eq. (4.21).  

Hence, 
 

( )
( )

( ) ( )
( )

2

90 0 C 90 C
q 745 W / m

ln 1.08 0.3m / 0.15m 1 0.0876 0.0333 K m / W
2 1.4 W / m K 25 W / m K 1.2mπ

− ° °′ = = =
× + ⋅+

⋅ ⋅

 < 

 
(b) From Eq. (1.12d), with q q L′=  and ( )i oT T 5 C,− = °  
 

 
( )

( )
( )i o i o

745W / m 100mq L q Lm 3.54 kg / s
u u c T T 4207 J / kg K 5 C

′ ′
= = = =

− − ⋅ °
&    < 

 
COMMENTS:  The small reduction in the temperature of the water as it flows from inlet to outlet 
induces a slight departure from two-dimensional conditions and a small reduction in the heat rate per 
unit length.  A slightly conservative value (upper estimate) of m&  is therefore obtained in part (b). 
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PROBLEM 4.30 
 
KNOWN:  Long constantan wire butt-welded to a large copper block forming a thermocouple junction 
on the surface of the block.  
FIND:  (a) The measurement error (Tj - To) for the thermocouple for prescribed conditions, and (b) 
Compute and plot (Tj - To) for h = 5, 10 and 25 W/m2⋅K for block thermal conductivity 15 ≤ k ≤ 400 
W/m⋅K.  When is it advantageous to use smaller diameter wire? 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Thermocouple wire behaves as a fin with constant 
heat transfer coefficient, (3) Copper block has uniform temperature, except in the vicinity of the junction.  
PROPERTIES:  Table A-1, Copper (pure, 400 K), kb = 393 W/m⋅K; Constantan (350 K), kt ≈ 25 W/m⋅K. 
 
ANALYSIS:  The thermocouple wire behaves as a long fin permitting heat to flow from the surface 
thereby depressing the sensing junction temperature below that of the block To.  In the block, heat flows 
into the circular region of the wire-block interface; the thermal resistance to heat flow within the block is 
approximated as a disk of diameter D on a semi-infinite medium (kb, To).  The thermocouple-block 
combination can be represented by a thermal circuit as shown above.  The thermal resistance of the fin 
follows from the heat rate expression for an infinite fin, Rfin = (hPktAc)-1/2. 
 
From Table 4.1, the shape factor for the disk-on-a-semi-infinite medium is given as S = 2D and hence 
Rblock = 1/kbS = 1/2kbD.  From the thermal circuit, 

 ( ) ( ) ( )block
o j o

fin block

R 1.27
T T T T 125 25 C 0.001 125 25 C 0.1 C

R R 1273 1.27∞− = − = − ≈ − =
+ +

o o o .< 

with P = πD and Ac = πD2/4 and the thermal resistances as 

 ( ) ( )
1/ 232 3

finR 10 W m K 4 25 W m K 1 10 m 1273K Wπ
−

−= ⋅ ⋅ × × =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 ( ) 3
blockR 1 2 393W m K 10 m 1.27 K W−= × ⋅ × = . 

(b)  We keyed the above equations into the IHT workspace, performed a sweep on kb for selected values 
of h and created the plot shown.  When the block thermal conductivity is low, the error (To - Tj) is larger, 
increasing with increasing convection coefficient.  A smaller diameter wire will be advantageous for low 
values of kb and higher values of h. 
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PROBLEM 4.31 
 
KNOWN:  Dimensions, shape factor, and thermal conductivity of square rod with drilled interior hole.  
Interior and exterior convection conditions. 
 
FIND:  Heat rate and surface temperatures. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state, two-dimensional conduction, (2) Constant properties, (3) Uniform 
convection coefficients at inner and outer surfaces. 
 
ANALYSIS:  The heat loss can be expressed as 
 

 ,1 ,2

conv,1 cond(2D) conv,2

T T
q

R R R
∞ ∞−

=
+ +

 

where 

 ( ) ( ) 11 2
conv,1 1 1R h D L 50 W m K 0.25m 2m 0.01273K Wπ π

−−= = ⋅ × × × =  

 

 ( ) ( )1 1
cond(2D)R Sk 8.59 m 150 W m K 0.00078K W− −= = × ⋅ =  

 

 ( ) ( ) 11 2
conv,2 2R h 4wL 4 W m K 4m 1m 0.0625K W

−−= × = ⋅ × × =  

Hence, 
 

 
( )300 25 C

q 3.62 kW
0.076 K W

−
= =

o

 < 

 1 ,1 conv,1T T qR 300 C 46 C 254 C∞= − = − =o o o  < 

 2 ,2 conv,2T T qR 25 C 226 C 251 C∞= + = + =o o o  < 
 
COMMENTS:  The largest resistance is associated with convection at the outer surface, and the 
conduction resistance is much smaller than both convection resistances.  Hence, (T2 - T∞,2) > (T∞,1 - T1) 
>> (T1 - T2). 



PROBLEM 4.32 
 
KNOWN:  Long fin of aluminum alloy with prescribed convection coefficient attached to different base 
materials (aluminum alloy or stainless steel) with and without thermal contact resistance t, jR′′  at the 

junction. 
 
FIND:  (a) Heat rate qf and junction temperature Tj for base materials of aluminum and stainless steel,  (b) 
Repeat calculations considering thermal contact resistance, t, jR′′ , and (c) Plot as a function of h for the 

range  10 ≤ h ≤ 1000 W/m2⋅K for each base material. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) Infinite fin. 
 
PROPERTIES: (Given)  Aluminum alloy, k = 240 W/m⋅K, Stainless steel, k =  15 W/m⋅K. 
 
ANALYSIS:  (a,b)  From the thermal circuits, the heat rate and junction temperature are 
 

 b b
f

tot b t, j f

T T T Tq
R R R R

∞ ∞− −
= =

+ +
 (1) 

 
 j f fT T q R∞= +  (2) 
 
and, with P = πD and Ac = πD2/4, from Tables 4.1 and 3.4 find 
 

 ( ) ( ) 1
b b b bR 1 Sk 1 2Dk 2 0.005m k −= = = × ×  

 

 ( )25 2
t, j t, j cR R A 3 10 m K / W / 0.005m / 4 1.528K / Wπ− ⎡ ⎤′′= = × ⋅ =⎢ ⎥⎣ ⎦

 
 

 ( ) ( )
1/ 21/ 2 32 2

f cR hPkA 50 W m K 0.005m 240 W m K 4 16.4 K W
−− ⎡ ⎤= = ⋅ ⋅ =⎢ ⎥⎣ ⎦

π  

 
  Without t, jR′′  With t, jR′′  

Base Rb (K/W) qf (W) Tj (°C) qf (W) Tj (°C) 
Al alloy 0.417 4.46 98.2 4.09 92.1 
St. steel 6.667 3.26 78.4 3.05 75.1 

 
(c) We used the IHT Model for Extended Surfaces, Performance Calculations, Rectangular Pin Fin to 
calculate qf for 10 ≤ h ≤ 100 W/m2⋅K by replacing tcR′′  (thermal resistance at fin base) by the sum of the 
contact and spreading resistances, t, jR′′  + bR′′ . 

Continued... 
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PROBLEM 4.32 (Cont.) 

0 20 40 60 80 100

Convection coefficient, h (W/m^2.K)

1

2

3

4

5

6

Fi
n 

he
at

 ra
te

, q
f (

W
)

Base material - aluminum alloy
Base material - stainless steel  

 
 
COMMENTS:  (1) From part (a), the aluminum alloy base material has negligible effect on the fin heat 
rate and depresses the base temperature by only 2°C.  The effect of the stainless steel base material is 
substantial, reducing the heat rate by 27% and depressing the junction temperature by 25°C. 
 
(2) The contact resistance reduces the heat rate and increases the temperature depression relatively more 
with the aluminum alloy base. 
 
(3) From the plot of qf vs. h, note that at low values of h, the heat rates are nearly the same for both 
materials since the fin is the dominant resistance.  As h increases, the effect of bR′′  becomes more 
important. 
 



PROBLEM 4.33 
 
KNOWN:  Igloo constructed in hemispheric shape sits on ice cap; igloo wall thickness and inside/outside 
convection coefficients (hi, ho) are prescribed. 
 
FIND:  (a) Inside air temperature T i∞,  when outside air temperature is T o∞,  = -40°C assuming occupants 
provide 320 W within igloo, (b) Perform parameter sensitivity analysis to determine which variables have 
significant effect on Ti.  
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Convection coefficient is the same on floor and 
ceiling of igloo, (3) Floor and ceiling are at uniform temperatures, (4) Floor-ice cap resembles disk on 
semi-infinite medium, (5) One-dimensional conduction through igloo walls. 
 
PROPERTIES:  Ice and compacted snow (given):  k = 0.15 W/m⋅K. 
 
ANALYSIS:  (a) The thermal circuit representing the heat loss from the igloo to the outside air and 
through the floor to the ice cap is shown above.  The heat loss is 

 ,i ,o ,i ic

cv,c wall cv,o cv,f cap

T T T T
q

R R R R R
∞ ∞ ∞− −

= +
+ + +

. 

Convection, ceiling: 
( ) ( )

cv,c 222
i i

2 2
R 0.00819 K W

6 W m K 4 1.8 mh 4 r ππ
= = =

⋅ ×
 

Convection, outside: 
( ) ( )

cv,o 222
o o

2 2
R 0.00201K W

15 W m K 4 2.3mh 4 r ππ
= = =

⋅ ×
 

Convection, floor: 
( ) ( )

cv,f 222
i i

1 1
R 0.01637 K W

6 W m K 1.8 mh r ππ
= = =

⋅ ×
 

Conduction, wall: wall
i o

1 1 1 1 1 1
R 2 2 m 0.1281K W

4 k r r 4 0.15 W m K 1.8 2.3π π
= − = − =

× ⋅

⎡ ⎛ ⎞⎤ ⎡ ⎤⎛ ⎞
⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠⎣ ⎦⎣ ⎝ ⎠⎦

 

Conduction, ice cap: cap
i

1 1 1
R 0.9259 K W

kS 4kr 4 0.15 W m K 1.8 m
= = = =

× ⋅ ×
 

where S was determined from the shape factor of Table 4.1.  Hence, 

 
( )

( )
( )

( )
,i ,iT 40 C T 20 C

q 320 W
0.00819 0.1281 0.00201 K W 0.01637 0.9259 K W

∞ ∞− − − −
= = +

+ + +

o o

 

 320 W = 7.231( ,iT∞  + 40) + 1.06( ,iT∞  + 20) ,iT∞  = 1.2°C. < 
 

Continued... 



 
PROBLEM 4.33 (Cont.) 

 
(b) Begin the parameter sensitivity analysis to determine important variables which have a significant 
influence on the inside air temperature by examining the thermal resistances associated with the processes 
present in the system and represented by the network. 
 

Process Symbols Value (K/W) 
Convection, outside Rcv,o R21 0.0020 
Conduction, wall Rwall R32 0.1281 
Convection, ceiling Rcv,c R43 0.0082 
Convection, floor Rcv,f R54 0.0164 
Conduction, ice cap Rcap R65 0.9259 

 
It follows that the convection resistances are negligible relative to the conduction resistance across the 
igloo wall.  As such, only changes to the wall thickness will have an appreciable effect on the inside air 
temperature relative to the outside ambient air conditions.  We don’t want to make the igloo walls thinner 
and thereby allow the air temperature to dip below freezing for the prescribed environmental conditions. 
 
Using the IHT Thermal Resistance Network Model, we used the circuit builder to construct the network 
and perform the energy balances to obtain the inside air temperature as a function of the outside 
convection coefficient for selected increased thicknesses of the wall. 

0 20 40 60 80 100

Outside coefficient, ho (W/m^2.K)

0

5

10

15

20

25

Ai
r t

em
pe

ra
tu

re
, T

in
fi 

(C
)

Wall thickness, (ro-ri) = 0.5 m
(ro-ri) = 0.75 m
(ro-ri) = 1.0 m  

 
COMMENTS:  (1) From the plot, we can see that the influence of the outside air velocity which controls 
the outside convection coefficient ho is negligible. 
 
(2) The thickness of the igloo wall is the dominant thermal resistance controlling the inside air 
temperature. 



PROBLEM 4.34 
 
KNOWN: Chip dimensions, contact resistance and substrate material. 
 
FIND: Maximum allowable chip power dissipation. 
  
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) Negligible heat 
transfer from back of chip, (4) Uniform chip temperature, (5) Infinitely large substrate, (6) 
Negligible heat loss from the exposed surface of the substrate. 
 
PROPERTIES: Table A.1, copper (25 °C): k = 400 W/m⋅K.  
 
ANALYSIS: For the prescribed system, a thermal circuit may be drawn so that 
  
  
 
 
 
 
where T1 is the temperature of the substrate adjacent to the top of the chip.  For an infinitely thin 
square object in an infinite medium we may apply Case 14 of Table 4.1 ( *

ssq = 0.932) resulting in 
 
 *

ss s 1 2 cq = q kA (T  - T )/L  
 
where Lc = 1/2 2

s s c(A /4π) ;   A  = 2W  
 
Recognizing that the bottom surfaces of the chip and substrate are insulated, the heat loss to the 
substrate may be determined by combining the preceding equations and dividing by 2 (to account 
for no heat losses from the bottom of the chip) resulting in 

 1/2 *
ss c 1 2 1 2

t,sub

1q = (2π) q W k(T  - T ) = (T  - T )
R

 

or t,sub 1/2
1R  =  = 0.067 K/W

(2π)  × 0.932 × 0.016 m × 400 W/m K⋅
 

 
The thermal contact resistance is  

 Continued… 

′′ ⋅-6 2
t,cR  = 5 × 10  m K/W

Chip (Tc = 85°C)

Copper substrate 

(T2 = 25°C; k = 400 W/m·K)

′′ ⋅-6 2
t,cR  = 5 × 10  m K/W

Chip (Tc = 85°C)

Copper substrate 

(T2 = 25°C; k = 400 W/m·K)

qc

Tc

Rt,c Rt,sub

T2

T1

qc

Tc

Rt,c Rt,sub

T2

T1

Tc

Rt,c Rt,sub

T2

T1



PROBLEM 4.34 (Cont.) 
 

-6 2
t,c

t,c 2 2
c

R 5 × 10  m K/WR  =  =  = 0.0195 K/W
W (0.016 m)

′′ ⋅  

 
Therefore, the maximum allowable heat dissipation is 
 

 c
(85 - 25)°Cq  =  = 694

(0.0195 + 0.067) K/W
W             < 

 
 
COMMENTS: (1) The copper block provides 694/276 = 2.5 times greater allowable heat 
dissipation relative to the heat sink of Problem 3.150. (2) Use of a large substrate would not be 
practical in many applications due to its size and weight. (3) The actual allowable heat dissipation 
is greater than calculated here because of additional heat losses from the bottom of the block and 
chip that are not accounted for in the solution.  
 



PROBLEM 4.35 
 
KNOWN:  Disc-shaped electronic devices dissipating 100 W mounted to aluminum alloy block with 
prescribed contact resistance. 
 
FIND:  (a) Temperature device will reach when block is at 27°C assuming all the power generated by the 
device is transferred by conduction to the block and (b) For the operating temperature found in part (a), 
the permissible operating power with a 30-pin fin heat sink. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Two-dimensional, steady-state conduction, (2) Device is at uniform temperature, 
T1, (3) Block behaves as semi-infinite medium. 
 
PROPERTIES:  Table A.1, Aluminum alloy 2024 (300 K):  k = 177 W/m⋅K. 
 
ANALYSIS:  (a) The thermal circuit for the conduction heat flow between the device and the block 
shown in the schematic where Re is the thermal contact resistance due to the epoxy-filled interface, 
 

 ( )2
e t,c c t,cR R A R D 4π′′ ′′= =  

 

 ( )( )25 2
eR 5 10 K m W 0.020m 4 0.159K Wπ−= × ⋅ =  

 
The thermal resistance between the device and the block is given in terms of the conduction shape factor, 
Table 4.1, as 
 
 ( )bR 1 Sk 1 2Dk= =  
 
 ( )bR 1 2 0.020 m 177 W m K 0.141K W= × × ⋅ =  
 
From the thermal circuit, 
 
 ( )1 2 d b eT T q R R= + +  
 
 ( )1T 27 C 100 W 0.141 0.159 K W= + +o  

 1T 27 C 30 C 57 C= + =o o o  < 
 
(b) The schematic below shows the device with the 30-pin fin heat sink with fins and base material of 
copper (k = 400 W/m⋅K).  The airstream temperature is 27°C and the convection coefficient is 1000 
W/m2⋅K. 
 

Continued... 



PROBLEM 4.35 (Cont.) 

  
The thermal circuit for this system has two paths for the device power:  to the block by conduction, qcd, 
and to the ambient air by conduction to the fin array, qcv,  

 1 2 1
d

b e e c fin

T T T Tq
R R R R R

∞− −
= +

+ + +
 (3) 

 
where the thermal resistance of the fin base material is 
 

 
( )

c
c 2 2c c

L 0.005mR 0.03979K W
k A 400 W m K 0.02 4 mπ

= = =
⋅

 (4) 

 
and Rfin represents the thermal resistance of the fin array (see Section 3.6.5), 
 

 fin t,o
o t

1R R
hAη

= =  (5, 3.108) 

 

 ( )f
o f

t

NA1 1
A

η η= − −  (6, 3.107) 

 
where the fin and prime surface area is 
 
 t f bA NA A= +  (3.99) 
 

 ( ) ( )2 2
t f d fA N D L D 4 N D 4π π π⎡ ⎤= + −⎢ ⎥⎣ ⎦

 
 
where Af is the fin surface area, Dd is the device diameter and Df is the fin diameter. 

 ( ) ( ) ( )( )2 2
tA 30 0.0015m 0.015m 0.020 m 4 30 0.0015m 4π π π⎡ ⎤= × × + −⎢ ⎥⎣ ⎦

 

 
 At = 0.00212 m2 + 0.0002611 m2 = 0.00238 m2 
 
Using the IHT Model, Extended Surfaces, Performance Calculations, Rectangular Pin Fin, find the fin 
efficiency as 
 f 0.6769=η  (7) 
 

Continued... 
 



PROBLEM 4.35 (Cont.) 
 
Substituting numerical values into Equation (6), find 
 

 ( )o 2
30 0.0015m 0.015m1 1 0.6769

0.00238m

× × ×
= − −

πη  

 
 o 0.712=η  
 
and the fin array thermal resistance is 
 

 fin 2 2
1R 0.590K W

0.712 1000 W m K 0.00238m
= =

× ⋅ ×
 

 
Returning to Eq. (3), with T1 = 57°C from part (a), the permissible heat rate is 
 

 
( )

( )
( )

( )d
57 27 C 57 27 C

q
0.141 0.159 K W 0.159 0.03979 0.590 K W

− −
= +

+ + +

o o

 

 dq 100 W 38W 138W= + =  < 
 
COMMENTS:  In calculating the fin efficiency, ηf, using the IHT Model it is not necessary to know the 
base temperature as ηf depends only upon geometric parameters, thermal conductivity and the convection 
coefficient. 



PROBLEM 4.36  
KNOWN:  Dimensions and thermal conductivities of a heater and a finned sleeve.  Convection 
conditions on the sleeve surface.  
FIND:  (a) Heat rate per unit length, (b) Generation rate and centerline temperature of heater, (c) 
Effect of fin parameters on heat rate.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady state, (2) Constant properties, (3) Negligible contact resistance between 
heater and sleeve, (4) Uniform convection coefficient at outer surfaces of sleeve, (5) Uniform heat 
generation, (6) Negligible radiation.  
ANALYSIS:  (a) From the thermal circuit, the desired heat rate is 
 

 
( )
s s

t,o totcond 2D

T T T Tq
R R R

∞ ∞− −′ = =
′ ′ ′+

 

 
The two-dimensional conduction resistance, may be estimated from Eq. (4.21) and Case 6 of Table 4.2 
 

 ( )
( ) ( )

( )
4

cond 2D
s s

ln 1.08w / D ln 2.161R 5.11 10 m K / W
S k 2 k 2 240 W / m Kπ π

−′ = = = = × ⋅
′ ⋅

 

 
The thermal resistance of the fin array is given by Equation (3.103), where ηo and At are given by 
Equations. (3.107) and (3.104) and ηf is given by Equation (3.94).  With Lc = L + t/2 = 0.022 m, m = 
(2h/kst)

1/2 = 32.3 m-1 and mLc = 0.710, 
 

 c
f

c

tanh mL 0.61 0.86
mL 0.71

η = = =  

 
 ( ) ( )t f bA NA A N 2L t 4w Nt 0.704m 0.096m 0.800m′ ′ ′= + = + + − = + =  
 

 ( ) ( )f
o f

t

NA 0.704m1 1 1 0.14 0.88
A 0.800m

η η
′

= − − = − =
′

 

 ( ) ( ) 11 2 3
t,o o tR h A 0.88 500 W / m K 0.80m 2.84 10 m K / Wη

−− −′ ′= = × ⋅ × = × ⋅  
 

 
( )

( )4 3
300 50 C

q 74,600 W / m
5.11 10 2.84 10 m K / W− −

− °
′ = =

× + × ⋅
    < 

 
 
 

Continued… 
 



PROBLEM 4.36 (Cont.) 
 

 
(b) Equation (3.60) may be used to determine q,&  if h is replaced by an overall coefficient based on the 
surface area of the heater.  From Equation (3.37), 

 ( ) ( ) 11 3
s s s totU A U D R 3.35 10 m K / W 298W / m K

−− −′ ′= = = × ⋅ = ⋅π  
 
 ( ) 2

sU 298 W / m K / 0.02m 4750 W / m Kπ= ⋅ × = ⋅  
 

 ( ) ( )( )2 8 3
s sq 4 U T T / D 4 4750 W / m K 250 C / 0.02m 2.38 10 W / m∞= − = ⋅ ° = ×&  < 

 
From Equation (3.58) the centerline temperature is 
 

 ( ) ( ) ( )
( )

2 28 3
s

h

q D / 2 2.38 10 W / m 0.01m
T 0 T 300 C 315 C

4k 4 400 W / m K
×

= + = + ° = °
⋅

&
  < 

 
(c) Subject to the prescribed constraints, the following results have been obtained for parameter 
variations corresponding to 16 ≤ N ≤ 40, 2 ≤ t ≤ 8 mm and 20 ≤ L ≤ 40 mm. 
 

 N  t(mm)  L(mm)   fη   ( )q W / m′  
 

16    4   20  0.86    74,400 
16    8   20  0.91    77,000 
28    4   20  0.86  107,900 
32    3   20  0.83  115,200 
40    2   20  0.78  127,800 
40    2   40  0.51  151,300 

 
Clearly there is little benefit to simply increasing t, since there is no change in tA′  and only a marginal 
increase in f .η   However, due to an attendant increase in tA ,′  there is significant benefit to increasing 
N for fixed t (no change in fη ) and additional benefit in concurrently increasing N while decreasing t.  
In this case the effect of increasing tA′  exceeds that of decreasing f .η   The same is true for increasing 
L, although there is an upper limit at which diminishing returns would be reached.  The upper limit to 
L could also be influenced by manufacturing constraints. 
  
COMMENTS:  Without the sleeve, the heat rate would be ( )sq Dh T T 7850 W / m,π ∞′ = − =  
which is well below that achieved by using the increased surface area afforded by the sleeve. 
 



PROBLEM 4.37  
KNOWN:  Dimensions of chip array.  Conductivity of substrate.  Convection conditions.  Contact 
resistance.  Expression for resistance of spreader plate.  Maximum chip temperature.  
FIND:  Maximum chip heat rate.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state, (2) Constant thermal conductivity, (3) Negligible radiation, (4) 
All heat transfer is by convection from the chip and the substrate surface (negligible heat transfer from 
bottom or sides of substrate).  
ANALYSIS:  From the thermal circuit, 
 

 
( )

h h
h sp

h,cnv t,c sp,cnvt sp

T T T Tq q q
R R R R

∞ ∞− −
= + = +

+ +
 

 

 ( ) ( ) ( )
111 22 2

h,cnv s,h hR h A hL 100 W / m K 0.005m 400 K / W
−−− ⎡ ⎤= = = ⋅ =⎢ ⎥⎣ ⎦

 
 

( ) ( )( )

3 5 7
r r r r

t sp
sub h

1 1.410 A 0.344 A 0.043A 0.034 A 1 0.353 0.005 0 0
R 0.408 K / W

4 k L 4 80 W / m K 0.005m
− + + + − + + +

= = =
⋅

 

 

 
( )

4 2t,c
t,c 2 2

h

R 0.5 10 m K / WR 2.000 K / W
L 0.005m

−′′ × ⋅
= = =  

 
 

( ) ( ) 11 2 2 2
sp,cnv sub s,hR h A A 100 W / m K (0.010m) (0.005m) 133.3K / W

−−
= − = ⋅ − =⎡ ⎤⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦

 
 

 
( )

70 C 70 Cq 0.18 W 0.52 W 0.70 W
400 K / W 0.408 2 133.3 K / W

° °
= + = + =

+ +
  < 

 
COMMENTS:  (1) The thermal resistances of the substrate and the chip/substrate interface are much 
less than the substrate convection resistance.  Hence, the heat rate is increased almost in proportion to 
the additional surface area afforded by the substrate.  An increase in the spacing between chips (Sh) 
would increase q correspondingly. 
 
(2) In the limit ( )r t spA 0, R→  reduces to 1/ 2

sub h2 k Dπ  for a circular heat source and sub h4k L  

for a square source. 
 



PROBLEM 4.38  
KNOWN:  Internal corner of a two-dimensional system with prescribed convection boundary 
conditions.  
FIND:  Finite-difference equations for these situations:  (a) Horizontal boundary is perfectly insulated 

and vertical boundary is subjected to a convection process (T∞,h), (b) Both boundaries are perfectly 
insulated; compare result with Eq. 4.41.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Two-dimensional conduction, (3) Constant 
properties, (4) No internal generation.  
ANALYSIS:  Consider the nodal network shown above and also as Case 2, Table 4.2.  Having 
defined the control volume – the shaded area of unit thickness normal to the page – next identify the 
heat transfer processes.  Finally, perform an energy balance wherein the processes are expressed using 
appropriate rate equations.  
(a) With the horizontal boundary insulated and the vertical boundary subjected to a convection 
process, the energy balance results in the following finite-difference equation:  
 in out 1 2 3 4 5 6E E 0          q q q q q q 0− = + + + + + =& &  
 

 ( ) ( )m-1,n m,n m,n-1 m,n
m,n

T T T Tx yk y 1 k 1 h 1 T T
x 2 y 2 ∞
− −Δ Δ⎡ ⎤ ⎡ ⎤Δ ⋅ + ⋅ + ⋅ −⎢ ⎥ ⎢ ⎥Δ Δ⎣ ⎦ ⎣ ⎦

 
 

 ( )m+1,n m,n m,n+1 m,nT T T Ty       0 k 1 k x 1 0.
2 x y

− −Δ⎡ ⎤+ + ⋅ + Δ ⋅ =⎢ ⎥ Δ Δ⎣ ⎦
 

 
Letting Δx = Δy, and regrouping, find  

 ( ) ( )m-1,n m,n+1 m+1,n m,n-1 m,n
h x h x2 T T T T T 6 T 0.

k k∞
Δ Δ⎡ ⎤+ + + + − + =⎢ ⎥⎣ ⎦

  < 
 
(b) With both boundaries insulated, the energy balance would have q3 = q4 = 0.  The same result 
would be obtained by letting h = 0 in the previous result.  Hence,  
 ( ) ( )m-1,n m,n+1 m+1,n m,n-1 m,n2 T T T T 6 T 0.+ + + − =     < 
 
Note that this expression compares exactly with Equation 4.41 when h = 0, which corresponds to 
insulated boundaries. 



PROBLEM 4.39  
KNOWN:  Plane surface of two-dimensional system.  
FIND:  The finite-difference equation for nodal point on this boundary when (a) insulated; compare 
result with Eq. 4.42, and when (b) subjected to a constant heat flux.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Two-dimensional, steady-state conduction with no generation, (2) Constant 
properties, (3) Boundary is adiabatic.  
ANALYSIS:  (a) Performing an energy balance on the control volume, (Δx/2)⋅Δy, and using the 
conduction rate equation, it follows that  
 in out 1 2 3E E 0          q q q 0− = + + =& &              (1,2) 
 

( ) m-1,n m,n m,n-1 m,n m,n+1 m,nT T T T T Tx xk y 1 k 1 k 1 0.
x 2 y 2 y
− − −Δ Δ⎡ ⎤ ⎡ ⎤Δ ⋅ + ⋅ + ⋅ =⎢ ⎥ ⎢ ⎥Δ Δ Δ⎣ ⎦ ⎣ ⎦

 (3) 
 
Note that there is no heat rate across the control volume surface at the insulated boundary.  
Recognizing that Δx =Δy, the above expression reduces to the form  
 m-1,n m,n-1 m,n+1 m,n2T T T 4T 0.+ + − =            (4) < 
 
The Eq. 4.42 of Table 4.2 considers the same configuration but with the boundary subjected to a 
convection process.  That is,  

 ( )m-1,n m,n-1 m,n+1 m,n
2h x h x2T T T T 2 2 T 0.

k k∞
Δ Δ⎡ ⎤+ + + − + =⎢ ⎥⎣ ⎦

   (5) 
 
Note that, if the boundary is insulated, h = 0 and Eq. 4.42 reduces to Eq. (4).  
(b) If the surface is exposed to a constant heat flux, oq ,′′  the energy balance has the form 

1 2 3 oq q q q y 0′′+ + + ⋅Δ =  and the finite difference equation becomes 
 

 o
m-1,n m,n-1 m,n+1 m,n

2q x2T T T 4T .
k
′′ Δ

+ + − = −      < 
 
COMMENTS:  Equation (4) can be obtained by using the “interior node” finite-difference equation, 
Eq. 4.29, where the insulated boundary is treated as a symmetry plane as shown below.  

 



PROBLEM 4.40  
KNOWN:  External corner of a two-dimensional system whose boundaries are subjected to prescribed 
conditions.  
FIND:  Finite-difference equations for these situations:  (a) Upper boundary is perfectly insulated and 
side boundary is subjected to a convection process, (b) Both boundaries are perfectly insulated; 
compare result with Eq. 4.43.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Two-dimensional conduction, (3) Constant 
properties, (4) No internal generation.  
ANALYSIS:  Consider the nodal point configuration shown in the schematic and also as Case 4, 
Table 4.2.  The control volume about the node – shaded area above of unit thickness normal to the 
page – has dimensions, (Δx/2)(Δy/2)⋅1.  The heat transfer processes at the surface of the CV are 
identified as q1, q2 ⋅⋅⋅.  Perform an energy balance wherein the processes are expressed using the 
appropriate rate equations.  
(a) With the upper boundary insulated and the side boundary subjected to a convection process, the 
energy balance has the form  
 in out 1 2 3 4E E 0          q q q q 0− = + + + =& &             (1,2) 
 

( )m-1,n m,n m,n-1 m,n
m,n

T T T Ty x yk 1 k 1 h 1 T T 0 0.
2 x 2 y 2 ∞

− −Δ Δ Δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⋅ + ⋅ + ⋅ − + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

 
Letting Δx = Δy, and regrouping, find  

 m,n-1 m-1,n m,n
h x 1 h xT T T 2 1 T 0.

k 2 k∞
Δ Δ⎡ ⎤+ + − + =⎢ ⎥⎣ ⎦

         (3) < 
 
(b) With both boundaries insulated, the energy balance of Eq. (2) would have q3 = q4 = 0.  The same 
result would be obtained by letting h = 0 in the finite-difference equation, Eq. (3).  The result is  
 m,n-1 m-1,n m,nT T 2T 0.+ − =         < 
 
Note that this expression is identical to Eq. 4.43 when h = 0, in which case both boundaries are 
insulated.  
COMMENTS:  Note the convenience resulting from formulating the energy balance by assuming that 
all the heat flow is into the node. 



PROBLEM 4.41  
KNOWN:  Boundary conditions that change from specified heat flux to convection. 
  
FIND:  The finite difference equation for the node at the point where the boundary condition changes.   
SCHEMATIC:   
 
 

 
 

 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Two dimensional, steady-state conduction with no generation, (2) Constant 
properties. 
 
ANALYSIS:  Performing an energy balance on the control volume ∆x • ∆y/2,  

in outE - E = 0& &    q1 + q2 + q3 + q4 + q5 = 0 
 
Expressing q1 in terms of the specified heat flux, q2 in terms of the known heat transfer coefficient and 
environment temperature, and the remaining heat rates using the conduction rate equation, 
 

 1 s
Δxq  = q 1
2

′′ ⋅  

 

 2 m,n
Δxq  = h(T  - T ) 1
2∞ ⋅  

 

 m - 1,n m,n
3

k(T - T ) Δyq  = 1
Δx 2

⋅   

 

 m + 1,n m,n
4

k(T - T ) Δyq  = 1
Δx 2

⋅  

 

 m ,n - 1 m,n
5

k(T - T )
q  = Δx 1

Δy
⋅  

 
Letting ∆x = ∆y, substituting these expressions into the energy balance, and rearranging yields 
 

 s
m - 1,n m + 1,n m,n - 1 m,n

q ΔxhΔx hΔxT + T + 2T  - 4 + T  + T  +  = 0
k k k∞

′′⎡ ⎤
⎢ ⎥⎣ ⎦

     < 

m,n m +1,nm -1,n

∆y

q1 q2

q4

q5

q3

h, T∞

∆x

∆y/2

∆x
m, n-1

sq′′
m,n m +1,nm -1,n

∆y

q1 q2

q4

q5

q3

h, T∞

∆x

∆y/2

∆x
m, n-1

m,n m +1,nm -1,n

∆y

q1 q2

q4

q5

q3

h, T∞

∆x

∆y/2

∆x
m, n-1

sq′′



PROBLEM 4.42 
 
KNOWN:  Control volume and nodal configuration in the vicinity of the interface between two 
materials. 
 
FIND:  Expressions for control surface heat rates. Finite difference equation at node m,n. 
 
SCHEMATIC:  
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  Steady-state, two-dimensional heat transfer, no heat generation, negligible contact 
resistance. 
 
ANALYSIS: Conduction from Node (m,n+1) to Node (m,n) occurs exclusively in Material A. 
Therefore,  

  ( , 1) ( , ) A , 1 ,m n m n m n m n
xq k L T T
y+ → +

Δ ⎡ ⎤= −⎣ ⎦Δ
      < 

 
Likewise for conduction from Node (m,n-1) to Node (m,n), 

  ( , 1) ( , ) B , 1 ,m n m n m n m n
xq k L T T
y− → −

Δ ⎡ ⎤= −⎣ ⎦Δ
      < 

 
Conduction from Node (m-1,n) to Node (m,n) occurs in both Material A and Material B. In Material 
A,  

  A( 1, ) ( , ) A 1, ,
/ 2

m n m n m n m n
yq k L T T
x− → −

Δ ⎡ ⎤= −⎣ ⎦Δ
 

Likewise for conduction in Material B, 

  B( 1, ) ( , ) B 1, ,
/ 2

m n m n m n m n
yq k L T T
x− → −

Δ ⎡ ⎤= −⎣ ⎦Δ
 

For both materials, 
 

( 1, ) ( , ) A( 1, ) ( , ) B( 1, ) ( , )

A 1, , B 1, ,
/ 2 / 2                     

m n m n m n m n m n m n

m n m n m n m n

q q q

y yk L T T k L T T
x x

− → − → − →

− −

= +

Δ Δ⎡ ⎤ ⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦Δ Δ

 

( )A B 1, ,
/ 2                      = m n m n

yk k L T T
x −

Δ ⎡ ⎤+ −⎣ ⎦Δ
      < 

 
Similarly for conduction from Node (m+1,n) to (m,n), 
 

( 1, ) ( , )m n m nq + → = ( )A B 1, ,
/ 2 m n m n

yk k L T T
x +

Δ ⎡ ⎤+ −⎣ ⎦Δ
      < 

Continued... 
 

Material A
kA

Material B
kB

Δx

ΔyΔy

(m,n-1)

(m+1,n)

(m-1,n)

(m,n+1)

(m,n)••

•

•

•

q(m+1,n)→(m,n)

q(m,n-1)→(m,n)

q(m-1,n)→(m,n)

q(m,n+1)→(m,n)



PROBLEM 4.42 (Cont.) 
 

 
An energy balance on node m,n yields 
 
 ( 1, ) ( , ) ( 1, ) ( , ) ( , 1) ( , ) ( , 1) ( , ) 0m n m n m n m n m n m n m n m nq q q q− → + → − → + →+ + + =  
 
or 
 

 A , 1 , B , 1 , A B 1, 1, ,
/ 2( ) 2 0m n m n m n m n m n m n m n

x x yk T T k T T k k T T T
y y x+ − − +

Δ Δ Δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− + − + + + − =⎣ ⎦ ⎣ ⎦ ⎣ ⎦Δ Δ Δ
 < 

 
 
 
 
COMMENTS:  How would you modify the analysis if the contact resistance is significant? 



PROBLEM 4.43  
KNOWN:  Conduction in a one-dimensional (radial) cylindrical coordinate system with volumetric 
generation.  
FIND:  Finite-difference equation for (a) Interior node, m, and (b) Surface node, n, with convection.  
SCHEMATIC:   

  
 (a) Interior node, m   (b) Surface node with convection, n 

ASSUMPTIONS:  (1) Steady-state, one-dimensional (radial) conduction in cylindrical coordinates, 
(2) Constant properties. 
ANALYSIS:  (a) The network has nodes spaced at equal Δr increments with m = 0 at the center; 
hence, r = mΔr (or nΔr).  The control volume is ( )V 2  r r 2 m r r .π π= ⋅Δ ⋅ = Δ Δ ⋅l l   The energy 

balance is in g a bE E q q qV 0+ = + + =& & &  

 ( )m-1 m m+1 mr T T r T Tk 2 r k 2 r+ q 2 m r r 0.
2 r 2 r

π π π⎡ ⎤ ⎡ ⎤Δ − Δ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤− + + Δ Δ =⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥Δ Δ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
&l l l  

Recognizing that r = mΔr, canceling like terms, and regrouping find 

 
2

m-1 m+1 m
1 1 qm rm T m+ T 2mT 0.
2 2 k

Δ⎡ ⎤ ⎡ ⎤− + − + =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

&
    < 

(b) The control volume for the surface node is ( )V 2  r r/2 .π= ⋅ Δ ⋅l   The energy balance is 

in g d convE E q q qV=0.+ = + +& & &   Use Fourier’s law to express qd and Newton’s law of cooling for 

qconv to obtain 

 [ ]( ) ( )n-1 n
n

r T T rk 2 r h 2  r T T q 2 n r 0.
2 r 2

π π π∞
⎡ ⎤Δ − Δ⎡ ⎤ ⎡ ⎤− + − + Δ =⎢ ⎥⎢ ⎥ ⎢ ⎥Δ⎣ ⎦ ⎣ ⎦⎣ ⎦

&l l l  

Let r = nΔr, cancel like terms and regroup to find 

 
2

n-1 n
1 1 hn r qn r hn rn T n T T 0.
2 2 k 2k k ∞

⎡ ⎤Δ Δ Δ⎡ ⎤ ⎡ ⎤− − − + + + =⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

&
    < 

COMMENTS:  (1) Note that when m or n becomes very large compared to ½, the finite-difference 
equation becomes independent of m or n.  Then the cylindrical system approximates a rectangular one.  
(2) The finite-difference equation for the center node (m = 0) needs to be treated as a special case.  The 
control volume is 

( )2V r / 2π= Δ l  and the energy balance is    
2

1 0
in g a

T Tr r
E E q qV k 2 q 0.

2 r 2
π π

−Δ Δ
+ = + = + =

Δ

⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦
& & & &l l  

Regrouping, the finite-difference equation is 
2

o 1
q r

T T 0.
4k

Δ
− + + =

&
 



PROBLEM 4.44  
KNOWN:  Two-dimensional cylindrical configuration with prescribed radial (Δr) and angular (Δφ) 
spacings of nodes.  
FIND:  Finite-difference equations for nodes 2, 3 and 1.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Two-dimensional conduction in cylindrical 
coordinates (r,φ), (3) Constant properties.  
ANALYSIS:  The method of solution is to define the appropriate control volume for each node, to 
identify relevant processes and then to perform an energy balance.  
(a) Node 2.  This is an interior node with control volume as shown above.  The energy balance is 

in a b c dE q q q q 0.′ ′ ′ ′= + + + =&   Using Fourier’s law for each process, find 
 

 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

5 2 3 2
i

i
i 2 1 2

i
i

T T T T3k r r k r
2 r r r

T T T T1         k r r k r 0.
2 r r r

φ
φ

φ
φ

− −⎡ ⎤⎡ ⎤+ Δ Δ + Δ +⎢ ⎥⎢ ⎥ Δ + Δ Δ⎣ ⎦⎣ ⎦
− −⎡ ⎤⎡ ⎤+ + Δ Δ + Δ =⎢ ⎥⎢ ⎥ Δ + Δ Δ⎣ ⎦⎣ ⎦

 

 
Canceling terms and regrouping yields,  

( ) ( )
( ) ( )

( )
( )( )

( )
2 2

i 2 i 5 3 1 i i2 2i i

r r1 3 1
2 r r T r r T T T r r T 0.

r r 2 2r rφ φ

Δ Δ
− + Δ + + + Δ + + + + Δ =

+ ΔΔ + Δ Δ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
 

 
(b) Node 3.  The adiabatic surface behaves as a symmetry surface.  We can utilize the result of Part (a) 
to write the finite-difference equation by inspection as  

( ) ( )
( ) ( )

( )
( )( )

2 2

i 3 i 6 2 i i2 2i i

r 2 r1 3 1
2 r r T r r T T r r T 0.

r r 2 2r rφ φ

Δ Δ
− + Δ + + + Δ + ⋅ + + Δ =

+ ΔΔ + Δ Δ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
 

 
(c) Node 1.  The energy balance is a b c dq q q q 0.′ ′ ′ ′+ + + =   Substituting, 
 

 
( ) ( ) ( )

( )
4 1 2 1

i
i

T T T T3k r r k r
2 2 r r r

         

φ
φ

− −⎡ ⎤Δ⎡ ⎤+ Δ + Δ +⎢ ⎥⎢ ⎥ Δ + Δ Δ⎣ ⎦⎣ ⎦  

 

  ( ) ( )( )i 1
i 1

T T1k r r h r T T 0
2 2 r

φ
∞

−⎡ ⎤Δ⎡ ⎤+ + Δ + Δ − =⎢ ⎥⎢ ⎥ Δ⎣ ⎦⎣ ⎦
    < 

 
This expression could now be rearranged. 



PROBLEM 4.45  
KNOWN:  Heat generation and thermal boundary conditions of bus bar.  Finite-difference grid.  
FIND:  Finite-difference equations for selected nodes.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Two-dimensional conduction, (3) Constant 
properties.  
ANALYSIS:  (a) Performing an energy balance on the control volume, (Δx/2)(Δy/2)⋅1, find the FDE 
for node 1,  

 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

( ) ( )

o 1
u 1 2 1

t,c

6 1

t,c o u 2 6

k y/2 1T T xh 1 T T T T
R / y/2 1 2 x

k x/2 1
       T T q x/2 y/2 1 0

y
x/kR T h x/k T T T

∞

∞

Δ ⋅− Δ⎛ ⎞+ ⋅ − + −⎜ ⎟′′ Δ Δ⎝ ⎠
Δ ⋅

⎡ ⎤+ − + Δ Δ =⎣ ⎦Δ
′′Δ + Δ + +

&  

 
 ( ) ( ) ( )2

t,c u 1     q x / 2k x/kR h x/k 2 T 0.⎡ ⎤′′+ Δ − Δ + Δ + =⎣ ⎦&     < 
 
(b) Performing an energy balance on the control volume, (Δx)(Δy/2)⋅1, find the FDE for node 13,  

 ( )( ) ( )( )( )
( )( )( ) ( )( )( ) ( )

l 13 12 13
8 13 14 13

h x 1 T T k/ x y/2 1 T T
     k/ y x 1 T T k/ x y/2 1 T T q x y/2 1 0

∞Δ ⋅ − + Δ Δ ⋅ −
+ Δ Δ ⋅ − + Δ Δ ⋅ − + Δ ⋅Δ ⋅ =&

 
 
 ( ) ( ) ( ) ( )2

l 12 8 14 l 13h x/k T 1/ 2 T 2T T q x / 2k h x/k 2 T 0.∞Δ + + + + Δ − Δ + =&   < 
 
COMMENTS:  For fixed To and T∞, the relative amounts of heat transfer to the air and heat sink are 
determined by the values of h and t,cR .′′  



PROBLEM 4.46  
KNOWN:  Nodal point configurations corresponding to a diagonal surface boundary subjected to a 
convection process and to the tip of a machine tool subjected to constant heat flux and convection 
cooling.  
FIND:  Finite-difference equations for the node m,n in the two situations shown.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state, 2-D conduction, (2) Constant properties.  
ANALYSIS:  (a) The control volume about node m,n has triangular shape with sides Δx and Δy while 
the diagonal (surface) length is 2  Δx.  The heat rates associated with the control volume are due to 
conduction, q1 and q2, and to convection, qc.  Performing an energy balance, find 
 

( ) ( ) ( )( )
in out 1 2 c

m,n-1 m,n m+1,n m,n
m,n

E E 0          q q q 0
T T T T

k x 1 k y 1 h 2  x 1 T T 0.
y x ∞

− = + + =
− −

Δ ⋅ + Δ ⋅ + Δ ⋅ − =
Δ Δ

& &

 

 
Note that we have considered the solid to have unit depth normal to the page.  Recognizing that Δx = 
Δy, dividing each term by k and regrouping, find  

 m,n-1 m+1,n m,n
h x h xT T 2 T 2 2  T 0.

k k∞
Δ Δ⎡ ⎤+ + ⋅ − + ⋅ =⎢ ⎥⎣ ⎦

   < 
 
(b) The control volume about node m,n has triangular shape with sides Δx/2 and Δy/2 while the lower 
diagonal surface length is ( )2 x/2 .Δ   The heat rates associated with the control volume are due to 

the constant heat flux, qa, to conduction, qb, and to the convection process, qc.  Perform an energy 
balance,  

 ( )
in out a b c

m+1,n m,n
o m,n

E E 0          q q q 0
T Tx y xq 1 k 1 h 2 T T 0.

2 2 x 2 ∞

− = + + =
−Δ Δ Δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤′′ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

& &

 

 
Recognizing that Δx = Δy, dividing each term by k/2 and regrouping, find  

m+1,n o m,n
h x x h xT 2 T q 1 2 T 0.

k k k∞
Δ Δ Δ⎛ ⎞′′+ ⋅ ⋅ + ⋅ − + ⋅ =⎜ ⎟

⎝ ⎠
    < 

 
COMMENTS:  Note the appearance of the term hΔx/k in both results, which is a dimensionless 
parameter (the Biot number) characterizing the relative effects of convection and conduction. 



PROBLEM 4.47  
KNOWN:  Nodal point on boundary between two materials.  
FIND:  Finite-difference equation for steady-state conditions.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Two-dimensional conduction, (3) Constant 
properties, (4) No internal heat generation, (5) Negligible thermal contact resistance at interface.  
ANALYSIS:  The control volume is defined about nodal point 0 as shown above.  The conservation 
of energy requirement has the form  

 
6

i 1 2 3 4 5 6
i 1

 q q q q q q q 0
=

= + + + + + =∑  

 
since all heat rates are shown as into the CV.  Each heat rate can be written using Fourier’s law,  

 
1 0 2 0 3 0

A A A

3 0 4 0 1 0
B B B

T T T T T Ty yk k x k
2 x y 2 x

T T T T T Ty y     k k x k 0.
2 x y 2 x

− − −Δ Δ
⋅ ⋅ + ⋅Δ ⋅ + ⋅ ⋅

Δ Δ Δ
− − −Δ Δ

+ ⋅ ⋅ + ⋅Δ ⋅ + ⋅ ⋅ =
Δ Δ Δ

 

 
Recognizing that Δx = Δy and regrouping gives the relation,  
 

( ) ( )
A B

0 1 2 3 4
A B A B

k k1 1T T T T T 0.
4 2 k k 4 2 k k

− + + + + =
+ +

    < 

 
COMMENTS:  Note that when kA = kB, the result agrees with Equation 4.29 which is appropriate for 
an interior node in a medium of fixed thermal conductivity. 



PROBLEM 4.48  
KNOWN:  Two-dimensional grid for a system with no internal volumetric generation.  
FIND:  Expression for heat rate per unit length normal to page crossing the isothermal 
boundary.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Two-dimensional heat transfer, (3) 
Constant properties.  
ANALYSIS:  Identify the surface nodes (Ts) and draw control volumes about these nodes.  
Since there is no heat transfer in the direction parallel to the isothermal surfaces, the heat rate 
out of the constant temperature surface boundary is  
 a b c d e fq q q q q q q′ ′ ′ ′ ′ ′ ′= + + + + +  
 
For each iq ,′  use Fourier’s law and pay particular attention to the manner in which the cross-
sectional area and gradients are specified.  

 
( ) ( ) ( )

( ) ( ) ( )

1 s 2 s 3 s

5 s 6 s 7 s

T T T T T Tq k y/2 k y k y
x x x

T T T T T T     k x k x k x/2
y y y

− − −′ = Δ + Δ + Δ
Δ Δ Δ
− − −

+ Δ + Δ + Δ
Δ Δ Δ

 

 
Regrouping with Δx = Δy, find  
 [ ]1 2 3 5 6 7 sq k 0.5T T T T T 0.5T 5T .′ = + + + + + −      < 
 
COMMENTS:  Looking at the corner node, it is important to recognize the areas associated 
with c dq  and q′ ′  (Δy and Δx, respectively). 



PROBLEM 4.49  
KNOWN:  One-dimensional fin of uniform cross section insulated at one end with prescribed base 
temperature, convection process on surface, and thermal conductivity.  
FIND:  Finite-difference equation for these nodes:  (a) Interior node, m and (b) Node at end of fin, n, 
where x = L.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction.  
ANALYSIS:  (a) The control volume about node m is shown in the schematic; the node spacing and 
control volume length in the x direction are both Δx.  The uniform cross-sectional area and fin 
perimeter are Ac and P, respectively.  The heat transfer process on the control surfaces, q1 and q2, 

represent conduction while qc is the convection heat transfer rate between the fin and ambient fluid.  
Performing an energy balance, find  

( )
in out 1 2 c

m-1 m m+1 m
c c m

E E 0          q q q 0
T T T TkA kA hP x T T 0.

x x ∞

− = + + =
− −

+ + Δ − =
Δ Δ

& &

 

 
Multiply the expression by Δx/kAc and regroup to obtain  

 2 2
m-1 m+1 m

c c

hP hPT T x T 2 x T 0          1<m<n
kA kA∞

⎡ ⎤
+ + ⋅Δ − + Δ =⎢ ⎥

⎣ ⎦
  < 

 
Considering now the special node m = 1, then the m-1 node is Tb, the base temperature.  The finite-
difference equation would be  

 2 2
b 2 1

c c

hP hPT T x T 2 x T 0          m=1
kA kA∞

⎡ ⎤
+ + Δ − + Δ =⎢ ⎥

⎣ ⎦
    < 

 
(b) The control volume of length Δx/2 about node n is shown in the schematic.  Performing an energy 
balance, 

 ( )
in out 3 4 c

n-1 n
c n

E E 0          q q q 0
T T xkA 0 hP T T 0.

x 2 ∞

− = + + =
− Δ

+ + − =
Δ

& &

 

Note that q4 = 0 since the end (x = L) is insulated.  Multiplying by Δx/kAc and regrouping, 

 
2 2

n-1 n
c c

hP x hP xT T 1 T 0.
kA 2 kA 2∞

⎡ ⎤Δ Δ
+ ⋅ − ⋅ + =⎢ ⎥

⎢ ⎥⎣ ⎦
     < 

 
COMMENTS:  The value of Δx will be determined by the selection of n; that is, Δx = L/n.  Note that 
the grouping, hP/kAc, appears in the finite-difference and differential forms of the energy balance. 



PROBLEM 4.50  
KNOWN:  Two-dimensional network with prescribed nodal temperatures and thermal conductivity of 
the material.  
FIND:  Heat rate per unit length normal to page, q .′  
 
SCHEMATIC:   
 

 Node  Ti(°C) 
    1  120.55 
    2  120.64 
    3  121.29 
    4  123.89 

5 134.57 
6 150.49 
7 147.14 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Two-dimensional heat transfer, (3) No internal 
volumetric generation, (4) Constant properties.  
ANALYSIS:  Construct control volumes around the nodes on the surface maintained at the uniform 
temperature Ts and indicate the heat rates.  The heat rate per unit length is a b c d eq q q q q q′ ′ ′ ′ ′ ′= + + + +  
or in terms of conduction terms between nodes,  
 1 2 3 4 5 7q q q q q q q .′ ′ ′ ′ ′ ′ ′= + + + + +  
 
Each of these rates can be written in terms of nodal temperatures and control volume dimensions using 
Fourier’s law,  

 
1 s 2 s 3 s 4 s

5 s 7 s

T T T T T T T Txq k k x k x k x
2 y y y y

T T T Ty     k x k .
y 2 x

− − − −Δ′ = ⋅ ⋅ + ⋅Δ ⋅ + ⋅Δ + ⋅Δ
Δ Δ Δ Δ
− −Δ

+ ⋅Δ + ⋅ ⋅
Δ Δ

 

 
and since Δx =Δy,  

 ( )( ) ( ) ( )
( ) ( ) ( )( )

1 s 2 s 3 s
4 s 5 s 7 s

q k[ 1/2 T T T T T T
     T T T T 1/ 2 T T ].
′ = − + − + −
+ − + − + −  

 
Substituting numerical values, find  

 ( )( ) ( ) ( )
( ) ( ) ( )( )

q 50 W/m K[ 1/2 120.55 100 120.64 100 121.29 100
     123.89 100 134.57 100 1/ 2 147.14 100 ]
′ = ⋅ − + − + −
+ − + − + −  

 
 q 6711 W/m.′ =          < 
 
COMMENTS:  For nodes a through d, there is no heat transfer into the control volumes in the x-
direction.  Look carefully at the energy balance for node e, e 5 7q q q ,′ ′ ′= +  and how 5 7q  and q′ ′  are 
evaluated. 



PROBLEM 4.51 
 
KNOWN:  Dimensions of mockup, absorbed irradiation in 100 mm × 100 mm area, thermal 
conductivity and emissivity of plywood and stainless steel, temperature of water, ambient air, and 
surroundings. Convection heat transfer coefficient. 
 
FIND:  (a) Maximum steady-state temperature for plywood at locations A and B, (c) Maximum 
steady-state temperature for stainless steel at locations A and B. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Two-dimensional heat 
transfer, (4) Uniform irradiation, (5) Large surroundings, (6) Submerged section of mockup at water 
temperature, (7) Negligible temperature gradients through thickness of mockup. 
 
ANALYSIS:   We apply Newton’s law of cooling, Fourier’s law and Eq. 1.7 to a general control 
volume within the mockup and apply the following general finite-difference formula. Note that 
radiation and convective losses occur from both the front and back surfaces of the mockup through an 
area of 2dxdy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Continued… 
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PROBLEM 4.51 (Cont.) 
 
 

1, , , 1 , 1, , , 1 ,

4 4
, , ,

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) (2 )( ) (2 )( ) 0

m n m n m n m n m n m n m n m n

s N m n sur m n

k T T k T T k T T k T T
tdy tdx tdy tdx

dx dy dx dy

G dx dy h dx dy T T dx dy T Tεσ

− + + −

∞

− − − −
+ + +

+ ⋅ + ⋅ − + ⋅ − =

 

 
 
Likewise, for the control volume at the tip of the bow, 
 
 
 

 
 

 
 
 
 
 
 
 

1, , 4 4
, , ,

( )
( / 2) ( /8) ( / 4)( ) ( / 4)( ) 0m n m n

s N m n sur m n
k T T

tdy G dx dy h dx dy T T dx dy T T
dx

εσ+
∞

−
+ ⋅ + ⋅ − + ⋅ − =  

 
Additional finite difference energy balances are included in the IHT code available in Comment (1). 
The node numbers are keyed to the schematic. 
 
(a) For plywood with k = 0.8 W/m⋅K and ε = 0.9, the steady-state temperature at location A is T22 = 
613.6°C. For irradiation at location B, the steady-state temperature is T10 = 613.6°C. Therefore, it does 
not matter where the irradiation is directed. The temperatures are very high and combustion is likely to 
occur.            < 
 
(b) For stainless steel with k = 15 W/m⋅K and ε = 0.2, the steady-state temperature at location A is T22 
= 804.7°C. For irradiation at location B, the steady-state temperature is T10 = 767.3°C. Therefore, it is 
preferable to direct the beam to the tip of the bow of the ship (location A).   < 
 
 
COMMENTS: (1) The IHT code is shown below. Note that this version of the code is associated with 
irradiation at location A for stainless steel. Appropriate modification of the thermal conductivity and 
emissivity, as well as revision of the energy balances at Nodes 22 and 10 are necessary to simulate the 
thermal response of stainless steel or irradiation at location B, respectively. 
 

dx = 0.1  //m 
dy = 0.1  //m 
t = 10/1000  //m 
k = 0.8   //W/mK 
GsN = 700*100  //W/m^2 
eps = 0.2 
sigma = 5.67e-8  //Stefan-Boltzmann constant, W/m^2K^4 
h = 5   //W/m^2K 
Twater = 20 + 273 //K 
Tinf = 25 + 273  //K 
Tsur = 23 + 273  //K 
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PROBLEM 4.51 (Cont.) 
 

 
//Nodes 1 through 6 
T1 = Twater 
T2 = Twater 
T3 = Twater 
T4 = Twater 
T5 = Twater 
T6 = Twater 
 
//Node 7 
k*t*dx*(T15 - T7)/dy + k*t*dy*(T8 - T7)/dx + 2*h*(dx*dy/2)*(Tinf - T7) + 2*eps*sigma*(dx*dy/2)*(Tsur^4 
- T7^4) = 0 
 
//Node 8 
k*t*dy*(T7 - T8)/dx + k*t*dx*(T16 - T8)/dy + k*t*dy*(T9 - T8)/dx +k*t*dx*(T1 - T8)/dy+ 2*h*(dx*dy)*(Tinf 
- T8) + 2*eps*sigma*(dx*dy)*(Tsur^4 - T8^4) = 0 
 
//Node 9 
k*t*dy*(T8 - T9)/dx + k*t*dx*(T17 - T9)/dy + k*t*dy*(T10 - T9)/dx +k*t*dx*(T2 - T9)/dy+ 
2*h*(dx*dy)*(Tinf - T9) + 2*eps*sigma*(dx*dy)*(Tsur^4 - T9^4) = 0 
 
//Node 10 
k*t*dy*(T9 - T10)/dx + k*t*dx*(T18 - T10)/dy + k*t*dy*(T11 - T10)/dx +k*t*dx*(T3 - T10)/dy+ 
2*h*(dx*dy)*(Tinf - T10) + 2*eps*sigma*(dx*dy)*(Tsur^4 - T10^4)  = 0 
 
//Node 11 
k*t*dy*(T10 - T11)/dx + k*t*dx*(T19 - T11)/dy + k*t*dy*(T12 - T11)/dx +k*t*dx*(T4 - T11)/dy+ 
2*h*(dx*dy)*(Tinf - T11) + 2*eps*sigma*(dx*dy)*(Tsur^4 - T11^4) = 0 
 
//Node 12 
k*t*dy*(T11 - T12)/dx + k*t*dx*(T20 - T12)/dy + k*t*dy*(T13 - T12)/dx +k*t*dx*(T5 - T12)/dy+ 
2*h*(dx*dy)*(Tinf - T12) + 2*eps*sigma*(dx*dy)*(Tsur^4 - T12^4) = 0 
 
//Node 13 
k*t*dy*(T12 - T13)/dx + k*t*(dx/2)*(T21 - T13)/dy + k*t*(dx/2)*(T6 - T13)/dy+ 2*h*(dx*dy/2)*(Tinf - T13) 
+ 2*eps*sigma*(dx*dy/2)*(Tsur^4 - T13^4) = 0 
 
//Node 14 
k*t*dx*(T23 - T4)/dy + k*t*dy*(T15 - T14)/dx + 2*h*(dx*dy/2)*(Tinf - T14) + 
2*eps*sigma*(dx*dy/2)*(Tsur^4 - T14^4) = 0 
 
//Node 15 
k*t*dy*(T14 - T15)/dx + k*t*dx*(T7 - T15)/dy + k*t*dy*(T16 - T15)/dx +k*t*dx*(T24 - T15)/dy+ 
2*h*(dx*dy)*(Tinf - T15) + 2*eps*sigma*(dx*dy)*(Tsur^4 - T15^4) = 0 
 
//Node 16 
k*t*dy*(T15 - T16)/dx + k*t*dx*(T8 - T16)/dy + k*t*dy*(T17 - T16)/dx +k*t*dx*(T25 - T16)/dy+ 
2*h*(dx*dy)*(Tinf - T16) + 2*eps*sigma*(dx*dy)*(Tsur^4 - T16^4) = 0 
 
//Node 17 
k*t*dy*(T16 - T17)/dx + k*t*dx*(T9 - T17)/dy + k*t*dy*(T18 - T17)/dx +k*t*dx*(T26 - T17)/dy+ 
2*h*(dx*dy)*(Tinf - T17) + 2*eps*sigma*(dx*dy)*(Tsur^4 - T17^4) = 0 
 
//Node 18 
k*t*dy*(T17 - T18)/dx + k*t*dx*(T10 - T18)/dy + k*t*dy*(T19 - T18)/dx +k*t*dx*(T27 - T18)/dy+ 
2*h*(dx*dy)*(Tinf - T18) + 2*eps*sigma*(dx*dy)*(Tsur^4 - T18^4)  = 0 
 
//Node 19 
k*t*dy*(T18 - T19)/dx + k*t*dx*(T11 - T19)/dy + k*t*dy*(T20 - T19)/dx +k*t*dx*(T28 - T19)/dy+ 
2*h*(dx*dy)*(Tinf - T19) + 2*eps*sigma*(dx*dy)*(Tsur^4 - T19^4) = 0 
 
//Node 20 
k*t*dy*(T19 - T20)/dx + k*t*dx*(T12 - T20)/dy + k*t*dy*(T21 - T20)/dx +k*t*dx*(T29 - T20)/dy+ 
2*h*(dx*dy)*(Tinf - T20) + 2*eps*sigma*(dx*dy)*(Tsur^4 - T20^4) = 0 
 
//Node 21 
k*t*dy*(T20 - T21)/dx + k*t*(dx/2)*(T13 - T21)/dy + k*t*(dx/2)*(T30 - T21)/dy+ 2*h*(dx*dy/2)*(Tinf - T21) 
+ 2*eps*sigma*(dx*dy/2)*(Tsur^4 - T21^4) = 0 
 
 

Continued… 
 



PROBLEM 4.51 (Cont.) 
 

 
//Node 22 
k*t*(dy/2)*(T23 - T22)/dx + 2*(dx*dy/8)*h*(Tinf - T22) + 2*(dx*dy/8)*eps*sigma*(Tsur^4 - T22^4) + 
GsN*(dx*dy/8)  = 0 
 
//Node 23 
k*t*(dy/2)*(T22 - T23)/dx + k*t*dx*(T14 - T23)/dy + k*t*(dy/2)*(T24 - T23)/dx + 2*h*(dx*dy/2)*(Tinf - 
T23) + 2*eps*sigma*(dx*dy/2)*(Tsur^4 - T23^4) = 0 
 
//Node 24 
k*t*(dy/2)*(T23 - T24)/dx + k*t*dx*(T15 - T24)/dy + k*t*(dy/2)*(T25 - T24)/dx + 2*h*(dx*dy/2)*(Tinf - 
T24) + 2*eps*sigma*(dx*dy/2)*(Tsur^4 - T24^4) = 0 
 
//Node 25 
k*t*(dy/2)*(T24 - T25)/dx + k*t*dx*(T16 - T25)/dy + k*t*(dy/2)*(T26 - T25)/dx + 2*h*(dx*dy/2)*(Tinf - 
T25) + 2*eps*sigma*(dx*dy/2)*(Tsur^4 - T25^4) = 0 
 
//Node 26 
k*t*(dy/2)*(T25 - T26)/dx + k*t*dx*(T17 - T26)/dy + k*t*(dy/2)*(T27 - T26)/dx + 2*h*(dx*dy/2)*(Tinf - 
T26) + 2*eps*sigma*(dx*dy/2)*(Tsur^4 - T26^4) = 0 
 
//Node 27 
k*t*(dy/2)*(T26 - T27)/dx + k*t*dx*(T18 - T27)/dy + k*t*(dy/2)*(T28 - T27)/dx + 2*h*(dx*dy/2)*(Tinf - 
T27) + 2*eps*sigma*(dx*dy/2)*(Tsur^4 - T27^4) = 0 
 
//Node 28 
k*t*(dy/2)*(T27 - T28)/dx + k*t*dx*(T19 - T28)/dy + k*t*(dy/2)*(T29 - T28)/dx + 2*h*(dx*dy/2)*(Tinf - 
T28) + 2*eps*sigma*(dx*dy/2)*(Tsur^4 - T28^4) = 0 
 
//Node 29 
k*t*(dy/2)*(T28 - T29)/dx + k*t*dx*(T20 - T29)/dy + k*t*(dy/2)*(T30 - T29)/dx + 2*h*(dx*dy/2)*(Tinf - 
T29) + 2*eps*sigma*(dx*dy/2)*(Tsur^4 - T29^4) = 0 
 
//Node 30 
k*t*(dy/2)*(T29 - T30)/dx + k*t*(dx/2)*(T21 - T30)/dy +  2*h*(dx*dy/4)*(Tinf - T30) + 
2*eps*sigma*(dx*dy/4)*(Tsur^4 - T30^4) = 0 
 

(2) For irradiation at location A of plywood, steady-state temperatures in the vicinity of T22 are T23 = 
42.99°C and T14 = 25.62°C. Temperatures at locations far-removed from the irradiation site are at T = 
23.97°C. For irradiation at location B, steady-state temperatures in the vicinity of T10 are T18 = 
42.99°C and T9 = T11 = 42.80°C. The thermal conductivity and thickness of the plywood are small, and 
conduction from the irradiated area to neighboring nodes is negligible. In fact, setting the thermal 
conductivity to k = 0 W/m⋅K yields a steady-state temperature of T22 = 619.8°C, only a few degrees 
higher than when conduction is accounted for. (3) For irradiation at location A of stainless steel, 
steady-state temperatures in the vicinity of T22 are T23 = 274.9°C and T14 = 237.2°C. Temperatures at 
locations far-removed from the irradiation site are at T = 24.37°C. For irradiation at location B, steady-
state temperatures in the vicinity of T10 are T18 = 233.4°C, T9 = 202.0°C and T11 = 201.6°C. The 
thermal conductivity and thickness of the stainless steel are sufficiently large so that conduction from 
the irradiated area to neighboring nodes is significant. Setting the thermal conductivity to k = 0 W/m⋅K 
yields a steady-state temperature of T22 = 1004°C, significantly higher than when conduction is 
accounted for.(4) Although conduction losses from the irradiated areas are significant in the stainless 
steel, relatively high temperatures can be induced because radiation losses are reduced relative to 
plywood because of the lower emissivity. (5) Stainless steel will have a smaller absorptivity relative to 
plywood. Many more students would be needed to focus their individual mirrors to induce the 
absorbed irradiation value given in the problem statement. (6) The preceding analysis is based upon 
the assumption of two-dimensional heat transfer, implying the edge effects are negligible. However, 
for Node 22 (location A) the edge surface area is significant and constitutes approximately 30% of the 
entire exposed surface area. Including edge losses at location A will decrease the temperature of the 
wood mockup at that location to approximately T22 = 527°C while inclusion of edge losses will not 
affect the predicted temperature at location B. For the stainless steel case, T22 = 700°C and the 
temperature at location B is not affected. Hence, the recommended irradiation location is highly-
dependent upon whether edge losses are accounted for. 



PROBLEM 4.52 
 
KNOWN:  Nodal temperatures from a steady-state, finite-difference analysis for a one-eighth 
symmetrical section of a square channel. 
 
FIND:  (a) Beginning with properly defined control volumes, derive the finite-difference equations for 
nodes 2, 4 and 7, and determine T2, T4 and T7, and (b) Heat transfer loss per unit length from the channel, 
q′ . 
 
SCHEMATIC: 

 

 
 
Node T(°C) 
1 430 
3 394 
6 492 
8,9 600 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Two-dimensional conduction, (3) No internal 
volumetric generation, (4) Constant properties. 
 
ANALYSIS:  (a) Define control volumes about the nodes 2, 4, and 7, taking advantage of symmetry 
where appropriate and performing  energy balances, in outE E 0− =& & , with Δx = Δy, 
 
Node 2:   a b c dq q q q 0′ ′ ′ ′+ + + =  

 ( ) ( ) ( )3 2 6 2 1 2
2

T T T T T Th x T T k y 2 k x k y 2 0
x y x∞
− − −

Δ − + Δ + Δ + Δ =
Δ Δ Δ

 

 ( ) ( )2 1 3 6T 0.5T 0.5T T h x k T 2 h x k∞⎡ ⎤ ⎡ ⎤= + + + Δ + Δ⎣ ⎦ ⎣ ⎦  

 ( ) [ ]2
2T 0.5 430 0.5 394 492 50 W m K 0.01m 1W m K 300 K 2 0.50⎡ ⎤= × + × + + ⋅ × ⋅ +⎢ ⎥⎣ ⎦

 

 2T 422 K=  < 

   
Node 4: a b cq q q 0′ ′ ′+ + =  

 ( )( ) ( ) 3 4
4

T Th x 2 T T 0 k y 2 0
x∞
−

Δ − + + Δ =
Δ

 

 ( ) ( )4 3T T h x k T 1 h x k∞⎡ ⎤ ⎡ ⎤= + Δ + Δ⎣ ⎦ ⎣ ⎦  

 [ ] [ ]4T 394 0.5 300 K 1 0.5 363K= + × + =  < 
 

Continued... 
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Node 7:  From the first schematic, recognizing that the diagonal is a symmetry adiabat, we can treat node 
7 as an interior node, hence 

 ( ) ( )7 3 3 6 6T 0.25 T T T T 0.25 394 394 492 492 K 443K= + + + = + + + =  < 
 
(b) The heat transfer loss from the upper surface can be expressed as the sum of the convection rates from 
each node as illustrated in the first schematic, 
 
 cv 1 2 3 4q q q q q′ ′ ′ ′ ′= + + +  
 
 ( )( ) ( ) ( ) ( )( )cv 1 2 3 4q h x 2 T T h x T T h x T T h x 2 T T∞ ∞ ∞ ∞′ = Δ − + Δ − + Δ − + Δ −  
 
 

( ) ( ) ( ) ( )2
cvq 50 W m K 0.01m 430 300 2 422 300 394 300 363 300 2 K′ ⎡ ⎤= ⋅ × − + − + − + −⎣ ⎦  

 cvq 156 W m′ =  < 
 
COMMENTS:  (1) Always look for symmetry conditions which can greatly simplify the writing of the 
nodal equation as was the case for Node 7. 
 
(2) Consider using the IHT Tool, Finite-Difference Equations, for Steady-State, Two-Dimensional heat 
transfer to determine the nodal temperatures T1 - T7 when only the boundary conditions T8, T9 and (T∞ ,h) 
are specified. 
 



PROBLEM 4.53 
 
KNOWN:  Volumetric heat generation in a rectangular rod of uniform surface temperature. 
 
FIND:  (a) Temperature distribution in the rod, and (b) With boundary conditions unchanged, heat 
generation rate causing the midpoint temperature to reach 600 K. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state, two-dimensional conduction, (2) Constant properties, (3) Uniform 
volumetric heat generation. 
 
ANALYSIS:  (a) From symmetry it follows that six unknown temperatures must be determined.  Since 
all nodes are interior ones, the finite-difference equations may be obtained from Eq. 4.35 written in the 
form 
 
 ( )( )i neighborsT 1 4 T 1 4 q x y k= + Δ Δ∑ & . 
 
With ( )q x y 4kΔ Δ&  = 62.5 K, the system of finite-difference equations is 
 
 ( )1 s 2 4 sT 0.25 T T T T 15.625= + + + +  (1) 
 
 ( )2 s 3 5 1T 0.25 T T T T 15.625= + + + +  (2) 
 
 ( )3 s 2 6 2T 0.25 T T T T 15.625= + + + +  (3) 
 
 ( )4 1 5 1 sT 0.25 T T T T 15.625= + + + +  (4) 
 
 ( )5 2 6 2 4T 0.25 T T T T 15.625= + + + +  (5) 
 
 ( )6 3 5 3 5T 0.25 T T T T 15.625= + + + +  (6) 
 
With Ts = 300 K, the set of equations was written directly into the IHT workspace and solved for the 
nodal temperatures, 
 

T1 T2 T3 T4 T5 T6 (K) <
348.6 368.9 374.6 362.4 390.2 398.0  

 
(b) With the boundary conditions unchanged, the q&  required for T6 = 600 K can be found using the same 
set of equations in the IHT workspace, but with these changes:  (1) replace the last term on the RHS 
(15.625) of Eqs. (1-6) by q& (ΔxΔy)/4k = (0.005 m)2 q& /4×20 W/m⋅K = 3.125 × 10-7 q&  and (2) set T6 = 
600 K.  The set of equations has 6 unknown, five nodal temperatures plus q& .  Solving find 

 8 3q 1.53 10 W m= ×&  < 



PROBLEM 4.54  
KNOWN:  Flue of square cross section with prescribed geometry, thermal conductivity and 
inner and outer surface temperatures.  
FIND:  Heat loss per unit length from the flue, q .′  
 
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state, two-dimensional conduction, (2) Constant properties, (3) 
No internal generation.  
ANALYSIS:  Taking advantage of symmetry, the nodal network using the suggested 75mm 
grid spacing is shown above.  To obtain the heat rate, we first need to determine the unknown 
temperatures T1, T2, T3 and T4.  Recognizing that these nodes may be treated as interior 
nodes, the nodal equations from Eq. 4.29 are  
 (T2 + 25 + T2 + 350) - 4T1 = 0 
 (T1 + 25 + T3 + 350) - 4T2 = 0 
 (T2 + 25 + T4 + 350) - 4T3 = 0 
 (T3 + 25 + 25 + T3) - 4T4 = 0. 
 
Simultaneous solution yields T1 = 183.9°C, T2 = 180.3°C, T3 = 162.2°C, T4 = 93.6°C < 
  
From knowledge of the temperature distribution, the heat rate may be obtained by summing 
the heat rates across the nodal control volume surfaces, as shown in the sketch. 
 

 
 

Continued... 
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The heat rate leaving the outer surface of this flue section is,  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

a b c d e

1 2 3 4

q q q q q q
x 1q k T 25 T 25 T 25 T 25 0
y 2

W 1q 0.85 183.9 25 180.3 25 162.2 26 93.6 25
m K 2

q 374.5 W/m.

′ ′ ′ ′ ′ ′= + + + +
Δ ⎡ ⎤′ = − + − + − + − +⎢ ⎥Δ ⎣ ⎦

⎡ ⎤′ = − + − + − + −⎢ ⎥⋅ ⎣ ⎦
′ =

 

 
Since this flue section is 1/8 the total cross section, the total heat loss from the flue is  
 q 8 374.5 W/m 3.00 kW/m.′ = × =        < 
  
COMMENTS:  (1) The heat rate could have been calculated at the inner surface, and from 
the above sketch has the form  

 ( ) ( ) ( )1 2 3
x 1q k 350 T 350 T 350 T 374.5 W/m.
y 2

Δ ⎡ ⎤′ = − + − + − =⎢ ⎥Δ ⎣ ⎦
 

 
This result should compare very closely with that found for the outer surface since the 
conservation of energy requirement must be satisfied in obtaining the nodal temperatures.  
(2) The Gauss-Seidel iteration method can be used to find the nodal temperatures. Following 
the procedures of Appendix D,  

 

k k-1
1 2
k k k-1
2 1 3
k k k-1
3 2 4
k k
4 3

T 0.50 T 93.75
T 0.25 T 0.25 T 93.75
T 0.25 T 0.25 T 93.75
T 0.50 T 12.5.

= +

= + +

= + +

= +

 

 
The iteration procedure is implemented in the table on the following page, one row for each 
iteration k.  The initial estimates, for k = 0, are all chosen as (350 + 25)/2 ≈ 185°C.  Iteration 
is continued until the maximum temperature difference is less than 0.2°C, i.e., ε < 0.2°C. 
 
Note that if the system of equations were organized in matrix form, Eq. 4.48, diagonal 
dominance would exist.  Hence there is no need to reorder the equations since the magnitude 
of the diagonal element is greater than that of other elements in the same row.  
 k T1(°C)  T2(°C)  T3(°C)  T4(°C) 
 0 185  185  185  185  ← initial estimate 
 1 186.3  186.6  186.6  105.8 
 2 187.1  187.2  167.0    96.0 
 3 187.4  182.3  163.3    94.2 
 4 184.9  180.8  162.5    93.8 
 5 184.2  180.4  162.3    93.7 
 6 184.0  180.3  162.3    93.6 
 7 183.9  180.3  162.2    93.6  ← ε <0.2°C 
 
The nodal temperatures are the same as those calculated using the simultaneous solution.  



PROBLEM 4.55  
KNOWN:  Steady-state temperatures (K) at three nodes of a long rectangular bar.  
FIND:  (a) Temperatures at remaining nodes and (b) heat transfer per unit length from the bar using 
nodal temperatures; compare with result calculated using knowledge of q.&  
 
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Steady-state, 2-D conduction, (2) Constant properties.  
ANALYSIS:  (a) The finite-difference equations for the nodes (1,2,3,A,B,C) can be written by 
inspection using Eq. 4.35 and recognizing that the adiabatic boundary can be represented by a 
symmetry plane. 

( )27 32
2

neighbors i
5 10  W/m 0.005mq xT 4T q x / k 0     and    62.5K.

k 20 W/m K
×Δ

− + Δ = = =
⋅∑

&
&  

Node A (to find T2):  2
2 B A2T 2T 4T q x / k 0+ − + Δ =&  

    ( )2
1T 2 374.6 4 398.0 62.5 K 390.2K
2

= − × + × − =   < 

Node 3 (to find T3):  2
c 2 B 3T T T 300K 4T q x / k 0+ + + − + Δ =&  

    ( )3
1T 348.5 390.2 374.6 300 62.5 K 369.0K
4

= + + + + =  < 

Node 1 (to find T1):  2
C 2 1300 2T T 4T q x / k 0+ + − + Δ =&  

    ( )1
1T 300 2 348.5 390.2 62.5 362.4K
4

= + × + + =   < 

(b) The heat rate out of the bar is determined by calculating the heat rate out of each control volume 
around the 300 K nodes.  Consider the node in the upper left-hand corner; from an energy balance 
 in out g a a,in g gE E E 0          or          q q E      where    E qV.′ ′− + = = + =& & & & & &  

Hence, for the entire bar  bar a b c d e fq q q q q q q ,′ ′ ′ ′ ′ ′ ′= + + + + +  or 
 

bar
C1

a b c
C 3 B

d e

T 300y T 300 x y x x y
q k q k y q y q

2 x 2 2 x 2 2 2
T 300 T 300y y x T 300 x y

k x q x k x q x k q
y 2 y 2 2 y 2 2

−Δ − Δ Δ Δ Δ Δ′ = + ⋅ + Δ + ⋅Δ + ⋅ +
Δ Δ

− −Δ Δ Δ − Δ Δ
Δ + Δ ⋅ + Δ + Δ ⋅ + + ⋅

Δ Δ Δ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

& & &

& & &

f
.⎥

 

 
Substituting numerical values, find barq 7,502.5 W/m.′ =   From an overall energy balance on the 
bar, 

 ( ) ( )bar
27 3

gq E qV/ q 3 x 2 y 5 10 W/m 6 0.005m 7,500 W/m.′ ′= = = Δ ⋅ Δ = × × =& & &l  < 
As expected, the results of the two methods agree.  Why must that be? 



PROBLEM 4.56 
 
KNOWN:  Dimensions and thermal conductivity distribution within a two-dimensional solid. Applied 
boundary conditions. 
 
FIND:  (a) Spatially-averaged thermal conductivity and heat rate per unit length based upon this 
value, (b) Heat rate per unit length for case 1 boundary conditions and comparison to estimated heat 
rate per unit length based upon the spatially-averaged thermal conductivity, (c) Heat rate per unit 
length for case 2 boundary conditions and comparison to estimated heat rate per unit length based 
upon the spatially-averaged thermal conductivity. 
 
ASSUMPTIONS:  Steady-state, one-dimensional heat transfer. 
 
ANALYSIS: (a) The thermal conductivity varies only in the x-direction. Hence, 
 

( )3/ 2 3/ 2

0 0

3/ 2
5/2

1 1 2( )
5

W 2 W W   20 7070 (0.02m) 28
m K 5 m Km K

L L

x x

k k x dx a bx dx a bL
L L

= =

= = + = +

= + × × =
⋅ ⋅⋅

∫ ∫
   < 

 
Using this value, the heat rate per unit length is  
 

  W' ( ) / 28 50 C 1400W/m
m K

q kL T L= Δ = × ° =
⋅

     < 
 

(b) The nodal network is shown below. Note that the heat transfer is one-dimensional. 
 
 

 
 
 

 
 
 

 
 
 
 

For any control surface, Eq. 4.46 may be combined with Fourier’s law and written as 
 

   ' 1 1
( 1) '

1

/ 2 / 2
m m m m

m m
tot

m m

T T T Tq
R x x

Lk Lk

− −
− −

−

− −
= =

⎛ ⎞Δ Δ
+⎜ ⎟

⎝ ⎠

    (1) 

 
where the thermal conductivities, km-1 and km are evaluated at the left (m – 1) and right (m) nodes, 
respectively. At steady state, the heat rate per unit length is constant. Hence, we may write Eqn. (1) for 
each pair of nodal points from m = 1 to m = 11 using Δx = 2 mm. The resulting heat rate per unit 
length is found by solving the 11 simultaneous equations for q′ and the temperatures Tm for 2 ≤ m ≤ 10 
yielding 
   q′ = 1339 W/m        < 

Continued… 
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PROBLEM 4.56 (Cont.) 
 

 
The predicted heat rate pure unit length is smaller than that of part (a). 
 
(c) When the applied boundary conditions are changed to those of case 2, we may simply evaluate the 
heat transfer from the hot surface to the cool surface by evaluating the heat transfer in 11 different 
lanes and summing the results.  For the interior lanes the width is Δx resulting in 
 

  ' ( ) m
m

T kq x
L

Δ
= Δ   for 2 ≤ m ≤ 10 

 
where ΔT is the overall temperature difference across the domain. The thermal conductivities are 
evaluated at the locations of the nodes. For the lanes adjacent to the adiabatic boundaries,  
 
  ' '

1 1 11 11( / 2) /      and     q ( / 2) /q k T x L k T x L= Δ Δ Δ Δ  
 
and we evaluate the thermal conductivities k1 and k11 at the nodal points, x = 0 and 20 mm, 
respectively. The heat rate per unit length of the object is  
 

  
11

'

1
' m

m
q q

=

= ∑   or  q′ = 1401 W/m       < 

 
The heat rate per unit length is nearly identical to that of part (a). 
 
 
COMMENTS:  (1) The agreement between the results of parts (a) and (c) is expected since 

( ) ( )
0 0

' "( ) ( ) / /
L L

x x

q q x dx k x T L dx k L L T
= =

= = Δ = Δ∫ ∫ . The minor difference is due to the evaluation of 

the thermal conductivity for each lane at the nodal point. The answers would become exactly the same 
as the spatial resolution of the numerical solution is increased. (2) In part (b) heat transfer is in the x-
direction, the same direction in which thermal conductivity varies. This reduces heat transfer rates 
relative to the value calculated in parts (a) and (c). This is because the resistance expressed in Eq. (1) 
is composed of two values in series. The total resistance will be dominated by the higher of the two 
individual resistances. (3) Temperatures calculated for case 1 and heat rates in each lane for case 2 are 
shown in the table below. 
 

Node or Lane Temperature, °C (case 1) Heat rate per unit length, W/m (case 2) 
 
1  100.00    50 
2  93.41    103.2 
3  87.09    108.9 
4  81.14    116.4 
5  75.60    125.3 
6  70.45    135.3 
7  65.69    146.5 
8  61.30    158.6 
9  57.24    171.5 
10  53.48    185.4 
11  50.00    99.99 
      1401 



PROBLEM 4.57  
KNOWN:  Steady-state temperatures at selected nodal points of the symmetrical section of a flow 
channel with uniform internal volumetric generation of heat.  Inner and outer surfaces of channel 
experience convection.  
FIND:  (a) Temperatures at nodes 1, 4, 7, and 9, (b) Heat rate per unit length (W/m) from the outer 
surface A to the adjacent fluid, (c) Heat rate per unit length (W/m) from the inner fluid to surface B, 
and (d) Verify that results are consistent with an overall energy balance.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state, two-dimensional conduction, (2) Constant properties.  
ANALYSIS:  (a) The nodal finite-difference equations are obtained from energy balances on control 
volumes about the nodes shown in the schematics below. 
 
Node 1  
 a b c d gq q q q E 0′ ′ ′ ′ ′+ + + + =&  
 

 ( ) ( ) ( )3 12 1 T TT T0 k y / 2 k x / 2 0 q x y / 4 0
x y

−−
+ Δ + Δ + + Δ ⋅Δ =

Δ Δ
&  

 
 ( ) 2

1 2 3T T T / 2 q x / 4k= + + Δ&  
 
 ( ) ( ) ( )6 3 6 2

1T 95.47 117.3 C / 2 10 W / m 25 25 10 m / 4 10 W / m K 122.0 C−= + ° + × × × ⋅ = °  
 

  
Node 4  
 a b c d e f gq q q q q q E 0′ ′ ′ ′ ′ ′ ′+ + + + + + =&  

 ( ) ( )( ) ( )( )2 4
i ,i 4 i 4

T Tk x / 2 h y / 2 T T h x / 2 T T
y ∞ ∞
−

Δ + Δ − + Δ − +
Δ

 

          Continued … 
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 ( ) ( ) ( )5 4 8 4 3 4T T T T T Tk y / 2 k x k y
x y x
− − −

Δ + Δ + Δ
Δ Δ Δ

( )q 3 x y / 4 0+ Δ ⋅Δ =&  

 

 ( ) ( )2
4 2 3 5 8 i ,iT T 2T T 2T 2 h x / k T 3q x / 2k∞

⎡ ⎤= + + + + Δ + Δ⎢ ⎥⎣ ⎦
& ( )i6 2 h x / k⎡ ⎤+ Δ⎣ ⎦  

 
 4T = 94.50 C°           < 
 
Node 7  
 a b c d gq q q q E 0′ ′ ′ ′ ′+ + + + =&  
 

 ( ) ( ) ( )( ) ( )3 7 8 7
o ,o 7

T T T Tk x / 2 k y / 2 h x / 2 T T 0 q x y / 4 0
y x ∞
− −

Δ + Δ + Δ − + + Δ ⋅Δ =
Δ Δ

&  

 

 ( ) ( )2
7 3 8 o ,o oT T T h x / k T q x / 2k 2 h x / k∞⎡ ⎤= + + Δ + Δ + Δ⎢ ⎥⎣ ⎦

&  
 
 7T 95.80 C= °           < 
 

 
 
Node 9 
 
 a b c d gq q q q E 0′ ′ ′ ′ ′+ + + + =&  

 ( ) ( ) ( )( )5 9 10 9
o ,o 9

T T T Tk x k y / 2 h x T T
y y ∞
− −

Δ + Δ + Δ −
Δ Δ

 

   ( ) ( )8 9T Tk y / 2 q x y / 2 0
x
−

+ Δ + Δ ⋅Δ =
Δ

&  

 ( ) ( )2
9 5 8 10 o ,o oT T 0.5T 0.5T h x / k T q x / 2k / 2 h x / k∞⎡ ⎤= + + + Δ + Δ + Δ⎢ ⎥⎣ ⎦

&  

 9T 79.67 C= °           < 
(b) The heat rate per unit length from the outer surface A to the adjacent fluid, Aq ,′  is the sum of the 
convection heat rates from the outer surfaces of nodes 7, 8, 9 and 10. 
 ( )( ) ( ) ( ) ( )( )A o 7 ,o 8 ,o 9 ,o 10 ,oq h x / 2 T T x T T x T T x / 2 T T∞ ∞ ∞ ∞′ = Δ − + Δ − + Δ − + Δ −⎡ ⎤⎣ ⎦  

 ( )( ) ( )2
Aq 250 W / m K 25 / 2 95.80 25 25 87.28 25′ ⎡= ⋅ − + −⎣  

   ( ) ( )( ) 325 79.67 25 25 / 2 77.65 25 10 m K−⎤+ − + − × ⋅⎦  

          Continued … 



PROBLEM 4.57 (Cont.) 
 
 Aq 1117 W / m′ =          < 
 
(c) The heat rate per unit length from the inner fluid to the surface B, Bq ,′  is the sum of the convection 
heat rates from the inner surfaces of nodes 2, 4, 5 and 6. 
 
 ( )( ) ( )( ) ( ) ( )( )B i ,i 2 ,i 4 ,i 5 ,i 6q h y / 2 T T y / 2 x / 2 T T x T T x / 2 T T∞ ∞ ∞ ∞′ = Δ − + Δ + Δ − + Δ − + Δ −⎡ ⎤⎣ ⎦  
 

( )( ) ( )( )2
Bq 500 W / m K 25 / 2 50 95.47 25 / 2 25 / 2 50 94.50′ ⎡= ⋅ − + + −⎣  

 
   ( ) ( )( ) 325 50 79.79 25 / 2 50 77.29 10 m K−⎤+ − + − × ⋅⎦  
 
 Bq 1383 W / m′ = −          < 
 
(d) From an overall energy balance on the section, we see that our results are consistent since the 
conservation of energy requirement is satisfied. 
 
 in out gen A B genE E E q q E ( 1117 1383 2500)W / m 0′ ′ ′ ′ ′ ′− + = − + + = − − + =& & & &  
 
where [ ]6 3 6 2

genE q 10 W / m 25 50 25 50 10 m 2500 W / m−′ ′= ∀ = × + × × =& &  
 
COMMENTS:  The nodal finite-difference equations for the four nodes can be obtained by using IHT 
Tool Finite-Difference Equations | Two-Dimensional | Steady-state.  Options are provided to build the 
FDEs for interior, corner and surface nodal arrangements including convection and internal 
generation.  The IHT code lines for the FDEs are shown below. 
 
  /* Node 1: interior node; e, w, n, s labeled 2, 2, 3, 3. */ 

0.0 = fd_2d_int(T1,T2,T2,T3,T3,k,qdot,deltax,deltay) 
 

/* Node 4: internal corner node, e-n orientation; e, w, n, s labeled 5, 3, 2, 8. */ 
0.0 = fd_2d_ic_en(T4,T5,T3,T2,T8,k,qdot,deltax,deltay,Tinfi,hi,q″a4 
q″a4 = 0  // Applied heat flux, W/m^2; zero flux shown 
 
/* Node 7: plane surface node, s-orientation; e, w, n labeled 8, 8, 3. */ 
0.0 = fd_2d_psur_s(T7,T8,T8,T3,k,qdot,deltax,deltay,Tinfo,ho,q″a7 
q″a7=0  // Applied heat flux, W/m^2; zero flux shown 
 
/* Node 9: plane surface node, s-orientation; e, w, n labeled 10, 8, 5. */ 
0.0 = fd_2d_psur_s(T9, T10, T8, T5,k,qdot,deltax,deltay,Tinfo,ho,q″a9 

  q″a9 = 0  // Applied heat flux, W/m^2; zero flux shown 
 



PROBLEM 4.58  
KNOWN:  Outer surface temperature, inner convection conditions, dimensions and thermal 
conductivity of a heat sink.  
FIND:  Nodal temperatures and heat rate per unit length.  
SCHEMATIC:   
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state, (2) Two-dimensional conduction, (3) Uniform outer surface 
temperature, (4) Constant thermal conductivity.  
ANALYSIS:  (a) To determine the heat rate, the nodal temperatures must first be computed from the 
corresponding finite-difference equations.  From an energy balance for node 1, 

 ( )( ) ( ) ( ) 5 12 1
1

T TT Th x / 2 1 T T k y / 2 1 k x 1 0
x y∞

−−
Δ ⋅ − + Δ ⋅ + Δ ⋅ =

Δ Δ
 

 

  1 2 5
h x h x3 T T 2T T 0

k k ∞
Δ Δ⎛ ⎞− + + + + =⎜ ⎟

⎝ ⎠
     (1) 

With nodes 2 and 3 corresponding to Case 3 of Table 4.2, 

 1 2 3 6
h x 2h xT 2 2 T T 2T T 0

k k ∞
Δ Δ⎛ ⎞− + + + + =⎜ ⎟

⎝ ⎠
     (2) 

 

 2 3 7
h x h xT 2 T T T 0

k k ∞
Δ Δ⎛ ⎞− + + + =⎜ ⎟

⎝ ⎠
      (3) 

 
where the symmetry condition is invoked for node 3.  Applying an energy balance to node 4, we 
obtain 
 4 5 s2T T T 0− + + =          (4) 
 
The interior nodes 5, 6 and 7 correspond to Case 1 of Table 4.2.  Hence, 
 
 1 4 5 6 sT T 4T T T 0+ − + + =         (5) 
 2 5 6 7 sT T 4T T T 0+ − + + =         (6) 
 3 6 7 sT 2T 4T T 0+ − + =         (7) 
 
where the symmetry condition is invoked for node 7.  With sT 50 C, T 20 C,∞= ° = °  and 

( )2h x / k 5000 W / m K 0.005m / 240 W / m K 0.1042,Δ = ⋅ ⋅ =  the solution to Eqs. (1) – (7) yields 
 
 1 2 3 4T 46.61 C, T 45.67 C, T 45.44 C, T 49.23 C= ° = ° = ° = °  

 5 6 7T 48.46 C, T 48.00 C, T 47.86 C= ° = ° = °       < 
          Continued … 
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The heat rate per unit length of channel may be evaluated by computing convection heat transfer from 
the inner surface.  That is, 
 ( ) ( ) ( )1 2 3q 8h x / 2 T T x T T x / 2 T T∞ ∞ ∞′ ⎡ ⎤= Δ − + Δ − + Δ −⎣ ⎦  
 
 ( ) ( )2q 8 5000 W / m K 0.0025m 46.61 20 C 0.005m 45.67 20 C′ ⎡= × ⋅ − ° + − °⎣  
 
  ( ) ]0.0025m 45.44 20 C 10,340 W / m+ − ° =      < 

(b) Since 2h 5000 W / m K= ⋅  is at the high end of what can be achieved through forced convection, 
we consider the effect of reducing h.  Representative results are as follows 
 

( )2h W / m K⋅  ( )1T C°      ( )2T C°     ( )3T C°    ( )4T C°   ( )5T C°    ( )6T C°     ( )7T C°  ( )q W / m′  
 
  200  49.84     49.80        49.79     49.96     49.93      49.91        49.90      477 
1000  49.24     49.02        48.97     49.83     49.65      49.55        49.52    2325 
2000  48.53     48.11        48.00     49.66     49.33      49.13        49.06    4510 
5000  46.61     45.67        45.44     49.23     48.46      48.00        47.86 10,340 
 
There are two resistances to heat transfer between the outer surface of the heat sink and the fluid, that 
due to conduction in the heat sink, ( )cond 2D ,R  and that due to convection from its inner surface to the 

fluid, convR .   With decreasing h, the corresponding increase in convR  reduces heat flow and increases 
the uniformity of the temperature field in the heat sink.  The nearly 5-fold reduction in q′  

corresponding to the 5-fold reduction in h from 1000 to 200 2W / m K⋅  indicates that the convection 
resistance is dominant ( )( )conv cond 2DR R .>>  
 
COMMENTS:  To check our finite-difference solution, we could assess its consistency with 
conservation of energy requirements.  For example, an energy balance performed at the inner surface 
requires a balance between convection from the surface and conduction to the surface, which may be 
expressed as 

 ( ) ( ) ( ) ( )5 1 6 2 7 3T T T T T Tq k x 1 k x 1 k x / 2 1
y y y
− − −′ = Δ ⋅ + Δ ⋅ + Δ ⋅
Δ Δ Δ

 

Substituting the temperatures corresponding to 2h 5000 W / m K,= ⋅  the expression yields 
q 10, 340 W / m,′ =  and, as it must be, conservation of energy is precisely satisfied.  Results of the 

analysis may also be checked by using the expression ( ) ( )( )s cond 2D convq T T / R R ,∞′ ′ ′= − +  where, for 

( )2
convh 5000 W / m K, R ,31/ 4hw 2.5 10 m K / W′= ⋅ −= = × ⋅  and from Eq. (4.27) and Case 11 of 

Table 4.1, ( )[ ] 4
condR 0.930 ln W / w 0.05 / 2 k 3.94 10 m K / W.π −′ = − = × ⋅   Hence, 

( ) ( )3 4q 50 20 C / 2.5 10 3.94 10 m K / W− −′ = − ° × + × ⋅  10, 370 W / m,=  and the agreement with the 

finite-difference solution is excellent.  Note that, even for 2
convh 5000 W / m K, R′= ⋅ >>  ( )cond 2DR .′  

 



PROBLEM 4.59 
 
KNOWN:  Dimensions of a two-dimensional object with isothermal and adiabatic boundaries. 
 
FIND:  Conduction heat transfer rate per unit depth from the hot surface to the cold surface. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) No internal generation, (4) 
Two-dimensional conduction. 
 
ANALYSIS:   We may combine heat fluxes determined from Fourier’s law with expressions for the 
size of the control surfaces of the various control volumes to determine the heat rate per unit depth into 
each control volume in the discretized domain, which is shown on the next page. Application of 
conservation of energy for each control volume yields the expression in 0E =& . Note that energy 
balances for nodes 10, 11, and 12 are included in both the rectangular and cylindrical sub-domains. 
These energy  balances couple the solutions together. 
 
Rectangular Sub-Domain.  For the rectangular sub-domain, application of Fourier’s law in Cartesian 
coordinates along with conservation of energy yields the following finite difference equations. 
 
Nodes 1, 2 and 3: T1 = T2 = T3 = Th = 20°C. 
 

Node 4:   1 4 5 4 7 4( ) ( ) ( ) 0
2 2

T T x T T T T xk k y k
y x y
− Δ − − Δ

+ Δ + =
Δ Δ Δ

 

 

Node 5:  2 5 6 5 8 5 4 5( ) ( ) ( ) ( ) 0T T T T T T T Tk x k y k x k y
y x y x
− − − −

Δ + Δ + Δ + Δ =
Δ Δ Δ Δ

 

 

Node 6:  3 6 5 6 9 6( ) ( ) ( ) 0
2 2

T T x T T T T xk k y k
y x y
− Δ − − Δ

+ Δ + =
Δ Δ Δ

 

 

Node 7:  4 7 8 7 10 7( ) ( ) ( ) 0
2 2

T T x T T T T xk k y k
y x y
− Δ − − Δ

+ Δ + =
Δ Δ Δ

 

Continued... 

ro = 50 mm

ri = 30 mm

W = 20 mm
H = 30 mm

Th = 20°C

Tc = 0°C

x

y

ro = 50 mm

ri = 30 mm

W = 20 mm
H = 30 mm

Th = 20°C

Tc = 0°C

ro = 50 mm

ri = 30 mm

W = 20 mm
H = 30 mm

Th = 20°C

Tc = 0°C

x

y

ro = 50 mm

ri = 30 mm

W = 20 mm
H = 30 mm

Th = 20°C

Tc = 0°C

x

y

ro = 50 mm

ri = 30 mm

W = 20 mm
H = 30 mm

Th = 20°C

Tc = 0°C

ro = 50 mm

ri = 30 mm

W = 20 mm
H = 30 mm

Th = 20°C

Tc = 0°C

x

y



Problem 4.59 (Cont.) 
 

 

Node 8:  5 8 9 8 11 8 7 8( ) ( ) ( ) ( ) 0
2

T T x T T T T T Tk k y k x k y
y x y x
− Δ − − −

+ Δ + Δ + Δ =
Δ Δ Δ Δ

 

 

Node 9:  6 9 8 9 12 9( ) ( ) ( ) 0
2 2

T T x T T T T xk k y k
y x y
− Δ − − Δ

+ Δ + =
Δ Δ Δ

 

 

Node 10: '7 10 11 10
1

( ) ( ) 0
2 2

T T x T T yk k q
y x
− Δ − Δ

+ − =
Δ Δ

 

 

Node 11: '8 11 10 11 12 11
2

( ) ( ) ( ) 0
2 2

T T T T y T T yk x k k q
y x x
− − Δ − Δ

Δ + + − =
Δ Δ Δ

 

 

Node 12:  '9 12 11 12
3

( ) ( ) 0
2 2

T T x T T yk k q
y x
− Δ − Δ

+ − =
Δ Δ
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Problem 4.59 (Cont.) 
 

 
Cylindrical Sub-Domain. We begin by recalling that Fourier’s law for the cylindrical coordinate 
system yields 

   " ";   r
T T k T k Tq k k q
r r r rφ φ φ

∂ Δ ∂ Δ
= − ≈ − = − ≈ −

∂ Δ ∂ Δ
 

 
and the areas through which conduction occurs in the radial direction increase as the radius increases. 
 
Nodes 10, 13, 16, 19, 22, 23 and 24:  T10 = T13 = T16 = T19 = T22 = T23 = T24 = Tc = 0°C 
 

Node 11: ' 12 11 14 11 10 11
2

( ) ( ) ( )3.5 4.5 0
2 4 2

T T T T T Tq k r k r k r
r r r

φ φ
φ

− Δ − − Δ
+ ⋅ Δ ⋅ + ⋅Δ + ⋅ Δ ⋅ =

Δ Δ Δ Δ
 

 

Node 12: ' 11 12 15 12
3

( ) ( )3.5 0
2 3 2

T T T T rq k r k
r r

φ
φ

− Δ − Δ
+ ⋅ Δ ⋅ + ⋅ =

Δ Δ Δ
 

 

Node 14: 11 14 15 14 17 14 13 14( ) ( ) ( ) ( )3.5 4.5 0
4 4

T T T T T T T Tk r k r k r k r
r r r r

φ φ
φ φ

− − − −
⋅Δ + ⋅ Δ Δ + Δ + ⋅ Δ Δ =

Δ Δ Δ Δ Δ Δ
 

 

Node 15: 12 15 14 15 18 15( ) ( ) ( )3.5 0
3 2 3 2

T T r T T T T rk k r k
r r r

φ
φ φ

− Δ − − Δ
+ ⋅ Δ Δ + =

Δ Δ Δ Δ Δ
 

 

Node 17: 14 17 18 17 20 17 16 17( ) ( ) ( ) ( )3.5 4.5 0
4 4

T T T T T T T Tk r k r k r k r
r r r r

φ φ
φ φ

− − − −
⋅Δ + ⋅ Δ Δ + Δ + ⋅ Δ Δ =

Δ Δ Δ Δ Δ Δ
 

 

Node 18: 15 18 17 18 21 18( ) ( ) ( )3.5 0
3 2 3 2

T T r T T T T rk k r k
r r r

φ
φ φ

− Δ − − Δ
+ ⋅ Δ Δ + =

Δ Δ Δ Δ Δ
 

 

Node 20: 17 20 21 20 23 20( ) ( ) ( )3.5 0
4 4

T T T T T Tk r k r k r
r r r

φ
φ φ

− − −
Δ + ⋅ Δ Δ + Δ =

Δ Δ Δ Δ Δ
 

 

Node 21: 18 21 20 21 24 21( ) ( ) ( )3.5 0
3 2 3 2

T T r T T T T rk k r k
r r r

φ
φ φ

− Δ − − Δ
+ ⋅ Δ Δ + =

Δ Δ Δ Δ Δ
 

 
Note that energy balances for nodes 10, 11 and 12 are included in both the rectangular and cylindrical 
sub-domains. These energy balances couple the solutions for the two sub-domains together. 
 
The preceding finite difference equations may be solved simultaneously with the IHT code provided in 
the Comment yielding the following temperatures and ' 114.5 W/mq = .    < 
The nodal temperatures are: 
 
T1 = 20.00°C T2 = 20.00°C T3 = 20.00°C T4 = 14.11°C T5 = 14.29°C T6 = 14.41°C 
T7 = 7.86°C T8 = 8.66°C T9 = 9.03°C T10 = 0.00°C T11 = 3.46°C T12 = 4.40°C 
T13 = 0.00°C T14 = 1.04°C T15 = 1.59°C T16 = 0.00°C T17 = 0.33°C T18 = 0.54°C 
T19 = 0.00°C T20 = 0.10°C T21 = 0.16°C T22 = 0.00°C T23 = 0.00°C T24 = 0.00°C 
 

 Continued… 
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COMMENTS: (1) The IHT code is listed below. For each control volume, we note that 0inE =&  and 
Δy = Δx, yielding the following energy balances for all but the isothermal nodes. 

 
// Input Parameters 
 
Th = 20 
Tc = 0 
k = 10 
deltaphi = pi/8 
 
// Node Equations for Rectangle 
 
//Node 1 
T1 = Th 
//Node 2 
T2 = Th 
//Node 3 
T3 = Th 
//Node 4 
(T1 - T4)/2 + (T5 - T4) + (T7 - T4)/2 = 0 
//Node 5 
(T2 - T5) + (T6 - T5) + (T8 - T5) + (T4 - T5) = 0 
//Node 6 
(T3 - T6)/2 + (T5 - T6) + (T9 - T6)/2 = 0 
//Node 7 
(T4 - T7)/2 + (T8 - T7) + (T10 - T7)/2 = 0 
//Node 8 
(T5 - T8) + (T9 - T8) + (T11 - T8) + (T7 - T8) = 0 
//Node 9 
(T6 - T9)/2 + (T8 - T9) + (T12 - T9)/2 = 0 
 
//Nodes Common to Both Sub-Domains (Rectangle) 
//Node 10 
(T7 - T10)/2 + (T11 - T10)/2 -qprime1/k = 0 
//Node 11 
(T8 - T11)+(T10 - T11)/2 + (T12 - T11)/2 - qprime2/k = 0 
//Node 12 
(T9 - T12)/2 + (T11 - T12)/2 - qprime3/k = 0 
 
//Nodes Common to Both Sub-Domains (Cylindrical) 
//Node 10 
T10 = Tc 
//Node 11 
qprime2/k + (T12 - T11)*3.5*deltaphi/2 + (T14 - T11)/4/deltaphi + (T10 - T11)*4.5*deltaphi/2 = 0 
//Node 12 
qprime3/k + (T11 - T12)*3.5*deltaphi/2 + (T15 - T12)/3/deltaphi/2 = 0 
 
 
// Node Equations for Cylindrical Region 
 
//Node 13 
T13 = Tc 
//Node 14 
(T11 - T14)/4/deltaphi + (T15 - T14)*3.5*deltaphi + (T17 - T14)/4/deltaphi + (T13 - T14)*4.5*deltaphi = 
0 
//Node 15 
(T12 - T15)/3/deltaphi/2 + (T14 - T15)*3.5*deltaphi + (T18 - T15)/3/deltaphi/2 = 0 
//Node 16 
T16 = Tc 
//Node 17 
(T14 - T17)/4/deltaphi + (T18 - T17)*3.5*deltaphi + (T20 - T17)/4/deltaphi + (T16 - T17)*4.5*deltaphi = 
0 
//Node 18 
(T15 - T18)/3/deltaphi/2 + (T17 - T18)*3.5*deltaphi + (T21 - T18)/3/deltaphi/2 = 0 

Continued… 
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//Node 19 
T19 = Tc 
//Node 20 
(T17 - T20)/4/deltaphi + (T21 - T20)*3.5*deltaphi + (T23 - T20)/4/deltaphi + (T19 - T20)*4.5*deltaphi = 
0 
//Node 21 
(T18 - T21)/3/deltaphi/2 + (T20 - T21)*3.5*deltaphi + (T24 - T21)/3/deltaphi/2 = 0 
//Node 22 
T22 = Tc 
//Node 23 
T23 = Tc 
//Node 24 
T24 = Tc 
 
qprime = qprime1 + qprime2 + qprime3 
 
 

 

(2) The shape factor for the geometry is ' 114.5 W/m 0.573
( ) 10W/m K 20K

qS
k Th Tc

= = =
− ⋅ ×

 

 
 
 
 
 

 



PROBLEM 4.60 
KNOWN:  Dimensions of a tube of non-circular cross section that can be broken into rectangular and 
cylindrical sub-domains. Fluid temperature and heat transfer coefficient, external surface temperature 
and tube wall thermal conductivity. 
 
FIND:  Heat transfer rate per unit length of tube. 
 
SCHEMATIC: 

Ts = 100°C 

k = 15 W/m·K
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ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) No internal generation, (4) 
Two-dimensional conduction. 
 
ANALYSIS:   We may combine heat fluxes determined from Fourier’s law with expressions for the 
size of the control surfaces of the various control volumes to determine the heat rate per unit depth into 
each control volume in the discretized domain. Application of conservation of energy for each control 
volume yields the expression in 0E =& . 
 
 
Rectangular Sub-Domain.  For the rectangular sub-domain, application of Fourier’s law in Cartesian 
coordinates along with conservation of energy yields the finite difference equations that are listed in 
the IHT code included in COMMENT (1). 
 
Cylindrical Sub-Domain. For the cylindrical sub-domain, application of Fourier’s law in cylindrical 
coordinates along with conservation of energy yields the finite difference equations that are listed in 
the IHT code included in COMMENT (1). 
 
Coupling of Domains. Note that energy balances for Nodes 11, 12 and 13 are included in both the 
rectangular and cylindrical sub-domains. These energy balances couple the two solutions together. 
 
 
 

Continued… 
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The equations are solved simultaneously to yield the following nodal temperatures in degrees Celsius. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The heat transfer rate per unit depth may be expressed as 
 

[ ]1 6 2 7 3 8 4 9 5 10' 2 ( ) / 2 ( ) ( ) ( ) ( ) / 2

(100 90.45) C / 2 (100 90.10) C
    = 2 15W/m K (100 89.42) C (100 89.69) C

(100 89.82) C / 2
                                          

k xq T T T T T T T T T T
y

⎡ ⎤Δ
= − + − + − + − + −⎢ ⎥Δ⎣ ⎦

− ° + − ° +⎡ ⎤
⎢ ⎥× ⋅ × − ° + − °⎢ ⎥
⎢ ⎥+ − °⎣ ⎦

                                            

 

     = 1220 W/m           < 
 
COMMENTS: (1) The IHT code is listed below. For each control volume, we note that 0inE =& , 
yielding the energy balances for the rectangular and cylindrical sub-domains. 
 

ri = 20/1000 
ro = 40/1000 
r1 = 25/1000 
r2 = 30/1000 
r3 = 35/1000 
 
dx = 10/1000 
dy = 10/1000 
dr = 10/1000 
dtheta = pi/8 
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k = 15 
h = 240 
Tinf = 20 
 
T1 = 100 
T2 = 100 
T3 = 100 
T4 = 100 
T5 = 100 
 
//Rectangular Domain 
//Node 6 
k*(T1 - T6)*(dx/2)/dy + k*(T7 - T6)*dy/dx + k*(T11 - T6)*(dx/2)/dy = 0 
//Node 7 
k*(T6 - T7)*dy/dx + k*(T12 - T7)*dx/dy + k*(T8 - T7)*dy/dx + k*(T2 - T7)*dx/dy = 0 
//Node 8 
k*(T7 - T8)*dy/dx + k*(T13 - T8)*dx/dy + k*(T9 - T8)*dy/dx + k*(T3 - T8)*dx/dy = 0 
//Node 9 
k*(T8 - T9)*dy/dx + k*(T14 - T9)*dx/dy + k*(T10 - T9)*dy/dx + k*(T4 - T9)*dx/dy = 0 
//Node 10 
k*(T9 - T10)*dy/dx + k*(T15 - T10)*(dx/2)/dy + k*(T5 - T10)*(dx/2)/dy = 0 
//Node 11 
k*(T6 - T11)*(dx/2)/dy + k*(T12 - T11)*(dy/2)/dx = qprime1 
//Node 12 
k*(T11 - T12)*(dy/2)/dx + k*(T7 - T12)*dx/dy + k*(T13 - T12)*(dy/2)/dx = qprime2 
//Node 13 
k*(T12 - T13)*(dy/2)/dx + k*(T14 - T13)*(dy/2)/dx + k*(T8 - T13)*dx/dy + h*(dx/2)*(Tinf - T13) = 
qprime3 
//Node 14 
k*(T13 - T14)*(dy/2)/dx + k*(T9 - T14)*dx/dy + k*(T15 - T14)*(dy/2)/dx + h*dx*(Tinf - T14)=0 
//Node 15 
k*(T14 - T15)*(dy/2)/dx + k*(T10 - T15)*(dx/2)/dy + h*(dx/2)*(Tinf - T15) = 0 
 
//Cylindrical Domain 
 
//Node 11 
k*(T16 - T11)*(dr/2)/(ro*dtheta) + k*(T12 - T11)*(r3*dtheta/2)/dr + qprime1 = 0 
 
//Node 12 
k*(T11 - T12)*(r3*dtheta/2)/dr + k*(T17 - T12)*dr/(r2*dtheta) + k*(T13 - T12)*(r1*dtheta/2)/dr + qprime2 
= 0 
//Node 13 
k*(T12 - T13)*(r1*dtheta/2)/dr + k*(T18 - T13)*(dr/2)/(ri*dtheta) + qprime3 + h*(ri*dtheta/2)*(Tinf - T13) 
= 0 
//Node 16 
k*(T11 - T16)*(dr/2)/(ro*dtheta) + k*(T17 - T16)*(r3*dtheta)/dr + k*(T19 - T16)*(dr/2)/(ro*dtheta) = 0 
//Node 17 
k*(T16 - T17)*(r3*dtheta)/dr + k*(T20 - T17)*dr/(r2*dtheta) + k*(T18 - T17)*(r1*dtheta)/dr + k*(T12 - 
T17)*dr/(r2*dtheta) = 0 
//Node 18 
k*(T13 - T18)*(dr/2)/(ri*dtheta) + k*(T17 - T18)*(r1*dtheta)/dr + k*(T21 - T18)*(dr/2)/(ri*dtheta) + 
h*(ri*dtheta)*(Tinf - T18) = 0 
//Node 19 
k*(T16 - T19)*(dr/2)/(ro*dtheta) + k*(T20 - T19)*(r3*dtheta)/dr + k*(T22 - T19)*(dr/2)/(ro*dtheta) = 0 
//Node 20 
k*(T19 - T20)*(r3*dtheta)/dr + k*(T23 - T20)*dr/(r2*dtheta) + k*(T21 - T20)*(r1*dtheta)/dr + k*(T17 - 
T20)*dr/(r2*dtheta) = 0 
//Node 21 
k*(T18 - T21)*(dr/2)/(ri*dtheta) + k*(T20 - T21)*(r1*dtheta)/dr + k*(T24 - T21)*(dr/2)/(ri*dtheta) + 
h*(ri*dtheta)*(Tinf - T21) = 0 
//Node 22 
k*(T19 - T22)*(dr/2)/(ro*dtheta) + k*(T23 - T22)*(r3*dtheta)/dr + k*(T25 - T22)*(dr/2)/(ro*dtheta) = 0 
//Node 23 
k*(T22 - T23)*(r3*dtheta)/dr + k*(T26 - T23)*dr/(r2*dtheta) + k*(T24 - T23)*(r1*dtheta)/dr + k*(T20 - 
T23)*dr/(r2*dtheta) = 0 
//Node 24 
k*(T21 - T24)*(dr/2)/(ri*dtheta) + k*(T23 - T24)*(r1*dtheta)/dr + k*(T27 - T24)*(dr/2)/(ri*dtheta) + 
h*(ri*dtheta)*(Tinf - T24) = 0 
 

Continued… 
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//Node 25 
k*(T22 - T25)*(dr/2)/(ro*dtheta) + k*(T26 - T25)*(r3*dtheta/2)/dr = 0 
//Node 26 
k*(T25 - T26)*(r3*dtheta/2)/dr + k*(T23 - T26)*dr/(r2*dtheta) + k*(T27 - T26)*(r1*dtheta/2)/dr = 0 
//Node 27 
k*(T24 - T27)*(dr/2)/(ri*dtheta) + k*(T26 - T27)*(r1*dtheta/2)/dr + h*(ri*dtheta/2)*(Tinf - T24) = 0 
 
//Heat Transfer Rate Per Unit Depth (W/m) 
qprime = 2*((k/dy)*((T1 - T6)*dx/2 + (T2 - T7)*dx + (T3 - T8)*dx + (T4 - T9)*dx  + (T5 - T10)*dx/2)) 
 
 
 

(2) For an isothermal tube at Ts = 100°C, the heat transfer per unit length is 

' ( 2 ) ( 3 3) 240W / m K ( 20 10 m 2 20 10 m) (100 20) Ci i sq h r r T Tπ π= + × − − −= ⋅ × × × + × × × − °∞
    = 1975 W/m. The conduction resistance posed by the tube wall is responsible for 
decreasing the actual heat transfer rate below this value. 
 
 

 
 
 
 
 
 
 
 
 

 



PROBLEM 4.61  
KNOWN:  Steady-state temperatures (°C) associated with selected nodal points in a two-dimensional 
system.  
FIND:  (a) Temperatures at nodes 1, 2 and 3, (b) Heat transfer rate per unit thickness from the system 
surface to the fluid.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state, two-dimensional conduction, (2) Constant properties.  
ANALYSIS:  (a) Using the finite-difference equations for Nodes 1, 2 and 3: 

Node 1, Interior node, Eq. 4.29:  1 neighbors
1T T
4

= ⋅∑  

 ( )1
1T 172.9 137.0 132.8 200.0 C 160.7 C
4

= + + + =o o      < 

Node 2, Insulated boundary, Eq. 4.46 with h = 0, Tm,n = T2 

( )2 m-1,n m+1,n m,n-1
1T T T 2T
4

= + +  

( )2
1T 129.4 45.8 2 103.5 C 95.6 C
4

= + + × =o o       < 

Node 3, Plane surface with convection, Eq. 4.42, Tm,n = T3  

( )3 m-1,n m,n+1 m,n-1
h x 2h x

2 2 T 2T T T T
k k ∞
Δ Δ

+ = + + +⎡ ⎤
⎢ ⎥⎣ ⎦

 

2h x/k 50W/m K 0.1m/1.5W/m K 3.33Δ = ⋅ × ⋅ =  
( ) ( )32 3.33 2 T 2 103.5 45.8 67.0 C 2 3.33 30 C+ = × + + + × ×° o  

( )3
1

T 319.80 199.80 C=48.7 C
10.66

= + ° °        < 

(b) The heat rate per unit thickness from the surface to the fluid is determined from the sum of the 
convection rates from each control volume surface. 
 conv a b c dq q q q q′ ′ ′ ′ ′= + + +     
 ( )i i iq h y T T∞= Δ −  

 ( )conv 2
W 0.1

q 50 m 45.8 30.0 C
2m K

′ = − ° +
⋅

⎡
⎢⎣

 

 
( )
( )
( )

0.1m 48.7 30.0 C
0.1m 67.0 30.0 C

0.1m
200.0 30.0 C

2

− ° +
− ° +

+ − ° ⎤
⎥⎦

 

 ( )convq 39.5 93.5 185.0 425  W/m 743 W/m.′ = + + + =     < 



PROBLEM 4.62 
 
KNOWN:  Nodal temperatures from a steady-state finite-difference analysis for a cylindrical fin of 
prescribed diameter, thermal conductivity and convection conditions (T∞ , h). 
 
FIND:  (a) The fin heat rate, qf, and (b) Temperature at node 3, T3.  
SCHEMATIC: 
 

 
 
T0 = 100.0°C 
T1 = 93.4°C 
T2 = 89.5°C 

  
ASSUMPTIONS:  (a) The fin heat rate, qf, is that of conduction at the base plane, x = 0, and can be 
found from an energy balance on the control volume about node 0, in outE E 0− =& & , 
 f 1 conv f 1 convq q q 0 or q q q+ + = = − − . 
 
Writing the appropriate rate equation for q1 and qconv, with Ac = πD2/4 and P = πD, 

 ( )( ) ( ) ( ) ( )
2

1 0
f c 0 1 0 0

T T kDq kA hP x 2 T T T T 2 Dh x T T
x 4 x

π π∞ ∞
−

= − − Δ − = − − − Δ −
Δ Δ

 
 
Substituting numerical values, with Δx = 0.010 m, find 
 

 

( ) ( )

( )

2

f

2

15W m K 0.012m
q 93.4 100 C

4 0.010m
0.012m 25W m K 0.010m 25 100 C

2

π

π

× ⋅
= − −

×

− × × ⋅ × −

o

o
 

 ( )fq 1.120 0.353 W 1.473W= + = . < 
 
(b) To determine T3, derive the finite-difference equation for node 3, perform an energy balance on the 
control volume shown above, in outE E 0− =& & , 
 cv 3 1q q q 0+ + =  

 ( ) 3 2 1 2
2 c c

T T T ThP x T T kA kA 0
x x∞
− −

Δ − + + =
Δ Δ

 

 [ ]
2

3 1 2 2
c

hP xT T 2T T T
kA ∞
Δ

= − + − −  

Substituting numerical values, find 

 3T 89.2 C= o  < 
 
COMMENTS:  Note that in part (a), the convection heat rate from the outer surface of the control 
volume is significant (25%).  It would have been a poor approximation to ignore this term. 



PROBLEM 4.63 
 
KNOWN:  Dimensions of a two-dimensional object with isothermal and adiabatic boundaries. 
 
FIND:  (a) Estimate of the shape factor using a one-dimensional analysis and (b) estimate of the shape 
factor using a finite difference method with Δx = Δy = 0.05 L. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) No internal generation, (4) 
One-dimensional conduction in part (a), (5) Two-dimensional conduction in part (b). 
 
ANALYSIS:  (a) As a first approximation, we ignore conduction in the cross-hatched regions. 
 
 
 
 
 
 
 
 
 
    
Hence,  
 

1 2 1 2 1 2' ( ) ( / 3) ( ) / ( ) /5q Sk T T H k T T L k T T= − ≈ − = −  
 

Therefore, S ≈ 0.20.          < 
 
(b) We begin by taking advantage of the symmetry of the problem. Recognize that the line y = H/2 is 
an adiabat, and the line x = L/2 is an isotherm at T = (T1 + T2)/2. Hence, only one quarter of the domain 
needs to be modeled. Arbitrarily, we select the upper left quarter for analysis. Note that Δx = Δy. 
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We may use the finite difference equations from the text, or note that for each node, an energy balance 
can be written for the corresponding control volume. Consider, for example, the control volume about 
Node 2 for which we may write 
 

1 2 13 2 3 2( ) ( ) ( ) 0
2 2
y T T x T T y T Tk k k

x y x
Δ − Δ − Δ −

× + × + × =
Δ Δ Δ

 

 or 
1 2 3 2

13 2
( ) ( )( ) 0

2 2
T T T TT T− −

+ − + =  

 
We let the temperature at x = 0 be T1 = 1 and the temperature at x = L/2 be T2 = 0.5. The 45 equations 
are solved simultaneously with the IHT code provided in the Comment. The resulting nodal 
temperatures in the upper left corner are: 
 

1.0000 0.9636 0.9226 0.8737 0.8215 0.7683 0.7147 0.6610 0.6074 0.5537 0.5000 
 
1.0000 0.9659 0.9265 0.8753 0.8220 0.7684 0.7147 0.6611 0.6074 0.5537 0.5000 
 
1.0000 0.9734 0.9423 0.8790 0.8229 0.7686 0.7148 0.6611 0.6074 0.5537 0.5000 
 
1.0000 0.9853 0.9753 
 
1.0000 0.9923 0.9884 
 
1.0000 0.9957 0.9938 
 
1.0000 0.9966 0.9952 

 
After solving for the temperatures, the heat transfer rate per unit depth may be evaluated at any x 
location, and for x = L/2 it may be expressed as 
 

  10 11 21 22 32 33
/ 2 / 2' ( ) ( ) ( )y y yq k T T T T T T
x x x

Δ Δ Δ⎡ ⎤= − + − + −⎢ ⎥Δ Δ Δ⎣ ⎦
   (1) 

 
or, in terms of the shape factor, 
 
  ' ( )h cq Sk T T= −         (2) 
 
Equating Eqs. (1) and (2) yields the shape factor, S ≈ 0.215.     < 
 
We note that the shape factor calculated with the finite difference approach is only slightly greater 
than the shape factor based upon the one-dimensional approximation. The good agreement is expected 
since the major resistance to heat transfer is posed by the top and bottom slender regions that connect 
the two isothermal boundaries. We also note that temperatures are nearly isothermal in the region y ≈ 
H/2 due to the adiabatic interior. 
 
 
 
 
 

Continued… 
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COMMENTS: The IHT code is listed below. For each control volume, we note that 0inE =&  and Δy = 
Δx, yielding the following energy balances for all but the isothermal nodes. 
 
 

Th = 1 
Tc =0.5 
 
//Top Row 
 
//Node 1 
T1 = Th 
//Node 2 
(T1 - T2)/2 + (T3 - T2)/2 + (T13 - T2) = 0 
//Node 3 
(T2 - T3)/2 + (T4 - T3)/2 + (T14 - T3) = 0 
//Node 4 
(T3 - T4)/2 + (T5 - T4)/2 + (T15 - T4) = 0 
//Node 5 
(T4 - T5)/2 + (T6 - T5)/2 + (T16 - T5) = 0 
//Node 6 
(T5 - T6)/2 + (T7 - T6)/2 + (T17 - T6) = 0 
//Node 7 
(T6 - T7)/2 + (T8 - T7)/2 + (T18 - T7) = 0 
//Node 8 
(T7 - T8)/2 + (T9 - T8)/2 + (T19 - T8) = 0 
//Node 9 
(T8 - T9)/2 + (T10 - T9)/2 + (T20 - T9) = 0 
//Node 10 
(T9 - T10)/2 + (T11 - T10)/2 + (T21 - T10) = 0 
//Node 11 
T11 = Tc 
 
//Second Row from Top 
 
//Node 12 
T12 = Th 
//Node 13 
(T12 - T13) + (T2 - T13) + (T14 - T13) + (T24 - T13) = 0 
//Node 14 
(T13 - T14) + (T3 - T14) + (T15 - T14) + (T25 - T14) = 0 
//Node 15 
(T14 - T15) + (T4 - T15) + (T16 - T15) + (T26 - T15) = 0 
//Node 16 
(T15 - T16) + (T5 - T16) + (T17 - T16) + (T27 - T16) = 0 
//Node 17 
(T16 - T17) + (T6 - T17) + (T18 - T17) + (T28 - T17) = 0 
//Node 18 
(T17 - T18) + (T7 - T18) + (T19 - T18) + (T29 - T18) = 0 
//Node 19 
(T18 - T19) + (T8 - T19) + (T20 - T19) + (T30 - T19) = 0 
//Node 20 
(T19 - T20) + (T9 - T20) + (T21 - T20) + (T31 - T20) = 0 
//Node 21 
(T20 - T21) + (T10 - T21) + (T22 - T21) + (T32 - T21) = 0 
//Node 22 
T22 = Tc 
 
//Third Row from Top 
 
//Node 23 
T23 = Th 
//Node 24 
(T23 - T24) + (T13 - T24) + (T25 - T24) + (T35 - T24) = 0 
//Node 25 
(T24 - T25) + (T14 - T25) + (T26 - T25)/2 + (T36 - T25)/2 = 0 
//Node 26 
 

Continued… 



Problem 4.63 (Cont.) 
 

 
(T25 - T26)/2 + (T15 - T26) + (T27 - T26)/2 = 0 
//Node 27 
(T26 - T27)/2 + (T16 - T27) + (T28 - T27)/2 = 0 
//Node 28 
(T27 - T28)/2 + (T17 - T28) + (T29 - T28)/2 = 0 
//Node 29 
(T28 - T29)/2 + (T18 - T29) + (T30 - T29)/2 = 0 
//Node 30 
(T29 - T30)/2 + (T19 - T30) + (T31 - T30)/2 = 0 
//Node 31 
(T30 - T31)/2 + (T20 - T31) + (T32 - T31)/2 = 0 
//Node 32 
(T31 - T32)/2 + (T21 - T32) + (T33 - T32)/2 = 0 
//Node 33 
T33 = Tc 
 
//Fourth Row from Top 
 
//Node 34 
T34 = Th 
//Node 35 
(T34 - T35) + (T24 - T35) + (T36 - T35) + (T38 - T35) = 0 
//Node 36 
(T35 - T36) + (T25 - T36)/2 + (T39 - T36)/2 = 0 
 
//Fifth Row from Top 
 
//Node 37 
T37 = Th 
//Node 38 
(T37 - T38) + (T35 - T38) + (T39 - T38) + (T41 - T38) = 0 
//Node 39 
(T38 - T39) + (T36 - T39)/2 + (T42 - T39)/2 = 0 
 
//Sixth Row from Top 
//Node 40 
T40 = Th 
//Node 41 
(T40 - T41) + (T38 - T41) + (T42 - T41) + (T44 - T41) = 0 
//Node 42 
(T41 - T42) + (T39 - T42)/2 + (T45 - T42)/2 = 0 
 
//Bottom Row 
//Node 43 
T43 = Th 
//Node 44 
(T43 - T44)/2 + (T41 - T44) + (T45 - T44)/2 = 0 
//Node 45 
(T44 - T45)/2 + (T42 - T45)/2 = 0 
 
//Shape Factor 
 
H = 1 
L = H*5/3 
k = 1 
deltay = 0.05*L 
deltax = deltay 
 
//Heat Rate at RHS of Computational Domain (W/m) 
 
qprime = ((T10 - T11)*k*deltay/2)/deltax + ((T21 - T22)*k*deltay)/deltax + ((T32 - T33)*k*deltay/2)/deltax 
qprime = S*k*(Th - Tc) 
 
 



PROBLEM 4.64 
 
KNOWN:  Square shape subjected to uniform surface temperature conditions. 
 
FIND:  (a) Temperature at the four specified nodes; estimate the midpoint temperature To, (b) Reducing 
the mesh size by a factor of 2, determine the corresponding nodal temperatures and compare results, and 
(c) For the finer grid, plot the 75, 150, and 250°C isotherms. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state, two-dimensional conduction, (2) Constant properties. 
 
ANALYSIS:  (a) The finite-difference equation for each node follows from Eq. 4.29 for an interior point 
written in the form, Ti = 1/4∑Tneighbors.  Using the Gauss-Seidel iteration method, Section 4.5.2, the finite-
difference equations for the four nodes are: 
 

 ( )k k 1 k 1 k 1 k 1
1 2 3 2 3T 0.25 100 T T 50 0.25T 0.25T 37.5− − − −= + + + = + +  

 

 ( )k k 1 k 1 k 1 k 1
2 4 1 1 4T 0.25 100 200 T T 0.25T 0.25T 75.0− − − −= + + + = + +  

 

 ( )k k 1 k 1 k 1 k 1
3 1 4 1 4T 0.25 T T 300 50 0.25T 0.25T 87.5− − − −= + + + = + +  

 

 ( )k k 1 k 1 k 1 k 1
4 2 3 2 3T 0.25 T 200 300 T 0.25T 0.25T 125.0− − − −= + + + = + +  

 
The iteration procedure using a hand calculator is implemented in the table below.  Initial estimates are 
entered on the k = 0 row. 
 

k T1 T2 T3 T4  
 (°C) (°C) (°C) (°C) 

0 100 150 150 250  
1 112.50 165.63 178.13 210.94  
2 123.44 158.60 171.10 207.43  
3 119.93 156.40 169.34 206.55  
4 119.05 156.40 168.90 206.33  
5 118.83 156.29 168.79 206.27  
6 118.77 156.26 168.76 206.26   
7 118.76 156.25 168.76 206.25 <

 
Continued... 
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By the seventh iteration, the convergence is approximately 0.01°C.  The midpoint temperature can be 
estimated as 
 

 ( ) ( )o 1 2 3 4T T T T T 2 118.76 156.25 168.76 206.25 C 4 162.5 C= + + + = + + + =o o  
 
(b) Because all the nodes are interior ones, the nodal equations can be written by inspection directly into 
the IHT workspace and the set of equations solved for the nodal temperatures (°C). 
 

Mesh To T1 T2 T3 T4 
Coarse 162.5 118.8 156.3 168.8 206.3 
Fine 162.5 117.4 156.1 168.9 207.6 

 
The maximum difference for the interior points is 1.4°C (node 1), but the estimate at the center, To, is the 
same, independently of the mesh size.  In terms of the boundary surface temperatures, 
 

 ( )oT 50 100 200 300 C 4 162.5 C= + + + =o o  
 
Why must this be so? 
 
(c)  To generate the isotherms, it would be necessary to employ a contour-drawing routine using the 
tabulated temperature distribution (°C) obtained from the finite-difference solution.  Using these values as 
a guide, try sketching a few isotherms. 
 

- 100 100 100 100 100 - 
50 86.0 105.6 119 131.7 151.6 200 
50 88.2 117.4 138.7 156.1 174.6 200 
50 99.6 137.1 162.5 179.2 190.8 200 
50 123.0 168.9 194.9 207.6 209.4 200 
50 173.4 220.7 240.6 246.8 239.0 200 
- 300 300 300 300 300 - 

 
COMMENTS:  Recognize that this finite-difference solution is only an approximation to the temperature 
distribution, since the heat conduction equation has been solved for only four (or 25) discrete points 
rather than for all points if an analytical solution had been obtained. 



PROBLEM 4.65 
 
KNOWN:  Long bar of square cross section, three sides of which are maintained at a constant 
temperature while the fourth side is subjected to a convection process. 
 
FIND:  (a) The mid-point temperature and heat transfer rate between the bar and fluid; a numerical 
technique with grid spacing of 0.2 m is suggested, and (b) Reducing the grid spacing by a factor of 2, find 
the midpoint temperature and the heat transfer rate.  Also, plot temperature distribution across the surface 
exposed to the fluid. 
 
SCHEMATIC: 

 
 

 
ASSUMPTIONS:  (1) Steady-state, two-dimensional conduction, (2) Constant properties. 
 
ANALYSIS:  (a) Considering symmetry, the nodal network is shown above.  The matrix inversion 
method of solution will be employed.  The finite-difference equations are: 
 
 Nodes 1, 3, 5 -  Interior nodes, Eq. 4.29; written by inspection. 
 Nodes 2, 4, 6 - Also can be treated as interior points, considering symmetry. 
 Nodes 7, 8 - On a plane with convection, Eq. 4.42; noting that hΔx/k = 
         10 W/m2⋅K × 0.2 m/2W/m⋅K = 1, find 
  Node 7:  (2T5 + 300 + T8) + 2×1⋅100 - 2(1+2)T7 = 0 
  Node 8:  (2T6 + T7 + T7) + 2×1⋅100 - 2(1+2)T8 = 0 
 
The solution matrix [T] can be found using a stock matrix program using the [A] and [C] matrices shown 
below to obtain the solution matrix [T] (Eq. 4.48).  Alternatively, the set of equations could be entered 
into the IHT workspace and solved for the nodal temperatures.  
 

 

4 1 1 0 0 0 0 0 600 292.2
2 4 0 1 0 0 0 0 300 289.2
1 0 4 1 1 0 0 0 300 279.7
0 1 2 4 0 1 0 0 0 272.2A C T0 0 1 0 4 1 1 0 300 254.5
0 0 0 1 2 4 0 1 0 240.1
0 0 0 0 2 0 6 1 500 198.1
0 0 0 0 0 2 2 6 200 179.4

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
From the solution matrix, [T], find the mid-point temperature as 

 T4 = 272.2°C  < 
Continued... 
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The heat rate by convection between the bar and fluid is given as, 
 
 ( )conv a b cq 2 q q q′ ′ ′ ′= + +  
 
 ( )( ) ( )( ) ( )( )conv 8 7q 2 h x 2 T T h x T T h x 2 300 T∞ ∞ ∞′ ⎡ ⎤= Δ − + Δ − + Δ −⎣ ⎦  
 

 ( ) ( ) ( ) ( )2
convq 2 10 W m K 0.2m 2 179.4 100 2 198.1 100 300 100 K⎡ ⎤′ ⎡ ⎤= ⋅ × − + − + −⎣ ⎦⎢ ⎥⎣ ⎦

 

 convq 952 W m′ = .  < 
 
(b) Reducing the grid spacing by a factor of 2, the nodal arrangement will appear as shown.  The finite-
difference equation for the interior and centerline nodes were written by inspection and entered into the 
IHT workspace.  The IHT Finite-Difference Equations Tool for 2-D, SS conditions, was used to obtain 
the FDE for the nodes on the exposed surface. 
 

 

 
 
 

 
The midpoint temperature T13 and heat rate for the finer mesh are 

 T13 = 271.0°C q′  = 834 W/m < 
 
COMMENTS:  The midpoint temperatures for the coarse and finer meshes agree closely, T4 = 272°C vs. 
T13 = 271.0°C, respectively.  However, the estimate for the heat rate is substantially influenced by the 
mesh size; q′  = 952 vs. 834 W/m for the coarse and finer meshes, respectively. 

m



PROBLEM 4.66 
 
KNOWN:  Dimensions of a two-dimensional, straight triangular fin. Fin base and ambient 
temperatures, thermal conductivity and heat transfer coefficient. 
 
FIND:  Fin efficiency by using a finite difference solution with specified grid. 
 
SCHEMATIC: 

x

y
T∞ = 20ºC
h = 50 W/m2·K

t = 20 mm

L = 50 mm

• • •• • •

•

•••••
••••

•••
••

1                   7                  12                   16  19                  21
2                   8                  13                   17 20
3                   9                  14                   18
4                  10                 15
5                  11
6

Δx = 10 mm
Δy = 2 mm

Δl  

k = 25 W/m·K

Tb = 50°C
 

ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) No internal generation, (4) 
Two-dimensional conduction. 
 
ANALYSIS:   We may combine heat fluxes determined from Fourier’s law and Newton’s law of 
cooling with expressions for the size of the control surfaces of the various control volumes to 
determine the heat rate per unit depth into each control volume within the discretized domain. 
Application of conservation of energy for each control volume yields the expression in 0E =& . Note 

that 2 2l x yΔ = Δ + Δ = 10.198 mm. 
 
Nodes 1, 2, 3, 4, 5 and 6: T1 = T2 = T3 = T4 = T5 = T6 = Tb = 50°C. 
 

Node 7:   1 7 8 7 12 7( )( / 2) ( ) ( )( / 2) 0k T T y k T T x k T T y
x y x

− Δ − Δ − Δ
+ + =

Δ Δ Δ
 

 

Node 8:  2 8 7 8 13 8 9 8( )( ) ( ) ( )( ) ( )( ) 0k T T y k T T x k T T y k T T x
x y x y

− Δ − Δ − Δ − Δ
+ + + =

Δ Δ Δ Δ
 

 

Node 9:  3 9 8 9 14 9 10 9( )( ) ( ) ( )( ) ( )( ) 0k T T y k T T x k T T y k T T x
x y x y

− Δ − Δ − Δ − Δ
+ + + =

Δ Δ Δ Δ
 

 

Node 10: 4 10 9 10 15 10 11 10( )( ) ( ) ( )( ) ( )( ) 0k T T y k T T x k T T y k T T x
x y x y

− Δ − Δ − Δ − Δ
+ + + =

Δ Δ Δ Δ
 

 

Node 11: 5 11 10 11
11

( )( ) ( ) ( ) 0k T T y k T T x h l T T
x y ∞

− Δ − Δ
+ + Δ − =

Δ Δ
 

Continued… 
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Node 12: 7 12 13 12 16 12( )( / 2) ( ) ( )( / 2) 0k T T y k T T x k T T y
x y x

− Δ − Δ − Δ
+ + =

Δ Δ Δ
 

 

Node 13: 8 13 12 13 17 13 14 13( )( ) ( ) ( )( ) ( )( ) 0k T T y k T T x k T T y k T T x
x y x y

− Δ − Δ − Δ − Δ
+ + + =

Δ Δ Δ Δ
 

 

Node 14: 9 14 13 14 18 14 15 14( )( ) ( ) ( )( ) ( )( ) 0k T T y k T T x k T T y k T T x
x y x y

− Δ − Δ − Δ − Δ
+ + + =

Δ Δ Δ Δ
 

 

Node 15: 10 15 14 15
15

( )( ) ( ) ( ) 0k T T y k T T x h l T T
x y ∞

− Δ − Δ
+ + Δ − =

Δ Δ
 

 

Node 16: 12 16 17 16 19 16( )( / 2) ( ) ( )( / 2) 0k T T y k T T x k T T y
x y x

− Δ − Δ − Δ
+ + =

Δ Δ Δ
 

 

Node 17: 13 17 16 17 20 17 18 17( )( ) ( ) ( )( ) ( )( ) 0k T T y k T T x k T T y k T T x
x y x y

− Δ − Δ − Δ − Δ
+ + + =

Δ Δ Δ Δ
 

 

Node 18: 14 18 17 18
18

( )( ) ( ) ( ) 0k T T y k T T x h l T T
x y ∞

− Δ − Δ
+ + Δ − =

Δ Δ
 

 

Node 19: 16 19 20 19 21 19( )( / 2) ( ) ( )( / 2) 0k T T y k T T x k T T y
x y x

− Δ − Δ − Δ
+ + =

Δ Δ Δ
 

 

Node 20: 17 20 19 20
20

( )( ) ( ) ( ) 0k T T y k T T x h l T T
x y ∞

− Δ − Δ
+ + Δ − =

Δ Δ
 

 

Node 21: ( )19 21
21

( )( / 2) / 2 ( ) 0k T T y h l T T
x ∞

− Δ
+ Δ − =

Δ
 

 
The fin heat rate per unit length is evaluated by considering conduction into its base expressed as 
 
 

' 1 7 2 8 3 9 4 10 5 11( )( / 2) ( )( ) ( )( ) ( )( ) ( )( )2f
T T y T T y T T y T T y T T yq k k k k k

x x x x x
− Δ − Δ − Δ − Δ − Δ⎛ ⎞= + + + +⎜ ⎟Δ Δ Δ Δ Δ⎝ ⎠

 

 
where the factor of two is due to heat transfer in the bottom half of the fin. The result is 

' 109 W/mfq = . The fin efficiency is evaluated using Eq. 3.91 yielding       
 

( ) ( )
' '

2 2 2 3 2 3 2

109 W/m 0.71
2 ( / 2) 50W/m K 2 (50 10 m) (20 10 m / 2) 30 K

f f
f

f b b

q q
n

hA h L tθ θ − −
= = = =

+ × + ×�
 < 
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From Fig. 3.19 we find Lc = 50 × 10-3 m, Ap = Lt/2 = (50 × 10-3 m × 20 × 10-3 m)/2 = 500 × 10-6 m2. 
Therefore, 
 

 
1/ 2 1/ 22

3/ 2 3 3/ 2
6 2

50 W/m K(50 10 m) 0.707
25 W/m K 500 10 mc

p

hL
kA

−
−

⎛ ⎞ ⎛ ⎞⋅
= × × =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⋅ × ×⎝ ⎠⎝ ⎠

 

 
and nf ≈ 0.78. The comparison between the calculated value and the value from the figure is 
reasonable. The difference may be attributed to convective loss from the fin adjacent to the base that is 
not accounted for in the finite difference solution, as discussed in Comment 3 below, or more 
generally, to the relatively coarse nodal mesh. 
 
COMMENTS: (1) The nodal temperatures are: 
 
T6 = 50°C 
T5 = 50°C T11 = 47.57°C 
T4 = 50°C T10 = 47.58°C T15 = 45.28°C 
T3 = 50°C T9 = 47.59°C T14 = 45.29°C T18 = 43.10°C 
T2 = 50°C T8 = 47.60°C T13 = 45.30°C T17 = 43.11°C T20 = 41.03°C 
T1 = 50°C T7 = 47.60°C T12 = 45.30°C T16 = 43.11°C T19 = 41.03°C T21 = 39.09°C 
 
Note the nearly uniform cross-sectional temperatures within the fin. Temperatures near the 
centerline are only slightly warmer than corresponding temperatures at a particular x-location 
nearer to the convectively-cooled fin surface. (2) The IHT code is listed below.  
 
// Input Parameters 
k = 25 
Tinf = 20 
Tbase = 50 
delx = 0.01 
dely = 0.002 
h = 50 
dell = sqrt(delx^2 + dely^2) 
 
//Nodal Energy Balance Equations 
 
//Node 1 
T1 = Tbase 
//Node 2 
T2 = Tbase 
//Node 3 
T3 = Tbase 
//Node 4 
T4 = Tbase 
//Node 5 
T5 = Tbase 
//Node 6 
T6 = Tbase 
//Node 7 
k*(T1 - T7)*dely/2/delx + k*(T8 - T7)*delx/dely + k*(T12 - T7)*dely/2/delx = 0 
//Node 8 
k*(T2 - T8)*dely/delx + k*(T7 - T8)*delx/dely + k*(T13 - T8)*dely/delx + k*(T9 - T8)*delx/dely = 0 
//Node 9 
k*(T3 - T9)*dely/delx + k*(T8 - T9)*delx/dely + k*(T14 - T9)*dely/delx + k*(T10 - T9)*delx/dely = 0 
//Node 10 
k*(T4 - T10)*dely/delx + k*(T9 - T10)*delx/dely + k*(T15 - T10)*dely/delx + k*(T11 - T10)*delx/dely = 0 
//Node 11 
k*(T5 - T11)*dely/delx + k*(T10 - T11)*delx/dely + h*dell*(Tinf - T11) = 0 
 

Continued… 
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//Node 12 
k*(T7 - T12)*dely/2/delx + k*(T13 - T12)*delx/dely + k*(T16 - T12)*dely/2/delx = 0 
//Node 13 
k*(T8 - T13)*dely/delx + k*(T12 - T13)*delx/dely + k*(T17 - T13)*dely/delx + k*(T14 - T13)*delx/dely = 0 
//Node 14 
k*(T9 - T14)*dely/delx + k*(T13 - T14)*delx/dely + k*(T18 - T14)*dely/delx + k*(T15 - T14)*delx/dely = 0 
//Node 15 
k*(T10 - T15)*dely/delx + k*(T14 - T15)*delx/dely + h*dell*(Tinf - T15) = 0 
//Node 16 
k*(T12 - T16)*dely/2/delx + k*(T17 - T16)*delx/dely + k*(T19 - T16)*dely/2/delx = 0 
//Node 17 
k*(T13 - T17)*dely/delx + k*(T16 - T17)*delx/dely + k*(T20 - T17)*dely/delx + k*(T18 - T17)*delx/dely = 0 
//Node 18 
k*(T14 - T18)*dely/delx + k*(T17 - T18)*delx/dely + h*dell*(Tinf - T18) = 0 
//Node 19 
k*(T16 - T19)*dely/2/delx + k*(T20 - T19)*delx/dely + k*(T21 - T19)*dely/2/delx = 0 
//Node 20 
k*(T17 - T20)*dely/delx + k*(T19 - T20)*delx/dely + h*dell*(Tinf - T20) = 0 
//Node 21 
k*(T19 - T21)*dely/2/delx + h*dell*(Tinf - T21)/2 = 0 
 
//Fin Heat Transfer Rate 
 
qfinhalf = k*(T1 - T7)*dely/2/delx + k*(T2 - T8)*dely/delx + k*(T3 - T9)*dely/delx + k*(T4 - T10)*dely/delx + k*(T5 - 
T11)*dely/delx 
 
qfin = 2*qfinhalf 
 
  
(3) The finite difference equations do not account for convective losses from the fin in the exposed 
region of length / 2lΔ adjacent to the root of the fin. If this convective loss is estimated to be 
 

' 3
6 2

W2( / 2) ( ) 2 (10.198 10 m) / 2 50 (50 20 ) 15.3 W/m
m Kestq l h T T C C−

∞= Δ − = × × × × ° − ° =
⋅

 

 
The fin heat transfer rate increases to '

fq = 109 W/m + 15.3 W/m = 124.3 W/m and the fin efficiency 
increases to nf = 0.81, slightly greater than the fin efficiency found from Fig. 3.19. 
 
 
 
 
 
 



PROBLEM 4.67  
KNOWN:  Rectangular air ducts having surfaces at 80°C in a concrete slab with an insulated bottom 
and upper surface maintained at 30°C.  
FIND:  Heat rate from each duct per unit length of duct, q .′  
 
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Two-dimensional conduction, (3) No internal 
volumetric generation, (4) Constant properties.  
PROPERTIES:  Concrete (given):  k = 1.4 W/m⋅K.  
ANALYSIS:  Taking advantage of symmetry, the 
nodal network, using the suggested grid spacing 
 Δx = 2Δy = 37.50 mm 
 Δy = 0.125L = 18.75 mm 
where L = 150 mm, is shown in the sketch.  To 
evaluate the heat rate, we need the temperatures T1, 

T2, T3, T4, and T5.  All the nodes may be treated as 
interior nodes ( considering symmetry for those nodes on 
insulated boundaries), Eq. 4.29.  Use matrix notation, Eq. 
4.48, [A][T] = [C], and perform the inversion.  
The heat rate per unit length from the prescribed section of 
the duct follows from an energy balance on the nodes at the 
top isothermal surface. 

 
 

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2 3 4 5
1 s 2 s 3 s 4 s 5 s

1 s 2 s 3 s 4 s 5 s

q q q q q q
T T T T T T T T T Tq k x/2 k x k x k x k x/2

y y y y y
q k T T 2 T T 2 T T 2 T T T T
q 1.4 W/m K 41.70 30 2 44.26 30 2 53.92 30 2 54.89 30 54.98 30
q 228 W/m.

′ ′ ′ ′ ′ ′= + + + +
− − − − −′ = Δ + ⋅Δ + ⋅Δ + ⋅Δ + Δ
Δ Δ Δ Δ Δ

′ ⎡ ⎤= − + − + − + − + −⎣ ⎦
′ ⎡ ⎤= ⋅ − + − + − + − + −⎣ ⎦
′ =

 

 
Since the section analyzed represents one-half of the region about an air duct, the heat loss per unit 
length for each duct is,  
 ductq 2xq 456 W/m.′ ′= =         < 
 
          Continued … 
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Coefficient matrix [A]  

 



PROBLEM 4.68 
 
KNOWN:  Dimensions and operating conditions for a gas turbine blade with embedded channels. 
 
FIND:  Effect of applying a zirconia, thermal barrier coating. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state, two-dimensional conduction, (2) Constant properties, (3) Negligible 
radiation. 
 
ANALYSIS:  Preserving the nodal network of Example 4.3 and adding surface nodes for the TBC, finite-
difference equations previously developed for nodes 7 through 21 are still appropriate, while new 
equations must be developed for nodes 1c-6c, 1o-6o, and 1i-6i.  Considering node 3c as an example, an 
energy balance yields 
 

 ( ) ( ) ( ) ( ) ( ) ( )c c c c c
o ,o 3c 2c 3c 4c 3c 3o 3c

c

k y 2 k y 2 k x
h x T T T T T T T T 0

x x y∞
Δ Δ Δ

Δ − + − + − + − =
Δ Δ Δ

 

 
or, with Δx = 1 mm and Δyc = 0.5 mm, 
 

 ( ) o o
2c 4c 3o 3c ,o

c c

h x h x
0.25 T T 2T 2.5 T T

k k ∞
Δ Δ

+ + − + = −
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
Similar expressions may be obtained for the other 5 nodal points on the outer surface of the TBC. 
 
 Applying an energy balance to node 3o at the inner surface of the TBC, we obtain 
 

 ( ) ( ) ( ) ( ) ( ) ( )c c c cc
3c 3o 2o 3o 4o 3o 3i 3o

c t,c

k y 2 k y 2k x x
T T T T T T T T 0

y x x R
Δ ΔΔ Δ

− + − + − + − =
′′Δ Δ Δ

 

or, 

 ( )3c 2o 4o 3i 3o
c t,c c t,c

x x
2T 0.25 T T T 2.5 T 0

k R k R
Δ Δ

+ + + − + =
′′ ′′

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
Similar expressions may be obtained for the remaining nodal points on the inner surface of the TBC 
(outer region of the contact resistance). 

Continued... 
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 Applying an energy balance to node 3i at the outer surface of the turbine blade, we obtain 
 

 ( ) ( ) ( ) ( ) ( ) ( )3o 3i 2i 3i 4i 3i 9 3i
t,c

k y 2 k y 2x k x
T T T T T T T T 0

R x x y
Δ ΔΔ Δ

− + − + − + − =
′′ Δ Δ Δ

 

or, 

 ( )3o 2,i 4,i 9 3i
t,c t,c

x x
T 0.5 T T T 2 T 0

kR kR
Δ Δ

+ + + − + =
′′ ′′

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
Similar expressions may be obtained for the remaining nodal points on the inner region of the contact 
resistance. 
 
 The 33 finite-difference equations were entered into the workspace of IHT from the keyboard, 
and for ho = 1000 W/m2⋅K, T∞,o = 1700 K, hi = 200 W/m2⋅K and T∞,i = 400 K, the following temperature 
field was obtained, where coordinate (x,y) locations are in mm and temperatures are in °C. 
 

y\x 0 1 2 3 4 5 
0 1536 1535 1534 1533 1533 1532 

0.5 1473 1472 1471 1469 1468 1468 
0.5 1456 1456 1454 1452 1451 1451 
1.5 1450 1450 1447 1446 1444 1444 
2.5 1446 1445 1441 1438 1437 1436 
3.5 1445 1443 1438 0 0 0 

 
Note the significant reduction in the turbine blade temperature, as, for example, from a surface 
temperature of T1 = 1526 K without the TBC to T1i = 1456 K with the coating.  Hence, the coating is 
serving its intended purpose. 
 
COMMENTS:  (1) Significant additional benefits may still be realized by increasing hi.  (2) The 
foregoing solution may be used to determine the temperature field without the TBC by setting kc → ∞ and 

t,cR′′  → 0. 



PROBLEM 4.69 
 
KNOWN:  Dimensions of long cylinder, thickness of metal sheathing, volumetric generation rate 
within the sheathing, thermal conductivity of sheathing and convection heat transfer coefficient 
dependence upon angle θ. 
 
FIND:  (a) Temperature distribution within the thin sheathing neglecting θ-direction conduction heat 
transfer, (b) temperature distribution in the sheathing accounting for θ-direction conduction heat 
transfer in the metal. 
 
SCHEMATIC: 

T∞ = 25°C
Air

θ

D = 25 mm

Insulation

Metal sheathing
q = 5×106 W/m3

k = 25 W/m·K

.

t = 50 μm

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Uniform internal 
generation, (4) Metal sheathing is very thin relative to cylinder diameter, (5) One-dimensional 
conduction, (6) Negligible radiation. 
 
ANALYSIS:   (a) Neglecting conduction in the θ-direction in the sheathing, an energy balance at 
any θ location yields 
  ( )( )sqt h T Tθ ∞= −&    or  / ( )sT T qt h θ∞= + &  and 
 

h(θ) = 26 + 0.637θ - 8.92θ 2 for 0 ≤ θ < π/2;  h(θ) = 5 for π/2 ≤ θ ≤ π 
 
These equations may be solved to yield the temperature distribution that is plotted on the next page 
where x = θD/2. 
 
(b) Since the sheathing is thin relative to the cylinder diameter, we may evaluate one-dimensional 
conduction in the x-direction using the Cartesian coordinate system. The finite difference equations are 
derived by combining expressions for heat fluxes based upon Fourier’s law and Newton’s law of 
cooling, along with conservation of energy for each control volume within the discretized domain. 
Application of conservation of energy for each control volume yields the expression in 0gE E+ =& & . 
The discretized domain is shown below. 
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x
L = πD/2

• •• •
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qcond,rqcond,l

m -1 m + 1m

Δx

t 
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Continued… 



PROBLEM 4.69  (Cont.) 
 
The finite difference equations are as follows. 
 

Node 1:  2 1
1

( ) ( / 2)( ) ( / 2) 0T Tk t h x T T q x t
x ∞

−
+ Δ − + Δ =

Δ
&  

 

Nodes 2 - 20: 1 1( ) ( ) ( )( ) ( ) 0m m m m
m

T T T Tk t k t h x T T q x t
x x

− +
∞

− −
+ + Δ − + Δ =

Δ Δ
&  

 

Node 21: 20 21
21

( ) ( / 2)( ) ( / 2) 0T Tk t h x T T q x t
x ∞

−
+ Δ − + Δ =

Δ
&    

 
The temperature distribution is plotted below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
COMMENTS: (1) Conduction in the θ-direction within the sheathing smears the temperature 
distribution, increasing the low temperatures on the upstream half of the cylinder and lowering 
the temperatures on the downstream half of the cylinder.  (2) The IHT code is listed below.  

 
qdot = 5*10^6   //W/m^3 
t = 50*10^(-6) //m 
Tinf = 25 + 273 //K 
k = 25  //W/m⋅K 
D = 25/1000 //m 
L = pi*D/2 //m 
dx = L/20 //m 
 
h1 = 26  //W/m^2⋅K 
h2 = 25.88 
h3 = 25.32 
h4 = 24.32 
h5 = 22.88 
h6 = 21.00 
h7 = 18.68 
h8 = 15.92 
h9 = 12.71 
h10 = 9.07 
h11 = 5 
h12 = 5 
h13 = 5 
h14 = 5 
h15 = 5 
h16 = 5 
h17 = 5 
h18 = 5 
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PROBLEM 4.69  (Cont.) 
 

 
 
h19 = 5 
h20 = 5 
h21 = 5 
 

 //Node 1 
k*(T2 - T1)*t/dx + h1*(dx/2)*(Tinf - T1) + qdot*dx*t/2 = 0 
//Node 2 
k*(T1 - T2)*t/dx + k*(T3 - T2)*t/dx + h2*dx*(Tinf - T2) + qdot*dx*t = 0 
//Node 3 
k*(T2 - T3)*t/dx + k*(T4 - T3)*t/dx + h3*dx*(Tinf - T3) + qdot*dx*t = 0 
//Node 4 
k*(T3 - T4)*t/dx + k*(T5 - T4)*t/dx + h4*dx*(Tinf - T4) + qdot*dx*t = 0 
//Node 5 
k*(T4 - T5)*t/dx + k*(T6 - T5)*t/dx + h5*dx*(Tinf - T5) + qdot*dx*t = 0 
//Node 6 
k*(T5 - T6)*t/dx + k*(T7 - T6)*t/dx + h6*dx*(Tinf - T6) + qdot*dx*t = 0 
//Node 7 
k*(T6 - T7)*t/dx + k*(T8 - T7)*t/dx + h7*dx*(Tinf - T7) + qdot*dx*t = 0 
//Node 8 
k*(T7 - T8)*t/dx + k*(T9 - T8)*t/dx + h8*dx*(Tinf - T8) + qdot*dx*t = 0 
//Node 9 
k*(T8 - T9)*t/dx + k*(T10 - T9)*t/dx + h9*dx*(Tinf - T9) + qdot*dx*t  = 0 
//Node 10 
k*(T9 - T10)*t/dx + k*(T11 - T10)*t/dx + h10*dx*(Tinf - T10) + qdot*dx*t = 0 
//Node 11 
k*(T10 - T11)*t/dx + k*(T12 - T11)*t/dx + h11*dx*(Tinf - T11) + qdot*dx*t = 0 
//Node 12 
k*(T11 - T12)*t/dx + k*(T13 - T12)*t/dx + h12*dx*(Tinf - T12) + qdot*dx*t = 0 
//Node 13 
k*(T12 - T13)*t/dx + k*(T14 - T13)*t/dx + h13*dx*(Tinf - T13) + qdot*dx*t = 0 
//Node 14 
k*(T13 - T14)*t/dx + k*(T15 - T14)*t/dx + h14*dx*(Tinf - T14) + qdot*dx*t = 0 
//Node 15 
k*(T14 - T15)*t/dx + k*(T16 - T15)*t/dx + h15*dx*(Tinf - T15) + qdot*dx*t = 0 
//Node 16 
k*(T15 - T16)*t/dx + k*(T17 - T16)*t/dx + h16*dx*(Tinf - T16) + qdot*dx*t  = 0 
//Node 17 
k*(T16 - T17)*t/dx + k*(T18 - T17)*t/dx + h17*dx*(Tinf - T17) + qdot*dx *t= 0 
//Node 18 
k*(T17 - T18)*t/dx + k*(T19 - T18)*t/dx + h18*dx*(Tinf - T18) + qdot*dx*t  = 0 
//Node 19 
k*(T18 - T19)*t/dx + k*(T20 - T19)*t/dx + h19*dx*(Tinf - T19) + qdot*dx*t = 0 
//Node 20 
k*(T19 - T20)*t/dx + k*(T21 - T20)*t/dx + h20*dx*(Tinf - T20) + qdot*dx*t = 0 
//Node 21 
k*(T20 - T21)*t/dx +h21*(dx/2)*(Tinf - T21) + + qdot*dx*t/2 = 0 
 
 
 



PROBLEM 4.70 
 
 
KNOWN:  Diameter of long cylinder, thickness of metal sheathing, volumetric generation rate within 
the sheathing, thermal conductivity of sheathing and convection heat transfer coefficient dependence 
upon angle θ. Emissivity of the sheathing. 
 
FIND:  (a) Temperature distribution within the thin sheathing accounting for convection, conduction 
in the sheathing, and radiation exchange with the surroundings. 
 
SCHEMATIC: 

T∞ = 25°C
Air

θ

D = 25 mm
x

Insulation

Metal sheathing
q = 5×106 W/m3

k = 25 W/m·K

.

t = 50 μm

Tsur = 25°C

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Uniform internal 
generation, (4) Metal sheathing is very thin relative to cylinder diameter, (5) One-dimensional 
conduction, (6) Large surroundings. 
 
ANALYSIS:   From Problem 4.69, 
 

h(θ) = 26 + 0.637θ - 8.92θ 2 for 0 ≤ θ < π/2;  h(θ) = 5 for π/2 ≤ θ ≤ π 
 
Since the sheathing is thin relative to the cylinder diameter, we may evaluate one-dimensional 
conduction in the x-direction using the Cartesian coordinate system. The finite difference equations are 
derived by combining expressions for heat fluxes determined from Fourier’s law, Newton’s law of 
cooling, and Eq. 1.7 along with conservation of energy for each control volume within the discretized 
domain. Application of conservation of energy for each control volume yields the expression 

in 0gE E+ =& & . The discretized domain is shown below. 
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x
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Energy balances for the control volumes are as follows. 
 

Node 1:  4 42 1
1 sur 1

( ) ( / 2)( ) ( / 2)( ) ( / 2) 0T Tk t h x T T x T T q x t
x

εσ∞
−

+ Δ − + Δ − + Δ =
Δ

&  

Continued… 



PROBLEM 4.70 (Cont.) 
 
 

Nodes 2 - 20: 4 41 1
sur

( ) ( ) ( )( ) ( )( ) ( ) 0m m m m
m m

T T T Tk t k t h x T T x T T q x t
x x

εσ− +
∞

− −
+ + Δ − + Δ − + Δ =

Δ Δ
&  

 

Node 21: 4 420 21
21 sur 21

( ) ( / 2)( ) ( / 2)( ) ( / 2) 0T Tk t h x T T x T T q x t
x

εσ∞
−

+ Δ − + Δ − + Δ =
Δ

&    

 
The temperature distribution is plotted below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
COMMENTS: (1) Inclusion of radiation in the analysis shows that the resulting 
temperatures are reduced overall, as expected. The effects of conduction and radiation on 
local temperatures are comparable. (2) The IHT code is listed below.  
 

 
D = 25/1000  //m 
L = pi*D/2  //m 
dx = L/20  //m 
 
qdot = 5*10^6  //W/m^3 
t = 50*10^(-6)  //m 
Tinf = 25 + 273  //K 
k = 25   //W/m⋅K 
eps = 0.98  //unitless 
sigma=5.67*10^-8 //Stefan-Boltzmann constant, W/m^2⋅K^4 
Tsur = Tinf  //K 
 
h1 = 26   //W/m^2⋅K 
h2 = 25.88 
h3 = 25.32 
h4 = 24.32 
h5 = 22.88 
h6 = 21.00 
h7 = 18.68 
h8 = 15.92 
h9 = 12.71 
h10 = 9.07 
h11 = 5 
h12 = 5 
h13 = 5 
h14 = 5 
h15 = 5 
h16 = 5 
h17 = 5 

Continued… 
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PROBLEM 4.70 (Cont.) 
 

 
 
h18 = 5 
h19 = 5 
h20 = 5 
h21 = 5 
 
//Node 1 
k*(T2 - T1)*t/dx + h1*(dx/2)*(Tinf - T1) + eps*sigma*(dx/2)*(Tsur^4 - T1^4) + qdot*dx*t/2 = 0 
//Node 2 
k*(T1 - T2)*t/dx + k*(T3 - T2)*t/dx + h2*dx*(Tinf - T2) + eps*sigma*dx*(Tsur^4 - T2^4) + qdot*dx*t = 0 
//Node 3 
k*(T2 - T3)*t/dx + k*(T4 - T3)*t/dx + h3*dx*(Tinf - T3) + eps*sigma*dx*(Tsur^4 - T3^4) + qdot*dx*t = 0 
//Node 4 
k*(T3 - T4)*t/dx + k*(T5 - T4)*t/dx + h4*dx*(Tinf - T4) + eps*sigma*dx*(Tsur^4 - T4^4) + qdot*dx*t = 0 
//Node 5 
k*(T4 - T5)*t/dx + k*(T6 - T5)*t/dx + h5*dx*(Tinf - T5) + eps*sigma*dx*(Tsur^4 - T5^4) + qdot*dx*t = 0 
//Node 6 
k*(T5 - T6)*t/dx + k*(T7 - T6)*t/dx + h6*dx*(Tinf - T6) + eps*sigma*dx*(Tsur^4 - T6^4) + qdot*dx*t = 0 
//Node 7 
k*(T6 - T7)*t/dx + k*(T8 - T7)*t/dx + h7*dx*(Tinf - T7) + eps*sigma*dx*(Tsur^4 - T7^4) + qdot*dx*t = 0 
//Node 8 
k*(T7 - T8)*t/dx + k*(T9 - T8)*t/dx + h8*dx*(Tinf - T8) + eps*sigma*dx*(Tsur^4 - T8^4) + qdot*dx*t = 0 
//Node 9 
k*(T8 - T9)*t/dx + k*(T10 - T9)*t/dx + h9*dx*(Tinf - T9) + eps*sigma*dx*(Tsur^4 - T9^4) + qdot*dx*t  = 0 
//Node 10 
k*(T9 - T10)*t/dx + k*(T11 - T10)*t/dx + h10*dx*(Tinf - T10) + eps*sigma*dx*(Tsur^4 - T10^4) + 
qdot*dx*t = 0 
//Node 11 
k*(T10 - T11)*t/dx + k*(T12 - T11)*t/dx + h11*dx*(Tinf - T11) + eps*sigma*dx*(Tsur^4 - T11^4) + 
qdot*dx*t = 0 
//Node 12 
k*(T11 - T12)*t/dx + k*(T13 - T12)*t/dx + h12*dx*(Tinf - T12) + eps*sigma*dx*(Tsur^4 - T12^4) + 
qdot*dx*t = 0 
//Node 13 
k*(T12 - T13)*t/dx + k*(T14 - T13)*t/dx + h13*dx*(Tinf - T13) + eps*sigma*dx*(Tsur^4 - T13^4) + 
qdot*dx*t = 0 
//Node 14 
k*(T13 - T14)*t/dx + k*(T15 - T14)*t/dx + h14*dx*(Tinf - T14) + eps*sigma*dx*(Tsur^4 - T14^4) + 
qdot*dx*t = 0 
//Node 15 
k*(T14 - T15)*t/dx + k*(T16 - T15)*t/dx + h15*dx*(Tinf - T15) + eps*sigma*dx*(Tsur^4 - T15^4) + 
qdot*dx*t = 0 
//Node 16 
k*(T15 - T16)*t/dx + k*(T17 - T16)*t/dx + h16*dx*(Tinf - T16) + eps*sigma*dx*(Tsur^4 - T16^4) + 
qdot*dx*t  = 0 
//Node 17 
k*(T16 - T17)*t/dx + k*(T18 - T17)*t/dx + h17*dx*(Tinf - T17) + eps*sigma*dx*(Tsur^4 - T17^4) + 
qdot*dx *t= 0 
//Node 18 
k*(T17 - T18)*t/dx + k*(T19 - T18)*t/dx + h18*dx*(Tinf - T18) + eps*sigma*dx*(Tsur^4 - T18^4) + 
qdot*dx*t  = 0 
//Node 19 
k*(T18 - T19)*t/dx + k*(T20 - T19)*t/dx + h19*dx*(Tinf - T19) + eps*sigma*dx*(Tsur^4 - T19^4) + 
qdot*dx*t = 0 
//Node 20 
k*(T19 - T20)*t/dx + k*(T21 - T20)*t/dx + h20*dx*(Tinf - T20) + eps*sigma*dx*(Tsur^4 - T20^4) + 
qdot*dx*t = 0 
//Node 21 
k*(T20 - T21)*t/dx +h21*(dx/2)*(Tinf - T21) + eps*sigma*(dx/2)*(Tsur^4 - T21^4) + qdot*dx*t/2 = 0 
 
 



PROBLEM 4.71 
 
 
KNOWN:  Geometry of long airfoil shape, thickness of metal sheathing, volumetric generation rate 
within the sheathing, thermal conductivity of sheathing, emissivity of the sheathing, and measured 
temperatures at discrete locations. 
 
FIND:  Local convection coefficient at discrete locations accounting for conduction along the 
sheathing and radiation. Determine effects of conduction and radiation on the calculated convection 
heat transfer coefficients. 
 
SCHEMATIC: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Uniform internal 
generation, (4) Metal sheathing is very thin relative to cylinder diameter, (5) One-dimensional 
conduction, (6) Large surroundings. 
 
ANALYSIS:   We apply Newton’s law of cooling, Fourier’s law and Eq. 1.7 to a general control 
volume about the thin sheathing to find the following general finite-difference formula. 
 

' ' ' ' '
cond,l cond,r conv rad g 0q q q q E+ + + + =&  

or 
 

4 41 1
sur

( ) ( ) ( )( ) ( )( ) ( ) 0m m m m
m m m

T T T Tk t k t h x T T x T T q x t
x x

εσ− +
∞

− −
+ + Δ − + Δ − + Δ =

Δ Δ
&  

 
Recognizing that for m = 1, m – 1 = 30, we may substitute values of Tm – 1, Tm, and Tm + 1 and Δx = 2 
mm into the preceding formula and solve for hm. The results for case A (inclusion of convection, 
conduction and radiation), case B (inclusion of convection and conduction only) and case C (inclusion 
of convection only) are tabulated below. 

Continued… 
 
 

• ••
m - 1 m + 1m

Δx t  

qcond.l qcond.r

qconv qrad
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•

• ••
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Δx t  
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qconv qrad

• ••
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Δx t  
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qconv qrad

Eg
•
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PROBLEM 4.71 (Cont.) 
 
 
 

m Tm (°C)  hm,A (W/m2⋅K)  hm,B (W/m2⋅K)  hm,C (W/m2⋅K) 
 
1 27.77  162.8   168.8   144.4 
2 27.67  150.4   156.4   149.8 
3 27.71  145.3   151.3   147.6 
4 27.83  140.2   146.2   141.3 
5 28.06  132.1   138.1   130.7 
6 28.47  112.9   118.9   115.3 
7 28.98  100.1   106.2   100.5 
8 29.67  87.66   93.68   85.65 
9 30.66  76.32   82.38   70.67 
10 32.18  59.88   65.98   55.71 
11 34.29  42.01   48.17   43.06 
12 36.78  27.93   34.17   33.96 
13 39.29  19.14   25.45   27.99 
14 41.51  9.89   16.28   24.23 
15 42.68  9.06   15.48   22.62 
16 42.84  4.01   10.44   22.42 
17 41.29  3.98   10.36   24.55 
18 37.89  24.95   31.23   31.03 
19 34.51  52.06   58.23   42.06 
20 32.36  63.87   69.97   54.35 
21 31.13  74.28   80.34   65.25 
22 30.64  74.84   80.90   70.92 
23 30.60  70.08   76.12   71.43 
24 30.77  68.04   74.09   69.32 
25 31.16  58.26   64.33   64.94 
26 31.52  54.70   60.77   61.35 
27 31.85  40.08   46.17   58.39 
28 31.51  31.17   37.25   61.44 
29 29.91  78.24   84.27   81.47 
30 28.42  141.7   147.7   117.0 
 

Note: Maximum predicted values are underlined, while minimum predicted values are italicized. 
 
 
 
COMMENTS: (1) The heat transfer coefficient distribution is non-uniform. Such non-uniformity is 
typical of situations involving convection around complex geometries. The largest heat transfer 
coefficients exist at the leading edge of the object, while the smallest values of h are near the trailing 
edge. (2) Differences in the measured values of the heat transfer coefficient evolve when different 
analyses are used to interpret the measured temperatures. (3) Inclusion of radiation in Analysis B 
always results in lower heat transfer coefficients (relative to Analysis A) since the object is hot relative 
to the large surroundings. 



PROBLEM 4.72 
 
KNOWN:  Thin metallic foil of thickness, t, whose edges are thermally coupled to a sink at temperature  
Tsink is exposed on the top surface to an ion beam heat flux, ′′qs , and experiences radiation exchange with 
the vacuum enclosure walls at Tsur.  
FIND:  Temperature distribution across the foil. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) One-dimensional, steady-state conduction in the foil, (2) Constant properties, (3) 
Upper and lower surfaces of foil experience radiation exchange, (4) Foil is of unit length normal to the 
page. 
 
ANALYSIS: The 10-node network representing the foil is shown below. 
 

  
From an energy balance on node n, in outE E 0− =& & , for a unit depth, 
 a b c d eq q q q q 0′ ′ ′ ′ ′+ + + + =  

( ) ( )( ) ( ) ( )( )s r,n sur n n 1 n r,n sur n n 1 nq x h x T T k t T T x h x T T k t T T x 0+ −′′Δ + Δ − + − Δ + Δ − + − Δ =  (1) 
 
where the linearized radiation coefficient for node n is 

 ( )( )2 2
r,n sur n sur nh T T T Tεσ= + +  (2) 

Solving Eq. (1) for Tn find, 

 ( ) ( ) ( ) ( )2 2 2
n n 1 n 1 r,n sur s r,nT T T 2h x kt T x kt q h x kt 2+ − ′′= + + Δ + Δ Δ +⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (3) 

which, considering symmetry, applies also to node 1.  Using IHT for Eqs. (3) and (2), the set of finite-
difference equations was solved for the temperature distribution (K): 
 

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 
374.1 374.0 373.5 372.5 370.9 368.2 363.7 356.6 345.3 327.4 

 
Continued...



 
PROBLEM 4.72 (Cont.) 

 
COMMENTS:  (1) If the temperature gradients were excessive across the foil, it would wrinkle; most 
likely since its edges are constrained, the foil will bow. 
 
(2)  The IHT workspace for the finite-difference analysis follows: 
 

// The nodal equations:  
T1 = ( (T2 + T2) + A1 * Tsur +  B *q''s ) / ( A1 + 2) 
A1= 2 * hr1 * deltax^2 / (k * t) 
hr1 = eps * sigma * (Tsur + T1) * (Tsur^2 + T1^2) 
sigma = 5.67e-8 
B = deltax^2 / (k * t) 
 
T2 = ( (T1 + T3) + A2 * Tsur + B *q''s ) / ( A2 + 2) 
A2= 2 * hr2 * deltax^2 / (k * t) 
hr2 = eps * sigma * (Tsur + T2) * (Tsur^2 + T2^2) 
 
T3 = ( (T2 + T4) + A3 * Tsur + B *q''s ) / ( A3 + 2) 
A3= 2 * hr3 * deltax^2 / (k * t) 
hr3 = eps * sigma * (Tsur + T3) * (Tsur^2 + T3^2) 
 
T4 = ( (T3 + T5) + A4 * Tsur + B *q''s ) / ( A4 + 2) 
A4= 2 * hr4 * deltax^2 / (k * t) 
hr4 = eps * sigma * (Tsur + T4) * (Tsur^2 + T4^2) 
 
T5 = ( (T4 + T6) + A5 * Tsur + B *q''s ) / ( A5 + 2) 
A5= 2 * hr5 * deltax^2 / (k * t) 
hr5 = eps * sigma * (Tsur + T5) * (Tsur^2 + T5^2) 
 
T6 = ( (T5 + T7) + A6 * Tsur + B *q''s ) / ( A6 + 2) 
A6= 2 * hr6 * deltax^2 / (k * t) 
hr6 = eps * sigma * (Tsur + T6) * (Tsur^2 + T6^2) 
 
T7 = ( (T6 + T8) + A7 * Tsur + B *q''s ) / ( A7 + 2) 
A7= 2 * hr7 * deltax^2 / (k * t) 
hr7 = eps * sigma * (Tsur + T7) * (Tsur^2 + T7^2) 
 
T8 = ( (T7 + T9) + A8 * Tsur + B *q''s ) / ( A8 + 2) 
A8= 2 * hr8 * deltax^2 / (k * t) 
hr8 = eps * sigma * (Tsur + T8) * (Tsur^2 + T8^2) 
 
T9 = ( (T8 + T10) + A9 * Tsur + B *q''s ) / ( A9 + 2) 
A9= 2 * hr9 * deltax^2 / (k * t) 
hr9 = eps * sigma * (Tsur + T9) * (Tsur^2 + T9^2) 
 
T10 = ( (T9 + Tsink) + A10 * Tsur + B *q''s ) / ( A10 + 2) 
A10= 2 * hr10 * deltax^2 / (k * t) 
hr10 = eps * sigma * (Tsur + T10) * (Tsur^2 + T10^2) 
 
// Assigned variables 
deltax = L / 10   // Spatial increment, m 
L = 0.150   // Foil length, m 
t = 0.00025   // Foil thickness, m 
eps = 0.45   // Emissivity 
Tsur = 300   // Surroundings temperature, K 
k = 40    // Foil thermal conductivity, W/m.K 
Tsink = 300   // Sink temperature, K 
q''s = 600   // Ion beam heat flux, W/m^2 
 
/* Data Browser results: Temperature distribution (K)  and linearized radiation cofficients 
(W/m^2.K): 
 
T1 T2 T3 T4 T5 T6 T7 T8 T9    T10 
374.1 374 373.5 372.5 370.9 368.2 363.7 356.6 345.3 327.4 
 
hr1 hr2 hr3 hr4 hr5 hr6 hr7 hr8 hr9 hr10 

    3.956 3.953 3.943 3.926 3.895 3.845 3.765 3.639 3.444     3.157 */ 
 



PROBLEM 4.73  
KNOWN:  Bar of rectangular cross-section subjected to prescribed boundary conditions.  
FIND:  Using a numerical technique with a grid spacing of 0.1m, determine the temperature 
distribution and the heat transfer rate from the bar to the fluid.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Two-dimensional conduction, (3) 
Constant properties.  
ANALYSIS:  The nodal network has Δx = Δy = 0.1m.  Note the adiabat corresponding to 
system symmetry.  The finite-difference equations for each node can be written using either 
Eq. 4.29, for interior nodes, or Eq. 4.42, for a plane surface with convection.  In the case of 
adiabatic surfaces, Eq. 4.42 is used with h = 0.  Note that  

 
2h x 50W/m K 0.1m 3.333.

k 1.5 W/m K
Δ ⋅ ×

= =
⋅

 
 
  Node   Finite-Difference Equations  
    1  -4T1 + 2T2 + 2T4 = 0 
    2  -4T2 + T1 + T3 + 2T5 = 0 
    3  -4T3 + 200 + 2T6 + T2 = 0 
    4  -4T4 + T1 + 2T5 + T7 = 0 
    5  -4T5 + T2 + T6 + T8 + T4 = 0 
    6  -4T6 + T5 + T3 + 200 + T9 = 0 
    7  -4T7 + T4 + 2T8 + T10 = 0 
    8  -4T8 + T7 +T5 + T9 + T11 = 0 
    9  -4T9 + T8 + T6 + 200 + T12 = 0 
   10  -4T10 + T7 + 2T11 + T13 = 0 
   11  -4T11 + T10 + T8 + T12 + T14 = 0 
   12  -4T12 + T11 + T9 +200 + T15 = 0 
   13  2T10 + T14 + 6.666×30-10.666 T13 = 0 
   14  2T11 + T13 + T15 + 6.666×30-2(3.333+2)T14 = 0 
   15  2T12 +T14 + 200 + 6.666×30-2(3.333+2) T15 = 0  
Using the matrix inversion method, Section 4.5.2, the above equations can be written in the 
form [A] [T] = [C] where [A] and [C] are shown on the next page.  Using a stock matrix 
inversion routine, the temperatures [T] are determined.  
          Continued … 



PROBLEM 4.73 (Cont.) 
 

 

-4   2   0    2     0     0     0     0     0     0    0    0     0       0         0
1  -4   1    0     2     0     0     0     0     0    0    0     0       0         0
0    1 -4    0     0  -2   

[A] =

  0     0     0     0    0    0     0       0         0
1    0    0 -4     2     0     1     0     0     0    0    0     0       0         0
0    1    0    1  -4     1     0     1     0     0    0    0     0       0         0
0    0    1    0     1  -4     0     0     1     0    0    0     0       0         0
0    0    0    1     0     0  -4     2     0     1    0    0     0       0         0
0    0    0    0     1     0     1  -4     1     0    1    0     0       0         0
0    0    0    0     0     1     0     1  -4     0    0    1     0       0         0
0    0    0    0     0     0     1     0     0  -4    2    0     1       0         0
0    0    0    0     0     0     0     1     0  -1 -4    1     0       1         0
0    0    0    0     0     0     0     0     1    0    1 -4     0       0         1
0    0    0    0     0     0     0     0     0    2    0    0 -10.66  2         0
0    0    0    0     0     0     0     0     0    0    2    0     1    -10.66    1
0    0    0    0     0     0     0     0     0    0    0    2     0       1     -10.66

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

T  0 153.9
T  0 159.7
T-200 176.4
T  0 148.0
T  0 154.4
T-200
T  0

[C]   0           [T] T
-200 T
  0 T
  0 T
-200 T
-200 T
-200 T
-400 T

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= = =⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

( )
172.9
129.4
137.0 C
160.7
95.6
103.5
132.8
45.8
48.7
67.0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

o  

 
Considering symmetry, the heat transfer rate to the fluid is twice the convection rate from the surfaces 
of the control volumes exposed to the fluid.  Using Newton’s law of cooling, considering a unit 
thickness of the bar, find 
 

( ) ( ) ( ) ( )conv 13 14 15
y yq 2 h T T h y T T h y T T h 200 T

2 2∞ ∞ ∞ ∞
Δ Δ⎡ ⎤= ⋅ ⋅ − + ⋅Δ ⋅ − + ⋅Δ − + ⋅ −⎢ ⎥⎣ ⎦

 ( ) ( ) ( ) ( )conv 13 14 15
1 1q 2h y T T T T T T 200 T
2 2∞ ∞ ∞ ∞
⎡ ⎤= ⋅Δ − + − + − + −⎢ ⎥⎣ ⎦

 

( ) ( ) ( ) ( )conv 2
W 1 1q 2 50 0.1m 45.8 30 48.7 30 67.0 30 200 30

2 2m K
⎡ ⎤= × × − + − + − + −⎢ ⎥⎣ ⎦⋅

 

convq 1487 W/m.=          < 



PROBLEM 4.74 
 
KNOWN:  Upper surface and grooves of a plate are maintained at a uniform temperature T1, while the 
lower surface is maintained at T2 or is exposed to a fluid at T∞. 
 
FIND:  (a) Heat rate per width of groove spacing (w) for isothermal top and bottom surfaces using a 
finite-difference method with Δx = 40 mm, (b) Effect of grid spacing and convection at bottom surface. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) Steady-state, two-dimensional conduction, (2) Constant properties. 
 
ANALYSIS:  (a) Using a space increment of Δx = 40 mm, the symmetrical section shown in schematic 
(b) corresponds to one-half the groove spacing.  There exist only two interior nodes for which finite-
difference equations must be written. 
 
Node a: ( )a 1 b 2 14T T T T T 0− + + + =  

 ( )a b4T 200 T 20 200 0− + + + =  or a b4T T 420− =  (1) 
 
Node b: ( )b 1 a 2 a4T T T T T 0− + + + =  

 ( )b a4T 200 2T 20 0− + + =  or a b2T 4T 220− + =  (2) 
 
Multiply Eq. (2) by 2 and add to Eq. (1) to obtain 
 7Tb = 860                or                Tb = 122.9°C 
From Eq. (1), 
 4Ta - 122.9 = 420               or               Ta = (420 + 122.9)/4 = 135.7°C. 
The heat transfer through the symmetrical section is equal to the sum of heat flows through control 
volumes adjacent to the lower surface.  From the schematic, 

 ( ) a 2 b 21 2
1 2 3

T T T Tx T T xq q q q k k x k
2 y y 2 y

− −Δ − Δ⎛ ⎞ ⎛ ⎞′ ′ ′ ′= + + = + Δ +⎜ ⎟ ⎜ ⎟Δ Δ Δ⎝ ⎠ ⎝ ⎠
. 

 
Continued... 

(b)



 
PROBLEM 4.74 (Cont.) 

 
Noting that Δx = Δy, regrouping and substituting numerical values, find 
 

 ( ) ( ) ( )1 2 a 2 b 2
1 1q k T T T T T T
2 2
⎡ ⎤′ = − + − + −⎢ ⎥⎣ ⎦

 

 ( ) ( ) ( )1 1q 15W m K 200 20 135.7 20 122.9 20 3.86kW m
2 2
⎡ ⎤′ = ⋅ − + − + − =⎢ ⎥⎣ ⎦

. 

For the full groove spacing, totalq′  = 2 × 3.86 kW/m = 7.72 kW/m. < 
 
(b) Using the Finite-Difference Equations option from the Tools portion of the IHT menu, the following 
two-dimensional temperature field was computed for the grid shown in schematic (b), where x and y are 
in mm and the nodal temperatures are in °C.  Nodes 2-54 are interior nodes, with those along the 
symmetry adiabats characterized by Tm-1,n = Tm+1,n, while nodes 55-63 lie on a plane surface. 
 
y\x 0 10 20 30 40 50 60 70 80 
0     200 200 200 200 200 
10    200 191 186.6 184.3 183.1 182.8 
20   200 186.7 177.2 171.2 167.5 165.5 164.8 
30  200 182.4 169.5 160.1 153.4 149.0 146.4 145.5 
40 200 175.4 160.3 148.9 140.1 133.5 128.7 125.7 124.4 
50 141.4 134.3 125.7 118.0 111.6 106.7 103.1 100.9 100.1 
60 97.09 94.62 90.27 85.73 81.73 78.51 76.17 74.73 74.24 
70 57.69 56.83 55.01 52.95 51.04 49.46 48.31 47.60 47.36 
80 20 20 20 20 20 20 20 20 20 
 
The foregoing results were computed for h = 107 W/m2⋅K (h → ∞) and T∞ = 20°C, which is tantamount to 
prescribing an isothermal bottom surface at 20°C.  Agreement between corresponding results for the 
coarse and fine grids is surprisingly good (Ta = 135.7°C ↔ T23 = 140.1°C; Tb = 122.9°C ↔ T27 = 
124.4°C).  The heat rate is 
 
 ( ) ( ) ( ) ( ) ( )46 55 47 56 48 57 49 58 50 59q 2 k T T 2 T T T T T T T T′ ⎡= × − + − + − + − + −⎣  

  ( ) ( ) ( ) ( )51 60 52 61 53 62 54 63T T T T T T T T 2⎤+ − + − + − + − ⎦  

 [q 2 15 W m K 18.84 36.82 35.00 32.95 31.04 29.46′ = × ⋅ + + + + +  < 

  ]28.31 27.6 13.68 C 7.61kW m+ + + =o  
 
The agreement with ′q  = 7.72 kW/m from the coarse grid of part (a) is excellent and a fortuitous 
consequence of compensating errors.  With reductions in the convection coefficient from h → ∞ to h = 
1000, 200 and 5 W/m2⋅K, the corresponding increase in the thermal resistance reduces the heat rate to 
values of 6.03, 3.28 and 0.14 kW/m, respectively.  With decreasing h, there is an overall increase in nodal 
temperatures, as, for example, from 191°C to 199.8°C for T2 and from 20°C to 196.9°C for T55. 
 
NOTE TO INSTRUCTOR:  To reduce computational effort, while achieving the same educational 
objectives, the problem statement has been changed to allow for convection at the bottom, rather than the 
top, surface. 



PROBLEM 4.75  
KNOWN:  Rectangular plate subjected to uniform temperature boundaries.  
FIND:  Temperature at the midpoint using a finite-difference method with space increment of 0.25m  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Two-dimensional conduction, (3) Constant 
properties.  
ANALYSIS:  For the nodal network above, 12 finite-difference equations must be written.  It follows 
that node 8 represents the midpoint of the rectangle.  Since all nodes are interior nodes, Eq. 4.29 is 
appropriate and is written in the form 
 
 m neighbors4T T 0.− =∑  
 
For nodes on the symmetry adiabat, the neighboring nodes include two symmetrical nodes.  Hence, for 
Node 4, the neighbors are Tb, T8 and 2T3.  Because of the simplicity of the finite-difference 
equations, we may proceed directly to the matrices [A] and [C] – see Eq. 4.48 –  and matrix inversion 
can be used to find the nodal temperatures Tm. 
 

4  1   0   0   1   0   0   0   0   0   0  0
1 4   1   0   0   1   0   0   0   0   0  0
0   1 4   1   0   0   1   0   0   0   0  0
0   0   2 4   0   0   0   1   0   0   0  0
1   0   0   0 4   1   0  

A

−
−

−
−

−
=

 0   1   0   0  0
0   1   0   0   1 4   1   0   0   1   0  0
0   0   1   0   0  1  4   1   0   0   1  0
0   0   0   1   0  0   2  4   0   0   0  1
0   0   0   0   1  0   0   0  4   1   0  0
0   0   0  

−
−

−
−

200
150
150
150
50

  0     C   0
  0

100
 0   0  1   0   0   1  4   1  0 50

0   0   0   0   0  0   1   0   0   1  4  1 50
0   0   0   0   0  0   0   1   0   0   2  -4 50

−⎡ ⎤ ⎡
−⎢ ⎥ ⎢

⎢ ⎥ ⎢−
⎢ ⎥ ⎢−
⎢ ⎥ −
⎢ ⎥

=⎢ ⎥
⎢ ⎥
⎢ ⎥ −
⎢ ⎥− −
⎢ ⎥− −
⎢ ⎥ −⎢ ⎥⎣ ⎦ ⎣

96.5
112.9
118.9
120.4

73.2
86.2     T 92.3
94.0
59.9
65.5
69.9
71.0

⎤ ⎡ ⎤
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎦ ⎣ ⎦

 

 
The temperature at the midpoint (Node 8) is 
 
 ( ) 8T 1,0.5 T 94.0 C.= = o         < 
 
COMMENTS:  Using the exact analytical, solution – see Eq. 4.19 and Problem 4.2 – the midpoint 
temperature is found to be 94.5°C.  To improve the accuracy of the finite-difference method, it would 
be necessary to decrease the nodal mesh size. 



PROBLEM 4.76 
 
KNOWN:  Edge of adjoining walls (k = 1 W/m⋅K) represented by symmetrical element bounded by the 
diagonal symmetry adiabat and a section of the wall thickness over which the temperature distribution is 
assumed to be linear. 
 
FIND:  (a) Temperature distribution, heat rate and shape factor for the edge using the nodal network with  
= Δx = Δy = 10 mm; compare shape factor result with that from Table 4.1;  (b) Assess the validity of 
assuming linear temperature distributions across sections at various distances from the edge. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Two-dimensional, steady-state conduction, (2) Constant properties, and (3) Linear 
temperature distribution at specified locations across the section. 
 
ANALYSIS:  (a)  Taking advantage of symmetry along the adiabat diagonal, all the nodes may be treated 
as interior nodes.  Across the left-hand boundary, the temperature distribution is specified as linear.  The 
finite-difference equations required to determine the temperature distribution, and hence the heat rate, can 
be written by inspection. 
 
 ( )3 2 4 6 cT 0.25 T T T T= + + +  
 
 ( )4 2 5 7 3T 0.25 T T T T= + + +  
 
 ( )5 2 2 4 4T 0.25 T T T T= + + +  
 
 ( )6 3 7 8 bT 0.25 T T T T= + + +  
 
 ( )7 4 4 6 6T 0.25 T T T T= + + +  
 
 ( )8 6 6 a aT 0.25 T T T T= + + +  
 
The heat rate for both surfaces of the edge is 
 [ ]tot a b c dq 2 q q q q′ ′ ′ ′ ′= + + +  
 
 ( )( ) ( ) ( ) ( )[ ]tot c 2 3 2 4 2 5 2q 2 k x 2 T T y k x T T y k x T T y k x T T x′ = Δ − Δ + Δ − Δ + Δ − Δ + Δ − Δ  
The shape factor for the full edge is defined as 
 ( )tot 1 2q kS T T′ ′= −  

Solving the above equation set in IHT, the temperature (°C) distribution is 
Continued... 
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0 0 0 0 0
25 18 75 12 5 6 25
50 37 5 25 0
75 56 25

100

. . .
. .
.

 < 

 
and the heat rate and shape factor are 

 totq 100 W m S 1′ = =  < 
 
From Table 4.1, the edge shape factor is 0.54, considerably below our estimate from this coarse grid 
analysis. 
 
(b) The effect of the linear temperature distribution on the shape factor estimate can be explored using a 
more extensive grid as shown below.  The FDE analysis was performed with the linear distribution 
imposed as the different sections a, b, c, d, e.  Following the same approach as above, find 
 
Location of linear distribution (a) (b) (c) (d) (e) 
Shape factor, S 0.797 0.799 0.809 0.857 1.00 
 
The shape factor estimate decreases as the imposed linear temperature distribution section is located 
further from the edge.  We conclude that assuming the temperature distribution across the section directly 
at the edge is a poor-one. 
 

  
COMMENTS:  The grid spacing for this analysis is quite coarse making the estimates in poor agreement 
with the Table 4.1 result.  However, the analysis does show the effect of positioning the linear 
temperature distribution condition. 



PROBLEM 4.77  
KNOWN:  Long triangular bar insulated on the diagonal while sides are maintained at uniform 
temperatures Ta and Tb.   
FIND:  (a) Using a nodal network with five nodes to the side, and beginning with properly defined 
control volumes, derive the finite-difference equations for the interior and diagonal nodes and obtain the 
temperature distribution; sketch the 25, 50 and 75°C isotherms and  (b) Recognizing that the insulated 
diagonal surface can be treated as a symmetry line, show that the diagonal nodes can be treated as interior 
nodes, and write the finite-difference equations by inspection. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Two-dimensional heat transfer, and (3) Constant 
properties. 
 
ANALYSIS:  (a) For the nodal network shown above, nodes 2, 4, and 5 are interior nodes and, since Δx = 
Δy, the corresponding finite-difference equations are of the form, Equation 4.29, 
 
 j neighborsT 1 4 T= ∑  (1) 
 
For a node on the adiabatic, diagonal surface, an energy balance, in outE E 0− =& & , yields 
 
 a b cq q q 0′ ′ ′+ + =  
 

 5 3 2 3T T T T
0 k x k y 0

y x
− −

+ Δ + Δ =
Δ Δ

 

 
 ( )3 2 5T 1 2 T T= +  (2) 

 
That is, for the diagonal nodes, m, 
 
 m neighborsT 1 2 T= ∑  (3) 

 
To obtain the temperature distributions, enter Eqs. (1, 2, 3) into the IHT workspace and solve for the 
nodal temperatures (°C), tabulated according to the nodal arrangement: 
 

Continued... 
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−

− −

100 85 71
100 71 50 00
100 50 00 28 57 14 29

0 0 0

.

.43 .

. . .
 

 
The 25, 50 and 75°C isotherms are sketched below, using an interpolation scheme to scale the isotherms 
on the triangular bar. 
 

 
 
(b) If we consider the insulated surface as a symmetry plane, the nodal network appears as shown.  As 
such, the diagonal nodes can be treated as interior nodes, as Eq. (1) above applies.  Recognize the form is 
the same as that of Eq. (2) or (3). 
 

 
 
COMMENTS:  Always look for symmetry conditions which can greatly simplify the writing of nodal 
equations.  In this situation, the adiabatic surface can be treated as a symmetry plane such that the nodes 
can be treated as interior nodes, and the finite-difference equations can be written by inspection. 



PROBLEM 4.78 
 
KNOWN:  Straight fin of uniform cross section with insulated end. 
 
FIND:  (a) Temperature distribution using finite-difference method and validity of assuming one-
dimensional heat transfer, (b) Fin heat transfer rate and comparison with analytical solution, Eq. 3.81, (c) 
Effect of convection coefficient on fin temperature distribution and heat rate. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in fin, (3) Constant 
properties, (4) Uniform film coefficient. 
 
ANALYSIS:  (a) From the analysis of Problem 4.50, the finite-difference equations for the nodal 
arrangement can be directly written.  For the nodal spacing Δx = 4 mm, there will be 12 nodes.  With l  
>> w representing the distance normal to the page, 
 

 ( )
2

2 2 2 3
3c

hP h 2 h 2 500 W m K 2x x x 4 10 mm 0.0533
kA k w kw 50 W m K 6 10 m

−
−

⋅ ⋅ ⋅ ×
⋅Δ ≈ Δ = Δ = × =

⋅ ⋅ ⋅ × ×

l

l
 

 
Node 1: ( )2 1100 T 0.0533 30 2 0.0533 T 0+ + × − + =  or -2.053T1 + T2 = -101.6 

Node n: n 1 n 1 nT T 1.60 2.0533T 0+ −+ + − =  or n 1 n n 1T 2.053T T 1.60− −− + = −  
Node 12: ( ) ( )11 12T 0.0533 2 30 0.0533 2 1 T 0+ − + =  or 11 12T 1.0267T 0.800− = −  
 
Using matrix notation, Eq. 4.48, where [A] [T] = [C], the A-matrix is tridiagonal and only the non-zero 
terms are shown below.  A matrix inversion routine was used to obtain [T]. 
 

Tridiagonal Matrix A  Column Matrices 
          

Nonzero Terms  Values   Node C T 
 a1,1 a1,2  -2.053 1  1 -101.6 85.8 

a2,1 a2,2 a2,3 1 -2.053 1  2 -1.6 74.5 
a3,2 a3,3 a3,4 1 -2.053 1  3 -1.6 65.6 
a4,3 a4,4 a4,5 1 -2.053 1  4 -1.6 58.6 
a5,4 a5,5 a5,6 1 -2.053 1  5 -1.6 53.1 
a6,5 a6,6 a6,7 1 -2.053 1  6 -1.6 48.8 
a7,6 a7,7 a7,8 1 -2.053 1  7 -1.6 45.5 
a8,7 a8,8 a8,9 1 -2.053 1  8 -1.6 43.0 
a9,8 a9,9 a9,10 1 -2.053 1  9 -1.6 41.2 
a10,9 a10,10 a10,11 1 -2.053 1  10 -1.6 39.9 
a11,10 a11,11 a11,12 1 -2.053 1  11 -1.6 39.2 
a12,11 a12,12 a12,13 1 -1.027 1  12 -0.8 38.9 

 
The assumption of one-dimensional heat conduction is justified when Bi ≡ h(w/2)/k < 0.1.  Hence, with 
Bi = 500 W/m2⋅K(3 × 10-3 m)/50 W/m⋅K = 0.03, the assumption is reasonable. 

Continued... 



 
PROBLEM 4.78 (Cont.) 

 
(b) The fin heat rate can be most easily found from an energy balance on the control volume about Node 
0, 

 ( )0 1
f 1 conv 0

T T x
q q q k w h 2 T T

x 2 ∞
− Δ′ ′ ′= + = ⋅ + −
Δ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 ( ) ( ) ( )
3

3 2
f 3

100 85.8 C 4 10 m
q 50 W m K 6 10 m 500 W m K 2 100 30 C

24 10 m

−
−

−
− ×′ = ⋅ × + ⋅ ⋅ −
×

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

o
o  

 ( )fq 1065 140 W m 1205 W m′ = + = . < 
From Eq. 3.81, the fin heat rate is 

 ( )1/ 2
c bq hPkA tanh mLθ= ⋅ ⋅ . 

Substituting numerical values with P = 2(w + l ) ≈ 2 l  and Ac = w⋅ l , m = (hP/kAc)1/2 = 57.74 m-1 and M 
= (hPkAc)1/2 = 17.32 l  W/K.  Hence, with θb = 70°C, 
 ( )q 17.32 W K 70 K tanh 57.44 0.048 1203 W m′ = × × × =  
and the finite-difference result agrees very well with the exact (analytical) solution. 
 
(c) Using the IHT Finite-Difference Equations Tool Pad for 1D, SS conditions, the fin temperature 
distribution and heat rate were computed for h = 10, 100, 500 and 1000 W/m2⋅K.  Results are plotted as 
follows. 
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The temperature distributions were obtained by first creating a Lookup Table consisting of 4 rows of 
nodal temperatures corresponding to the 4 values of h and then using the LOOKUPVAL2 interpolating 
function with the Explore feature of the IHT menu.  Specifically, the function T_EVAL = 
LOOKUPVAL2(t0467, h, x) was entered into the workspace, where t0467 is the file name given to the 
Lookup Table.  For each value of h, Explore was used to compute T(x), thereby generating 4 data sets 
which were placed in the Browser and used to generate the plots.  The variation of q′  with h was simply 
generated by using the Explore feature to solve the finite-difference model equations for values of h 
incremented by 10 from 10 to 1000 W/m2⋅K. 
 
Although fq′  increases with increasing h, the effect of changes in h becomes less pronounced.  This trend 
is a consequence of the reduction in fin temperatures, and hence the fin efficiency, with increasing h.  For 
10 ≤ h ≤ 1000 W/m2⋅K, 0.95 ≥ ηf ≥ 0.24.  Note the nearly isothermal fin for h = 10 W/m2⋅K and the 
pronounced temperature decay for h = 1000 W/m2⋅K. 



PROBLEM 4.79 
 
KNOWN:  Pin fin of 10 mm diameter and length 250 mm with base temperature of 100°C experiencing 
radiation exchange with the surroundings and free convection with ambient air. 
 
FIND:  Temperature distribution using finite-difference method with five nodes.  Fin heat rate and 
relative contributions by convection and radiation. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in fin, (3) Constant 
properties, (4) Fin approximates small object in large enclosure, (5) Fin tip experiences convection and 
radiation, (6) hfc = 2.89[0.6 + 0.624(T - T∞)1/6]2. 
 
ANALYSIS:  To apply the finite-difference method, define the 5-node system shown above where Δx = 
L/5.  Perform energy balances on the nodes to obtain the finite-difference equations for the nodal 
temperatures. 
 
Interior node, n = 1, 2, 3 or 4 
 in outE E 0− =& &  
 
 a b c dq q q q 0+ + + =  (1) 

 

 ( ) ( )n 1 n n 1 n
r,n sur n c fc,n n c

T T T Th P x T T kA h P x T T kA 0
x x

+ −
∞

− −
Δ − + + Δ − + =

Δ Δ
 (2) 

 
where the free convection coefficient is 

 ( )
21/ 6

fc,n nh 2.89 0.6 0.624 T T∞⎡ ⎤= + −⎢ ⎥⎣ ⎦
 (3) 

and the linearized radiation coefficient is 

 ( )( )2 2
r,n n sur n surh T T T Tεσ= + +  (4) 

with P = πD and Ac = πD2/4. (5,6) 
 
Tip node, n = 5 
 in outE E 0− =& &  
 a b c d eq q q q q 0+ + + + =   

   

 
( )( ) ( ) ( )

( )( )
r,5 sur 5 r,5 c sur 5 fc,5 c 5

4 5
fc,5 5 c

h P x 2 T T h A T T h A T T
T Th P x 2 T T kA 0

x

∞

∞

Δ − + − + −
−

+ Δ − + =
Δ

 (7) 

Continued... 



 
PROBLEM 4.79 (Cont.) 

 
Knowing the nodal temperatures, the heat rates are evaluated as: 
 
Fin Heat Rate:  Perform an energy balance 
around Node b. 
 
 in outE E 0− =& &  
 
 a b c finq q q q 0+ + + =    
 

 ( )( ) ( )( ) ( )1 b
r,b sur b fc,b b c fin

T T
h P x 2 T T h P x 2 T T kA q 0

x∞
−

Δ − + Δ − + + =
Δ

 (8) 
 
where hr,b and hfc,b are evaluated at Tb.  
Convection Heat Rate:  To determine the portion of the heat rate by convection from the fin surface, we 
need to sum contributions from each node.  Using the convection heat rate terms from the foregoing 
energy balances, for, respectively, node b, nodes 1, 2, 3, 4 and node 5. 
 
 ) ) ( )cv b c c db 1 4 5q q q q q−= − − − +∑  (9) 
 
Radiation Heat Rate:  In the same manner, 
 
 ) ) ( )rad a b a bb 1 4 5q q q q q−= − − − +∑  
 
The above equations were entered into the IHT workspace and the set of equations solved for the nodal 
temperatures and the heat rates.  Summary of key results including the temperature distribution and heat 
rates is shown below. 
 
Node b 1 2 3 4 5  Fin <
Tj (°C) 100 58.5 40.9 33.1 29.8 28.8  -  
qcv (W) 0.603 0.451 0.183 0.081 0.043 0.015  1.375  
qfin (W) - - - - - -  1.604  
qrad (W) - - - - - -  0.229  
hcv (W/m2⋅K) 10.1 8.6 7.3 6.4 5.7 5.5  -  
hrad (W/m2⋅K) 1.5 1.4 1.3 1.3 1.2 1.2  -  
 
COMMENTS:  From the tabulated results, it is evident that free convection is the dominant node.  Note 
that the free convection coefficient varies almost by a factor of two over the length of the fin. 



PROBLEM 4.80  
KNOWN:  Silicon chip mounted in a dielectric substrate.  One surface of system is convectively 
cooled while the remaining surfaces are well insulated.  
FIND:  Whether maximum temperature in chip will exceed 85°C.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Two-dimensional conduction, (3) Negligible 
contact resistance between chip and substrate, (4) Upper surface experiences uniform convection 
coefficient, (5) Other surfaces are perfectly insulated.  
ANALYSIS:  Performing an energy balance on the chip assuming it is perfectly insulated from the 
substrate, the maximum temperature occurring at the interface with the dielectric substrate will be, 
according to Eqs. 3.48 and 3.51,  

( ) ( ) ( ) ( )7 3 7 32 2

max 2c

q H/4 q H/4 10  W/m 0.003 m 10  W/m 0.003 m
T T 20 C 80.9 C.

2k h 2 50 W/m K 500 W/m K
∞= + + = + + =

× ⋅ ⋅

o o& &
 

 
Since Tmax < 85°C for the assumed situation, for the actual two-dimensional situation with the 
conducting dielectric substrate, the maximum temperature should be less than 80°C.  
Using the suggested grid spacing of 3 mm, construct the  
nodal network and write the finite-difference equation for 
each of the nodes taking advantage of symmetry of the 
system.  Note that we have chosen to not locate nodes on 
the system surfaces for two reasons:  (1) fewer total 
number of nodes, 20 vs. 25, and (2) Node 5 corresponds 
to center of chip which is likely the point of maximum  
temperature.  Using these numerical values,  

 
( )

2

s s c

h x 500 W/m K 0.003 m 2 20.30     1.818
k 5 W/m K k / k 1 5 / 50 1

αΔ ⋅ ×
= = = = =

⋅ + +
 

 
( )

2

c c s

h x 500 W/m K 0.003 m 2 20.030     0.182
k 5 W/m K k / k 1 50 / 5 1

βΔ ⋅ ×
= = = = =

⋅ + +
 

 
c c s

q x y 11.800                                           0.0910
k k / k 1

γΔ Δ
= = =

+
&

 
 
find the nodal equations:  

Node 1  ( )6 1 2 1
s s 1

T T T Tk x k y h x T T 0
y x ∞
− −

Δ + Δ + Δ − =
Δ Δ

 

          Continued … 



PROBLEM 4.80 (Cont.)  

 1 2 6 1 2 6
s s

h x h x
2 T T T T         2.30T T T 6.00

k k ∞
Δ Δ

− + + + = − − + + = −
⎛ ⎞
⎜ ⎟
⎝ ⎠

   (1) 

Node 2  1 2 3 7T 3.3T T T 6.00− + + = −        (2) 
Node 3 

 
( ) ( )

( )2 3 4 3 8 3
s s 3

c s

T T T T T T
k y k x h x T T 0

x x/2 / k y x/2 / k y y ∞
− − −

Δ + + Δ + Δ − =
Δ Δ Δ + Δ Δ Δ

 

 ( )( ) ( )2 s 3 4 8T 2 h x/k T T T h x/k Tα α ∞− + + Δ + + = − Δ  
 2 3 4 8T 4.12T 1.82T T 6.00− + + = −        (3) 
 
Node 4 

 
( ) ( ) ( ) ( )

3 4 5 4 9 4
c

s c s c

T T T T T T
k y

x/2 / k y x/2 / k y x y/2 / k x y/2 k x

− − −
+ Δ +

Δ Δ + Δ Δ Δ Δ Δ + Δ Δ
 

     ( ) ( )4q x y h x T T 0∞+ Δ Δ + Δ − =&  
 [ ]( ) ( )3 c 4 5 9 c cT 1 2 h x/k T T T h x/k T q x y/kβ β β ∞− + + Δ + + = − Δ − Δ Δ&  
 3 4 5 90.182T 1.39T T 0.182T 2.40− + + = −        (4) 
 
Node 5 

( ) ( ) ( ) ( )
( )( ) ( )4 5 10 5

c 5
s c

T T T T
k y h x/2 T T q y x/2 0

x y/2 / k x/2 y/2 / k x/2 ∞
− −

Δ + + Δ − + Δ Δ =
Δ Δ Δ + Δ Δ

&  

 4 5 102T 2.21T 0.182T 2.40− + = −         (5) 
 
Nodes 6 and 11 
 ( ) ( ) ( )s 1 6 s 7 6 s 11 6k x T T / y k y T T / x k x T T / y 0Δ − Δ + Δ − Δ + Δ − Δ =  
 1 6 7 11 6 11 12 16T 3T T T 0          T 3T T T 0− + + = − + + =             (6,11) 
 
Nodes 7, 8, 12, 13, 14  Treat as interior points,  
 2 6 7 8 12 3 7 8 9 13T T 4T T T 0          T T 4T T T 0+ − + + = + − + + =              (7,8) 
 7 11 12 13 17 8 12 13 14 18T T 4T T T 0          T T 4T T T 0+ − + + = + − + + =          (12,13) 
 9 13 14 15 19T T 4T T T 0+ − + + =         (14) 
Node 9 

 
( ) ( )

8 9 4 9 10 9 14 9
s s s

c s

T T T T T T T T
k y k y k x 0

x y/2 / k x y/2 / k x x y

− − − −
Δ + + Δ + Δ =

Δ Δ Δ + Δ Δ Δ Δ
 

 4 8 9 10 141.82T T 4.82T T T 0+ − + + =        (9) 
 
Node 10  Using the result of Node 9 and considering symmetry, 
 5 9 10 151.82T 2T 4.82T T 0+ − + =         (10) 
 
Node 15  Interior point considering symmetry 10 14 15 20T 2T 4T T 0+ − + =   (15) 
 
Node 16  By inspection, 11 16 17T 2T T 0− + =       (16) 
 
          Continued … 



PROBLEM 4.80 (Cont.)  
Nodes 17, 18, 19, 20 
 12 16 17 18 13 17 18 19T T 3T T 0          T T 3T T 0+ − + = + − + =           (17,18) 
 14 18 19 20 15 19 20T T 3T T 0          T 2T 3T 0+ − + = + − =           (19,20) 
Using the matrix inversion method, the above system of finite-difference equations is written in matrix 
notation, Eq. 4.48, [A][T] = [C] where 
 
         -2.3   1      0       0      0     1    0    0      0       0    0   0   0   0   0   0   0   0   0   0    -6 

1  -3.3   1       0      0     0    1    0      0       0    0   0   0   0   0   0   0   0   0   0    -6 
0    1  -4.12  1.82   0     0    0    1      0       0    0   0   0   0   0   0   0   0   0   0    -6 
0    0  .182  -1.39   1     0    0    0   .182     0    0   0   0   0   0   0   0   0   0   0  -2.4 
0    0     0      2    -2.21  0    0    0      0    .182  0   0   0   0   0   0   0   0   0   0  -2.4 
1    0     0      0       0    -3    1    0      0       0    1   0   0   0   0   0   0   0   0   0    0 
0    1     0      0       0     1   -4    1      0       0    0   1   0   0   0   0   0   0   0   0    0 
0    0     1      0       0     0    1   -4      1       0    0   0   1   0   0   0   0   0   0   0    0 
0    0     0   1.82     0     0    0    1  -4.82     1    0   0   0   1   0   0   0   0   0   0    0 
0    0     0      0    1.82   0    0    0      2   -4.82  0   0   0   0   1   0   0   0   0   0    0 

[A] = 0    0     0      0       0     1    0    0      0       0   -3   1   0   0   0   1   0   0   0   0 [C] =   0 
 0    0     0      0       0     0    1    0      0       0    1  -4   1   0   0   0   1   0   0   0    0 
 0    0     0      0       0     0    0    1      0       0    0   1  -4   1   0   0   0   1   0   0    0 
 0    0     0      0       0     0    0    0      1       0    0   0   1  -4   1   0   0   0   1   0    0 
 0    0     0      0       0     0    0    0      0       1    0   0   0   2  -4   0   0   0   0   1    0 
 0    0     0      0       0     0    0    0      0       0    1   0   0   0   0  -2   1   0   0   0    0 
 0    0     0      0       0     0    0    0      0       0    0   1   0   0   0   1  -3   1   0   0    0 
 0    0     0      0       0     0    0    0      0       0    0   0   1   0   0   0   1  -3   1   0    0 
 0    0     0      0       0     0    0    0      0       0    0   0   0   1   0   0   0   1  -3   1    0 
 0    0     0      0       0     0    0    0      0       0    0   0   0   0   1   0   0   0   2  -3    0 
 
and the temperature distribution (°C), in geometrical representation, is 

34.46       36.13 40.41       45.88 46.23 
 37.13       38.37 40.85       43.80 44.51 
 38.56       39.38 40.81       42.72 42.78 
 39.16       39.77 40.76       41.70 42.06 
The maximum temperature is T5 = 46.23°C which is indeed less than 85°C.   < 
 
COMMENTS:  (1) The convection process for the energy 
balances of Nodes 1 through 5 were simplified by assuming 
the node temperature is also that of the surface.  Considering 
Node 2, the energy balance processes for qa, qb and qc are 
identical (see Eq. (2)); however, 
 

 ( )2
conv 2

T Tq h T T
1/h y/2k

∞
∞

−
= ≈ −

+ Δ
 

where hΔy/2k = 5  W/m
2
⋅K×0.003  m/2×50  W/m⋅K = 1.5×10

-4
 << 1.  Hence, for this situation, the 

simplification is justified. 
 



PROBLEM 4.81 
 
KNOWN:  Heat sink for cooling computer chips fabricated from copper with microchannels passing fluid 
with prescribed temperature and convection coefficient. 
 
FIND:  (a) Using a square nodal network with 100 μm spatial increment, determine the temperature  
distribution and the heat rate to the coolant per unit channel length for maximum allowable chip 
temperature Tc,max = 75°C; estimate the thermal resistance betweeen the chip surface and the fluid, 

t,c fR −′  (m⋅K/W); maximum allowable heat dissipation for a chip that measures 10 x 10 mm on a side;  
(b) The effect of grid spacing by considering spatial increments of 50 and 25 μm; and (c) Consistent with 
the requirement that a + b = 400 μm, explore altering the sink dimensions to decrease the thermal 
resistance. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state, two-dimensional conduction, (2) Constant properties, and (3) 
Convection coefficient is uniform over the microchannel surface and independent of the channel 
dimensions and shape. 
 
ANALYSIS:   (a) The square nodal network with Δx = Δy = 100 μm is shown below.  Considering 
symmetry, the nodes 1, 2, 3, 4, 7, and 9 can be treated as interior nodes and their finite-difference 
equations representing nodal energy balances can be written by inspection.  Using the, IHT Finite-
Difference Equations Tool, appropriate FDEs for the nodes experiencing surface convection can be 
obtained.  The IHT code along with results is included in the Comments.  Having the temperature 
distribution, the heat rate to the coolant per unit channel length for two symmetrical elements can be 
obtained by applying Newton’s law of cooling to the surface nodes, 
 
 ( )( ) ( )( ) ( )( ) ( )( )[ ]cv 5 6 8 10q 2 h y 2 x 2 T T h x 2 T T h y T T h y 2 T T∞ ∞ ∞ ∞′ = Δ + Δ − + Δ − + Δ − Δ −+  
 
  ( ) ( ) ( ) ( )[ ]2 6

cvq 2 30, 000 W m K 100 10 m 74.02 25 74.09 25 2 73.60 25 73.37 25 2 K−′ = × ⋅ × × − + − + − + −  

 cvq 878 W m′ =  < 
 
The thermal resistance between the chip and fluid per unit length for each microchannel is 

 
( ) 2c

t,c f
cv

75 25 CT T
R 5.69 10 m K W

q 878 W m
−∞

−
−−′ = = = × ⋅

′

o

 < 

The maximum allowable heat dissipation for a 10 mm × 10 mm chip is 

 ( )6 2 2
chip,max c chipP q A 2.20 10 W m 0.01 0.01 m 220 W′′= × = × × × =  < 

where Achip = 10 mm × 10 mm and the heat flux on the chip surface (wf + ws) is 

 ( ) ( ) 6 6 2
c cv f sq q w w 878 W m 200 200 10 m 2.20 10 W m−′′ ′= + = + × = ×  

Continued... 
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(b) To investigate the effect of grid spacing, the analysis was repreated with a spatial increment of 50 μm 
(32 nodes as shown above) with the following results 

 cvq 881W m′ =  2
t,c fR 5.67 10 m K W−

−′ = × ⋅  < 
 
Using a finite-element package with a mesh around 25 μm, we found 2

t,c fR 5.70 10 m K W−
−′ = × ⋅  

which suggests the grid spacing effect is not very significant. 
 
(c) Requring that the overall dimensions of the symmetrical element remain unchanged, we explored what 
effect changes in the microchannel cross-section would have on the overall thermal resistance, t,c fR −′ .  It 
is important to recognize that the sink conduction path represents the dominant resistance, since for the 
convection process 
 

 ( )2 6 2
t,cv sR 1 A 1 30, 000 W m K 600 10 m 5.55 10 m K W− −′ ′= = ⋅ × × = × ⋅  

 
where sA′  = (wf + 2b) = 600 μm. 
 
Using a finite-element package, the thermal resistances per unit length for three additional channel cross-
sections were determined and results summarized below. 
 

 Microchannel (μm) t,c sR −′  × 102 
Case Height Half-width (m⋅K/W) 

A 200 100 5.70 
B 133 150 6.12 
C 300 100 4.29 
D 250 150 4.25 

 
 

 
 

Continued... 



PROBLEM 4.81 (Cont.) 
 
COMMENTS: (1)  The IHT Workspace for the 5x5 coarse node analysis with results follows. 
 

// Finite-difference equations - energy balances  
// First row - treating as interior nodes considering symmetry 
T1 = 0.25 * ( Tc + T2 + T4 + T2 ) 
T2 = 0.25 * ( Tc + T3 + T5 + T1 ) 
T3 = 0.25 * ( Tc + T2 + T6 + T2 ) 
 
/* Second row - Node 4 treat as interior node; for others, use Tools: Finite-Difference Equations,  
Two-Dimensional, Steady-State; be sure to delimit replicated q''a = 0 equations.  */ 
T4 = 0.25 * ( T1 + T5+ T7 + T5 ) 
/* Node 5: internal corner node, e-s orientation; e, w, n, s labeled 6, 4, 2, 8. */ 
0.0 = fd_2d_ic_es(T5,T6,T4,T2,T8,k,qdot,deltax,deltay,Tinf,h,q''a) 
q''a = 0             // Applied heat flux, W/m^2; zero flux shown 
/* Node 6: plane surface node, s-orientation; e, w, n labeled 5, 5, 3 . */ 
0.0 = fd_2d_psur_s(T6,T5,T5,T3,k,qdot,deltax,deltay,Tinf,h,q''a) 
//q''a = 0             // Applied heat flux, W/m^2; zero flux shown 
 
/* Third row - Node 7 treat as interior node; for others, use Tools: Finite-Difference Equations,  
Two-Dimensional, Steady-State; be sure to delimit replicated q''a = 0 equations.  */ 
T7 = 0.25 * (T4 + T8 + T9 + T8) 
/* Node 8: plane surface node, e-orientation; w, n, s labeled 7, 5, 10. */ 
0.0 = fd_2d_psur_e(T8,T7,T5,T10,k,qdot,deltax,deltay,Tinf,h,q''a) 
//q''a = 0             // Applied heat flux, W/m^2; zero flux shown 
 
/* Fourth row - Node 9 treat as interior node; for others, use Tools: Finite-Difference Equations,  
Two-Dimensional, Steady-State; be sure to delimit replicated q''a = 0 equations.  */ 
T9 = 0.25 * (T7 + T10 +T7 + T10) 
/* Node 10: plane surface node, e-orientation; w, n, s labeled 9, 8, 8. */ 
0.0 = fd_2d_psur_e(T10,T9,T8,T8,k,qdot,deltax,deltay,Tinf,h,q''a) 
//q''a = 0             // Applied heat flux, W/m^2; zero flux shown 
 
// Assigned variables 
// For the FDE functions,  
qdot = 0    // Volumetric generation, W/m^3 
deltax = deltay   // Spatial increments 
deltay = 100e-6   // Spatial increment, m 
Tinf = 25    // Microchannel fluid temperature, C 
h = 30000    // Convection coefficient, W/m^2.K 
// Sink and chip parameters 
k = 400    // Sink thermal conductivity, W/m.K 
Tc = 75    // Maximum chip operating temperature, C 
wf = 200e-6                // Channel width, m 
ws = 200e-6               // Sink width, m  
                          
/* Heat rate per unit length, for two symmetrical elements about one microchannel, */ 
q'cv= 2 * (q'5 + q'6 + q'8 + q'10) 
q'5 = h* (deltax / 2 + deltay / 2) * (T5 - Tinf)  
q'6 = h * deltax / 2 * (T6 - Tinf) 
q'8 = h * deltax  * (T8 - Tinf) 
q'10 = h * deltax / 2 * (T10 - Tinf) 
 
/* Thermal resistance between chip and fluid, per unit channel length, */ 
R'tcf = (Tc - Tinf) / q'cv                    // Thermal resistance, m.K/W 
 
// Total power for a chip of 10mm x 10mm, Pchip (W), 
q''c = q'cv / (wf + ws)                     // Heat flux on chip surface, W/m^2 
Pchip = Achip * q''c                      // Power, W 
Achip = 0.01 * 0.01                      // Chip area, m^2 
 
/* Data Browser results: chip power, thermal resistance, heat rates and temperature distribution 
Pchip R'tcf q''c q'cv 
219.5 0.05694 2.195E6 878.1 
 
T1   T2 T3 T4 T5 T6 T7 T8 T9 T10 
74.53 74.52 74.53 74.07 74.02 74.09 73.7 73.6 73.53     73.37 */ 

 



PROBLEM 4.82 
 
KNOWN:  Longitudinal rib (k = 10 W/m⋅K) with rectangular cross-section with length L= 8 mm and 
width w = 4 mm.  Base temperature Tb and convection conditions, T∞  and h, are prescribed. 
 
FIND: (a) Temperature distribution and fin base heat rate using a finite-difference method with Δx = Δy = 
2 mm for a total of  5 × 3 = 15 nodal points and regions; compare results with those obtained assuming 
one-dimensional heat transfer in rib; and (b) The effect of grid spacing by reducing nodal spacing to Δx = 
Δy = 1 mm for a total of 9 × 3 = 27 nodal points and regions considering symmetry of the centerline; and  
(c) A criterion for which the one-dimensional approximation is reasonable; compare the heat rate for the 
range 1.5  ≤ L/w  ≤ 10, keeping L constant, as predicted by the two-dimensional, finite-difference method 
and the one-dimensional fin analysis. 
 
SCHEMATIC: 

                    
 
ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, and (3) Convection coefficient 
uniform over rib surfaces, including tip.   
 
ANALYSIS:  (a) The rib is represented by a 5 × 3 nodal grid as shown above where the symmetry plane 
is an adiabatic surface.  The IHT Tool, Finite-Difference Equations, for Two-Dimensional, Steady-State 
conditions is used to formulate the nodal equations (see Comment 2 below) which yields the following 
nodal temperatures (° C) 
 

45 39.3 35.7 33.5 32.2 
45 40.0 36.4 34.0 32.6 
45 39.3 35.7 33.5 32.2 

 
Note that the fin tip temperature is 

 tip 12T T 32.6 C= = o  < 
 
The fin heat rate per unit width normal to the page, ′qfin , can be determined from energy balances on the 
three base nodes as shown in the schematic below. 
 
 

fin a b c d eq q q q q q′ ′ ′ ′ ′ ′= + + + +   

( )( )a bq h x 2 T T∞′ = Δ −  

( )( )b b 1q k y 2 T T x′ = Δ − Δ  

( )( )c b 5q k y T T x′ = Δ − Δ  

( )( )d b 9q k y 2 T T x′ = Δ − Δ  

( )( )3 bq h x 2 T T∞′ = Δ −  
 

Continued...
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Substituting numerical values, find 

 ( )finq 12.0 28.4 50.0 28.4 12.0 W m 130.8 W m′ = + + + + =  < 
Using the IHT Model, Extended Surfaces, Heat Rate and Temperature Distributions for Rectangular, 
Straight Fins, with convection tip condition, the one-dimensional fin analysis yields 

 fq 131W m′ =  tipT 32.2 C= o  < 
(b) With Δx = L/8 = 1 mm and Δx = 1 mm, for a total of 9 × 3 = 27 nodal points and regions, the grid 
appears as shown below.  Note the rib centerline is a plane of symmetry. 

  
Using the same IHT FDE Tool as above with an appropriate expression for the fin heat rate, Eq. (1), the 
fin heat rate and tip temperature were determined.  

 1-D analysis 2-D analysis (nodes)  
  ( 5 × 3) (9 × 3)  

Ttip (°C) 32.2 32.6 32.6 <
finq′  (W/m) 131 131 129 <

 
(c) To determine when the one-dimensional approximation is reasonable, consider a rib of constant 
length, L = 8 mm, and vary the thickness w for the range 1.5 ≤ L/w ≤ 10.  Using the above IHT model for 
the 27 node grid, the fin heat rates for 1-D, 1dq′ , and 2-D, 2dq′ , analysis were determined as a function of 
w with the error in the approximation evaluated as 
 ( ) ( )2d 1d 1dError % q q 100 q′ ′ ′= − ×  

0 2 4 6 8 10

Length / width, L/w

-4

-2

0

2

4

Er
ro

r (
%

)

     
Note that for small L/w, a thick rib, the 1-D approximation is poor.  For large L/w, a thin rib which 
approximates a fin, we would expect the 1-D approximation to become increasingly more satisfactory.  
The discrepancy at large L/w must be due to discretization error; that is, the grid is too coarse to 
accurately represent the slender rib. 



PROBLEM 4.83 
 
KNOWN:  Bottom half of an I-beam exposed to hot furnace gases. 
 
FIND:  (a) The heat transfer rate per unit length into the beam using a coarse nodal network (5 × 4) 
considering the temperature distribution across the web is uniform and (b) Assess the reasonableness of  
the uniform web-flange interface temperature assumption. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state, two-dimensional conduction, and (2) Constant properties. 
 
ANALYSIS:  (a) The symmetrical section of the I-beam is shown in the Schematic above indicating the 
web-flange interface temperature is uniform, Tw = 100°C.  The nodal arrangement to represent this system 
is shown below.  The nodes on the line of symmetry have been shown for convenience in deriving the 
nodal finite-difference equations. 

 
Using the IHT Finite-Difference Equations Tool, the set of nodal equations can be readily formulated.  
The temperature distribution (°C) is tabulated in the same arrangement as the nodal network. 
 

100.00 100.00 215.8 262.9 284.8 
166.6 177.1 222.4 255.0 272.0 
211.7 219.5 241.9 262.7 274.4 
241.4 247.2 262.9 279.3 292.9 

 
The heat rate to the beam can be determined from energy balances about the web-flange interface nodes 
as shown in the sketch below. 

 
Continued... 



PROBLEM 4.83 (Cont.) 

 
 
 
 w a b cq q q q′ ′ ′ ′= + +  
 

( ) ( ) ( )1 w 5 w 4 w
w

T T T T T T
q k y 2 k x k x 2

x y y
− − −′ = Δ + Δ + Δ
Δ Δ Δ

 

 

 ( ) ( ) ( )[ ]wq 10 W m K 215.8 100 2 177.1 100 166.6 100 2 K 1683 W m′ = ⋅ − + − + − =  < 
 
(b) The schematic below poses the question concerning the reasonableness of the uniform temperature 
assumption at the web-flange interface.  From the analysis above, note that T1 = 215.8°C vs. Tw = 100°C 
indicating that this assumption is a poor one.  This L-shaped section has strong two-dimensional behavior.  
To illustrate the effect, we performed an analysis with Tw = 100°C located nearly 2 × times further up the 
web than it is wide.  For this situation, the temperature difference at the web-flange interface across the 
width of the web was nearly 40°C.  The steel beam with its low thermal conductivity has substantial 
internal thermal resistance and given the L-shape, the uniform temperature assumption (Tw) across the 
web-flange interface is inappropriate. 
 

 



PROBLEM 4.84 
 
KNOWN:  Long rectangular bar having one boundary exposed to a convection process (T∞, h) while the 
other boundaries are maintained at a constant temperature (Ts).  
FIND:  (a) Using a grid spacing of 30 mm and the Gauss-Seidel method, determine the nodal 
temperatures and the heat rate per unit length into the bar from the fluid, (b) Effect of grid spacing and 
convection coefficient on the temperature field. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state, two-dimensional conduction, (2) Constant properties. 
 
ANALYSIS:  (a) With the grid spacing Δx = Δy = 30 mm, three nodes are created.  Using the finite-
difference equations as shown in Table 4.2, but written in the form required of the Gauss-Seidel method 
(see Appendix D), and with Bi = hΔx/k = 100 W/m2⋅K × 0.030 m/1 W/m⋅K = 3, we obtain: 
 

Node 1:   
( ) ( ) ( ) ( )1 2 s 2 2

1 1 1T T T BiT T 50 3 100 T 350
Bi 2 5 5∞= + + = + + × = +

+
 (1) 

 

Node 2:  ( ) ( ) ( )2 1 s 3 1 3 1 3
1 1 1T T 2T T T T 2 50 T T 100
4 4 4

= + + = + + × = + +  (2) 
 

Node 3: ( ) ( ) ( )3 2 s 2 2
1 1 1T T 3T T 3 50 T 150
4 4 4

= + = + × = +  (3) 
 
Denoting each nodal temperature with a superscript to indicate iteration step, e.g. k

1T , calculate values as 

shown below. 
 

k T1 T2 T3 (°C)  
0 85 60 55 ← initial 

guess 
1 82.00 59.25 52.31  
2 81.85 58.54 52.14  
3 81.71 58.46 52.12  
4 81.69 58.45 52.11  

 
By the 4th iteration, changes are of order 0.02°C, suggesting that further calculations may not be 
necessary. 

 
Continued... 



 

PROBLEM 4.84 (Cont.) 
 
In finite-difference form, the heat rate from the fluid to the bar is 
 
 ( )( ) ( ) ( )( )conv s 1 sq h x 2 T T h x T T h x 2 T T∞ ∞ ∞′ = Δ − + Δ − + Δ −  
 
 ( ) ( ) ( ) ( )conv s 1 s 1q h x T T h x T T h x T T T T∞ ∞ ∞ ∞′ ⎡ ⎤= Δ − + Δ − = Δ − + −⎣ ⎦  

 ( ) ( )2
convq 100 W m K 0.030 m 100 50 100 81.7 C 205 W m′ ⎡ ⎤= ⋅ × − + − =⎣ ⎦

o
. < 

 
(b) Using the Finite-Difference Equations option from the Tools portion of the IHT menu, the following 
two-dimensional temperature field was computed for the grid shown in schematic (b), where x and y are 
in mm and the temperatures are in °C. 
 

y\x 0 15 30 45 60 
0 50 80.33 85.16 80.33 50 

15 50 63.58 67.73 63.58 50 
30 50 56.27 58.58 56.27 50 
45 50 52.91 54.07 52.91 50 
60 50 51.32 51.86 51.32 50 
75 50 50.51 50.72 50.51 50 
90 50 50 50 50 50 

 
The improved prediction of the temperature field has a significant influence on the heat rate, where, 
accounting for the symmetrical conditions, 
 
 ( )( ) ( )( ) ( )( )s 1 2q 2h x 2 T T 2h x T T h x T T∞ ∞ ∞′ = Δ − + Δ − + Δ −  
 
 ( ) ( ) ( ) ( )s 1 2q h x T T 2 T T T T∞ ∞ ∞′ ⎡ ⎤= Δ − + − + −⎣ ⎦  

 ( ) ( )2q 100 W m K 0.015m 50 2 19.67 14.84 C 156.3W m′ ⎡ ⎤= ⋅ + + =⎣ ⎦
o

 < 

 
Additional improvements in accuracy could be obtained by reducing the grid spacing to 5 mm, although 
the requisite number of finite-difference equations would increase from 12 to 108, significantly increasing 
problem set-up time. 
 
 An increase in h would increase temperatures everywhere within the bar, particularly at the 
heated surface, as well as the rate of heat transfer by convection to the surface. 
 
COMMENTS:  (1) Using the matrix-inversion method, the exact solution to the system of equations (1, 
2, 3) of part (a) is T1 = 81.70°C, T2 = 58.44°C, and T3 = 52.12°C.  The fact that only 4 iterations were 
required to obtain agreement within 0.01°C is due to the close initial guesses. 
 
(2) Note that the rate of heat transfer by convection to the top surface of the rod must balance the rate of 
heat transfer by conduction to the sides and bottom of the rod. 
 



PROBLEM 4.85  
KNOWN:  Long bar with trapezoidal shape, uniform temperatures on two surfaces, and two insulated 
surfaces.  
FIND:  Heat transfer rate per unit length using finite-difference method with space increment of 
10mm.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Two-dimensional conduction, (3) Constant 
properties.  
ANALYSIS:  The heat rate can be found after the temperature distribution has been determined.  
Using the nodal network shown above with Δx = 10mm, nine finite-difference equations must be 
written.  Nodes 1-4 and 6-8 are interior nodes and their finite-difference equations can be written 
directly from Eq. 4.29.  For these nodes  
 m,n+1 m,n-1 m+1,n m-1,n m,nT T T T 4T 0        m  1 4, 6 8.+ + + − = = − −   (1) 
 
For nodes 5 and 9 located on the diagonal, insulated boundary, the appropriate finite-difference 
equation follows from an energy balance on the control volume shown above (upper-right corner of 
schematic), in out a bE E q q 0− = + =& &  
 

 ( ) ( )m-1,n m,n m,n-1 m,nT T T T
k y 1 k x 1 0.

x y
− −

Δ ⋅ + Δ ⋅ =
Δ Δ

 
 
Since Δx = Δy, the finite-difference equation for nodes 5 and 9 is of the form  
 m-1,n m,n-1 m,nT T 2T 0        m 5,9.+ − = =       (2) 
 
The system of 9 finite-difference equations is first written in the form of Eqs. (1) or (2) and then 
written in explicit form for use with the Gauss-Seidel iteration method of solution; see Appendix D.  
 Node  Finite-difference equation      Gauss-Seidel form 
   1  T2+T2+T6+100-4T1 = 0  T1 = 0.5T2+0.25T6+25 
   2  T3+T1+T7+100-4T2 = 0  T2 = 0.25(T1+T3+T7)+25 
   3  T4+T2+T8+100-4T3 = 0  T3 = 0.25(T2+T4+T8)+25 
   4  T5+T3+T9+100-4T4 = 0  T4 = 0.25(T3+T5+T9)+25 
   5  100+T4-2T5 = 0   T5 = 0.5T4+50 
   6  T7+T7+25+T1-4T6 = 0   T6 = 0.25T1+0.5T7+6.25 
   7  T8+T6+25+T2-4T7 = 0   T7 = 0.25(T2+T6+T8)+6.25 
   8  T9+T7+25+T3-4T8 = 0   T8 = 0.25(T3+T7+T9)+6.25 
   9  T4+T8-2T9 = 0    T9 = 0.5(T4+T8)  
          Continued … 



PROBLEM 4.85 (Cont.)  
The iteration process begins after an initial guess (k = 0) is made.  The calculations are shown in the 
table below.  
 k T1 T2 T3 T4 T5 T6 T7 T8 T9(°C) 
 
 0 75 75 80 85 90 50 50 60 75 
 1 75.0 76.3 80.0 86.3 92.5 50.0 52.5 57.5 72.5 
 2 75.7 76.9 80.0 86.3 93.2 51.3 52.2 57.5 71.9 
 3 76.3 77.0 80.2 86.3 93.2 51.3 52.7 57.3 71.9 
 4 76.3 77.3 80.2 86.3 93.2 51.7 52.7 57.5 71.8 
 5 76.6 77.3 80.3 86.3 93.2 51.7 52.9 57.4 71.9 
 6 76.6 77.5 80.3 86.4 93.2 51.9 52.9 57.5 71.9  
Note that by the sixth iteration the change is less than 0.3°C; hence, we assume the temperature 
distribution is approximated by the last row of the table.  
The heat rate per unit length can be determined by evaluating the heat rates in the x-direction for the 
control volumes about nodes 6, 7, and 8.  From the schematic, find that  
 1 2 3q q q q′ ′ ′ ′= + +  
 

 8 7 6T 25 T 25 T 25yq k y k y k  
x x 2 x
− − −Δ′ = Δ + Δ +
Δ Δ Δ

 
 
Recognizing that Δx = Δy and substituting numerical values, find  

 ( ) ( ) ( )W 1q 20 57.5 25 52.9 25 51.9 25 K
m K 2

⎡ ⎤′ = − + − + −⎢ ⎥⋅ ⎣ ⎦
 

 
 q 1477 W/m.′ =          < 
 
COMMENTS:  (1) Recognize that, while the temperature distribution may have been determined to a 
reasonable approximation, the uncertainty in the heat rate could be substantial.  This follows since the 
heat rate is based upon a gradient and hence on temperature differences.  
(2) Note that the initial guesses (k = 0) for the iteration are within 5°C of the final distribution.  The 
geometry is simple enough that the guess can be very close.  In some instances, a flux plot may be 
helpful and save labor in the calculation.  
(3) In writing the FDEs, the iteration index (superscript k) was not included to simplify expression of 
the equations.  However, the most recent value of Tm,n is always used in the computations.  Note that 
this system of FDEs is diagonally dominant and no rearrangement is required. 



PROBLEM 4.86 
 
KNOWN:  Electrical heating elements with known dissipation rate embedded in a ceramic plate of 
known thermal conductivity; lower surface is insulated, while upper surface is exposed to a convection 
process. 
 
FIND:  (a) Temperature distribution within the plate using prescribed grid spacing, (b) Sketch isotherms 
to illustrate temperature distribution, (c) Heat loss by convection from exposed surface (compare with 
element dissipation rate), (d) Advantage, if any, in not setting Δx = Δy, (e) Effect of grid size and 
convection coefficient on the temperature field. 
 
SCHEMATIC: 

 
 

ASSUMPTIONS:  (1) Steady-state, two-dimensional conduction in ceramic plate, (2) Constant 
properties, (3) No internal generation, except for Node 7 (or Node 15 for part (e)), (4) Heating element 
approximates a line source of negligible wire diameter. 
 
ANALYSIS:  (a) The prescribed grid for the symmetry element shown above consists of 12 nodal points.  
Nodes 1-3 are points on a surface experiencing convection; nodes 4-6 and 8-12 are interior nodes.  Node 
7 is a special case of the interior node having a generation term; because of symmetry, htq′  = 25 W/m.  
The finite-difference equations are derived as follows: 

 
Continued... 
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Surface Node 2.  From an energy balance on the prescribed control volume with Δx/Δy = 3, 

in outE E− =& & a b c dq q q q′ ′ ′ ′+ + +  = 0; 

 ( ) 3 2 5 21 2
2

T T T Ty T T yk h x T T k k x 0
2 x 2 x y∞

− −Δ − Δ
+ Δ − + + Δ =

Δ Δ Δ
. 

Regrouping, find 

 
2 2

2 1 3 5
x x x xT 1 2N 1 2 T T 2 T 2N T
y y y y ∞

⎛ ⎞⎛ ⎞ ⎛ ⎞Δ Δ Δ Δ⎜ ⎟+ + + = + + +⎜ ⎟ ⎜ ⎟⎜ ⎟Δ Δ Δ Δ⎝ ⎠ ⎝ ⎠⎝ ⎠
 

where N = hΔx/k = 100 W/m2⋅K × 0.006 m/2 W/m⋅K = 0.30 K.  Hence, with T∞ = 30°C, 
 2 1 3 5T 0.04587T 0.04587T 0.82569T 2.4771= + + +  (1) 
From this FDE, the forms for nodes 1 and 3 can also be deduced. 
 
Interior Node 7.  From an energy balance on the prescribed control volume, with Δx/Δy = 3, 

in gE E 0′ ′− =& & , where gE′&  = 2 htq′  and inE′  represents the conduction terms.  Hence, 

a b c d htq q q q 2q 0′ ′ ′ ′ ′+ + + + = , or 

 8 7 4 7 8 7 10 7
ht

T T T T T T T T
k y k x k y k x 2q 0

x y x y
− − − − ′Δ + Δ + Δ + Δ + =
Δ Δ Δ Δ

 

Regrouping, 

 
2 2 2 2

ht
7 8 4 8 10

2qx x x x x
T 1 1 T T T T

y y y y k y

′Δ Δ Δ Δ Δ
+ + + = + + + +

Δ Δ Δ Δ Δ

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
 

Recognizing that Δx/Δy = 3, htq′  = 25 W/m and k = 2 W/m⋅K, the FDE is 
 7 8 4 8 10T 0.0500T 0.4500T 0.0500T 0.4500T 3.7500= + + + +  (2) 
The FDEs for the remaining nodes may be deduced from this form.  Following the procedure described in 
Appendix D for the Gauss-Seidel method, the system of FDEs has the form: 
 
 k k 1 k 1

1 2 4T 0.09174T 0.8257T 2.4771− −= + +  

 k k k 1 k 1
2 1 3 5T 0.04587T 0.04587T 0.8257T 2.4771− −= + + +  

 k k k 1
3 2 6T 0.09174T 0.8257T 2.4771−= + +  

 k k k 1 k 1
4 1 5 7T 0.4500T 0.1000T 0.4500T− −= + +  

 k k k k 1 k 1
5 2 4 6 8T 0.4500T 0.0500T 0.0500T 0.4500T− −= + + +  

 k k k k 1
6 3 5 9T 0.4500T 0.1000T 0.4500T −= + +  

 k k k 1 k 1
7 4 8 10T 0.4500T 0.1000T 0.4500T 3.7500− −= + + +  

 k k k k 1 k 1
8 5 7 9 11T 0.4500T 0.0500T 0.0500T 0.4500T− −= + + +  

 k k k k 1
9 6 8 12T 0.4500T 0.1000T 0.4500T −= + +  

 k k k 1
10 7 11T 0.9000T 0.1000T −= +  

 k k k 1 k 1
11 8 10 12T 0.9000T 0.0500T 0.0500T− −= + +  

 k k k
12 9 11T 0.9000T 0.1000T= +  

  Continued … 
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Note the use of the superscript k to denote the level of iteration.  Begin the iteration procedure with 
rational estimates for Ti (k = 0) and prescribe the convergence criterion as ε ≤ 0.1 K. 
 
k/Ti 1 2 3 4 5 6 7 8 9 10 11 12 

             
0 55.0 50.0 45.0 61.0 54.0 47.0 65.0 56.0 49.0 60.0 55.0 50.0 
1 57.4 51.7 46.0 60.4 53.8 48.1 63.5 54.6 49.6 62.7 54.8 50.1 
2 57.1 51.6 46.9 59.7 53.2 48.7 64.3 54.3 49.9 63.4 54.5 50.4 
             
∞ 55.80 49.93 47.67 59.03 51.72 49.19 63.89 52.98 50.14 62.84 53.35 50.46 

 
The last row with k = ∞ corresponds to the solution obtained by matrix inversion.  It appears that at least 
20 iterations would be required to satisfy the convergence criterion using the Gauss-Seidel method. 
 
(b) Selected isotherms are shown in the sketch of the nodal network. 

 
Note that the isotherms are normal to the adiabatic surfaces. 
 
(c) The heat loss by convection can be expressed as 
 

 ( ) ( ) ( )conv 1 2 3
1 1

q h x T T x T T x T T
2 2∞ ∞ ∞′ = Δ − + Δ − + Δ −⎡ ⎤
⎢ ⎥⎣ ⎦

 

 ( ) ( ) ( )2
conv

1 1
q 100 W m K 0.006 m 55.80 30 49.93 30 47.67 30 25.00 W m

2 2
′ = ⋅ × − + − + − =⎡ ⎤

⎢ ⎥⎣ ⎦
. < 

 
As expected, the heat loss by convection is equal to the heater element dissipation.  This follows from the 
conservation of energy requirement. 
 
(d) For this situation, choosing Δx = 3Δy was advantageous from the standpoint of precision and effort.  If 
we had chosen Δx = Δy = 2 mm, there would have been 28 nodes, doubling the amount of work, but with 
improved precision. 
 
(e) Examining the effect of grid size by using the Finite-Difference Equations option from the Tools 
portion of the IHT Menu, the following temperature field was computed for Δx = Δy = 2 mm, where x 
and y are in mm and the temperatures are in °C. 
 

y\x 0 2 4 6 8 10 12 
0 55.04 53.88 52.03 50.32 49.02 48.24 47.97 
2 58.71 56.61 54.17 52.14 50.67 49.80 49.51 
4 66.56 59.70 55.90 53.39 51.73 50.77 50.46 
6 63.14 59.71 56.33 53.80 52.09 51.11 50.78 
 
  Continued … 
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Agreement with the results of part (a) is excellent, except in proximity to the heating element, where T15 = 
66.6°C for the fine grid exceeds T7 = 63.9°C for the coarse grid by 2.7°C. 
 
For h = 10 W/m2⋅K, the maximum temperature in the ceramic corresponds to T15 = 254°C, and the heater 
could still be operated at the prescribed power.  With h = 10 W/m2⋅K, the critical temperature of T15 = 
400°C would be reached with a heater power of approximately 82 W/m. 
 
COMMENTS:  (1) The method used to obtain the rational estimates for Ti (k = 0) in part (a) is as 
follows.  Assume 25 W/m is transferred by convection uniformly over the surface; find surfT  ≈ 50°C.  
Set T2 = 50°C and recognize that T1 and T3 will be higher and lower, respectively.  Assume 25 W/m is 
conducted uniformly to the outer nodes; find T5 - T2 ≈ 4°C.  For the remaining nodes, use intuition to 
guess reasonable values.  (2) In selecting grid size (and whether Δx = Δy), one should consider the region 
of largest temperature gradients.  Predicted values of the maximum temperature in the ceramic will be 
very sensitive to the grid resolution. 
 
NOTE TO INSTRUCTOR:  Although the problem statement calls for calculations with Δx = Δy = 1 
mm, the instructional value and benefit-to-effort ratio are small.  Hence, consideration of this grid size is 
not recommended. 



PROBLEM 4.87  
KNOWN:  Straight fin of uniform cross section with prescribed thermal conditions and geometry; tip 
condition allows for convection. 
 
FIND:  (a) Calculate the fin heat rate, fq′ , and tip temperature, LT , assuming one-dimensional heat 
transfer in the fin; calculate the Biot number to determine whether the one-dimensional assumption is 
valid, (b) Using the finite-element software FEHT, perform a two-dimensional analysis to determine 
the fin heat rate and the tip temperature; display the isotherms; describe the temperature field and the 
heat flow pattern inferred from the display, and (c) Validate your FEHT code against the 1-D 
analytical solution for a fin using a thermal conductivity of 50 and 500 W/m⋅K.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state conduction with constant properties, (2) Negligible radiation 
exchange, (3) Uniform convection coefficient. 
 
ANALYSIS:  (a) Assuming one-dimensional conduction, Lq′  and LT  can be determined using Eqs. 
3.77 and 3.75, respectively, from Table 3.4, Case A.  Alternatively, use the IHT Model | Extended 
Surfaces | Temperature Distribution and Heat Rate | Straight Fin | Rectangular.  These results are 
tabulated below and labeled as “1-D.”  The Biot number for the fin is  

 ( ) ( )2h t / 2 500 W / m K 0.020 m / 2
Bi 1

k 5 W / m K
⋅

= = =
⋅

 

(b, c)  The fin can be drawn as a two-dimensional outline in FEHT with convection boundary 
conditions on the exposed surfaces, and with a uniform temperature on the base.  Using a fine mesh (at 
least 1280 elements), solve for the temperature distribution and use the View | Temperature Contours 
command to view the isotherms and the Heat Flow command to determine the heat rate into the fin 
base.  The results of the analysis are summarized in the table below.  
 Tip temperature, TL (°C) Fin heat rate, fq′  (W/m) 
 

k 
(W/m⋅K) 

Bi 
 1-D 2-D 1-D 2-D 

Difference* 
(%) 

 5 1 100 100 1010 805 20 
 50 0.1 100.3 100 3194 2990 6.4 
 500 0.01 123.8 124 9812 9563 2.5 
 
* Difference = ( )f ,1D f ,2D f ,1Dq q 100 / q′ ′ ′− ×  
 
COMMENTS:  (1) From part (a), since Bi 1 0.1,= >  the internal conduction resistance is not 
negligible.  Therefore significant transverse temperature gradients exist, and the one-dimensional 
conduction assumption in the fin is a poor one.  
 
          Continued … 



PROBLEM 4.87 (Cont.) 
 
(2) From the table, with k = 5 W/m⋅K (Bi = 1), the 2-D fin heat rate obtained from the FEA analysis is 
20% lower than that for the 1-D analytical analysis.  This is as expected since the 2-D model accounts 
for transverse thermal resistance to heat flow.  Note, however, that analyses predict the same tip 
temperature, a consequence of the fin approximating an infinitely long fin (mL = 20.2 >> 2.56; see Ex. 
3.8 Comments). 
 
(3) For the k = 5 W/m⋅K case, the FEHT isotherms show considerable curvature in the region near the 
fin base.  For example, at x = 10 and 20 mm, the difference between the centerline and surface 
temperatures are 15 and 7°C. 
 
(4) From the table, with increasing thermal conductivity, note that Bi decreases, and the one-
dimensional heat transfer assumption becomes more appropriate.  The difference for the case when k = 
500 W/m⋅K is mostly due to the approximate manner in which the heat rate is calculated in the FEA 
software.  



PROBLEM 4.88  
KNOWN:  Long rectangular bar having one boundary exposed to a convection process (T∞, h) while 
the other boundaries are maintained at constant temperature Ts.  
FIND:  Using the finite-element method of FEHT, (a) Determine the temperature distribution, plot the 
isotherms, and identify significant features of the distribution, (b) Calculate the heat rate per unit 
length (W/m) into the bar from the air stream, and (c) Explore the effect on the heat rate of increasing 
the convection coefficient by factors of two and three; explain why the change in the heat rate is not 
proportional to the change in the convection coefficient.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state, two dimensional conduction, (2) Constant properties.  
ANALYSIS:  (a) The symmetrical section shown in the schematic is drawn in FEHT with the 
specified boundary conditions and material property.  The View | Temperature Contours command is 
used to represent ten isotherms (isopotentials) that have minimum and maximum values of 53.9°C and 
85.9°C, respectively. 
 

 
Because of the symmetry boundary condition, the isotherms are normal to the center-plane indicating 
an adiabatic surface.  Note that the temperature change along the upper surface of the bar is substantial 
(≈ 40°C), whereas the lower half of the bar has less than a 3°C change.  That is, the lower half of the 
bar is largely unaffected by the heat transfer conditions at the upper surface. 
 
(b, c) Using the View | Heat Flows command considering the upper surface boundary with selected 
convection coefficients, the heat rates into the bar from the air stream were calculated. 

 ( )2h W / m K 100 200 300⋅  

 ( )q W / m 128 175 206′  
Increasing the convection coefficient by factors of 2 and 3, increases the heat rate by 37% and 61%, 
respectively.  The heat rate from the bar to the air stream is controlled by the thermal resistances of the 
bar (conduction) and the convection process.  Since the conduction resistance is significant, we should 
not expect the heat rate to change proportionally to the change in convection resistance. 



PROBLEM 4.89 
 
KNOWN:  Log rod of rectangular cross-section of Problem 4.53 that experiences uniform heat 
generation while its surfaces are maintained at a fixed temperature.  Use the finite-element software 
FEHT as your analysis tool. 
 
FIND:  (a) Represent the temperature distribution with representative isotherms; identify significant 
features; and (b) Determine what heat generation rate will cause the midpoint to reach 600 K with 
unchanged boundary conditions.  
 
SCHEMATIC: 

 
 

ASSUMPTIONS:  (1) Steady-state conditions, and (2) Two-dimensional conduction with constant 
properties. 
 
ANALYSIS:  (a) Using FEHT, do the following: in Setup, enter an appropriate scale; Draw the 
outline of the symmetrical section shown in the above schematic; Specify the Boundary Conditions 
(zero heat flux or adiabatic along the symmetrical lines, and isothermal on the edges). Also Specify the 
Material Properties and Generation rate.  Draw three Element Lines as shown on the annotated 
version of the FEHT screen below.  To reduce the mesh, hit Draw/Reduce Mesh until the desired 
fineness is achieved (256 elements is a good choice). 
 

 
 
 

Continued …  



 
PROBLEM 4.89 (Cont.) 

 
After hitting Run, Check and then Calculate,  use the View/Temperature Contours and select the 10-
isopotential option to display the isotherms as shown in an annotated copy of the FEHT screen below. 
 

 
 

The isotherms are normal to the symmetrical lines as expected since those surfaces are adiabatic.  The 
isotherms, especially near the center, have an elliptical shape.  Along the x = 0 axis and the   y = 10 
mm axis, the temperature gradient is nearly linear.  The hottest point is of course the center for which 
the temperature is 

(T(0, 10 mm) = 401.3 K.       < 
 
The temperature of this point can be read using the View/Temperatures or View|Tabular Output 
command. 
 
(b) To determine the required generation rate so that T(0, 10 mm) = 600 K, it is necessary to re-run the 
model with several guessed values of q& .  After a few trials, find 
 

8 3q 1.48 10 W / m= ×&         < 



PROBLEM 4.90 
 
KNOWN:  Symmetrical section of a flow channel with prescribed values of q&  and k, as well as the 
surface convection conditions.  See Problem 4.57. 
. 
FIND:  Using the finite-element method of FEHT, (a) Determine the temperature distribution and plot 
the isotherms; identify the coolest and hottest regions, and the region with steepest gradients; describe 
the heat flow field, (b) Calculate the heat rate per unit length (W/m) from the outer surface A to the 
adjacent fluid, (c) Calculate the heat rate per unit length (W/m) to surface B from the inner fluid, and 
(d) Verify that the results are consistent with an overall energy balance on the section.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state, two-dimensional conduction, (2) Constant properties. 
ANALYSIS:  (a) The symmetrical section shown in the schematic is drawn in FEHT with the 
specified boundary conditions, material property and generation.  The View | Temperature Contours 
command is used to represent ten isotherms (isopotentials) that have minimum and maximum values 
of 82.1°C and 125.2°C. 
 

The hottest region of the section is the upper vertical leg (left-hand corner).  The coolest region is in 
the lower horizontal leg at the far right-hand boundary.  The maximum and minimum section 
temperatures (125°C and 77°C), respectively, are higher than either adjoining fluid.  Remembering 
that heat flow lines are normal to the isotherms, heat flows from the hottest corner directly to the inner 
fluid and downward into the lower leg and then flows out surface A and the lower portion of surface 
B. 
 
          Continued … 



PROBLEM 4.90 (Cont.) 
 
(b, c) Using the View | Heat Flows command considering the boundaries for surfaces A and B, the heat 
rates are: 
 
 s Bq 1135 W / m q 1365 W / m.′ ′= = −      < 
 
From an energy balance on the section, we note that the results are consistent since conservation of 
energy is satisfied. 
 
 in out gE E E 0′ ′− + =& & &  
 
 A Bq q q 0′ ′ ′− + + ∀ =&  
 
 ( )1135 W / m 1365 W / m 2500 W / m 0− + − + =      < 
 
where [ ]6 3 6 2q 1 10 W / m 25 50 25 50 10 m 2500 W / m.−∀ = × × × + × × =&  
 
COMMENTS:  (1) For background on setting up this problem in FEHT, see the tutorial example of 
the User’s Manual.  While the boundary conditions are different, and the internal generation term is to 
be included, the procedure for performing the analysis is the same. 
 
(2) The heat flow distribution can be visualized using the View | Temperature Gradients command.  
The direction and magnitude of the heat flow is represented by the directions and lengths of arrows.  
Compare the heat flow distribution to the isotherms shown above. 
 

 



PROBLEM 4.91 
 
KNOWN: Hot-film flux gage for determining the convection coefficient of an adjoining fluid stream 
by measuring the dissipated electric power, Pe , and the average surface temperature, Ts,f.  
FIND:  Using the finite-element method of FEHT, determine the fraction of the power dissipation that 
is conducted into the quartz substrate considering three cases corresponding to convection coefficients 
of 500, 1000 and 2000 W/m2⋅K. 
 
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state, two-dimensional conduction, (2) Constant substrate properties, 
(3) Uniform convection coefficient over the hot-film and substrate surfaces, (4) Uniform power 
dissipation over hot film. 
 
ANALYSIS:  The symmetrical section shown in the schematic above (right) is drawn into FEHT 
specifying the substrate material property.  On the upper surface, a convection boundary condition 

(T∞,h) is specified over the full width W/2.  Additionally, an applied uniform flux ( )2
eP , W / m′′  

boundary condition is specified for the hot-film region (w/2).  The remaining surfaces of the two-
dimensional system are specified as adiabatic.  In the schematic below, the electrical power dissipation 

eP′  (W/m) in the hot film is transferred by convection from the film surface, cv,fq′ , and from the 

adjacent substrate surface, cv,sq .′  
 

 
 
The analysis evaluates the fraction, F, of the dissipated electrical power that is conducted into the 
substrate and convected to the fluid stream, 
 
 cv,s e cv,f eF q / P 1 q / P′ ′ ′ ′= = −  
 
where ( ) ( )2

e eP P w / 2 5000 W / m 0.002 m 10 W / m.′ ′′= = × =  
 
After solving for the temperature distribution, the View|Heat Flow command is used to evaluate cv,fq′  
for the three values of the convection coefficient. 
 
          Continued … 



PROBLEM 4.91 (Cont.) 
 
 Case  h(W/m2⋅K)  ( )cv,fq W / m′   F(%)  Ts,f (°C) 

 
   1      500          5.64  43.6     30.9 
   2    1000          6.74  32.6     28.6 
   3    2000          7.70  23.3     27.0 
 
COMMENTS:  (1) For the ideal hot-film flux gage, there is negligible heat transfer to the substrate, 
and the convection coefficient of the air stream is calculated from the measured electrical power, eP ,′′  

the average film temperature (by a thin-film thermocouple), Ts,f, and the fluid stream temperature, T∞, 
as ( )e s,fh P / T T .∞′′= −   The purpose in performing the present analysis is to estimate a correction 

factor to account for heat transfer to the substrate. 
 
(2) As anticipated, the fraction of the dissipated electrical power conducted into the substrate, F, 
decreases with increasing convection coefficient.  For the case of the largest convection coefficient, F 
amounts to 25%, making it necessary to develop a reliable, accurate heat transfer model to estimate the 
applied correction.  Further, this condition limits the usefulness of this gage design to flows with high 
convection coefficients. 
 
(3) A reduction in F, and hence the effect of an applied correction, could be achieved with a substrate  
material having a lower thermal conductivity than quartz.  However, quartz is a common substrate 
material for fabrication of thin-film heat-flux gages and thermocouples.  By what other means could 
you reduce F? 
 
(4) In addition to the tutorial example in the FEHT User’s Manual, the solved models for Examples 
4.3 and 4.4 are useful for developing skills helpful in solving this problem. 
 
 
 
 
 
 
 
 
 
   



PROBLEM 4.92 
 
KNOWN:  Flue of square cross section with prescribed geometry, thermal conductivity and inner and 
outer surface convective conditions.  
FIND:  (a) Heat loss per unit length, q′ , by convection to the air, (b) Effect of grid spacing and 
convection coefficients on temperature field; show isotherms. 
 
SCHEMATIC: 

  
          Schematic (a) 
ASSUMPTIONS:  (1) Steady-state, two-dimensional conduction, (2) Constant properties. 
 
ANALYSIS:  (a) Taking advantage of symmetry, the nodal network for a 75 mm grid spacing is shown 
in schematic (a).  To obtain the heat rate, we need first to determine the temperatures Ti.  Recognize that 
there are four types of nodes:  interior (4-7), plane surface with convection (1, 2, 8-11), internal corner 
with convection (3), and external corner with convection (12).  Using the appropriate relations from Table 
4.2, the finite-difference equations are 
 

Node  Equation 
1 

( ) i i
4 2 2 ,i 1

2h x h x
2T T T T 2 2 T 0

k k∞
Δ Δ

+ + + − + =⎛ ⎞
⎜ ⎟
⎝ ⎠

 
4.42 

2 
( ) i i

5 3 1 ,i 2
2h x h x

2T T T T 2 2 T 0
k k∞
Δ Δ

+ + + − + =⎛ ⎞
⎜ ⎟
⎝ ⎠

 
4.42 

3 
( ) ( ) i i

6 6 2 2 ,i 3
2h x h x

2 T T T T T 2 3 T 0
k k∞
Δ Δ

+ + + + − + =⎛ ⎞
⎜ ⎟
⎝ ⎠

 
4.41 

4 ( )8 5 1 5 4T T T T 4T 0+ + + − =  4.29 
5 ( )9 6 2 4 5T T T T 4T 0+ + + − =  4.29 
6 ( )10 7 3 5 6T T T T 4T 0+ + + − =  4.29 
7 ( )11 11 6 6 7T T T T 4T 0+ + + − =  4.29 
8 

( ) o o
4 9 9 ,o 8

2h x h x
2T T T T 2 2 T 0

k k∞
Δ Δ

+ + + − + =⎛ ⎞
⎜ ⎟
⎝ ⎠

 
4.42 

9 
( ) o o

5 10 8 ,o 9
2h x h x

2T T T T 2 2 T 0
k k∞
Δ Δ

+ + + − + =⎛ ⎞
⎜ ⎟
⎝ ⎠

 
4.42 

10 
( ) o o

6 11 9 ,o 10
2h x h x

2T T T T 2 2 T 0
k k∞
Δ Δ

+ + + − + =⎛ ⎞
⎜ ⎟
⎝ ⎠

 
4.42 

11 
( ) o o

7 12 10 ,o 11
2h x h x

2T T T T 2 2 T 0
k k∞
Δ Δ

+ + + − + =⎛ ⎞
⎜ ⎟
⎝ ⎠

 
4.42 

12 
( ) o o

11 11 ,o 12
2h x h x

T T T 2 1 T 0
k k∞
Δ Δ

+ + − + =⎛ ⎞
⎜ ⎟
⎝ ⎠

 
4.43 

Continued... 
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Substituting T∞,o = 350°C, ho = 100 W/m2·K, T∞,i = 25°C, hi = 5 W/m2·K, Δx = 0.075 m, and k = 0.85 
W/m·K and solving the preceding equations simultaneously using, for example, IHT, yields 
 
T1 = 340.4°C, T2 = 339.5°C, T3 = 329.1°C, T4 = 256.5°C, T5 = 251.4°C, T6 = 231.5°C, T7 = 182.3°C, T8 = 
182.6°C, T9 = 178.3°C, T10 = 163.1°C, T11 = 133.1°C, T12 = 100.0°C.          < 
 
The heat loss to the outside air for the upper surface (Nodes 8 through 12) is of the form 

 ( ) ( ) ( ) ( ) ( )o 8 ,o 9 ,o 10 ,o 11 ,o 12 ,o
1 1

q h x T T T T T T T T T T
2 2∞ ∞ ∞ ∞ ∞′ = Δ − + − + − + − + −⎡ ⎤
⎢ ⎥⎣ ⎦

 

( ) ( ) ( ) ( ) ( )2 1 1
q 5 W m K 0.075 m 182.6 25 178.3 25 163.1 25 133.1 25 100.0 25 C 193.4 W m

2 2
′ = ⋅ × − + − + − + − + − =⎡ ⎤

⎢ ⎥⎣ ⎦
o

 
Hence, for the entire flue cross-section, considering symmetry, 
 totq 8 q 8 193.4 W m 1.55kW m′ ′= × = × =  < 
The convection heat rate at the inner surface is 

 ( ) ( ) ( )tot i ,i 1 ,i 2 ,i 3
1 1

q 8 h x T T T T T T 1.55kW m
2 2∞ ∞ ∞′ = × Δ − + − + − =⎡ ⎤
⎢ ⎥⎣ ⎦

 

which is the same as the heat loss from the upper surface, as it must be. <  
 
 
(b) Using the Finite-Difference Equations option from the Tools portion of the IHT menu, the following 
two-dimensional temperature field was computed for the grid shown in the schematic below, where x and 
y are in mm and the temperatures are in °C. 
 

 
 
y\x 0 25 50 75 100 125 150 175 200 225 250 275 300 
0 180.7 180.2 178.4 175.4 171.1 165.3 158.1 149.6 140.1 129.9 119.4 108.7 98.0 

25 204.2 203.6 201.6 198.2 193.3 186.7 178.3 168.4 157.4 145.6 133.4 121.0  
50 228.9 228.3 226.2 222.6 217.2 209.7 200.1 188.4 175.4 161.6 147.5   
75 255.0 254.4 252.4 248.7 243.1 235.0 223.9 209.8 194.1 177.8    

100 282.4 281.8 280.1 276.9 271.6 263.3 250.5 232.8 213.5     
125 310.9 310.5 309.3 307.1 303.2 296.0 282.2 257.5      
150 340.0 340.0 339.6 339.1 337.9 335.3 324.7       
 
Agreement between the temperature fields for the (a) and (b) grids is good, with the largest differences 
occurring at the interior and exterior corners.  Ten isotherms generated using FEHT are shown on the 
symmetric section below.  Note how the heat flow is nearly normal to the flue wall around the mid-
section.  In the corner regions, the isotherms are curved and we’d expect that grid size might influence the 
accuracy of the results.  Convection heat transfer to the inner surface is 

 
Continued... 
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 ( ) ( ) ( ) ( )i ,i 1 ,i 2 ,i 3 ,i 4q 8h x T T 2 T T T T T T∞ ∞ ∞ ∞⎡′ = Δ − + − + − + −⎣  

  ( ) ( ) ( ),i 5 ,i 6 ,i 7T T T T T T 2 1.52 kW m∞ ∞ ∞ ⎤+ − + − + − =⎦  
 
and the agreement with results of the coarse grid is excellent. 
 
 The heat rate increases with increasing hi and ho, while temperatures in the wall increase and 
decrease, respectively, with increasing hi and ho. 
 
COMMENTS.  (1) Gauss-Seidel iteration may be used to solve this system of equations.  Following the 
procedures of Appendix D, the system of equations is rewritten in the proper form.  Note that diagonal 
dominance is present; hence, no re-ordering is necessary. 

 k k 1 k 1
1 2 4T 0.09239T 0.09239T 285.3− −= + +  

 k k k 1 k 1
2 1 3 5T 0.04620T 0.04620T 0.09239T 285.3− −= + + +  

 k k k 1
3 2 6T 0.08457T 0.1692T 261.2−= + +  

 k k k 1 k 1
4 1 5 8T 0.25T 0.50T 0.25T− −= + +  

 k k k k 1 k 1
5 2 4 6 9T 0.25T 0.25T 0.25T 0.25T− −= + + +  

 k k k k 1 k 1
6 3 5 7 9T 0.25T 0.25T 0.25T 0.25T− −= + + +  

 k k k 1
7 6 11T 0.50T 0.50T −= +  

 k k k 1
8 4 9T 0.4096T 0.4096T 4.52−= + +  

 k k k k 1
9 5 8 10T 0.4096T 0.2048T 0.2048T 4.52−= + + +  

 k k k k 1
10 6 9 11T 0.4096T 0.2048T 0.2048T 4.52−= + + +  

 k k k k 1
11 7 10 12T 0.4096T 0.2048T 0.2048T 4.52−= + + +  

 k k
12 11T 0.6939T 7.65= +  
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The initial estimates (k = 0) are carefully chosen to minimize calculation labor; let ε < 1.0. 
 

k T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 
0 340 330 315 250 225 205 195 160 150 140 125 110 
1 338.9 336.3 324.3 237.2 232.1 225.4 175.2 163.1 161.7 155.6 130.7 98.3 
2 338.3 337.4 328.0 241.4 241.5 226.6 178.6 169.6 170.0 158.9 130.4 98.1 
3 338.8 338.4 328.2 247.7 245.7 230.6 180.5 175.6 173.7 161.2 131.6 98.9 
4 339.4 338.8 328.9 251.6 248.7 232.9 182.3 178.7 176.0 162.9 132.8 99.8 
5 339.8 339.2 329.3 254.0 250.5 234.5 183.7 180.6 177.5 164.1 133.8 100.5 
6 340.1 339.4 329.7 255.4 251.7 235.7 184.7 181.8 178.5 164.7 134.5 101.0 
7 340.3 339.5 329.9 256.4 252.5 236.4 185.5 182.7 179.1 165.6 135.1 101.4 

 
The heat loss to the outside air for the upper surface (Nodes 8 through 12) is of the form 

 ( ) ( ) ( ) ( ) ( )o 8 ,o 9 ,o 10 ,o 11 ,o 12 ,o
1 1

q h x T T T T T T T T T T
2 2∞ ∞ ∞ ∞ ∞′ = Δ − + − + − + − + −⎡ ⎤
⎢ ⎥⎣ ⎦

 

( ) ( ) ( ) ( ) ( )2 1 1
q 5 W m K 0.075 m 182.7 25 179.1 25 165.6 25 135.1 25 101.4 25 C 195 W m

2 2
′ = ⋅ × − + − + − + − + − =⎡ ⎤

⎢ ⎥⎣ ⎦
o  

Hence, for the entire flue cross-section, considering symmetry, 

 totq 8 q 8 195W m 1.57 kW m′ ′= × = × =  < 
The convection heat rate at the inner surface is 

 ( ) ( ) ( )tot i ,i 1 ,i 2 ,i 3
1 1

q 8 h x T T T T T T 8 190.5 W m 1.52 kW m
2 2∞ ∞ ∞′ = × Δ − + − + − = × =⎡ ⎤
⎢ ⎥⎣ ⎦

 

which is within 2.5% of the foregoing result.  The convection heat rates would be identical when ε = 0. 
 
(2) For this problem the Gauss-Seidel iteration method is cumbersome, time-consuming and inaccurate 
unless many more iterations are included. For relatively small systems of simultaneous equations such as 
in this problem, enhanced accuracy can usually be obtained with far less effort through use of a numerical 
solver such as available on many handheld calculators, IHT or some other commercial code. 
 
 



PROBLEM 4.93 
 
KNOWN:  Electronic device cooled by conduction to a heat sink. 
 
FIND:  (a) Beginning with a symmetrical element, find the thermal resistance per unit depth between the 
device and lower surface of the sink, t,d sR −′  (m⋅K/W) using a coarse (5x5) nodal network, determine 

t,d sR −′ ; (b) Using nodal networks with finer grid spacings, determine the effect of grid size on the 
precision of the thermal resistance calculation; (c) Using a fine nodal network, determine the effect of 
device width on t,d sR −′  with wd/ws = 0.175, 0.275, 0.375 and 0.475 keeping ws and L fixed. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state, two-dimensional conduction, (2) Constant properties, and (3) No 
internal generation, (4) Top surface not covered by device is insulated. 
 
ANALYSIS: (a) The coarse 5x5 
nodal network is shown in the sketch 
including the nodes adjacent to the 
symmetry lines and the adiabatic 
surface.  As such, all the finite-
difference equations are interior 
nodes and can be written by 
inspection directly onto the IHT 
workspace.  Alternatively, one could 
use the IHT Finite-Difference 
Equations Tool.  The temperature 
distribution (°C) is tabulated in the 
same arrangement as the nodal 
network. 

 
 

85.00 85.00 62.31 53.26 50.73 
65.76 63.85 55.49 50.00 48.20 
50.32 49.17 45.80 43.06 42.07 
37.18 36.70 35.47 34.37 33.95 
25.00 25.00 25.00 25.00 25.00 

 
The thermal resistance between the device and sink per unit depth is 
 

 d s
t,s d

tot

T T
R

2q−
−′ =
′
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Performing an energy balance on the device nodes, find 
 
 tot a b cq q q q′ ′ ′ ′= + +  
 

( ) ( )d 1 d 5 d 4
tot

T T T T T T
q k y 2 k x k x 2

x y y

− − −′ = Δ + Δ + Δ
Δ Δ Δ

  

  
 ( ) ( ) ( )[ ] 4

totq 300 W m K 85 62.31 2 85 63.85 85 65.76 2 K 1.263 10 W m′ = ⋅ − + − + − = ×  

 
( ) 3

t,s d 4
85 25 K

R 2.38 10 m K W
2 1.263 10 W m

−
−

−
′ = = × ⋅

× ×
 < 

(b) The effect of grid size on the precision of the thermal resistance estimate should be tested by 
systematically reducing the nodal spacing Δx and Δy.  This is a considerable amount of work even with 
IHT since the equations need to be individually entered.  A more generalized, powerful code would be 
required which allows for automatically selecting the grid size.  Using FEHT, a finite-element package, 
with eight elements across the device, representing a much finer mesh, we found 

 3
t,s dR 3.64 10 m K W−
−′ = × ⋅  

 
(c) Using the same tool, with the finest mesh, the thermal resistance was found as a function of wd/ws with 
fixed ws and L. 

 
As expected, as wd increases, t,d sR −′  decreases, and eventually will approach the value for the 
rectangular domain (ii).  The spreading effect is shown for the base case, wd/ws = 0.375, where the 
thermal resistance of the sink is less than that for the rectangular domain (i). 
 
COMMENTS:  It is useful to compare the results for estimating the thermal resistance in terms of 
precision requirements and level of effort, 

 t,d sR −′  × 103 (m⋅K/W) 
Rectangular domain (i) 4.44 
Flux plot 3.03 
Rectangular domain (ii) 1.67 
FDE, 5x5 network 2.38 
FEA, fine mesh 3.64 

 

−′t,d sR

−′t,d s,iR

−′t,d s,iiR



PROBLEM 4.94  
KNOWN:  Plane composite wall with exposed surfaces maintained at fixed temperatures.  Material A 
has temperature-dependent thermal conductivity.  
FIND:  Heat flux through the wall (a) assuming a uniform thermal conductivity in material A 
evaluated at the average temperature of the section, and considering the temperature-dependent 
thermal conductivity of material A using (b) a finite-difference method of solution in IHT with a space 
increment of 1 mm and (c) the finite-element method of FEHT.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state, one-dimensional conduction, (2) No thermal contact resistance 
between the materials, and (3) No internal generation.  
ANALYSIS:  (a) From the thermal circuit in the above schematic, the heat flux is 
 

 1 2 AB 2
x

A B B

T T T Tq
R R R

− −′′ = =
′′ ′′ ′′+

       (1, 2) 

 
and the thermal resistances of the two sections are 
 
 A A A B B BR L / k R L / k′′ ′′= =      (3, 4) 
 
The thermal conductivity of material A is evaluated at the average temperature of the section 
 
 ( ){ }A o 1 AB ok k 1 T T / 2 Tα ⎡ ⎤= + + −⎣ ⎦      (5) 
 
Substituting numerical values and solving the system of equations simultaneously in IHT, find 
 
 2

AB xT 563.2 K q 52.64 kW / m′′= =     < 
 
(b) The nodal arrangement for the finite-difference method of solution is shown in the schematic 
below.  FDEs must be written for the internal nodes (02 – 10, 12 – 15) and the A-B interface node (11) 
considering in section A, the temperature-dependent thermal conductivity. 
 

 
 
Interior Nodes, Section A (m = 02, 03 … 10) 
Referring to the schematic below, the energy balance on node m is written in terms of the heat fluxes 
at the control surfaces using Fourier’s law with the thermal conductivity based upon the average 
temperature of adjacent nodes.  The heat fluxes into node m are 
          Continued … 



PROBLEM 4.94 (Cont.) 
 

 ( ) m 1 m
c a

T Tq k m,m 1
x

+ −′′ = +
Δ

       (1) 
 

 ( ) m 1 m
d a

T Tq k m 1,m
x

− −′′ = −
Δ

       (2) 
 
and the FDEs are obtained from the energy balance written as 
 
 c dq q 0′′ ′′+ =           (3) 
 

 ( ) ( )m 1 m m 1 m
a a

T T T Tk m,m 1 k m 1,m 0
x x

+ −− −
+ + − =

Δ Δ
    (4) 

 
where the thermal conductivities averaged over the path between the nodes are expressed as 
 
 ( ) ( ){ }a o m 1 m ok m 1,m k 1 T T / 2 Tα −⎡ ⎤− = + + −⎣ ⎦      (5) 
 
 ( ) ( ){ }a o m m 1 ok m,m 1 k 1 T T / 2 Tα +⎡ ⎤+ = + + −⎣ ⎦      (6) 
 

 
 
A-B Interface Node 11 
Referring to the above schematic, the energy balance on the interface node, c dq q 0,′′ ′′+ =  has the form 
 

 ( ) 10 1112 11
b a

T TT Tk k 10,11 0
x x

−−
+ =

Δ Δ
      (7) 

where the thermal conductivity in the section A path is 
 ( ) ( ){ }o 10 11 ok 10,11 k 1 T T / 2 T⎡ ⎤= + + −⎣ ⎦       (8) 
 
Interior Nodes, Section B (n = 12 …15) 
Since the thermal conductivity in Section B is uniform, the FDEs have the form 
 ( )n n 1 n 1T T T / 2− += +        (9) 
And the heat flux in the x-direction is 

 n n 1
x b

T Tq k
x

+−′′ =
Δ

        (10) 
 
Finite-Difference Method of Solution 
The foregoing FDE equations for section A nodes (m = 02 to 10), the AB interface node and their 
respective expressions for the thermal conductivity, k (m, m +1), and for section B nodes are entered 
into the IHT workspace and solved for the temperature distribution.  The heat flux can be evaluated 
using Eq. (2) or (10).  A portion of the IHT code is contained in the Comments, and the results of the 
analysis are tabulated below. 

 2
11 AB xT T 563.2 K q 52.64 kW / m′′= = =     < 

          Continued … 



PROBLEM 4.94 (Cont.) 
 
(c) The finite-element method of FEHT can be used readily to obtain the heat flux considering the 
temperature-dependent thermal conductivity of section A.  Draw the composite wall outline with 
properly scaled section thicknesses in the x-direction with an arbitrary y-direction dimension.  In the 
Specify | Materials Properties box for the thermal conductivity, specify ka as 4.4*[1 + 0.008*(T – 
300)] having earlier selected Set | Temperatures in K.  The results of the analysis are 
 
 2

AB xT 563 K q 52.6 kW / m′′= =      < 
 
COMMENTS:  (1) The results from the three methods of analysis compare very well.  Because the 
thermal conductivity in section A is linear, and moderately dependent on temperature, the simplest 
method of using an overall section average, part (a), is recommended.  This same method is 
recommended when using tabular data for temperature-dependent properties. 
 
(2) For the finite-difference method of solution, part (b), the heat flux was evaluated at several nodes 
within section A and in section B with identical results.  This is a consequence of the technique for 
averaging ka over the path between nodes in computing the heat flux into a node. 
 
(3) To illustrate the use of IHT in solving the finite-difference method of solution, lines of code for 
representative nodes are shown below. 
 
 // FDEs – Section A 
 k01_02 * (T01-T02)/deltax + k02_03 * (T03-T02)/deltax = 0 
 k01_02 = ko * (1+ alpha * ((T01 + T02)/2 – To)) 
 k02_03 = ko * (1 + alpha * ((T02 + T03)/2 – To)) 
 
 k02_03 * (T02 – T03)/deltax + k03_04 * (T04 – T03)/deltax = 0 
 k03_04 = ko * (1 + alpha * ((T03 + T04)/2 – To)) 
 
 // Interface, node 11 
 k11 * (T10 –T11)/deltax + kb * (T12 –T11)/deltax =0 
 k11 = ko * (1 + alpha * ((T10 + T11)/2 – To)) 
 
 // Section B (using Tools/FDE/One-dimensional/Steady-state) 
 /* Node 12: interior node; */ 
 0.0 = fd_1d_int(T12, T13, T11, kb, qdot, deltax) 
 
 



PROBLEM 4.95  
KNOWN:  Upper surface of a platen heated by hot fluid through the flow channels is used to heat a 
process fluid.  
FIND:  (a) The maximum allowable spacing, W, between channel centerlines that will provide a 
uniform temperature requirement of 5°C on the upper surface of the platen, and (b) Heat rate per unit 
length from the flow channel for this condition.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state, two-dimensional conduction with constant properties, and (2) 
Lower surface of platen is adiabatic.  
ANALYSIS:  As shown in the schematic above for a symmetrical section of the platen-flow channel 
arrangement, the temperature uniformity requirement will be met when T1 – T2 = 5°C.  The maximum 
temperature, T1, will occur directly over the flow channel centerline, while the minimum surface 
temperature, T2, will occur at the mid-span between channel centerlines. 
 
We chose to use FEHT to obtain the temperature distribution and heat rate for guessed values of the 
channel centerline spacing, W.  The following method of solution was used:  (1) Make an initial guess 
value for W; try W = 100 mm, (2) Draw an outline of the symmetrical section, and assign properties 
and boundary conditions, (3) Make a copy of this file so that in your second trial, you can use the 
Draw | Move Node option to modify the section width, W/2, larger or smaller, (4) Draw element lines 
within the outline to create triangular elements, (5) Use the Draw | Reduce Mesh command to generate 
a suitably fine mesh, then solve for the temperature distribution, (6) Use the View | Temperatures 
command to determine the temperatures T1 and T2, (7) If, T1 – T2 ≈ 5°C, use the View | Heat Flows 
command to find the heat rate, otherwise, change the width of the section outline and repeat the 
analysis.  The results of our three trials are tabulated below. 
 
 Trial W (mm) T1 (°C)  T2 (°C)  T1 – T2 (°C) q’ (W/m) 
 
   1   100    108      98          10      -- 
   2    60    119    118            1      -- 
   3    80    113    108            5    1706  
COMMENTS:  (1) In addition to the tutorial example in the FEHT User’s Manual, the solved models 
for Examples 4.3 and 4.4 of the Text are useful for developing skills in using this problem-solving 
tool. 
 
(2) An alternative numerical method of solution would be to create a nodal network, generate the 
finite-difference equations and solve for the temperature distribution and the heat rate.  The FDEs 
should allow for a non-square grid, Δx ≠ Δy, so that different values for W/2 can be accommodated by 
changing the value of Δx.  Even using the IHT tool for building FDEs (Tools | Finite-Difference 
Equations | Steady-State) this method of solution is very labor intensive because of the large number 
of nodes required for obtaining good estimates. 
 



PROBLEM 4.96 
 
KNOWN:  Silicon chip mounted in a dielectric substrate.  One surface of system is convectively 
cooled, while the remaining surfaces are well insulated.  See Problem 4.93.  Use the finite-element 
software FEHT as your analysis tool.  
FIND:  (a) The temperature distribution in the substrate-chip system; does the maximum temperature 
exceed 85°C?; (b) Volumetric heating rate that will result in a maximum temperature of 85°C; and (c) 
Effect of reducing thickness of substrate from 12 to 6 mm, keeping all other dimensions unchanged 
with q&  = 1×107 W/m3; maximum temperature in the system for these conditions, and fraction of the 
power generated within the chip removed by convection directly from the chip surface.  
SCHEMATIC: 
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Two-dimensional conduction in system, and (3) 
Uniform convection coefficient over upper surface.  
ANALYSIS:  Using FEHT, the symmetrical section is represented in the workspace as two connected 
regions, chip and substrate.  Draw first the chip outline; Specify the material and generation 
parameters.  Now, Draw the outline of the substrate, connecting the nodes of the interfacing surfaces; 
Specify the material parameters for this region.  Finally, Assign the Boundary Conditions: zero heat 
flux for the symmetry and insulated surfaces, and convection for the upper surface.  Draw Element 
Lines, making the triangular elements near the chip and surface smaller than near the lower insulated 
boundary as shown in a copy of the FEHT screen on the next page.  Use the Draw|Reduce Mesh 
command and Run the model.  
(a) Use the View|Temperature command to see the nodal temperatures through out the system.  As 
expected, the hottest location is on the centerline of the chip at the bottom surface. At this location, the 
temperature is  

T(0, 9 mm) = 46.7°C         < 
 
(b) Run the model again, with different values of the generation rate until the temperature at this 
location is T(0, 9 mm) = 85°C, finding 
 
 7 3q 2.43 10 W / m= ×&          < 
 
          Continued … 



PROBLEM 4.96 (Cont.) 
 
 

 
 
(c) Returning to the model code with the conditions of part (a), reposition the nodes on the lower 
boundary, as well as the intermediate ones, to represent a substrate that is of 6-mm, rather than 12-mm 
thickness.  Find the maximum temperature as 
 
 ( )T 0,3 mm 47.5 C= °          < 
 
Using the View|Heat Flow command, click on the adjacent line segments forming the chip surface 
exposed to the convection process.  The heat rate per unit width (normal to the page) is 
 
 chip,cvq 60.26 W / m′ =  
 
The total heat generated within the chip is 
 
 ( ) ( )7 3 2

totq q L / 6 H / 4 1 10 W / m 0.0045 0.003 m 135 W / m′ = × = × × × =&  
 
so that the fraction of the power dissipated by the chip that is convected directly to the coolant stream 
is 
 
 chip,cv totF q / q 60.26 /135 45%′ ′= = =       < 
 
COMMENTS:  (1) Comparing the maximum temperatures for the system with the 12-mm and 6-mm 
thickness substrates, note that the effect of halving the substrate thickness is to raise the maximum 
temperature by less than 1°C.  The thicker substrate does not provide significantly improved heat 
removal capability. 
 
(2) Without running the code for part (b), estimate the magnitude of q&  that would make T(0, 9 mm) = 

85°C. Did you get q&  = 2.43×107 W/m3?  Why? 



PROBLEM 5.1

KNOWN: Electrical heater attached to backside of plate while front surface is exposed to

convection process (T,h); initially plate is at a uniform temperature of the ambient air and

suddenly heater power is switched on providing a constant oq .

FIND: (a) Sketch temperature distribution, T(x,t), (b) Sketch the heat flux at the outer

surface,  xq L,t as a function of time.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) Negligible
heat loss from heater through insulation.

ANALYSIS: (a) The temperature distributions for four time conditions including the initial
distribution, T(x,0), and the steady-state distribution, T(x,), are as shown above.

Note that the temperature gradient at x = 0, -dT/dx)x=0, for t > 0 will be a constant since the

flux,  xq 0 , is a constant. Noting that To = T(0,), the steady-state temperature distribution

will be linear such that

 
 o

o
T T L,

q k h T L, T .
L


 

      

(b) The heat flux at the front surface, x = L, is given by    x x=L
q L,t k dT/dx .   From the

temperature distribution, we can construct the heat flux-time plot.

COMMENTS: At early times, the temperature and heat flux at x = L will not change from

their initial values. Hence, we show a zero slope for  xq L,t at early times. Eventually, the

value of  xq L,t will reach the steady-state value which is oq .



PROBLEM 5.2

KNOWN: Plane wall whose inner surface is insulated and outer surface is exposed to an

airstream at T. Initially, the wall is at a uniform temperature equal to that of the airstream.

Suddenly, a radiant source is switched on applying a uniform flux, oq , to the outer surface.

FIND: (a) Sketch temperature distribution on T-x coordinates for initial, steady-state, and

two intermediate times, (b) Sketch heat flux at the outer surface,  xq L,t , as a function of

time.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) No internal

generation, gE 0, (4) Surface at x = 0 is perfectly insulated, (5) All incident radiant power

is absorbed and negligible radiation exchange with surroundings.

ANALYSIS: (a) The temperature distributions are shown on the T-x coordinates and labeled
accordingly. Note these special features: (1) Gradient at x = 0 is always zero, (2) gradient is
more steep at early times and (3) for steady-state conditions, the radiant flux is equal to the
convective heat flux (this follows from an energy balance on the CS at x = L),

  o convq q h T L, T .
    

(a) (b)x = L

+
0

t

q”
conv

q”
o

-q”
o

q” (L,t)
x

(b) The heat flux at the outer surface,  xq L,t , as a function of time appears as shown above.

COMMENTS: The sketches must reflect the initial and boundary conditions:

T(x,0) = T uniform initial temperature.

x=0
T

k 0
x




  insulated at x = 0.

 x=L o
T

k h T L,t T q
x




       surface energy balance at x = L.



PROBLEM 5.3

KNOWN: Microwave and radiant heating conditions for a slab of beef.

FIND: Sketch temperature distributions at specific times during heating and cooling.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction in x, (2) Uniform internal heat
generation for microwave, (3) Uniform surface heating for radiant oven, (4) Heat loss from
surface of meat to surroundings is negligible during the heating process, (5) Symmetry about
midplane.

ANALYSIS:

COMMENTS: (1) With uniform generation and negligible surface heat loss, the temperature
distribution remains nearly uniform during microwave heating. During the subsequent surface
cooling, the maximum temperature is at the midplane.

(2) The interior of the meat is heated by conduction from the hotter surfaces during radiant
heating, and the lowest temperature is at the midplane. The situation is reversed shortly after
cooling begins, and the maximum temperature is at the midplane.



PROBLEM 5.4

KNOWN: Plate initially at a uniform temperature Ti is suddenly subjected to convection

process (T,h) on both surfaces. After elapsed time to, plate is insulated on both surfaces.

FIND: (a) Assuming Bi >> 1, sketch on T - x coordinates: initial and steady-state (t  )

temperature distributions, T(x,to) and distributions for two intermediate times to < t < , (b)

Sketch on T - t coordinates midplane and surface temperature histories, (c) Repeat parts (a)

and (b) assuming Bi << 1, and (d) Obtain expression for T(x,) = Tf in terms of plate

parameters (M,cp), thermal conditions (Ti, T, h), surface temperature T(L,t) and heating time

to.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) No internal

generation, (4) Plate is perfectly insulated for t > to, (5) T(0, t < to) < T.

ANALYSIS: (a,b) With Bi >> 1, appreciable temperature gradients exist in the plate
following exposure to the heating process.

On T-x coordinates: (1) initial, uniform temperature, (2) steady-state conditions when t  ,

(3) distribution at to just before plate is covered with insulation, (4) gradients are always zero

(symmetry), and (5) when t > to (dashed lines) gradients approach zero everywhere.

(c) If Bi << 1, plate is space-wise isothermal (no gradients). On T-x coordinates, the
temperature distributions are flat; on T-t coordinates, T(L,t) = T(0,t).

(d) The conservation of energy requirement for the interval of time t = to is

   ot
in out final initial s p f i0

E E E E E 2 hA T T L,t dt 0 Mc T T          

where Ein is due to convection heating over the period of time t = 0  to. With knowledge of

T(L,t), this expression can be integrated and a value for Tf determined.



PROBLEM 5.5

KNOWN: Geometries of various objects. Material and/or properties. Cases (a) through (d):
Convection heat transfer coefficient between object and surrounding fluid. Case (e): Emissivity of
sphere, initial temperature, and temperature of surroundings. Cases (f) and (g): Initial temperature,
spatially averaged temperature at a later time, and surrounding fluid temperature.

FIND: Characteristic length and Biot number. Validity of lumped capacitance approximation.

SCHEMATIC:

Case (a): D = 50 mm, Ac = 5 mm2, k = 2.3 W/mK, h = 50 W/m2K.
Case (b): W = 5 mm, w = 3 mm, L = 100 mm, h = 15 W/m2K, AISI 304 stainless steel.
Case (c): w = 20 mm, W = 24 mm, h = 37 W/m2K (L not specified), 2024 aluminum.
Case (d): L = 300 mm, D = 13 mm, M = 0.328 kg, h = 30 W/m2K. stainless steel.
Case (e): D = 12 mm, k = 120 W/mK, Tsur = 20C, Ti = 100C,  = 0.73.
Cases (f,g): D = 20 mm or 200 mm,  = 2300 kg/m3, cp = 1750 J/kgK, k = 16 W/mK, T = 20C, Ti =
200C, T = 100C at t = 225 s.

ASSUMPTIONS: (1) Constant properties, (2) In case (e), radiation is to large surroundings.

PROPERTIES: Table A.1, Stainless steel, AISI 304 (T = 300 K): k = 14.9 W/mK. Aluminum 2024
(T = 300 K): k = 177 W/mK.

ANALYSIS: Characteristic lengths can be calculated as Lc1 = V/As, or they can be taken
conservatively as the dimension corresponding to the maximum spatial temperature difference, Lc2.
The former definition is more convenient for complex geometries. The lumped capacitance
approximation is valid for Bi = hLc/k < 0.1.

(a) The radius of the torus, ro, can be found from 2
c oA r . The characteristic lengths are

2

1

1 1 5 mm
0.63 mm

2 22 /

c c
c

s c

A D AV
L

A A D



   
    


<

Continued…

Case (e)

D

Ti, , k

Tsur

L

T, h

Case (c)
W

w

Aluminum
alloy

Air

D

MT, h

Case (d)

L

D

T, h

Cases (f,g)

L

Ti, , k, cp

L

T, h

Case (b)
w

W

T, h

Case (a)

Ac

D

k



PROBLEM 5.5 (Cont.)

2
2 Maximum center to surface distance radius / 5 mm / 1.26 mmc cL A       <

The corresponding Biot numbers are

2
1

1

50 W/m K 0.00063 m
0.014

2.3 W/m K
chL

Bi
k

 
  


<

2
2

2

50 W/m K 0.00126 m
0.027

2.3 W/m K
chL

Bi
k

 
  


<

The lumped capacitance approximation is valid according to either definition. <

(b) For this complex shape, we will calculate only Lc1.

1

5 mm 3 mm 100 mm
0.90 mm

2( ) 2 2(5 mm 3 mm) 100 mm 25 mm 3 mm
c

s

V WwL
L

A W w L Ww

 
   

     
<

Notice that the surface area of the ends has been included, and does have a small effect on the result –
0.90 mm versus 0.94 mm if the ends are neglected. The corresponding Biot number is

2
1

1

15 W/m K 0.00090 m
0.0009

14.9 W/m K
chL

Bi
k

 
  


<

The lumped capacitance approximation is valid. <
Furthermore, since the Biot number is very small, the lumped capacitance approximation would
certainly still be valid using a more conservative length estimate.

(c) Again, we will only calculate Lc1. There will be very little heat transfer to the stagnant air inside
the tube, therefore in determining the surface area for convection heat transfer, As, only the outer
surface area should be included. Thus,

2 2 2 2

1

( ) (24 mm) (20 mm)
1.83 mm

4 4 24 mm
c

s

V W w L
L

A WL

 
   


<

The corresponding Biot number is

2
41

1

37 W/m K 0.00183 m
3.8 10

177 W/m K
chL

Bi
k

 
   


<

The lumped capacitance approximation is valid. <
Furthermore, since the Biot number is very small, the lumped capacitance approximation would
certainly still be valid using a more conservative length estimate.

Continued…



PROBLEM 5.5 (Cont.)

(d) We are not told which type of stainless steel this is, but we are told its mass, from which we can
find its density:

3

2 2

0.328 kg
8237 kg/m

/ 4 (0.013 m) 0.3 m / 4

M M

V D L


 
   



This appears to be AISI 316 stainless steel, with a thermal conductivity of k = 13.4 W/mK at T = 300
K.

The characteristic lengths are

2

1 2

/ 4 / 4 13 mm 300 mm / 4
3.18 mm

2 / 4 / 2 300 mm 13 mm / 2
c

s

V D L DL
L

A DL D L D



 


    

  
<

2 Maximum center to surface distance / 2 6.5 mmcL D   <

Notice that the surface area of the ends has been included in Lc1, and does have a small effect on the
result. The corresponding Biot numbers are

2
1

1

15 W/m K 0.00318 m
0.0036

13.4 W/m K
chL

Bi
k

 
  


<

2
2

2

15 W/m K 0.0065 m
0.0073

13.4 W/m K
chL

Bi
k

 
  


<

The lumped capacitance approximation is valid according to either definition. <

(e) The characteristic lengths are

3

1 2

/ 6
2 mm

6
c

s

V D D
L

A D




    <

2 Maximum center to surface distance / 2 6 mmcL D   <

Since heat transfer from the sphere is by radiation, we will calculate the effective radiation heat
transfer coefficient (Equation 1.9):

2 2
sur sur

8 2 4 2 2 2

( )( )

0.73 5.67 10 W/m K [373 K 293 K][(373 K) (293 K) ] 6.20 W/m K

r s sh T T T T


  

       

Continued…



PROBLEM 5.5 (Cont.)

The surface temperature has been taken as the initial value, to give the largest possible heat transfer
coefficient. The Biot numbers are

2
41

1

6.2 W/m K 0.002 m
1.0 10

120 W/m K
r ch L

Bi
k

 
   


<

2
42

2

6.2 W/m K 0.006 m
3.1 10

120 W/m K
r ch L

Bi
k

 
   


<

The lumped capacitance approximation is valid according to either definition. <

(f) The characteristic lengths are

2

1

/ 4
5 mm

4
c

s

V D L D
L

A DL




    <

2 Maximum center to surface distance / 2 10 mmcL D   <

We are not told the convection heat transfer coefficient, but we do know the fluid temperature and the
temperature of the rod initially and at t = 225 s. If we assume that the lumped capacitance
approximation is valid, we can determine the heat transfer coefficient from Equation 5.5:

3
2

ln ln
4

2300 kg/m 0.020 m 1750 J/kg K 200 C 20 C
ln 72.5 W/m K

4 225 s 100 C 20 C

i i

s

T TVc Dc
h

A t t T T

 






  
        

      
   

    

The resulting Biot numbers are:

2
1

1

72.5 W/m K 0.005 m
0.023

16 W/m K
chL

Bi
k

 
  


<

2
2

2

72.5 W/m K 0.01 m
0.045

16 W/m K
chL

Bi
k

 
  


<

The lumped capacitance approximation is valid according to either definition. <
This also means that it was appropriate to use the lumped capacitance approximation to calculate h.

Continued…



PROBLEM 5.5 (Cont.)

(g) With the diameter increased by a factor of ten, so are the characteristic lengths:

2

1

/ 4
50 mm

4
c

s

V D L D
L

A DL




    <

2 Maximum center to surface distance / 2 100 mmcL D   <

Once again, we assume that the lumped capacitance approximation is valid to calculate the heat
transfer coefficient according to

3
2

ln ln
4

2300 kg/m 0.20 m 1750 J/kg K 200 C 20 C
ln 725 W/m K

4 225 s 100 C 20 C

i i

s

T TVc Dc
h

A t t T T

 






  
        

      
   

    

The resulting Biot numbers are:

2
1

1

725 W/m K 0.05 m
2.3

16 W/m K
chL

Bi
k

 
  


<

2
2

2

725 W/m K 0.1 m
4.5

16 W/m K
chL

Bi
k

 
  


<

The lumped capacitance approximation is not valid according to either definition. <
This means that the calculated value of h is incorrect, therefore the above values of the Biot number
are incorrect. However, we can still conclude that the Bi number is too large for lumped capacitance
to be valid by the following reasoning. If the lumped capacitance approximation were valid, then the
calculated h would be correct, and its value would be small enough to result in Bi < 0.1. Since the
calculated Biot number does not satisfy the criterion to use the lumped capacitance approximation, the
initial assumption that the lumped capacitance method is valid must have been false.

COMMENTS: (1) The determination of whether or not the lumped capacitance approximation can
be used is, to some degree, dependent on how much precision is required in a given application. If the
Biot number is close to 0.1 and good precision is required, the spatial variation of the temperature
should be accounted for. If the geometry is simple, the analytical solutions presented in the text may
be appropriate. For complex geometries, a numerical solution is often required, using the finite
difference or finite element method. (2) In Case (d), the type of stainless steel is inferred from
knowledge of its density. The variation of k among the four stainless steels listed in Table A.1 is on
the order of 10%. If the object temperature varies significantly with time, the thermal conductivity
may vary by more than 10% as a result. In that case, evaluating k at an appropriate average
temperature is at least as important as distinguishing the type of stainless steel.



PROBLEM 5.6

KNOWN: Diameter and initial temperature of steel balls cooling in air.

FIND: Time required to cool to a prescribed temperature.

SCHEMATIC:

ASSUMPTIONS: (1) Negligible radiation effects, (2) Constant properties.

ANALYSIS: Applying Eq. 5.10 to a sphere (Lc = ro/3),

   2
oc h r / 3 20 W/m K 0.002mhL

Bi 0.001.
k k 40 W/m K


   



Hence, the temperature of the steel remains approximately uniform during the cooling
process, and the lumped capacitance method may be used. From Eqs. 5.4 and 5.5,

 3
pp i i

2
s

D / 6 cVc T T T T
t ln ln

hA T T T Th D

 



 

 

 
 

 

 3

2

7800kg/m 0.012m 600J/kg K 1150 325
t ln

400 3256 20 W/m K

 


 

t 1122 s 0.312h  <

COMMENTS: Due to the large value of Ti, radiation effects are likely to be significant

during the early portion of the transient. The effect is to shorten the cooling time.



PROBLEM 5.7

KNOWN: Diameter and initial temperature of steel balls in air. Expression for the air
temperature versus time.

FIND: (a) Expression for the sphere temperature, T(t), (b) Graph of T(t) and explanation of
special features.

SCHEMATIC:

D = 0.012 m Steel

T∞ = 325°C + 0.1875(°C/s)t

h = 20 W/m2•K

Air
Ti = 1150 K

k = 40 W/m•K

ρ = 7800 kg/m3

c = 600 J/kg•K

D = 0.012 m Steel

T∞ = 325°C + 0.1875(°C/s)t

h = 20 W/m2•K

Air
Ti = 1150 K

k = 40 W/m•K

ρ = 7800 kg/m3

c = 600 J/kg•K

ASSUMPTIONS: (1) Constant properties, (2) Negligible radiation heat transfer.

PROPERTIES: Given: k = 40 W/m∙K,  = 7800 kg/m3, c = 600 J/kg∙K. 

ANALYSIS:
(a) Applying Equation 5.10 to a sphere (Lc = ro/3),

2
c o

i

hL h(r /3) 20 W/m K (0.002 m)
B = = = = 0.001

k k 40 W/m K





Hence, the temperature of the steel sphere remains approximately uniform during the cooling
process. Equation 5.2 is written, with T∞ = To + at, as

s o
dT

- hA (T - T - at) = ρ c
dt



Letting oθ = T - T ,  dT = dθ and s
s

hAdθ dθ
- hA (θ - at) = ρ c  or  = - C(θ - at) where C = 

dt dt ρ c




The solution may be written as the sum of the homogeneous and particular solutions,

h p h 1θ = θ  + θ    where   θ  = c exp(- Ct).

Assuming p hθ  = f(t)θ , we substitute into the differential equation to find

1
df

= Cat exp(Ct)/c
dt

from which f = a (t - 1/C) exp(Ct)/c1.

Thus, the complete solution is

1θ = c exp(- Ct) + a(t - 1/C) and applying the initial condition we find

i o oT = (T - T + a/C) exp(- Ct) + a(t - 1/C) + T <

Continued…



PROBLEM 5.7 (Cont.)

(b) The ambient and sphere temperatures for 0 ≤  t  ≤ 3600 s are shown in the plot below. 

Note that:

(1) For small times (t  600s) the sphere temperature decreases rapidly,

(2) at t ≈ 1100 s, T = T∞ and, from Equation 5.2, dT/dt = 0,

(3) at t  1100 s, T < T∞,

(4) at large time, T – T∞ and dT/dt are constant.

COMMENTS: Unless the air environment of Problem 5.6 is cooled, the air temperature will
increase in temperature as energy is transferred from the balls. However, the actual air
temperature versus time may not be linear.



PROBLEM 5.8

KNOWN: The temperature-time history of a pure copper sphere in an air stream.

FIND: The heat transfer coefficient between the sphere and the air stream.

SCHEMATIC:

ASSUMPTIONS: (1) Temperature of sphere is spatially uniform, (2) Negligible radiation
exchange, (3) Constant properties.

PROPERTIES: Table A-1, Pure copper (333K):  = 8933 kg/m
3
, cp = 389 J/kgK, k = 398

W/mK.

ANALYSIS: The time-temperature history is given by Eq. 5.6 with Eq. 5.7.

  2
t s

i t t s
3

t p

t t 1
exp where R A D

R C hA

D
C Vc V

6









 
    

 

 

T T .  

Recognize that when t = 69s,

   

 i t t

t 55 27 C t 69s
0.718 exp exp

66 27 C



  

    
        

   





and solving for t find

t 208s. 

Hence,

 3 3 3
p

2 2
s t

8933 kg/m 0.0127 m / 6 389J/kg KVc
h

A 0.0127 m 208s



 


 


2h 35.3 W/m K.  <

COMMENTS: Note that with Lc = Do/6,

2 -4chL 0.0127
Bi 35.3 W/m K m/398 W/m K 1.88 10 .

k 6
      

Hence, Bi < 0.1 and the spatially isothermal assumption is reasonable.



PROBLEM 5.9

KNOWN: Solid steel sphere (AISI 1010), coated with dielectric layer of prescribed thickness and
thermal conductivity. Coated sphere, initially at uniform temperature, is suddenly quenched in an oil
bath.

FIND: Time required for sphere to reach 140C.

SCHEMATIC:

PROPERTIES: Table A-1, AISI 1010 Steel   T 500 140 C/2 320 C 600K :   
 

37832 kg/m , c 559 J/kg K, k 48.8 W/m K.     

ASSUMPTIONS: (1) Steel sphere is space-wise isothermal, (2) Dielectric layer has negligible
thermal capacitance compared to steel sphere, (3) Layer is thin compared to radius of sphere, (4)
Constant properties, (5) Neglect contact resistance between steel and coating.

ANALYSIS: The thermal resistance to heat transfer from the sphere is due to the dielectric layer and
the convection coefficient. That is,

 
2

2

1 0.002m 1 m K
R 0.050 0.0003 0.0503 ,

k h 0.04 W/m K W3300 W/m K


       

 



or in terms of an overall coefficient, 2U 1/R 19.88 W/m K.   The effective Biot number is

   2
oc

e
U r / 3 19.88 W/m K 0.300 / 6 mUL

Bi 0.0204
k k 48.8 W/m K

 
   



where the characteristic length is Lc = ro/3 for the sphere. Since Bie < 0.1, the lumped capacitance

approach is applicable. Hence, Eq. 5.5 is appropriate with h replaced by U,

 
 

i

s o s

T 0 Tc V c V
t ln ln .

U A U A T t T

  






   
    

   

Substituting numerical values with (V/As) = ro/3 = D/6,

 

 

3

2

500 100 C7832 kg/m 559 J/kg K 0.300m
t ln

619.88 W/m K 140 100 C

   
  

  





t 25,358s 7.04h.  <

COMMENTS: (1) Note from calculation of R that the resistance of the dielectric layer dominates
and therefore nearly all the temperature drop occurs across the layer.



PROBLEM 5.10

KNOWN: Thickness and properties of flaked food product. Conveyor length. Initial flake
temperature. Ambient temperature and convection heat transfer coefficient. Final product temperature.

FIND: Required conveyor velocities for thick and thin flakes.

SCHEMATIC:

ASSUMPTIONS: (1) Constant properties. (2) Lumped capacitance behavior. (3) Negligible radiation
heat transfer. (4) Negligible moisture evaporation from product. (5) Negligible conduction between
flake and conveyor belt.

PROPERTIES: Flake: = 700 kg/m3, cp = 2400 J/kgK, and k = 0.34 W/mK.

ANALYSIS: The Biot number is
2 355 W/m K 0.6 10 m

0.098
0.34 W/m K

hL
Bi

k

  
  



Hence the lumped capacitance assumption is valid. The required heating time is

 
 

3 3

2

20 300700 kg/m 0.6 10 m 2400 J/kg K
ln ln ln 23 s

220 30055 W/m K
i i

s

Vc Lc
t

hA h

   

 

    
   



Therefore the required conveyor velocity is V = Lo/t = 3m/23s = 0.13 m/s . <

If the flake thickness is reduced to 2L = 1 mm, the lumped capacitance approximation remains valid

and the heating time is 19 s. The associated conveyor velocity is 0.16 m/s. <

COMMENTS: (1) Assuming large surroundings, a representative value of the radiation heat transfer

coefficient is      2 2 8 2 4 2 2 45.67 10 W/m K 293 573 293 573 Kr i o i oh T T T T          20.3

W/m2K. Radiation heat transfer would be significant and would serve to increase the product heating
rate, increasing the allowable conveyor belt speed. (2) The food product is likely to enter the oven in a
moist state. Additional thermal energy would be required to remove the moisture during heating,
reducing the rate at which the product temperature increases. (3) The effects noted in Comments 1 and
2 would tend to offset each other. A detailed analysis would be required to assess the impact of
radiation and evaporation on the required conveyor velocity.

Lo

V

2L = 1.2 mm

OvenConveyor belt

Cereal product

h = 55 W/m2·K
To = 300°C



PROBLEM 5.11

KNOWN: Thickness, surface area, and properties of iron base plate. Heat flux at inner surface.
Temperature of surroundings. Temperature and convection coefficient of air at outer surface.

FIND: Time required for plate to reach a temperature of 135C. Operating efficiency of iron.

SCHEMATIC:

q =h 1.25x10 W/m4 2

T = 25 Co
oo

h = 10 W/m -K2

Air

L = 0.007 m

= 2800 kg/m3

= 0.80

Iron
k = 180 W/m-K

c = 900 J/kg-K

A = 0.04 ms
2

Tsur
o= 25 C

ASSUMPTIONS: (1) Radiation exchange is between a small surface and large surroundings, (2)
Convection coefficient is independent of time, (3) Constant properties, (4) Iron is initially at room

temperature (Ti = T).

ANALYSIS: Biot numbers may be based on convection heat transfer and/or the maximum heat
transfer by radiation, which would occur when the plate reaches the desired temperature (T = 135C).

From Eq. (1.9) the corresponding radiation transfer coefficient is hr = (T +Tsur)  2 2
surT T = 0.8 

5.67  10
-8

W/m
2
K

4
(408 + 298) K (408

2
+ 298

2
) K

2
= 8.2 W/m

2
K. Hence,

 2
410 W / m K 0.007mhL

Bi 3.9 10
k 180 W / m K


   



 2
4r

r
8.2 W / m K 0.007mh L

Bi 3.2 10
k 180 W / m K


   



With convection and radiation considered independently or collectively, Bi, Bir, Bi + Bir << 1 and the
lumped capacitance analysis may be used.

The energy balance, Eq. (5.15), associated with Figure 5.5 may be applied to this problem. With

Eg 0, the integral form of the equation is

   h

t 4 4s
i sur0

A
T T q h T T T T dt

Vc





      
  

Integrating numerically, we obtain, for T = 135C,

t 168 s <

COMMENTS: Note that, if heat transfer is by natural convection, h, like hr, will vary during the
process from a value of 0 at t = 0 to a maximum at t = 168s.



PROBLEM 5.12

KNOWN: Diameter, density, specific heat and thermal conductivity of aluminum spheres used in
packed bed thermal energy storage system. Convection coefficient and inlet gas temperature.

FIND: Time required for sphere to acquire 90% of maximum possible thermal energy and the
corresponding center temperature. Potential advantage of using copper in lieu of aluminum.

SCHEMATIC:

Aluminum sphere
D = 75 mm, T = 25 Ci

oGas

T Cg,i
o= 300

h = 75 W/m -K2

= 2700 kg/m3

k = 240 W/m-K
c = 950 J/kg-K

ASSUMPTIONS: (1) Negligible heat transfer to or from a sphere by radiation or conduction due to
contact with other spheres, (2) Constant properties.

ANALYSIS: To determine whether a lumped capacitance analysis can be used, first compute Bi =

h(ro/3)/k = 75 W/m
2
K (0.025m)/150 W/mK = 0.013 < 0.1. Hence, the lumped capacitance

approximation may be made, and a uniform temperature may be assumed to exist in the sphere at any
time. From Eq. 5.8a, achievement of 90% of the maximum possible thermal energy storage
corresponds to

 t
i

Q
0.90 1 exp t /

cV


 
   

where 3 2
t sVc / hA Dc / 6h 2700 kg / m 0.075m 950 J / kg K / 6 75 W / m K 427s.           Hence,

 tt ln 0.1 427s 2.30 984s     <

From Eq. (5.6), the corresponding temperature at any location in the sphere is

     g,i i g,iT 984s T T T exp 6ht / Dc   

   2 3
T 984s 300 C 275 C exp 6 75 W / m K 984s / 2700 kg / m 0.075m 950 J / kg K          

 T 984 s 272.5 C  <

Obtaining the density and specific heat of copper from Table A-1, we see that (c)Cu  8900 kg/m
3


400 J/kgK = 3.56  10
6

J/m
3
K > (c)Al = 2.57  10

6
J/m

3
K. Hence, for an equivalent sphere

diameter, the copper can store approximately 38% more thermal energy than the aluminum.

COMMENTS: Before the packed bed becomes fully charged, the temperature of the gas decreases
as it passes through the bed. Hence, the time required for a sphere to reach a prescribed state of
thermal energy storage increases with increasing distance from the bed inlet.



PROBLEM 5.13 
 
KNOWN:  Wafer, initially at 100°C, is suddenly placed on a chuck with uniform and constant 
temperature, 23°C.  Wafer temperature after 15 seconds is observed as 33°C. 
 
FIND:  (a) Contact resistance, tcR′′ , between interface of wafer and chuck through which helium slowly 
flows, and (b) Whether tcR′′  will change if air, rather than helium, is the purge gas. 
 
SCHEMATIC: 

 
 
PROPERTIES:  Wafer (silicon, typical values):  ρ = 2700 kg/m3, c = 875 J/kg⋅K, k = 177 W/m⋅K. 
 
ASSUMPTIONS:  (1) Wafer behaves as a space-wise isothermal object, (2) Negligible heat transfer from 
wafer top surface, (3) Chuck remains at uniform temperature, (4) Thermal resistance across the interface 
is due to conduction effects, not convective, (5) Constant properties. 
 
ANALYSIS:  (a) Perform an energy balance on the wafer as shown in the Schematic. 
 
 in out g stE E E E′′ ′′− + =& & & &       (1) 
 
 cond stq E′′ ′′− = &       (2) 
 

 
( )w c w

tc

T t T dTwc
R dt

ρ
−

− =
′′

      (3) 

 
Separate and integrate Eq. (3) 
 

 w
wi

t T w
0 Ttc w c

dTdt
wcR T Tρ

− =
′′ −∫ ∫           (4)                     

( )w c

wi c tc

T t T texp
T T wcRρ

− ⎡ ⎤
= −⎢ ⎥′′− ⎣ ⎦

     (5) 

 
Substituting numerical values for Tw(15s) = 33°C, 

 
( )
( ) 3 3

tc

33 23 C 15sexp
2700kg m 0.758 10 m 875J kg K R100 23 C −

⎡ ⎤−
⎢ ⎥= −
⎢ ⎥′′× × × ⋅ ×− ⎣ ⎦

o

o
 (6) 

 2
tcR 0.0041m K W′′ = ⋅  < 

 
(b) tcR′′  will increase since kair < khelium.  See Table A.4. 
 
COMMENTS:  Note that Bi = Rint/Rext = (w/k)/ tcR′′  = 0.001.  Hence the spacewise isothermal 
assumption is reasonable. 



PROBLEM 5.14

KNOWN: Thickness and initial temperature of copper sheet. Dependence of the convection heat
transfer coefficient on sheet temperature.

FIND: Time required to reach sheet temperature of T = 102C.

SCHEMATIC:

ASSUMPTIONS: (1) Constant properties. (2) Lumped capacitance behavior.

PROPERTIES: Table A.1, copper (T = 383 K): = 8933 kg/m3, c = 394 J/kgK, and k = 394 W/mK.

ANALYSIS: Since h = 1010 W/m2K3(T – Tsat)
2

the values of C and n in Equation 5.26 are 1010
W/m2∙K3 and 2, respectively. Equation 5.27 becomes

3 3
, sat sat

( ) ( )s cCA T TdT C T T

dt Vc L c 

 
   

or

3
sat

0
( )

i

T t

T

C
T T dT dt

L c
   

so that

   
2 2

sat sat

2 2
iT T T TL c

t
C


   
  

  

Substituting values,

   
2 23 3

2 3

100 C 118 C 100 C1 10 m 8933 kg/m 394 J/kg K

1010 W/m K 2 2

T
t

          
  

   

(1)

For T = 102C, t = 0.43 s <
Continued...

Copper sheet

qconv

Ti = 118C

TSAT = 100C

Water

2L= 2 mm



PROBLEM 5.14 (Cont.)

The heat transfer coefficient at T = 110C is h = 1010 W/m2K3×(10 K)2 = 101,000 W/m2∙K. Hence, 
for the case where the heat transfer coefficient is constant Equation 5.6 becomes

3 3
sat

2
sat

8933 kg/m 1 10 m 394 J/kg K 118 C 100 C
ln ln

101,000 W/m K 100 C
iLc T T

t
T T Th

          
         

(2)

Equations (1) and (2) may be solved for time-dependence of the plate temperature to yield

The convection heat transfer coefficient is initially relatively high and decays as the temperature
difference between the plate and the water decreases. If the convection heat transfer coefficient is
evaluated at the average plate temperature, the heat transfer coefficient is initially under-predicted,
leading to a slower plate cooling rate at early times. However, the convection coefficient is over-
predicted at later times, leading to an unrealistic high cooling rate as evident in the graph.

COMMENTS: (1) The time could also be calculated by solving Equation 5.28.

(2) The Biot number based upon the average heat transfer coefficient is
2 3101,000W/m K 1 10 m

394 W/m K

hL
Bi

k

  
  


0.25. The lumped capacitance approximation is not valid at

early times. However, the trends evident in the comparison of the variable versus constant heat transfer
coefficients would also occur if spatial temperature gradients were accounted for.
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PROBLEM 5.15

KNOWN: Diameter and radial temperature of AISI 1010 carbon steel shaft. Convection
coefficient and temperature of furnace gases.

FIND: Time required for shaft centerline to reach a prescribed temperature.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional, radial conduction, (2) Constant properties.

PROPERTIES: AISI 1010 carbon steel, Table A.1  T 550 K :   7832 kg / m3, k =

51.2 W/mK, c = 541 J/kgK,  = 1.2110
-5

m
2
/s.

ANALYSIS: The Biot number is

 2
o 100 W/m K 0.05 m/2hr / 2

Bi 0.0488.
k 51.2 W/m K


  



Hence, the lumped capacitance method can be applied. From Equation 5.6,

i

T T hAs 4h
exp t exp t

T T Vc cD 




    
            

 

2

3

800 1200 4 100 W/m K
ln 0.811 t

300 1200 7832 kg/m 541 J/kg K 0.1 m

   
    

  

t 859 s. <
COMMENTS: To check the validity of the foregoing result, use the one-term approximation
to the series solution. From Equation 5.52c,

 2o
1 1

i

T T 400
0.444 C exp Fo

T T 900




 
   

 

For Bi = hro/k = 0.0976, Table 5.1 yields 1 = 0.436 and C1 = 1.024. Hence

   
 

 

2 5 2

2

0.436 1.2 10 m / s
t ln 0.434 0.835

0.05 m

 
  

t 915 s.

The results agree to within 6%. The lumped capacitance method underestimates the actual
time, since the response at the centerline lags that at any other location in the shaft.



PROBLEM 5.16

KNOWN: Configuration, initial temperature and charging conditions of a thermal energy storage
unit.

FIND: Time required to achieve 75% of maximum possible energy storage. Temperature of storage
medium at this time.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) Negligible radiation
exchange with surroundings.

PROPERTIES: Table A-1, Aluminum, pure  T 600K 327 C :   k = 231 W/mK, c = 1033

J/kgK,  = 2702 kg/m
3
.

ANALYSIS: Recognizing the characteristic length is the half thickness, find

2hL 100 W/m K 0.025m
Bi 0.011.

k 231 W/m K

 
  


Hence, the lumped capacitance method may be used. From Eq. 5.8,

   i t stQ Vc 1 exp t/ E         (1)

 st,max iE Vc .   (2)

Dividing Eq. (1) by (2),

 st st,max thE / E 1 exp t/ 0.75.     

Solving for
3

th 2
s

Vc Lc 2702 kg/m 0.025m 1033 J/kg K
698s.

hA h 100 W/m K

 


  
   



Hence, the required time is

 exp t/698s 0.25 or t 968s.     <
From Eq. 5.6,

 th
i

T T
exp t/

T T





 



       i thT T T T exp t/ 600 C 575 C exp 968/698        

T 456 C.  <

COMMENTS: For the prescribed temperatures, the property temperature dependence is significant
and some error is incurred by assuming constant properties. However, selecting properties at 600K
was reasonable for this estimate.



PROBLEM 5.17

KNOWN: Diameter and properties of neutrally-buoyant spherical particles.

FIND: Time constant of the particles.

SCHEMATIC:

ASSUMPTIONS: (1) Constant properties. (2) Infinite medium. (3) Lumped capacitance behavior.

PROPERTIES: Particle: = 999 kg/m3, kp = 1.2 W/mK, and cp = 1200 J/kgK. Table A.6 water (T =
300 K): k = 0.613 W/mK.

ANALYSIS: Treating heat transfer between the particle and water as conduction, we may use the
shape factor corresponding to Case1 of Table 4.1 with z . Hence

S = 2D (1)

The surface energy balance may be expressed as

2( ) ( ) ( )q Sk T T hA T T h D T T       

where h is an effective heat transfer coefficient from which

2
2

Sk k
h

DD
  (2)

The thermal time constant is

 1
t p

s

Vc
hA

 
 

  
 

(3)

Combining Equations (1) through (3) yields

 
23 62

6
999 kg/m 1200 J/kg K 50 10 m

407 10 s
12 12 0.613 W/m K

t
cD

k







   

   
 

<

COMMENTS: (1) The Biot number is Bi = hLc/kp = hD/6kp = k/3kp = 0.613 W/mK/(3  1.2 W/mK)
= 0.17. Lumped capacitance behavior will not exist in the particle and the analysis must be viewed as
approximate. (2) Regardless of whether the lumped capacitance approximation is valid, the thermal
time constant is relatively small. Hence an assumption that the particle temperature is the same as that
of the surrounding water may be valid.

Water

qcond = qconv

D = 50 m

 = 999 kg/m3, k = 1.2 W/m∙K, cp = 1200 J/kg∙K



PROBLEM 5.18

KNOWN: Inner diameter and wall thickness of a spherical, stainless steel vessel. Initial
temperature, density, specific heat and heat generation rate of reactants in vessel. Convection
conditions at outer surface of vessel.

FIND: (a) Temperature of reactants after one hour of reaction time, (b) Effect of convection
coefficient on thermal response of reactants.

SCHEMATIC:

Ts,o

= 1100 kg/m3

Reactants, T = 25 Ci
o

Stainless steel
k = 17 W/m-K

c = 2400 J/kg-K

T = 25 Co
oo

h = 6 W/m -K2

Air

D = 1 mi

D = 1.1 mo

Too

Rt,conv Rt,cond

TTs,o

q

q = 10 W/m35
.

ASSUMPTIONS: (1) Temperature of well stirred reactants is uniform at any time and is equal to

inner surface temperature of vessel (T = Ts,i), (2) Thermal capacitance of vessel may be neglected, (3)
Negligible radiation exchange with surroundings, (4) Constant properties.

ANALYSIS: (a) Transient thermal conditions within the reactor may be determined from Eq. (5.25),

which reduces to the following form for Ti - T = 0.

   T T b / a 1 exp at      

where a = UA/Vc and gb E / Vc q / c.    From Eq. (3.19) the product of the overall heat transfer

coefficient and the surface area is UA = (Rcond + Rconv)
-1

, where from Eqs. (3.41) and (3.9),

 
4

t,cond
i o

1 1 1 1 1 1
R 8.51 10 K / W

2 k D D 2 17 W / m K 1.0m 1.1m 
   

        
   

   
t,conv 22o

1 1
R 0.0438K / W

hA 6 W / m K 1.1m
  



Hence, UA = 22.4 W/K. It follows that, with 3
iV D / 6,

 

 
5 1

33

6 22.4 W / KUA
a 1.620 10 s

Vc 1100 kg / m 1m 2400 J / kg K 

    
 

4 3
3

3

q 10 W / m
b 3.788 10 K / s

c 1100 kg / m 2400 J / kg K
   

 



With (b/a) = 233.8C and t = 18,000s,

 5 1T 25 C 233.8 C 1 exp 1.62 10 s 18,000s 84.1 C           
  

<
Neglecting the thermal capacitance of the vessel wall, the heat rate by conduction through the wall is
equal to the heat transfer by convection from the outer surface, and from the thermal circuit, we know
that

Continued …



PROBLEM 5.18 (Cont.)

4
s,o t,cond

s,o t,conv

T T R 8.51 10 K / W
0.0194

T T R 0.0438K / W





 
  



 
s,o

84.1 C 0.0194 25 CT 0.0194T
T 83.0 C

1.0194 1.0194
   

    <

(b) Representative low and high values of h could correspond to 2 W/m
2
K and 100 W/m

2
K for free

and forced convection, respectively. Calculations based on Eq. (5.25) yield the following temperature
histories.

Forced convection is clearly an effective means of reducing the temperature of the reactants and
accelerating the approach to steady-state conditions.

COMMENTS: The validity of neglecting thermal energy storage effects for the vessel may be
assessed by contrasting its thermal capacitance with that of the reactants. Selecting values of  =

8000 kg/m
3

and c = 475 J/kgK for stainless steel from Table A-1, the thermal capacitance of the

vessel is Ct,v = (Vc)st = 6.57  10
5

J/K, where   3 3
o iV / 6 D D .  With Ct,r = (Vc)r = 2.64 

10
6

J/K for the reactants, Ct,r/Ct,v  4. Hence, the capacitance of the vessel is not negligible and
should be considered in a more refined analysis of the problem.
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PROBLEM 5.19  
KNOWN:  Volume, density and specific heat of chemical in a stirred reactor.  Temperature and 
convection coefficient associated with saturated steam flowing through submerged coil.  Tube 
diameter and outer convection coefficient of coil.  Initial and final temperatures of chemical and time 
span of heating process.  
FIND:  Required length of submerged tubing.  Minimum allowable steam flowrate.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Constant properties, (2) Negligible heat loss from vessel to surroundings, (3) 
Chemical is isothermal, (4) Negligible work due to stirring, (5) Negligible thermal energy generation 
(or absorption) due to chemical reactions associated with the batch process, (6) Negligible tube wall 
conduction resistance, (7) Negligible kinetic energy, potential energy, and flow work changes for 
steam.  
ANALYSIS:  Heating of the chemical can be treated as a transient, lumped capacitance problem, 
wherein heat transfer from the coil is balanced by the increase in thermal energy of the chemical.  
Hence, conservation of energy yields 

 ( )s h
dU dTVc UA T T
dt dt

ρ= = −  

Integrating, 
i

T ts
T oh

UAdT dt
T T Vcρ

=
−∫ ∫  

 

 sh
h i

UA tT Tln
T T Vcρ

−
− =

−
 

 

 h
s

h i

Vc T TA ln
Ut T T
ρ −

= −
−

        (1) 

 

 ( ) ( ) ( )
1 11 1 2

oiU h h 1/10,000 1/ 2000 W / m K
− −− − ⎡ ⎤= + = + ⋅⎣ ⎦  

 
 2U 1670 W / m K= ⋅  
 

 
( )( )( )

( )( )

3 3
2

s 2

1200kg / m 2.25m 2200J / kg K 500 450A ln 1.37m
500 3001670 W / m K 3600s

⋅ −
= − =

−⋅
 

 

 
( )

2
sA 1.37mL 21.8m
D 0.02mπ π

= = =        < 

 
COMMENTS:  Eq. (1) could also have been obtained by adapting Eq. (5.5) to the conditions of this 
problem, with T∞ and h replaced by Th and U, respectively.  



PROBLEM 5.20

KNOWN: Electronic device on aluminum, finned heat sink modeled as spatially isothermal object
with internal generation and convection from its surface.

FIND: (a) Temperature response after device is energized, (b) Temperature rise for prescribed
conditions after 5 min.

SCHEMATIC:

ASSUMPTIONS: (1) Spatially isothermal object, (2) Object is primarily aluminum, (3) Initially,

object is in equilibrium with surroundings at T.

PROPERTIES: Table A-1, Aluminum, pure   T 20 100 C/2 333K :  


c = 918 J/kgK.

ANALYSIS: (a) Following the general analysis of Section 5.3, apply the conservation of energy
requirement to the object,

 in g out st g s
dT

E E -E E E hA T T Mc
dt

         (1)

where T = T(t). Consider now steady-state conditions, in which case the storage term of Eq. (1) is
zero. The temperature of the object will be T() such that

  g sE hA T T .   (2)

Substituting for Eg using Eq. (2) into Eq. (1), the differential equation is

   
s s

Mc dT Mc d
T T T T or

hA dt hA dt


          (3,4)

with   T - T() and noting that d = dT. Identifying t s tR 1/ hA and C Mc,  the differential

equation is integrated with proper limits,

i

t

0t t i t t

1 d t
dt or exp

R C R C





 

 

 
    

 
  (5) <

where i = (0) = Ti - T() and Ti is the initial temperature of the object.

(b) Using the information about steady-state conditions and Eq. (2), find first the thermal resistance
and capacitance of the system,

   
t t

s g

T T 100 20 C1
R 1.33 K/W C Mc 0.31 kg 918 J/kg K 285 J/K.

hA E 60 W

  
        





Using Eq. (5), the temperature of the system after 5 minutes is

     
 

 

 i i

5min T 5min T T 5min 100 C 5 60s
exp 0.453

T T 1.33 K/W 285 J/K20 100 C





    
        





   T 5min 100 C 20 100 C 0.453 63.8 C    
  <

COMMENTS: Eq. 5.24 may be used directly for Part (b) with a = hAs/Mc and gb E / Mc. 



PROBLEM 5.21

KNOWN: Initial length, density and specific heat of self-assembled molecular chains. Time constant
of the molecules’ vibrational response.

FIND: Value of the contact resistance at the metal-molecule interface.

SCHEMATIC:

ASSUMPTIONS: (1) Molecules lose no thermal energy to surroundings. (2) Lumped capacitance
behavior, (3) Constant properties, (4) Vibrational intensity represents temperature at the molecular
scale, (5) Cylindrical molecule geometry.

ANALYSIS: From Equation 5.7, "
, , /t t c t t c t cR C R C A   where t p c pC Vc A Lc   is the lumped

thermal capacitance and "
,t cR is the thermal contact resistance. Combining the preceding two equations

yields

-12
"
, 3 -9

5 10 s

180 kg/m 2 10 m 3000 J/kg K
t

t c
p

R
Lc






  

   
4.6  10-9 m2K/W <

COMMENTS: (1) The contact resistance is very small, compared to values typical of larger
systems. Nonetheless, the contact resistance may be larger than the conduction resistance within the
moledule or thin gold film. (2) The time response is very fast, as expected at these length scales. This
suggests that computational speed using such devices will be correspondingly fast. (3) See Z. Wang,
J.A. Carter, A. Lagutchev, Y.K. Koh, N.-H. Seong, D.G. Cahill, and D.D. Dlott, “Ultrafast Flash
Thermal Conductance of Molecular Chains,” Science, Vol. 317, pp. 787-790, 2007, for details.
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PROBLEM 5.22

KNOWN: Thickness and properties of furnace wall. Thermal resistance of film on surface
of wall exposed to furnace gases. Initial wall temperature.

FIND: (a) Time required for surface of wall to reach a prescribed temperature, (b)
Corresponding value of film surface temperature.

SCHEMATIC:

ASSUMPTIONS: (1) Constant properties, (2) Negligible film thermal capacitance, (3)
Negligible radiation.

PROPERTIES: Carbon steel (given):  = 7850 kg/m
3
, c = 430 J/kgK, k = 60 W/mK.

ANALYSIS: The overall coefficient for heat transfer from the surface of the steel to the gas
is

 
11

1 2 2 2
tot f 2

1 1
U R R 10 m K/W 20 W/m K.

h 25 W/m K


   

          
   

Hence,
2UL 20 W/m K 0.01 m

Bi 0.0033
k 60 W/m K

 
  


and the lumped capacitance method can be used.

(a) It follows that

     t
i

T T
exp t/ exp t/RC exp Ut/ Lc

T T
 




     



 3

2
i

7850 kg/m 0.01 m 430 J/kg KLc T T 1200 1300
t ln ln

U T T 300 130020 W/m K

 



 
   

 

t 3886s 1.08h.  <
(b) Performing an energy balance at the outer surface (s,o),

   s,o s,o s,i fh T T T T / R   

   

2 -2 2
s,i f

s,o 2f

hT T / R 25 W/m K 1300 K 1200 K/10 m K/W
T

h 1/ R 25 100 W/m K

     
 

  

s,oT 1220 K. <

COMMENTS: The film increases t by increasing Rt but not Ct.



PROBLEM 5.23 
 
KNOWN:  Thickness and properties of strip steel heated in an annealing process.  Furnace operating 
conditions. 
 
FIND:  (a) Time required to heat the strip from 300 to 600°C.  Required furnace length for prescribed 
strip velocity (V = 0.5 m/s), (b) Effect of wall temperature on strip speed, temperature history, and 
radiation coefficient. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Constant properties, (2) Negligible temperature gradients in transverse direction 
across strip, (c) Negligible effect of strip conduction in longitudinal direction. 
 
PROPERTIES:  Steel:  ρ = 7900 kg/m3, cp = 640 J/kg⋅K, k = 30 W/m⋅K, ε= 0.7. 
 
ANALYSIS:  (a) Considering a fixed (control) mass of the moving strip, its temperature variation with 
time may be obtained from an energy balance which equates the change in energy storage to heat transfer 
by convection and radiation.  If the surface area associated with one side of the control mass is designated 
as As, As,c = As,r = 2As and V = δAs in Equation 5.15, which reduces to 
 

 ( ) ( )4 4
sur

dTc 2 h T T T T
dt

ρ δ εσ∞
⎡ ⎤= − − + −⎢ ⎥⎣ ⎦

 
 
or, introducing the radiation coefficient from Equations 1.8 and 1.9 and integrating, 
 

 
( ) ( ) ( )ft

f i r suro
1T T h T T h T T dt

c 2ρ δ ∞⎡ ⎤− = − − + −⎣ ⎦∫  

 
Using the IHT Lumped Capacitance Model to integrate numerically with Ti = 573 K, we find that Tf = 
873 K corresponds to 

 tf ≈ 209s < 
 
in which case, the required furnace length is 

 fL Vt 0.5m s 209s 105m= ≈ × ≈  < 
 
(b) For Tw = 1123 K and 1273 K, the numerical integration yields tf ≈ 102s and 62s respectively.  Hence, 
for L = 105 m , V = L/tf yields 
 ( )wV T 1123K 1.03m s= =  

 ( )wV T 1273K 1.69 m s= =  < 
Continued... 



 
PROBLEM 5.23 (Cont.) 

 
which correspond to increased process rates of 106% and 238%, respectively.  Clearly, productivity can 
be enhanced by increasing the furnace environmental temperature, albeit at the expense of increasing 
energy utilization and operating costs. 
 
 If the annealing process extends from 25°C (298 K) to 600°C (873 K), numerical integration 
yields the following results for the prescribed furnace temperatures. 
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As expected, the heating rate and time, respectively, increase and decrease significantly with increasing 
Tw.  Although the radiation heat transfer rate decreases with increasing time, the coefficient hr increases 
with t as the strip temperature approaches Tw. 
 
COMMENTS:  To check the validity of the lumped capacitance approach, we calculate the Biot number 
based on a maximum cumulative coefficient of (h + hr) ≈ 300 W/m2⋅K.  It follows that Bi = (h + hr)(δ/2)/k 
= 0.06 and the assumption is valid. 



PROBLEM 5.24

KNOWN: Initial and final temperatures of a niobium sphere. Diameter and properties of the sphere.
Temperature of surroundings and/or gas flow, and convection coefficient associated with the flow.

FIND: (a) Time required to cool the sphere exclusively by radiation, (b) Time required to cool the
sphere exclusively by convection, (c) Combined effects of radiation and convection.

SCHEMATIC:

T Csur
o= 25

= 8600 kg/m3

= 0.1 or 0.6

Niobium

k = 63 W/m-K
c = 290 J/kg-K

T = 25 Co
oo

h = 200 W/m -K2

Inert gas

D = 10 mm

T Ci
o= 900

T Cf
o= 300

ASSUMPTIONS: (1) Uniform temperature at any time, (2) Negligible effect of holding mechanism
on heat transfer, (3) Constant properties, (4) Radiation exchange is between a small surface and large
surroundings.

ANALYSIS: (a) If cooling is exclusively by radiation, the required time is determined from Eq.

(5.18). With V = D
3
/6, As,r = D

2
, and  = 0.1,

 

   

3

38 2 4

8600 kg / m 290 J / kg K 0.01m 298 573 298 1173
t ln ln

298 573 298 117324 0.1 5.67 10 W / m K 298K

   
 

  

1 1573 1173
2 tan tan

298 298
      

      
    

    t 6926s 1.153 0.519 2 1.091 1.322 1190s 0.1      <

If  = 0.6, cooling is six times faster, in which case,

 t 199s 0.6  <
(b) If cooling is exclusively by convection, Eq. (5.5) yields

 3
i

2
f

8600 kg / m 290J / kg K 0.010mcD T T 875
t ln ln

6h T T 2751200 W / m K

 



   
    

   

t 24.1s <
(c) With both radiation and convection, the temperature history may be obtained from Eq. (5.15).

     3 2 4 4
sur

dT
D / 6 c D h T T T T

dt
   

     
  

Integrating numerically from Ti = 1173 K at t = 0 to T = 573K, we obtain

t 21.0s <

Continued …



PROBLEM 5.24 (Cont.)

Cooling times corresponding to representative changes in  and h are tabulated as follows

h(W/m
2
K) | 200 200 20 500

 | 0.6 1.0 0.6 0.6

t(s) | 21.0 19.4 102.8 9.1

For values of h representative of forced convection, the influence of radiation is secondary, even for a
maximum possible emissivity of 1.0. Hence, to accelerate cooling, it is necessary to increase h.
However, if cooling is by natural convection, radiation is significant. For a representative natural

convection coefficient of h = 20 W/m
2
K, the radiation flux exceeds the convection flux at the surface

of the sphere during early to intermediate stages of the transient.

COMMENTS: (1) Even for h as large as 500 W/m
2
K, Bi = h (D/6)/k = 500 W/m

2
K (0.01m/6)/63

W/mK = 0.013 < 0.1 and the lumped capacitance model is appropriate. (2) The largest value of hr

corresponds to Ti =1173 K, and for  = 0.6 Eq. (1.9) yields hr = 0.6  5.67  10
-8

W/m
2
K

4
(1173 +

298)K (1173
2

+ 298
2
)K

2
= 73.3 W/m

2
K.
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PROBLEM 5.25 
 
KNOWN:  Diameter and thermophysical properties of alumina particles.  Convection conditions 
associated with a two-step heating process. 
 
FIND:  (a) Time-in-flight (ti-f) required for complete melting, (b) Validity of assuming negligible 
radiation. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Particle behaves as a lumped capacitance, (2) Negligible radiation, (3) Constant 
properties. 
 
ANALYSIS:  (a) The two-step process involves (i) the time t1 to heat the particle to its melting point and 
(ii) the time t2 required to achieve complete melting.  Hence, ti-f = t1 + t2, where from Eq. (5.5), 
 

 p p p p pi i
1

s mp

Vc D c T Tt ln ln
hA 6h T T

ρ ρθ
θ

∞

∞

−
= =

−
 

 

 
( )

( )
( )
( )

3 6
4

1 2

3970kg m 50 10 m 1560J kg K 300 10,000
t ln 4 10 s

2318 10,0006 30,000 W m K

−
−

× ⋅ −
= = ×

−⋅
 

 
Performing an energy balance for the second step, we obtain 
 

 1 2
1

t t
conv stt

q dt E
+

= Δ∫  
 
where qconv = hAs(T∞ - Tmp) and ΔEst = ρpVhsf.  Hence, 
 

 
( )

( )
( ) ( )

3 6 6p p 4sf
2 2mp

3970kg m 50 10 mD h 3.577 10 J kgt 5 10 s
6h 10,000 2318 KT T 6 30,000 W m K

ρ
−

−

∞

× ×
= = × = ×

−− ⋅
 

Hence  4
i ft 9 10 s 1ms−
− = × ≈  < 

 
(b) Contrasting the smallest value of the convection heat flux, ( ) 8 2

conv,min mpq h T T 2.3 10 W m∞′′ = − = ×  

to the largest radiation flux, ( )4 4
rad,max mp surq T Tεσ′′ = −  = 6.7 × 105 W/m2, with 0.41ε = from Table 

A.11 for aluminum oxide at 1500 K, and Tsur = 300 K we conclude that radiation is, in fact, negligible. 
 
COMMENTS:  (1) Since Bi = (hrp/3)/k ≈ 0.02, the lumped capacitance assumption is good.  (2) In an 
actual application, the droplet should impact the substrate in a superheated condition (T > Tmp), which 
would require a slightly larger ti-f. 



PROBLEM 5.26

KNOWN: Diameter and initial temperature of nanostructured ceramic particle. Plasma temperature
and convection heat transfer coefficient. Properties and velocity of particles.

FIND: (a) Time-in-flight corresponding to 30% of the particle mass being melted. (b) Time-in-flight
corresponding to the particle being 70% melted. (c) Standoff distances between the nozzle and the
substrate associated with parts (a) and (b).

SCHEMATIC:

LSTDDp = 50 m
Ti = 300 K

T = 10,000K
h = 30,000 W/m2∙K

ASSUMPTIONS: (1) Constant properties. (2) Negligible radiation.

PROPERTIES: Given; k = 5 W/mK, = 3800 kg/m3, cp = 1560 J/kgK, hsf = 3577 kJ/kg, Tmp = 2318
K.

ANALYSIS: (a) To determine whether the lumped capacitance assumption is appropriate, the Biot
number is calculated as

2 6( / 3) 30,000 W/m K 50 10 m

6 6 5 W/m K
oh r hD

Bi
k k

  
   

 
0.05

Since Bi < 0.1, the lumped capacitance approximation is valid. The particle heating process can be
divided into two stages.

Stage 1: Heating to the melting temperature. The time-of-flight for the first stage is found from
Equation 5.5.

1

mp

3 6

2

ln ln
6

3800 kg/m 50 10 m 1560 J/kg K 300 K 10,000 K
ln

6 30,000 W/m K 2318 K 10,000 K

i i

s

Vc Dc T T
t

hA h T T

  









 



    


  

= 0.00038 s

Stage 2: Melting to 30% liquid. The second stage involves heat transfer to the particle which is
isothermal at its melting point temperature. Hence

Continued...



PROBLEM 5.26 (Cont.)

 

2,0.3

mp mp

3 -6 3

2

0.3 0.05

( ) ( )

0.05 3800kg/m 50 10 m 3577 10 J/kg
= 0.00015 s

30,000W/m K 10,000 - 2318 K

sf sf

s

Vh DhE
t

q hA T T h T T

 

 


  

 

    


 

Therefore the required time-of-flight is ttot,0.3 = t1 + t2, 0.3 = 0.00038 s + 0.00015 s = 0.00053 s <

(b) The calculation for the second stage may be repeated for 70% liquid, yielding t2, 0.7 = 0.00034 s.

Therefore the required time-of-flight is ttot, 0.7 = t1 + t2, 0.7 = 0.00038 s + 0.000341 s = 0.00072 s <

(c) The required standoff distances are

STD,0.3 tot,0.3 35 m/s 0.00053 s 0.019 m 19 mmL Vt     <

STD,0.7 tot,0.7 35 m/s 0.00072 s 0.025 m 25 mmL Vt    

COMMENTS: (1) Assuming the particles to have an emissivity of p = 0.4 and radiation is exchanged
with surroundings at an assumed temperature of Tsur = 300 K, the radiation heat transfer coefficient
may be found from Equation 1.9 as

   2 2 8 2 2
mp sur mp sur 2 4

W
( )( ) 0.4 5.67 10 2318 300 K 2318K 300K

m K
r ph T T T T           


320

W/m2∙K.  

Hence hr << hconv and radiation heat transfer is negligible. (2) To deliver a partially-molten droplet to
the substrate, standoff distances on the order of 20 mm need to be maintained. This is a reasonable
requirement. (3) See I. Ahmed and T.L. Bergman, “Simulation of Thermal Plasma Spraying of
Partially Molten Ceramics: Effect of Carrier Gas on Particle Deposition and Phase Change
Phenomena,” ASME Journal of Heat Transfer, vol. 123, pp. 188-196, 2001, for more information.



PROBLEM 5.27

KNOWN: Dimensions and operating conditions of an integrated circuit.

FIND: Steady-state temperature and time to come within 1C of steady-state.

SCHEMATIC:

ASSUMPTIONS: (1) Constant properties, (2) Negligible heat transfer from chip to
substrate.

PROPERTIES: Chip material (given):  = 2000 kg/m
3
, c = 700 J/kgK.

ANALYSIS: At steady-state, conservation of energy yields

    
out g

2 2
f

f

E E 0

h L T T q L t 0

qt
T T

h





  

    

 

 





6 3

f 2

9 10 W/m 0.001 m
T 20 C 80 C.

150 W/m K

 
  



  <

From the general lumped capacitance analysis, Equation 5.15 reduces to

     2 2 2dT
L t c q L t h T T L .

dt
     

With

   

  

2
-1

3

6 3

3

h 150 W/m K
a 0.107 s

tc 2000 kg/m 0.001 m 700 J/kg K

q 9 10 W/m
b 6.429 K/s.

c 2000 kg/m 700 J/kg K






  




  





From Equation 5.24,

 
 
 i

79 20 60 KT T b/a
exp at 0.01667

T T b/a 20 20 60 K




  
   

   

 
-1

ln 0.01667
t 38.3 s.

0.107 s
   <

COMMENTS: Due to additional heat transfer from the chip to the substrate, the actual

values of Tf and t are less than those which have been computed.



PROBLEM 5.28

KNOWN: Dimensions and operating conditions of an integrated circuit.

FIND: Steady-state temperature and time to come within 1C of steady-state.

SCHEMATIC:

ASSUMPTIONS: (1) Constant properties.

PROPERTIES: Chip material (given):  = 2000 kg/m
3
, cp = 700 J/kgK.

ANALYSIS: The direct and indirect paths for heat transfer from the chip to the coolant are in
parallel, and the equivalent resistance is

 
112 -1 3 3

equiv tR hL R 3.75 10 5 10 W/K 114.3 K/W.
                

The corresponding overall heat transfer coefficient is

 
 

1
equiv 2

2 2

R 0.00875 W/K
U 350 W/m K.

L 0.005 m



   

To obtain the steady-state temperature, apply conservation of energy to a control surface about
the chip.

   2 2
out g fE E 0 UL T T q L t 0         

6 3

f 2

qt 9 10 W/m 0.001 m
T T 20 C 45.7 C.

U 350 W/m K


 
    



  <

From the general lumped capacitance analysis, Equation 5.15 yields

     2 2 2dT
L t c q L t U T T L .

dt
   

With

   

  

2
-1

3

6 3

3

U 350 W/m K
a 0.250 s

tc 2000 kg/m 0.001 m 700 J/kg K

q 9 10 W/m
b 6.429 K/s

c 2000 kg/m 700 J/kg K






  




  





Equation 5.24 yields

 
 
 i

44.7 20 25.7 KT T b/a
exp at 0.0389

T T b/a 20 20 25.7 K




  
   

   

  -1t ln 0.0389 / 0.250 s 13.0 s.   <

COMMENTS: Heat transfer through the substrate is comparable to that associated with
direct convection to the coolant.



PROBLEM 5.29

KNOWN: Diameter, resistance and current flow for a wire. Convection coefficient and temperature
of surrounding oil.

FIND: Steady-state temperature of the wire. Time for the wire temperature to come within 1C of its
steady-state value.

SCHEMATIC:

ASSUMPTIONS: (1) Constant properties, (2) Wire temperature is independent of x.

PROPERTIES: Wire (given):  = 8000 kg/m
3
, cp = 500 J/kgK, k = 20 W/mK, eR 0.01 /m.  

ANALYSIS: Since

   2 -4
o

500 W/m K 2.5 10 mh r / 2
Bi 0.006 0.1

k 20 W/m K

 
   


the lumped capacitance method can be used. The problem has been analyzed in Example 1.4, and
without radiation the steady-state temperature is given by

  2
eDh T T I R .   

Hence

 

 

22
e

2

100A 0.01 / mI R
T T 25 C 88.7 C.

Dh 0.001 m 500 W/m K 



    



  <

With no radiation, the transient thermal response of the wire is governed by the expression (Example
1.4)

 
 

2
e
2 pp

I RdT 4h
T T .

dt c Dc D / 4  



  

With T = Ti = 25C at t = 0, the solution is

 
 

2
e

2 pi e

T T I R / Dh 4h
exp t .

c DT T I R / Dh









   
  

    

Substituting numerical values, find

2

3

87.7 25 63.7 4 500 W/m K
exp t

25 25 63.7 8000 kg/m 500 J/kg K 0.001 m

    
  
      

t 8.31s. <

COMMENTS: The time to reach steady state increases with increasing , cp and D and with

decreasing h.



PROBLEM 5.30 
 
KNOWN:  Electrical heater attached to backside of plate while front is exposed to a convection process 
(T∞, h); initially plate is at uniform temperature T∞ before heater power is switched on. 
 
FIND:  (a) Expression for temperature of plate as a function of time assuming plate is spacewise 
isothermal, (b) Approximate time to reach steady-state and T(∞) for prescribed T∞, h and oq′′  when wall 
material is pure copper, (c) Effect of h on thermal response. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Plate behaves as lumped capacitance, (2) Negligible loss out backside of heater, 
(3) Negligible radiation, (4) Constant properties. 
 
PROPERTIES:  Table A-1, Copper, pure (350 K):  k = 397 W/m⋅K, cp = 385 J/kg⋅K, ρ = 8933 kg/m3. 
 
ANALYSIS:  (a) Following the analysis of Section 5.3, the energy conservation requirement for the 
system is in out stE E E− =& & &  or ( )o pq h T T Lc dT dtρ∞′′ − − = .  Rearranging, and with tR′′  = 1/h and 

tC′′  = ρLcp, 
 
 o t tT T q h R C dT dt∞ ′′ ′′ ′′− − = − ⋅  (1) 

Defining ( ) ot T T q hθ ∞ ′′≡ − −  with dθ = dT, the differential equation is 

 t t
dR C
dt
θθ ′′ ′′= − . (2) 

Separating variables and integrating, 

 
i

t
0 t t

d dt
R C

θ
θ

θ
θ

= −
′′ ′′∫ ∫  

 
it follows that 

 
i t t

texp
R C

θ
θ

⎛ ⎞
= −⎜ ⎟′′ ′′⎝ ⎠

 (3) < 

 
where ( ) ( )i i o0 T T q hθ θ ∞ ′′= = − −  (4) 
 
(b) For h = 50 W/m2 ⋅K, the steady-state temperature can be determined from Eq. (3) with t → ∞; that is, 
 ( ) ( ) o0 T T q hθ ∞ ′′∞ = = ∞ − −                or               ( ) oT T q h∞ ′′∞ = + , 

giving T(∞) = 27°C + 5000 W/m2 /50 W/m2⋅K = 127°C.  To estimate the time to reach steady-state, first 
determine the thermal time constant of the system, 
 

( ) ( )3 3
t t t p 2

1 1R C c L 8933kg m 385J kg K 12 10 m 825s
h 50 W m K

τ ρ −⎛ ⎞⎛ ⎞′′ ′′ ⎜ ⎟= = = × ⋅ × × =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⋅⎝ ⎠
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PROBLEM 5.30 (Cont.) 

 
When t = 3τt = 3×825s = 2475s, Eqs. (3) and (4) yield 
 

 ( ) ( )
2 2

3
t t 2 2

5000 W m 5000 W m3 T 3 27 C e 27 C 27 C
50 W m K 50 W m K

θ τ τ − ⎡ ⎤
= − − = − −⎢ ⎥

⎢ ⎥⋅ ⋅⎣ ⎦

o o o  

 T(3τt) = 122°C < 
 
(c) As shown by the following graphical results, which were generated using the IHT Lumped 
Capacitance Model, the steady-state temperature and the time to reach steady-state both decrease with 
increasing h. 
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COMMENTS:  Note that, even for h = 200 W/m2⋅K, Bi = hL/k << 0.1 and assumption (1) is reasonable. 



PROBLEM 5.31

KNOWN: Initial dimensions and temperature of SMA rod, ambient temperature and convection heat
transfer coefficient. Properties of SMA.

FIND: Thermal response of the rod assuming constant and variable specific heats, time for rod
temperature to experience 95% of the maximum temperature change.

SCHEMATIC:

ASSUMPTIONS: (1) Lumped capacitance behavior, (2) Effect of change in density and dimensions
is negligible, (3) Negligible radiation.

PROPERTIES: Given:
 10.808K 336KJ

500 3630 J/kg K
kg K

T
c e

  
   


,  = 8900 kg/m3, k = 23

W/mK.

ANALYSIS: The Biot number associated with the rod (evaluating dimensions at the initial
temperature) is Bi = h(Di/4)/k = 250 W/m2K  2  10-3 m/4/23W/mK = 0.005 << 0.1. Therefore, the
lumped capacitance approach is valid. Neglecting the change in the surface area as the rod is heated,

 1

2

0.808K 336K3

( ) 4
( )

4 250W/m K ( )

J
8900kg/m 0.002m 500 3630 J/kg K

kg K

s

i

T

dT hA T T h
T T

dt Vc D c

T T

e

 








  


    

   
 

 
      

Because of the absolute value function, the preceding expression is most readily integrated
numerically to determine T(t). Based upon an initial temperature of Ti = 320 K, the following results
are found using the IHT code included in the Comments.

Continued…
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PROBLEM 5.31 (Cont.)

Inspection of the predicted response shows the time needed for the rod to experience 95% of its total
temperature change (to T95 = Ti + 0.95 (Tf – Ti) = 320 K + 0.95  (350 – 320) K = 348.5 K) is 38.2 s

and 27.1 s for the variable and constant specific heat cases, respectively. <

COMMENTS: (1) A plot of the specific heat is shown below. The onset of large specific heat values
associated with the crystalline transformation slows the thermal response, as evident in the preceding
plot. (2) The IHT code is listed below.

// Solid Properties and Geometry

rho = 8900 //kg/m^3
A= pi*D*L //m^2
D= 2/1000 //m
L = 40/1000 //m
V = L*pi*D*D/4 //m^3
cpnot = 500 //J/kgK

//Convective Conditions

Tinf = 350 //K
h = 250 //W/m^2K

//Variable Property Solution

der(Tvp,t) = h*A*(Tinf - Tvp)/rho/cpstar/V
cpstar = cpnot +( 9*10^3)*0.403*exp(-abs(0.808*(Tair-336)))

//Constant Property Solution

der(Tcp,t) = h*A*(Tinf - Tcp)/rho/cpnot/V
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PROBLEM 5.32

KNOWN: Spherical coal pellet at 25C is heated by radiation while flowing through a furnace
maintained at 1000C.

FIND: Length of tube required to heat pellet to 600C.

SCHEMATIC:

ASSUMPTIONS: (1) Pellet is suspended in air flow and subjected to only radiative exchange with
furnace, (2) Pellet is small compared to furnace surface area, (3) Coal pellet has emissivity,  = 1.

PROPERTIES: Table A-3, Coal   T 600 25 C/2 585K, however, only 300K data available :     =

1350 kg/m
3
,cp = 1260 J/kgK, k = 0.26 W/mK.

ANALYSIS: Considering the pellet as spatially isothermal, use the lumped capacitance method of

Section 5.3 to find the time required to heat the pellet from To = 25C to TL = 600C. From an

energy balance on the pellet in stE E  where

 4 4
in rad s sur s st p

dT
E q A T T E c

dt
      

giving  4 4
s sur s p

dT
A T T c .

dt
   

Separating variables and integrating with limits shown, the
temperature-time relation becomes

T

To

t Ls
4 40p sur

A dT
dt .

c T T






 
 

The integrals are evaluated in Eq. 5.18 giving

p -1 -1sur sur i i
3 sur sur i sur surs sur

c T T T T T T
t ln ln 2 tan tan .

T T T T T T4A T





        
        

         

Recognizing that As = D
2

and  = D
3
/6 or As/ = 6/D and substituting values,

 

 

3

3-8 2 4

1350 kg/m 0.001 m 1260 J/kg K 1273 873 1273 298
t ln ln

1273 873 1273 29824 5.67 10 W/m K 1273 K

  
 

   

-1 -1873 298
2 tan tan 1.18s.

1273 1273

    
      

    

Hence, L = Vt = 3m/s1.18s = 3.54m. <

The validity of the lumped capacitance method requires Bi = h( /As)/k < 0.1. Using Eq. (1.9) for h

= hr and  /As = D/6, find that when T = 600C, Bi = 0.19; but when T = 25C, Bi = 0.10. At early

times, when the pellet is cooler, the assumption is reasonable but becomes less appropriate as the
pellet heats.



PROBLEM 5.33

KNOWN: Mass and initial temperature of frozen ground beef. Temperature and convection
coefficient of air. Rate of microwave power absorbed in beef.

FIND: (a) Time for beef to reach 0°C, (b) Time for beef to be heated from liquid at 0°C to 80°C,
and (c) Explain nonuniform heating in microwave and reason for low power setting for thawing.

SCHEMATIC:

ASSUMPTIONS: (1) Beef is nearly isothermal, (2) Beef has properties of water (ice or liquid),
(3) Radiation is negligible, (4) Constant properties (different for ice and liquid water).

PROPERTIES: Table A.3, Ice (≈ 273 K): ρ = 920 kg/m3, c = 2040 J/kg∙K, Table A.6, Water (≈ 
315 K): c = 4179 J/kg∙K. 

ANALYSIS: (a) We apply conservation of energy to the beef

in g stE + E = E  

s
dT

hA (T - T) + q = mc
dt

  (1)

The initial condition is T(0) = Ti. This differential equation can be solved by defining

s

q
θ = T - T  - 

hA




Then Eq.(1) becomes shAdθ
= - θ

dt mc
Separating variables and integrating,

θ(t) t
s

θ(0) 0

hAdθ
= - dt

θ mc 
shA tθ(t)

ln = -
θ(0) mc

 
 
 

s s

i s

T - T - q/hA hA t
ln = -

T - T - q/hA mc




 
 
 




(2)

The heat generation rate is given by q = 0.03P = 0.03(1000 W) = 30 W. The radius of the sphere

can be found from knowledge of the mass and density:
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PROBLEM 5.33 (Cont.)

3
o

1/31/3

o 3

4
m = ρV = ρ π r

3

3 m 3 1 kg
r = = = 0.0638 m

4π ρ 4π 920 kg/m

  
    

   

Thus 2 2 2
s oA = 4πr  = 4π(0.0638 m) = 0.0511 m

Substituting numerical values into Eq.(2), we can find the time at which the temperature reaches
0°C:

2 2 2 2

2 2

0°C - 30°C - 30 W/(15 W/m K × 0.0511 m ) 15 W/m K × 0.0511 m
ln = - t

1 kg × 2040 J/kg K- 20°C - 3 0°C - 30 W/(15 W/m K × 0.0511 m )

  
 

  

Thus t = 676 s = 11.3 min <

(b) After all the ice is converted to liquid, the absorbed power is q = 0.95P = 950 W. The time

for the beef to reach 80°C can again be found from Eq.(2):

2 2 2 2

2 2

80°C - 30°C - 950 W/(15 W/m K × 0.0511 m ) 15 W/m K × 0.0511 m
ln = - t

1 kg × 4179 J/kg K0°C - 3 0°C - 950 W/(15 W/m K × 0.0511 m )

  
 

  

Thus t = 355 s = 5.9 min <

(c) Microwave power is more efficiently absorbed in regions of liquid water. Therefore, if food
or the microwave irradiation is not homogeneous or uniform, the power will be absorbed
nonuniformly, resulting in a nonuniform temperature rise. Thawed regions will absorb more
energy per unit volume than frozen regions. If food is of low thermal conductivity, there will be
insufficient time for heat conduction to make the temperature more uniform. Use of low power
allows more time for conduction to occur.

COMMENTS: (1) The time needed to turn the ice at 0°C into liquid water at 0°C was not
calculated. The required energy is Q = mhfg = 1 kg × 2502 kJ/kg = 2502 kJ. The required time
depends on how the fraction of microwave power absorbed changes during the thawing process.
The minimum possible time would be tmin = 2502 kJ/950 W = 2600 s = 44 min. Therefore, the
time to thaw is significant.

(2) Radiation may not be negligible. It depends on the temperature of the oven walls and the
emissivity of the beef. Radiation would contribute to heating the beef.



PROBLEM 5.34 
 
KNOWN:  Metal sphere, initially at a uniform temperature Ti, is suddenly removed from a furnace and 
suspended in a large room and subjected to a convection process (T∞, h) and to radiation exchange with 
surroundings, Tsur.  
FIND:  (a) Time it takes for sphere to cool to some temperature T, neglecting radiation exchange, (b) 
Time it takes for sphere to cool to some temperature t, neglecting convection, (c) Procedure to obtain time 
required if both convection and radiation are considered, (d) Time to cool an anodized aluminum sphere 
to 400 K using results of Parts (a), (b) and (c). 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Sphere is spacewise isothermal, (2) Constant properties, (3) Constant heat transfer 
convection coefficient, (4) Sphere is small compared to surroundings. 
 
PROPERTIES:  Table A-1, Aluminum, pure ( T  = [800 + 400] K/2 = 600 K):  ρ = 2702 kg/m3, c = 1033 
J/kg⋅K, k = 231 W/m⋅K, α = k/ρc = 8.276 × 10-5 m2/s; Aluminum, anodized finish:  ε = 0.75, polished 
surface:  ε = 0.1. 
 
ANALYSIS:  (a) Neglecting radiation, the time to cool is predicted by Eq. 5.5, 
 

 i i
s

Vc Dc T Tt ln ln
hA 6h T T
ρ θ ρ

θ
∞

∞

−
= =

−
 (1) < 

 
where V/As = (πD3/6)/(πD2) = D/6 for the sphere. 
 
(b) Neglecting convection, the time to cool is predicted by Eq. 5.18, 
 

 1 1sur sur i i
3 sur sur i sur sursur

T T T TDc T Tt ln ln 2 tan tan
T T T T T T24 T

ρ

εσ
− −⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞+ +⎪ ⎪= − + −⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟− − ⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

 (2) 

 
where V/As,r = D/6 for the sphere. 
 
(c) If convection and radiation exchange are considered, the energy balance requirement results in Eq. 
5.15 (with sq′′  = gE&  = 0).  Hence 
 

 ( ) ( )4 4
sur

dT 6 h T T T T
dt Dc

εσ
ρ ∞

⎡ ⎤= − + −⎢ ⎥⎣ ⎦
 (3) < 

 
where As(c,r) = As = πD2 and V/As(c,r) = D/6.  This relation must be solved numerically in order to evaluate 
the time-to-cool. 
 
(d) For the aluminum (pure) sphere with an anodized finish and the prescribed conditions, the times to 
cool from Ti = 800 K to T = 400 K are: 
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PROBLEM 5.34 (Cont.)  

Convection only, Eq. (1) 

 
3

2
2702kg m 0.050m 1033J kg K 800 300t ln 3743s 1.04h

400 3006 10 W m K

× × ⋅ −
= = =

−× ⋅
 < 

Radiation only, Eq. (2) 

 
( )

3

38 2 4
2702 kg m 0.050 m 1033J kg K 400 300 800 300t ln ln

400 300 800 30024 0.75 5.67 10 W m K 300 K−
⎧× × ⋅ + +⎛ ⎞= ⋅ − +⎨⎜ ⎟− −⎝ ⎠⎩× × × ⋅ ×

 

    

             1 1400 8002 tan tan
300 300

− − ⎫⎡ ⎤− ⎬⎢ ⎥⎣ ⎦⎭
  

 ( ){ }3t 5.065 10 1.946 0.789 2 0.927 1.212 2973s 0.826h= × − + − = =  < 

Radiation and convection, Eq. (3)  
Using the IHT Lumped Capacitance Model, numerical integration yields 
 t 1600s 0.444h≈ =  
In this case, heat loss by radiation exerts the stronger influence, although the effects of convection are by 
no means negligible.  However, if the surface is polished (ε = 0.1), convection clearly dominates.  For 
each surface finish and the three cases, the temperature histories are as follows. 
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COMMENTS:  1. A summary of the analyses shows the relative importance of the various modes of heat 
loss:  

 Time required to cool to 400 K (h) 
Active Modes ε = 0.75 ε = 0.1 
   
Convection only 1.040 1.040 
Radiation only 0.827 6.194 
Both modes 0.444 0.889  

2. Note that the spacewise isothermal assumption is justified since Be << 0.1.  For the convection-only 
process, 
 Bi = h(ro/3)/k = 10 W/m2⋅K (0.025 m/3)/231 W/m⋅K = 3.6 × 10-4 



PROBLEM 5.35

KNOWN: Thickness and initial temperatures of two layers of copper and aluminum. Contact
resistance at the interface between the layers, applied heat flux, and convective conditions on the upper
surface of the top layer.

FIND: (a) Times at which the copper (bottom) and aluminum (top) reach a temperature of Tf = 90C.
(b) Times at which the copper (top) and aluminum (bottom) reach a temperature of Tf = 90C.

SCHEMATIC:

ASSUMPTIONS: (1) Lumped capacitance behavior, (2) Constant properties, (3) Negligible
radiation.

PROPERTIES: Table A.1; copper (T = 300 K): A = 8933 kg/m3, cA = 385 J/kgK, kA = 401 W/mK;
aluminum (T = 300 K): B = 2702 kg/m3, cB = 903 J/kgK, kB = 237 W/mK.

ANALYSIS: (a) For copper on the bottom, a modified form of Eq. 5.15 may be applied to both
materials, resulting in

Copper: " A
A B A A A"

,

1
( )s

t c

dT
q T T c L

dtR
   (1)

Aluminum: B
A B B B B B"

,

1
( ) ( )

t c

dT
T T h T T c L

dtR
    (2)

Equations 1 and 2 are coupled differential equations with the initial conditions Ti,A = Ti,B = 25C.

Hence, a numerical solution is required, yielding tf,A = 34.4 s and tf,B = 44.6 s. <

(b) For copper on the top, modified Eq. 5.15 is written as

Copper:   A
B A A A A A"

,

1
( )

t c

dT
T T h T T c L

dtR
   

Aluminum: " B
B A B B B"

,

1
( )s

t c

dT
q T T c L

dtR
  

The numerical solution yields tf,A = 44.6 s and tf,B = 30.4 s. <
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PROBLEM 5.35 (Cont.)

COMMENTS: (1) For the aluminum on the top, the Biot number associated with the aluminum is BiB

= hLB/kB = (40 W/m2K 10  10-3 m)/237 W/mK = 0.0017. The lumped capacitance approach is
valid for the aluminum. For the copper, the contact resistance and the conduction resistance through
the top aluminum layer pose thermal resistances in series with the convective resistance. In addition,
the thermal conductivity of copper is greater than that of the aluminum, so lumped capacitance
behavior is also expected for the copper. For the copper on top, the Biot number for the copper is BiA =
0.0010. Lumped capacitance behavior will also exist for this configuration. (2) The thermal responses
for the two cases are shown below. Can you explain the differences?

Copper on Bottom Copper on Top

(3) At t = 44.6 s, the temperature of the copper in part (a) is TA(t = 44.6s) = 107.1C. At t = 44.6 s, the
temperature of the bottom aluminum in part (b) is TB = 113.9C. Hence, the increase in thermal energy
of both materials per unit area during the first 44.6 s of heating for part (a) is Est = LAcA[TA(t = 44.6
s) – Ti] + LBcB[TB(t = 44.6 s) – Ti] = 10  10-3m  385 J/kgK  [107.1 – 25]C + 10  10-3m  903
J/kgK  [90 – 25]C = 903 J/m2. For part (b) the increase in thermal energy is Est = = 10  10-3m 
385 J/kgK  [90 – 25]C + 10  10-3m  903 J/kgK  [113.9 – 25]C = 1053 J/m2. The difference
between the two values is due to differences in the cumulative convective losses from the top surface
for the two configurations. Why are convective heat losses smaller in part (b) than in part (a)? (4) The
IHT Code used to solve Equations 1 and 2 is shown below. A time step of t = 0.1 s was specified.

//Dimensions
LA = 10/1000 //m
LB = 10/1000 //m

//Properties
cA = 385 //Copper specific heat, J/kgK
rhoA = 8933 //Copper density, kg/m^3
cB = 903 //Aluminum specific heat, J/kgK
rhoB = 2702 //Aluminum density, kg/m^3

//Thermal Conditions
Tinf = 25 //Ambient temperature, C
h = 40 //Convection coefficient, W/m^2K
Rcont = 400*10^-6 //Contact resistance, m^2K/W
qflux = 100*10^3 //Heat flux, W/m^2

//Copper on Bottom Case
//Energy Balance on A
//rhoA*LA*cA*Der(TA,t) = qflux - (TA - TB)/Rcont
//Energy Balance on B
//rhoB*LB*cB*Der(TB,t) = (TA - TB)/Rcont - h*(TB - Tinf)

//Copper on Top Case
//Energy Balance on A
rhoA*LA*cA*Der(TA,t) = (TB - TA)/Rcont - h*(TA - Tinf)
//Energy Balance on B
rhoB*LB*cB*Der(TB,t) = qflux - (TB - TA)/Rcont
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PROBLEM 5.36

KNOWN: Droplet properties, diameter, velocity and initial and final temperatures.

FIND: Travel distance and rejected thermal energy.

SCHEMATIC:

ASSUMPTIONS: (1) Constant properties, (2) Negligible radiation from space.

PROPERTIES: Droplet (given):  = 885 kg/m
3
, c = 1900 J/kgK, k = 0.145 W/mK,  =

0.95.

ANALYSIS: To assess the suitability of applying the lumped capacitance method, use

Equation 1.9 to obtain the maximum radiation coefficient, which corresponds to T = Ti.

 33 8 2 4 2
r ih T 0.95 5.67 10 W/m K 500 K 6.73 W/m K.       

Hence

    2 3
r o

r

6.73 W/m K 0.25 10 m/3h r / 3
Bi 0.0039

k 0.145 W/m K

 
  



and the lumped capacitance method can be used. From Equation 5.19,

 
 

3

3 32
f i

c D / 6L 1 1
t

V T T3 D

 

  

 
   
 
 

   3 3

-8 2 4 3 3 3

0.1 m/s 885 kg/m 1900 J/kg K 0.5 10 m 1 1 1
L

18 0.95 5.67 10 W/m K 300 500 K

   
  

     

L 2.52 m. <
The amount of energy rejected by each droplet is equal to the change in its internal energy.

 
 

 

34
3

i f i f

5 10 m
E E Vc T T 885 kg/m 1900 J/kg K 200 K

6
 


    

i fE E 0.022 J.  <

COMMENTS: Because some of the radiation emitted by a droplet will be intercepted by
other droplets in the stream, the foregoing analysis overestimates the amount of heat
dissipated by radiation to space.



PROBLEM 5.37

KNOWN: Diameters, initial temperature and thermophysical properties of WC and Co in composite
particle. Convection coefficient and freestream temperature of plasma gas. Melting point and latent
heat of fusion of Co.
FIND: Times required to reach melting and to achieve complete melting of Co.

SCHEMATIC:

 = 16,000 kg/m3
c

c = 300 J/kg-Kc

Cobalt

Tungsten carbide

 = 8900 kg/m3
s

c = 750 J/kg-Ks

mp

sf
5

T = 1770 K
h = 2.59x10 J/kg

T = 10,000 Koo
h = 20,000 W/m -K2

Plasma gas

D = 16 mi 

D = 20 mo 

ASSUMPTIONS: (1) Particle is isothermal at any instant, (2) Radiation exchange with surroundings
is negligible, (3) Negligible contact resistance at interface between WC and Co, (4) Constant
properties.
ANALYSIS: From Eq. (5.5), the time required to reach the melting point is

 tot i
1 2 mpo

Vc T T
t ln

T Th D














where the total heat capacity of the composite particle is

       
33 5

tot c s
Vc Vc Vc 16,000 kg / m 1.6 10 m / 6 300 J / kg K     

     
 

   
3 33 5 58900 kg / m / 6 2.0 10 m 1.6 10 m 750 J / kg K     

      
   

 8 8 81.03 10 1.36 10 J / K 2.39 10 J / K       

   
 
 

8
4

1 22 5

300 10,000 K2.39 10 J / K
t ln 1.56 10 s

1770 10,000 K
20,000 W / m K 2.0 10 m







  


 

<

The time required to melt the Co may be obtained by applying the first law, Eq. (1.12b) to a control
surface about the particle. It follows that

    2 3 3
in o mp 2 st s o sfiE h D T T t E / 6 D D h       

     

     

3 33 5 5 5

5
2 2

2 5

8900 kg / m / 6 2 10 m 1.6 10 m 2.59 10 J / kg

t 2.28 10 s

20, 000 W / m K 2 10 m 10, 000 1770 K





 





   

  

  

 
 
  <

COMMENTS: (1) The largest value of the radiation coefficient corresponds to hr =  (Tmp + Tsur)

 2 2
mp surT T . For the maximum possible value of  = 1 and Tsur = 300K, hr = 378 W/m

2
K << h =

20,000 W/m
2
K. Hence, the assumption of negligible radiation exchange is excellent. (2) Despite the

large value of h, the small values of Do and Di and the large thermal conductivities (~ 40 W/mK and

70 W/mK for WC and Co, respectively) render the lumped capacitance approximation a good one.
(3) A detailed treatment of plasma heating of a composite powder particle is provided by Demetriou,
Lavine and Ghoniem (Proc. 5th ASME/JSME Joint Thermal Engineering Conf., March, 1999).



PROBLEM 5.38

KNOWN: Diameter of highly polished aluminum rod. Temperature of rod initially and at two later
times. Room air temperature.

FIND: Values of constants C and n in Equation 5.26. Plot rod temperature vs. time for varying and
constant heat transfer coefficients.

SCHEMATIC:

ASSUMPTIONS: (1) Constant properties, (2) Radiation negligible because rod is highly polished,
(3) Lumped capacitance approximation is valid.

PROPERTIES: Table A.1, Aluminum (T = 328 K): c = 916 J/kgK, = 2702 kg/m3, k = 238
W/mK.

ANALYSIS: If the heat transfer coefficient is given by Equation 5.26, then the temperature as a
function of time is given by Equation 5.28:

1/

, 1

nn
s c i

i

nCA
t

Vc



 


 

  
 

(1)

where T T   and As,c is the area exposed to convection, As,c = πDL. Since the rod temperature is

known at two different times, Equation (1) can be evaluated at these two times, making it possible to
solve for the two unknowns, C and n. The two equations are

1/

,1
1 1

nn
s c i

i

nCA
t

Vc



 


 

  
 

1/

,2
2 1

nn
s c i

i

nCA
t

Vc



 


 

  
 

(2a,b)

These equations cannot be explicitly solved for C and n. They can be numerically solved in this form,
using IHT or some other software, or they can be further manipulated to solve for the times:

1
1 1

4

n

n
i i

cD
t

nC

 

 

  
   
   

2
2 1

4

n

n
i i

cD
t

nC

 

 

  
   
   

(3a,b)

where we have used V/As,c = D/4. Taking the ratio of Equations (3a) and (3b) yields

2

2

1 1

1

1

n

i

n

i

t

t













 
 

 
 

 
 

30 C 20 C
1

6700 s 90 C 20 C

1250 s 65 C 20 C
1

90 C 20 C

n

n





   
 

   
   

 
   

 

 

0.143 1
5.36

0.643 1

n

n









(4a,b,c)

Continued...

Ti = 90C

T = 20C

D = 35 mm

t1 = 1250s
T1 = 65C

t2 = 6700s
T2 = 30C

Ti = 90C

T = 20C

D = 35 mm

t1 = 1250s
T1 = 65C

t2 = 6700s
T2 = 30C



PROBLEM 5.38 (Cont.)

This can be iteratively or numerical solved for n, to find n = 0.25. Then C can be determined from
Equation (3a) or (3b):

0.25 3
2 1.251

0.25
1

45 C 2702 kg/m 916 J/kg K 0.035 m
1 1 2.8 W/m K

4 70 C 4 0.25 (70 C) 1250 s

n

n
i i

cD
C

n t

 

 

          
          

            

2 1.252.8 W/m KC   , n = 0.25 <

Now that these constants are known, the validity of the lumped capacitance approximation can
checked. The maximum heat transfer coefficient occurs at the initial time,

 
0.252 1.25 2( ) 2.8 W/m K (90 20)K 8.1 W/m Knh C T T      

Thus, using the conservative definition, Bi = hD/2k = 6 × 10-4. The lumped capacitance approximation
is valid.

The heat transfer coefficient corresponding to a rod temperature of   / 2iT T T  = 55C is

 
0.252 1.25 2( ) 2.8 W/m K (55 20)K 6.8 W/m Knh C T T      

The plot below shows the rod temperature as a function of time using Equation (1) above for
variable heat transfer coefficient, as well as the rod temperature assuming the constant value
of h = 6.8 W/m2K, using text Equation 5.6.
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COMMENTS: (1) Since the heat transfer coefficient is temperature difference-dependent (variable
h), the initial cooling rates are larger when this dependence is accounted for. As the temperature
difference decreases, the variable h case cools slower relative to the constant h case. (2) The
discrepancy between the variable and constant heat transfer coefficient cases is not large under these
conditions. The difference would be greater if n were larger.



PROBLEM 5.39

KNOWN: Dimensions, initial temperature and thermophysical properties of chip, solder and
substrate. Temperature and convection coefficient of heating agent.

FIND: (a) Time constants and temperature histories of chip, solder and substrate when heated by an
air stream. Time corresponding to maximum stress on a solder ball. (b) Reduction in time associated
with using a dielectric liquid to heat the components.

SCHEMATIC:

Substrate

L = 0.025 msb

L = 0.015 mch

 = 4000 kg/m3
sb

c = 770 J/kg-Ksb

Chip
 = 2300 kg/m3ch
c = 710 J/kg-Kch

T = 80oCoo
h = 50 W/m -K2

1

2
2h = 200 W/m -K

Solder ball
D = 0.002 mm
 = 11,000 kg/m3

sd

c = 130 J/kg-Ksd

T = 2i
o0 C

ASSUMPTIONS: (1) Lumped capacitance analysis is valid for each component, (2) Negligible heat
transfer between components, (3) Negligible reduction in surface area due to contact between
components, (4) Negligible radiation for heating by air stream, (5) Uniform convection coefficient
among components, (6) Constant properties.

ANALYSIS: (a) From Eq. (5.7),  t Vc / hA 

Chip:        2 7 3 22
ch ch s ch ch chV L t 0.015m 0.002m 4.50 10 m , A 2L 4L t


     

    4 22
2 0.015m 4 0.015m 0.002m 5.70 10 m


   

3 7 3

t 2 4 2

2300kg / m 4.50 10 m 710 J / kg K
25.8s

50 W / m K 5.70 10 m






   
 

  
<

Solder:    3 9 3 2 5 23 2
sV D / 6 0.002m / 6 4.19 10 m , A D 0.002m 1.26 10 m   

 
       

3 9 3

t 2 5 2

11,000kg / m 4.19 10 m 130 J / kg K
9.5s

50 W / m K 1.26 10 m






   
 

  
<

Substrate:        2 6 3 2 4 22 2
sb sb s sbV L t 0.025m 0.01m 6.25 10 m , A L 0.025m 6.25 10 m

 
       

3 6 3

t 2 4 2

4000kg / m 6.25 10 m 770 J / kg K
616.0s

50 W / m K 6.25 10 m






   
 

  
<

Substituting Eq. (5.7) into (5.5) and recognizing that (T – Ti)/(T - Ti) = 1 – (/i), in which case (T –

Ti)/(T -Ti) = 0.99 yields /i = 0.01, it follows that the time required for a component to experience
99% of its maximum possible temperature rise is

   0.99 it ln / ln 100 4.61      

Hence,

Chip: t 118.9s, Solder: t 43.8s, Substrate: t 2840 <
Continued …



PROBLEM 5.39 (Cont.)

Histories of the three components and temperature differences between a solder ball and its adjoining
components are shown below.

Commensurate with their time constants, the fastest and slowest responses to heating are associated
with the solder and substrate, respectively. Accordingly, the largest temperature difference is between
these two components, and it achieves a maximum value of 55C at

 t maximum stress 40s <

(b) With the 4-fold increase in h associated with use of a dielectric liquid to heat the components, the
time constants are each reduced by a factor of 4, and the times required to achieve 99% of the
maximum temperature rise are

Chip: t 29.5s, Solder: t 11.0s, Substrate: t 708s <
The time savings is approximately 75%.

COMMENTS: The foregoing analysis provides only a first, albeit useful, approximation to the
heating problem. Several of the assumptions are highly approximate, particularly that of a uniform
convection coefficient. The coefficient will vary between components, as well as on the surfaces of
the components. Also, because the solder balls are flattened, there will be a reduction in surface area
exposed to the fluid for each component, as well as heat transfer between components, which reduces
differences between time constants for the components.
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PROBLEM 5.40

KNOWN: Electrical transformer of approximate cubical shape, 32 mm to a side, dissipates 4.0 W

when operating in ambient air at 20C with a convection coefficient of 10 W/m
2
K.

FIND: (a) Develop a model for estimating the steady-state temperature of the transformer, T(), and
evaluate T(), for the operating conditions, and (b) Develop a model for estimating the temperature-

time history of the transformer if initially the temperature is Ti = T and suddenly power is applied.

Determine the time required to reach within 5C of its steady-state operating temperature.

SCHEMATIC:

CVs for
(a) steady-state and

qcv

(b) transient conditions

qcv

T( ), P = 4 Weoo .
, ,T(t) EstPe

h = 10 W/m -K2
T Co= 20oo

Bottom side
insulated

M = 0.28 kg
c = 400 J/kg-K

Transformer model
32-mm cubical shape

T(0) = T Ci
o= 20

P = 4.0 We

ASSUMPTIONS: (1) Transformer is spatially isothermal object, (2) Initially object is in equilibrium
with its surroundings, (3) Bottom surface is adiabatic.

ANALYSIS: (a) Under steady-state conditions, for the control volume shown in the schematic above,
the energy balance is

in out genE E E 0      cv e s e0 q P h A T T P 0          (1)

where As = 5  L
2

= 5  0.032m  0.032m = 5.12  10
-3

m
2
, find

   2 3 2
e sT T P / h A 20 C 4 W / 10 W / m K 5.12 10 m 98.1 C

           <

(b) Under transient conditions, for the control volume shown above, the energy balance is

in out gen stE E E E     
cv e

dT
0 q P Mc

dt
   (2)

Substitute from Eq. (1) for Pe, separate variables, and define the limits of integration.

   
dT

h T t T h T T Mc
dt

            

      d
h T t T Mc T T

dt
       

o o

i

t

0

h d
dt

Mc








  

where  = T(t) – T(); i = Ti – T() = T - T(); and o = T(to) – T() with to as the time when o =

- 5C. Integrating and rearranging find (see Eq. 5.5),

i
o

s o

Mc
t n

h A




 

 
o 2 3 2

20 98.1 C0.28 kg 400 J / kg K
t n 1.67 hour

5 C10 W / m K 5.12 10 m

  
 

   
 <

COMMENTS: The spacewise isothermal assumption may not be a gross over simplification since
most of the material is copper and iron, and the external resistance by free convection is high.

However, by ignoring internal resistance, our estimate for to is optimistic.



PROBLEM 5.41

KNOWN: Mass and exposed surface area of a silicon cantilever, convection heat transfer
coefficient, initial and ambient temperatures.

FIND: (a) The ohmic heating needed to raise the cantilever temperature from Ti = 300 K to T =
1000 K in th = 1s, (b) The time required to cool the cantilever from T = 1000 K to T = 400 K, tc

and the thermal processing time (tp = th + tc), (c) The number of bits that can be written onto a 1
mm  1 mm surface area and time needed to write the data for a processing head equipped with
M cantilevers.

SCHEMATIC:

Tmax = 1000 K
Tcool = 400 K

h = 200  103 W/m2·K

T8= 300 K

Cantilever

Polymer Substrate

-18M = 50 × 10 kg
-15

s

i

A = 600 × 10 kg

T = 300K

Tmax = 1000 K
Tcool = 400 K

h = 200  103 W/m2·K

T8= 300 K

Cantilever

Polymer Substrate

-18M = 50 × 10 kg
-15

s

i

A = 600 × 10 kg

T = 300K

ASSUMPTIONS: (1) Lumped capacitance behavior, (2) Negligible radiation heat transfer, (3)
Constant properties, (4) Negligible heat transfer to polymer substrate.

PROPERTIES: Table A.1, silicon ( T = 650 K): cp = 878.5 J/kgK.

ANALYSIS:

(a) From Problem 5.20 we note that

i

θ t
= exp -

θ RC

 
 
 

(1)

where θ T - T( ) and T( )   is the steady-state temperature corresponding to t → ∞; 

i i p
s

1
T T( ), R , and C = Mc .

hA
     For this problem,

6
3 2 -15 2

1
R = = 8.33 × 10 K/W

200 × 10 W/m K × 600 × 10 m

-18 -15C = 50 × 10 kg × 878.5 J/kg K = 43.9 × 10 J/K

6 -15 -9R × C = 8.33 × 10 K/W × 43.9 × 10 J/K = 366 × 10 s

Therefore, Equation 1 may be evaluated as
Continued…



PROBLEM 5.41 (Cont.)

-6

-9

1000 - T( ) 1 × 10 s
= exp - = 0.0651

300 - T( ) 366 × 10 s

 
    

hence, T(∞) = 1049K.   

At steady-state, Equation 1.12b yields

3 2 -15 2
g s

-6

E = hA (T( ) - T ) = 200 × 10 W/m K × 600 × 10 m (1049 - 300) K

      =  90 × 10  W = 90 μW

 

<

(b) Equation 5.6 may be used. Hence,

s
c

i

hAθ
= exp - t

θ Mc

  
  
  

where θ = T - T . Therefore

3 2 -15 2

c-18

400 - 300 200 × 10 W/m K × 600 × 10 m
= 0.143 = exp - t

1000 - 300 50 × 10 kg × 878.5 J/kg K

  
      

or tc = 0.71 × 10-6 s = 0.71 µs <
and tp = th + tc = 1.0 µs + 0.71 µs = 1.71 µs <

(c) Each bit occupies Ab = 50 × 10-9 m × 50 × 10-9 m = 2.5 × 10-15 m2

Therefore, the number of bits on a 1 mm × 1 mm substrate is

-3 -3 2
6

-15 2

1 × 10 × 1 × 10 m
N = = 400 × 10 bits

2.5 × 10 m
<

The total time needed to write the data (tt) is,

6 -6
p

t

N × t 400 × 10 bits × 1.71 × 10 s/bit
t = = = 6.84 s

M 100
<

COMMENTS: (1) Lumped thermal capacitance behavior is an excellent approximation for such
a small device (2) Each cantilever writes N/M = 400  106 bits/100 cantilevers = 400  104

bits/cantilever. With a separation distance of 50  10-9 m, the total distance traveled is 50  10-9 m
 400  104 = 200  10-3 m = 200 mm. If the head travels at 200 mm/s, it will take 1 second to
move the head, providing a total writing and moving time of 6.84 s + 1 s = 7.84 s. The speed of
the process is heat transfer-limited.



PROBLEM 5.42

KNOWN: Ambient conditions, initial water droplet temperature and diameter.

FIND: Total time to completely freeze the water droplet for (a) droplet solidification at Tf = 0C
and (b) rapid solidification of the droplet at Tf,sc.

SCHEMATIC:

T8 = - 40°C

h = 900 W/m2•K

D = 50 µm

Ti = 10°C

T8 = - 40°C

h = 900 W/m2•K

D = 50 µm

Ti = 10°C

ASSUMPTIONS: (1) Isothermal particle, (2) Negligible radiation heat transfer, (3) Constant
properties.

PROPERTIES: Table A.6, liquid water (T = 0 C): cp = 4217 J/kgK, k = 0.569 W/mK, ρ = 
1000 kg/m3. Example 1.6: hsf = 334 kJ/kg.

ANALYSIS: We begin by evaluating the validity of the lumped capacitance method by
determining the value of the Biot number.

2 -6
c

i

hL hD/3 900 W/m K × 50 × 10 m/3
B = = = = 0.026 << 0.1

k k 0.569 W/m K





Hence, the lumped capacitance approach is valid.

Case A: Equilibrium solidification, Tf = 0°C.
The solidification process occurs in two steps. The first step involves cooling the drop to Tf =
0°C while the drop is completely liquid. Hence, Equation 5.6 is used where

A = 2 -6 2 -9 2πD  = π × (50 × 10 m) = 7.85 × 10 m and

V = 3 -6 3 -15 34π(D/2) 3 = 4 × π × (50 × 10  m/2) /3 = 65.4 × 10 m . Equation 5.6 may be

rearranged to yield

1
i

3 -15 3

2 -9 2

T - TρVc
t = - ln

hA T - T

1000 kg/m × 65.4 × 10 m × 4217 J/kg K 0 - (- 40°C)
= - × ln

10°C - (- 40°C)900 W/m × 7.85 × 10 m





 
 
 

 
 
 

(1)

t1 = 8.7 × 10-3 s = 8.7 ms
Continued…



PROBLEM 5.42 (Cont.)

The second step involves solidification of the ice, which occurs at Tf = 0°C. An energy balance
on the droplet yields

out st f 2 sf-E = ΔE   or   - hA(T  - T )t  = ρVh

which may be rearranged to provide

sf
2

f

ρVh
t = -

hA(T - T )

(2)

3 -15 3

2 -9 2

1000 kg/m × 65.4 × 10 m × 334,000 J/kg
=

900 W/m × 7.85 × 10 m × (0°C - (- 40)°C)

-3= 77.3 × 10 s = 77.3 ms

The time needed to cool and solidify the particle is

1 2t = t + t = 8.7 ms + 77.3 ms = 86 ms <

Case B: Rapid solidification at Tf,sc.
Using the expression given in the problem statement, the liquid droplet is supercooled to a
temperature of Tf,sc prior to freezing.

-6
f,scT = - 28 + 1.87ln(50 × 10 m) = - 36.6°C

The solidification process occurs in multiple steps, the first of which is cooling the particle to Tf,sc

= -36.6°C. Substituting T = Tf,sc into Equation 1 yields
t1 = 105 × 10-3 s = 105 ms

The second step involves rapid solidification of some or all of the supercooled liquid. An energy
balance on the particle yields

st sf f f,scE = 0 = ρVh f = ρVc(T  - T ) (3)

where f is the fraction of the mass in the droplet that is converted to ice. Solving the preceding
equation for f yields

f f,sc

sf

c(T - T ) 4217 J/kg K × (0°C - (- 36.6°C))
f = = = 0.462

h 334,000 J/kg



Hence, immediately after the rapid solidification, the water droplet is approximately 46% ice and
54% liquid. The time required for the rapid solidification is t2 ≈ 0 s.   

The third stage of Case B involves the time required to freeze the remaining liquid water, t3.
Equation 2 is modified accordingly to yield

sf
3

f

(1-f)ρVh
t = -

hA(T - T )

3 -15 3
-3

2 -9 2

(1 - 0.462) × 1000 kg/m × 65.4 × 10 m × 334,000 J/kg
= - = 42 × 10 s = 42 ms

900 W/m × 7.85 × 10 m × (0°C - (- 40)°C)

Continued…



PROBLEM 5.42 (Cont.)

The total time to solidify the particle is

t = t1 + t2 + t3 = 105 ms + 0 + 42 s = 147 ms <

The temperature histories associated with Case A and Case B are shown in the sketch below.

COMMENTS: (1) Equation 3 may be derived by assuming a reference temperature of Tf = 0 C
and a liquid reference state. The energy of the particle prior to the rapid solidification is E1 =
ρVc(Tf,sc - Tf). The energy of the particle after the rapid solidification is E2 = -fρVhsf + (1 - f)
ρVc(Tf – Tf) = -fρVhsf. Setting E1 = E2 yields Equation 3. (2) The average temperature of the
supercooled particle is significantly lower than the average temperature of the particle of Case A.
Hence, the rate at which the supercooled particle of Case B is cooled by the cold air is, on
average, much less than the particle of Case A. Since both particles ultimately reach the same
state (all ice at T = 0 C), it takes longer to completely solidify the supercooled particle. (3) For
Case A, the ice particle at T = 0 C will be a solid sphere, sometimes referred to as sleet. For Case
B, the rapid solidification will result in a snowflake.
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PROBLEM 5.43

KNOWN: Series solution, Eq. 5.42, for transient conduction in a plane wall with convection.

FIND: Midplane (x*=0) and surface (x*=1) temperatures * for Fo=0.1 and 1, using Bi=0.1, 1 and
10 with only the first four eigenvalues. Based upon these results, discuss the validity of the
approximate solutions, Eqs. 5.43 and 5.44.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional transient conduction, (2) Constant properties.

ANALYSIS: The series solution, Eq. 5.42a, is of the form,

   * 2 *
n n n

n 1

C exp - Fo cos x  




 

where the eigenvalues, n , and the constants, Cn, are from Eqs. 5.39b and 5.39c.

  n n n n n ntan Bi C 4sin / 2 sin 2 .      

The eigenvalues are tabulated in Appendix B.3; note, however, that 1 and C1 are available from

Table 5.1. The values of n and Cn used to evaluate * are as follows:

Bi 1 C1 2 C2 3 C3 4 C4

0.1 0.3111 1.0160 3.1731 -0.0197 6.2991 0.0050 9.4354 -0.0022
1 0.8603 1.1191 3.4256 -0.1517 6.4373 0.0466 9.5293 -0.0217

10 1.4289 1.2620 4.3058 -0.3934 7.2281 0.2104 10.2003 -0.1309

Using n and Cn values, the terms of * , designated as * * * *
1 2 3 4, , and ,    are as follows:

Fo=0.1

Bi=0.1 Bi=1.0 Bi=10

x* 0 1 0 1 0 1

*
1 1.0062 0.9579 1.0393 0.6778 1.0289 0.1455

*
2 -0.0072 0.0072 -0.0469 0.0450 -0.0616 0.0244

*
3 0.0001 0.0001 0.0007 0.0007 0.0011 0.0006

*
4 -2.9910-7 3.0010-7 2.4710-6 2.4610-7 -3.9610-6 2.8310-6

* 0.9991 0.9652 0.9931 0.7235 0.9684 0.1705

Continued …



PROBLEM 5.43 (Cont.)

Fo=1

Bi=0.1 Bi=1.0 Bi=10

x* 0 1 0 1 0 1

*
1 0.9223 0.8780 0.5339 0.3482 0.1638 0.0232

*
2 8.3510-7 8.3510-7 -1.2210-5 1.1710-6 3.4910-9 1.3810-9

*
3 7.0410-20 - 4.7010-20 - 4.3010-24 -

*
4 4.7710-42 - 7.9310-42 - 8.5210-47 -

* 0.9223 0.8780 0.5339 0.3482 0.1638 0.0232

The tabulated results for  * * *x , Bi, Fo  demonstrate that for Fo=1, the first eigenvalue is

sufficient to accurately represent the series. However, for Fo=0.1, three eigenvalues are required for
accurate representation.

A more detailed analysis would show that a practical criterion for representation of the series solution
by one eigenvalue is Fo > 0.2. For these situations the approximate solutions, Eqs. 5.43 and 5.44, are
appropriate. For the midplane, x*=0, the first two eigenvalues for Fo=0.2 are:

Fo=0.2 x*=0
Bi 0.1 1.0 10

*
1 0.9965 0.9651 0.8389

*
2 -0.00226 -0.0145 -0.0096

* 0.9939 0.9506 0.8293

Error,% +0.26 +1.53 +1.16

The percentage error shown in the last row of the above table is due to the effect of the second term.
For Bi = 0.1, neglecting the second term provides an error of 0.26%. For Bi = 1, the error is 1.53%.

Hence we conclude that the approximate series solutions (with only one eigenvalue) provides
systematically high results, but by less than 1.5%, for the Biot number range from 0.1 to 10.



PROBLEM 5.44

KNOWN: One-dimensional wall, initially at a uniform temperature, Ti, is suddenly exposed

to a convection process (T, h). For wall #1, the time (t1 = 100s) required to reach a specified

temperature at x = L is prescribed, T(L1, t1) = 315C.

FIND: For wall #2 of different thickness and thermal conditions, the time, t2, required for

T(L2, t2) = 28C.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties.

ANALYSIS: The properties, thickness and thermal conditions for the two walls are:

Wall L(m) (m
2
/s) k(W/mK) Ti(C) T(C) h(W/m

2
K)

1 0.10 1510
-6

50 300 400 200

2 0.40 2510
-6

100 30 20 100

The dimensionless functional dependence for the one-dimensional, transient temperature
distribution, Eq. 5.38, is

   
i

T x,t T
f x , Bi, Fo

T T
  




 



where
2x x/L Bi hL/k Fo t/L .   

If the parameters x*, Bi, and Fo are the same for both walls, then 1 2 .   Evaluate these

parameters:

Wall x* Bi Fo *

1 1 0.40 0.150 0.85

2 1 0.40 1.56310
-4

t2 0.85

where

1 2
315 400 28.5 20

0.85 0.85.
300 400 30 20

   
   

 
It follows that

-4
2 1 2Fo Fo 1.563 10 t 0.150  

2t 960s. <



PROBLEM 5.45

KNOWN: Stack or book comprised of 11 metal plates (p) and 10 boards (b) each of 2.36 mm
thickness and prescribed thermophysical properties.

FIND: Effective thermal conductivity, k, and effective thermal capacitance, (cp).

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Negligible contact resistance
between plates and boards.

PROPERTIES: Metal plate (p, given): p = 8000 kg/m
3
, cp,p = 480 J/kgK, kp = 12

W/mK; Circuit boards (b, given): b = 1000 kg/m
3
, cp,b = 1500 J/kgK, kb = 0.30 W/mK.

ANALYSIS: The thermal resistance of the book is determined as the sum of the resistance of
the boards and plates,

tot b pR NR MR   

where M,N are the number of plates and boards in the book, respectively, and i i iR L / k 

where Li and ki are the thickness and thermal conductivities, respectively.

   
   

tot p p b b

tot
3 2 2

tot

R M L / k N L / k

R 11 0.00236 m/12 W/m K 10 0.00236 m/0.30 W/m K

R 2.163 10 7.867 10 8.083 10 K/W.
  

  

    

      

The effective thermal conductivity of the book of thickness (10 + 11) 2.36 mm is

tot -2

0.04956 m
k L/R 0.613 W/m K.

8.083 10 K/W
   


<

The thermal capacitance of the stack is

   

   
tot p p p b b b

3 3
tot

4 4 5 2
tot

C M L c N L c

C 11 8000 kg/m 0.00236 m 480 J/kg K 10 1000 kg/m 0.00236 m 1500 J/kg K

C 9.969 10 3.540 10 1.35 10 J/m K.

   

        

       

The effective thermal capacitance of the book is

  5 2 6 3
p totc C / L 1.351 10 J/m K/0.04956 m 2.726 10 J/m K.        <

COMMENTS: The results of the analysis allow for representing the stack as a homogeneous

medium with effective properties: k = 0.613 W/mK and  = (k/cp) = 2.24910
-7

m
2
/s.



PROBLEM 5.46

KNOWN: Stack of circuit board-pressing plates, initially at a uniform temperature, is subjected by
upper/lower platens to a higher temperature.

FIND: (a) Elapsed time, te, required for the mid-plane to reach cure temperature when platens are

suddenly changed to Ts = 190C, (b) Energy removal from the stack needed to return its temperature

to Ti.

SCHEMATIC:

PROPERTIES: Stack (given): k = 0.613 W/mK, cp = 2.7310
6

J/m
3
K;  = k/cp = 2.24510

-7

m
2
/s.

ANALYSIS: (a) Recognize that sudden application of surface temperature corresponds to h , or

Bi . With Ts = T,

   

 
s

o
i s

T 0,t T 170 190 C
0.114.

T T 15 190 C


 
  

 





Using Eq. 5.44 with values of 1 11.5707 and C 1.2733 for Bi    (Table 5.1), find Fo

 2
o 1 1C exp Fo   

 
 

 o 12 2
1

1 1
Fo ln / C ln 0.114/1.2733 0.977

1.5707




    

where Fo = t/L
2
,

 
23

2
3

7 2

0.977 25 10 mFoL
t 2.720 10 s 45.3 min.

2.245 10 m / s






    


<

(b) The energy removal is equivalent to the energy gained by the stack per unit area for the time

interval 0  te. With oQ corresponding to the maximum amount of energy that could be transferred,

      6 3 -3 7 2.
o iQ c 2L T T 2.73 10 J/m K 2 25 10 m 15 190 K 2.389 10 J/m            

Q may be determined from Eq. 5.49,

 1
o

o 1

sin 1.5707 radsinQ
1 1 0.114 0.927

Q 1.5707 rad







     


We conclude that the energy to be removed from the stack per unit area to return it to Ti is

7 2 7 2
oQ 0.927Q 0.927 2.389 10 J/m 2.21 10 J/m .       <



PROBLEM 5.47

KNOWN: One-dimensional convective heating of a plane slab with Bi = 1 for a dimensionless time
of Fo1.

FIND: (a) Sketch of the dimensionless midplane and surface temperatures of the slab as a function of
dimensionless time over the range 0 < Fo1 < Fo < . Relative value of Fo2, needed to achieve a
steady-state midplane temperature equal to the midplane temperature at Fo1. (b) Analytical expression
for, and value of Fo = Fo2 - Fo1 for Bi = 1, Fo1 > 0.2, Fo2 > 0.2. (c) Value of Fo for Bi = 0.01, 0.1,
10, 100 and .

SCHEMATIC:

T, hT, h T, hT, h

x
-L L

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) Approximate, one-
term solutions are valid.

ANALYSIS: (a) A sketch of the dimensionless midplane and surface temperatures is shown below.
Note that, at Fo1, the surface of the slab will be warm (small ) relative to the midplane since
temperature gradients within the slab are significant (Bi = 1). At the curtailment of heating (Fo1), the
surface temperature cools rapidly while warm temperatures continue to propagate toward the
midplane, slowly heating the midplane until a steady-state, isothermal condition is eventually reached.

<

Based on the sketch above, one could achieve a steady-state midplane temperature equal to the
midplane temperature at Fo1 by reducing the duration of convective heating to Fo2, as shown in the
sketch below.

Continued…
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PROBLEM 5.47 (Cont.)

Hence, Fo2 < Fo1. <

(b) Using the approximate solutions of Section 5.5.2, and noting that the steady-state temperature of
the slab is uniform and related to the energy transferred to the slab,

*
1 2( ) 1 ( )o

o

Q
Fo Fo

Q
  

or,

*
1 1 11 ( ) ( )o

o

Q
Fo Fo Fo

Q
    (1)

Substituting Eqs. 5.44 and 5.49 into Eq. (1) yields

 2 21
1 1 1 1 1 1

1

sin
1 exp( ) 1 expC Fo C Fo Fo


 


       
 

which may be simplified to

1
2

11

1
ln

sin
Fo





 
     

 
<

From Table 5.1, 1 = 0.8603 rad at Bi = 1. Hence,

2

1 0.8603
ln 0.1709

sin0.86030.8603
Fo

 
     

 
<

(c) The expression for Fo may be evaluated for a range of Bi, resulting in the following.
Continued…

Fo10 Fo

Surface

Centerline



1

0
Fo2



PROBLEM 5.47 (Cont.)

Bi 1 Fo <

0.01 0.0998 -0.1667
0.1 0.3111 -0.1672
1 0.8603 -0.1709
10 1.4289 -0.1847
100 1.5552 -0.1826
 1.5708 -0.1830

COMMENTS: (1) Note that the dimensionless temperature,  * 2
1 1expo C Fo   , is defined in a

manner such that for slab heating, increases in actual temperature correspond to decreases in the
dimensionless temperature. (2) The dimensionless time lag, Fo, is weakly-dependent on the value of
the Biot number and is independent of the heating time. Hence, a general rule-of-thumb is that a time
lag of Fo  - 0.17 should be specified in order to achieve an ultimate midplane temperature equal to
that predicted at Fo1 for convective heating or cooling. (3) For applications such as materials or food
processing, where a certain minimum midplane temperature is desired, assuming that Fo1 (as
determined by Eq. 5.44 is the appropriate processing or cooking time can result in significant over-
heating of the material or food, especially at small Fourier numbers. (4) Significant energy and time
savings can be realized by reducing the processing or cooking time from Fo1 to Fo2.



PROBLEM 5.48 
 
KNOWN:  The chuck of a semiconductor processing tool, initially at a uniform temperature of Ti = 
100°C, is cooled on its top surface by supply air at 20°C with a convection coefficient of 50 W/m2⋅K. 
 
FIND: (a) Time required for the lower surface to reach 25°C, and (b) Compute and plot the time-to-cool 
as a function of the convection coefficient for the range 10 ≤ h ≤ 2000 W/m2⋅K; comment on the 
effectiveness of the head design as a method for cooling the chuck. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) One-dimensional, transient conduction in the chuck, (2) Lower surface is perfectly 
insulated, (3) Uniform convection coefficient and air temperature over the upper surface of the chuck, and 
(4) Constant properties. 
 
PROPERTIES:  Table A.1, Aluminum alloy 2024 ( (25 + 100)°C / 2 = 335 K):  ρ = 2770 kg/m3, cp = 880 
J/kg⋅ K, k = 179 W/m⋅K. 
 
ANALYSIS:  (a) The Biot number for the chuck with h = 50 W/m2⋅K is 
 

 
2hL 50 W m K 0.025mBi 0.007 0.1

k 179 W m K
⋅ ×

= = = ≤
⋅

 (1) 

 
so that the lumped capacitance method is appropriate.  Using Eq. 5.5, with V/As = L, 
 

 i
i i

s

Vct ln T T T T
hA
ρ θ θ θ

θ ∞ ∞= = − = −  

 ( ) ( )
( )

3 2 100 20 C
t 2770kg m 0.025m 880J kg K 50 W m K ln

25 20 C

−
= × × ⋅ ⋅

−

o

o
 

 t 3379s 56.3min= =  < 
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PROBLEM 5.48 (Cont.) 

 
(b) When h = 2000 W/m2⋅K, using Eq. (1), find Bi = 0.28 > 0.1 so that the series solution, Section 5.5.1, 
for the plane wall with convection must be used.  Using the IHT Transient Conduction, Plane Wall 
Model, the time-to-cool was calculated as a function of the convection coefficient.  Free convection 
cooling condition corresponds to h ≈ 10 W/m2⋅K and the time-to-cool is 282 minutes.  With the cooling 
head design, the time-to-cool can be substantially decreased if the convection coefficient can be increased 
as shown below. 
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PROBLEM 5.49

KNOWN: Thickness, properties and initial temperature of steel slab. Convection conditions.

FIND: Heating time required to achieve a minimum temperature of 550C in the slab.

SCHEMATIC:

L = 0.05 m

Steel, T = 20i
o0 C

= 7830 kg/m3

c = 550 J/kg-K
k = 48 W/m-K

T = 800oCoo
h = 250 W/m -K2

T , hoo

Combustion
gases

ASSUMPTIONS: (1) One-dimensional conduction, (2) Negligible radiation effects, (3) Constant
properties.

ANALYSIS: With a Biot number of hL/k = (250 W/m
2
K  0.05m)/48 W/mK = 0.260, a lumped

capacitance analysis should not be performed. At any time during heating, the lowest temperature in
the slab is at the midplane, and from the one-term approximation to the transient thermal response of a
plane wall, Eq. (5.44), we obtain

 
   2o

o 1 1
i

550 800 CT T
0.417 C exp Fo

T T 200 800 C
  



 
    

  

With 1 0.488 rad  and 1C 1.0396 from Table 5.1 and 5 2
k / c 1.115 10 m / s, 


  

   2 2
1 t / L ln 0.401 0.914    

 

 

22

2 2 5 2
1

0.841 0.05m0.914L
t 861s

0.488 1.115 10 m / s  
  


<

COMMENTS: The surface temperature at t = 861s may be obtained from Eq. (5.43b), where

   o 1cos 0.417 cos 0.488 rad 0.368.x  
  
   Hence,    s iT L, 792s T T 0.368 T T    

800 C 221 C 579 C.      Assuming a surface emissivity of  = 1 and surroundings that are at

surT T 800 C,   the radiation heat transfer coefficient corresponding to this surface temperature is

  2 2 2
r s sur s surh T T T T 205 W / m K.     Since this value is comparable to the convection

coefficient, radiation is not negligible and the desired heating will occur well before t = 861s.



PROBLEM 5.50

KNOWN: Thickness and initial temperature of acrylic sheet.

FIND: Time needed to bring the external surface of the acrylic to its softening temperature.

SCHEMATIC:

L = 5 mm

Insulated
surface

Constant temperature,
hot surface, Th = 300C

x

Acrylic plate

Ti = 20C
= 1990 kg/m3

c= 1470 J/kg∙K
k = 0.21 W/m∙K
Tsoft = 90C

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) One-term
approximate solution is valid.

PROPERTIES: Acrylic (given):  = 1990 kg/m3, c = 1470 J/kgK and k = 0.21 W/mK.

ANALYSIS: For the constant temperature boundary condition, the Biot number is Bi . Hence,
from Table 5.1 for the plane wall, 1 = 1.5708, C1 = 1.2733. The dimensionless external surface
temperature at the time of interest is

* 2 2
1 1

90 C 300 C
0.75 exp( ) 1.2733exp( 1.5708 )

20 C 300 C
o C Fo Fo 

  
     

  

From which Fo = 0.214. Hence,

t = FoL2/ = FoL2c/k = [0.214  (0.005 m)2  1990 kg/m3  1470 J/kgK]/0.21 W/mK = 74 s <

COMMENTS: (1) Since Fo = 0.214 is greater than 0.2, the one-term approximation is valid. (2) A
contact resistance would be present at the interface between the acrylic and the substrate. However, as
the acrylic softens and deforms locally to make better contact with the substrate, the thermal contact
resistance would decrease in value.



PROBLEM 5.51

KNOWN: Thickness, initial temperature and properties of furnace wall. Convection conditions at
inner surface.

FIND: Time required for outer surface to reach a prescribed temperature. Corresponding
temperature distribution in wall and at intermediate times.

SCHEMATIC:

L = 0.15 mx

h = 100 W/m -K2
T Co= 950ooCombustion gases

Fire-clay brick:
T Ci

o= 20
T (0,t) = 750 Cf

o

= 2600 kg/m3

c = 1000 J/kg-Kp
k = 1.5 W/m-K

ASSUMPTIONS: (1) One-dimensional conduction in a plane wall, (2) Constant properties, (3)
Adiabatic outer surface, (4) Fo > 0.2, (5) Negligible radiation from combustion gases.

ANALYSIS: The wall is equivalent to one-half of a wall of thickness 2L with symmetric convection

conditions at its two surfaces. With Bi = hL/k = 100 W/m
2
K  0.15m/1.5 W/mK = 10 and Fo > 0.2,

the one-term approximation, Eq. 5.44 may be used to compute the desired time, where

   o o iT T / T T 0.215.      From Table 5.1, C1 = 1.262 and 1 = 1.4289. Hence,

   

 

o 1

2 2
1

ln / C ln 0.215 /1.262
Fo 0.867

1.4289







    

 

 
22

3

0.867 0.15mFo L
t 33,800s

1.5 W / m K / 2600 kg / m 1000 J / kg K
  

  
<

The corresponding temperature distribution, as well as distributions at t = 0, 10,000, and 20,000 s are
plotted below

COMMENTS: Because Bi >>1, the temperature at the inner surface of the wall increases much
more rapidly than at locations within the wall, where temperature gradients are large. The
temperature gradients decrease as the wall approaches a steady-state for which there is a uniform
temperature of 950C.
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PROBLEM 5.52

KNOWN: Thickness, initial temperature and properties of steel plate. Convection conditions at both
surfaces.

FIND: Time required to achieve a minimum temperature.

SCHEMATIC:

L = 50 mmx

h = 100 W/m -K2
T Co= 700ooCombustion gases

Steel plate:
T Ci

o= 300
T(0,t ) = 550 Co

f

=7800 kg/m3

c = 500 J/kg-Kp
k = 45 W/m-K

ASSUMPTIONS: (1) One-dimensional conduction in plate, (2) Symmetric heating on both sides, (3)
Constant properties, (4) Negligible radiation from gases, (5) Fo > 0.2.

ANALYSIS: The smallest temperature exists at the midplane and, with Bi = hL/k = 500 W/m
2
K 

0.050m/45 W/mK = 0.556 and Fo > 0.2, may be determined from the one-term approximation of Eq.

5.41. From Table 5.1, C1 = 1.076 and 1 = 0.682. Hence, with o
 = (To - T)/(Ti - T) = 0.375,

   

 

o 1

2 2
1

ln / C ln 0.375 /1.076
Fo 2.266

0.682







    

 

 
22

3

2.266 0.05mFo L
t 491s

45 W / m K / 7800 kg / m 500 J / kg K
  

  
<

COMMENTS: From Eq. 5.43b, the corresponding surface temperature is

   s i o 1T T T T cos 700 C 400 C 0.375 0.776 584 C 
           

Because Bi is not much larger than 0.1, temperature gradients in the steel are moderate.



PROBLEM 5.53

KNOWN: Initial temperature of concrete slabs. Air temperature and convection heat transfer
coefficient.

FIND: Slab thickness required so that Q/Qo = 0.90 for t = 8 h.

SCHEMATIC:

ASSUMPTIONS: (1) Properties at 300 K are satisfactory at higher temperature, (2) One-dimensional
conduction, (3) Constant convection heat transfer coefficient, (4) Negligible radiation because each
concrete slab is surrounded by others at the same temperature.

PROPERTIES: Table A.3, Concrete (stone mix) (T = 300 K): = 2300 kg/m3, c = 880 J/kgK, k =
1.4 W/mK.

ANALYSIS: Without knowing the thickness, we cannot determine in advance whether the lumped
capacitance approximation is valid. Considering the small thermal conductivity of concrete, we might
anticipate that the Biot number will not be small. Considering the long time period, we may anticipate
that the Fourier number is large. Therefore, we will begin by using the first-term approximation of the
series solution and check its validity later. From Equation 5.49

*1

1

sin
1 0.9o

o

Q

Q





   (1)

where from Equation 5.44

 * 2
1 1expo C Fo   (2)

In these equations, C1 and 1 are functions of Bi:

1 1tan Bi   , 1
1

1 1

4sin

2 sin(2 )
C



 



(3,4)

where 1 is the smallest root of Equation (3). Both Bi and Fo are unknown because L is unknown.
They are given by

hL
Bi

k
 ,

2

t
Fo

L


 (5,6)

Continued…
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Concrete slabs

From
solar
collector

T, hT, h

T, hT, h

T, hT, h

Q/Qo = 0.9
at t = 8 h

Ti = 40C



PROBLEM 5.53 (Cont.)

where α = k/c = 6.92 × 10-7 W/m2K. These six simultaneous equations can be solved iteratively.
One approach is to guess a value for 1, from which C1 can be calculated from Equation (4). Equation

(1) can be used to find the required value of *
o . Then Equation (2) can be used to determine Fo and a

new value of L can be determined from Equation (6). Finally, Bi can be calculated from Equation (5)
and a new value of 1 can be found from Equation (3). Beginning this approach with a guessed value
of 1 = 1, the iterations proceed as follows:

Guess: 1 = 1
Equation (4): C1 = 1.16

Equation (1): *
o = 0.119

Equation (2): Fo = 2.28
Equation (6): L = 0.0936 m
Equation (5): Bi = 2.34
Equation (3): 1 = 1.1231

Repeating with the new value of 1 and iterating until L converges to two significant digits, we find

L = 0.11 m <

with Bi = 2.7, Fo = 1.7. Thus the lumped capacitance approximation is not appropriate, and the first-
term approximation is valid.

COMMENTS: This hand-solution is time-consuming, especially since Equation (3) must itself be
solved iteratively. A much faster approach would be to solve these six equations simultaneously using
IHT or other software.



PROBLEM 5.54

KNOWN: Plate of thickness 2L = 25 mm at a uniform temperature of 600C is removed from a hot
pressing operation. Case 1, cooled on both sides; case 2, cooled on one side only.

FIND: (a) Calculate and plot on one graph the temperature histories for cases 1 and 2 for a 500-
second cooling period; use the IHT software; Compare times required for the maximum temperature in
the plate to reach 100C; and (b) For both cases, calculate and plot on one graph, the variation with
time of the maximum temperature difference in the plate; Comment on the relative magnitudes of the
temperature gradients within the plate as a function of time.

SCHEMATIC:

Case 1: cooling, both sides

h = 400 W/m -K2
T oC= 25oo

T(x,0) = T = 600 Ci
o

Plate ( , c, k)

2L = 25 mm

T , hoo T , hoo

Case 2: cooling, one side only

T(x,0) = Ti

2L = 25 mm

ASSUMPTIONS: (1) One-dimensional conduction in the plate, (2) Constant properties, and (3) For
case 2, with cooling on one side only, the other side is adiabatic.

PROPERTIES: Plate (given):  = 3000 kg/m
3
, c = 750 J/kgK, k = 15 W/mK.

ANALYSIS: (a) From IHT, call up Plane Wall, Transient Conduction from the Models menu. For
case 1, the plate thickness is 25 mm; for case 2, the plate thickness is 50 mm. The plate center (x = 0)
temperature histories are shown in the graph below. The times required for the center temperatures to
reach 100C are

t1 = 164 s t2 = 367 s <
(b) The plot of T(0, t) – T(1, t), which represents the maximum temperature difference in the plate
during the cooling process, is shown below.

Plate center temperature histories
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COMMENTS: (1) From the plate center-temperature history graph, note that it takes more than twice
as long for the maximum temperature to reach 100C with cooling on only one side.

(2) From the maximum temperature-difference graph, as expected, cooling from one side creates a
larger maximum temperature difference during the cooling process. The effect could cause
microstructure differences, which could adversely affect the mechanical properties within the plate.



PROBLEM 5.55 
 
KNOWN:  Properties and thickness L of ceramic coating on rocket nozzle wall.  Convection conditions.  
Initial temperature and maximum allowable wall temperature. 
 
FIND:  (a) Maximum allowable engine operating time, tmax, for L = 10 mm, (b) Coating inner and outer 
surface temperature histories for L = 10 and 40 mm. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) One-dimensional conduction in a plane wall, (2) Constant properties, (3) 
Negligible thermal capacitance of metal wall and heat loss through back surface, (4) Negligible contact 
resistance at wall/ceramic interface, (5) Negligible radiation. 
 
ANALYSIS:  (a) Subject to assumptions (3) and (4), the maximum wall temperature corresponds to the 
ceramic temperature at x = 0.  Hence, for the ceramic, we wish to determine the time tmax at which T(0,t) = 
To(t) = 1500 K.  With Bi = hL/k = 5000 W/m2⋅K(0.01 m)/10 W/m⋅K = 5, the lumped capacitance method 
cannot be used.  Assuming Fo > 0.2, obtaining ζ1 = 1.3138 and C1 = 1.2402 from Table 5.1, and 

evaluating *
oθ  = ( ) ( )o iT T T T∞ ∞− −  = 0.4, Equation 5.44 yields 

 

 
( ) ( )

( )

*
o 1
2 2
1

ln C ln 0.4 1.2402
Fo 0.656

1.3138

θ

ζ
= − = − =  

 
confirming the assumption of Fo > 0.2.  Hence, 
 

 
( ) ( )

2 2

max 6 2

Fo L 0.656 0.01m
t 10.9s

6 10 m sα −
= = =

×
 < 

 
(b) Using the IHT Lumped Capacitance Model for a Plane Wall, the inner and outer surface temperature 
histories were computed and are as follows: 
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Continued... 



 
PROBLEM 5.55 (Cont.) 

 
The increase in the inner (x = 0) surface temperature lags that of the outer surface, but within t ≈ 45s both 
temperatures are within a few degrees of the gas temperature for L = 0.01 m.  For L = 0.04 m, the 
increased thermal capacitance of the ceramic slows the approach to steady-state conditions.  The thermal 
response of the inner surface significantly lags that of the outer surface, and it is not until t ≈ 137s that the 
inner surface reaches 1500 K.  At this time there is still a significant temperature difference across the 
ceramic, with T(L,tmax) = 2240 K. 
 
COMMENTS:  The allowable engine operating time increases with increasing thermal capacitance of the 
ceramic and hence with increasing L. 



PROBLEM 5.56 
 

 
KNOWN:  Thickness and initial temperatures of two plates of the same material. 
 
FIND:  (a) Steady-state dimensionless temperatures of the two plates, *

ss,1T and *
ss,2T , as well as the 

interface temperature, *
intT , (b) Expression for the effective dimensionless overall heat transfer 

coefficient for the two-plate system, ( )* **
2 1eff ,2 * /U q T T≡ −  for Fo > 0.2. 

 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) One-dimensional conduction, (2) Constant properties, (3) Negligible thermal 
contact resistance. 
 
 
ANALYSIS:   (a) Since the two plates are of the same thickness and have the same properties, both 
plates will reach a steady-state temperature that is the average of T1 and T2. In terms of the 
dimensionless temperature, T*(Fo) ≡ (T – T1)/(T2 – T1), this implies that *

ss,1T = *
ss,2T = 0.5.  < 

 
Accounting for the symmetry about x = 0, the dimensionless interface temperature will be *

intT = 0.5 at 

any time.           < 
 
(b) Taking advantage of the geometrical symmetry about x = 0, we may simplify the problem by 
analyzing just one of the plates, accounting for one adiabatic surface and a second surface being held 
at a constant temperature. For the constant temperature boundary condition, Bi = hL/k → ∞ and from 
Table 5.1 ζ1 = π/2, C1 = 1.2733. Equations 5.44 and 5.49 may be combined to yield 
 

    21
1 1

1

sin1 exp( )
o

Q C Fo
Q

ζ ζ
ζ

= − −      (1) 

 
The spatially-averaged dimensionless temperature for one plate is 
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PROBLEM 5.56 (Cont.) 
 
 

int

int

1 ( , )*
i

T x t T dV
V T T

θ −
=

−∫  

 
where Tint is the interface temperature. From Eq. 5.46b, *θ = 1 – Q/Qo.     (2) 
 
 

 
 

From Eq. (1),  
 

  ( ) 2
1 1 1

( / ) * 2 sin exp( )od Q Q q C Fo
dFo

ζ ζ= = −  

 
and from Eq. (2) 
 

  21 1
1

1

sin* exp( )C Foζθ ζ
ζ

= −  

 

Therefore, for one plate, *
eff ,1 1

( / ) * 2d Q QoU
dFo

θ ζ π= = =  

 
The dimensionless temperature difference for the two-plate system is * *

2 1 2 *T T θ− = . 

Hence, for the two-plane system, U*eff = U*eff, 2 /2 = U*eff,1/2 = π/2.    < 
 

 
COMMENTS: (1) For this case, the heat transfer rate between the two plates is proportional to the 
difference in the average temperatures of the plates. If Fo < 0.2, it may be shown that U*eff is initially 
infinite and decreases with time. This behavior becomes evident if one considers the situation 
immediately after the plates make contact when the heat transfer between the plates is very large, but 
the average plate temperatures have not been affected significantly by the heat transfer in the vicinity 
of the interface. (2) A proportionality between the dimensionless heat transfer rate and the difference 
in the average dimensionless plate temperatures also exists at large Fo, even if the plates are not 
identical. 



PROBLEM 5.57

KNOWN: Initial temperature, thickness and thermal diffusivity of glass plate. Prescribed
surface temperature.

FIND: (a) Time to achieve 50% reduction in midplane temperature, (b) Maximum
temperature gradient at that time.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties.

ANALYSIS: Prescribed surface temperature is analogous to h   and T = Ts. Hence, Bi

= . Assume validity of one-term approximation to series solution for T (x,t).

(a) At the midplane,

 2o s
o 1 1

i s

T T
0.50 C exp Fo

T T
  

   


1 1 1tan Bi / 2.      

Hence

 
1

1
1 1

4sin 4
C 1.273

2 sin 2



  
  



 o 1

2
1

ln / C
Fo 0.379







  

 22

7 2

0.379 0.01 mFoL
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6 10 m / s 
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
<

(b) With  2
1 11C exp Fo cos x    

     i s i s 2
1 1 11

T T T TT
C exp Fo sin x

x L Lx

 
  

 






 
   

max
4

x 1

300 C
T/ x T/ x 0.5 2.36 10 C/m.

0.01 m 2


    

     


 <

COMMENTS: Validity of one-term approximation is confirmed by Fo > 0.2.



PROBLEM 5.58 
 
KNOWN:  Thickness and properties of rubber tire.  Convection heating conditions.  Initial and final 
midplane temperature. 
 
FIND:  (a) Time to reach final midplane temperature.  (b) Effect of accelerated heating. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) One-dimensional conduction in a plane wall, (2) Constant properties, (3) 
Negligible radiation. 
 
ANALYSIS:  (a) With Bi = hL/k = 200 W/m2⋅K(0.01 m)/0.14 W/m⋅K = 14.3, the lumped capacitance 
method is clearly inappropriate.  Assuming Fo > 0.2, Eq. (5.44) may be used with C1 = 1.265 and ζ1 ≈ 
1.458 rad from Table 5.1 to obtain 
 

 ( ) ( )* 2o
o 1 1

i

T T C exp Fo 1.265exp 2.126Fo
T T

θ ζ∞

∞

−
= = − = −

−
 

 
With ( ) ( )*

o o iT T T Tθ ∞ ∞= − −  = (-50)/(-175) = 0.286,  ( ) 2
fFo ln 0.286 1.265 2.126 0.70 t Lα= − = =  

 

 
( )2

f 8 2
0.7 0.01m

t 1100s
6.35 10 m s−

= =
×

 < 

 
(b) The desired temperature histories were generated using the IHT Transient Conduction Model for a 
Plane Wall, with h = 5 × 104 W/m2⋅K used to approximate imposition of a surface temperature of 200°C. 
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The fact that imposition of a constant surface temperature (h → ∞) does not significantly accelerate the 
heating process should not be surprising.  For h = 200 W/m2⋅K, the Biot number is already quite large (Bi 
= 14.3), and limits to the heating rate are principally due to conduction in the rubber and not to 
convection at the surface.  Any increase in h only serves to reduce what is already a small component of 
the total thermal resistance. 
 
COMMENTS:  The heating rate could be accelerated by increasing the steam temperature, but an upper 
limit would be associated with avoiding thermal damage to the rubber. 



PROBLEM 5.59

KNOWN: Thickness, initial temperature and properties of plastic coating. Safe-to-touch
temperature. Convection coefficient and air temperature.

FIND: Time for surface to reach safe-to-touch temperature. Corresponding temperature at
plastic/wood interface.

SCHEMATIC:

L = 0.002 m

x

Wood

h = 200 W/m -K2
T Co= 25ooAir

T Ci
o= 200

Plastic

= 1.20x10 /s-7 2m
k = 0.250 W/m-K

ASSUMPTIONS: (1) One-dimensional conduction in coating, (2) Negligible radiation, (3) Constant
properties, (4) Negligible heat of reaction, (5) Negligible heat transfer across plastic/wood interface.

ANALYSIS: With Bi = hL/k = 200 W/m
2
K  0.002m/0.25 W/mK = 1.6 > 0.1, the lumped

capacitance method may not be used. Applying the approximate solution of Eq. 5.43a, with C1 =

1.155 and 1 = 0.990 from Table 5.1,

 

 
       2s

s 1 1 1
i

42 25 CT T
0.0971 C exp Fo cos 1.155exp 0.980 Fo cos 0.99

T T 200 25 C
x  

 



 
      

  

Hence, for x 1, 

 
 2

0.0971
Fo ln / 0.99 1.914

1.155cos 0.99

 
    

 

 22

7 2

1.914 0.002mFo L
t 63.8s

1.20 10 m / s 
  


<

From Eq. 5.44, the corresponding interface temperature is

     2
o i 1T T T T exp Fo 25 C 175 Cexp 0.98 1.914 51.8 C             <

COMMENTS: By neglecting conduction into the wood and radiation from the surface, the cooling
time is overpredicted and is therefore a conservative estimate. However, if energy generation due to
solidification of polymer were significant, the cooling time would be longer.



PROBLEM 5.60 
 
KNOWN:  Long rod with prescribed diameter and properties, initially at a uniform temperature, is heated 
in a forced convection furnace maintained at 750 K with a convection coefficient of h = 1000 W/m2⋅K. 
 
FIND:  (a) The corresponding center temperature of the rod, T(0, to), when the surface temperature T(ro, 
to) is measured as 550 K, (b) Effect of h on centerline temperature history. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) One-dimensional, radial conduction in rod, (2) Constant properties, (3) Rod, when 
initially placed in furnace, had a uniform (but unknown) temperature, (4) Fo ≥ 0.2. 
 
ANALYSIS:  (a) Since the rod was initially at a uniform temperature and Fo ≥ 0.2, the approximate 
solution for the infinite cylinder is appropriate.  From Eq. 5.52b, 
 

 ( ) ( ) ( )* * * *
o 0 1r ,Fo Fo J rθ θ ζ=  (1) 

 
where, for r* = 1, the dimensionless temperatures are, from Eq. 5.34, 
 

 ( ) ( )o o*
i

T r , t T
1,Fo

T T
θ ∞

∞

−
=

−
                         ( ) ( )o*

o
i

T 0, t T
Fo

T T
θ ∞

∞

−
=

−
 (2,3) 

Combining Eqs. (2) and (3) with Eq. (1) and rearranging, 
 

 
( ) ( ) ( )o o o

0 1
i i

T r , t T T 0, t T
J 1

T T T T
ζ∞ ∞

∞ ∞

− −
= ⋅

− −
 

 ( ) ( ) ( )o o o
0 1

1T 0, t T T r , t T
J ζ∞ ∞⎡ ⎤= + −⎣ ⎦  (4) 

 
The eigenvalue, ζ1 = 1.0185 rad, follows from Table 5.1 for the Biot number 
 

 
( )2

o 1000 W m K 0.060m 2hrBi 0.60
k 50 W m K

⋅
= = =

⋅
. 

 
From Table B-4, with ζ1 = 1.0185 rad, J0(1.0185) = 0.7568.  Hence, from Eq. (4) 
 

 ( ) [ ]o
1T 0, t 750K 550 750 K 486K

0.7568
= + − =  < 

 
(b) Using the IHT Transient Conduction Model for a Cylinder, the following temperature histories were 
generated. 

Continued... 



PROBLEM 5.60 (Cont.) 
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The times required to reach a centerline temperature of 500 K are 367, 85 and 51s, respectively, for h = 
100, 500 and 1000 W/m2⋅K.  The corresponding values of the Biot number are 0.06, 0.30 and 0.60.  
Hence, even for h = 1000 W/m2⋅K, the convection resistance is not negligible relative to the conduction 
resistance and significant reductions in the heating time could still be effected by increasing h to values 
considerably in excess of 1000 W/m2⋅K. 
 
COMMENTS:   For Part (a), recognize why it is not necessary to know Ti or the time to.  We require that 
Fo ≥ 0.2, which for this sphere corresponds to t ≥ 14s.  For this situation, the time dependence of the 
surface and center are the same. 



PROBLEM 5.61 
 
KNOWN:  A long cylinder, initially at a uniform temperature, is suddenly quenched in a large oil bath. 
 
FIND:  (a) Time required for the surface to reach 500 K, (b) Effect of convection coefficient on surface 
temperature history. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) One-dimensional radial conduction, (2) Constant properties, (3) Fo > 0.2. 
 
ANALYSIS:  (a) Check first whether lumped capacitance method is applicable.  For h = 50 W/m2⋅K, 
 

 
( ) ( )2

oc
c

h r 2 50 W m K 0.015m / 2hLBi 0.221
k k 1.7 W m K

⋅
= = = =

⋅
. 

 
Since Bic > 0.1, method is not suited.  Using the approximate series solution for the infinite cylinder, 
 

 ( ) ( ) ( )* * 2 *
1 0 11r ,Fo C exp Fo J rθ ζ ζ= − ×  (1) 

 
Solving for Fo and setting r* = 1, find 
 

 
( )
*

2 1 0 11

1Fo ln
C J

θ
ζζ

⎡ ⎤
= − ⎢ ⎥

⎢ ⎥⎣ ⎦
 

where ( ) ( ) ( )
( )

o o*
i

T r , t T 500 350 K
1,Fo 0.231

T T 1000 350 K
θ ∞

∞

− −
= = = =

− −
. 

 
From Table 5.1, with Bi = 0.441, find ζ1 = 0.8882 rad and C1 = 1.1019.  From Table B.4, find J0(ζ1) = 
0.8121.  Substituting numerical values into Eq. (2), 
 

 
( )

[ ]2
1Fo ln 0.231 1.1019 0.8121 1.72

0.8882
= − × = . 

 
From the definition of the Fourier number, Fo = 2

ot rα , and α = k/ρc, 
 

 
2

2o
o

r ct Fo Fo r
k
ρ

α
= = ⋅  

 ( )2 3t 1.72 0.015m 400kg m 1600J kg K 1.7 W m K 145s= × × ⋅ ⋅ = . < 
 
(b) Using the IHT Transient Conduction Model for a Cylinder, the following surface temperature histories 
were obtained. 

Continued... 
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Increasing the convection coefficient by a factor of 5 has a significant effect on the surface temperature, 
greatly accelerating its approach to the oil temperature.  However, even with h = 250 W/m2⋅K, Bi = 1.1 
and the convection resistance remains significant.  Hence, in the interest of accelerated cooling, additional 
benefit could be achieved by further increasing the value of h. 
 
COMMENTS:  For Part (a), note that, since Fo = 1.72 > 0.2, the approximate series solution is 
appropriate. 



PROBLEM 5.62

KNOWN: One-dimensional convective heating of an L/ro = 20 cylinder with Bi = 1 for a
dimensionless time of Fo1.

FIND: (a) Sketch of the dimensionless centerline and surface temperatures of the cylinder as a
function of dimensionless time over the range 0 < Fo1 < Fo < . Relative value of Fo2 needed to
achieve a steady-state centerline temperature equal to the centerline temperature at Fo1. (b) Analytical
expression for, and value of Fo = Fo2 - Fo1 for Bi = 1, Fo1 > 0.2, Fo2 > 0.2. (c) Value of Fo for Bi
= 0.01, 0.1, 10, 100 and .

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) Approximate, one-
term solutions are valid.

ANALYSIS: (a) A sketch of the dimensionless centerline and surface temperatures is shown below.
Note that, at Fo1, the surface of the cylinder will be warm (smaller ) relative to the centerline since
temperature gradients within the cylinder are significant (Bi = 1). At the curtailment of heating (Fo1),
the surface temperature cools rapidly while warm temperatures continue to propagate toward the
centerline, slowly heating the centerline until a steady-state, isothermal condition is eventually
reached.

<

Based on the sketch above, one could achieve a steady-state centerline temperature equal to the
centerline temperature at Fo1 by reducing the duration of convective heating to Fo2, as shown in the
sketch below.

Continued…
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PROBLEM 5.62 (Cont.)

Hence, Fo2 < Fo1. <

(b) Using the approximate solutions of Sections 5.6.2 and 5.6.3, and noting that the steady-state
temperature of the cylinder is uniform and related to the energy transferred to the cylinder,

*
1 2( ) 1 ( )o

o

Q
Fo Fo

Q
  

or,

*
1 1 11 ( ) ( )o

o

Q
Fo Fo Fo

Q
    (1)

Substituting Eqs. 5.52c and 5.54 into Eq. (1) yields

2
2 1 1 1

1 1 1 1 1
1

2 exp( ( ))
1 exp( ) 1 ( )

C Fo Fo
C Fo J


 



  
   

which may be simplified to

1
2

1 11

1
ln

2 ( )
Fo

J





 
     

 
<

From Table 5.1, 1 = 1.2558 rad at Bi = 1, and from Table B.4, J1(1) = 0.512. Hence,

2 2
1

1 1.2558 1 1.2558
ln ln 0.1294

2 (1.2558) 2 0.5121.2558 1.2558
Fo

J

   
         

  
<

(c) The expression for Fo may be evaluated for a range of Bi, resulting in the following.
Continued…
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PROBLEM 5.62 (Cont.)

Bi 1 Fo <

0.01 0.1412 -0.1250
0.1 0.4417 -0.1255
1 1.2558 -0.1294
10 2.1795 -0.1406
100 2.3809 -0.1447
 2.4050 -0.1452

COMMENTS: (1) Note that the dimensionless temperature,  * 2
1 1expo C Fo   , is defined in a

manner such that for cylinder heating, increases in actual temperature correspond to decreases in the
dimensionless temperature. (2) The dimensionless time lag, Fo, is weakly-dependent on the value of
the Biot number and is independent of the heating time. Hence, a general rule-of-thumb is that a time
lag of Fo  - 0.13 should be specified in order to achieve an ultimate centerline temperature equal to
that predicted at Fo1 for convective heating or cooling. (3) For applications such as materials or food
processing, where a certain minimum centerline temperature is desired, assuming that Fo1 (as
determined by Eq. 5.52c is the appropriate processing or cooking time can result in significant over-
heating of the material or food, especially at small Fourier numbers. (4) Significant energy and time
savings can be realized by reducing the processing or cooking time from Fo1 to Fo2.



PROBLEM 5.63 
 
KNOWN:  Long pyroceram rod, initially at a uniform temperature of 900 K, and clad with a thin metallic 
tube giving rise to a thermal contact resistance, is suddenly cooled by convection. 
 
FIND:  (a) Time required for rod centerline to reach 600 K, (b) Effect of convection coefficient on 
cooling rate. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) One-dimensional radial conduction, (2) Thermal resistance and capacitance of 
metal tube are negligible, (3) Constant properties, (4) Fo ≥ 0.2. 
 
PROPERTIES:  Table A-2, Pyroceram ( T  = (600 + 900)K/2 = 750 K):  ρ = 2600 kg/m3, c = 1100 
J/kg⋅K, k = 3.13 W/m⋅K. 
 
ANALYSIS:  (a) The thermal contact and convection resistances can be combined to give an overall heat 
transfer coefficient.  Note that t,cR′  [m⋅K/W] is expressed per unit length for the outer surface.  Hence, 

for h = 100 W/m2⋅K, 

 
( ) ( )

2
2t,c

1 1U 57.0 W m K
1 h R D 1 100 W m K 0.12 m K W 0.020 mπ π

= = = ⋅
′+ ⋅ + ⋅ ×

. 

 
Using the approximate series solution, Eq. 5.52c, the Fourier number can be expressed as 

 ( ) ( )2 *
o 11Fo 1 ln Cζ θ= − . 

 
From Table 5.1, find ζ1 = 0.5884 rad and C1 = 1.0441 for 

 ( )2
oBi Ur k 57.0 W m K 0.020 m 2 3.13W m K 0.182= = ⋅ ⋅ = . 

 
The dimensionless temperature is 

 ( ) ( ) ( )
( )

*
o

i

T 0, t T 600 300 K
0,Fo 0.5.

T T 900 300 K
θ ∞

∞

− −
= = =

− −
 

Substituting numerical values to find Fo and then the time t, 

 
( )2

1 0.5Fo ln 2.127
1.04410.5884

−
= =  

 

 
2

2o
o

r ct Fo Fo r
k
ρ

α
= = ⋅  

 ( )2 3t 2.127 0.020m 2 2600kg m 1100J kg K 3.13W m K 194s= × ⋅ ⋅ = . < 
 
(b)  The following temperature histories were generated using the IHT Transient conduction Model for a 
Cylinder. 
 

Continued... 
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While enhanced cooling is achieved by increasing h from 100 to 500 W/m2⋅K, there is little benefit 
associated with increasing h from 500 to 1000 W/m2⋅K.  The reason is that for h much above 500 
W/m2⋅K, the contact resistance becomes the dominant contribution to the total resistance between the 
fluid and the rod, rendering the effect of further reductions in the convection resistance negligible.  Note 
that, for h = 100, 500 and 1000 W/m2⋅K, the corresponding values of U are 57.0, 104.8 and 117.1 
W/m2⋅K, respectively. 
 
COMMENTS:  For Part (a), note that, since Fo = 2.127 > 0.2, Assumption (4) is satisfied. 
 



PROBLEM 5.64     
KNOWN:  Sapphire rod, initially at a uniform temperature of 800 K is suddenly cooled by a 
convection process; after 35 s, the rod is wrapped in insulation.  
FIND:  Temperature rod reaches after a long time following the insulation wrap.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) One-dimensional radial conduction, (2) Constant properties, (3) No heat losses 
from the rod when insulation is applied.  
PROPERTIES:  Table A-2, Aluminum oxide, sapphire (550K):  ρ = 3970 kg/m

3, c = 1068 J/kg⋅K, k 

= 22.3 W/m⋅K, α = 5.259×10
-6

 m
2
/s. 

 
ANALYSIS:  First calculate the Biot number with Lc = ro/2, 

 
( ) ( )2

oc h r / 2 1600 W/m K 0.020 m/2h LBi 0.72.
k k 22.3 W/m K

⋅
= = = =

⋅
 

Since Bi > 0.1, the rod cannot be approximated as a lumped capacitance system.  The temperature 
distribution during the cooling process, 0 ≤ t ≤ 35 s, and for the time following the application of 
insulation, t > 35 s, will appear as  

  
Eventually (t → ∞), the temperature of the rod will be uniform at ( )T .∞   
 
We begin by determining the energy transferred from the rod at t = 35 s.  We have 

 
2

ohr 1600 W/m K  0.020 mBi 1.43
k 22.3 W/m K

⋅ ×
= = =

⋅
  

 
 2 -6 2 2

oFo t / r 5.259 10  m /s 35 s /(0.02 m) 0.46= α = × × =  
 
Since Fo > 0.2, we can use the one-term approximation.  From Table 5.1, ζ1 = 1.4036 rad, C1 = 
1.2636.  Then from Equation 5.49c, 
 

2 2
o 1 1C exp( Fo) 1.2636exp( 1.4036 0.46) 0.5105θ ζ∗ = − = − × =  

 
and from Equation 5.54 
 

Continued… 
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o
1 1

o 1

Q 2 2 0.51051 J ( ) 1 0.5425 0.605
Q 1.4036

θ ζ
ζ

∗ ×
= − = − =  

 
where J1(ζ1) was found from App. B.4.  Since the rod is well insulated after t = 35 s, the energy 
transferred from the rod remains unchanged.  To find ( )T ,∞  write the conservation of energy 

requirement for the rod on a time interval basis, in out final initialE E E E E .− = Δ ≡ −   Using the 

nomenclature of Section 5.5.3 and basing energy relative to T∞, the energy balance becomes 
 ( )( ) oQ  cV T T Qρ ∞− = ∞ − −  

where Qo = ρcV(Ti - T∞).  Dividing through by Qo and solving for ( )T ,∞  find 

 ( ) ( )( )i oT T T T 1 Q/Q .∞ ∞∞ = + − −  
Hence, 
 ( ) ( ) ( )T 300K 800 300 K 1-0.408 596 K.∞ = + − =      < 
 



PROBLEM 5.65

KNOWN: Dimensions and initial temperature of stone mix concrete beam. Ambient temperature and
convection heat transfer coefficient. Properties of aggregate beam.

FIND: Centerline temperature after t = 6 hours for each beam.

SCHEMATIC:
T∞ = 500C
h = 10 W/m2∙K

Ti = 20C D = 0.5 m

Stone mix concrete
or
Aggregate concrete

ASSUMPTIONS: (1) Constant properties. (2) Negligible radiation. (3) Beam is an infinite cylinder.

PROPERTIES: Table A.3: Stone mix concrete; k = 1.4 W/mK, = 2300 kg/m3, cp = 880 J/kgK.
Problem statement: Aggregate concrete: k = 0.789 W/m∙K,  = 1495 kg/m3, cp = 880 J/kg∙K. 

ANALYSIS: (a) To determine whether spatial effects are important, the Biot number is calculated in
the conservative fashion

210 W/m K 0.5 m

2 2 1.4 W/m K
ohr hD

Bi
k k

 
   

 
1.78

The dimensionless time is

2 2 3 2

4 4 1.4 W/m K 6h 60min/h 60s / min

2300 kg/m 880 J/kg K (0.5 m)o

t kt
Fo

r cD





    
  

  
= 0.24

Since Bi > 0.1, spatial effects are important. Because Fo > 0.2, the approximate solution of Section 5.6
is valid. From Table 5.1 1 = 1.52 and C1 = 1.31. Therefore,

   
   

2
1 1

2

exp

20 C 500 C 1.31 exp 1.52 0.24 500 C

iT T T C Fo T    

         

= 139C <

(b) The preceding calculations may be repeated for the aggregate concrete, yielding

Bi = 3.17, Fo = 0.21, 1 = 1.81, C1 = 1.43, T = 155C <

COMMENTS: (1) Because both its thermal conductivity and density are small relative to the stone
mix beam, the thermal diffusivity of the aggregate beam is approximately the same as that of the stone
mix beam. Hence the Fourier numbers associated with the two materials are approximately equal. (2)
Aggregate concrete is often preferred over a more dense concrete for fire protection purposes.



PROBLEM 5.66

KNOWN: Long plastic rod of diameter D heated uniformly in an oven to Ti and then allowed to
convectively cool in ambient air (T, h) for a 3 minute period. Minimum temperature of rod should
not be less than 200C and the maximum-minimum temperature within the rod should not exceed
10C.

FIND: Initial uniform temperature Ti to which rod should be heated. Whether the 10C internal
temperature difference is exceeded.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional radial conduction, (2) Constant properties, (3)
Uniform and constant convection coefficients.

PROPERTIES: Plastic rod (given): k = 0.3 W/mK, cp = 1040 kJ/m3K.

ANALYSIS: For the worst case condition, the rod cools for 3 minutes and its outer surface is at
least 200C in order that the subsequent pressing operation will be satisfactory. Hence,

 

2
o

2 2 3 3 2po o

hr 8 W/m K 0.015 m
Bi 0.40

k 0.3 W/m K
t k t 0.3 W/m K 3 60s

Fo 0.2308.
cr r 1040 10 J/m K 0.015 m





 
  


 

     
 

Using Eq. 5.52a and 1 0.8516  rad and C1 = 1.0932 from Table 5.1,

     o 2
1 0 1 o 1

i

T r , t T
C J r exp Fo .

T T
   




  



With or 1,  from Table B.4,    0 1 oJ 1 J 0.8516 0.8263,    giving

 2
i

i

200 25
1.0932 0.8263exp 0.8516 0.2308 T 254 C.

T 25


    


 <

At this time (3 minutes) what is the difference between the center and surface temperatures of the
rod? From Eq. 5.52b,

 
     o

0 1 o
o

T r , t T 200 25
J r 0.8263

T 0,t T T 0,t 25







 



 
   

 

which gives T(0,t) = 237C. Hence,

     oT T 0,180s T r ,180s 237 200 C 37 C.     
  <

Hence, the desired max-min temperature difference sought (10C) is not achieved.

COMMENTS: T could be reduced by decreasing the cooling rate; however, h can not be made
much smaller. Two solutions are (a) increase ambient air temperature and (b) non-uniformly heat rod
in oven by controlling its residence time.



PROBLEM 5.67

KNOWN: Diameter and initial temperature of roller bearings. Temperature of oil bath and
convection coefficient. Final centerline temperature. Number of bearings processed per hour.

FIND: Time required to reach centerline temperature. Cooling load.

SCHEMATIC:

L = 1 m

Stainless steel

N = 10

D = 0.10 m

T Ci
o= 500

T(0,t ) = 50 Cf
o Oil bath

h = 500 W/m -K2
T Co= 30oo

ASSUMPTIONS: (1) One-dimensional, radial conduction in rod, (2) Constant properties.

PROPERTIES: Table A.1, St. St. 304  T 548K : =7900 kg/m
3
, k = 19.0 W/mK, cp = 546

J/kgK,  = 4.40  10
-6

m
2
/s.

ANALYSIS: With Bi = h (ro/2)/k = 0.658, the lumped capacitance method can not be used. From
the one-term approximation of Eq. 5.52c for the centerline temperature,

   22o
o 1 1

i

T T 50 30
0.0426 C exp Fo 1.1382exp 0.9287 Fo

T T 500 30
  



         
   

where, for Bi = hro/k = 1.316, C1 = 1.2486 and 1 = 1.3643 from Table 5.1.

 Fo n 0.0341 /1.86 1.82  

 22 6
f ot Fo r / 1.82 0.05m / 4.40 10 1031s 17 min     <

From Eqs. 5.47 and 5.54, the energy extracted from a single rod is

   o
i 1 1

1

2
Q cV T T 1 J


 







 
   

  

With J1 (1.3643) = 0.535 from Table B.4,

 23 70.0852 0.535
Q 7900kg / m 546 J / kg K 0.05m 1m 470 K 1 1.54 10 J

1.3643

            


The nominal cooling load is

7
5

f

N Q 10 1.54 10 J
q 1.49 10 W 149 kW

t 1031s

 
     <

COMMENTS: For a centerline temperature of 50C, Eq. 5.52b yields a surface temperature of

     o i o o 1T r , t T T T J 30 C 470 C 0.0426 0.586 41.7 C
            



PROBLEM 5.68

KNOWN: Long rods of 40 mm- and 80-mm diameter at a uniform temperature of 400C in a
curing oven, are removed and cooled by forced convection with air at 25C. The 40-mm
diameter rod takes 280 s to reach a safe-to-handle temperature of 60C.

FIND: Time it takes for a 80-mm diameter rod to cool to the same safe-to-handle temperature.
Comment on the result? Did you anticipate this outcome?

SCHEMATIC:

40-mm diameter rod ( , c, k) 80-mm diameter rod ( , c, k)

T(r ,t ) Co
o o = 60

t = 280 so

T(r ,t ) Co
o o = 60

t = ?o

T Co= 25oo

Air

ASSUMPTIONS: (1) One-dimensional radial (cylindrical) conduction in the rods, (2) Constant
properties, and (3) Convection coefficient same value for both rods.

PROPERTIES: Rod (given):  = 2500 kg/m
3
, c = 900 J/kgK, k = 15 W/mK.

ANALYSIS: Not knowing the convection coefficient, the Biot number cannot be calculated to
determine whether the rods behave as spacewise isothermal objects. Using the relations from
Section 5.6, Radial Systems with Convection, for the infinite cylinder, Eq. 5.52, evaluate

2
oFo t / r , and knowing T(ro, to), a trial-and-error solution is required to find Bi = h ro/k and

hence, h. Using the IHT Transient Conduction model for the Cylinder, the following results are

readily calculated for the 40-mm rod. With to = 280 s,

2Fo 4.667 Bi 0.264 h 197.7 W / m K   

For the 80-mm rod, with the foregoing value for h, with T(ro, to) = 60C, find

oBi 0.528 Fo 2.413 t 579 s   <

COMMENTS: (1) The time-to-cool, to, for the 80-mm rod is slightly more than twice that for
the 40-mm rod. Did you anticipate this result? Did you believe the times would be proportional
to the diameter squared?

(2) The simplest approach to explaining the relationship between to and the diameter follows

from the lumped capacitance analysis, Eq. 5.13, where for the same /i, we expect BiFoo to be a
constant. That is,

o o
2
o

h r t
C

k r


 

yielding to ~ ro (not 2
or ).



PROBLEM 5.69

KNOWN: Initial temperature, density, specific heat and diameter of cylindrical rod. Convection
coefficient and temperature of air flow. Time for centerline to reach a prescribed temperature.
Dependence of convection coefficient on flow velocity.

FIND: (a) Thermal conductivity of material, (b) Effect of velocity and centerline temperature and
temperature histories for selected velocities.

SCHEMATIC:

D = 0.04 m

h = CV0.618
T Co= 25ooAir

T Ci
o= 100

T(0,1136 s) = 40 Co

Specimen
= 1200 kg/m3

c = 1250 J/kg-K

ASSUMPTIONS: (1) Lumped capacitance analysis can not be used but one-term approximation for
an infinite cylinder is appropriate, (2) One-dimensional conduction in r, (3) Constant properties, (4)
Negligible radiation, (5) Negligible effect of thermocouple hole on conduction.

ANALYSIS: (a) With o
 =[To(0,1136s) - T]/(Ti - T) = (40 – 25)/(100 – 25) = 0.20, Eq. 5.52c

yields

 

 
  2

1 12 2 23
o p o

k 1136st k t
Fo ln 0.2 / C /

r c r 1200 kg / m 1250 J / kg K 0.02 m





    

  
(1)

Because C1 and 1 depend on Bi = hro/k, a trial-and-error procedure must be used. For example, a

value of k may be assumed and used to calculate Bi, which may then be used to obtain C1 and 1

from Table 5.1. Substituting C1 and 1 into Eq. (1), k may be computed and compared with the

assumed value. Iteration continues until satisfactory convergence is obtained, with

k 0.30 W / m K  <

and, hence, Bi = 3.67, C1 = 1.45, 1 = 1.87 and Fo = 0.568. For the above value of k,

  2
1 1ln 0.2 / C / 0.567,  which equals the Fourier number, as prescribed by Eq. (1).

(b) With h = 55 W/m
2
K for V = 6.8 m/s, h = CV

0.618
yields a value of C = 16.8 Ws

0.618
/m

2.618
K.

The desired variations of the centerline temperature with velocity (for t = 1136 s) and time (for V = 3,
10 and 20 m/s) are as follows:

Continued …..



PROBLEM 5.69 (Cont.)

With increasing V from 3 to 20 m/s, h increases from 33 to 107 W/m
2
K, and the enhanced cooling

reduces the centerline temperature at the prescribed time. The accelerated cooling associated with
increasing V is also revealed by the temperature histories, and the time required to achieve thermal
equilibrium between the air and the cylinder decreases with increasing V.

COMMENTS: (1) For the smallest value of h = 33 W/m
2
K, Bi  h (ro/2)/k = 1.1 >> 0.1, and use of

the lumped capacitance method is clearly inappropriate.

(2) The IHT Transient Conduction Model for a cylinder was used to perform the calculations of Part
(b). Because the model is based on the exact solution, Eq. 5.50a, it is accurate for values of Fo < 0.2,
as well as Fo > 0.2. Although in principle, the model may be used to calculate the thermal
conductivity for the conditions of Part (a), convergence is elusive and may only be achieved if the
initial guesses are close to the correct results.
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PROBLEM 5.70

KNOWN: Diameter, initial temperature and properties of stainless steel rod. Temperature and
convection coefficient of coolant.

FIND: Temperature distributions for prescribed convection coefficients and times.

SCHEMATIC:

D = 30 mm

h = 100, 1000, 5000 W/m -K2
T Co= 25ooFluid

Stainless steel

T Ci
o= 325

= 8000 kg/m3

c = 475 J/kg-Kp
k = 15 W/m-K

ASSUMPTIONS: (1) One-dimensional radial conduction, (2) Constant properties.

ANALYSIS: The IHT model is based on the exact solution to the heat equation, Eq. 5.50. The
results are plotted as follows

For h = 100 W/m
2
K, Bi = hro/k = 0.1, and as

expected, the temperature distribution is nearly
uniform throughout the rod. For h = 1000

W/m
2
K (Bi = 1), temperature variations

within the rod are not negligible. In this case
the centerline-to-surface temperature
difference is comparable to the surface-to-fluid

temperature difference. For h = 5000 W/m
2
K

(Bi = 5), temperature variations within the rod

are large and [T (0,t) – T (ro,t)] is substantially

larger than [T (ro,t) - T].

COMMENTS: With increasing Bi, conduction within the rod, and not convection from the surface,
becomes the limiting process for heat loss.
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PROBLEM 5.71

KNOWN: A ball bearing is suddenly immersed in a molten salt bath; heat treatment to harden occurs
at locations with T > 1000 K.

FIND: Time required to harden outer layer of 1mm.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional radial conduction, (2) Constant properties, (3) Fo  0.2.

ANALYSIS: Since any location within the ball whose temperature exceeds 1000 K will be hardened,
the problem is to find the time when the location r = 9 mm reaches 1000 K. Then a 1 mm outer layer
will be hardened. Begin by finding the Biot number.

 2
o 5000 W/m K 0.020 m/2h r

Bi 1.00.
k 50 W/m K


  



Using the one-term approximate solution for a sphere, find

 1 12
11

1 1
Fo ln / C sin r .

r
 

 

 


 
   

  

From Table 5.1 with Bi = 1.00, for the sphere find 1 15708 . rad and C1 = 1.2732. With r*

= r/ro = (9 mm/10 mm) = 0.9, substitute numerical values.

 

 
 

 
2

1000 1300 K1 1
Fo ln /1.2732 sin 1.5708 0.9 rad 0.441.

300 1300 K 1.5708 0.91.5708

 
   

   

From the definition of the Fourier number with  = k/c,

22
2o
o 3

r c 0.020 m kg J
t Fo Fo r 0.441 7800 500 / 50 W/m K 3.4 s.

k 2 kg Km





 
          

<

COMMENTS: (1) Note the very short time required to harden the ball. At this time it can be easily
shown the center temperature is T(0, 3.4 s) = 871 K.



PROBLEM 5.72

KNOWN: Steel ball bearings at an initial, uniform temperature are to be cooled by convection while
passing through a refrigerated chamber; bearings are to be cooled to a temperature such that 70% of
the thermal energy is removed.

FIND: Residence time of the balls in the 5 m-long chamber and recommended drive velocity for the
conveyor.

SCHEMATIC:

ASSUMPTIONS: (1) Negligible conduction between ball and conveyor surface, (2) Negligible
radiation exchange with surroundings, (3) Constant properties, (4) Uniform convection coefficient
over ball’s surface.

ANALYSIS: The Biot number for the lumped capacitance analysis is

   2
oc h r / 3 1000 W/m K 0.1m/3hL

Bi 0.67.
k k 50 W/m K


   



Since Bi > 0.1, lumped capacitance analysis is not appropriate. We assume that the one-term
approximation to the exact solution is valid and check later. The Biot number for the exact solution is

2
ohr 1000 W/m K 0.1m

Bi 2.0,
k 50 W/m K

 
  


From Table 5.1, 1 = 2.0288, C1 = 1.4793. From Equation 5.55, with Q/Qo = 0.70, we can solve for

o
 :

 
 

 

3 3
1

o
o 1 1 1

Q 2.0288
1 1 0.7 0.465

Q 3 sin( ) cos( ) 3 sin(2.0288) 2.0288cos(2.0288)




  
  
     

  

From Eq. 5.53c, we can solve for Fo:

   o 12 2
1

1 1
Fo ln / C ln 0.465 /1.4793 0.281

2.0288




    

Note that the one-term approximation is indeed valid, since Fo > 0.2. Then

 22
o

5 2

0.1 mr
t Fo 0.281 140 s

2 10 m / s 
  



The velocity of the conveyor is expressed in terms of the length L and residence time t. Hence

L 5 m
V 0.036 m/s 36 mm/s.

t 140 s
    <

COMMENTS: Referring to Equation 5.10, note that for a sphere, the characteristic length is

3 2 o
c s o o

r4
L V/A r / 4 r .

3 3
   

However, when using the exact solution or one-term approximation, note that Bi  h ro/k.



PROBLEM 5.73

KNOWN: Glass sphere diameter and bakelite shell thickness. Initial solid temperature, fluid
temperature, convection heat transfer coefficient, and heating time.

FIND: Center temperature of glass sphere after specified heating time.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) Negligible contact
resistance.

PROPERTIES: Table A.3, soda lime glass (T = 25C),  = 2500 kg/m3, k = 1.4 W/mK, cp = 750
J/kgK. Table A.3, bakelite (T = 25C),  = 1300 kg/m3, k = 1.4 W/mK, cp = 1465 J/kgK.

ANALYSIS: The thermal diffusivities of the bakelite and glass are

9 2
3

1.4 W/m K
735 10 m /s

1300 kg/m ×1465 J/kg K
b

p

k

c





   


9 2
3

1.4 W/m K
747 10 m /s

2500 kg/m ×750 J/kg K
g

p

k

c





   


Since ab  g, it is reasonable to assign a uniform thermal diffusivity of  = 740  10-9 m2/s to the
composite sphere. Since kb = kg and the thermal contact resistance between the glass and bakelite is
negligible, we may treat the composite sphere as a single sphere of diameter D = D1 + 2L = 25 mm +
20 mm = 45 mm with uniform properties. The Biot number for the single sphere is

2 3( / 6) 30W/m K (45 10 m / 6)
0.16

1.4 W/m K

h D
Bi

k

  
  



Therefore the lumped capacitance approximation is not valid. The Fourier number is

9 2

2 3 2

740 10 m /s 200s
0.291

( / 2) (45 10 m / 2)

t
Fo

D

 



 
  



Since Fo > 0.2, the single term approximation is valid. From Table 5.1 with Bi = h(D/2)/k = 30
W/m2K  (45  10-3 m/2)/1.4W/mK = 0.482, 1= 1.145, C1 = 1.139. Hence

*
1 1exp( ) 1.139exp( 1.145 0.291) 0.817o

i

T T
C Fo

T T
 




      



Continued…

D1 = 25 mm

L = 10 mm

Bakelite

Soda lime
glass

T = 10°C,
h = 30 W/m2·K

Ti = 40°C



PROBLEM 5.73 (Cont.)

Therefore, T = 0.817(40 - 10C) + 10C = 34.5C <

COMMENTS: (1) If the thermal diffusivities and thermal conductivities of the bakelite and soda
lime glass were of sufficiently different value, or the thermal contact resistance was not negligible, a
more detailed analytical or numerical solution would be required. (2) The Biot number used in
conjunction with Table 5.1 is based upon the sphere radius.



PROBLEM 5.74

KNOWN: Diameter and initial temperature of ball bearings to be quenched in an oil bath.

FIND: (a) Time required for surface to cool to 100C and the corresponding center temperature, (b)
Oil bath cooling requirements.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional radial conduction in ball bearings, (2) Constant properties.

PROPERTIES: Table A-1, St. St., AISI 304, (T  500C): k = 22.2 W/mK, cp = 579 J/kgK,  =
7900 kg/m3,  = 4.8510-6 m2/s.

ANALYSIS: (a) To determine whether use of the lumped capacitance method is suitable, first
compute

   2
oh r / 3 1000 W/m K 0.010 m/3

Bi 0.15.
k 22.2 W/m K


  



We conclude that, although the lumped capacitance method could be used as a first approximation,
the exact solution should be used in the interest of improving accuracy. We assume that the one-term
approximation is valid and check later. Hence, with

 2
o 1000 W/m K 0.01 mhr

Bi 0.450
k 22.2 W/m K


  



from Table 5.1, 1 = 1.1092, C1 = 1.1301. Then

* o

i

T(r , t) T 100 C 40 C
(r* 1,Fo) 0.0741

T T 850 C 40 C
 



   
   

   

and Equation 5.53b can be solved for o
 :

*
o 1 1r * / sin( r*) 0.0741 1.1092 1/ sin(1.1092) 0.0918        

Then Equation 5.53c can be solved for Fo:

   o 12 2
1

1 1
Fo ln / C ln 0.0918 /1.1301 2.04

1.1092




    

   22
o

6 2

0.01 m 2.04r Fo
t 42 s.

4.85 10 m / s 
  


<

Note that the one-term approximation is accurate, since Fo > 0.2.

Continued …



PROBLEM 5.74 (Cont.)

Also,

   o o iT T 0.0918 T T 0.0918 850 40 74 C         

oT 114 C  <
(b) Equation 5.55 can be used to calculate the heat loss from a single ball:

   
*
o

1 1 13 3
o 1

3Q 3 0.0918
1 sin( ) cos( ) 1 sin(1.1092) 1.1092cos(1.1092) 0.919

Q 1.1092


  




      

Hence, from Equation 5.47,

 

 

p i
33

4

Q 0.919 c V T T

Q 0.919 7900 kg/m 579 J/kg K 0.02 m 810 C
6

Q 1.43 10 J




 

     

 



is the amount of energy transferred from a single ball during the cooling process. Hence, the oil bath
cooling rate must be

4q 10 Q/3600 s

4q 4 10 W 40 kW.   <

COMMENTS: If the lumped capacitance method is used, the cooling time, obtained from Equation
5.5, would be t = 39.7 s, where the ball is assumed to be uniformly cooled to 100C. This result, and
the fact that To - T(ro) = 15C at the conclusion, suggests that use of the lumped capacitance method
would have been reasonable.



PROBLEM 5.75   
  
KNOWN:  Sphere quenching in a constant temperature bath. 
 
FIND:  (a) Plot T(0,t) and T(ro,t) as function of time, (b) Time required for surface to reach 415 K, t′ , (c) 
Heat flux when T(ro, t′ ) = 415 K, (d) Energy lost by sphere in cooling to T(ro, t′ ) = 415 K, (e) Steady-
state temperature reached after sphere is insulated at t = t′ , (f) Effect of h on center and surface 
temperature histories. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) One-dimensional radial conduction, (2) Constant properties, (3) Uniform initial 
temperature. 
 
ANALYSIS:  (a) Calculate Biot number to determine if sphere behaves as spatially isothermal object, 
 

 
( ) ( )2

oc h r 3 75W m K 0.015 m 3hLBi 0.22
k k 1.7 W m K

⋅
= = = =

⋅
. 

 
Hence, temperature gradients exist in the sphere and T(r,t) vs. t appears as shown above. 
 
(b) The exact solution may be used to find t′  when T(ro, t′ ) = 415 K. We assume that the one-term 
approximation is valid and check later.  Hence, with 

 
( )2

o 75 W/m K 0.015 mhrBi 0.662 
k 1.7 W/m K

⋅
= = =

⋅
 

 
from Table 5.1, ζ1 = 1.3188, C1 = 1.1877.  Then 
 

* o
i

T(r , t) T 415 C 320 C(r* 1,Fo) 0.1979
T T 800 C 320 C

θ ∞

∞

− ° − °
= = = =

− ° − °
 

and Equation 5.53b can be solved for oθ
∗ : 

*
o 1 1r * / sin( r*) 0.1979 1.3188 1/ sin(1.3188) 0.2695θ θ ζ ζ∗ = = × × =  

 
Then Equation 5.53c can be solved for Fo: 

( ) ( )o 12 2
1

1 1Fo ln / C ln 0.2695 /1.1877 0.853
1.3188

θ
ζ

∗= − = − =  

( )
2 3p 22o

o
cr 400kg m 1600J kg Kt Fo Fo r 0.853 0.015m 72 s
k 1.7 W m K
ρ

α
× ⋅′ = = ⋅ ⋅ = × =

⋅
       < 

Note that the one-term approximation is accurate, since Fo > 0.2. 
 

Continued... 



PROBLEM 5.75 (Cont.) 
 
 
(c) The heat flux at the outer surface at time ′t  is given by Newton’s law of cooling 

 ( ) [ ]2 2
oq h T r , t T 75W m K 415 320 K 7125W / m .∞′′ ′⎡ ⎤= − = ⋅ − =⎣ ⎦  < 

 
The manner in which q′′  is calculated indicates that energy is leaving the sphere. 
 
(d) The energy lost by the sphere during the cooling process from t = 0 to t′  can be determined from 
Equation 5.55: 

[ ] [ ]
*
o

1 1 13 3o 1

3Q 3 0.26951 sin( ) cos( ) 1 sin(1.3188) 1.3188cos(1.3188) 0.775
Q 1.3188

θ
ζ ζ ζ

ζ

×
= − − = − − =  

 
The energy loss by the sphere with V = (πD3)/6 is therefore, from Equation 5.47, 

 ( ) ( )3
o p iQ 0.775Q 0.775 D 6 c T Tρ π ∞= = −  

 [ ]( ) ( )33Q 0.775 400kg m 0.030m 6 1600J kg K 800 320 K 3364Jπ= × ⋅ − =  < 

(e) If at time t′  the surface of the sphere is perfectly insulated, eventually the temperature of the sphere 
will be uniform at T(∞).  Applying conservation of energy to the sphere over a time interval, Ein - Eout = 
ΔE ≡ Efinal - Einitial.  Hence, -Q = ρcV[T(∞) - T∞] - Qo, where Qo ≡ ρcV[Ti - T∞].  Dividing by Qo and 
regrouping, we obtain 

 ( ) ( )( ) ( )( )o iT T 1 Q Q T T 320 K 1 0.775 800 320 K 428K∞ ∞∞ = + − − = + − − =  < 
 
(f)  Using the IHT Transient Conduction Model for a Sphere, the following graphical results were 
generated. 
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The quenching process is clearly accelerated by increasing h from 75 to 200 W/m2⋅K and is virtually 
completed by t ≈ 100s for the larger value of h.  Note that, for both values of h, the temperature difference 
[T(0,t) - T(ro,t)] decreases with increasing t.  Although the surface heat flux for h = 200 W/m2⋅K is 
initially larger than that for h = 75 W/m2⋅K, the more rapid decline in T(ro,t) causes it to become smaller 
at t ≈ 30s. 
 
COMMENTS:  Using the Transient Conduction/Sphere model in IHT based upon multiple-term series 
solution, the following results were obtained:  t′ = 72.1 s; Q/Qo = 0.7745, and T(∞) = 428 K. 



PROBLEM 5.76

KNOWN: One-dimensional convective heating of sphere of radius ro, with Bi = 1 for a dimensionless
time of Fo1.

FIND: (a) Sketch of the dimensionless center and surface temperatures of the sphere as a function of
dimensionless time over the range 0 < Fo1 < Fo < . Relative value of Fo2 needed to achieve a
steady-state center temperature equal to the center temperature at Fo1. (b) Analytical expression for,
and value of Fo = Fo2 - Fo1 for Bi = 1, Fo1 > 0.2, Fo2 > 0.2. (c) Value of Fo for Bi = 0.01, 0.1, 10,
100 and .

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) Approximate, one-
term solutions are valid.

ANALYSIS: (a) A sketch of the dimensionless center and surface temperatures is shown below.
Note that, at Fo1, the surface of the sphere will be warm (smaller ) relative to its center since
temperature gradients within the sphere are significant (Bi = 1). At the curtailment of heating (Fo1),
the surface temperature cools rapidly while warm temperatures continue to propagate toward the
center, slowly heating the center until a steady-state, isothermal condition is eventually reached.

<

Based on the sketch above, one could achieve a steady-state center temperature equal to the center
temperature at Fo1 by reducing the duration of convective heating to Fo2, as shown in the sketch
below.

Continued…
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PROBLEM 5.76 (Cont.)

Hence, Fo2 < Fo1. <

(b) Using the approximate solutions of Sections 5.6.2 and 5.6.3, and noting that the steady-state
temperature of the sphere is uniform and related to the energy transferred to the sphere,

*
1 2( ) 1 ( )o

o

Q
Fo Fo

Q
  

or,

*
1 1 11 ( ) ( )o

o

Q
Fo Fo Fo

Q
    (1)

Substituting Eqs. 5.53c and 5.55 into Eq. (1) yields

 
2

2 1 1 1
1 1 1 1 1 13

1

3 exp( ( ))
1 exp( ) 1 sin( ) cos( )

C Fo Fo
C Fo


   



  
    

which may be simplified to

 

3
1

2
1 1 11

1
ln

3 sin( ) cos( )
Fo



  

 
      

<

From Table 5.1, 1 = 1.5708 rad at Bi = 1. Hence,

 

3

2

1 1.5708
ln

3 sin(1.5708) 1.5708cos(1.5708)1.5708
Fo

 
      

-0.1038 <

(c) The expression for Fo may be evaluated for a range of Bi, resulting in the following.
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PROBLEM 5.76 (Cont.)

Bi 1 Fo <

0.01 0.1730 -0.1000
0.1 0.5423 -0.1004
1 1.5708 -0.1038
10 2.8363 -0.1154
100 3.1102 -0.1200
 3.1415 -0.1207

COMMENTS: (1) Note that the dimensionless temperature,  * 2
1 1expo C Fo   , is defined in a

manner such that for sphere heating, increases in actual temperature correspond to decreases in the
dimensionless temperature. (2) The dimensionless time lag, Fo, is weakly-dependent on the value of
the Biot number and is independent of the heating time. Hence, a general rule-of-thumb is that a time
lag of Fo  - 0.11 should be specified in order to achieve an ultimate center temperature equal to that
predicted at Fo1 for convective heating or cooling. (3) For applications such as materials or food
processing, where a certain minimum center temperature is desired, assuming that Fo1 (as determined
by Eq. 5.52c) is the appropriate processing or cooking time can result in significant over-heating of the
material or food, especially at small Fourier numbers. (4) Significant energy and time savings can be
realized by reducing the processing or cooking time from Fo1 to Fo2.



PROBLEM 5.77   
 
KNOWN:  Two spheres, A and B, initially at uniform temperatures of 800 K and simultaneously 
quenched in large, constant temperature baths each maintained at 320 K; properties of the spheres and 
convection coefficients. 
 
FIND:  (a) Show in a qualitative manner, on T-t coordinates, temperatures at the center and the outer 
surface for each sphere; explain features of the curves; (b) Time required for the outer surface of each 
sphere to reach 415 K, (c) Energy gained by each bath during process of cooling spheres to a surface 
temperature of 415 K. 
 
SCHEMATIC:   

   Sphere A Sphere B 
 ro (mm)          150         15 
 ρ (kg/m3)   1600       400 
 c (J/kg⋅K)     400     1600 
 k (W/m⋅K)     170           1.7 
 h (W/m2⋅K)         5         50 
 
 
 

ASSUMPTIONS:  (1) One-dimensional radial conduction, (2) Uniform properties, (3) Constant 
convection coefficient. 
 
ANALYSIS:  (a) From knowledge of the Biot number and the thermal time constant, it is possible to 
qualitatively represent the temperature distributions.  From Equation 5.10, with Lc = ro/3, find 

( )

( )

( )

2
3

A

o

2

B

5 W/m K 0.150 m/3
                   Bi 1.47 10

170 W/m K
h r / 3

Bi 
k

50 W/m K 0.015 m/3
                            Bi 0.147

1.7 W/m K

          −⋅
= = ×

⋅

=

⋅
= =

⋅

 

The thermal time constant for a lumped capacitance system from Equation 5.7 is 

( ) ( )3

A 2s

1600 kg/m 0.150 m 400 J/kg K1
Vc           6400 s

hA 3 5 W/m K
τ ρ τ

× ⋅
= = =

× ⋅

⎡ ⎤
⎢ ⎥
⎣ ⎦

    

( )3
o

B 2
400 kg/m 0.015 m 1600 J/kg K r  c

          64 s
3h 3 50 W/m K

ρ
τ τ

× ⋅
= = =

× ⋅
     

When Bi << 0.1, the sphere will cool in a 
spacewise isothermal manner (Sphere A). 
For sphere B, Bi > 0.1, hence gradients will 
be important.  Note that the thermal time 
constant of A is much larger than for B; 
hence, A will cool much slower.  See sketch 
for these features.  
(b) Recognizing that BiA < 0.1, Sphere A can be 
treated as spacewise isothermal and analyzed using the lumped capacitance method.  From Equation 
5.6 and 5.7, with T = 415 K 

 ( )
i i

T T exp t/
T T

θ τ
θ

∞

∞

−
= = −

−
        

          Continued … 



PROBLEM 5.77 (Cont.) 
  

 A A
i

T T 415 320t ln 6400 s ln 10,367 s 2.88 h.
T T 800 320

τ ∞

∞

⎡ ⎤− −⎡ ⎤= − = − = =⎢ ⎥ ⎢ ⎥− −⎣ ⎦⎣ ⎦
  < 

 
Note that since the sphere is nearly isothermal, the surface and inner temperatures are approximately 
the same.  
Since BiB > 0.1, Sphere B must be treated by the exact method of solution.  We assume that the one-
term approximation is valid and check later.  Hence, with 

 
( )2

o
B

50 W/m K 0.015 mhrBi 0.441
k 1.7 W/m K

⋅
= = =

⋅
 

from Table 5.1, ζ1 = 1.0992, C1 = 1.1278.  Then 
 

* o
i

T(r , t) T 415 C 320 C(r* 1,Fo) 0.1979
T T 800 C 320 C

θ ∞

∞

− ° − °
= = = =

− ° − °
 

and Equation 5.53b can be solved for oθ
∗ : 

*
o 1 1r * / sin( r*) 0.1979 1.0992 1/ sin(1.0992) 0.2442θ θ ζ ζ∗ = = × × =  

Then Equation 5.53c can be solved for Fo: 

( ) ( )o 12 2
1

1 1Fo ln / C ln 0.2442 /1.1278 1.266
1.0992

θ
ζ

∗= − = − =  

( )
2 3p 22o

B o
cr 400kg m 1600J kg Kt Fo Fo r 1.266 0.015m 107 s
k 1.7 W m K
ρ

α
× ⋅

= = ⋅ ⋅ = × =
⋅

 < 

Note that the one-term approximation is accurate, since Fo > 0.2. 
 
(c) To determine the energy change by the spheres during the cooling process, apply the conservation 
of energy requirement on a time interval basis.  
Sphere A: 
 ( ) ( )in out AE E E          Q E E t E 0 .− = Δ − = Δ = −  

 ( ) ( ) ( ) [ ]33
A iQ  cV T t T 1600 kg/m 400 J/kg K 4/3 0.150 m 415 800 Kρ π⎡ ⎤= − = × ⋅ × −⎣ ⎦  

 6
AQ 3.483 10 J.= ×          < 

Note that this simple expression is a consequence of the spacewise isothermal behavior.  
Sphere B: ( ) ( )in out BE E E          Q E t E 0 .− = Δ − = −  
For the nonisothermal sphere, Equation 5.55 can be used to evaluate QB.   

[ ] [ ]
*
oB

1 1 13 3o 1

3Q 3 0.24421 sin( ) cos( ) 1 sin(1.0992) 1.0992cos(1.0992) 0.784
Q 1.0992

θ
ζ ζ ζ

ζ

×
= − − = − − =  

 The energy transfer from the sphere during the cooling process, using Equation 5.47, is 
( )B o iQ 0.784 Q 0.784  cV T Tρ ∞⎡ ⎤= = −⎣ ⎦  

( ) ( ) ( )33
BQ 0.784 400 kg/m 1600 J/kg K 4/3 0.015 m 800 320 K 3405 Jπ= × × ⋅ − =   < 

 
COMMENTS:  In summary: Sphere  Bi = hro/k τ sb g     t(s)      Q(J) 
            A  4.41×10-3 6400 10,370  3.48×106 
            B       0.44       64      107     3405 



PROBLEM 5.78

KNOWN: Spheres of 40-mm diameter heated to a uniform temperature of 400C are suddenly
removed from an oven and placed in a forced-air bath operating at 25C with a convection coefficient

of 300 W/m
2
K.

FIND: (a) Time the spheres must remain in the bath for 80% of the thermal energy to be removed,
and (b) Uniform temperature the spheres will reach when removed from the bath at this condition and
placed in a carton that prevents further heat loss.

SCHEMATIC:

Air bath

h = 300 W/m -K2
T Co= 25oo

Sphere, D = 40 mm

Energy out, Q(t)

( , c, k)

r

T(r,0) = T Ci
o= 400

ASSUMPTIONS: (1) One-dimensional radial conduction in the spheres, (2) Constant properties, and
(3) No heat loss from sphere after removed from the bath and placed into the packing carton.

PROPERTIES: Sphere (given):  = 3000 kg/m
3
, c = 850 J/kgK, k = 15 W/mK.

ANALYSIS: (a) From Eq. 5.55, the fraction of thermal energy removed during the time interval t =

to is

   3
o 1 1 11

o

Q
1 3 / sin cos

Q
          (1)

where Q/Qo = 0.8. The Biot number is

2
oBi hr / k 300 W / m K 0.020 m /15 W / m K 0.40     

and for the one-term series approximation, from Table 5.1,

1 11.0528 rad C 1.1164   (2)

The dimensionless temperature o , follows from Eq. 5.53b.

 2
o 1 1C exp Fo    (3)

where 2
o oFo t / r . Substituting Eq. (3) into Eq. (1), solve for Fo and to.

     2 3
1 1 1 11 1

o

Q
1 3 C exp Fo / sin cos

Q
          (4)

oFo 1.45 t 98.6 s  <
(b) Performing an overall energy balance on the sphere during the interval of time to  t  ,

in out f iE E E E E 0      (5)

where Ei represents the thermal energy in the sphere at to,

     i o iE 1 0.8 Q 1 0.8 cV T T      (6)

and Ef represents the thermal energy in the sphere at t = ,

 f avgE cV T T   (7)

Combining the relations, find the average temperature

    avg icV T T 1 0.8 T T 0       
 

avgT 100 C  <



PROBLEM 5.79

KNOWN: Dimensions and initial temperature of spider brain and cephalothorax. Ambient
temperature and heat transfer coefficient.

FIND: Time required for brain to begin freezing.

SCHEMATIC:

Brain

Cephalothorax

T = 77 K
h = 100 W/m2∙K

Db = 1 mm

Dc = 3 mm

Ti = 293 K

ASSUMPTIONS: (1) Constant properties. (2) Negligible effect of ice formation.

PROPERTIES: Table A.6, water (T = 283 K): = 1000 kg/m3, c = 4193 J/kgK, and k = 0.587
W/mK.

ANALYSIS: To determine whether spatial effects are important, the Biot number is calculated in the
conservative fashion

2 3100 W/m K 3 10 m

2 2 0.587 W/m K
o chr hD

Bi
k k

  
   

 
0.25

Spatial effects are important and the lumped capacitance approximation is not valid. From Table 5.1 1

= 0.8447, C1 = 1.0737. The brain begins to freeze when the temperature at Db = 1 mm reaches the
freezing temperature, T = 0C.

Assuming validity of the approximate solution, Equation 5.53a may be rearranged to yield

1
2

1 1 1

1 * *
ln

sin( *)

r
Fo

C r

 

 

 
   

 

where
273 K 77 K

* 0.907
293 K 77 Ki

T T

T T
 



 
  

 
and

1 mm
* 1/ 3

3 mm
b

c

D
r

D
  

Hence

2 2

1 0.907 0.8447 / 3
ln 0.22

( / 2) 0.8447 1.0737sin(0.8447 / 3c

t
Fo

D

  
   

 

Continued...



PROBLEM 5.79 (Cont.)

Since Fo > 0.2 the approximate solution is valid and the time required for the brain to begin to freeze
is

2 3 -3 2( / 2) 0.22 1000 kg/m 4193 J/kg K (3 10 m/2)

0.587 W/m K
cFo c D

t
k

     
 


= 3.5 s <

COMMENTS: (1) Solidification of the cephalothorax shell will lengthen the time needed to freeze
the spider’s brain. (2) The spider’s brain begins to freeze 3.5 seconds after being exposed to the liquid
nitrogen. It may be the case that the spider no longer remembers the frightening scene in the video
when its brain freezes.



PROBLEM 5.80

KNOWN: Diameter, density, specific heat and thermal conductivity of Pyrex spheres in packed bed
thermal energy storage system. Convection coefficient and inlet gas temperature.

FIND: Time required for sphere to acquire 90% of maximum possible thermal energy and the
corresponding center temperature.

SCHEMATIC:

Pyrex sphere
D = 75 mm, T = 25 Ci

o
Gas

T Cg,i
o= 300

h = 75 W/m -K2

= 2225 kg/m3

k = 1.4 W/m-K
c = 835 J/kg-K

ASSUMPTIONS: (1) One-dimensional radial conduction in sphere, (2) Negligible heat transfer to or
from a sphere by radiation or conduction due to contact with adjoining spheres, (3) Constant
properties.

ANALYSIS: With Bi  h(ro/3)/k = 75 W/m
2
K (0.0125m)/1.4 W/mK = 0.67, the approximate

solution for one-dimensional transient conduction in a sphere is used to obtain the desired results. We

first use Eq. (5.55) to obtain o .


   

3
1

o
o1 1 1

Q
1

Q3 sin cos




  
  
  

    

With Bi  hro/k = 2.01, 1 2.03  and C1  1.48 from Table 5.1. Hence,

 
 

3

o
0.1 2.03 0.837

0.155
5.3863 0.896 2.03 0.443

   
   

The center temperature is therefore

 o g,i i g,iT T 0.155 T T 300 C 42.7 C 257.3 C         <

From Eq. (5.53c), the corresponding time is

2
o o

2 11

r
t ln

C





 
  
 
 

where  3 7 2
k / c 1.4 W / m K / 2225 kg / m 835 J / kg K 7.54 10 m / s. 


      

   

 

2

27 2

0.0375m ln 0.155 /1.48
t 1,020s

7.54 10 m / s 2.03
  


<

COMMENTS: The surface temperature at the time of interest may be obtained from Eq. (5.53b).

With r 1,



   o 1
s g,i i g,i

1

sin 0.155 0.896
T T T T 300 C 275 C 280.9 C

2.03

 




 

         
 

<



PROBLEM 5.81 
 
KNOWN:  Initial temperature and properties of a solid sphere.  Surface temperature after immersion in a 
fluid of prescribed temperature and convection coefficient. 
 
FIND:  (a) Time to reach surface temperature, (b) Effect of thermal diffusivity and conductivity on 
thermal response. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) One-dimensional, radial conduction, (2) Constant properties. 
 
ANALYSIS:  (a) For k = 15 W/m⋅K, the Biot number is 
 

 
( ) ( )2

oh r 3 300 W m K 0.05m 3
Bi 0.333

k 15W m K
⋅

= = =
⋅

. 

 
Hence, the lumped capacitance method cannot be used.  From Equation 5.53a, 
 

 ( ) ( )*
12

1 1 *i 1

sin rT T C exp Fo
T T r

ζ
ζ

ζ
∞

∞

−
= −

−
. 

 
At the surface, r* = 1.  From Table 5.1, for Bi = 1.0, ζ1 = 1.5708 rad and C1 = 1.2732.  Hence, 
 

 ( )260 75 sin 900.30 1.2732exp 1.5708 Fo
25 75 1.5708

−
= = −

−

o
 

 
 exp(-2.467Fo) = 0.370 
 

 2
o

tFo 0.403
r

α
= =  

 

 
( )22

o
5 2

0.05mrt 0.403 0.403 100s
10 m sα −

= = =  < 

 
(b)  Using the IHT Transient Conduction Model for a Sphere to perform the parametric calculations, the 
effect of α is plotted for k = 15 W/m⋅K. 
 
 
 

Continued... 
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For fixed k and increasing α, there is a reduction in the thermal capacity (ρcp) of the material, and hence 
the amount of thermal energy which must be added to increase the temperature.  With increasing α, the 
material therefore responds more quickly to a change in the thermal environment, with the response at the 
center lagging that of the surface. 
 
 The effect of k is plotted for α = 10-5 m2/s. 
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With increasing k for fixed alpha, there is a corresponding increase in ρcp, and the material therefore 
responds more slowly to a thermal change in its surroundings.  The thermal response of the center lags 
that of the surface, with temperature differences, T(ro,t) - T(0,t), during early stages of solidification 
increasing with decreasing k. 
 
COMMENTS:  Use of this technique to determine h from measurement of T(ro) at a prescribed t requires 
an iterative solution of the governing equations. 
 



PROBLEM 5.82  
KNOWN:  Temperature requirements for cooling the spherical material of Example 5.6 in air and in a 
water bath.  
FIND:  (a) For step 1, the time required for the center temperature to reach T(0,t) = 335°C while 
cooling in air at 20°C with h = 10 W/m2⋅K; find the Biot number; do you expect radial gradients to be 
appreciable?; compare results with hand calculations in Example 5.6; (b) For step 2, time required for 
the center temperature to reach T(0,t) = 50°C while cooling in water bath at 20°C with h = 6000 
W/m2⋅K; and (c) For step 2, calculate and plot the temperature history, T(x,t) vs. t, for the center and 
surface of the sphere; explain features; when do you expect the temperature gradients in the sphere to 
the largest?   Use the IHT Models | Transient Conduction | Sphere model as your solution tool.  
SCHEMATIC: 
 

 
 
ASSUMPTIONS:  (1) One-dimensional conduction in the radial direction, (2) Constant properties.  
ANALYSIS:  The IHT model represents the series solution for the sphere providing the temperatures 
evaluated at (r,t).  A selected portion of the IHT code used to obtain results is shown in the Comments.  
(a) Using the IHT model with step 1 conditions, the time required for T(0,ta) = T_xt = 335°C with r = 
0 and the Biot number are:  
 at 94.2 s Bi 0.0025= =        < 
 
Radial temperature gradients will not be appreciable since Bi = 0.0025 << 0.1.  The sphere behaves as 
space-wise isothermal object for the air-cooling process.  The result is identical to the lumped-
capacitance analysis result of the Text example. 
 
(b) Using the IHT model with step 2 conditions, the time required for T(0,tw) = T_xt = 50°C with r = 0 
and Ti = 335°C is 
 

 wt 3.0 s=           < 
 
Radial temperature gradients will be appreciable, since Bi = 1.5 >> 0.1.  The sphere does not behave 
as a space-wise isothermal object for the water-cooling process. 
 
(c) For the step 2 cooling process, the temperature histories for the center and surface of the sphere are 
calculated using the IHT model. 
 
          Continued … 



PROBLEM 5.82 (Cont.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At early times, the difference between the center and surface temperature is appreciable.  It is in this 
time region that thermal stresses will be a maximum, and if large enough, can cause fracture.  Within 6 
seconds, the sphere has a uniform temperature equal to that of the water bath. 
 
COMMENTS:  Selected portions of the IHT sphere model codes  for  steps 1 and 2 are shown below. 
 

/* Results, for part (a), step 1,  air cooling; clearly negligible gradient 
Bi  Fo t T_xt Ti r ro 
0.0025  25.13 94.22 335 400 0 0.005  */ 
 
// Models | Transient Conduction | Sphere - Step 1, Air cooling 
// The temperature distribution T(r,t) is 
T_xt = T_xt_trans("Sphere",rstar,Fo,Bi,Ti,Tinf)    //  

    T_xt = 335                  // Surface temperature 

 
 
 

/* Results, for part (b), step 2, water cooling; Ti = 335 C 
Bi Fo t T_xt Ti r ro 
1.5 0.7936 2.976 50 335 0 0.005  */ 
 
// Models | Transient Conduction | Sphere - Step 2, Water cooling 
// The temperature distribution T(r,t) is 
T_xt = T_xt_trans("Sphere",rstar,Fo,Bi,Ti,Tinf)    //  
//T_xt = 335                  // Surface temperature from Step 1; initial temperature for Step 2 
T_xt = 50                      // Center temperature, end of Step 2 

Temperature-time history, Step 2
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PROBLEM 5.83

KNOWN: Two large blocks of different materials – like copper and concrete – at room
temperature, 23C.

FIND: Which block will feel cooler to the touch?

SCHEMATIC:

ASSUMPTIONS: (1) Blocks can be treated as semi-infinite solid, (2) Hand or finger
temperature is 37C.

PROPERTIES: Table A-1, Copper (300K):  = 8933 kg/m
3
, c = 385 J/kgK, k = 401

W/mK; Table A-3, Concrete, stone mix (300K):  = 2300 kg/m
3
, c = 880 J/kgK, k = 1.4

W/mK.

ANALYSIS: Considering the block as a semi-infinite solid, the heat transfer situation
corresponds to a sudden change in surface temperature, Case 1, Figure 5.7. The sensation of
coolness is related to the heat flow from the hand or finger to the block. From Eq. 5.61, the
surface heat flux is

     1/ 2
s s iq t k T T / t   (1)

or

   1/ 2
sq t ~ k c since k/ c.    (2)

Hence for the same temperature difference, s iT T , and elapsed time, it follows that the heat

fluxes for the two materials are related as

 

 

1/ 2

1/ 2
3s,copper copper

1/2 1/ 2s,concrete
concrete

3

W kg J
401 8933 385k cq m K kg Km 22.1

q k c W kg J
1.4 2300 880

m K kg Km





 
       

  
    

Hence, the heat flux to the copper block is more than 20 times larger than to the concrete
block. The copper block will therefore feel noticeably cooler than the concrete one.



PROBLEM 5.84

KNOWN: Thickness and properties of plane wall. Convection coefficient.

FIND: (a) Nondimensional temperature for six different cases using four methods and (b)
Explain the conditions for which the three approximate methods are good approximations of the
exact solution.

SCHEMATIC:

ASSUMPTIONS: (1) Constant properties.

PROPERTIES: Steel (given): k = 30 W/m∙K, ρ = 7900 kg/m3, c = 640 J/kg∙K. 

ANALYSIS:
(a) We perform the calculations for h = 10 W/m2∙K, t = 2.5 min.  

Exact Solution
From Equation 5.42a, evaluated at the surface x* = 1,

* 2s
s n n n

i n=1

T - T
θ  =  = C exp(-ζ Fo)cos(ζ )

T - T







For t = 2.5 min,

2 2

2

3

αt k t
Fo = =

ρcL L

30 W/m K (2.5 × 60) s
= × = 0.0099

kg J (0.3 m)7900 × 640
kg Km





We also calculate Bi = hL/k = 10 W/m2∙K × 0.3 m/30 W/m∙K = 0.10.  The first four values of n

are found in Table B.3, and the corresponding values of Cn can be calculated from Equation

5.39b, Cn =  n n n4 sinζ / 2ζ + sin(2ζ ) . Then the first four terms in Equation 5.42a can be

calculated as well. The results are tabulated below.

n n Cn 2
n n nC exp( Fo)cos( ) 

1
2
3
4

0.3111
3.1731
6.2991
9.4354

1.016
-0.0197
0.0050
-0.0022

0.9664
0.0178
0.0034
0.0009
*
sθ  = 0.989

Continued…

Steel, Ti2L = 0.6 mT∞

h = 10 or 100 W/m2∙K

Steel, Ti2L = 0.6 mT∞

h = 10 or 100 W/m2∙K



PROBLEM 5.84 (Cont.)

We can see that the fourth term is small, so to a good approximation the exact solution can be
found by summing the first four terms, as shown in the table. Thus

*
s,exactθ  = 0.989 <

First Term
From the above table,

*
s,1-termθ  = 0.966 <

Lumped Capacitance
From Equation 5.6,

* s
lump

2

3

hA ht
θ  = exp - t  = exp - 

ρVc ρLc

10 W/m K × (2.5 × 60) s
= exp - = 0.999

7900 kg/m × 0.3 m × 640 J/kg K

   
   
   

 
 

  

Semi-Infinite Solid
We use Equation 5.63 with x measured from the surface, that is x = 0.

* s s i
s,semi

i i

2

2

2 1/2

2

T - T T - T
θ  =  = 1 - 

T - T T - T

h αt h αt
= 1 - erfc(0) + exp erfc

kk

= 1 - 1 + exp(Bi Fo) erfc(Bi Fo )

= exp(0.10 × 0.0099) erfc(0.10 × (0



 

   
     

  

1/2.0099) )

= 1.0001 × 0.989 = 0.989 <

where the error function was evaluated from Table B.2.

Repeating the calculation for the other five cases, the following table can be compiled:

Method
Bi = 0.1 Bi = 1

Fo = 0.01 Fo = 0.1 Fo = 1.0 Fo = 0.01 Fo = 0.1 Fo = 1.0
Exact 0.99 0.97 0.88 0.90 0.72 0.35

First-term 0.97 0.96 0.88 0.72 0.68 0.35

Lumped 1.00 0.99 0.90 0.99 0.90 0.37

Semi-inf. 0.99 0.97 0.90 0.90 0.72 0.43

(b) (i) The first term solution is a good approximation to the exact solution for Fo > 0.2. As
seen in the above table, for Fo = 1.0, the first term solution is correct to two significant digits.

Continued…



PROBLEM 5.84 (Cont.)

(ii) The lumped capacitance solution is a good approximation to the exact solution for
Bi < 0.1. In the above table, the lumped capacitance solution is quite accurate for Bi = 0.1, but
not for Bi = 1.0.

(iii) The semi-infinite solid solution is a good approximation to the exact solution for the
smaller values of Fourier, since for small t or  , or for large L, the heat doesn’t penetrate through
the wall and it can be treated as semi-infinite.



PROBLEM 5.85

KNOWN: Asphalt pavement, initially at 50C, is suddenly exposed to a rainstorm reducing
the surface temperature to 20C.

FIND: Total amount of energy removed (J/m
2
) from the pavement for a 30 minute period.

SCHEMATIC:

ASSUMPTIONS: (1) Asphalt pavement can be treated as a semi-infinite solid, (2) Effect of
rainstorm is to suddenly reduce the surface temperature to 20C and is maintained at that level
for the period of interest.

PROPERTIES: Table A-3, Asphalt (300K):  = 2115 kg/m
3
, c = 920 J/kgK, k = 0.062

W/mK.

ANALYSIS: This solution corresponds to Case 1, Figure 5.7, and the surface heat flux is
given by Eq. 5.61 as

     1/ 2
s s iq t k T T / t   (1)

The energy into the pavement over a period of time is the integral of the surface heat flux
expressed as

 
t

0
sQ q t dt.   (2)

Note that  sq t is into the solid and, hence, Q represents energy into the solid. Substituting

Eq. (1) for  sq t into Eq. (2) and integrating find

   
 

 

t

0

1/ 2 s i-1/2 1/2
s i 1/ 2

k T T
Q k T T / t dt 2 t .




      (3)

Substituting numerical values into Eq. (3) with

8 2
3

k 0.062 W/m K
3.18 10 m / s

c 2115 kg/m 920 J/kg K





   
 

find that for the 30 minute period,

 

 
 1/ 2 5 2

1/ 2-8 2

0.062 W/m K 20 50 K
Q 2 30 60s 4.99 10 J/m .

3.18 10 m / s

 
      

 

<

COMMENTS: Note that the sign for Q is negative implying that energy is removed from

the solid.



PROBLEM 5.86

KNOWN: Thermophysical properties and initial temperature of thick steel plate. Temperature of
water jets used for convection cooling at one surface.

FIND: Time required to cool prescribed interior location to a prescribed temperature.

SCHEMATIC:

T = 25 Co
ooTooTs =

Steel, T = 300i
oC

= 7800 kg/m3

c = 480 J/kg-K
k = 50 W/m-K T(0.025 m, t) Co= 50

x

0.025 m

Water jets,

ASSUMPTIONS: (1) One-dimensional conduction in slab, (2) Validity of semi-infinite medium

approximation, (3) Negligible thermal resistance between water jets and slab surface (Ts = T), (4)
Constant properties.

ANALYSIS: The desired cooling time may be obtained from Eq. (5.60). With T(0.025m, t) = 50C,

   
 

s

i s

T x, t T 50 25 C x
0.0909 erf

T T 300 25 C 2 t

    
        

x
0.0807

2 t


 

 

 
22

2 5 2

0.025mx
t 1793s

0.0261 1.34 10 m / s0.0807 4 
  


<

where  = k/c = 50 W/mK/(7800 kg/m
3
 480 J/kgK) = 1.34  10

-5
m

2
/s.

COMMENTS: (1) Large values of the convection coefficient (h ~ 10
4

W/m
2
K) are associated with

water jet impingement, and it is reasonable to assume that the surface is immediately quenched to the
temperature of the water. (2) The surface heat flux may be determined from Eq. (5.61). In principle,

the flux is infinite at t = 0 and decays as t
1/2

.



PROBLEM 5.87 
 
KNOWN:  Tile-iron, 254 mm to a side, at 150°C is suddenly brought into contact with tile over a 
subflooring material initially at Ti = 25°C with prescribed thermophysical properties.  Tile adhesive 
softens in 2 minutes at 50°C, but deteriorates above 120°C. 
 
FIND:  (a) Time required to lift a tile after being heated by the tile-iron and whether adhesive temperature 
exceeds 120°C, (2) How much energy has been removed from the tile-iron during the time it has taken to 
lift the tile. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Tile and subflooring have same thermophysical properties, (2) Thickness of 
adhesive is negligible compared to that of tile, (3) Tile-subflooring behaves as semi-infinite solid 
experiencing one-dimensional transient conduction. 
 
PROPERTIES:  Tile-subflooring (given):  k = 0.15 W/m⋅K, ρcp = 1.5 × 106 J/m3⋅K, α = k/ρcp = 1.00 × 
10-7 m2/s. 
 
ANALYSIS:  (a) The tile-subflooring can be approximated as a semi-infinite solid, initially at a uniform 
temperature Ti = 25°C, experiencing a sudden change in surface temperature Ts = T(0,t) = 150°C.  This 
corresponds to Case 1, Figure 5.7.  The time required to heat the adhesive (xo = 4 mm) to 50°C follows 
from Eq. 5.60 

 
( )

( )
o o s o

1/ 2i s o

T x , t T xerf
T T 2 tα

⎛ ⎞− ⎜ ⎟=
⎜ ⎟−
⎝ ⎠

 

 

( )1/ 27 2
o

50 150 0.004merf
25 150

2 1.00 10 m s t−

⎛ ⎞
⎜ ⎟−

= ⎜ ⎟
− ⎜ ⎟× ×⎜ ⎟

⎝ ⎠

 

 ( )1/ 2
o0.80 erf 6.325t−=  

 to = 48.7s = 0.81 min 
 
using error function values from Table B.2.   Since the softening time, Δts, for the adhesive is 2 minutes, 
the time to lift the tile is 

 ( )o st t t 0.81 2.0 min 2.81min= + Δ = + =l . < 

To determine whether the adhesive temperature has exceeded 120°C, calculate its temperature at tl  = 
2.81 min; that is, find T(xo, tl ) 

 
( )

( )
o

1/ 27 2

T x , t 150 0.004merf
25 150

2 1.0 10 m s 2.81 60s−

⎛ ⎞
⎜ ⎟−

= ⎜ ⎟
− ⎜ ⎟× × ×⎜ ⎟

⎝ ⎠

l  

Continued... 



 
PROBLEM 5.87 (Cont.) 

 
 ( ) ( )oT x , t 150 125erf 0.4880 125 0.5098− = − = − ×l  

 ( )oT x , t 86 C= o
l  < 

 
Since T(xo, tl ) < 120°C, the adhesive will not deteriorate. 
 
(b) The energy required to heat a tile to the lift-off condition is 
 

 ( )t
x s0

Q q 0, t A dt′′= ⋅∫ l . 
 
Using Eq. 5.61 for the surface heat flux ′′qs (t) = ′′qx (0,t), find 
 

 
( )
( )

( )
( )

t s i s i 1/ 2
s s1/ 2 1/ 2 1/ 20

k T T 2k T TdtQ A A t
tπα πα

− −
= =∫ l l  

 

 
( )

( )
( ) ( )2 1/ 2

1/ 27 2

2 0.15W m K 150 25 C
Q 0.254m 2.81 60s 56kJ

1.00 10 m sπ −

× ⋅ −
= × × × =

× ×

o

 < 

 
COMMENTS:  (1) Increasing the tile-iron temperature would decrease the time required to soften the 
adhesive, but the risk of burning the adhesive increases. 
 
(2) From the energy calculation of part (b) we can estimate the size of an electrical heater, if operating 
continuously during the 2.81 min period, to maintain the tile-iron at a near constant temperature.  The 
power required is 
 
 P Q t 56 kJ 2.81 60s 330 W= = × =l . 
 
Of course a much larger electrical heater would be required to initially heat the tile-iron up to the 
operating temperature in a reasonable period of time. 



PROBLEM 5.88

KNOWN: Procedure for measuring convection heat transfer coefficient, which involves
melting of a surface coating.

FIND: Melting point of coating for prescribed conditions.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction in solid rod (negligible losses to
insulation), (2) Rod approximated as semi-infinite medium, (3) Negligible surface radiation,
(4) Constant properties, (5) Negligible thermal resistance of coating.

PROPERTIES: Copper rod (Given): k = 400 W/mK,  = 10
-4

m
2
/s.

ANALYSIS: Problem corresponds to transient conduction in a semi-infinite solid. Thermal
response is given by

 

   

 1/ 22
i

1/ 2 2 1/ 2i

T x,t T h tx hx h t x
erfc exp erfc .

T T k kk2 t 2 t



 

                
              

For x = 0, erfc(0) = 1 and T(x,t) = T(0,t) = Ts. Hence

 1/ 22
s i

2i

h tT T h t
1 exp erfc

T T kk





      
   
   

with

   
1/ 22 -4 21/ 2

m
200 W/m K 10 m / s 400 sh t

0.1
k 400 W/m K

  
 



     s m i iT T T T T 1 exp 0.01 erfc 0.1       

 sT 25 C 275 C 1-1.01 0.888 53.5 C.      <

COMMENTS: Use of the procedure to evaluate h from measurement of tm necessitates

iterative calculations.



PROBLEM 5.89 
 
KNOWN:  Irreversible thermal injury (cell damage) occurs in living tissue maintained at T ≥ 48°C for a 
duration Δt ≥ 10s. 
 
FIND:  (a) Extent of damage for 10 seconds of contact with machinery in the temperature range 50 to 
100°C, (b) Temperature histories at selected locations in tissue (x = 0.5, 1, 5 mm) for a machinery 
temperature of 100°C. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Portion of worker’s body modeled as semi-infinite medium, initially at a uniform 
temperature, 37°C, (2) Tissue properties are constant and equivalent to those of water at 37°C, (3) 
Negligible contact resistance. 
 
PROPERTIES:  Table A-6, Water, liquid (T = 37°C = 310 K):  ρ = 1/vf = 993.1 kg/m3, c = 4178 J/kg⋅K, 
k = 0.628 W/m⋅K, α = k/ρc = 1.513 × 10-7 m2/s. 
 
ANALYSIS:  (a) For a given surface temperature -- suddenly applied -- the analysis is directed toward 
finding the skin depth xb for which the tissue will be at Tb ≥ 48°C for more than 10s?  From Eq. 5.60, 
 

 
( ) ( ) [ ]1/ 2b s

b
i s

T x , t T
erf x 2 t erf

T T
α η

− ⎡ ⎤= =⎢ ⎥⎣ ⎦−
. 

 
For the two values of Ts, the left-hand side of the equation is 
 

 
( )
( )

s
48 100 C

T 100 C : 0.825
37 100 C

−
= =

−

o
o

o
 

( )
( )

s
48 50 C

T 50 C : 0.154
37 50 C

−
= =

−

o
o

o
 

 
The burn depth is 
 

 [ ] ( ) [ ] ( ) [ ]
1/ 21/ 2 7 2 4 1/ 2

bx w 2 t w 2 1.513 10 m s t 7.779 10 w tα − −= = × × = × . 
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PROBLEM 5.89 (Cont.) 

 
Using Table B.2 to evaluate the error function and letting t = 10s, find xb as 
 

 Ts = 100°C: xb = 7.779 × 10-4 [0.96](10s)1/2 = 2.362 × 103 m = 2.36 mm < 

 Ts = 50°C: xb = 7.779 × 10-4 [0.137](10s)1/2 = 3.37 × 103 m = 0.34 mm < 
 
Recognize that tissue at this depth, xb, has not been damaged, but will become so if Ts is maintained for 
the next 10s.  We conclude that, for Ts = 50°C, only superficial damage will occur for a contact period of 
20s.  
 
(b) Temperature histories at the prescribed locations are as follows. 
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x = 0.5 mm
x = 1.0 mm
x = 2.0 mm  

 
The critical temperature of 48°C is reached within approximately 1s at x = 0.5 mm and within 7s at x = 2 
mm. 
 
COMMENTS:  Note that the burn depth xb increases as t1/2. 



PROBLEM 5.90

KNOWN: Thermocouple location in thick slab. Initial temperature. Thermocouple
measurement two minutes after one surface is brought to temperature of boiling water.

FIND: Thermal conductivity of slab material.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction in x, (2) Slab is semi-infinite medium,
(3) Constant properties.

PROPERTIES: Slab material (given):  = 2200 kg/m
3
, c = 700 J/kgK.

ANALYSIS: For the semi-infinite medium from Eq. 5.60,

 

 

 

 

s
1/ 2i s

1/ 2

1/ 2

T x,t T x
erf

T T 2 t

65 100 0.01m
erf

30 100 2 120s

0.01m
erf 0.5.

2 120s







 
 

  
 

   
   
 
  
  

From Appendix B, find for erf w = 0.5 that w = 0.477; hence,

 
 

1/ 2

1/ 2

7 2

0.01m
0.477

2 120s

120 0.0105

9.156 10 m / s.





 




 

 

It follows that since  = k/c,

-7 2 3
k c

k 9.156 10 m / s 2200 kg/m 700 J/kg K



    

k = 1.41 W/mK. <



PROBLEM 5.91 
 
KNOWN:  Very thick plate, initially at a uniform temperature, Ti, is suddenly exposed to a surface 
convection cooling process (T∞,h). 
 
FIND:  (a) Temperatures at the surface and 45 mm depth after 3 minutes, (b) Effect of thermal diffusivity 
and conductivity on temperature histories at x = 0, 0.045 m. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) One-dimensional conduction, (2) Plate approximates semi-infinite medium, (3) 
Constant properties, (4) Negligible radiation. 
 
ANALYSIS:  (a) The temperature distribution for a semi-infinite solid with surface convection is given 
by Eq. 5.63. 

 
( )

( ) ( )
( )1/ 22

i
1/ 2 2 1/ 2i

T x, t T h tx hx h t x
erfc exp erfc

T T k kk2 t 2 t

αα

α α∞

−
= − + +

−

⎡ ⎤⎛ ⎞ ⎛ ⎞⎡ ⎤⎛ ⎞
⎜ ⎟ ⎢ ⎜ ⎟⎥⎢ ⎜ ⎟⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠ ⎝ ⎠⎣ ⎦

. 

At the surface, x = 0, and for t = 3 min = 180s, 
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( )
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2 2 4 2 6 2

2
T 0,180s 325 C 100 W m K 5.6 10 m s 180s

erfc 0 exp 0
15 325 C 20 W m K

−− × × ×
= − +

− ⋅

⎡ ⎤⎛ ⎞
⎢ ⎜ ⎟⎥

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

o

o
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−⋅ × ×
× +

⋅

⎡ ⎤⎛ ⎞
⎢ ⎜ ⎟⎥
⎢ ⎜ ⎟⎥
⎢ ⎜ ⎟⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

  ( )[ ] ( )[ ] ( )1 exp 0.02520 erfc 0.159 1 1.02552 1 0.178= − × = − × −  

 ( ) ( ) ( )T 0,180s 325 C 15 325 C 1 1.0255 0.822= − − ⋅ − ×oo  

 ( )T 0,180s 325 C 49.3 C 276 C= − =o o o . < 
At the depth x = 0.045 m, with t = 180s, 

( )
( ) ( )
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1/ 26 2
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− ⋅ ×
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⋅− × ×
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( )1/ 26 2
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erfc 0.159

2 5.6 10 m s 180s−
× +

× ×

⎡ ⎤⎛ ⎞
⎢ ⎜ ⎟⎥
⎢ ⎜ ⎟⎥
⎢ ⎜ ⎟⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

 
  ( ) ( )[ ] ( )[ ]erfc 0.7087 exp 0.225 0.0252 erfc 0.7087 0.159= + + × + . 

 ( ) ( ) ( ) ( )[ ]T 0.045m,180s 325 C 15 325 C 1 0.684 1.284 1 0.780 315 C= + − − − − =oo o  < 
Continued... 



 
PROBLEM 5.91 (Cont.) 

 
(b) The IHT Transient Conduction Model for a Semi-Infinite Solid was used to generate temperature 
histories, and for the two locations the effects of varying α and k are as follows. 
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For fixed k, increasing alpha corresponds to a reduction in the thermal capacitance per unit volume (ρcp) 
of the material and hence to a more pronounced reduction in temperature at both surface and interior 
locations.  Similarly, for fixed α, decreasing k corresponds to a reduction in ρcp and hence to a more 
pronounced decay in temperature. 
 
COMMENTS:  In part (a) recognize that Fig. 5.8 could also be used to determine the required 
temperatures. 



PROBLEM 5.92 
 
KNOWN:  Thick oak wall, initially at a uniform temperature of 25°C, is suddenly exposed to combustion 
products at 800°C with a convection coefficient of 20 W/m2⋅K. 
 
FIND:  (a) Time of exposure required for the surface to reach an ignition temperature of 400°C, (b) 
Temperature distribution at time t = 325s.  
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Oak wall can be treated as semi-infinite solid, (2) One-dimensional conduction, 
(3) Constant properties, (4) Negligible radiation.  
PROPERTIES:  Table A-3, Oak, cross grain (300 K):  ρ = 545 kg/m3, c = 2385 J/kg⋅K, k = 0.17 W/m⋅K, 
α = k/ρc = 0.17 W/m⋅K/545 kg/m3 × 2385 J/kg⋅K = 1.31 × 10-7 m2/s. 
 
ANALYSIS:  (a) This situation corresponds to Case 3 of Figure 5.7.  The temperature distribution is 
given by Eq. 5.63 or by Figure 5.8.  Using the figure with 

 
( ) i

i

T 0, t T 400 25 0.48
T T 800 25∞

− −
= =

− −
               and               

( )1/ 2
x 0

2 tα
=  

we obtain h(αt)1/2/k ≈ 0.75, in which case t ≈ (0.75k/hα1/2)2.  Hence, 

 ( )
21/ 22 7 2t 0.75 0.17 W m K 20 W m K 1.31 10 m s 310s−⎛ ⎞

≈ × ⋅ ⋅ × =⎜ ⎟
⎝ ⎠

 < 

(b) Using the IHT Transient Conduction Model for a Semi-infinite Solid, the following temperature 
distribution was generated for t = 325s. 
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The temperature decay would become more pronounced with decreasing α (decreasing k, increasing ρcp) 
and in this case the penetration depth of the heating process corresponds to x ≈ 0.025 m at 325s. 
 
COMMENTS:  The result of part (a) indicates that, after approximately 5 minutes, the surface of the 
wall will ignite and combustion will ensue.  Once combustion has started, the present model is no longer 
appropriate. 



PROBLEM 5.93

KNOWN: Thickness, initial temperature and thermophysical properties of concrete firewall.
Incident radiant flux and duration of radiant heating. Maximum allowable surface temperatures at the
end of heating.

FIND: If maximum allowable temperatures are exceeded.

SCHEMATIC:

qs = 10 W/m24

L = 0.25 mx

Concrete, T = 25i
oC

= 2300 kg/m3

c = 880 J/kg-K
k = 1.4 W/m-K
s = 1.0

T Cmax
o= 325 T Cmax

o= 25

ASSUMPTIONS: (1) One-dimensional conduction in wall, (2) Validity of semi-infinite medium
approximation, (3) Negligible convection and radiative exchange with the surroundings at the
irradiated surface, (4) Negligible heat transfer from the back surface, (5) Constant properties.

ANALYSIS: The thermal response of the wall is described by Eq. (5.62)

 
 1/ 2 2

o o
i

2 q t / q xx x
T x, t T exp erfc

k 4 t k 2 t

 

 

    
         

where, 7 2
pk / c 6.92 10 m / s 


   and for  1/ 2

ot 30 min 1800s, 2q t / / k 284.5 K.    Hence,

at x = 0,

 T 0,30 min 25 C 284.5 C 309.5 C 325 C        <

At    2 1/ 2
ox 0.25m, x / 4 t 12.54, q x / k 1, 786K, and x / 2 t 3.54.       Hence,

     6T 0.25m, 30 min 25 C 284.5 C 3.58 10 1786 C ~ 0 25 C          <

Both requirements are met.

COMMENTS: The foregoing analysis is conservative since heat transfer at the irradiated surface
due to convection and net radiation exchange with the environment have been neglected. If the

emissivity of the surface and the temperature of the surroundings are assumed to be  = 1 and Tsur =

298K, radiation exchange at Ts = 309.5C would be  4 4 2
rad s surq T T 6, 080 W / m K,    

which is significant (~ 60% of the prescribed radiation).



PROBLEM 5.94

KNOWN: Initial temperature of copper and glass plates. Initial temperature and properties
of finger.

FIND: Whether copper or glass feels cooler to touch.

SCHEMATIC:

ASSUMPTIONS: (1) The finger and the plate behave as semi-infinite solids, (2) Constant
properties, (3) Negligible contact resistance.

PROPERTIES: Skin (given):  = 1000 kg/m
3
, c = 4180 J/kgK, k = 0.625 W/mK; Table

A-1 (T = 300K), Copper:  = 8933 kg/m
3
, c = 385 J/kgK, k = 401 W/mK; Table A-3 (T =

300K), Glass:  = 2500 kg/m
3
, c = 750 J/kgK, k = 1.4 W/mK.

ANALYSIS: Which material feels cooler depends upon the contact temperature Ts given by

Equation 5.66. For the three materials of interest,

   

   

   

1/ 2 1/ 2 2 1/2
skin
1/2 1/ 2 2 1/2
cu
1/ 2 1/ 2 2 1/2
glass

k c 0.625 1000 4180 1,616 J/m K s

k c 401 8933 385 37,137 J/m K s

k c 1.4 2500 750 1,620 J/m K s .







     

     

     

Since    1/2 1/2
cu glass

k c k c ,  the copper will feel much cooler to the touch. From

Equation 5.66,

   

   

1/2 1/2
A,i B,iA B

s 1/2 1/2
A B

k c T k c T
T

k c k c

 

 






 
   

s cu
1,616 310 37,137 300

T 300.4 K
1,616 37,137


 


<

 
   

s glass
1,616 310 1,620 300

T 305.0 K.
1,616 1,620


 


<

COMMENTS: The extent to which a material’s temperature is affected by a change in its

thermal environment is inversely proportional to (kc)
1/2

. Large k implies an ability to

spread the effect by conduction; large c implies a large capacity for thermal energy storage.



PROBLEM 5.95

KNOWN: Initial temperatures, properties, and thickness of two plates, each insulated on one
surface.

FIND: Temperature on insulated surface of one plate at a prescribed time after they are
pressed together.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) Negligible
contact resistance.

PROPERTIES: Stainless steel (given):  = 8000 kg/m
3
, c = 500 J/kgK, k = 15 W/mK.

ANALYSIS: At the instant that contact is made, the plates behave as semi-infinite slabs and,
since the (kc) product is the same for the two plates, Equation 5.66 yields a surface
temperature of

sT 350K.

The interface will remain at this temperature, even after thermal effects penetrate to the
insulated surfaces. The transient response of the hot wall may therefore be calculated from
Equations 5.43 and 5.44. At the insulated surface (x* = 0), Equation 5.43 yields

 2o s
1 1

i s

T T
C exp Fo

T T



 



where, in principle, h   and T Ts. From Equation 5.42c, Bi   yields 1 = 1.5707,

and from Equation 5.42b

 
1

1
1 1

4sin
C 1.273

2 sin 2



 
 



Also,
 

 

6 2

2 2

3.75 10 m / s 60st
Fo 0.563.

L 0.02 m




  

Hence,  2oT 350
1.273exp 1.5707 0.563 0.318

400 350


   



oT 365.9 K. <

COMMENTS: Since Fo > 0.2, the one-term approximation is appropriate.



PROBLEM 5.96 
 
KNOWN:  Thickness and properties of liquid coating deposited on a metal substrate.  Initial temperature 
and properties of substrate. 
 
FIND:  (a) Expression for time required to completely solidify the liquid, (b) Time required to solidify an 
alumina coating. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Substrate may be approximated as a semi-infinite medium in which there is one-
dimensional conduction, (2) Solid and liquid alumina layers remain at fusion temperature throughout 
solidification (negligible resistance to heat transfer by conduction through solid), (3) Negligible contact 
resistance at the coating/substrate interface, (4) Negligible solidification contraction, (5) Constant 
properties. 
 
ANALYSIS:  (a) Performing an energy balance on the solid layer, whose thickness S increases with t, the 
latent heat released at the solid/liquid interface must be balanced by the rate of heat conduction into the 
solid.  Hence, per unit surface area, 

 sf cond
dSh q
dt

ρ ′′=   where, from Eq. 5.61, ( ) ( )1/ 2
cond f iq k T T tπα′′ = − .  It follows that 
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δ
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1/ 2 sfs

2k T T t
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δ
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(b) For the prescribed conditions, 

 
( )
( )

5 2 23 6

2

4 10 m s 0.002 m 3970 kg m 3.577 10 J kgt
2018K4 120 W m K

π −× ⎛ ⎞× × ×⎜ ⎟=
⎜ ⎟⋅ ⎝ ⎠

 = 0.43                     < 
 
COMMENTS:  If solidification occurs over a short time resulting in a change of the solid’s 
microstructure (relative to slow solidification), it is termed rapid solidification. See Problem 5.42. 



PROBLEM 5.97 
 
KNOWN:  Properties of mold wall and a solidifying metal. 
 
FIND:  (a) Temperature distribution in mold wall at selected times, (b) Expression for variation of solid 
layer thickness. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Mold wall may be approximated as a semi-infinite medium in which there is one-
dimensional conduction, (2) Solid and liquid metal layers remain at fusion temperature throughout 
solidification (negligible resistance to heat transfer by conduction through solid), (3) Negligible contact 
resistance at mold/metal interface, (4) Constant properties. 
 
ANALYSIS:  (a) As shown in schematic (b), the temperature remains nearly uniform in the metal (at Tf) 
throughout the process, while both the temperature and temperature penetration increase with time in the 
mold wall. 
 
(b) Performing an energy balance for a control surface about the solid layer, the latent energy released 
due to solidification at the solid/liquid interface is balanced by heat conduction into the solid, latq′′  = 

condq′′ , where lat sfq h dS dtρ′′ =  and condq′′  is given by Eq. 5.61.  Hence, 
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hρ πα

−
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COMMENTS:  The analysis of part (b) would only apply until the temperature field penetrates to the 
exterior surface of the mold wall, at which point, it may no longer be approximated as a semi-infinite 
medium. 



PROBLEM 5.98

KNOWN: Diameter and initial temperature of two Inconel rods. Amplitude and frequency of
motion of upper rod. Coefficient of friction.

FIND: Compressive force required to bring rod to melting point in 3 seconds.

SCHEMATIC:

ASSUMPTIONS: (1) Negligible heat loss from surfaces of rods, (2) Rods are effectively semi-
infinite, (3) Frictional heat generation can be treated as constant in time, (4) Constant properties.

PROPERTIES: Table A.1, Inconel X-750: Tm = 1665 K, T = (Ti +Tm)/2 = (293 +1665)/2 = 979
K, k = 23.6 W/m∙K, cp = 618 J/kg∙K, ρ = 8510 kg/m3,   = k/ρcp = 4.49 × 10-6 m2/s.

ANALYSIS: We begin by expressing the frictional heat flux in terms of the unknown
compressive force, Fn.

n n nt
μF V μF μFF V dd

q aω sin ωt
A A A dt A


     

 

In the above equation, use has been made of the fact that the frictional force always opposes the

direction of motion, therefore tF V
 

= -|FtV|. The average value of the heat flux is found by

integrating over one period of |sin t|, namely /:

π
π

ω
n n nω

0
0

ω μF aω 1 μF aω 2μF aω
q sin ωt dt cosωt

π A π A πA
s
     (1)

Continued…

F

d(t) = acos(t)
a = 2 mm
 = 1000 rad/s

D = 40 mm

Inconel, Ti = 20C

 = 0.3

F

d(t) = acos(t)
a = 2 mm
 = 1000 rad/s

D = 40 mm

Inconel, Ti = 20C

 = 0.3



PROBLEM 5.98 (Cont.)

Note that A = D2/2, because heat conducts in both directions. We can find the surface
temperature from Eq. 5.62 for the temperature distribution in a semi-infinite solid with uniform
surface heat flux. Evaluating that equation at x = 0 yields

 
1/ 2

s i

2q αt π
T T

k
s


  (2)

With Ts equal to the melting temperature, we can solve for sq :

 

 

1/ 2

s i
s

1/ 2

-6 2

6 2

k T T π
q

2 αt

23.6 W/m K 1665 K 293 K π

2 4.49 10 m /s 3 s

7.82 10 W/m

     
 

   
  

  

 

Then we can solve for Fn from Eq. (1):

6 2 2

n

q πA 7.82 10  W/m π π (0.04 m) / 2
F 51.4 kN

2μaω 2 0.3 0.002 m 1000 rad/s
s
    

  
  

<

Comments: If the displacement were to be large, the heat transfer would no longer be one-
dimensional.



PROBLEM 5.99

KNOWN: Thickness and properties of DVD disk. Laser spot size and power.

FIND: Time needed to raise the storage material from 300 K to 1000 K.

SCHEMATIC:

Polycarbonate

D = 0.4 µm

L = 1 mm
Storage
material

r = 0.8

P = 1 mW

Polycarbonate

D = 0.4 µm

L = 1 mm
Storage
material

r = 0.8

P = 1 mW

ASSUMPTIONS: (1) Negligible contact resistances at the interfaces, (2) Infinite medium, (3)
Polycarbonate is transparent to laser irradiation, (4) Polycarbonate is opaque to radiation from the
heated spot, (5) Spatially-uniform laser power, (6) Motion of disk does not affect the thermal
response, (7) Infinitely thin storage material, (8) Negligible nanoscale heat transfer effects.

PROPERTIES: Polycarbonate (given): k = 0.21 W/m∙K,  = 1200 kg/m3, cp = 1260 J/kg∙K. 
Storage material (given): r = 0.8

ANALYSIS: The heat transferred from the irradiated storage material is

rq = α P (1)

From Case 13 of Table 4.1,
2

sA = πD /2 (2)

From Table 5.2b for Fo < 0.2,

s c

s i

q L 1 π π
q*(Fo) = = +

k(T - T ) 2 Fo 4


(3a)

From Table 5.2b for Fo  0.2

s c

s i

q L 0.77 2 2
q*(Fo) = = +

k(T - T ) πFo


(3b)

where 1/2
c s s

s

q
L = (A /4π)  = D/ 8  ;  q  = 

A
 (4)

and 2 2
cFo = αt/L  = 8αt/D (5)

with 3 -9 2α = k/ρc = 0.21 W/m K/(1200 kg/m  × 1260 J/kg K)= 139 × 10 m /s, 

Continued…



PROBLEM 5.99 (Cont.)

and s c r

s c s i

q L 2Pα
=

k(T - T ) πD 8k(T  - T )



-3

-6

2 × 1 × 10 W × 0.8
= 3.0623

π × 0.4 × 10  × 8  × 0.21 W/m K × (1000 - 300) K




Equations (3a) and (3b) yield

For Fo < 0.2, Fo = 0.151
For Fo  0.2, Fo = 0.127

Therefore, Fo = 0.151 <

From Equation (5),

2 -6 2
-9

-9 2

FoD 0.151 × (0.4 × 10 m)
t = = = 21.8 × 10 s = 21.8 ns

8α 8 × 139 × 10 m /s
<

COMMENTS: The actual heating rate will be slightly longer due to the finite thickness of the
storage medium.



PROBLEM 5.100

KNOWN: Closely-spaced buried tubing, annual temperature variation.

FIND: Depth associated with the soil behaving as an infinite medium.

SCHEMATIC:

ASSUMPTIONS: (1) Periodic conditions, (2) Constant properties, (3) One-dimensional heat transfer
(closely-spaced tubing), (4) Diurnal variation in ambient temperature is small relative to its annual
variation.

PROPERTIES: Table A.3: Soil (300 K):  = 2050 kg/m3, k = 0.52 W/mK, cp = 1840 J/kgK.

ANALYSIS: Since soil heating and cooling is associated with annual changes in both the ambient
and buried tubing temperatures, the burial depth, d, must be larger than twice the penetration depth
associated with periodic heating of the soil. Or,

2 2 4 8 /( )p pd k c        

The heating frequency is  = 2/tp = 2/(1 yr  365 days/yr  24 h/day  60 min/h  60 s/min) = 200
 10-9 s-1. Therefore, the required burial depth is

 2 3 -9 -18 0.52W/m K/ 2050kg/m 1840 J/kg K 200 10 sd       = 6.6 m <

COMMENTS: The installation cost increases as the burial depth increases. A tradeoff exists
between the installation cost and the attainment of constant soil temperature conditions.
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PROBLEM 5.101

KNOWN: Mass and initial temperatures of frozen ground beef. Rate of microwave power
absorbed in packaging material.

FIND: Time for beef adjacent to packaging to reach 0°C.

SCHEMATIC:

ASSUMPTIONS: (1) Beef has properties of ice, (2) Radiation and convection to environment
are neglected, (3) Constant properties, (4) Packaging material has negligible heat capacity.

PROPERTIES: Table A.3, Ice (≈ 273 K): ρ = 920 kg/m3, c = 2040 J/kg∙K, k = 1.88 W/m∙K.  

ANALYSIS: Neglecting radiation and convection losses, all the power absorbed in the packaging
material conducts into the beef. The surface heat flux is

s 2
s

q 0.5P
q = =

A 4πR




The radius of the sphere can be found from knowledge of the mass and density:

3
o

1/31/3

3

4
m = ρV = ρ π r

3

3 m 3 1 kg
R = = = 0.0638 m

4π ρ 4π 920 kg/m

  
    

   

Thus

2
s 2

0.5(1000 W)
q = = 9780 W/m

4π×(0.0638 m)


For a constant surface heat flux, the relationship in Table 5.2b, Interior Cases, sphere, can be
used. We begin by calculating q* for Ts = 0°C.

2
s o

s i

q r 9780 W/m × 0.0638 m
q* = = = 16.6

k(T - T ) 1.88 W/m K(0°C - ( - 20°C))





We proceed to solve for Fo. Assuming that Fo < 0.2, we have

* 1 π π
q -

2 Fo 4


Continued…

Beef, 1kg

Ti = -20°C

Packaging material, q

Beef, 1kg

Ti = -20°C

Packaging material, q



PROBLEM 5.101 (Cont.)

-2
π

Fo = π 2(q* + ) = 0.0026
4

 
 
 

Since this is less than 0.2, our assumption was correct. Finally we can solve for the time:

2 2
o o

2 3

t = Fo r /α = Fo r ρc/k

= (0.0026 × (0.0638 m) × 920 kg/m × 2040 J/kg K)/(1.88 W/m K) 

= 10.6 s <

COMMENTS: At the minimum surface temperature of -20°C, with T∞ = 30°C and
h = 15 W/m2∙K from Problem 5.33, the convection heat flux is 750 W/m2, which is less than 8%
of the microwave heat flux. The radiation heat flux would likely be less, depending on the
temperature of the oven walls.



PROBLEM 5.102 
 

 
KNOWN:  Cylinder with constant surface temperature.  
 
FIND:  Expression for Q/Qo as a function of Fo = αt/ro

2. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) One-dimensional conduction, (2) Constant properties, (3) Validity of the 
approximate solution of Table 5.2a. 
 
ANALYSIS:   From Table 5.2a for Fo < 0.2, 
 

   
"

2
1* 0.50 0.65    ;    

( )
s o

s i o

q r tq Fo Fo
k T T Fo r

α
π

= = − − =
−

 

 
Substituting the expression for Fo into the first equation yields 
 

   " 1/ 2
2

( ) 0.50 0.65s i o
s

o o

k T T r tq t
r r

α
πα

−⎡ ⎤−
= − −⎢ ⎥

⎣ ⎦
 

 
We desire an expression for Q/Qo. Hence, 
 

  

"

1/ 20
' 2 2 2

0

2
' 2 0.50 0.65

( )

t

o s t
t o

o o o s i o ot

r q dt
Q Q r tt dt
Q Q r c T T r r

π
α α

παπ ρ
−=

=

⎛ ⎞
= = = − −⎜ ⎟⎜ ⎟− ⎝ ⎠

∫
∫  

 
or 

2 2
2 2 0.50 0.325o

o o o

Q t r t
Q tr r

α α
πα

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦     

24       0.65Fo Fo Fo
π

= − −
      < 

 
COMMENTS:  (1) A plot of Q/Qo versus Fo is shown below. (2) The exact solution for  Q/Qo 
involves many terms that would need to be evaluated in the infinite series expression. (2) See Lavine 
and Bergman, “Small and Large Time Solutions for Surface Temperature, Surface Heat Flux, and 
Energy Input in Transient, One-Dimensional Conduction in Simple Geometries,” ASME Journal of 
Heat Transfer, Vol 130, pp. 101302-1 to 101302-8, 2008 for details. 
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PROBLEM 5.103

KNOWN: Thickness and initial temperature of composite skin. Properties of material when
intact and when delaminated. Imposed surface heat flux.

FIND: Surface temperature of (a) intact material and (b) delaminated material, after 10 and 100
seconds.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional heat conduction, (2) Bottom surface adiabatic, (3)
Constant and uniform properties, (4) Negligible convection and radiation losses.

ANALYSIS:
(a) The situation is equivalent to a plane wall of thickness 2L with heat flux at both surfaces. We
use Table 5.2b, Interior Cases, Plane Wall of thickness 2L. We first calculate Fo for the intact
case at t = 10 s.

1
2 2

3 2

k tαt
Fo = =

L ρcL

1.6 W/m K × 10 s
=

1200 kg/m × 1200 J/kg K× (0.015 m)

= 0.0494





Since Fo < 0.2,

1 π 1 π
q* = = 3.99

2 Fo 2 0.0494


Thus

s,1 s 1

2

T (10 s) = Ti + q L/k q*

= 20°C + 5000 W/m × 0.015 m/(1.6 W/m K × 3.99)





= 31.8°C <

At t = 100 s, Fo = 0.494 > 0.2, thus
-1

1
q* Fo + = 1.21

3

 
  

 
Continued…

L = 15 mm

sq = 5 kW/m2

Composite skin

Ti = 20°C

ρ = 1200 kg/m3

c = 1200 J/kg∙K

Intact:

k1 = 1.6 W/m∙K

Delaminated:

k2 = 1.1 W/m∙K

L = 15 mm

sq = 5 kW/m2

Composite skin

Ti = 20°C

ρ = 1200 kg/m3

c = 1200 J/kg∙K

Intact:

k1 = 1.6 W/m∙K

Delaminated:

k2 = 1.1 W/m∙K



PROBLEM 5.103 (Cont.)

and

s,1 s 1

2

T (100 s) = Ti + q L/k q*

= 20°C + 5000 W/m × 0.015 m/(1.6 W/m K × 1.21)





= 58.8°C <

(b) Repeating the calculations for k2 = 1.1 W/m∙K, we find 

Ts,2(10 s) = 34.2°C <
Ts,2(100 s) = 65.9°C <

COMMENTS: (1) For t = 10 s, the Fourier number is less than 0.2, and the skin behaves as if it
were semi-infinite. However for t = 100 s, the heat has penetrated sufficiently far so that the
presence of the insulated bottom surface affects the temperature distribution. The surface
temperature is higher than it would be for a semi-infinite solid.
(2) The surface temperatures are sufficiently different for the intact and delaminated cases so that
detection is possible. The difference increases with increasing heating time, but if the heating
time is too long the elevated temperature will damage the material.
(3) Convection and radiation losses may not be negligible.



PROBLEM 5.104

KNOWN: Plane wall, infinite cylinder and sphere each subjected to a constant surface heat flux.

FIND: The ratio of (i) the actual surface temperature minus the initial temperature, (Ts,act – Ti), to (ii)
the value of this temperature difference associated with lumped capacitance behavior, (Ts,lc – Ti), for
each of the three geometries. Criteria associated with (Ts,act – Ti)/(Ts,lc – Ti)  1.1.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) Fo  0.2.

ANALYSIS: From Table 5.2b, the approximate solutions for all three geometries may be expressed
as

1"

2
,( )

s c

s act i c

q L kt
a b

k T T cL


 

  
  

(1)

where Lc = L for the plane wall, and Lc = ro for the infinite cylinder and the sphere. The constants a
and b have the following values.

Geometry Lc a b

Plane wall L 1 1/3
Infinite cylinder ro 2 1/4
Sphere ro 3 1/5

For the lumped-capacitance analysis with constant heat flux, we note that in general,
"

,( )s s s lc iq A t cV T T  . Substituting expressions for the surface area and volume of each of the three

geometries results in the general expression,

  "
, /s lc i s cT T aq t cL  (2)

where the constant a is the same as in the table above. Solving Eq. (1) for (Ts,act – Ti) and dividing the
resulting expression by Eq. (2) results in
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 
 

 

"

2
,

"
,

1
1

s c
c

s act i c

s lc i s

q L k t
a b cL

k cT T L b
aFo b

aFo aFoT T aq t




  
           


(3)

Therefore, for the plane wall,

 
 

,

,

1
1 1

3

s act i

s lc i

T T b

aFo FoT T


   


<

for the infinite cylinder,

 
 

,

,

1
1 1

8

s act i

s lc i

T T b

aFo FoT T


   


<

for the sphere,

 
 

,

,

1
1 1

15

s act i

s lc i

T T b

aFo FoT T


   


<

The preceding equations may be solved for the Fourier number associated with (Ts,act – Ti)/(Ts,lc – Ti) =
1.1, yielding critical Fourier numbers, Foc = 3.33, 1.25 and 0.667 for the plane wall, infinite cylinder,
and sphere, respectively. Lumped capacitance behavior is exhibited at dimensionless times greater
than Foc.

COMMENTS: (1) The calculated values of the Fourier number are each greater than 0.2. Hence, use
of the approximate solutions for Fo  0.2 is justified. (2) The dimensionless time at which lumped
capacitance behavior is reached varies with the geometry.



PROBLEM 5.105

KNOWN: Energy generation rate within a buried spherical container of known size.

FIND: Time needed for the surface of the sphere to come within 10 degrees Celsius of the
steady-state temperature.

SCHEMATIC:

Soil

T2 = 20°C

T1(t)

Eg = 500 W
·

Soil

T2 = 20°C

T1(t)

Eg = 500 W
·

ASSUMPTIONS: (1) Infinite medium, (2) Constant properties, (3) Negligible contact resistance
between the sphere and the soil.

PROPERTIES: Table A.3, soil (300 K): k = 0.52 W/mK,  = 2050 kg/m3, cp = 1840 J/kgK.

ANALYSIS: The steady-state temperature difference may be obtained from case 12 of Table 4.1

with 1/2 2 1/2
c sL = (A /4π)  = (πD /4π)  = D/2

2
s 1,ss 2 1,ss 2q = kA (T  - T ) = 0.52 W/m K × π × (2m) × (T - T ) = 500 W

from which we find

1,ss 2T - T = 76.52°C

Therefore, at the time of interest, T1 - T2 = 76.52°C - 10°C = 66.52°C
From Table 5.2b, sphere, exterior case,

2 1/2
1 2

q(D/2) 1
q*(Fo) = =

πD k(T  - T ) 1 - exp(Fo) erfc(Fo ) 
 

or
1/2

1 500 W
= = 1.15

2π × 2 m × 0.52 W/m K × 66.52K1- exp (Fo) erfc (Fo )  
 

Solving for Fo yields Fo = 17.97.

Knowing 3 -7 2
pα = k/ρc  = 0.52 W/m K (1050 kg/m  × 1840 J/kg K) = 1.379 × 10 m /s 

2 2 2

-7 2

Fo × (D/2) FoD 17.97 × (2 m)
t = = =

α 4α 4 × 1.379 × 10 m /s

8 1 day 1 h 1 year
t = 1.303 × 10 s × × × = 4.13 years.

24 h 3600 s 365 days
<

COMMENTS: The time to reach the steady-state is significant. In practice, it is often difficult to
ascertain when steady-state is achieved due to the slow thermal response time of many systems.



PROBLEM 5.106

KNOWN: Sphere with constant surface temperature.

FIND: Expression for Q/Qo as a function of Fo = t/ro
2.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) Validity of the
approximate solution of Table 5.2a.

ANALYSIS: From Table 5.2a for Fo < 0.2,

"

2

1
* 1 ;

( )
s o

s i o

q r t
q Fo

k T T Fo r




   



Substituting the expression for Fo into the first equation yields

" 1/2( )
1s i o

s
o

k T T r
q t

r 

  
  

 

We desire an expression for Q/Qo. Hence,

2 "

1/20
3 2

0

4
3

1
(4 / 3) ( )

t

o s t
t o

o o s i o t

r q dt
Q r

t dt
Q r c T T r




 





 
   

  




or

1/ 2
2

3 2 o

o o

Q r
t t

Q r





 
  

 

2
3 Fo Fo



 
  

 

<

COMMENTS: (1) A plot of Q/Qo versus Fo is shown below. (2) The exact solution for Q/Qo

involves many terms that would need to be evaluated in the infinite series expression.
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PROBLEM 5.107

KNOWN: Desired minimum temperature response of a 3 measurement.

FIND: Minimum sample thickness that can be measured.

ASSUMPTIONS: (1) Constant properties, (2) Two-dimensional conduction, (3) Semi-infinite
medium, (4) Negligible radiation and convection losses from the metal strip and the top surface of
the sample.

PROPERTIES: (Example 5.10): k = 1.11 W/m∙K, a = 4.37 × 10-7 m2/s.

ANALYSIS: Equation 5.74 maybe rearranged to yield

2
s

ΔTLπk
ω = 2exp 2 C  - 

Δq

  
  
   

-3

-3

0.1°C × 3.5 × 10  m × π × 1.11 W/m K
ω = 2 × exp 2 5.35 - 

3.5 × 10 W

  
      

3ω = 44.2 × 10 rad/s
-7 2α = 4.37 × 10 m /s

Therefore

-7 2 3 -6
pδ  = α/ω  = 4.37 × 10  m /s  44.2 × 10  rad/s  = 3.1 × 10  m = 3.1 μm

The minimum sample thickness is therefore 3.1 m. <

COMMENTS: (1) To ensure the thickness of the sample is adequate, the actual minimum
thickness should be greater than the thermal penetration depth. (2) The sample thickness could be
increased further by increasing the amplitude of the heating rate, qs. (3) It is commonly desired
to measure very thin samples to discern the effect of the top and bottom boundaries of a thin film
on the conduction heat transfer rate, as depicted in Figure 2.6. As the film becomes thinner, the
experimental uncertainties increase.



PROBLEM 5.108

KNOWN: Stability criterion for the explicit method requires that the coefficient of the p
mT

term of the one-dimensional, finite-difference equation be zero or positive.

FIND: For Fo > 1/2, the finite-difference equation will predict values of p+1
mT which violate

the Second law of thermodynamics. Consider the prescribed numerical values.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction in x, (2) Constant properties, (3) No
internal heat generation.

ANALYSIS: The explicit form of the finite-difference equation, Eq. 5.81, for an interior
node is

   p+1 p p p
m mm+1 m-1T Fo T T 1 2 Fo T .   

The stability criterion requires that the coefficient of p
mT be zero or greater. That is,

 
1

1 2 Fo 0 or Fo .
2

  

For the prescribed temperatures, consider situations for which Fo = 1, ½ and ¼ and calculate
p+1
mT .

   
   
   

p+1
m
p+1
m
p+1
m

Fo 1 T 1 100 100 C 1 2 1 50 C 250 C

Fo 1/2 T 1 2 100 100 C 1 2 1/ 2 50 C 100 C

Fo 1/4 T 1/ 4 100 100 C 1 2 1/ 4 50 C 75 C.

      

      

      

/

  

  

  

Plotting these distributions above, note that when Fo = 1, p+1
mT is greater than 100C, while

for Fo = ½ and ¼ , p+1
mT  100C. The distribution for Fo = 1 is thermodynamically

impossible: heat is flowing into the node during the time period t, causing its temperature to
rise; yet heat is flowing in the direction of increasing temperature. This is a violation of the
Second law. When Fo = ½ or ¼, the node temperature increases during t, but the
temperature gradients for heat flow are proper. This will be the case when Fo  ½, verifying
the stability criterion.



PROBLEM 5.109

KNOWN: Thin rod of diameter D, initially in equilibrium with its surroundings, Tsur,

suddenly passes a current I; rod is in vacuum enclosure and has prescribed electrical

resistivity, e, and other thermophysical properties.

FIND: Transient, finite-difference equation for node m.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional, transient conduction in rod, (2) Surroundings are
much larger than rod, (3) Properties are constant and evaluated at an average temperature, (4)
No convection within vacuum enclosure.

ANALYSIS: The finite-difference equation is derived from
the energy conservation requirement on the control volume,

Acx, where 2
cA D / 4 and P D.  

The energy balance has the form
p+1 p

2 m m
in out g st a b rad e

T T
E E E E q q q I R cV .

t



      


   

where 2
g eE I R and e e cR x/A .  Using Fourier’s law to express the conduction terms,

qa and qb, and Eq. 1.7 for the radiation exchange term, qrad, find

 
p p p p p+1 p

m m 4,p 4 2 e m mm-1 m+1
c c m sur c

c

T T T T x T T
kA kA P x T T I cA x .

x x A t


  

   
      

  

Divide each term by cAc x/t, solve for p+1
mT and regroup to obtain

 p+1 p p p
m mm-1 m+12 2

k t k t
T T T 2 1 T

c cx x 

  
       

  

 
2

4,p 4 e
m sur 2c c

IP t t
T T .

A c cA

 

 

 
    

Recognizing that Fo =  t/x
2
, regroup to obtain

     
2 22

p+1 p p p 4,p 4 e
m m m surm-1 m+1 2c c

I xP x
T Fo T T 1 2 Fo T Fo T T Fo.

kA kA

  
        

The stability criterion is based upon the coefficient of the p
mT term written as

Fo  ½. <
COMMENTS: Note that we have used the forward-difference representation for the time derivative;
see Section 5.10.1. This permits convenient treatment of the non-linear radiation exchange term.



PROBLEM 5.110

KNOWN: One-dimensional wall suddenly subjected to uniform volumetric heating and
convective surface conditions.

FIND: Finite-difference equation for node at the surface, x = -L.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional transient conduction, (2) Constant properties, (3)
Uniform q.

ANALYSIS: There are two types of finite-difference equations for the explicit and implicit
methods of solution. Using the energy balance approach, both types will be derived.

Explicit Method. Perform an energy balance on the surface node shown above,
p+1 p
o o

in out g st conv cond
T T

E E E E q q qV cV
t




     


     (1)

    
p p p+1 p

op o o1
o

T T T Tx x
h 1 1 T T k 1 1 q 1 1 c 1 1 .

x 2 2 t


     
                

 (2)

For the explicit method, the temperatures on the LHS are evaluated at the previous time (p).
The RHS provides a forward-difference approximation to the time derivative. Divide Eq. (2)

by cx/2t and solve for p+1
oT .

   p+1 p p p p
o o o o12

h t k t t
T 2 T T 2 T T q T .

c x cc x 


  
     

 


Introducing the Fourier and Biot numbers,

  2Fo k/ c t/ x Bi h x/k    

 
2

p+1 p p
o o1

q x
T 2 Fo T Bi T 1 2 Fo 2 Fo Bi T .

2k


 
        

  


(3)

The stability criterion requires that the coefficient of p
oT be positive. That is,

   1 2 Fo 2 Fo Bi 0 or Fo 1/2 1 Bi .      (4) <
Implicit Method. Begin as above with an energy balance. In Eq. (2), however, the
temperatures on the LHS are evaluated at the new (p+1) time. The RHS provides a backward-
difference approximation to the time derivative.

 
p+1 p+1 p+1 p

op+1 o o1
o

T T T Tx x
h T T k q c

x 2 2 t


     
          

 (5)

  
2

p+1 p+1 p
o o1

q x
1 2 Fo Bi 1 T 2 Fo T T 2Bi Fo T Fo .

k



        


(6) <

COMMENTS: Compare these results (Eqs. 3, 4 and 6) with the appropriate expression in
Table 5.3.



PROBLEM 5.111

KNOWN: Volume of sphere and oil, initial sphere and oil temperatures, convection coefficient,
thickness and thermal conductivity of dielectric film coating.

FIND: (a) Steady-state sphere temperature of the sphere, (b) explicit expressions for sphere and oil
temperatures and stability requirements, (c) Sphere and oil temperatures after one time step for t =
1000, 10,000 and 20,000 s, (d) time needed for the coated sphere to reach 140C using an implicit
finite difference formulation and solution and graph of thermal response of sphere and oil.

SCHEMATIC:

ASSUMPTIONS: (1) Dielectric layer has negligible thermal capacitance compared to steel sphere,
(2) Constant properties, (3) Negligible contact resistance between dielectric coating and steel, (4) Oil
bath is well-stirred, (5) Oil bath is well-insulated.

PROPERTIES: Table A-1, AISI 1010 Steel (  500 140 C / 320 C 600 KT       ): s = 7832 kg/m3,

cs = 559 J/kgK, ks = 48.8 W/mK. Table A-5, Engine Oil (T = 380 K): o = 836 kg/m3, co = 2250
J/kgK.

ANALYSIS: (a) Let U be the overall heat transfer coefficient that combines the effects of
convection resistance and conduction resistance associated with the dielectric film. That is, U = 1/R"
where R" = l /kf + 1/h = 0.002m/0.04 W/m·K + 1/3300 W/m2·K = 0.050 + 0.0003 = 0.0503 m2K/W.
Therefore, U = 19.88 W/m2·K. The effective Biot number is

2( / 3) 19.88W/m K (0.300m / 6)
0.02

48.8W/m K
c o

e
UL U r

Bi
k k


   



Since the Bie < 0.1, a lumped capacitance approach is appropriate for the sphere. Similarly, since the
oil is well-mixed, a lumped capacitance approach is appropriate for the oil.

The sphere’s volume is Vs = (4/3)(D/2)3 = (4/3)(0.300m/2)3 = 0.01414m3. The oil volume is Vo = 1
m3 – 0.01414m3 = 0.986m3. Applying energy balances to both the sphere and the oil yields

, ,( ) ( )s s s s i ss o o o ss o ic V T T c V T T    (1)

Continued…

Sphere, D = 300 mm
AISI 1010 steel
Ts,i = 500C

Oil
To,i = 100°C

h = 3300 W/m2·K

Dielectric layer, k = 0.04 W/m·K

l = 2 mm

Sphere, D = 300 mm
AISI 1010 steel
Ts,i = 500C

Oil
To,i = 100°C

h = 3300 W/m2·K

Dielectric layer, k = 0.04 W/m·K

l = 2 mm
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where Tss is the steady-state temperature of both the oil and the sphere. Rearranging Eq. (1) yields

, ,

3 3 3 3

3 3 3 3

( )

7832kg/m 559J/kg K 0.01414m 500 C 836kg/m 2250J/kg K 0.986m 100 C

(836kg/m 2250J/kg K 0.986m 7832kg/m 559J/kg K 0.01414m )

s s s i s o o o o i
ss

o o o s s s

c V T c V T
T

c V c V

 

 






          


      

= 112.9C <

(b) Recognizing that the oil temperature varies with time, applying Eqs. 5.2 and 5.77 to the sphere
yields

1 ( )p p
p ps s o

s s
s s s

UA T T
T t T

c V
 
    (2a)

Similarly, applying Eqs. 5.2 and 5.77 to the well-mixed oil leads to the expression

1 ( )p p
p ps o s

o o
o o o

UA T T
T t T

c V
 
    (2b)

We require the coefficient of Tp to be positive. Thus,

s

cV
t

UA


  = 11,000 s for the steel and 330,000 s for the oil. <

(c) Substituting values for the properties, initial temperatures, and volumes into Eqs. (2a) and (2b) for
one time step yields the following.

2 2
2

3 3

19.88W/m K 0.300m (500 C 100 C)
500 C 0.0363 C/s 500 C

7832 kg/m 559 J/kg K 0.01414m
sT t t

      
          

  

2 2
2 3

3 3

19.88W/m K 0.300m (100 C 500 C)
100 C 1.212 10 C /s 100 C

836 kg/m 2250 J/kg K 0.986m
oT t t

       
          

  

Results for various time steps are:

t (s) 2
sT (C) 2

oT (C)

1000 463.7 101.2
10,000 136.7 112.1

20,000 -226.5 124.2 <

Specification of a time step larger than the stability criterion leads to unrealistic results, as evident in
the table above.

Continued…
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(d) Using the IHT code listed in the Comments, the following response was found for the sphere and
oil temperatures as a function of quench time using a time step of t = 100s. The time required for the

sphere to reach a temperature of 140C is 28,100 s = 7.81 h <

The time associated with a large oil bath (constant oil temperature) was found in Problem 5.9 using the

lumped capacitance method and is t = 25,360 s = 7.04 h. <

COMMENTS: (1) The IHT Code is shown below. (2) The bath temperature at 7.81 h is 112C,
which is nearly equal to the oil’s steady-state temperature.

rhos = 7832 //kg/m^3
cs = 559 //J/kg-K
Vs = 4*pi*0.15*0.15*0.15/3 //m^3
Tis = 500 //Celsius

rhoo = 836 //kg/m^3
co = 2250 //J/kg-K
Tio = 100 //Celsius
Vo = 1-Vs //m^3

U = 19.88 //W/m^2-K
As = 4*pi*0.15^2 //m^2
thr = t/60/60 //h

Der(Ts,t) = -U*As*(Ts - To)/rhos/cs/Vs
Der(To,t) = -U*As*(To - Ts)/rhoo/co/Vo

Sphere and Oil Bath Temperature vs. Time
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PROBLEM 5.112 
 
KNOWN:  Plane wall, initially having a linear, steady-state temperature distribution with boundaries 
maintained at T(0,t) = T1 and T(L,t) = T2, suddenly experiences a uniform volumetric heat generation due 
to the electrical current.  Boundary conditions T1 and T2 remain fixed with time. 
 
FIND:  (a) On T-x coordinates, sketch the temperature distributions for the following cases: initial 
conditions (t ≤ 0),  steady-state conditions (t → ∞) assuming the maximum temperature exceeds T2, and 
two intermediate times; label important features; (b) For the three-nodal network shown, derive the finite-
difference equation using either the implicit or explicit method; (c) With a time increment of  Δt = 5 s, 
obtain values of Tm for the first 45s of elapsed time; determine the corresponding heat fluxes at the 
boundaries; and (d) Determine the effect of mesh size by repeating the foregoing analysis using grids of 5 
and 11 nodal points.  
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Two-dimensional, transient conduction, (2) Uniform volumetric heat generation 
for t ≥ 0, (3) Constant properties. 
 
PROPERTIES:  Wall (Given):   ρ = 4000 kg/m3, c = 500 J/kg⋅K, k = 10 W/m⋅K. 
 
 
ANALYSIS:  (a) The temperature distribution 
on T-x coordinates for the requested cases are 
shown below.  Note the following key features:  
(1) linear initial temperature distribution, (2) 
non-symmetrical parabolic steady-state 
temperature distribution, (3) gradient at x = L is 
first positive, then zero and becomes negative, 
and (4) gradient at x = 0 is always positive. 

 
(b) Performing an energy balance on the control volume about node m above, for unit area, find 
 in out g stE E E E− + =& & & &  

 ( ) ( ) ( ) ( )
p 1 p

2 m 1 m m mT T T T T Tk 1 k 1 q 1 x 1 c x
x x t

ρ
+− − −

+ + Δ = Δ
Δ Δ Δ

&  

 [ ] p 1 p
1 2 m m m

p

q tFo T T 2T T T
cρ

+Δ
+ − + = −

&
 

For the Tm term in brackets, use “p” for explicit and “p+1” for implicit form, 

Explicit: ( ) ( )p 1 p p p
m m p1 2T Fo T T 1 2Fo T q t cρ+ = + + − + Δ&  (1) < 

Implicit: ( ) ( )p 1 p 1 p 1 p
m p m1 2T Fo T T q t c T 1 2Foρ+ + +⎡ ⎤= + + Δ + +⎢ ⎥⎣ ⎦

&  (2) < 

Continued... 
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(c) With a time increment Δt = 5s, the FDEs, Eqs. (1) and (2) become 
 

Explicit: p 1 p
m mT 0.5T 75+ = +  (3) 

Implicit: ( )p 1 p
m mT T 75 1.5+ = +  (4) 

where 

 
( )2 23

k t 10 W m K 5s
Fo 0.25

c x 4000 kg m 500 J kg K 0.010 mρ

Δ ⋅ ×
= = =

Δ × ⋅
 

 

 
7 3

3
q t 2 10 W m 5s

50 K
c 4000 kg m 500 J kg Kρ
Δ × ×

= =
× ⋅

&
 

Performing the calculations, the results are tabulated as a function of time, 
 

p t (s) T1 (°C) Tm (°C) T2 (°C) 
   Explicit Implicit   

0 0 0 50 50 100  
1 5 0 100.00 83.33 100  
2 10 0 125.00 105.55 100  
3 15 0 137.50 120.37 100  
4 20 0 143.75 130.25 100  
5 25 0 146.88 136.83 100  
6 30 0 148.44 141.22 100  
7 35 0 149.22 144.15 100  
8 40 0 149.61 146.10 100  
9 45 0 149.80 147.40 100 < 

 
The heat flux at the boundaries at t = 45s follows from the energy balances on control volumes about the 

boundary nodes, using the explicit results for p
mT , 

 
Node 1: in out g stE E E E− + =& & & &  

 ( ) ( )
p
m 1

x
T T

q 0, t k q x 2 0
x
−′′ + + Δ =
Δ

&  

 ( ) ( )p
x m 1q 0, t k T T x q x 2′′ = − − Δ − Δ&  (5) 

 
 ( ) ( ) 7 3

xq 0, 45s 10 W m K 149.8 0 K 0.010 m 2 10 W m 0.010 m 2′′ = − ⋅ − − × ×  

 ( ) 2 2 2
xq 0, 45s 149,800 W m 100,000 W m 249,800 W m′′ = − − = −  < 

 

Node 2: ( ) ( )
p
m 2

x
T T

k q L, t q x 2 0
x
− ′′− + Δ =
Δ

&  

 ( ) ( )p
x m 2q L, t k T T x q x 2 0′′ = − Δ + Δ =&  (6) 

 
 

Continued... 
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 ( ) ( ) 7 3
xq L, t 10 W m K 149.80 100 C 0.010 m 2 10 W m 0.010 m 2′′ = ⋅ − + × ×  

 ( ) 2 2 2
xq L, t 49,800 W m 100,000 W m 149,800 W m′′ = + = +  < 

 
(d) To determine the effect of mesh size, the above analysis was repeated using grids of 5 and 11 nodal 
points, Δx = 5 and 2 mm, respectively.  Using the IHT Finite-Difference Equation Tool, the finite-
difference equations were obtained and solved for the temperature-time history.  Eqs. (5) and (6) were 

used for the heat flux calculations.  The results are tabulated below for t = 45s, where p
mT (45s) is the 

center node, 
 

Mesh Size    
Δx p

mT  (45s) xq′′  (0,45s) xq′′  (L,45s) 

(mm) (°C) kW/m2 kW/m2 
10 149.8 -249.8 +149.8 
5 149.3 -249.0 +149.0 
2 149.4 -249.1 +149.0 

 
COMMENTS:  (1) The center temperature and boundary heat fluxes are quite insensitive to mesh size 
for the condition. 
 
(2) The copy of the IHT workspace for the 5 node grid is shown below. 

 
 

// Mesh size - 5 nodes, deltax = 5 mm 
// Nodes a, b(m), and c are interior nodes 
 
// Finite-Difference Equations Tool - nodal 
equations 
/* Node a: interior node; e and w labeled b and 
1. */ 
rho*cp*der(Ta,t) = 
fd_1d_int(Ta,Tb,T1,k,qdot,deltax) 
/* Node b: interior node; e and w labeled c and 
a. */ 
rho*cp*der(Tb,t) = 
fd_1d_int(Tb,Tc,Ta,k,qdot,deltax) 
/* Node c: interior node; e and w labeled 2 and 
b. */ 
rho*cp*der(Tc,t) = 
fd_1d_int(Tc,T2,Tb,k,qdot,deltax) 
 
// Assigned Variables: 
deltax = 0.005 
k = 10 
rho = 4000 
cp = 500 
qdot = 2e7 
T1 = 0 
T2 = 100 

 

/* Initial Conditions:  
Tai = 25 
Tbi = 50 
Tci = 75   */ 
 
/* Data Browser Results - Nodal 
temperatures at 45s 
Ta Tb     Tc       t 
99.5 149.3    149.5   45  */ 
 
// Boundary Heat Fluxes - at t = 45s 
q''x0 = - k * (Taa - T1 ) / deltax - qdot 
* deltax / 2 
q''xL = k * (Tcc - T2 ) / deltax + qdot * 
deltax /2 
//where Taa = Ta (45s), Tcc = 
Tc(45s) 
Taa = 99.5 
Tcc = 149.5 
/* Data Browser results  
q''x0         q''xL 

 -2.49E5 1.49E5     */ 
 

 



PROBLEM 5.113 
 
KNOWN:   Solid cylinder of plastic material (α = 6 × 10-7 m2/s), initially at uniform temperature of Ti = 
20°C, insulated at one end (T4), while other end experiences heating causing its temperature T0 to increase 
linearly with time at a rate of a = 1°C/s. 
 
FIND:  (a) Finite-difference equations for the 4 nodes using the explicit method with Fo = 1/2 and (b) 
Surface temperature T0 when T4 = 35°C. 
 
SCHEMATIC: 

 
ASSUMPTIONS: (1) One-dimensional, transient conduction in cylinder, (2) Constant properties, and (3) 
Lateral and end surfaces perfectly insulated. 
 
ANALYSIS:  (a) The finite-difference equations using the explicit method for the interior nodes (m = 1, 
2, 3) follow from Eq. 5.81 with Fo = 1/2, 
 

 ( ) ( ) ( )p 1 p p p p p
m mm 1 m 1 m 1 m 1T Fo T T 1 2Fo T 0.5 T T+

+ − + −= + + − = +  (1) 
 
From an energy balance on the control volume node 4 as shown above yields with Fo = 1/2 
 

 in out g stE E E E− + =& & & &  ( )p 1 p
a b 4 4q q 0 cV T T tρ ++ + = − Δ  

 

 ( ) ( )( )p p p 1 p
3 4 4 40 k T T x c x 2 T T tρ ++ − Δ = Δ − Δ  

 

 ( )p 1 p p p
4 3 4 3T 2FoT 1 2Fo T T+ = + − =   (2) 

 
(b) Performing the calculations, the temperature-time history is tabulated below, where T0 = Ti +a⋅t where 
a = 1°C/s and t = p⋅Δt with, 
 

 ( )22 7 2Fo t x 0.5 t 0.5 0.006m 6 10 m s 30sα −= Δ Δ = Δ = × =  
 

p t T0 T1 T2 T3 T4 
 (s) (°C) (°C) (°C) (°C) (°C) 

0 0 20 20 20 20 20 
1 30 50 20 20 20 20 
2 60 80 35 20 20 20 
3 90 110 50 27.5 20 20 
4 120 140 68.75 35 23.75 20 
5 150 170 87.5 46.25 27.5 23.75 
6 180 200 108.1 57.5 35 27.5 
7 210 230 - - - 35 

When T4(210s, p = 7) = 35°C, find T0(210s) = 230°C. < 



PROBLEM 5.114

KNOWN: Three-dimensional, transient conduction.

FIND: Explicit finite difference equation for an interior node, stability criterion.

SCHEMATIC:

ASSUMPTIONS: (1) Constant properties, (2) Equal grid spacing in all three directions, (3) No
heat generation.

ANALYSIS: We begin with the three-dimensional form of the transient heat equation, Equation
2.19

2 2 2

2 2 2

1 T T T T
= + +

α t x y z

   

   

The finite-difference approximation to the time derivative is given by Equation 5.77:
p+1 p
m,n,q m,n,q

m,n,q

T - TT
=

t Δt





The spatial derivatives for the x- and y- directions are given by Equations 4.27 and 4.28, with an
extra subscript q. By analogy, the z-direction derivative is approximated as

2
m,n,q+1 m,n,q-1 m,n,q

2 2
m,n,q

T + T - 2TT

z (Δz)






Evaluating the spatial derivatives at time step p for the explicit method, assuming ∆x = ∆y = ∆z, 
yields

Continued…

m, n + 1, q

m, n, q - 1

m + 1, n, q
m - 1, n, q

m, n, q + 1
m, n - 1, q

∆y

∆x
∆z

z

x

y

Δx = Δy = Δz

m, n + 1, q

m, n, q - 1

m + 1, n, q
m - 1, n, q

m, n, q + 1
m, n - 1, q

∆y

∆x
∆z

z

x

y

Δx = Δy = Δz
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p p pp+1 p
m,n,qm,n,q m,n,q m+1,n,q m-1,n,q

2

p p p
m,n,qm,n+1,q m,n-1,q

2

p p p
m,n,qm,n,q+1 m,n,q-1

2

T + T - 2TT - T1
=

α Δt (Δx)

T + T - 2T
+

(Δx)

T + T - 2T
+

(Δx)

Solving for the nodal temperature at time step p+1 results in
p p p p p pp+1

m,n,q m+1,n,q m-1,n,q m,n+1,q m,n-1,q m,n,q+1 m,n,q-1

p
m,n,q

T = Fo(T + T + T + T + T + T )

+ (1 - 6Fo)T

where Fo = 2αΔt/(Δx) . <
The stability criterion is determined by the requirement that the coefficient of p

m,n,qT  ≥ 0. Thus 

 Fo ≤ 1/6                <

COMMENTS: These results could also have been obtained using the energy balance method
applied to a control volume about the interior node.
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KNOWN: Nodal point located at boundary between two materials A and B.

FIND: Two-dimensional explicit, transient finite difference equation.

SCHEMATIC:

ASSUMPTIONS: (1) Two-dimensional conduction, (2) No heat generation, (3) Constant
properties (different in each material).

ANALYSIS: We perform an energy balance on the control volume around node 0.

in st

1A 1B 3A 3B 2 4 st,A st,B

E = E

q + q + q + q + q + q = E + E

 

 

Using q1A as an example,

1 0
1A A A 1 0

T - T Δy
q = k w = k (T - T )w/2

Δx 2

where w is the depth into the page. The quantities q1B, q3A, and q3B can be found similarly. Then
q2 is given by

2 0
2 A A 2 0

T - T
q = k Δx w = k (T  - T )w

Δy

and similarly for q4.

The storage term st,AE is given by

p+1 p
0 0

st,A A A

T - TΔy
E  = ρ  c  Δx 

2 Δt


and similarly for st,BE .

Combining equations yields

Continued….

q2

q4

q3A

q3Bq1B

q1A

1

4

2

3

∆y

∆x

Material A

kA, ρA, cA

Material B

kB, ρB, cB∆x = ∆y

0

q2

q4

q3A

q3Bq1B

q1A

1

4

2

3

∆y

∆x

Material A

kA, ρA, cA

Material B

kB, ρB, cB∆x = ∆y

q2

q4

q3A

q3Bq1B
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1 0 1 0 3 0 3 0
A B A B

p+1 p2
0 0

A 2 0 B 4 0 A A B B

T - T T - T T - T T - T
k + k + k + k

2 2 2 2

T - T(Δx)
 k (T  - T ) + k (T  - T ) = (ρ c  + ρ c )

2 Δt



Rearranging, we find

 p+1 p p p p pA B
A B A B0 1 3 2 4 0

(Fo + Fo )
T = (T + T ) + Fo T + Fo T + 1 - 2(Fo + Fo ) T

2
<

where

A B
A B2 2

A A B B A A B B

2k Δt 2k Δt
Fo = , Fo =

(ρ c  + ρ c )(Δx) (ρ c  + ρ c )(Δx)

Note, that 2
A AFo α Δt/(Δx) .

COMMENTS: Note that when the material properties are the same for materials A and B, the
result agrees with Equation 5.79.



PROBLEM 5.116 
  
KNOWN:  A 0.12 m thick wall, with thermal diffusivity 1.5 × 10-6 m2/s, initially at a uniform 
temperature of 85°C, has one face suddenly lowered to 20°C while the other face is perfectly insulated. 
 
FIND:  (a) Using the explicit finite-difference method with space and time increments of Δx = 30 mm 
and Δt = 300s, determine the temperature distribution within the wall 45 min after the change in surface 
temperature; (b) Effect of Δt on temperature histories of the surfaces and midplane. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) One-dimensional transient conduction, (2) Constant properties. 
 
ANALYSIS:  (a) The finite-difference equations for the interior points, nodes 0, 1, 2, and 3, can be 
determined from Equation 5.81, 
 

 ( ) ( )p 1 p p p
m mm 1 m 1T Fo T T 1 2Fo T+

− += + + −  (1) 

with 

 ( )26 22Fo t x 1.5 10 m s 300s 0.03m 1/ 2α −= Δ Δ = × × = . (2) 
 
Note that the stability criterion, Equation 5.82, Fo ≤ 1/2, is satisfied.  Hence, combining Equations (1) and 

(2), ( )p 1 p p
m m 1 m 1T 1/ 2 T T+

− += +  for m = 0, 1, 2, 3.  Since the adiabatic plane at x = 0 can be treated as a 

symmetry plane, Tm-1 = Tm+1 for node 0 (m = 0).  The finite-difference solution is generated in the table 
below using t = p⋅Δt = 300 p (s) = 5 p (min). 
 

p t(min) T0 T1 T2 T3 TL(°C)  
0 0 85 85 85 85 20  
1  85 85 85 52.5 20  
2 10 85 85 68.8 52.5 20  
3  85 76.9 68.8 44.4 20  
4 20 76.9 76.9 60.7 44.4 20  
5  76.9 68.8 60.7 40.4 20  
6 30 68.8 68.8 54.6 40.4 20  
7  68.8 61.7 54.6 37.3 20  
8 40 61.7 61.7 49.5 37.3 20  
9 45 61.7 55.6 49.5 34.8 20 < 

 
The temperature distribution can also be determined from the one-term approximation of the exact 
solution.  The insulated surface is equivalent to the midplane of a wall of thickness 2L.  Thus,

 
( )

( )

6 2

2 2
1.5 10 m s 45 60 stFo 0.28

L 0.12m

α −× × ×
= = =                and               Bi .→∞  

Continued... 
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From Table 5.1, ζ1 = 1.5707, C1 = 1.2733.  Then from Equation 5.44, 
 
 2 2

o 1 1C exp( Fo) 1.2733exp( 1.5707 0.28) 0.64θ ζ∗ = − = − × =     or    

( ) ( ) ( )o iT T 0, t T T T 20 C 0.64 85 20 C 61.5 Coθ∞ ∞
∗= = + − = + − =oo o . 

 
This value shows excellent agreement with 61.7°C for the finite-difference method. 
 
(b) Using the IHT Finite-Difference Equation Tool Pad for One-Dimensional Transient Conduction, 
temperature histories were computed and results are shown for the insulated surface (T0) and the 
midplane, as well as for the chilled surface (TL). 
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Apart from small differences during early stages of the transient, there is excellent agreement between 
results obtained for the two time steps.  The temperature decay at the insulated surface must, of course, 
lag that of the midplane. 



PROBLEM 5.117

KNOWN: Thickness, initial temperature and thermophysical properties of molded plastic part.
Convection conditions at one surface. Other surface insulated.

FIND: Surface temperatures after one hour of cooling.

SCHEMATIC:

Plastic product, T = 80 Ci
o

T = 20 Co
oo

h = 100 W/m -K2

Air jets

= 1200 kg/m3

k = 0.03 W/m-K
c = 1500 J/kg-K

T10 T9 T8 T10 T2 T1 T0

L = 60 mm x = 6 mm x

ASSUMPTIONS: (1) One-dimensional conduction in product, (2) Negligible radiation, at cooled
surface, (3) Negligible heat transfer at insulated surface, (4) Constant properties.

ANALYSIS: Adopting the implicit scheme, the finite-difference equation for the cooled surface
node is given by Eq. (5.96), from which it follows that

  p 1 p 1 p
10 9 101 2 Fo 2 FoBi T 2Fo T 2 FoBiT T 

    

The general form of the finite-difference equation for any interior node (1 to 9) is given by Eq. (5.97),

   p 1 p 1 p 1 p
m mm 1 m 11 2 Fo T Fo T T T
  

    

The finite-difference equation for the insulated surface node may be obtained by applying the

symmetry requirement to Eq. (5.97); that is, p p
m 1 m 1T T .  Hence,

  p 1 p 1 p
o o11 2 Fo T 2FoT T   

For the prescribed conditions, Bi = hx/k = 100 W/m
2
K (0.006m)/0.30 W/mK = 2. If the explicit

method were used, the most restrictive stability requirement would be given by Eq. (5.87). Hence, for

Fo (1+Bi)  0.5, Fo  0.167. With Fo = t/x
2

and  = k/c = 1.67 10
-7

m
2
/s, the corresponding

restriction on the time increment would be t  36s. Although no such restriction applies for the
implicit method, a value of t = 30s is chosen, and the set of 11 finite-difference equations is solved
using the Tools option designated as Finite-Difference Equations, One-Dimensional, and Transient
from the IHT Toolpad. At t = 3600s, the solution yields:

   10 0T 3600s 24.1 C T 3600s 71.5 C    <

COMMENTS: (1) More accurate results may be obtained from the one-term approximation to the
exact solution for one-dimensional, transient conduction in a plane wall. With Bi = hL/k = 20, Table

5.1 yields 1 = 1.496 rad and C1 = 1.2699. With Fo = t/L
2

= 0.167, Eq. (5.41) then yields To = T +

(Ti - T) C1 exp  2
1 Fo 72.4 C,   and from Eq. (5.43b), Ts = T + (Ti - T) cos  1 = 24.5C.

Since the finite-difference results do not change with a reduction in the time step (t < 30s), the
difference between the numerical and analytical results is attributed to the use of a coarse grid. To
improve the accuracy of the numerical results, a smaller value of x should be used.

Continued …
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(2) Temperature histories for the front and back surface nodes are as shown.

Although the surface temperatures rapidly approaches that of the coolant, there is a significant lag in
the thermal response of the back surface. The different responses are attributable to the small value of
 and the large value of Bi.
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PROBLEM 5.118

KNOWN: Thickness and thermal diffusivity of a plane wall. Initial and boundary conditions.

FIND: (a) Time required for the left face temperature to reach 50% of its maximum possible
temperature reduction and (b) Time required for the left face temperature to recover to a 20%
temperature reduction when the right face temperature is returned to its initial value.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional heat transfer, (2) Constant properties.

PROPERTIES: Thermal diffusivity,  = 6  10-7 m2/s (given).

ANALYSIS: Using the IHT Finite-Difference Equation Tool Pad for One-Dimensional Transient
Conduction, the following temperatures may be computed using the IHT code in the Comments
section. Note that for this solution, the conditions at the right face have been incorporated by
specifying a very large convection coefficient at the right face so that T5  T.

(a) For cooling conditions, the initial temperature is arbitrarily set to unity, and T= Ts,r = 0.5. If a
steady-state solution were achieved, it would correspond to a uniform wall temperature of Tss = Ts,r =
0.5. Hence we seek to determine the time when T0 = (Ti + Ts,r)/2 = 0.75. The following representative
results are obtained using a time step of t = 2 s.

t(s) T0 T1 T2 T3 T4 T5

20 0.952 0.937 0.888 0.798 0.665 0.5
40 0.852 0.835 0.787 0.710 0.611 0.5
60 0.765 0.752 0.714 0.656 0.582 0.5

64 0.750 0.738 0.702 0.647 0.577 0.5 <

(b) For the heating conditions, we set the initial conditions in IHT to the temperatures shown at t = 64
in the table above. We set T = 1 and monitor the transient response of the system. The following
representative results are obtained.

t(s) T0 T1 T2 T3 T4 T5

20 0.735 0.741 0.763 0.812 0.893 1.0
40 0.789 0.798 0.826 0.872 0.932 1.0
60 0.840 0.848 0.870 0.906 0.950 1.0
80 0.880 0.886 0.903 0.930 0.963 1.0

94 0.902 0.907 0.921 0.943 0.970 1.0 <
Continued…
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COMMENTS: (1) The IHT Code for cooling and heating is shown below. (2) Note the thermal
response of T0 after heating ensues at the right face. The value of T0 continues to decrease for a short
time before it begins to increase in value. Does this make sense to you? (3) Part (a) was solved
analytically in Problem 5.57 yielding t = 63 s. The numerical and analytical solutions are in
agreement to within an uncertainty associated with the time step of t = 2 s.

/* Node 0: surface node (w-orientation); transient conditions; e labeled 1. */
rho * cp * der(T0,t) = fd_1d_sur_w(T0,T1,k,qdot,deltax,Tinf,h1,qfla0)

/* Node 1: interior node; e and w labeled e and 0. */
rho*cp*der(T1,t) = fd_1d_int(T1,T2,T0,k,qdot,deltax)

/* Node 2: interior node; e and w labeled 3 and 1. */
rho*cp*der(T2,t) = fd_1d_int(T2,T3,T1,k,qdot,deltax)

/* Node 3: interior node; e and w labeled 4 and 2. */
rho*cp*der(T3,t) = fd_1d_int(T3,T4,T2,k,qdot,deltax)

/* Node 4: interior node; e and w labeled 4 and 3. */
rho*cp*der(T4,t) = fd_1d_int(T4,T5,T3,k,qdot,deltax)

/* Node 5: surface node (e-orientation); transient conditions; w labeled 4. */
rho * cp * der(T5,t) = fd_1d_sur_e(T5,T4,k,qdot,deltax,Tinf,h2,qfla5)

// Cooling
//Tinf = 0.5 //Initial Conditions are T = 1.0 everywhere.
//Heating //Initial Conditions are the temperatures at t = 64 s.
Tinf = 1.0

h1 = 0 //Insulated left wall
h2 = 1*10^10 //Right wall at Tinf since h2 is nearly infinite
qfla0 = 0 //Zero applied heat flux at left wall
qfla5 = 0 //Zero applied heat flux at right wall
deltax = 2/1000 //meters
qdot = 0 //W/m^3

// Set k, rho and cp values so that alpha = k/(rho*cp) = 6*10^-7 m2/s

k = 6*10^-7 //W/m-K
rho = 1 //kg
cp =1 //J/kg-K



PROBLEM 5.119 
 
KNOWN:   Plane wall, initially at a uniform temperature To = 25°C, has one surface (x = L) suddenly 
exposed to a convection process with T∞  = 50°C and h = 1000 W/m2⋅K, while the other surface (x = 0) is 
maintained at To.  Also, the wall suddenly experiences uniform volumetric heating with q&  = 1 × 107 
W/m3.  See also Problem 2.60. 
 
FIND:  (a) Using spatial and time increments of Δx = 4 mm and Δt = 1s, compute and plot the 
temperature distributions in the wall for the initial condition, the steady-state condition, and two 
intermediate times, and  (b) On xq′′ -t coordinates, plot the heat flux at x = 0 and x = L.  At what elapsed 
time is there zero heat flux at x = L? 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) One-dimensional, transient conduction and (2) Constant properties. 
 
ANALYSIS:  (a) Using the IHT Finite-Difference Equations, One-Dimensional, Transient Tool, the 
temperature distributions were obtained and plotted below. 
 
(b)  The heat flux, ′′qx (L,t), can be expressed in terms of Newton’s law of cooling, 

( ) ( )p
x 10q L, t h T T∞′′ = − .   

From the energy balance on the control volume about node 0 shown above, 

 ( )x g aq 0, t E q 0′′ ′′+ + =&                   ( ) ( ) ( )p
x o1q 0, t q x 2 k T T x′′ = − Δ − − Δ&  

From knowledge of the temperature distribution, the heat fluxes are computed and plotted. 
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COMMENTS:  The steady-state analytical solution has the form of Eq. 3.44 where C1 = 6500 m-1/°C 

and C2 = 25°C.  Find ( ) 5 2
xq 0, 3.25 10 W / m′′ ∞ = − ×  and ( ) 4 2

xq L 7.5 10 W / m .′′ = + ×   Comparing with 
the graphical results above, we conclude that steady-state conditions are not reached in 600 s. 



PROBLEM 5.120

KNOWN: Fuel element of Example 5.11 is initially at a uniform temperature of 250C with

no internal generation; suddenly a uniform generation, 8 3q 10 W/m , occurs when the

element is inserted into the core while the surfaces experience convection (T,h).

FIND: Temperature distribution 1.5s after element is inserted into the core.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional transient conduction, (2) Constant properties, (3)
q 0, initially; at t > 0, q is uniform.

ANALYSIS: As suggested, the explicit method with a space increment of 2mm will be used.
Using the nodal network of Example 5.11, the same finite-difference equations may be used.

Interior nodes, m = 1, 2, 3, 4

 
 

2
p+1 p p p
m mm-1 m+1

q x
T Fo T T 1 2 Fo T .

2

 
     
 
 


(1)

Midplane node, m = 0

Same as Eq. (1), but with p p
m-1 m+1T T .

Surface node, m = 5

 
 

2
p+1 p p
5 54

q x
T 2 Fo T Bi T 1 2Fo 2Bi Fo T .

2k


 
        
 
 


(2)

The most restrictive stability criterion is associated with Eq. (2), Fo(1+Bi)  1/2. Consider the
following parameters:

 

 
   

2

2 2

6 2

1100W/m K 0.002mh x
Bi 0.0733

k 30W/m K
1/2

Fo 0.466
1 Bi

Fo x 0.002m
t 0.466 0.373s.

5 10 m / s 

 
  



 



   


Continued …
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To be well within the stability limit, select t = 0.3s, which corresponds to

 
 

6 2

2 2

t 5 10 m / s 0.3s
Fo 0.375

x 0.002m
t p t 0.3p s .

   
  


  

Substituting numerical values with 8 3q 10 W/m , the nodal equations become

   2p+1 p p8 3
0 1 0T 0.375 2T 10 W/m 0.002m / 30W/m K 1 2 0.375 T      

  

p+1 p p
0 1 0T 0.375 2T 13.33 0.25 T   

  
(3)

p+1 p p p
1 0 2 1T 0.375 T T 13.33 0.25 T    

  
(4)

p+1 p p p
2 1 3 2T 0.375 T T 13.33 0.25 T    

  
(5)

p+1 p p p
3 2 4 3T 0.375 T T 13.33 0.25 T    

  
(6)

p+1 p p p
54 3 4T 0.375 T T 13.33 0.25 T    

  
(7)

 p+1 p p
5 54

13.33
T 2 0.375 T 0.0733 250 1 2 0.375 2 0.0733 0.375 T

2

 
           

 

p+1 p p
5 54T 0.750 T 24.99 0.195 T .   

  
(8)

The initial temperature distribution is Ti = 250C at all nodes. The marching solution,

following the procedure of Example 5.11, is represented in the table below.

p t(s) T0 T1 T2 T3 T4 T5(C)

0 0 250 250 250 250 250 250
1 0.3 255.00 255.00 255.00 255.00 255.00 254.99
2 0.6 260.00 260.00 260.00 260.00 260.00 259.72
3 0.9 265.00 265.00 265.00 265.00 264.89 264.39
4 1.2 270.00 270.00 270.00 269.96 269.74 268.97

5 1.5 275.00 275.00 274.98 274.89 274.53 273.50 <
The desired temperature distribution T(x, 1.5s), corresponds to p = 5.

COMMENTS: Note that the nodes near the midplane (0,1) do not feel any effect of the
coolant during the first 1.5s time period.



PROBLEM C5.121

KNOWN: Dimensions and properties of acrylic and steel plates. Initial temperatures.

FIND: Time needed to bring external surface of the acrylic to its softening temperature. Plot of the
average acrylic and steel plate temperatures and acrylic surface temperature for 0  t  300 s.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) Negligible contact
resistance.

PROPERTIES: Acrylic (given): A = 1990 kg/m3, cA = 1470 J/kgK and kA = 0.21 W/mK. Steel
(given): B = 7800 kg/m3, cB = 500 J/kgK and kB = 45 W/mK.

ANALYSIS: We begin by writing energy balances on each of the 20 control volumes using the
implicit method,

Node 1:
   1 1 1

A1 1 2 1

A A
2

p p p pT T k T Ty
c

t y


   


 

Nodes 2 – 9:
     1 1 1 1 1

n n A A1 1

A A

p p p p p p
n nn nT T k T T k T T

c y
t y y



    
   

  
  

Node 10:
     1 1 1 1 1

A10 10 9 10 11 10

A A "

p p p p p p

t

T T k T T T T
c y

t y R


      
  

 

Node 11:
     1 1 1 1 1

B11 11 10 11 12 11

B B "

p p p p p p

t

T T T T k T T
c y

t yR


      
  

 

Nodes 12 – 19:
     1 1 1 1 1

n n B B1 1

B B

p p p p p p
n nn nT T k T T k T T

c y
t y y



    
   

  
  

Node 20:
   1 1 1

B20 20 19 20

B B
2

p p p pT T k T Ty
c

t y


   


 

Continued…
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where "

A B

/ 2 / 2
t

y y
R

k k

 
 

Also, note that the average temperature of each material may be written as

0

1
( )

L

y

T T y dy
L



 

or, in finite difference form,

A 1 2 3 4 5 6 7 8 9 10
A

1

2

y
T T T y T y T y T y T y T y T y T y T y

L

 
                    

and

B 11 12 13 14 15 16 17 18 19 20
B

1

2

y
T T y T y T y T y T y T y T y T y T y T

L

 
                    

The preceding equations were solved using IHT code that is listed in the Comments. The spatially-
averaged temperatures of the two plates, as well as the external temperature of the acrylic, T1, are

shown in the plot below. <
From the simulation, we also find that the surface of the acrylic reaches Tsoft = 90C at t = 87 s. <

COMMENTS: (1) Ultimately, the temperatures of the two plates will reach the same steady-state
value. The steady-state temperature may be found by recognizing the energy gained by the acrylic is
lost by the steel, LAcA(Tss – Ti,A) = LBcB(Ti,B – Tss) yielding Tss = 180C, as evident in the plot of the
average temperatures. (2) If the surface of the acrylic in contact with the metal is assumed to be of
constant temperature and equal to 300C, the external surface of the acrylic reaches the softening
temperature at t = 74 s. (3) The IHT code is shown on the next page.

Continued…
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PROBLEM 5.121 (Cont.)

//Geometry and Discretization

LA = 0.005 //m
LB = 0.005 //m

delyA = LA/9.5 //m
delyB = LB/9.5 //m

//Properties

kA = 0.21 //W/mK
kB = 45 //W/mK
cA = 1470 //J/kgK
cB = 500 //J/kgK
rhoA = 1990 //kg/m^3
rhoB = 7800 //kg/m^3

//Initial Temperatures
TiA = 20 //C
TiB = 300 //C

//Interface Resistance
Rt = delyA/kA/2 + delyB/kB/2

//Node 1
rhoA*cA*(delyA/2)*der(T1,t) = (kA/delyA)*(T2 - T1)

//Nodes 2 through 9
rhoA*cA*delyA*der(T2,t) = (kA/delyA)*(T1 - T2) + (kA/delyA)*(T3 - T2)
rhoA*cA*delyA*der(T3,t) = (kA/delyA)*(T2 - T3) + (kA/delyA)*(T4 - T3)
rhoA*cA*delyA*der(T4,t) = (kA/delyA)*(T3 - T4) + (kA/delyA)*(T5 - T4)
rhoA*cA*delyA*der(T5,t) = (kA/delyA)*(T4 - T5) + (kA/delyA)*(T6 - T5)
rhoA*cA*delyA*der(T6,t) = (kA/delyA)*(T5 - T6) + (kA/delyA)*(T7 - T6)
rhoA*cA*delyA*der(T7,t) = (kA/delyA)*(T6 - T7) + (kA/delyA)*(T8 - T7)
rhoA*cA*delyA*der(T8,t) = (kA/delyA)*(T7 - T8) + (kA/delyA)*(T9 - T8)
rhoA*cA*delyA*der(T9,t) = (kA/delyA)*(T8 - T9) + (kA/delyA)*(T10 - T9)

//Node 10
rhoA*cA*delyA*der(T10,t) = (kA/delyA)*(T9 - T10) + (1/Rt)*(T11 - T10)

//Node 11
rhoB*cB*delyB*der(T11,t) = (1/Rt)*(T10 - T11) + (kB/delyB)*(T12 - T11)

//Nodes 12 through 19
rhoB*cB*delyB*der(T12,t) = (kB/delyB)*(T11 - T12) + (kB/delyB)*(T13 - T12)
rhoB*cB*delyB*der(T13,t) = (kB/delyB)*(T12 - T13) + (kB/delyB)*(T14 - T13)
rhoB*cB*delyB*der(T14,t) = (kB/delyB)*(T13 - T14) + (kB/delyB)*(T15 - T14)
rhoB*cB*delyB*der(T15,t) = (kB/delyB)*(T14 - T15) + (kB/delyB)*(T16 - T15)
rhoB*cB*delyB*der(T16,t) = (kB/delyB)*(T15 - T16) + (kB/delyB)*(T17 - T16)
rhoB*cB*delyB*der(T17,t) = (kB/delyB)*(T16 - T17) + (kB/delyB)*(T18 - T17)
rhoB*cB*delyB*der(T18,t) = (kB/delyB)*(T17 - T18) + (kB/delyB)*(T19 - T18)
rhoB*cB*delyB*der(T19,t) = (kB/delyB)*(T18 - T19) + (kB/delyB)*(T20 - T19)

//Node 20
rhoB*cB*(delyB/2)*der(T20,t) = (kB/delyB)*(T19 - T20)

//Average Temperatures

TavgA*LA = T1*delyA/2 + T2*delyA + T3*delyA + T4*delyA + T5*delyA + T6*delyA + T7*delyA +
T8*delyA + T9*delyA + T10*delyA

TavgB*LB = T11*delyB + T12*delyB + T13*delyB + T14*delyB + T15*delyB + T16*delyB + T17*delyB
+ T18*delyB + T19*delyB + T20*delyB/2

//Steady State Temperature
LA*cA*rhoA*(TiA - Tss) = LB*cB*rhoB*(Tss - TiB)



PROBLEM 5.122

KNOWN: Conditions associated with heat generation in a rectangular fuel element with surface
cooling. See Example 5.11.

FIND: (a) The temperature distribution 1.5 s after the change in operating power; compare your
results with those tabulated in the example, (b) Calculate and plot temperature histories at the mid-
plane (00) and surface (05) nodes for 0 t  400 s; determine the new steady-state temperatures, and
approximately how long it will take to reach the new steady-state condition after the step change in
operating power. Use the IHT Tools | Finite-Difference Equations | One-Dimensional | Transient
conduction model builder as your solution tool.

SCHEMATIC:

q = 1x10 W/m

k = 30 W/m-K

1
7 3

q = 2x10 W/m
= 5x10 m /s

2
7 3

-6 2

.

.
Coolant

L = 10 mm

Symmetry
adiabat

Fuel elementT = 250 Co
oo

x

h = 1100 W/m -K2
00 01 02 03 04 05

ASSUMPTIONS: (1) One dimensional conduction in the x-direction, (2) Uniform generation, and (3)
Constant properties.

ANALYIS: The IHT model builder provides the transient finite-difference equations for the implicit
method of solution. Selected portions of the IHT code used to obtain the results tabulated below are
shown in the Comments.

(a) Using the IHT code, the temperature distribution (C) as a function of time (s) up to 1.5 s after the
step power change is obtained from the summarized results copied into the workspace

t T00 T01 T02 T03 T04 T05
1 0 357.6 356.9 354.9 351.6 346.9 340.9
2 0.3 358.1 357.4 355.4 352.1 347.4 341.4
3 0.6 358.6 357.9 355.9 352.6 347.9 341.9
4 0.9 359.1 358.4 356.4 353.1 348.4 342.3
5 1.2 359.6 358.9 356.9 353.6 348.9 342.8
6 1.5 360.1 359.4 357.4 354.1 349.3 343.2

(b) Using the code, the mid-plane (00) and surface (05) node temperatures are plotted as a function of
time.

Continued …
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PROBLEM 5.122 (Cont.)

Note that at t  240 s, the wall has nearly reached the new steady-state condition for which the nodal
temperatures (C) were found as:

T00 T01 T02 T03 T04 T05
465 463.7 459.7 453 443.7 431.7

COMMENTS: (1) Can you validate the new steady-state nodal temperatures from part (b) by
comparison against an analytical solution?

(2) Will using a smaller time increment improve the accuracy of the results? Use your code with t =
0.15 s to justify your explanation.

(3) Selected portions of the IHT code to obtain the nodal temperature distribution using spatial and
time increments of x = 2 mm and t = 0.3 s, respectively, are shown below. For the solve-
integration step, the initial condition for each of the nodes corresponds to the steady-state temperature

distribution with 1q .

// Tools | Finite-Difference Equations | One-Dimensional | Transient
/* Node 00: surface node (w-orientation); transient conditions; e labeled 01. */
rho * cp * der(T00,t) = fd_1d_sur_w(T00,T01,k,qdot,deltax,Tinf01,h01,q''a00)
q''a00 = 0 // Applied heat flux, W/m^2; zero flux shown
Tinf01 = 20 // Arbitrary value
h01 = 1e-8 // Causes boundary to behave as adiabatic
/* Node 01: interior node; e and w labeled 02 and 00. */
rho*cp*der(T01,t) = fd_1d_int(T01,T02,T00,k,qdot,deltax)
/* Node 02: interior node; e and w labeled 03 and 01. */
rho*cp*der(T02,t) = fd_1d_int(T02,T03,T01,k,qdot,deltax)
/* Node 03: interior node; e and w labeled 04 and 02. */
rho*cp*der(T03,t) = fd_1d_int(T03,T04,T02,k,qdot,deltax)
/* Node 04: interior node; e and w labeled 05 and 03. */
rho*cp*der(T04,t) = fd_1d_int(T04,T05,T03,k,qdot,deltax)
/* Node 05: surface node (e-orientation); transient conditions; w labeled 04. */
rho * cp * der(T05,t) = fd_1d_sur_e(T05,T04,k,qdot,deltax,Tinf05,h05,q''a05)
q''a05 = 0 // Applied heat flux, W/m^2; zero flux shown
Tinf05 = 250 // Coolant temperature, C
h05 = 1100 // Convection coefficient, W/m^2.K

// Input parameters
qdot = 2e7 // Volumetric rate, W/m^3, step change
deltax = 0.002 // Space increment
k = 30 // Thermophysical properties
alpha = 5e-6
rho = 1000
alpha = k / (rho * cp)

/* Steady-state conditions, with qdot1 = 1e7 W/m^3; initial conditions for step change
T_x = 16.67 * (1 - x^2/L^2) + 340.91 // See text
Seek T_x for x = 0, 2, 4, 6, 8, 10 mm; results used for Ti are
Node T_x
00 357.6
01 356.9
02 354.9
03 351.6
04 346.9
05 340.9 */



PROBLEM 5.123

KNOWN: Thickness, initial temperature, speed and thermophysical properties of steel in a thin-slab
continuous casting process. Surface convection conditions.

FIND: Time required to cool the outer surface to a prescribed temperature. Corresponding value of
the midplane temperature and length of cooling section.

SCHEMATIC:

Cast steel, T = 1400 Ci
o

Symmetry plane
T = 50 Co

oo

h = 5000 W/m -K2

Water jets

= 7800 kg/m3

k = 30 W/m-K
c = 700 J/kg-K

T10 T9 T8 T10 T2 T1 T0

L = 100 mm V = 15 mm/sx = 10 mm x

ASSUMPTIONS: (1) One-dimensional conduction, (2) Negligible radiation at quenched surfaces,
(3) Symmetry about the midplane, (4) Constant properties.

ANALYSIS: Adopting the implicit scheme, the finite-difference equation for the cooled surface
node is given by Eq. (5.96), from which it follows that

  p 1 p 1 p
10 9 101 2 Fo 2 FoBi T 2 Fo T 2 FoBiT T 

    

The general form of the finite-difference equation for any interior node (1 to 9) is given by Eq. (5.97),

   p 1 p 1 p 1 p
m mm 1 m 11 2Fo T Fo T T T  

    

The finite-difference equation for the midplane node may be obtained by applying the symmetry

requirement to Eq. (5.94); that is, p p
m 1 m 1T T .  Hence,

  p 1 p 1 p
0 1 01 2 Fo T 2FoT T   

For the prescribed conditions, Bi = hx/k = 5000 W/m
2
K (0.010m)/30 W/mK = 1.67. If the explicit

method were used, the stability requirement would be given by Eq. (5.87). Hence, for Fo(1 + Bi) 

0.5, Fo  0.187. With Fo = t/x
2

and  = k/c = 5.49  10
-6

m
2
/s, the corresponding restriction on

the time increment would be t  3.40s. Although no such restriction applies for the implicit method,
a value of t = 1s is chosen, and the set of 11 finite-difference equations is solved using the Tools
option designated as Finite-Difference Equations, One-Dimensional and Transient from the IHT

Toolpad. For T10 (t) = 300C, the solution yields

t 161s <

Continued …



PROBLEM 5.123 (Cont.)

 0T t 1364 C  <

With a casting speed of V = 15 mm/s, the length of the cooling section is

 csL Vt 0.015m / s 161s 2.42m   <

COMMENTS: (1) With Fo = t/L
2

= 0.088 < 0.2, the one-term approximation to the exact solution
for one-dimensional conduction in a plane wall cannot be used to confirm the foregoing results.
However, using the exact solution from the Models, Transient Conduction, Plane Wall Option of IHT,

values of T0 = 1366C and Ts = 200.7C are obtained and are in good agreement with the finite-
difference predictions. The accuracy of these predictions could still be improved by reducing the
value of x.

(2) Temperature histories for the surface and midplane nodes are plotted for 0 < t < 600s.

While T10 (600s) = 124C, To (600s) has only dropped to 879C. The much slower thermal

response at the midplane is attributable to the small value of  and the large value of Bi =
16.67.
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PROBLEM 5.124

KNOWN: Thickness and thermal diffusivity of a plane wall. Initial and boundary conditions.

FIND: (a) Temperature distribution at t = 30 min using an explicit finite difference technique with a
time step of 600 s and a space increment of 30 mm. (b) Temperature distribution at t = 30 min using
an implicit finite difference technique with a time step of 600 s and a space increment of 30 mm.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional heat transfer, (2) Constant properties.

PROPERTIES: Thermal diffusivity,  = 1.5  10-6 m2/s (given).

ANALYSIS: (a) The finite-difference equations for the interior points, nodes 0, 1, 2 and 3, can be
determined from Eq. 5.81,

 1
1 1 (1 2 )p p p p

m mm mT Fo T T Fo T
     (1)

The Fourier number is

2 6 2 2/ 1.5 10 m /s 600s /(0.03m) 1Fo t x        (2)

Note that the stability criterion of Eq. 5.82 is not satisfied. Nonetheless, we will combine Eqs. (1) and
(2) to yield

1
1 1

p p p p
m mm mT T T T

   

Since the adiabatic surface at x = 0 can be treated as a symmetry plane, we note that Tm-1 = Tm+1 for
node 0. The finite-difference solution is shown in the table below.

p t (min) T0 T1 T2 T3 T4 = TL (C)

0 0 85 85 85 85 20
1 10 85 85 85 20 20
2 20 85 85 20 85 20

3 30 85 20 150 -45 20 <
Continued…
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PROBLEM 5.124 (Cont.)

(b) Note that for this solution, the conditions at the right face have been incorporated by specifying a
very large convection coefficient at the right face so that T4  T. The IHT code is shown in the
COMMENTS section. The following results were obtained.

p t (min) T0 T1 T2 T3 T4 = TL (C)

0 0 85 85 85 85 20
1 10 82.2 80.9 75.3 60.1 20
2 20 77.3 74.8 66.3 48.8 20

3 30 71.4 68.5 59.1 42.7 20 <

COMMENTS: (1) The IHT Code for part (b) is shown at the end of the Comments. (2) Note the
thermal response of part (a) is unrealistic. This unrealistic result is expected since the stability criterion
is not satisfied. (3) Part (b) was repeated with a smaller time step of t = 300 s yielding the following
results. Note that these results differ from those associated with the larger time step. Just because the
implicit finite-difference method is inherently stable, the solutions may still be dependent upon the
time step and, as such, are incorrect.

p t (min) T0 T1 T2 T3 T4 = TL (C)

0 0 85 85 85 85 20
1 10 82.8 81.2 74.8 57.5 20
2 20 77.7 74.8 65.3 46.9 20
3 30 71.3 68.1 58.1 41.4 20

/* Node 0: surface node (w-orientation); transient conditions; e labeled 1. */
rho * cp * der(T0,t) = fd_1d_sur_w(T0,T1,k,qdot,deltax,Tinf,h1,qfla0)

/* Node 1: interior node; e and w labeled e and 0. */
rho*cp*der(T1,t) = fd_1d_int(T1,T2,T0,k,qdot,deltax)

/* Node 2: interior node; e and w labeled 3 and 1. */
rho*cp*der(T2,t) = fd_1d_int(T2,T3,T1,k,qdot,deltax)

/* Node 3: interior node; e and w labeled 4 and 2. */
rho*cp*der(T3,t) = fd_1d_int(T3,T4,T2,k,qdot,deltax)

/* Node 4: surface node (e-orientation); transient conditions; w labeled 3. */
rho * cp * der(T4,t) = fd_1d_sur_e(T4,T3,k,qdot,deltax,Tinf,h2,qfla4)

Tinf = 20 //Initial Conditions are T = 85 everywhere (C)
h1 = 0 //Insulated left wall
h2 = 1e10 //Right wall at Tinf since h2 is nearly infinite
qfla0 = 0 //Zero applied heat flux at left wall
qfla4 = 0 //Zero applied heat flux at right wall
deltax = 30/1000 //meters
qdot = 0 //W/m^3

// Set k, rho and cp values so that alpha = 1.5*10^-6 m2/s
k = 1.5e-6 //W/m-K
rho = 1 //kg
cp =1 //J/kg-K



PROBLEM 5.125

KNOWN: Very thick plate, initially at a uniform temperature, Ti, is suddenly exposed to a

convection cooling process (T,h).

FIND: Temperatures at the surface and a 45mm depth after 3 minutes using finite-difference
method with space and time increments of 15mm and 18s.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional transient conduction, (2) Plate approximates semi-
infinite medium, (3) Constant properties.

ANALYSIS: The grid network representing the plate is shown above. The finite-difference
equation for node 0 is given by Eq. 5.90 for one-dimensional conditions or Eq. 5.85,

   p+1 p p
0 1 0T 2 Fo T Bi T 1 2 Fo 2 Bi Fo T .       (1)

The numerical values of Fo and Bi are

 

 

6 2

2 2

2 -3

t 5.6 10 m / s 18s
Fo 0.448

x 0.015m

100 W/m K 15 10 mh x
Bi 0.075.

k 20 W/m K

   
  


  
  



Recognizing that T = 15C, Eq. (1) has the form

p+1 p p
0 0 1T 0.0359 T 0.897 T 1.01.   (2)

It is important to satisfy the stability criterion, Fo (1+Bi)  1/2. Substituting values,
0.448 (1+0.075) = 0.482  1/2, and the criterion is satisfied.

The finite-difference equation for the interior nodes, m = 1, 2…, follows from Eq. 5.78,

   p+1 p p p
m mm+1 m-1T Fo T T 1 2Fo T .    (3)

Recognizing that the stability criterion, Fo  1/2, is satisfied with Fo = 0.448,

 p+1 p p p
m mm+1 m-1T 0.448 T T 0.104T .   (4)

Continued …



PROBLEM 5.125 (Cont.)

The time scale is related to p, the number of steps in the calculation procedure, and t, the
time increment,

t p t.  (5)

The finite-difference calculations can now be performed using Eqs. (2) and (4). The results
are tabulated below.

p t(s) T0 T1 T2 T3 T4 T5 T6 T7(K)

0 0 325 325 325 325 325 325 325 325
1 18 304.2 324.7 325 325 325 325 325 325
2 36 303.2 315.3 324.5 325 325 325 325 325
3 54 294.7 313.7 320.3 324.5 325 325 325 325
4 72 293.0 307.8 318.9 322.5 324.5 325 325 325
5 90 287.6 305.8 315.2 321.5 323.5 324.5 325 325
6 108 285.6 301.6 313.5 319.3 322.7 324.0 324.5 325
7 126 281.8 299.5 310.5 317.9 321.4 323.3 324.2
8 144 279.8 296.2 308.6 315.8 320.4 322.5
9 162 276.7 294.1 306.0 314.3 319.0
10 180 274.8 291.3 304.1 312.4

Hence, find

   10 10
0 3T 0, 180s T 275 C T 45mm, 180s T 312 C.     <

COMMENTS: (1) The above results can be readily checked against the analytical solution
represented in Fig. 5.8 (see also Eq. 5.63). For x = 0 and t = 180s, find

 

   

1/ 2

1/ 22 -6 21/ 2

x
0

2 t

100 W/m K 5.60 10 m / s 180sh t
0.16

k 20 W/m K







  
 


for which the figure gives

i

i

T T
0.15

T T






so that,

     
 

i iT 0, 180s 0.15 T T T 0.15 15 325 C 325 C

T 0, 180s 278 C.

     



 



For x = 45mm, the procedure yields T(45mm, 180s) = 316C. The agreement with the
numerical solution is nearly within 1%.



PROBLEM 5.126

KNOWN: Sudden exposure of the surface of a thick slab, initially at a uniform temperature,
to convection and to surroundings at a high temperature.

FIND: (a) Explicit, finite-difference equation for the surface node in terms of Fo, Bi, Bir, (b)

Stability criterion; whether it is more restrictive than that for an interior node and does it
change with time, and (c) Temperature at the surface and at 30mm depth for prescribed
conditions after 1 minute exposure.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional transient conduction, (2) Thick slab may be
approximated as semi-infinite medium, (3) Constant properties, (4) Radiation exchange is
between small surface and large surroundings.

ANALYSIS: (a) The explicit form of the FDE for
the surface node may be obtained by applying an
energy balance to a control volume about the node.

   
in out conv rad cond st

p p
op p 1

o r sur o

E E q q q E

T T
h T T h T T k 1

x


         


     



  

p+1 p
o oT Tx

c 1
2 t


 

    
(1)

where the radiation process has been linearized, Eq. 1.9.

   
2p p p p 2

r r o sur o sur sur0h h T , T T T T T .
          

(2)

Divide Eq. (1) by cx/2t and regroup using these definitions to obtain the FDE:

  2
r rFo k/ c t/ x Bi h x/k Bi h x/k       (3,4,5)

   p+1 p p
o r sur r o1T 2Fo Bi T Bi T T 1 2 Bi Fo 2Bi Fo 2Fo T .           (6) <

(b) The stability criterion for Eq. (6) requires that the coefficient of p
oT be positive.

   r r1 2Fo Bi Bi 1 0 or Fo 1/2 Bi Bi 1 .       (7) <
The stability criterion for an interior node, Eq. 5.82, is Fo  1/2. Since Bi + Bir > 0, the

stability criterion of the surface node is more restrictive. Note that Bir is not constant but

depends upon hr which increases with increasing p
oT (time). Hence, the restriction on Fo

increases with increasing p
oT (time).

Continued …
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(c) Consider the prescribed conditions with negligible convection (Bi = 0). The FDEs for the
thick slab are:

Surface (0)    pp+1 p
o r sur r o1T 2Fo Bi Fo Bi T T 1 2Bi Fo 2Bi Fo 2Fo T           (8)

Interior (m1)    p+1 p p p
m mm+1 m-1T Fo T T 1 2Fo T    (9,5,7,3)

The stability criterion from Eq. (7) with Bi = 0 is,

 rFo 1/2 1 Bi  (10)

To proceed with the explicit, marching solution, we need to select a value of t (Fo) that will
satisfy the stability criterion. A few trial calculations are helpful. A value of t = 15s

provides Fo = 0.105, and using Eqs. (2) and (5), hr(300K, 1000K) = 72.3 W/m
2
K and Bir =

0.482. From the stability criterion, Eq. (10), find Fo  0.337. With increasing p
oT , hr and Bir

increase: hr(800K, 1000K) = 150.6 W/m
2
K, Bir = 1.004 and Fo  0.249. Hence, if

p
oT 800K, t 15s or Fo 0.105    satisfies the stability criterion.

Using t = 15s or Fo = 0.105 with the FDEs, Eqs. (8) and (9), the results of the solution are

tabulated below. Note how p p
r rh and Bi are evaluated at each time increment. Note that t =

pt, where t = 15s.

p t(s) T h Bio r
p

r/ / T1(K) T2 T3 T4 ….

0 0 300 300 300 300 300
72.3

0.482

1 15 370.867 300 300 300 300
79.577

0.5305

2 30 426.079 307.441 300 300 300
85.984

0.5733

3 45 470.256 319.117 300.781 300 300
91.619

0.6108

4 60 502.289 333.061 302.624 300.082 300

After 60s(p = 4), To(0, 1 min) = 502.3K and T3(30mm, 1 min) = 300.1K. <
COMMENTS: (1) The form of the FDE representing the surface node agrees with Eq. 5.90
if this equation is reduced to one-dimension.

(2) We should recognize that the t = 15s time increment represents a coarse step. To
improve the accuracy of the solution, a smaller t should be chosen.



PROBLEM 5.127

KNOWN: One-dimensional convective heating and cooling of a plane slab with Bi1 = 10 (for Heating
Phase 1, beginning at Fo = 0 and ending at Fo = Fo1 = 0.1), Bi2 = 1 (for Cooling Phase 2, beginning at
Fo = Fo1).

FIND: (a) Dimensionless form of the heat equation, initial and boundary conditions for Phase 1, (b)
Dimensionless form of the heat equation, initial and boundary conditions for Phase 2, (c) Finite

difference solution for *
0 (x* = 1, Fo), *

0 (x* = 0, Fo) and *
0 (x* = 0.5, Fo) for Fo1 = 0.1 over the

range 0  Fo  0.5 using x* = 0.1 and Fo = 0.001, (d) Value of and time associated with the
minimum dimensionless temperature at the midplane of the wall.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties.

ANALYSIS: (a) The dimensionless forms of the heat equation, initial and boundary conditions for
Phase 1 are given by Eqs. 5.37 through 5.40,

* *

2 * * * *

1*2 * *
0 1

; 1 ; 0 ; *(1, )* *

x x

(x ,0) Bi Fo
Fox x x

   
 

 

   
    
  

<

where * = (T - T,1)/(Ti - T,1), x* = x/L, Fo = t/L2 and Bi1 = h1L/k.

(b) For cooling (Phase 2), the dimensionless form of the heat equation and the boundary condition at

x* = 0 are unchanged from part (a). However, the initial condition for Phase 2 is the temperature <
distribution that exists at the conclusion of Phase 1, *(x*, Fo = Fo1) and the boundary condition <
at x* = 1 is derived beginning with the energy balance at the x* = 1 control surface,

 2 ,2 2( , ) ( , ) i
x L

T
k h T L t T h T L t T

x





      

Substituting the expressions T = *(Ti - T,1) + T,1 and x = x*L into the preceding equation yields

*
,1 ,1

2 ,1 ,1*

( )
*( )

( )

i

i i

T T T
k h T T T T

x L




 

 

   
        

which may be simplified to
Continued…

T, hT, h T, hT, h

x
L L
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*
*2

,1 ,1*
,1

* *2
2

( ) ( )
( )

1 1

i i
i

h L
T T T T

k T Tx

h L
Bi

k




 

 


      
 

       
   

<

(c) The dimensionless form of the energy equation, based upon the discretization shown below, was
solved using IHT software. The IHT code is included in the comments.

The thermal response is shown in the graph below.

Note that the surface heats quickly in Phase 1 (* decreases rapidly) while the center midplane
temperature changes only slightly over the heating time. The quarter plane (or quarter depth)
temperature increases at an intermediate rate during heating. During cooling (Phase 2), the surface
cools rapidly, but, as noted during heating, it takes some time for inner regions of the wall to begin
changing in temperature in response to the new boundary conditions. Warm temperatures in the inner
regions of the wall continue to propagate to the midplane, increasing its temperature until a maximum
temperature is reached. The cooling response is slower than the heating response since Bi2 < Bi1.
Ultimately (not shown), the entire wall will return to its initial temperature of * = 1.

(d) The minimum dimensionless temperature at the midplane may be determine by inspecting the
predictions of the finite difference model. The minimum midplane temperature is * = 0.79, and
occurs at Fo = Fo2 = 0.37, as shown in the figure of part (c).

Continued…
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COMMENTS: (1) The IHT code used in part (c) is listed below.

// Boundary Conditions.

Bi1 = 10
Bi2 = 1

//Initial Conditions.

//Initial Conditions for Phase 1 Heating

// Set all initial dimensionless temperatures to thN = 1 for N = 1 //through 11 in IHT solver.

//Initial Conditions for Phase 2 Cooling

//Set the initial conditions (at Fo = Fo1 = 0.1) equal to the predicted //temperatures from Phase
//1 Heating simulation at Fo1 = 0.1.

//Control volume size.

dx = 0.1

//Node 1 is at the midplane.
//Node 11 is at the surface.
//Write energy balances for Nodes 1 through 10.

//Node 1
(th2 - th1)/dx = (dx/2)*der(th1,Fo)

//Node 2
(th1 - th2)/dx + (th3 - th2)/dx = (dx)*der(th2,Fo)

//Node 3
(th2 - th3)/dx + (th4 - th3)/dx = (dx)*der(th3,Fo)

//Node 4
(th3 - th4)/dx + (th5 - th4)/dx = (dx)*der(th4,Fo)

//Node 5
(th4 - th5)/dx + (th6 - th5)/dx = (dx)*der(th5,Fo)

//Node 6
(th5 - th6)/dx + (th7 - th6)/dx = (dx)*der(th6,Fo)

//Node 7
(th6 - th7)/dx + (th8 - th7)/dx = (dx)*der(th7,Fo)

//Node 8
(th7 - th8)/dx + (th9 - th8)/dx = (dx)*der(th8,Fo)

//Node 9
(th8 - th9)/dx + (th10 - th9)/dx = (dx)*der(th9,Fo)

//Node 10
(th9 - th10)/dx + (th11 - th10)/dx = (dx)*der(th10,Fo)

//Energy balance for Node 11 for Phase 1 Heating.
//Enable in Phase 1. Disable in Phase 2.

(th10 - th11)/dx - Bi1*th11 = (dx/2)*der(th11,Fo)

//Energy balance for Node 11 for Phase 2 Cooling.
//Disable for Phase 1. Enable for Phase 2.

//(th10 - th11)/dx - Bi2*(th11 - 1) = (dx/2)*der(th11,Fo)

Continued…
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(2) If one is interested in determining the maximum midplane temperature in response to heating,
recognize that this maximum value does not occur at the moment heating is stopped. In this
problem, the increase in the midplane temperature from the onset of heating to the curtailment of
heating is *(x* = 0, Fo1 = 0.1) = 0.033 whereas the maximum change in the midplane
temperature is *(x* = 0, Fo2 = 0.37) = 0.212 which is 6 times larger than the increase at Fo1.
Furthermore, maximum midplane temperatures are reached long after heating is stopped and
cooling begins (Fo2/Fo1 = 3.7). (3) The effects illustrated in this problem, specifically the
continued heating of inner regions of the wall and the long time delay before maximum wall
temperatures are reached after heating has stopped and cooling has begun, are important in many
applications including materials processing, food processing and thermal sterilization, and
structural response (building collapse) to fire long after the fire is extinguished. (4) See Bergman,
“Extreme Midplane Wall Temperatures due to Sequential Heating and Cooling, ASME Journal of
Heat Transfer, vol. 130, pp. 094503-1 to 094503-4, 2008 for more information.



PROBLEM 5.128

KNOWN: Thick slab of copper, initially at a uniform temperature, is suddenly exposed to a constant
net radiant flux at one surface. See Example 5.12.

FIND: (a) The nodal temperatures at nodes 00 and 04 at t = 120 s; that is, T00(0, 120 s) and T04(0.15
m, 120 s); compare results with those given by the exact solution in Comment 1; will a time increment
of 0.12 s provide more accurate results?; and, (b) Plot the temperature histories for x = 0, 150 and 600
mm, and explain key features of your results. Use the IHT Tools | Finite-Difference Equations | One-
Dimensional | Transient conduction model builder to obtain the implicit form of the FDEs for the
interior nodes. Use space and time increments of 37.5 mm and 1.2 s, respectively, for a 17-node
network. For the surface node 00, use the FDE derived in Section 2 of the Example.

SCHEMATIC:

q’’ = 3x10 W/m25
o

x = 37.5 mm
t = 1.2 s

T(x, 0) = T = 20 Ci
o

k = 401 W/m-K
= 117x10 m /s -6 2x

00 01 02 1514 16

ASSUMPTIONS: (1) One-dimensional conduction in the x-direction, (2) Slab of thickness 600 mm
approximates a semi-infinite medium, and (3) Constant properties.

ANALYSIS: The IHT model builder provides the implicit-method FDEs for the interior nodes, 01 –
15. The +x boundary condition for the node-16 control volume is assumed adiabatic. The FDE for the
surface node 00 exposed to the net radiant flux was derived in the Example analysis. Selected portions
of the IHT code used to obtain the following results are shown in the Comments.

(a) The 00 and 04 nodal temperatures for t = 120 s are tabulated below using a time increment of t =
1.2 s and 0.12 s, and compared with the results given from the exact analytical solution, Eq. 5.62.

Node FDE results (C) Analytical result (C)

t = 1.2 s t = 0.12 s Eq. 5.59
00 119.3 119.4 120.0
04 45.09 45.10 45.4

The numerical FDE-based results with the different time increments agree quite closely with one
another. At the surface, the numerical results are nearly 1C less than the result from the exact
analytical solution. This difference represents an error of -1% ( -1 C / (120 – 20 ) C x 100). At the
x = 150 mm location, the difference is about -0.4 C, representing an error of –1.5%. For this
situation, the smaller time increment (0.12 s) did not provide improved accuracy. To improve the
accuracy of the numerical model, it would be necessary to reduce the space increment, in addition to
using the smaller time increment.

(b) The temperature histories for x = 0, 150 and 600 mm (nodes 00, 04, and 16) for the range 0  t 
150 s are as follows.

Continued …
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As expected, the surface temperature, T00 = T(0,t), increases markedly at early times. As thermal
penetration increases with increasing time, the temperature at the location x = 150 mm, T04 = T(150
mm, t), begins to increase after about 20 s. Note, however, the temperature at the location x = 600
mm, T16 = T(600 mm, t), does not change significantly within the 150 s duration of the applied
surface heat flux. Our assumption of treating the +x boundary of the node 16 control volume as
adiabatic is justified. A copper plate of 600-mm thickness is a good approximation to a semi-infinite
medium at times less than 150 s.

COMMENTS: Selected portions of the IHT code with the nodal equations to obtain the temperature
distribution are shown below. Note how the FDE for node 00 is written in terms of an energy balance
using the der (T,t) function. The FDE for node 16 assumes that the “east” boundary is adiabatic.

// Finite-difference equation, node 00; from Examples solution derivation; implicit method
q''o + k * (T01 - T00) / deltax = rho * (deltax / 2) *cp * der (T00,t)

// Finite-difference equations, interior nodes 01-15; from Tools
/* Node 01: interior node; e and w labeled 02 and 00. */
rho*cp*der(T01,t) = fd_1d_int(T01,T02,T00,k,qdot,deltax)
rho*cp*der(T02,t) = fd_1d_int(T02,T03,T01,k,qdot,deltax)
…..
…..
rho*cp*der(T14,t) = fd_1d_int(T14,T15,T13,k,qdot,deltax)
rho*cp*der(T15,t) = fd_1d_int(T15,T16,T14,k,qdot,deltax)

// Finite-difference equation node 16; from Tools, adiabatic surface
/* Node 16: surface node (e-orientation); transient conditions; w labeled 15. */
rho * cp * der(T16,t) = fd_1d_sur_e(T16,T15,k,qdot,deltax,Tinf16,h16,q''a16)
q''a16 = 0 // Applied heat flux, W/m^2; zero flux shown
Tinf16 = 20 // Arbitrary value
h16 = 1e-8 // Causes boundary to behave as adiabatic

Temperature histories for Nodes 00, 04, and 16
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T00 = T(0, t)
T04 = T(150 mm, t)
T00 = T(600 mm, t)



PROBLEM 5.129

KNOWN: Plane wall of thickness 2L, initially at a uniform temperature, is suddenly subjected to
convection heat transfer.

FIND: The mid-plane, T(0,t), and surface, T(L,t), temperatures at t = 50, 100, 200 and 500 s, using
the following methods: (a) the one-term series solution; determine also the Biot number; (b) the
lumped capacitance solution; and (c) the two- and 5-node finite-difference numerical solutions.
Prepare a table summarizing the results and comment on the relative differences of the predicted
temperatures.

SCHEMATIC:

= 7800 kg/m
c = 440 J/kg-K
k = 15 W/m-K

 3

Symmetry
adiabat

x xL = 20 mm

(a) Plane wall, thickness 2L (b) Nodal networks

L

Nodal network # nodes x

t = 1 s

T = 25 Co
oo

h = 500 W/m -K2

5 L/4

L

1 2 3 54

1 2

2

ASSUMPTIONS: (1) One-dimensional conduction in the x-direction, and (2) Constant properties.

ANALYSIS: (a) The results are tabulated below for the mid-plane and surface temperatures using the
one-term approximation to the series solution, Eq. 5.43 and 5.44. The Biot number for the heat
transfer process is

2Bi h L / k 500 W / m K 0.020 m 15 W / m K 0.67/     

Since Bi >> 0.1, we expect an appreciable temperature difference between the mid-plane and surface,
as the tabulated results indicate.

(b) The results are tabulated below for the wall temperatures using the lumped capacitance method
(LCM) of solution, Eq. 5.6. The LCM neglects the internal conduction resistance and since Bi = 0.67
>> 0.1, we expect this method to predict systematically lower temperatures (faster cooling) at the
midplane compared to the one-term approximation.

Solution method/Time(s) 50 100 200 500

Mid-plane, T(0,t) (C)
One-term, Eqs. 5.43, 5.44 207.1 160.5 99.97 37.70
Lumped capacitance 181.7 133.9 77.69 30.97
2-node FDE 210.6 163.5 100.5 37.17
5-node FDE 207.5 160.9 100.2 37.77

Surface, T(L,t) (C)

One-term, Eqs. 5.43, 5.44 160.1 125.4 80.56 34.41
Lumped capacitance 181.7 133.9 77.69 30.97
2-node FDE 163.7 125.2 79.40 33.77
5-node FDE 160.2 125.6 80.67 34.45

(c) The 2- and 5-node nodal networks representing the wall are shown in the schematic above. The
implicit form of the finite-difference equations for the mid-plane, interior (if present) and surface
nodes can be derived from energy balances on the nodal control volumes. The time-rate of change of
the temperature is expressed in terms of the IHT integral intrinsic function, der(T,t).

Continued …
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Mid-plane node

     2 1 / 2 1,/k T T x der T tx c   
Interior node (5-node network)

     1 2 3 2 2,/ /k T T T T der T tx k x c x      
Surface node (shown for 5-node network)

       4 5 inf 5 / 2 5,/k T T T T c x der T tx h      

With appropriate values for x, the foregoing FDEs were entered into the IHT workspace and solved
for the temperature distributions as a function of time over the range 0  t  500 s using an integration
time step of 1 s. Selected portions of the IHT codes for each of the models are shown in the
Comments. The results of the analysis are summarized in the foregoing table.

COMMENTS: (1) Referring to the table above, we can make the following observations about the
relative differences and similarities of the estimated temperatures: (a) The one-term series model
estimates are the most reliable, and can serve as the benchmark for the other model results; (b) The
LCM model over estimates the rate of cooling, and poorly predicts temperatures since the model
neglects the effect of internal resistance and Bi = 0.67 >> 0.1; (c) The 5-node model results are in
excellent agreement with those from the one-term series solution; we can infer that the chosen space
and time increments are sufficiently small to provide accurate results; and (d) The 2-node model under
estimates the rate of cooling for early times when the time-rate of change is high; but for late times,
the agreement is improved.

(2) See the Solver | Intrinsic Functions section of IHT|Help or the IHT Examples menu (Example 5.3)
for guidance on using the der(T,t) function.

(3) Selected portions of the IHT code for the 2-node network model are shown below.

// Writing the finite-difference equations – 2-node model
// Node 1
k * (T2 - T1)/ deltax = rho * cp * (deltax / 2) * der(T1,t)
// Node 2
k * (T1 - T2)/ deltax + h * (Tinf - T2) = rho * cp * (deltax / 2) * der(T2,t)

// Input parameters
L = 0.020
deltax = L
rho = 7800 // density, kg/m^3
cp = 440 // specific heat, J/kg·K
k = 15 // thermal conductivity, W/m.K
h = 500 // convection coefficient, W/m^2·K
Tinf = 25 // fluid temperature, K

(4) Selected portions of the IHT code for the 5-node network model are shown below.

// Writing the finite-difference equations – 5-node model
// Node 1 - midplane
k * (T2 - T1)/ deltax = rho * cp * (deltax / 2) * der(T1,t)
// Interior nodes
k * (T1 - T2)/ deltax + k * (T3 - T2 )/ deltax = rho * cp * deltax * der(T2,t)
k * (T2 - T3)/ deltax + k * (T4 - T3 )/ deltax = rho * cp * deltax * der(T3,t)
k * (T3 - T4)/ deltax + k * (T5 - T4 )/ deltax = rho * cp * deltax * der(T4,t)
// Node5 - surface
k * (T4 - T5)/ deltax + h * (Tinf - T5) = rho * cp * (deltax / 2) * der(T5,t)

// Input parameters
L = 0.020
deltax = L / 4
……..
……..
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KNOWN: Dimensions and properties of a steel-reinforced concrete pillar. Initial, ambient and
surroundings temperatures. Values of convection heat transfer coefficient and contact resistance.

FIND: (a) Temperature of the exposed concrete surface and the center of the steel plate at t = 10,000
s without contact resistance, maximum and minimum concrete and steel temperatures for 0 ≤ t ≤ 
10,000 s, (b) same as (a) but with contact resistance, (c) critical times associated with maximum steel
temperatures, value of the maximum steel temperature, for cases with and without thermal contact
resistance, after the fire is extinguished.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties.

ANALYSIS: We begin by writing energy balances on each of the 11 control volumes, taking
advantage of the symmetry of the problem,

Node 1:
 1 1 1

1 1 1 2 1
1

( )
( )( )

2

p p p p
p c

c c r

T T k T Tx
c h h T T

t x


  




 
   

 

where  
21 2 1

sur sur1 1
p p

rh T T T T         
and Tsur = T.

Nodes 2 – 7:
 1 1 1 1 1
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i i c ci ii i
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T T k T T k T T
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Node 8:
 1 1 1 1 1
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Node 9:
 1 1 1 1 1
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p p p p p p
s

s s

T T T T k T T
c x

t R x


      
  

 
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
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Node 10:
 1 1 1 1 1

10 10 9 10 11 10( ) ( )
p p p p p p

s s
s s

T T k T T k T T
c x

t x x


      
  

  

Node 11:
 1 1 1

11 11 10 11( )

2

p p p p
s

s s

T T k T Tx
c

t x


   


 

IHT is used to solve the equations; the IHT code is included in the Comments. Note that the
expression (Ti

p+1 – Ti
p)/t in the preceding equations is expressed as der(Ti, t) in the IHT code.

(a) Solving the finite difference equations without the contact resistance results in the following values
at t = 10,000 s.

T1 = 1155 K = 882C, T11 = 867 K = 594C <

Due to the high thermal conductivity of the steel, the steel is of nearly uniform temperature, with local
values varying to within one degree Celsius at any time. There is a large temperature difference
between the minimum and maximum concrete temperatures.

(b) Including the contact resistance value of Rt,c = 0.20 m2K/W yields, at t = 10,000 s,

T1 = 1162 K = 889C, T11 = 504 K = 231C <

Continued…
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Again, due to the high thermal conductivity of the steel, the steel is isothermal to within one degree
Celsius at any time. There is a large temperature difference between the minimum and maximum
concrete temperatures. The temperature difference across the contact resistance is significant resulting
in much lower steel temperatures than in part (a).

(c) Using the nodal temperatures at t = 10,000s as initial values, the simulation is repeated with T =
Tsur = 300K, yielding the following results without and with the thermal contact resistance,
respectively. The critical times are tcrit,wo = 11,100s with Tsteel, max, w = 890.6K = 617.5C and tcrit,w =

16,000s with Tsteel, max, w = 578.7K = 305.7C with the contact resistance. <

Without contact resistance With contact resistance
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COMMENTS: (1) The IHT code for parts (a) and (b) is shown below.

//Convection and radiation parameters

hc = 40 //W/m^2K
eps = 0.90
sigma=5.67e-8 //W/m^2K^4

//Geometrical parmeters

deltax = 0.010

//Ambient and surroundings temperature

Tinf = 900 + 273 //K

//Concrete properties

kc = 1.4 //W/mK
rhoc = 2300 //kg/m^3
cpc = 880 //J/kgK

//Steel properties

ks = 55 //W/mK
rhos = 7850 //kg/m^3
cps = 450 //J/kgK

//Contact resistance

R''cont = 0.2 //m^2K/W

//Nodal Equations

//Node 1

rhoc*cpc*(deltax/2)*der(T1,t) = h*(Tinf - T1)+(kc/deltax)*(T2 - T1)
h = hc + sigma*eps*(T1 + Tinf)*(T1^2 + Tinf^2)

//Node 2

rhoc*cpc*deltax*der(T2,t) = (kc/deltax)*(T1 - T2) + (kc/deltax)*(T3 - T2)

//Node 3

rhoc*cpc*deltax*der(T3,t) = (kc/deltax)*(T2 - T3) + (kc/deltax)*(T4 - T3)

//Node 4

rhoc*cpc*deltax*der(T4,t) = (kc/deltax)*(T3 - T4) + (kc/deltax)*(T5 - T4)

//Node 5

rhoc*cpc*deltax*der(T5,t) = (kc/deltax)*(T4 - T5) + (kc/deltax)*(T6 - T5)

//Node 6

rhoc*cpc*deltax*der(T6,t) = (kc/deltax)*(T5 - T6) + (kc/deltax)*(T7 - T6)

//Node 7

rhoc*cpc*deltax*der(T7,t) = (kc/deltax)*(T6 - T7) + (kc/deltax)*(T8 - T7)

Continued…
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//Node 8

rhoc*cpc*deltax*der(T8,t) = (kc/deltax)*(T7 - T8) + (T9 - T8)/Rtot
Rtot = deltax/2/kc + deltax/2/ks + R''cont

//Node 9

rhos*cps*deltax*der(T9,t) = (T8 - T9)/Rtot + (ks/deltax)*(T10 - T9)

//Node 10

rhos*cps*deltax*der(T10,t) = (ks/deltax)*(T9 - T10) + (ks/deltax)*(T11 - T10)

//Node 11

rhos*cps*(deltax/2)*der(T11,t) =(ks/deltax)*(T10 - T11)

(2). The influence of the thermal contact resistance is significant in terms of both the maximum steel
temperatures, as well as the critical time at which the maximum steel temperatures occur. (3) With or
without the contact resistance, the maximum steel temperatures occur well after the fire is
extinguished, as warm temperatures stored within the concrete slowly propagate into the steel plate.
Firefighters need to be very cautious entering the building after the fire is extinguished, since
structural failure may occur many hours after the fire is extinguished. (3) The minimum concrete
temperature is actually equal to the maximum steel temperature in part (a). The difference between the
two quantities, evident in the plot, would decrease as the spatial resolution of the simulation is
increased. (5) Nodal temperatures (K) at t = 10,000 s are as follows.

Node 1 2 3 4 5 6 7 8 9 10 11

Without Contact Resistance
1155 1108 1063 1019 979 941 908 879 867.4 867.0 866.9

With Contact Resistance
1162 1133 1105 1078 1052 1028 1007 987 503.9 503.7 503.6



PROBLEM 5.131

KNOWN: Plastic film on metal strip initially at 25C is heated by a laser (85,000 W/m
2

for

ton = 10 s), to cure adhesive; convection conditions for ambient air at 25C with coefficient

of 100 W/m
2
K.

FIND: Temperature histories at center and film edge, T(0,t) and T(x1,t), for 0  t  30 s,

using an implicit, finite-difference method with x = 4mm and t = 1 s; determine whether

adhesive is cured (Tc  90C for tc = 10s) and whether the degradation temperature of 200C

is exceeded.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) Uniform
convection coefficient on upper and lower surfaces, (4) Thermal resistance and mass of plastic
film are negligible, (5) All incident laser flux is absorbed.

PROPERTIES: Metal strip (given):  = 7850 kg/m
3
, cp = 435 J/kgK, k = 60 W/mK,  =

k/cp = 1.757  10
-5

m
2
/s.

ANALYSIS: (a) Using a space increment of x = 4mm, set up the nodal network shown
below. Note that the film half-length is 22mm (rather than 20mm as in Problem 3.115).

Consider the general control volume and use the conservation of energy requirement to obtain
the finite-difference equation.

in out st
p+1 p
m m

a b laser conv p

E E E

T T
q q q q Mc

t

 


   



  

Continued …
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   

      

p+1 p+1 p+1 p+1
m mm-1 m+1

p+1 p
p+1 m m

o m p

T T T T
k d 1 k d 1

x x
T T

q x 1 2h x 1 T T x d 1 c
t



 
  

 


          


 p p+1
m mT 1 2Fo 2Fo Bi T    (1)

 p+1 p+1
m+1 m+1Fo T T 2Fo Bi T Fo Q      

where

 

5 2

2 2

t 1.757 10 m / s 1s
Fo 1.098

x 0.004 m

   
  


(2)

   2 2 2h x / d 100 W/m K 0.004 / 0.00125 m
Bi 0.0213

k 60 W/m K

 
  


(3)

   2 2 2
oq x / d 85,000 W/m 0.004 / 0.00125 m

Q 18.133.
k 60 W/m K

 
  


(4)

The results of the matrix inversion numerical method of solution (x = 4mm, t = 1s) are
shown below. The temperature histories for the center (m = 1) and film edge (m = 5) nodes,

T(0,t) and T(x1,t), respectively, permit determining whether the adhesive has cured (T  90C

for 10 s).

Certainly the center region, T(0,t), is fully cured and furthermore, the degradation temperature

(200C) has not been exceeded. From the T(x1,t) distribution, note that tc  8 sec, which is

20% less than the 10 s interval sought. Hence, the laser exposure (now 10 s) should be
slightly increased and quite likely, the maximum temperature will not exceed 200C.



PROBLEM 5.132 
 
KNOWN:  Insulated rod of prescribed length and diameter, with one end in a fixture at 200°C, reaches a 
uniform temperature.  Suddenly the insulating sleeve is removed and the rod is subjected to a convection 
process. 
 
FIND:  (a) Time required for the mid-length of the rod to reach 100°C, (b) Temperature history T(x,t ≤ 
t1), where t1 is time at which the midlength reaches 50°C.  Temperature distribution at 0, 200s, 400s and 
t1.  
SCHEMATIC: 

 
ASSUMPTIONS:  (1) One-dimensional transient conduction in rod, (2) Uniform h along rod and at end, 
(3) Negligible radiation exchange between rod and surroundings, (4) Constant properties. 
 
ANALYSIS:  (a) Choosing Δx = 0.016 m, the finite-difference equations for the interior and end nodes 
are obtained. 

Interior Point, m: 
p 1 p
m m

a b c c p
T Tq q q A x c

t
ρ

+ −
+ + = ⋅ Δ ⋅ ⋅

Δ
 

 

 ( )
p p p p p 1 pm m p m mm 1 m 1

c c m c p
T T T T T Tk A kA hP x T T A xc

x x t
ρ

+
− +

∞
− − −

⋅ + + Δ − = Δ
Δ Δ Δ

 

Regrouping, 

 ( ) ( )p 1 p p p
m m m 1 m 1T T 1 2Fo Bi Fo Fo T T Bi FoT+

∞− += − − ⋅ + + + ⋅  (1) 

where 

 2
tFo

x

αΔ
=
Δ

               (2)                                                 ( )2
cBi h x A P k⎡ ⎤= Δ⎢ ⎥⎣ ⎦

. (3) 

 
From Eq. (1), recognize that the stability of the numerical solution will be assured when the first term on 
the RHS is positive; that is 

Continued... 
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 ( )1 2Fo Bi Fo 0− − ⋅ ≥                     or                    ( )Fo 1 2 Bi≤ + . (4) 

Nodal Point 1:  Consider Eq. (1) for the special case that p
m 1T −  = To, which is independent of time.  

Hence, 

 ( ) ( )p 1 p p
o1 1 2T T 1 2Fo Bi Fo Fo T T Bi FoT+

∞= − − ⋅ + + + ⋅ . (5) 

End Nodal Point 10: 
p 1 p
10 10

a b c c p
T Txq q q A c

2 t
ρ

+ −Δ
+ + = ⋅ ⋅

Δ
 

 ( ) ( )
p p p 1 p

p p9 10 10 10
c c c p10 10

T T T Tx xk A hA T T hP T T A c
x 2 2 t

ρ
+

∞ ∞
− −Δ Δ

⋅ + − + − =
Δ Δ

 

Regrouping, ( ) ( )p 1 p p
10 10 9T T 1 2Fo 2N Fo Bi Fo 2FoT T 2N Fo Bi Fo+

∞= − − ⋅ − ⋅ + + ⋅ + ⋅  (6) 

where  N = hΔx/k. (7) 
 
The stability criterion is Fo ≤ 1/2(1 + N + Bi/2). (8) 
 
With the finite-difference equations established, we can now proceed with the numerical solution.  
Having already specified Δx = 0.016 m, Bi can now be evaluated.  Noting that Ac = πD2/4 and P = πD, 
giving Ac/P = D/4, Eq. (3) yields 

 ( )22 0.010mBi 30 W m K 0.016m 14.8W m K 0.208
4

⎡ ⎤= ⋅ ⋅ =⎢ ⎥⎣ ⎦
 (9) 

From the stability criteria, Eqs. (4) and (8), for the finite-difference equations, it is recognized that Eq. (8) 
requires the greater value of Fo.  Hence 

 
1 0.208Fo 1 0.0324 0.440
2 2
⎛ ⎞= + + =⎜ ⎟
⎝ ⎠

 (10) 

where from Eq. (7), 
230 W m K 0.016mN 0.0324

14.8W m K
⋅ ×

= =
⋅

. (11) 

From the definition of Fo, Eq. (2), we obtain the time increment 

 
( ) ( )

2
2 6 2Fo x

t 0.440 0.016 m 3.63 10 m s 31.1s
α

−Δ
Δ = = × =  (12) 

and the time relation is t = pΔt = 31.1t. (13) 
 
Using the numerical values for Fo, Bi and N, the finite-difference equations can now be written (°C). 
 
Nodal Point m (2 ≤ m ≤ 9): 

 ( ) ( )p 1 p p p
m m m 1 m 1T T 1 2 0.440 0.208 0.440 0.440 T T 0.208 0.440 25+

− += − × − × + + + × ×  

 ( )p 1 p p p
m m m 1 m 1T 0.029T 0.440 T T 2.3+

− += + + +  (14) 

Nodal Point 1: 

 ( )p 1 p p p p
1 1 2 1 2T 0.029T 0.440 200 T 2.3 0.029T 0.440T 90.3+ = + + + = + +  (15) 

Nodal Point 10: 

 ( )p 1 p p p
10 10 9 9T 0 T 2 0.440T 25 2 0.0324 0.440 0.208 0.440 0.880T 3.0+ = × + × + × × + × = + (16) 
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Using finite-difference equations (14-16) with Eq. (13), the calculations may be performed to obtain 
 

p t(s) T1 T2 T3 T4 T5 T6 T7 T8 T9 T10(°C) 
0 0 200 200 200 200 200 200 200 200 200 200 
1 31.1 184.1 181.8 181.8 181.8 181.8 181.8 181.8 181.8 181.8 179.0 
2 62.2 175.6 166.3 165.3 165.3 165.3 165.3 165.3 165.3 164.0 163.0 
3 93.3 168.6 154.8 150.7 150.7 150.7 150.7 150.7 149.7 149.2 147.3 
4 124.4 163.3 145.0 138.8 137.0 137.0 137.0 136.5 136.3 135.0 134.3 
5 155.5 158.8 137.1 128.1 125.3 124.5 124.3 124.2 123.4 123.0 121.8 
6 186.6 155.2 130.2 119.2 114.8 113.4 113.0 112.6 112.3 111.5 111.2 
7 217.7 152.1 124.5 111.3 105.7 103.5 102.9 102.4    
8 248.8 145.1 119.5 104.5 97.6 94.8      

 

Using linear interpolation between rows 7 and 8, we obtain  T(L/2, 230s) = T5 ≈ 100°C. < 
 
(b)  Using the option concerning Finite-Difference Equations for One-Dimensional Transient Conduction 
in Extended Surfaces from the IHT Toolpad, the desired temperature histories were computed for 0 ≤ t ≤ 
t1 = 930s.  A Lookup Table involving data for T(x) at t = 0, 200, 400 and 930s was created. 
 
t(s)/x(mm) 0 16 32 48 64 80 96 112 128 144 160 

0 200 200 200 200 200 200 200 200 200 200 200 
200 200 157.8 136.7 127.0 122.7 121.0 120.2 119.6 118.6 117.1 114.7 
400 200 146.2 114.9 97.32 87.7 82.57 79.8 78.14 76.87 75.6 74.13 
930 200 138.1 99.23 74.98 59.94 50.67 44.99 41.53 39.44 38.2 37.55 

 
and the LOOKUPVAL2 interpolating function was used with the Explore and Graph feature of IHT to 
create the desired plot. 
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t =   0
t = 200 s
t = 400 s
t = 930 s   

 
Temperatures decrease with increasing x and t, and except for early times (t < 200s) and locations in 
proximity to the fin tip, the magnitude of the temperature gradient, |dT/dx|, decreases with increasing x.  
The slight increase in |dT/dx| observed for t = 200s and x → 160 mm is attributable to significant heat 
loss from the fin tip. 
 
COMMENTS:  The steady-state condition may be obtained by extending the finite-difference 
calculations in time to t ≈ 2650s or from Eq. 3.75. 



PROBLEM 5.133

KNOWN: Tantalum rod initially at a uniform temperature, 300K, is suddenly subjected to a
current flow of 80A; surroundings (vacuum enclosure) and electrodes maintained at 300K.

FIND: (a) Estimate time required for mid-length to reach 1000K, (b) Determine the steady-
state temperature distribution and estimate how long it will take to reach steady-state. Use a
finite-difference method with a space increment of 10mm.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional, transient conduction in rod, (2) Surroundings are
much larger than rod, (3) Properties are constant and evaluated at an average temperature.

PROPERTIES: Table A-1, Tantalum   T 300+1000 K/2 650K :   = 16,600 kg/m
3
, c

= 147 J/kgK, k = 58.8 W/mK, and  = k/c = 58.8 W/mK/16,600 kg/m
3
 147 J/kgK =

2.410  10
-5

m
2
/s.

ANALYSIS: The finite-difference equation is

     
2 22

p+1 p p p 4,p 4 e
m m m surm-1 m+1 2c c

I xP x
T Fo T T 1 2Fo T Fo T T Fo

kA kA

  
        (1)

where 2 2
cFo t/ x A D / 4 P D.       (2,3,4)

From the stability criterion, let Fo = 1/2 and numerically evaluate terms of Eq. (1).

   
 

  
   

  

28 2 4
4p+1 p p 4,p

m mm-1 m+1

2 28

22

0.1 5.67 10 W/m K 0.01m 41 1
T T T T 300K

2 58.8 W/m K 0.003m 2

80A 95 10 m 0.01m 1

2
58.8 W/m K 0.003m / 4





   
     

 

  
 



 p+1 p p 4,p12
m mm-1 m+1

1
T T T 6.4285 10 T 103.53.

2
     (5)

Note that this form applies to nodes 0 through 5. For node 0, Tm-1 = Tm+1 = T1. Since Fo =

1/2, using Eq. (2), find that

 22 5 2t x Fo/ 0.01m 1/ 2 / 2.410 10 m / s 2.07s.        (6)

Hence, t = pt = 2.07p. (7)

Continued …
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(a) To estimate the time required for the mid-length to reach 1000K, that is To = 1000K,

perform the forward-marching solution beginning with Ti = 300K at p = 0. The solution, as

tabulated below, utilizes Eq. (5) for successive values of p. Elapsed time is determined by Eq.
(7).

P t(s) T0 T1 T2 T3 T4 T5 T6(C)

0 0 300 300 300 300 300 300 300
1 403.5 403.5 403.5 403.5 403.5 403.5 300
2 506.9 506.9 506.9 506.9 506.9 455.1 300
3 610.0 610.0 610.0 610.0 584.1 506.7 300
4 712.6 712.6 712.6 699.7 661.1 545.2 300
5 10.4 814.5 814.5 808.0 788.8 724.7 583.5 300
6 915.2 911.9 902.4 867.4 787.9 615.1 300
7 1010.9 1007.9 988.9 945.0 842.3 646.6 300
8 1104.7 1096.8 1073.8 1014.0 896.1 673.6 300
9 1190.9 1183.5 1150.4 1081.7 943.2 700.3 300

10 20.7 1274.1 1261.6 1224.9 1141.5 989.4 723.6 300
11 1348.2 1336.7 1290.6 1199.8 1029.9 746.5 300
12 1419.7 1402.4 1353.9 1250.5 1069.4 766.5 300
13 1479.8 1465.5 1408.4 1299.8 1103.6 786.0 300
14 1542.6 1538.2 1460.9 1341.2 1136.9 802.9 300
15 31.1 1605.3 1569.3 1514.0 1381.6 1164.8 819.3 300

Note that, at p  6.9 or t = 6.9  2.07 = 14.3s, the mid-point temperature is To  1000K. <
(b) The steady-state temperature distribution can be obtained by continuing the marching

solution until only small changes in Tm are noted. From the table above, note that at p = 15 or

t = 31s, the temperature distribution is still changing with time. It is likely that at least 15
more calculation sets are required to see whether steady-state is being approached.

COMMENTS: (1) This problem should be solved with a computer rather than a hand-
calculator. For such a situation, it would be appropriate to decrease the spatial increment in
order to obtain better estimates of the temperature distribution.

(2) If the rod were very long, the steady-state temperature
distribution would be very flat at the mid-length x = 0.
Performing an energy balance on the small control volume
shown to the right, find

 
g out

2 4 4e
o sur

c

E E 0
x

I P x T T 0.
A




 


   

 

Substituting numerical values, find To = 2003K. It is unlikely that the present rod would ever

reach this steady-state, maximum temperature. That is, the effect of conduction along the rod
will cause the center temperature to be less than this value.



 
PROBLEM 5.134 

 
KNOWN:  Support rod spanning a channel whose walls are maintained at Tb = 300 K.  Suddenly the rod 
is exposed to cross flow of hot gases with T∞  = 600 K  and  h = 75 W/m2⋅K.  After the rod reaches steady-
state conditions, the hot gas flow is terminated and the rod cools by free convection and radiation 
exchange with surroundings. 
 
FIND:  (a) Compute and plot the midspan temperature as a function of elapsed heating time; compare the 
steady-state temperature distribution with results from an analytical model of the rod and (b)  Compute 
the midspan temperature as a function of elapsed cooling time and determine the time required for the rod 
to reach the safe-to-touch temperature of 315 K. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) One-dimensional, transient conduction in rod, (2) Constant properties, (3) During 
heating process, uniform convection coefficient over rod, (4) During cooling process, free convection 
coefficient is of the form h = CΔTn where C = 4.4 W/m2⋅K1.188 and n = 0.188, and (5) During cooling 
process,  surroundings are large with respect to the rod. 
 
ANALYSIS:  (a) The finite-difference equations for the 10-node mesh shown above can be obtained 
using the IHT Finite-Difference Equation, One-Dimensional, Transient Extended Surfaces Tool.  The 
temperature-time history for the midspan position T10 is shown in the plot below.  The steady-state 
temperature distribution for the rod can be determined from Eq. 3.80, Case B, Table 3.4.  This case is 
treated in the IHT Extended Surfaces Model, Temperature Distribution and Heat Rate, Rectangular Pin 
Fin, for the adiabatic tip condition.  The following table compares the steady-state temperature 
distributions for the numerical and analytical methods. 
 

Method Temperatures (K) vs. Position x (mm) 
 0 10 20 30 40 50 

Analytical 300 386.1 443.4 479.5 499.4 505.8 
Numerical 300 386.0 443.2 479.3 499.2 505.6 

 
The comparison is excellent indicating that the nodal mesh is sufficiently fine to obtain precise results. 
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PROBLEM 5.134 (Cont.) 

 
(b)  The same finite-difference approach can be used to model the cooling process.  In using the IHT tool, 
the following procedure was used:  (1) Set up the FDEs with the convection coefficient expressed as hm = 
hfc,m + hr,m, the sum of the free convection and linearized radiation coefficients based upon nodal 
temperature Tm. 
 

 ( )p
fc,m mh C T T∞= −  

 

 ( ) ( )2p p 2
r,m m sur m surh T T T Tεσ

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
(2) For the initial solve, set hfc,m = hr,m = 5 W/m2⋅K and solve, (3) Using the solved results as the Initial 
Guesses for the next solve, allow hfc,m and hr,m to be unknowns.  The temperature-time history for the 
midspan during the cooling process is shown in the plot below.  The time to reach the safe-to-touch 
temperature, T Kp

10 315= , is 

 t = 550 s < 
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PROBLEM 5.135 
 
KNOWN:  Thin metallic foil of thickness, w, whose edges are thermally coupled to a sink at temperature,  
Tsink, initially at a uniform temperature Ti = Tsink, is suddenly exposed on the top surface to an ion beam 
heat flux, sq′′ , and experiences radiation exchange with the vacuum enclosure walls at Tsur.   Consider also 
the situation when the foil is operating under steady-state conditions when suddenly the ion beam is 
deactivated. 
 
FIND:  (a)  Compute and plot the midspan temperature-time history during the heating process; 
determine the  elapsed time that this point on the foil reaches a temperature within 1 K of the steady-state 
value, and (b)  Compute and plot the midspan temperature-time history during the cooling process from 
steady-state operation; determine the  elapsed time that this point on the foil reaches the safe-to-touch 
temperature of 315 K.   
SCHEMATIC: 
 

  
ASSUMPTIONS:  (1) One-dimensional, transient conduction in the foil, (2) Constant properties, (3) 
Upper and lower surfaces of foil experience radiation exchange with the large surroundings, (4) Ion beam 
incident on upper surface only, (4) Foil is of unit width normal to the page.  
ANALYSIS:  (a) The finite-difference equations for the 10-node mesh shown above can be obtained 
using the IHT Finite-Difference Equation, One-Dimensional, Transient, Extended Surfaces Tool.    In 
formulating the energy-balance functions, the following steps were taken:  (1) the FDE function 
coefficient h must be identified for each node, e.g., h1 and (2) coefficient can be represented by the 

linearized radiation coefficient, e.g., ( )( )2 2
1 1 sur 1 surh T T T Tεσ= + + , (3) set a oq q 2′′ ′′=  since the ion 

beam is incident on only the top surface of the foil, and (4) when solving, the initial condition 
corresponds to Ti =  300 K for each node.  The temperature-time history of the midspan position is shown 
below.  The time to reach within 1 K of the steady-state temperature (374.1 K) is 

 ( )10 h hT t 373K t 136s= =  < 
 
(b) The same IHT workspace may be used to obtain the temperature-time history for the cooling process 
by taking these steps: (1) set sq′′  = 0,  (2) specify the initial conditions as the steady-state temperature (K) 
distribution tabulated below, 
 

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10  
374.1 374.0 373.5 372.5 370.9 368.2 363.7 356.6 345.3 327.4 

 
(3) when performing the integration of the independent time variable, set the start value as 200 s and (4) 
save the results for the heating process in Data Set A.  The temperature-time history for the heating and 
cooling processes can be made using Data Browser results from the Working and A Data Sets.  The time 
required for the midspan to reach the safe-to-touch temperature is 

 ( )10 c cT t 315K t 73s= =  < 
 

Continued... 



PROBLEM 5.135 (Cont.) 
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COMMENTS:  The IHT workspace using the Finite-Difference Equations Tool to determine the 
temperature-time distributions is shown below.  Some of the lines of code were omitted to save space on 
the page. 

 
// Finite Difference Equations Tool: One-Dimensional, Transient, Extended Surface 
/* Node 1: extended surface interior node;  transient conditions; e and w labeled 2 and 2. */ 
rho * cp * der(T1,t) = fd_1d_xsur_i(T1,T2,T2,k,qdot,Ac,P,deltax,Tinf, h1,q''a) 
q''a1 = q''s / 2         // Applied heat flux, W/m^2;  on the upper surface only 
h1 = eps * sigma * (T1 + Tsur) * (T1^2 + Tsur^2) 
sigma = 5.67e-8  // Boltzmann constant, W/m^2.K^4 
/* Node 2: extended surface interior node;  transient conditions; e and w labeled 3 and 1. */ 
rho * cp * der(T2,t) = fd_1d_xsur_i(T2,T3,T1,k,qdot,Ac,P,deltax,Tinf, h2,q''a2) 
q''a2 = 0          // Applied heat flux, W/m^2; zero flux shown 
h2 = eps * sigma * (T2+ Tsur) * (T2^2 + Tsur^2) 
....... 
....... 
/* Node 10: extended surface interior node;  transient conditions; e and w labeled sk and 9. */ 
rho * cp * der(T10,t) = fd_1d_xsur_i(T10,Tsk,T9,k,qdot,Ac,P,deltax,Tinf, h10,q''a) 
q''a10 = 0           // Applied heat flux, W/m^2; zero flux shown 
h10 = eps * sigma * (T10 + Tsur) * (T10^2 + Tsur^2) 
 
// Assigned variables 
deltax = L / 10  // Spatial increment, m 
Ac = w * 1  // Cross-sectional area, m^2 
P = 2 * 1  // Perimeter, m 
L = 0.150  // Overall length, m 
w = 0.00025  // Foil thickness, m 
eps = 0.45  // Foil emissivity 
Tinf = Tsur  // Fluid temperature, K 
Tsur = 300  // Surroundings temperature, K 
k = 40   // Foil thermal conductivity 
Tsk = 300  // Sink temperature, K 
q''s = 600         // Ion beam heat flux, W/m^2; for heating process 
q''s = 0          // Ion beam heat flux, W/m^2; for cooling process 
qdot = 0  // Foil volumetric generation rate, W/m^3 
alpha = 3e-5  // Thermal diffusivity, m^2/s 
rho = 1000  // Density, kg.m^3; arbitrary value 

     alpha = k / (rho * cp) // Definition 

 



PROBLEM 5.136

KNOWN: Stack or book of steel plates (sp) and circuit boards (b) subjected to a prescribed

platen heating schedule Tp(t). See Problem 5.46 for other details of the book.

FIND: (a) Using the implicit numerical method with x = 2.36mm and t = 60s, find the
mid-plane temperature T(0,t) of the book and determine whether curing will occur (> 170C
for 5 minutes), (b) Determine how long it will take T(0,t) to reach 37C following reduction
of the platen temperature to 15C (at t = 50 minutes), (c) Validate code by using a sudden
change of platen temperature from 15 to 190C and compare with the solution of Problem
5.38.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Negligible contact resistance
between plates, boards and platens.

PROPERTIES: Steel plates (sp, given): sp = 8000 kg/m
3
, cp,sp = 480 J/kgK, ksp = 12

W/mK; Circuit boards (b, given): b = 1000 kg/m
3
, cp,b = 1500 J/kgK, kb = 0.30 W/mK.

ANALYSIS: (a) Using the suggested space increment x = 2.36mm, the model grid spacing
treating the steel plates (sp) and circuit boards (b) as discrete elements, we need to derive the
nodal equations for the interior nodes (2-11) and the node next to the platen (1). Begin by
defining appropriate control volumes and apply the conservation of energy requirement.

Effective thermal conductivity, ke: Consider an adjacent steel plate-board arrangement. The

thermal resistance between the nodes i and j is

ij
e b sp

e
b+ sp

e

x x/2 x/2
R

k k k
2 2

k W/m K
1/ k 1/ k 1/ 0.3 1/12

k 0.585 W/m K.

  
   

  
 

 

Odd-numbered nodes, 3  m  11 - steel plates (sp): Treat as interior nodes using Eq. 5.97
with

 

7 2e
sp 3sp sp

7 2
sp

m 2 2

k 0.585 W/m K
1.523 10 m / s

c 8000 kg/m 480 J/kg K
t 1.523 10 m / s 60s

Fo 1.641
x 0.00236 m











   

 
  

  


Continued …



PROBLEM 5.136 (Cont.)

to obtain, with m as odd-numbered,

   p+1 p+1 p+1 p
m m m mm-1 m+11 2Fo T Fo T T T    (1)

Even-numbered nodes, 2  n  10 - circuit boards (b): Using Eq. 5.97 and evaluating b and

Fon

7 2e
b n

b b

k
3.900 10 m / s Fo 4.201

c



   

   p+1 p+1 p+1 p
n n n nn-1 n+11 2Fo T Fo T T T    (2)

Plate next to platen, n = 1 - steel plate (sp): The finite-difference equation for the plate node
(n = 1) next to the platen follows from a control volume analysis.

in out st
p+1 p
1 1

a b sp sp

E E E

T T
q q xc

t


 


   



  

where

  p+1 p+1 p+1
p 1 2 1

a sp b e
T t T T T

q k q k
x/2 x

 
  

 

and Tp(t) = Tp(p) is the platen temperature which is

changed with time according to the heating schedule. Regrouping find,

 sp spp+1 p+1 p
m m m p1 2 1

e e

2k 2k
1 Fo 1 T Fo T Fo T p T

k k

  
       

  
(3)

where 2ksp/ke = 2  12 W/mK/0.585 W/mK = 41.03.

Using the nodal Eqs. (1) -(3), an inversion method of solution was effected and the
temperature distributions are shown on the following page.

Temperature distributions - discussion: As expected, the temperatures of the nodes near the
center of the book considerably lag those nearer the platen. The criterion for cure is T 

170C = 443 K for tc = 5 min = 300 sec. From the temperature distributions, note that node

10 just reaches 443 K after 50 minutes and will not be cured. It appears that the region about
node 5 will be cured.

(b) The time required for the book to reach 37C = 310 K can likewise be seen from the
temperature distribution results. The plates/boards nearest the platen will cool to the safe
handling temperature with 1000 s = 16 min, but those near the center of the stack will require
in excess of 2000 s = 32 min.

Continued …



PROBLEM 5.136 (Cont.)

(c) It is important when validating computer codes to have the program work a “problem”
which has an exact analytical solution. You should select the problem such that all features of
the code are tested.



PROBLEM 5.137

KNOWN: Thin, circular-disc subjected to induction heating causing a uniform heat
generation in a prescribed region; upper surface exposed to convection process.

FIND: (a) Transient finite-difference equation for a node in the region subjected to induction
heating, (b) Sketch the steady-state temperature distribution on T-r coordinates; identify
important features.

SCHEMATIC:

ASSUMPTIONS: (1) Thickness w << ro, such that conduction is one-dimensional in r-

direction, (2) In prescribed region, q is uniform, (3) Bottom surface of disc is insulated, (4)

Constant properties.

ANALYSIS: (a) Consider the nodal point arrangement
for the region subjected to induction heating. The size of
the control volume is mV 2 r r w.   The energy

conservation requirement for the node m has the form

in out g stE E E E     

with a b conv stq q q qV E .    

Recognizing that qa and qb are conduction terms and qconv is the convection process,
p p p p

m mm-1 m+1
m m

T T T Tr r
k 2 r w k 2 r w

2 r 2 r
 

        
               

      
p+1 p

p m m
m m m p m

T T
h 2 r r T T q 2 r r w c 2 r r w .

t
   


          




Upon regrouping, the finite-difference equation has the form,
2

p pp+1 p
m mm-1 m+1

m m

r r r q r r
T Fo 1 T 1 T Bi T 1 2Fo Bi Fo T

2r 2r w k w


    
         

         
                  

 <

where 2Fo t/ r Bi h r/k.    

(b) The steady-state temperature distribution has
these features:

1. Zero gradient at r = 0, r0

2. No discontinuity at r1, r2

3. Tmax occurs in region r1 < r < r2
Note also, distribution will not be linear anywhere;

distribution is not parabolic in r1 < r < r2 region.



PROBLEM 5.138

KNOWN: An electrical cable experiencing uniform volumetric generation; the lower half is well
insulated while the upper half experiences convection.

FIND: (a) Explicit, finite-difference equations for an interior node (m,n), the center node (0,0), and
an outer surface node (M,n) for the convective and insulated boundaries, and (b) Stability criterion for
each FDE; identify the most restrictive criterion.

SCHEMATIC:

ASSUMPTIONS: (1) Two-dimensional (r,), transient conduction, (2) Constant properties, (3)
Uniform q.

ANALYSIS: The explicit, finite-difference equations may be obtained by applying energy balances
to appropriate control volumes about the node of interest. Note the coordinate system defined above
where (r,)  (mr, n). The stability criterion is determined from the coefficient associated with
the node of interest.

Interior Node (m,n). The control volume
for an interior node is

mV r r   

(with mr m r, 1   ) where  is the

length normal to the page. The
conservation of energy requirement is

in out g stE E E E     

   
p+1 p
m,n m,n

1 2 3 4r

T T
q q q q qV cV

t



    




 

p p pp p p
m,n m,n m,nm-1,n m+1,n m,n+1T T T T T T1 1

k m r k m r k r
2 r 2 r m r

 


  
             

   

   
      

 
   

p p p+1 p
m,nm,n-1 m,n m,nT T T T

k r q m r r c m r r
m r t

  


 
           

  
 (1)

Define the Fourier number as

2 2

k t t
Fo

c r r





 
  

 
(2)

and then regroup the terms of Eq. (1) to obtain the FDE,

 
 p+1 p p p p 2

m,n m-1,n m+1,n m,n+1 m,n-12

m 1/2 m 1/2 1 q
T Fo T T T T r

m m km 

   
      

  



 

p
m,n2

2
Fo 2 1 T .

m 

  
      

    

(3) <

Continued …



PROBLEM 5.138 (Cont.)

The stability criterion requires that the last term on the right-hand side in braces be positive. That is,

the coefficient of
p
m,nT must be positive and the stability criterion is

 2Fo 1/2 1 1/ m    
  

(4)

Note that, for m >> 1/2 and (m)
2

>>1, the FDE takes the form of a 1-D cartesian system.

Center Node (0,0). For the control volume,

 2V r/2 1.   The energy balance is

in out g st in nE E E E where E q .             

p p 2N
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T Tr r
k q

2 r 2
 



 
   



   
      

 

p+1 p2
o oT Tr

c
2 t

 


 

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  

(5)

where N = (2/) - 1, the total number of qn. Using the definition of Fo, find

 
N

pp+1 2 p
o o1,n

n 0

1 q
T 4Fo T r 1 4Fo T .

N 1 4k


    


  
 
  


 <

By inspection, the stability criterion is Fo  1/4. (7)
Surface Nodes (M,n). The control volume
for the surface node is V = (M - ¼)rr/2.1.
From the energy balance,

   in out g 1 2 3 4 str
E E E q q q q qV E


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

Regrouping and using the definitions for Fo = t/r
2

and Bi = hr/k,
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 p p pp+1 2

m,n M-1,n M,n+1 M,n-12

M 1/2 1 q
T Fo 2 T T T 2Bi T r

M 1/4 kM-1/4 M 



      

 

  
 
  



   

p
M,n2

M-1/2 M 1
1 2Fo Bi T .

M-1/4 M 1/4 M 1/4 M 
    

  

   
  
    

(8) <

The stability criterion is
   2

1 M 1/2 M 1
Fo Bi .

2 M 1/4 M 1/4 M 1/4 M 


  

   

 
 
  

(9)

To determine which stability criterion is most restrictive, compare Eqs. (4), (7) and (9). The most
restrictive (lowest Fo) has the largest denominator. For small values of m, it is not evident whether
Eq. (7) is more restrictive than Eq. (4); Eq. (4) depends upon magnitude of . Likewise, it is not
clear whether Eq. (9) will be more or less restrictive than Eq. (7). Numerical values must be
substituted.



PROBLEM 5.139

KNOWN: Initial temperature distribution in two bars that are to be soldered together; interface
contact resistance.

FIND: (a) Explicit FDE for T4,2 in terms of Fo and t,cBi x/k R ;  stability criterion, (b) T4,2

one time step after contact is made if Fo = 0.01 and value of t; whether the stability criterion is
satisfied.

SCHEMATIC:

PROPERTIES: Table A-1, Steel, AISI 1010 (1000K): k = 31.3 W/mK, c = 1168 J/kgK,  = 7832

kh/m
3
.

ASSUMPTIONS: (1) Two-dimensional transient conduction, (2) Constant properties, (3) Interfacial
solder layer has negligible thickness.

ANALYSIS: (a) From an energy balance on
the control volume V = (x/2)y1.

in out g stE E E E     

p+1 p
4,2 4,2

a b c d

T T
q q q q cV .

t



   



Note that  a t,c cq T/R A  while the remaining qi are conduction terms,

   
 

 
 

 
 

  

p p p p
4,3 4,2 5,2 4,2p p

3,2 4,2
t,c

T T T T1
T T y k x/2 k y

R y x

p p p+1 p
4,1 4,2 4,2 4,2

T T T T
k x/2 c x / 2 y .

y t


 

     
  

 
     

 

Defining   2
c t,cFo k/ c t/ x and Bi y/R k,      regroup to obtain

   p+1 p p p p p
4,2 4,3 5,2 4,1 3,2 4,2T Fo T 2T T 2Bi T 1 4Fo 2FoBi T .       <

The stability criterion requires the coefficient of the
p
4,2T term be zero or positive,

   1 4Fo 2FoBi 0 or Fo 1/ 4 2Bi     <

(b) For  -5 2Fo 0.01 and Bi 0.020m/ 2 10 m K/W 31.3W/m K 31.95,      

   p+1
4,2T 0.01 1000 2 900 1000 2 31.95 700 K 1 4 0.01 2 0.01 31.95 1000K            

p+1
4,2T 485.30K 321.00K 806.3K.   <

With Fo = 0.01, the time step is

     22 3t Fo x c/k 0.01 0.020m 7832kg/m 1168J/kg K/31.3W/m K 1.17s.        <

With Bi = 31.95 and Fo = 0.01, the stability criterion, Fo  0.015, is satisfied. <



PROBLEM 5.140

KNOWN: Flue of square cross-section, initially at a uniform temperature is suddenly exposed to hot
flue gases. See Problem 4.92.

FIND: Temperature distribution in the wall 5, 10, 50 and 100 hours after introduction of gases using
the implicit finite-difference method.

SCHEMATIC:

x = = 50 mmy

04 12 16
x

y

19

13

21 2208

03

05 14

18

21

0901

17

20

150 mm

300 mm

Air

Flue
gas

h = 100 W/m -Ki
2

h = 5 W/m -Ko
2

T = 25 Co
o

, T(x,y,0) = T = 25 Ci
ooo

T = 350 Ci
o

,oo

ASSUMPTIONS: (1) Two-dimensional transient conduction, (2) Constant properties.

PROPERTIES: Flue (given): k = 0.85 W/mK,  = 5.5  10
-7

m
2
/s.

ANALYSIS: The network representing the flue cross-sectional area is shown with x = y = 50mm.

Initially all nodes are at Ti = 25C when suddenly the interior and exterior surfaces are exposed to

convection processes, (T,i, hi) and (T,o, ho), respectively Referring to the network above, note that
there are four types of nodes: interior (02, 03, 06, 07, 10, 11, 14, 15, 17, 18, 20); plane surfaces with
convection (interior – 01, 05, 09); interior corner with convection (13), plane surfaces with convection
(exterior – 04, 08, 12, 16, 19, 21); and, exterior corner with convection. The system of finite-
difference equations representing the network is obtained using IHT|Tools|Finite-difference
equations|Two-dimensional|Transient. The IHT code is shown in Comment 2 and the results for t = 5,
10, 50 and 100 hour are tabulated below.

Node 17    p+1 p+1 p+1 p+1 p+1 p
17 18 14 18 14 171 4Fo T Fo T T T T T     

Node 13  p+1 p+1 p+1 p+1 p
i 9 i ,i13 14 14 9 13

1 2 4
1 4Fo 1 Bi T Fo 2T T 2T T T Bi Fo T

3 3 3
         

  
    

Node 12     p+1 p+1 p+1 p+1 p
o o ,o12 11 16 8 121 2Fo 2 Bi T Fo 2T T T T 2Bi Fo T        

Node 22     p+1 p+1 p+1 p
o o ,o22 21 21 221 4Fo 1 Bi T 2Fo T T T 4Bi Fo T       

Numerical values for the relevant parameters are:

 

6 2

2 2

t 5.5 10 m / s 3600s
Fo 7.92000

x 0.050m

   
  


2
o

o
h x 5 W/m K 0.050m

Bi 0.29412
k 0.85 W/m K

  
  


2

i
i

h x 100 W/m K 0.050m
Bi 5.88235

k 0.85 W/m K

  
  


The system of FDEs can be represented in matrix notation, [A][T] = [C]. The coefficient matrix [A]
and terms for the right-hand side matrix [C] are given on the following page.

Continued …



PROBLEM 5.140 (Cont.)

For this problem a stock computer program was used to obtain the solution matrix [T]. The

initial temperature distribution was 0
mT 298K. The results are tabulated below.

T(m,n) (C)

Node/time
(h)

0 5 10 50 100

T01 25 335.00 338.90 340.20 340.20

T02 25 248.00 274.30 282.90 282.90

T03 25 179.50 217.40 229.80 229.80

T04 25 135.80 170.30 181.60 181.60

T05 25 334.50 338.50 339.90 339.90

T06 25 245.30 271.90 280.80 280.80

T07 25 176.50 214.60 227.30 227.30

T08 25 133.40 168.00 179.50 179.50

T09 25 332.20 336.60 338.20 338.20

T10 25 235.40 263.40 273.20 273.20

T11 25 166.40 205.40 219.00 219.00

T12 25 125.40 160.40 172.70 172.70

T13 25 316.40 324.30 327.30 327.30

T14 25 211.00 243.00 254.90 254.90

T15 25 146.90 187.60 202.90 202.90

T16 25 110.90 146.70 160.20 160.20

T17 25 159.80 200.50 216.20 216.20

T18 25 117.40 160.50 177.50 177.50

T19 25 90.97 127.40 141.80 141.80

T20 25 90.62 132.20 149.00 149.00

T21 25 72.43 106.70 120.60 120.60

T22 25 59.47 87.37 98.89 98.89

COMMENTS: (1) Note that the steady-state condition is reached by t = 5 hours; this can be seen by
comparing the distributions for t = 50 and 100 hours. Within 10 hours, the flue is within a few
degrees of the steady-state condition.

Continued …



PROBLEM 5.140 (Cont.)

(2) The IHT code for performing the numerical solution is shown in its entirety below. Use has been
made of symmetry in writing the FDEs. The tabulated results above were obtained by copying from
the IHT Browser and pasting the desired columns into EXCEL.

// From Tools|Finite-difference equations|Two-dimensional|Transient
// Interior surface nodes, 01, 05, 09, 13
/* Node 01: plane surface node, s-orientation; e, w, n labeled 05, 05, 02 . */
rho * cp * der(T01,t) = fd_2d_psur_s(T01,T05,T05,T02,k,qdot,deltax,deltay,Tinfi,hi,q''a)
q''a = 0 // Applied heat flux, W/m^2; zero flux shown
qdot = 0
rho * cp * der(T05,t) = fd_2d_psur_s(T05,T09,T01,T06,k,qdot,deltax,deltay,Tinfi,hi,q''a)
rho * cp * der(T09,t) = fd_2d_psur_s(T09,T13,T05,T10,k,qdot,deltax,deltay,Tinfi,hi,q''a)
/* Node 13: internal corner node, w-s orientation; e, w, n, s labeled 14, 09, 14, 09. */
rho * cp * der(T13,t) = fd_2d_ic_ws(T13,T14,T09,T14,T09,k,qdot,deltax,deltay,Tinfi,hi,q''a)

// Interior nodes, 02, 03, 06, 07, 10, 11, 14, 15, 18, 20
/* Node 02: interior node; e, w, n, s labeled 06, 06, 03, 01. */
rho * cp * der(T02,t) = fd_2d_int(T02,T06,T06,T03,T01,k,qdot,deltax,deltay)
rho * cp * der(T03,t) = fd_2d_int(T03,T07,T07,T04,T02,k,qdot,deltax,deltay)
rho * cp * der(T06,t) = fd_2d_int(T06,T10,T02,T07,T05,k,qdot,deltax,deltay)
rho * cp * der(T07,t) = fd_2d_int(T07,T11,T03,T08,T06,k,qdot,deltax,deltay)
rho * cp * der(T10,t) = fd_2d_int(T10,T14,T06,T11,T09,k,qdot,deltax,deltay)
rho * cp * der(T11,t) = fd_2d_int(T11,T15,T07,T12,T10,k,qdot,deltax,deltay)
rho * cp * der(T14,t) = fd_2d_int(T14,T17,T10,T15,T13,k,qdot,deltax,deltay)
rho * cp * der(T15,t) = fd_2d_int(T15,T18,T11,T16,T14,k,qdot,deltax,deltay)
rho * cp * der(T17,t) = fd_2d_int(T17,T18,T14,T18,T14,k,qdot,deltax,deltay)
rho * cp * der(T18,t) = fd_2d_int(T18,T20,T15,T19,T17,k,qdot,deltax,deltay)
rho * cp * der(T20,t) = fd_2d_int(T20,T21,T18,T21,T18,k,qdot,deltax,deltay)

// Exterior surface nodes, 04, 08, 12, 16, 19, 21, 22
/* Node 04: plane surface node, n-orientation; e, w, s labeled 08, 08, 03. */
rho * cp * der(T04,t) = fd_2d_psur_n(T04,T08,T08,T03,k,qdot,deltax,deltay,Tinfo,ho,q''a)
rho * cp * der(T08,t) = fd_2d_psur_n(T08,T12,T04,T07,k,qdot,deltax,deltay,Tinfo,ho,q''a)
rho * cp * der(T12,t) = fd_2d_psur_n(T12,T16,T08,T11,k,qdot,deltax,deltay,Tinfo,ho,q''a)
rho * cp * der(T16,t) = fd_2d_psur_n(T16,T19,T12,T15,k,qdot,deltax,deltay,Tinfo,ho,q''a)
rho * cp * der(T19,t) = fd_2d_psur_n(T19,T21,T16,T18,k,qdot,deltax,deltay,Tinfo,ho,q''a)
rho * cp * der(T21,t) = fd_2d_psur_n(T21,T22,T19,T20,k,qdot,deltax,deltay,Tinfo,ho,q''a)
/* Node 22: external corner node, e-n orientation; w, s labeled 21, 21. */
rho * cp * der(T22,t) = fd_2d_ec_en(T22,T21,T21,k,qdot,deltax,deltay,Tinfo,ho,q''a)

// Input variables
deltax = 0.050
deltay = 0.050
Tinfi = 350
hi = 100
Tinfo = 25
ho = 5
k = 0.85
alpha = 5.55e-7
alpha = k / (rho * cp)
rho = 1000 // arbitrary value

(3) The results for t = 50 hour, representing the steady-state condition, are shown below, arranged
according to the coordinate system.

Tmn (C)

x/y (mm) 0 50 100 150 200 250 300

0 181.60 179.50 172.70 160.20 141.80 120.60 98.89

50 229.80 227.30 219.00 202.90 177.50 149.00

100 282.90 280.80 273.20 172.70 216.20

150 340.20 339.90 338.20 327.30

In Problem 4.92, the temperature distribution was determined using the FDEs written for steady-state
conditions, but with a finer network, x = y = 25 mm. By comparison, the results for the coarser
network are slightly higher, within a fraction of 1C, along the mid-section of the flue, but notably
higher in the vicinity of inner corner. (For example, node 13 is 2.6C higher with the coarser mesh.)



PROBLEM 5.141

KNOWN: Electrical heating elements embedded in a ceramic plate as described in Problem
4.86; initially plate is at a uniform temperature and suddenly heaters are energized.

FIND: Time required for the difference between the surface and initial temperatures to reach
95% of the difference for steady-state conditions using the implicit, finite-difference method.

SCHEMATIC:

ASSUMPTIONS: (1) Two-dimensional conduction, (2) Constant properties, (3) No internal
generation except for Node 7, (4) Heating element approximates a line source; wire diameter
is negligible.

ANALYSIS: The grid for the symmetry element above consists of 12 nodes. Nodes 1-3 are
points on a surface experiencing convection; nodes 4-12 are interior nodes; node 7 is a special
case with internal generation and because of symmetry, htq 25 W/m.  Their finite-

difference equations are derived as follows

Surface Node 2. From an energy balance on the prescribed control volume with x/y = 3,

p+1 p
2 2

in st a b c d
T T

E E q q q q cV
t




        


 

 
p+1 p+1

p+11 2
2

T Ty
k h x T T

2 x



  



p+1 p+1 p+1 p+1 p+1 p
53 2 2 2 2T T T T T Ty y

k k x c x .
2 x y 2 t


    

        

Continued …



PROBLEM 5.141 (Cont.)

Divide by k, use the following definitions, and regroup to obtain the finite-difference
equations.

2N h x/k 100 W/m K 0.006m/2 W/m K 0.3000       (1)

 Fo k/ c t/ x y t/ x y         

 6 2 21.5 10 m / s 1s/ 0.006 0.002 m 0.1250    (2)

     p+1 p+1 p+1 p+1 p+1
1 2 2 3 2

1 y 1 y
T T N T T T T

2 x 2 x


    
           

   p+1 p+1 p+1 p
5 2 2 2

x 1
T T T T

y 2Fo

 
     

p+1 p+1 p+1
1 2 3

1 y x y 1 1 x
T N T T

2 x y x 2Fo 2 y

          
                     

p+1 p
5 2

x 1
T NT T .

y 2Fo


 
     

(3)

Substituting numerical values for Fo and N, and using T = 30C and x/y = 3, find
p+1 p+1 p+1 p+1 p

51 2 3 20.16667T 7.63333T 0.16667T 3.00000T 9.0000 4.0000T .     (4)

By inspection and use of Eq. (3), the FDEs for Nodes 1 and 3 can be inferred.

Interior Node 7. From an energy balance on the
prescribed control volume with x/y = 3,

in g stE E E     

where g ht inE 2q and E    represents the

conduction terms a b c dq q q q ,      

p+1 p+1 p+1 p+1p+1 p+1
7 778 84T T T TT T

k y k x k y
x y x

 
    

  

 
p+1 p+1 p+1 p

710 7 7
ht

T T T T
k x 2q c x y .

y t


 
     

 

Using the definition of Fo, Eq. (2), and regrouping, find

p+1 p+1
74

1 x x y 1
T T

2 y y x 2Fo

       
               

p+1 p+1 pht
78 10

qy 1 x 1
T T T

x 2 y k 2Fo

   
          

(5)

p+1 p+1 p+1 p+1 p
7 74 8 101.50000T 7.33333T 0.33333T 1.50000T 12.5000 4.0000T .      (6)

Continued …



PROBLEM 5.141 (Cont.)

Recognizing the form of Eq. (5), it is a simple matter to infer the FDE for the remaining
interior points for which htq 0. In matrix notation [A][T] = [C], the coefficient matrix [A]

and RHS matrix [C] are:

Recall that the problem asks for the time required to reach
95% of the difference for steady-state conditions. This
provides information on approximately how long it takes
for the plate to come to a steady operating condition. If
you worked Problem 4.86, you know the steady-state
temperature distribution. Then you can proceed to find the

p
mT values with increasing time until the first node reaches

the required limit. We should not expect the nodes to reach their limit at the same time.

Not knowing the steady-state temperature distribution, use the implicit FDE in matrix form
above to step through time  to the steady-state solution; that is, proceed to p 
10,20…100 until the solution matrix [T] does not change. The results of the analysis are

tabulated below. Column 1 labeled Tm() is the steady-state distribution. Column 2,

Tm(95%), is the 95% limit being sought as per the graph directly above. The third column is

the temperature distribution at t = to = 248s, Tm(248s); at this elapsed time, Node 1 has

reached its limit. Can you explain why this node was the first to reach this limit? Which
nodes will be the last to reach their limits?

Tm() Tm(95%) Tm(248s) <
55.80 54.51 54.51
49.93 48.93 48.64
47.67 46.78 46.38
59.03 57.58 57.64
51.72 50.63 50.32
49.19 48.23 47.79
63.89 62.20 62.42
52.98 51.83 51.52
50.14 49.13 48.68
62.84 61.20 61.35
53.35 52.18 51.86
50.46 49.43 48.98



PROBLEM 5.142

KNOWN: Conditions associated with heat generation in a rectangular fuel element with surface
cooling. See Example 5.11.

FIND: (a) The temperature distribution 1.5 s after the change in the operating power; compare results
with those tabulated in the Example, and (b) Plot the temperature histories at the midplane, x = 0, and
the surface, x = L, for 0  t  400 s; determine the new steady-state temperatures, and approximately
how long it takes to reach this condition. Use the finite-element software FEHT as your solution tool.

SCHEMATIC:

q = 1x10 W/m

k = 30 W/m-K

1
7 3

q = 2x10 W/m
= 5x10 m /s

2
7 3

-6 2

.

.

Coolant

L = 10 mm

.

Symmetry
adiabat

T(x, 0) = T (x, )1 q1 Fuel element

T = 250 Co
oo

x

h = 1100 W/m -K2

ASSUMPTIONS: (1) One-dimensional conduction in the x-direction, (2) Uniform generation, (3)
Constant properties.

ANALYSIS: Using FEHT, an outline of the fuel element is drawn of thickness 10 mm in the x-
direction and arbitrary length in the y-direction. The boundary conditions are specified as follows: on
the y-planes and the x = 0 plane, treat as adiabatic; on the x = 10 mm plane, specify the convection

option. Specify the material properties and the internal generation with 1q . In the Setup menu, click

on Steady-state, and then Run to obtain the temperature distribution corresponding to the initial

temperature distribution,    i 1T x,0 T x,q ,  before the change in operating power to 2q .

Next, in the Setup menu, click on Transient; in the Specify | Internal Generation box, change the value

to 2q ; and in the Run command, click on Continue (not Calculate).

(a) The temperature distribution 1.5 s after the change in operating power from the FEHT analysis and
from the FDE analysis in the Example are tabulated below.

x/L 0 0.2 0.4 0.6 0.8 1.0
T(x/L, 1.5 s)

FEHT (C) 360.1 359.4 357.4 354.1 349.3 343.2
FDE (C) 360.08 359.41 357.41 354.07 349.37 343.27

The mesh spacing for the FEHT analysis was 0.5 mm and the time increment was 0.005 s. For the
FDE analyses, the spatial and time increments were 2 mm and 0.3 s. The agreement between the
results from the two numerical methods is within 0.1C.

(b) Using the FEHT code, the temperature histories at the mid-plane (x = 0) and the surface (x = L) are
plotted as a function of time.

Continued …



PROBLEM 5.142 (Cont.)

From the distribution, the steady-state condition (based upon 98% change) is approached in 215 s.
The steady-state temperature distributions after the step change in power from the FEHT and FDE
analysis in the Example are tabulated below. The agreement between the results from the two
numerical methods is within 0.1C

x/L 0 0.2 0.4 0.6 0.8 1.0

T(x/L, )
FEHT (C) 465.0 463.7 459.6 453.0 443.6 431.7
FDE (C) 465.15 463.82 459.82 453.15 443.82 431.82

COMMENTS: (1) For background information on the Continue option, see the Run menu in the
FEHT Help section. Using the Run/Calculate command, the steady-state temperature distribution was

determined for the 1q operating power. Using the Run|Continue command (after re-setting the

generation to 2q and clicking on Setup | Transient), this steady-state distribution automatically

becomes the initial temperature distribution for the 2q operating power. This feature allows for

conveniently prescribing a non-uniform initial temperature distribution for a transient analysis (rather
than specifying values on a node-by-node basis).

(2) Use the View | Tabular Output command to obtain nodal temperatures to the maximum number of
significant figures resulting from the analysis.

(3) Can you validate the new steady-state nodal temperatures from part (b) (with 2q , t ) by

comparison against an analytical solution?



PROBLEM 5.143

KNOWN: Thick slab of copper as treated in Example 5.12, initially at a uniform temperature, is
suddenly exposed to large surroundings at 1000C (instead of a net radiant flux).

FIND: (a) The temperatures T(0, 120 s) and T(0.15 m, 120s) using the finite-element software FEHT
for a surface emissivity of 0.94 and (b) Plot the temperature histories for x = 0, 150 and 600 mm, and
explain key features of your results.

SCHEMATIC:

 = 0.94

T(x, 0) = T = 20 Ci
o

x

T = 1000 Co
sur = 8933 kg/m

c = 385 J/kg-K
k = 401 W/m-K

 3

ASSUMPTIONS: (1) One-dimensional conduction in the x-direction, (2) Slab of thickness 600 mm
approximates a semi-infinite medium, (3) Slab is small object in large, isothermal surroundings.

ANALYSIS: (a) Using FEHT, an outline of the slab is drawn of thickness 600 mm in the x-direction
and arbitrary length in the y-direction. Click on Setup | Temperatures in K, to enter all temperatures in
kelvins. The boundary conditions are specified as follows: on the y-planes and the x = 600 mm plane,
treat as adiabatic; on the surface (0,y), select the convection coefficient option, enter the linearized
radiation coefficient after Eq. 1.9 written as

0.94 * 5.67e-8 * (T + 1273) * (T^2 + 1273^2)

and enter the surroundings temperature, 1273 K, in the fluid temperature box. See the Comments for a
view of the input screen. From View|Temperatures, find the results:

T(0, 120 s) = 339 K = 66C T(150 mm, 120 s) = 305K = 32C <

(b) Using the View | Temperatures command, the temperature histories for x = 0, 150 and 600 mm (10
mm mesh, Nodes 18, 23 and 15, respectively) are plotted. As expected, the surface temperature
increases markedly at early times. As thermal penetration increases with increasing time, the
temperature at the location x = 150 mm begins to increase after about 30 s. Note, however, that the
temperature at the location x = 600 mm does not change significantly within the 150 s exposure to the
hot surroundings. Our assumption of treating the boundary at the x = 600 mm plane as adiabatic is
justified. A copper plate of 600 mm is a good approximation to a semi-infinite medium at times less
than 150 s.

Continued …



PROBLEM 5.143 (Cont.)

COMMENTS: The annotated Input screen shows the outline of the slab, the boundary conditions,
and the triangular mesh before using the Reduce-mesh option.



PPROBLEM 5.144

KNOWN: Electric heater sandwiched between two thick plates whose surfaces experience
convection. Case 2 corresponds to steady-state operation with a loss of coolant on the x = -L surface.
Suddenly, a second loss of coolant condition occurs on the x = +L surface, but the heater remains
energized for the next 15 minutes. Case 3 corresponds to the eventual steady-state condition following
the second loss of coolant event. See Problem 2.53.

FIND: Calculate and plot the temperature time histories at the plate locations x = 0, L during the
transient period between steady-state distributions for Case 2 and Case 3 using the finite-element
approach with FEHT and the finite-difference method of solution with IHT (x = 5 mm and t = 1 s).

SCHEMATIC:

- L

Electric heater

Plates

q” = 4000 W/m2
o

x +L = 25 mm

T ,hoo

h = 400 W/m -K2
T = 20 Co

oo

Fluid

T
(x

),
(

C
)

o
0

x
-L +L

50

30

40

86.1

T (0) = 35 C1
o

Case 1, T (x)1

Case 2, T (x)2

Case 3, T (x)3

= 20Too

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) Heater has negligible
thickness, and (4) Negligible thermal resistance between the heater surfaces and the plates.

PROPERTIES: Plate material (given);  = 2500 kg/m3, c = 700 J/kgK, k = 5 W/mK.

ANALYSIS: The temperature distribution for Case 2 shown in the above graph represents the initial
condition for the period of time following the second loss of coolant event. The boundary conditions

at x = L are adiabatic, and the heater flux is maintained at oq = 4000 W/m
2

for 0  t  15 min.

Using FEHT, the heater is represented as a plate of thickness Lh = 0.5 mm with very low thermal

capacitance ( = 1 kg/m and c = 1 J/kgK), very high thermal conductivity (k= 10,000 W/mK), and a

uniform volumetric generation rate of 2 6
o hq q / L 4000 W / m / 0.0005 m 8.0 10    W/m

3
for 0  t 

900 s. In the Specify | Generation box, the generation was prescribed by the lookup file (see FEHT
Help): ‘hfvst’,1,2,Time. This Notepad file is comprised of four lines, with the values on each line
separated by a single tab space:

0 8e6
900 8e6
901 0
5000 0

The temperature-time histories are shown in the graph below for the surfaces x = - L (lowest curve,
13) and x = +L (19) and the center point x = 0 (highest curve, 14). The center point experiences the
maximum temperature of 89C at the time the heater is deactivated, t = 900 s.

Continued …



PROBLEM 5.144 (Cont.)

For the finite-difference method of solution, the nodal arrangement for the system is shown below.
The IHT model builder Tools | Finite-Difference Equations | One Dimensional can be used to obtain
the FDEs for the internal nodes (02-04, 07-10) and the adiabatic boundary nodes (01, 11).

qbqa“ “

E = q (0 t t )gen o off
“ “

.

x

Control volume, node 06

T05 T07
T0602 04 06 08 10

03 05 07 09

Heater, q = 4000 W/m , 0 t 900 so
2“

Nodal arrangement, FDE solution

x = 5 mm

Case 2

01 11

For the heater-plate interface node 06, the FDE for the implicit method is derived from an energy
balance on the control volume shown in the schematic above.

in out gen stE E E E        

a b o stq q q E      

p 1 p 1 p 1 p 1 p 1 p
05 06 07 06 06 06

o
T T T T T T

k k q c x
x x t



    
  

   
  

The IHT code representing selected nodes is shown below for the adiabatic boundary node 01, interior
node 02, and the heater-plates interface node 06. Note how the foregoing derived finite-difference
equation in implicit form is written in the IHT Workspace. Note also the use of a Lookup Table for
representing the heater flux vs. time.

Continued …



PROBLEM 5.144 (Cont.)

// Finite-difference equations from Tools, Nodes 01, 02
/* Node 01: surface node (w-orientation); transient conditions; e labeled 02. */
rho * cp * der(T01,t) = fd_1d_sur_w(T01,T02,k,qdot,deltax,Tinf01,h01,q''a01)
q''a01 = 0 // Applied heat flux, W/m^2; zero flux shown
qdot = 0 // No internal generation
Tinf01 = 20 // Arbitrary value
h01 = 1e-6 // Causes boundary to behave as adiabatic

/* Node 02: interior node; e and w labeled 03 and 01. */
rho*cp*der(T02,t) = fd_1d_int(T02,T03,T01,k,qdot,deltax)

// Finite-difference equation from energy balance on CV, Node 06
k * (T05 - T06) / deltax + k * (T07 - T06)/ deltax + q''h = rho * cp * deltax * der(T06,t)
q''h = LOOKUPVAL(qhvst,1,t,2) // Heater flux, W/m^2; specified by Lookup Table

/* See HELP (Solver, Lookup Tables). The Look-up table file name "qhvst" contains
0 4000
900 4000
900.5 0
5000 0 */

The temperature-time histories using the IHT code for the plate locations x = 0, L are shown in the
graphs below. We chose to show expanded presentations of the histories at early times, just after the
second loss of coolant event, t = 0, and around the time the heater is deactivated, t = 900 s.

COMMENTS: (1) The maximum temperature during the transient period is at the center point and
occurs at the instant the heater is deactivated, T(0, 900s) = 89C. After 300 s, note that the two surface
temperatures are nearly the same, and never rise above the final steady-state temperature.

(2) Both the FEHT and IHT methods of solution give identical results. Their steady-state solutions

agree with the result of an energy balance on a time interval basis yielding Tss = 86.1C.
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PROBLEM 5.145

KNOWN: Reaction and composite clutch plates, initially at a uniform temperature, Ti = 40C, are

subjected to the frictional-heat flux shown in the engagement energy curve, fq vs. t .

FIND: (a) On T-t coordinates, sketch the temperature histories at the mid-plane of the reaction plate,
at the interface between the clutch pair, and at the mid-plane of the composite plate; identify key
features; (b) Perform an energy balance on the clutch pair over a time interval basis and calculate the
steady-state temperature resulting from a clutch engagement; (c) Obtain the temperature histories
using the finite-element approach with FEHT and the finite-difference method of solution with IHT
(x = 0.1 mm and t = 1 ms). Calculate and plot the frictional heat fluxes to the reaction and

composite plates, rp cpq and q ,  respectively, as a function of time. Comment on the features of the

temperature and frictional-heat flux histories.

SCHEMATIC:

Reaction plate (rp)

Steel (s)Steel (s) Friction
material (fm)

Composite plate (cp) Engagement energy curve

2L = 2 mmrp

T(x,0) = Ti

2L =cp 1 mm L =fm 0.5 mm

qcp

qrp

”

”

Time, t(s)tlu0

tlu = 100 ms

q
”(

t)
=

+
q

q
rp

c
p

”
” qo

q = 1.6x10 W/mo
7 2

” ”

ASSUMPTIONS: (1) One-dimensional conduction, (2) Negligible heat transfer to the surroundings.

PROPERTIES: Steel, s = 7800 kg/m
3
, cs = 500 J/kgK, ks = 40 W/mK; Friction material, fm =

1150 kg/m
3
, cfm = 1650 J/kgK, and kfm = 4 W/mK.

ANALYSIS: (a) The temperature histories for specified locations in the system are sketched on T-t
coordinates below.

T(x,t)

Ti

tlu Time, t(s)

Steady-state condition

Mid-plane (cp)

Interface

Mid-plane (rp)

Initial condition

T( )oo

Initially, the temperature at all locations is uniform at Ti. Since there is negligible heat transfer to the

surroundings, eventually the system will reach a uniform, steady-state temperature T(). During the
engagement period, the interface temperature increases much more rapidly than at the mid-planes of
the reaction (rp) and composite (cp) plates. The interface temperature should be the maximum within

the system and could occur before lock-up, t = tlu.

Continued …



PROBLEM 5.145 (Cont.)

(b) To determine the steady-state temperature following the engagement period, apply the
conservation of energy requirement on the clutch pair on a time-interval basis, Eq. 1.12b.

T = 40 Ci
o

T(t ) =

Clutch pair - energy balance

q”(t) = 1.6x10 W/m 0 t27
lut

T( )oooocprp

(s)
(fm)

(s)

The final and initial states correspond to uniform temperatures of T() and Ti, respectively. The

energy input is determined from the engagement energy curve, fq vs. t .

in outin out gen st E E 0E E E E         

     lut

0 f f i s s rp cp fm fm fm f iq t dt E E c L / 2 L / 2 c L T T         
 

Substituting numerical values, with Ti = 40C and Tf = T().

    o lu s s rp cp fm fm fm i0.5 q t c L / 2 L / 2 c L T T       
 

 7 2 30.5 1.6 10 W / m 0.100 s 7800 kg / m 500 J / kg K 0.001 0.0005 m      

  31150 kg / m 1650 J / kg K 0.0005 m T 40 C      

 T 158 C   <

(c) Finite-element method of solution, FEHT. The clutch pair is comprised of the reaction plate (1
mm), an interface region (0.1 mm), and the composite plate (cp) as shown below.

Continued ...



PROBLEM 5.145 (Cont.)

The external boundaries of the system are made adiabatic. The interface region provides the means to
represent the frictional heat flux, specified with negligible thermal resistance and capacitance. The
generation rate is prescribed as

 11 3
luq 1.6 10 1 Time / 0.1 W / m 0 Time t    

where the first coefficient is evaluated as 3
oq 0.1 10 m/   and the 0.1 mm parameter is the thickness

of the region. Using the Run command, the integration is performed from 0 to 0.1 s with a time step of

110
-6

s. Then, using the Specify|Generation command, the generation rate is set to zero and the
Run|Continue command is executed. The temperature history is shown below.

(c) Finite-difference method of solution, IHT. The nodal arrangement for the clutch pair is shown
below with x = 0.1 mm and t = 1 ms. Nodes 02-10, 13-16 and 18-21 are interior nodes, and their
finite-difference equations (FDE) can be called into the Workspace using Tools|Finite Difference
Equations|One-Dimenisonal|Transient. Nodes 01 and 22 represent the mid-planes for the reaction and
composite plates, respectively, with adiabatic boundaries. The FDE for node 17 is derived from an
energy balance on its control volume (CV) considering different properties in each half of the CV.
The FDE for node 11 and 12 are likewise derived using energy balances on their CVs. At the
interface, the following conditions must be satisfied

11 12 f rp cpT T q q q    

The frictional heat flux is represented by a Lookup Table, which along with the FDEs, are shown in
the IHT code listed in Comment 2.

Nodal arrangement, FDE solution

Reaction plate (rp) Composite plate (cp)

x = 0.1 mm

02 03 1001 11 1712

(fm) (s)(s)

13 18 2216 21

qcp”qrp”

q”(t)

Continued ...
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The temperature and heat flux histories are plotted below. The steady-state temperature was found as
156.5 C, which is in reasonable agreement with the energy balance result from part (a).

COMMENTS: (1) The temperature histories resulting from the FEHT and IHT based solutions are in
agreement. The interface temperature peaks near 225C after 75 ms, and begins dropping toward the
steady-state condition. The mid-plane of the reaction plate peaks around 100 ms, nearly reaching
200C. The temperature of the mid-plane of the composite plate increases slowly toward the steady-
state condition.

(2) The calculated temperature-time histories for the clutch pair display similar features as expected
from our initial sketches on T vs. t coordinates, part a. The maximum temperature for the composite is
very high, subjecting the bonded frictional material to high thermal stresses as well as accelerating
deterioration. For the reaction steel plate, the temperatures are moderate, but there is a significant
gradient that could give rise to thermal stresses and hence, warping. Note that for the composite plate,
the steel section is nearly isothermal and is less likely to experience warping.

(2) The IHT code representing the FDE for the 22 nodes and the frictional heat flux relation is shown
below. Note use of the Lookup Table for representing the frictional heat flux vs. time boundary
condition for nodes 11 and 12.

// Nodal equations, reaction plate (steel)
/* Node 01: surface node (w-orientation); transient conditions; e labeled 02. */
rhos * cps * der(T01,t) = fd_1d_sur_w(T01,T02,ks,qdot,deltax,Tinf01,h01,q''a01)
q''a01 = 0 // Applied heat flux, W/m^2; zero flux shown
Tinf01 = 40 // Arbitrary value
h01 = 1e-5 // Causes boundary to behave as adiabatic
qdot = 0
/* Node 02: interior node; e and w labeled 03 and 01. */
rhos*cps*der(T02,t) = fd_1d_int(T02,T03,T01,ks,qdot,deltax)
…………………………….
/* Node 10: interior node; e and w labeled 11 and 09. */
rhos*cps*der(T10,t) = fd_1d_int(T10,T11,T09,ks,qdot,deltax)
/* Node 11: From an energy on the CV about node 11 */
ks * (T10 - T11) / deltax + q''rp = rhos * cps * deltax / 2 * der(T11,t)

Continued ...
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PROBLEM 5.145 (Cont.)

// Friction-surface interface conditions
T11 = T12
q''f = LOOKUPVAL(HFVST16,1,t,2) // Applied heat flux, W/m^2; specified by Lookup Table
/* See HELP (Solver, Lookup Tables). The look-up table, file name "HFVST16' contains

0 16e6
0.1 0
100 0 */

q''rp + q''cp = q''f // Frictional heat flux

// Nodal equations - composite plate
// Frictional material, nodes 12-16
/* Node 12: From an energy on the CV about node 12 */
kfm * (T13 - T12) / deltax + q''cp = rhofm * cpfm * deltax / 2 * der(T12,t)
/* Node 13: interior node; e and w labeled 08 and 06. */
rhofm*cpfm*der(T13,t) = fd_1d_int(T13,T14,T12,kfm,qdot,deltax)
………………………………
/* Node 16: interior node; e and w labeled 11 and 09. */
rhofm*cpfm*der(T16,t) = fd_1d_int(T16,T17,T15,kfm,qdot,deltax)
// Interface between friction material and steel, node 17
/* Node 17: From an energy on the CV about node 17 */
kfm * (T16 - T17) / deltax + ks * (T18 - T17) / deltax = RHS
RHS = ( (rhofm * cpfm * deltax /2) + (rhos * cps * deltax /2) ) * der(T17,t)
// Steel, nodes 18-22
/* Node 18: interior node; e and w labeled 03 and 01. */
rhos*cps*der(T18,t) = fd_1d_int(T18,T19,T17,ks,qdot,deltax)
……………………………….
/* Node 22: interior node; e and w labeled 21 and 21. Symmetry condition. */
rhos*cps*der(T22,t) = fd_1d_int(T22,T21,T21,ks,qdot,deltax)
// qdot = 0

// Input variables
// Ti = 40 // Initial temperature; entered during Solve
deltax = 0.0001
rhos = 7800 // Steel properties
cps = 500
ks = 40
rhofm = 1150 //Friction material properties
cpfm = 1650
kfm = 4

// Conversions, to facilitate graphing
t_ms = t * 1000
qf_7 = q''f / 1e7
qrp_7 = q''rp / 1e7
qcp_7 = q''cp / 1e7



PROBLEM 5.146

KNOWN: A process mixture at 200C flows at a rate of 207 kg/min onto a 1-m wide conveyor belt
traveling with a velocity of 36 m/min. The underside of the belt is cooled by a water spray.

FIND: The surface temperature of the mixture at the end of the conveyor belt, Te,s, using (a) IHT for
writing and solving the FDEs, and (b) FEHT. Validate your numerical codes against an appropriate
analytical method of solution.

SCHEMATIC:

h = 3000 W/m -K2T oC= 30oo

L = 30 mz Spray

V = 36 m/min

m = 207 kg/min
.

T = 200 Ci
o Te,s

T(x,t), T(x,0) = T = 200 Ci
o

Mixture (m)

Belt (b), L = 3 mmb

T , hoo

Lm

L +Lm b

ASSUMPTIONS: (1) One-dimensional conduction in the x-direction at any z-location, (2)
Negligible heat transfer from mixture upper surface to ambient air, and (3) Constant properties.

PROPERTIES: Process mixture (m), m = 960 kg/m
3
, cm = 1700 J/kgK, and km = 1.5 W/mK;

Conveyor belt (b), b = 8000 kg/ m
3
, cb = 460 J/kgK, and kb = 15 W/mK.

ANALYSIS: From the conservation of mass requirement, the thickness of the mixture on the
conveyor belt can be determined.

m c c mm A V where A W L 

3
m207 kg / min 1 min/ 60s 960 kg / m 1m L 36 m / min 1min/ 60s     

mL 0.0060 m 6 mm 

The time that the mixture is in contact with the steel conveyor belt, referred to as the residence time, is

 res ct L / V 30 m / 36 m / min 1 min/ 60 s 50 s   

The composite system comprised of the belt, Lb = 3 mm, and mixture, Lm = 6 mm, as represented in

the schematic above, is initially at a uniform temperature T(x,0) = Ti = 200C while at location z = 0,

and suddenly is exposed to convection cooling (T, h). We will calculate the mixture upper surface

temperature after 50 s, T(0, tres) = Te,s .

(a) The nodal arrangement for the composite system is shown in the schematic below. The IHT model
builder Tools|Finite-Difference Equations|Transient can be used to obtain the FDEs for nodes 01-12
and 14-19.

Continued …
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T(x,0) = Ti

T , hoo

Lm

L +Lm b

T13

T12

T14

qa“

qb

x = 0.5 mm

Est,m
“

.

Est,b
“

.
b, c , kb b

m, c , km b(m)

(b)

T01

T12T13

T14

T19

For the mixture-belt interface node 13, the FDE for the implicit method is derived from an energy
balance on the control volume about the node as shown above.

in out stE E E     

a b st,m st,bq q E E      

  
p 1 p 1 p 1 p 1 p 1 p
12 13 14 13 13 13

m b m m b b
T T T T T T

k k c c x / 2
x x t

 

    
  

   
  

IHT code representing selected FDEs, nodes 01, 02, 13 and 19, is shown in Comment 4 below (x =
0.5 mm, t = 0.1 s). Note how the FDE for node 13 derived above is written in the Workspace. From
the analysis, find

Te,s = T(0, 50s) = 54.8C <
(b) Using FEHT, the composite system is drawn and the material properties, boundary conditions, and
initial temperature are specified. The screen representing the system is shown below in Comment 5
with annotations on key features. From the analysis, find

Te,s = T(0, 50s) = 54.7C <
COMMENTS: (1) Both numerical methods, IHT and FEHT, yielded the same result, 55C. For the
safety of plant personnel working in the area of the conveyor exit, the mixture exit temperature should
be lower, like 43C.

(2) By giving both regions of the composite the same properties, the analytical solution for the plane
wall with convection, Section 5.5, Eq. 5.43, can be used to validate the IHT and FEHT codes. Using
the IHT Models|Transient Conduction|Plane Wall for a 9-mm thickness wall with mixture
thermophysical properties, we calculated the temperatures after 50 s for three locations: T(0, 50s) =
91.4C; T(6 mm, 50s) = 63.6C; and T(3 mm, 50s) = 91.4C. The results from the IHT and FEHT
codes agreed exactly.

(3) In view of the high heat removal rate on the belt lower surface, it is reasonable to assume that
negligible heat loss is occurring by convection on the top surface of the mixture.

Continued …



PROBLEM 5.146 (Cont.)

(4) The IHT code representing selected FDEs, nodes 01, 02, 13 and 19, is shown below. The FDE for
node 13 was derived from an energy balance, while the others are written from the Tools pad.

// Finite difference equations from Tools, Nodes 01 -12 (mixture) and 14-19 (belt)
/* Node 01: surface node (w-orientation); transient conditions; e labeled 02. */
rhom * cm * der(T01,t) = fd_1d_sur_w(T01,T02,km,qdot,deltax,Tinf01,h01,q''a01)
q''a01 = 0 // Applied heat flux, W/m^2; zero flux shown
qdot = 0
Tinf01 = 20 // Arbitrary value
h01 = 1e-6 // Causes boundary to behave as adiabatic

/* Node 02: interior node; e and w labeled 03 and 01. */
rhom*cm*der(T02,t) = fd_1d_int(T02,T03,T01,km,qdot,deltax)

/* Node 19: surface node (e-orientation); transient conditions; w labeled 18. */
rhob * cb * der(T19,t) = fd_1d_sur_e(T19,T18,kb,qdot,deltax,Tinf19,h19,q''a19)
q''a19 = 0 // Applied heat flux, W/m^2; zero flux shown
Tinf19 = 30
h19 = 3000

// Finite-difference equation from energy balance on CV, Node 13
km*(T12 - T13)/deltax + kb*(T14 - T13)/deltax = (rhom*cm + rhob*cb) *(deltax/2)*der(T13,t)

(5) The screen from the FEHT analysis is shown below. It is important to use small time steps in the
integration at early times. Use the View|Temperatures command to find the temperature of the

mixture surface at tres = 50 s.



PROBLEM 5.147

KNOWN: Stainless steel cylinder, 80-mm diameter by 60-mm length, initially at 600 K, suddenly

quenched in an oil bath at 300 K with h = 500 W/m
2
K. Use the ready-to-solve model in the Examples

menu of FEHT to obtain the following solutions.

FIND: (a) Calculate the temperatures T(r, x ,t) after 3 min: at the cylinder center, T(0, 0, 3 mm), at

the center of a circular face, T(0, L, 3 min), and at the midheight of the side, T(ro, 0, 3 min); compare
your results with those in the example; (b) Calculate and plot temperature histories at the cylinder

center, T(0, 0, t), the mid-height of the side, T(ro, 0, t), for 0  t  10 min; use the View/Temperature
vs. Time command; comment on the gradients and what effect they might have on phase
transformations and thermal stresses; (c) Using the results for the total integration time of 10 min, use
the View/Temperature Contours command; describe the major features of the cooling process shown
in this display; create and display a 10-isotherm temperature distribution for t = 3 min; and (d) For the
locations of part (a), calculate the temperatures after 3 min if the convection coefficient is doubled (h =

1000 W/m
2
K); for these two conditions, determine how long the cylinder needs to remain in the oil

bath to achieve a safe-to touch surface temperature of 316 K. Tabulate and comment on the results of
your analysis.

SCHEMATIC:

ASSUMPTIONS: (1) Two-dimensional conduction in r- and x-coordinates, (2) Constant properties.

PROPERTIES: Stainless steel:  = 7900 kg/m
3
, c = 526 J/kgK, k = 17.4 W/mK.

ANALYSIS: (a) The FEHT ready-to-solve model is accessed through the Examples menu and the
annotated Input page is shown below. The following steps were used to obtain the solution: (1) Use
the DrawReduce Mesh command three times to create the 512-element mesh; (2) In Run, click on
Check, (3) In Run, press Calculate and hit OK to initiate the solver; and (4) Go to the View menu,

select Tabular Output and read the nodal temperatures 4, 1, and 3 at t = to = 180 s. The tabulated
results below include those from the n-term series solution used in the IHT software.

Continued …



PROBLEM 5.147 (Cont.)

(r, x, to) FEHT node T(r, x, to) (K) T(r, x, to) (K) T(r, x, to) (K)
FEHT 1-term series n-term series

0, 0, to 4 402.7 405 402.7

0, L, to 1 368.7 372 370.5

ro, 0, to 3 362.5 365 362.4

The FEHT results are in excellent agreement with the IHT n-term series solutions for the x = 0 plane
nodes (4,3), except for the x = L plane node (1).

(b) Using the View Temperature vs. Time command, the temperature histories for nodes 4, 1, and 3 are
plotted in the graph shown below. There is very small temperature difference between the locations

on the surface, (node 1; 0, L) and (node 3; ro, 0). But, the temperature difference between these
surface locations and the cylinder center (node 4; 0, 0) is large at early times. Such differences
wherein locations cool at considerably different rates could cause variations in microstructure and
hence, mechanical properties, as well as induce thermal stresses.

Continued …



PROBLEM 5.147 (Cont.)

(c) Use the View|Temperature Contours command with the shaded band option for the isotherm
contours. Selecting the From Start to Stop time option, see the display of the contours as the cylinder

cools during the quench process. The “movie” shows that cooling initiates at the corner (ro,L,t) and
the isotherms quickly become circular and travel toward the center (0,0,t). The 10-isotherm
distribution for t = 3 min is shown below.

(d) Using the FEHT model with convection coefficients of 500 and 1000 W/m
2
K, the temperatures at

t = to = 180 s for the three locations of part (a) are tabulated below.

h = 500 W/m
2
K h = 1000 W/m

2
K

T(0, 0, to), K 402.7 352.8

T(0, L, to), K 368.7 325.8

T(ro, 0, to), K 362.5 322.1

Note that the effect of doubling the convection coefficient is to reduce the temperature at these
locations by about 40C. The time the cylinder needs to remain in the oil bath to achieve the safe-to-
touch surface temperature of 316 K can be determined by examining the temperature history of the
location (node1; 0, L). For the two convection conditions, the results are tabulated below. Doubling
the coefficient reduces the cooling process time by 40 %.

T(0, L, to) h (W/m
2
K) to (s)

316 500 370
316 1000 219



PROBLEM 5.148

KNOWN: Cubic-shaped furnace, with prescribed operating temperature and convection heat transfer
on the exterior surfaces.

FIND: Time required for the furnace to cool to a safe working temperature corresponding to an inner
wall temperature of 35C considering convection cooling on (a) the exterior surfaces and (b) on both
the exterior and interior surfaces.

SCHEMATIC:

= 2600 kg/m
c = 960 J/kg-K
k = 1 W/m-K

 3

(a) Adiabatic inner surface (b) Cooled inner surface

T(x,0,0) = 900 Co T(x,0,0) = 900 Co

Furnace wall

x (m)

y (m)

0

1

0 8 9

T = 25 Co
oo

h = 20 W/m -K2

Too , h

Too, h

T(x,y,t)

ASSUMPTIONS: (1) Two-dimensional conduction through the furnace walls and (2) Constant
properties.

ANALYSIS: Assuming two-dimensional conduction through the walls and taking advantage of
symmetry for the cubical shape, the analysis considers the quarter section shown in the schematic
above. For part (a), with no cooling on the interior during the cool-down process, the inner surface
boundary condition is adiabatic. For part (b), with cooling on both the exterior and interior, the
boundary conditions are prescribed by the convection process. The boundaries through the centerline
of the wall and the diagonal through the corner are symmetry planes and considered as adiabatic. We
have chosen to use the finite-element software FEHT as the solution tool.

Using FEHT, an outline of the symmetrical wall section is drawn, and the material properties are
specified. To determine the initial conditions for the cool-down process, we will first find the
temperature distribution for steady-state operation. As such, specify the boundary condition for the
inner surface as a constant temperature of 900C; the other boundaries are as earlier described. In the
Setup menu, click on Steady-State, and then Run to obtain the steady-state temperature distribution.

This distribution represents the initial temperature distribution, Ti (x, y, 0), for the wall at the onset of
the cool-down process.

Next, in the Setup menu, click on Transient; for the nodes on the inner surface, in the Specify |
Boundary Conditions menu, deselect the Temperature box (900C) and set the Flux box to zero for the
adiabatic condition (part (a)); and, in the Run command, click on Continue (not Calculate). Be sure to
change the integration time scale from seconds to hours.

Because of the high ratio of wall section width (nearly 8.5 m) to the thickness (1 m), the conduction
heat transfer through the section is nearly one-dimensional. We chose the x,y-section 1 m to the right
of the centerline (1 m, y) as the location for examining the temperature-time history, and determining
the cool-down time for the inner surface to reach the safe working temperature of 35C.

Continued …



PROBLEM 5.148 (Cont.)

Time-to-cool, Part (a), Adiabatic inner surface. From the above temperature history, the cool-down

time, ta, corresponds to the condition when Ta (1 m, 0, ta) = 35C. As seen from the history, this
location is the last to cool. From the View | Tabular Output, find that

at 1306 h 54 days  <

Continued …



PROBLEM 5.148 (Cont.)

Time-to-cool, Part (b), Cooled inner surface. From the above temperature history, note that the center
portion of the wall, and not the inner surface, is the last to cool. The inner surface cools to 35C in
approximately 175 h or 7 days. However, if the cooling process on the inner surface were
discontinued, its temperature would increase and eventually exceed the desired safe working

temperature. To assure the safe condition will be met, estimate the cool down time as, tb,

corresponding to the condition when Tb (1 m, 0.75 m, tb) = 35C. From the View | Tabular Output,
find that

bt 311 h 13 days  <

COMMENTS: (1) Assuming the furnace can be approximated by a two-dimensional symmetrical
section greatly simplifies our analysis by not having to deal with three-dimensional corner effects. We
justify this assumption on the basis that the corners represent a much shorter heat path than the straight
wall section. Considering corner effects would reduce the cool-down time estimates; hence, our
analysis provides a conservative estimate.

(2) For background information on the Continue option, see the Run menu in the FEHT Help section.
Using the Run | Calculate command, the steady-state temperature distribution was determined for the
normal operating condition of the furnace. Using the Run | Continue command (after clicking on
Setup | Transient), this steady-state distribution automatically becomes the initial temperature
distribution for the cool-down transient process. This feature allows for conveniently prescribing a
non-uniform initial temperature distribution for a transient analysis (rather than specifying values on a
node-by-node basis.



 
PROBLEM 6.1 

 
KNOWN:  Temperature distribution at x2 in laminar thermal boundary layer. 
 
FIND:  (a) Whether plate is being heated or cooled, (b) Temperature distributions at two other x 
locations.  Locations of largest and smallest heat fluxes, (c) Temperature distribution at x2 for lower 
and higher free stream velocities.  Which velocity condition causes the largest heat flux. 
 
SCHEMATIC:   
 

δt

T∞

Ts

T∞

Thermal
boundary

layer

Free stream

x1

x2

x3

x  
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Laminar, incompressible flow. 
 
ANALYSIS:   (a) Since the sketch indicates that the free stream temperature is greater than the 
surface temperature, the plate is being heated by the fluid.  This is consistent with the fact that the 
surface heat flux in the positive y-direction is given by Eq. 6.3: 
 

0
s f

y

Tq k
y =

∂′′ = −
∂

 

From the sketch, the temperature gradient is positive, therefore the heat flux is negative.  The heat 
transfer is in the negative y-direction, the plate is being heated by the fluid.   < 
 
(b) At every location in the boundary layer, the temperature must vary from Ts at the surface to T∞ in 
the free stream.  This change must occur within the thermal boundary layer thickness, as shown in the 
sketch below. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Continued... 
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PROBLEM 6.1 (Cont.) 
 
The magnitude of the heat flux is proportional to the temperature gradient at the surface, 0/ yT y

=
∂ ∂ , 

which is shown schematically as a dashed line.  The temperature gradient is steeper (larger) at x1 
where the thermal boundary layer is thinner and less steep (smaller) at x3 where the thermal boundary 
layer is thicker.  Therefore, the magnitude of the local heat flux is largest at x1 and smallest at x3. < 

 
(c) As the free stream velocity increases the boundary layer becomes thinner. Sketches for a low and 
high free stream velocity are shown below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Low freestream velocity case. 
 
 
 
 
 
 
 
 
 
 
 
 

 
High freestream velocity case. 

 
 
The temperature gradient, shown as the dashed line, is steeper for the higher free stream velocity case. 
Therefore the higher free stream velocity case has the higher convective heat flux.                           < 
 
 
COMMENTS:  It is important to understand how the temperature gradient at the surface varies as the 
thickness of the boundary layer changes. 
 

T∞T∞

Ts

T∞

Thermal
boundary

layer

Free stream

x2

T∞

Ts

T∞

Thermal
boundary

layer

Free stream

x2

x



PROBLEM 6.2  
KNOWN:  Form of the velocity and temperature profiles for flow over a surface.  
FIND:  Expressions for the friction and convection coefficients.  
SCHEMATIC:   
 

 
 
ANALYSIS:  The shear stress at the wall is  

 2
s

y=0y=0

 u  A 2By 3Cy A .
 y

∂τ μ μ μ
∂

⎤ ⎡ ⎤= = + − =⎥ ⎢ ⎥⎣ ⎦⎦
 

 
Hence, the friction coefficient has the form,  
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The convection coefficient is  
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COMMENTS:  It is a simple matter to obtain the important surface parameters from 
knowledge of the corresponding boundary layer profiles.  However, it is rarely a simple 
matter to determine the form of the profile. 



PROBLEM 6.3  
KNOWN:  Boundary layer temperature distribution.  
FIND:  Surface heat flux.  
SCHEMATIC:   
 

 
 
PROPERTIES:  Table A-4, Air (Ts = 300K):  k = 0.0263 W/m⋅K. 
 
ANALYSIS:  Applying Fourier’s law at y = 0, the heat flux is  

 

( )

( )
( )
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s s
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s

 T u u yq k k T T Pr exp Pr
 y

uq k T T Pr

q 0.0263 W/m K 100K 0.7 5000 1/m.
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′′ = − −

′′ = − ⋅ ×

 

 
 2

sq 9205 W/m .′′ = −          < 
 
COMMENTS:  (1) Negative flux implies convection heat transfer to the surface.  
(2) Note use of k at Ts to evaluate sq′′  from Fourier’s law. 



PROBLEM 6.4  
KNOWN:  Surface temperatures of a steel wall and temperature of water flowing over the 
wall.  
FIND:  (a) Convection coefficient, (b) Temperature gradient in wall and in water at wall 
surface.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional heat transfer in x, (3) 
Constant properties.  
PROPERTIES:  Table A-1, Steel Type AISI 1010 (70°C = 343K), ks = 61.7 W/m⋅K; Table 
A-6, Water (32.5°C = 305K), kf = 0.62 W/m⋅K. 
 
ANALYSIS:  (a) Applying an energy balance to the control surface at x = 0, it follows that  
 x,cond x,convq q 0′′ ′′− =  
 
and using the appropriate rate equations, 
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(b) The gradient in the wall at the surface is    

( ) s,2 s,1
s

T T 60 CdT/dx 171.4 C/m.
L 0.35m
−

= − = − = −
o

o  
 
In the water at x = 0, the definition of h gives  

( ) ( )s,1f,x=0 f

hdT/dx T T
k ∞= − −  

 

( ) ( )
2

f,x=0
705 W/m KdT/dx 15 C 17,056 C/m.
0.62 W/m K

⋅
= − = −

⋅
o o      < 

 
COMMENTS:  Note the relative magnitudes of the gradients.  Why is there such a large 
difference? 



PROBLEM 6.5  
KNOWN:  Variation of hx with x for laminar flow over a flat plate. 
 
FIND:  Ratio of average coefficient, xh ,  to local coefficient, hx, at x. 
 
SCHEMATIC:   
 

 
 
ANALYSIS:  The average value of hx between 0 and x is 
 

 

x x
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Hence,   x
x

h 2.
h

=         < 

 
COMMENTS:  Both the local and average coefficients decrease with increasing distance x 
from the leading edge, as shown in the sketch below. 
 

 
 



PROBLEM 6.6 
 
KNOWN:  Variation of local heat transfer coefficient with x.  Length of plate. 
 
FIND:  Ratio of heat transfer coefficients for flow oriented in short and long directions. 
 
SCHEMATIC:   
 

L = 1 m or 0.75 m
 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Laminar flow, (3) Incompressible flow. 
 
ANALYSIS:   The local heat transfer coefficient varies with x according to 
 

1/2
xh Cx−=  

 
The average heat transfer coefficient over the entire plate is given by Eq. 6.14: 
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Therefore the ratio of average heat transfer coefficients for the two different flow orientations is 
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The average heat transfer coefficient is larger when the flow is oriented in the short direction because 
local heat transfer coefficients are largest near the leading edge.  Therefore the heat transfer rate will 
be larger when flow is oriented in the short direction.          < 
 
COMMENTS:  Many engineering devices that are affected by, or utilize convection heat transfer in 
their operation incorporate short sections of surfaces in order to take advantage of the high local heat 
transfer coefficients that exist near the leading edges of such surfaces. 



PROBLEM 6.7  
KNOWN:  Distribution of local convection coefficient for obstructed parallel flow over a flat 
plate.  
FIND:  Average heat transfer coefficient and ratio of average to local at the trailing edge.  
SCHEMATIC:   
 

 
 
ANALYSIS:  The average convection coefficient is  

 ( )
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 ( ) ( ) 2

Lh 0.7 6.8 3 1.13 9 10.9 W/m K.= + − = ⋅      < 
 
The local coefficient at x = 3m is  
 ( ) ( ) 2

Lh 0.7 13.6 3 3.4 9 10.9 W/m K.= + − = ⋅  
 
Hence,  
 L Lh / h 1.0.=           < 
 
COMMENTS:  The result L Lh / h 1.0=  is unique to x = 3m and is a consequence of the 
existence of a maximum for h xxb g.   The maximum occurs at x = 2m, where 

( ) ( )2 2
x xdh / dx 0 and d h / dx 0.= <  



PROBLEM 6.8  
KNOWN:  Variation of local convection coefficient with x for free convection from a 
vertical heated plate.  
FIND:  Ratio of average to local convection coefficient.  
SCHEMATIC:   

  
ANALYSIS:  The average coefficient from 0 to x is  
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Hence,   x
x

h 4 .
h 3

=         < 

 
The variations with distance of the local and average convection coefficients are shown in the 
sketch. 
 

 
 
COMMENTS:  Note that h / h 4 / 3x x =  is independent of x.  Hence the average coefficient 

for an entire plate of length L is L L
4h  h
3

= , where hL is the local coefficient at x = L.  Note 

also that the average exceeds the local.  Why? 



PROBLEM 6.9  
KNOWN:  Expression for the local heat transfer coefficient of a circular, hot gas jet at T∞ 
directed normal to a circular plate at Ts of radius ro. 
 
FIND:  Heat transfer rate to the plate by convection.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Flow is axisymmetric about the plate, (3) 
For h(r), a and b are constants and n ≠ -2.  
ANALYSIS:  The convective heat transfer rate to the plate follows from Newton’s law of 
cooling 
 
 ( ) ( )

A A
conv conv sq dq h r dA T T .∞= = ⋅ ⋅ −∫ ∫  

 
The local heat transfer coefficient is known to have the form, 
 
 ( ) nh r a  br= +  
 
and the differential area on the plate surface is 
 
 dA 2  r dr.= π  
 
Hence, the heat rate is 
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COMMENTS:  Note the importance of the requirement, n ≠ -2.  Typically, the radius of the 
jet is much smaller than that of the plate. 



PROBLEM 6.10 
 

KNOWN: Expression for face-averaged Nusselt numbers on a cylinder of rectangular cross 
section. Dimensions of the cylinder. 
 
FIND: Average heat transfer coefficient over the entire cylinder. Plausible explanation for 
variations in the face-averaged heat transfer coefficients. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties. 
 
PROPERTIES: Table A.4, air (300 K): k = 0.0263 W/m⋅K, ν = 1.589 × 10-5 m2/s, Pr = 0.707.  
 
ANALYSIS: 
For the square cylinder,  c/d = 40 mm/30 mm = 1.33 

 
-3

d -5 2
Vd 10 m/s × 30 × 10  mRe  =  =  = 18,880

1.589 × 10  m /sν
 

 
Therefore, for the front face C = 0.674, m = ½.  For the sides, C = 0.107, m = 2/3 while for the 
back C = 0.153, m = 2/3. 
 
Front face: 
 1/2 1/3

d,fNu  = 0.674 × 18,880 ×  0.707  = 82.44  

 2d
f -3

kNu 0.0263 W/m K × 82.44h  =  =  = 72.27 W/m K
d 30 × 10  m

⋅
⋅  

 
Side faces: 
 2/3 1/3

d,sNu  = 0.107 × 18,880 ×  0.707  = 67.36  

 d,s 2
s -3

kNu 0.0263 W/m K × 67.36h  =  =  = 59.05 W/m K
d 30 × 10  m

⋅
⋅  

 
Back face: 
 2/3 1/3

d,bNu  = 0.153 × 18,880 ×  0.707  = 96.43  

d,b 2
b -3

kNu 0.0263 W/m K × 96.43h  =  =  = 84.54 W/m K
d 30 × 10  m

⋅
⋅  

 
Continued… 

c = 40 mm

d = 30 mm

Air

V = 10 m/s

T∞ = 300 K

c = 40 mm

d = 30 mm

Air

V = 10 m/s

T∞ = 300 K



PROBLEM 6.10 (Cont.) 
 
For the entire square cylinder of unit length, 
 

 f f s s b b

f s b

h A  + 2h A  + h Ah = 
A  + 2A  + A

 

 
2 -3 2 -3

2 -3

3 3

72.27 W/m K × 30 × 10  m + 2 × 59.05 W/m K × 40 × 10  m 

+ 84.54 W/m K × 30 × 10  m
h = 

(2 30 10 m 2 40 1 m)− −

⎛ ⎞⋅ ⋅
⎜ ⎟
⎜ ⎟⋅⎝ ⎠

× × + × ×
 

2h = 67.35 W/m K⋅               < 
 
 

The face-averaged heat transfer coefficients are largest on the back face and smallest on the side 
faces. Plausible explanations for the variations of the face-averaged heat transfer coefficients are 
complex fluid flow patterns including vortex shedding on the back face and development of 
relatively thick boundary layers along the sides. 
 
COMMENT:  See S.Y. Yoo, J.H. Park, C.H. Chung and M.K. Chung, Journal of Heat Transfer, 
Vol. 125, pp. 1163-1169, 2003 for details. 
 



PROBLEM 6.11 
 
KNOWN:  Variation of local heat transfer coefficient around a circular collector tube. 
 
FIND:  (a) Estimate the average heat transfer coefficient, (b) Case with highest collector efficiency. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  Solar irradiation is independent of the reflector orientation. 
 
ANALYSIS: (a) From Eq. 6.13,  
 

2 2

0 0

1 1 1( / 2)
2s

sAs
h hdA h D Ld h d

A DL
π π

θ θθ θ
θ θ

π π= =
= = =∫ ∫ ∫  

where L is the collector tube length. Hence, the average heat transfer coefficient may be estimated as 
the average value of the local heat transfer coefficient. Approximate values of the average heat transfer 
coefficient are shown in the sketch below. 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
For Case 1, h ≈ 20 W/m2⋅K; for Case 2, h ≈ 10 W/m2⋅K, for Case 3, h ≈ 30 W/m2⋅K   < 

 
(b) The collector tube will be hotter than the ambient air. Hence, convective losses from the collector 
tube will diminish the overall collector efficiency. Therefore, Case 2 will have the highest collector 
efficiency.           < 
 
COMMENTS:  (1) For case 2, the parabolic reflector partially “shields” the collector tube from the 
wind, resulting in reduced heat transfer coefficients. The flow adjacent to the tube also experiences a 
change in direction for case 2, with a large recirculation pattern established behind the reflector. (2) 
None of the cases experiences symmetrical flow over the collector tube, as would be expected without 
the reflector in place. (3) See Naeeni and Yaghoubi, “Analysis of Wind Flow Around a Parabolic 
Collector (2) Heat Transfer from Receiver Tube,” Renewable Energy, Vol. 32, pp. 1259 – 1272, 2007, 
for additional discussion. 
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PROBLEM 6.12 
 
KNOWN:  Temperature distribution in boundary layer for air flow over a flat plate. 
 
FIND:  Variation of local convection coefficient along the plate and value of average coefficient. 
 
SCHEMATIC: 

 
ANALYSIS:  From Eq. 6.5, 
 

 
( )

( )
( )

y 0

s s

k T y k 70 600x
h

T T T T

∂ ∂ =

∞ ∞

×
= − = +

− −
 

 
where Ts = T(x,0) = 90°C.  Evaluating k at the arithmetic mean of the freestream and surface 
temperatures, T  = (20 + 90)°C/2 = 55°C = 328 K, Table A.4 yields k = 0.0284 W/m⋅K.  Hence, with 
Ts - T∞  = 70°C = 70 K, 
 

 
( ) ( )20.0284 W m K 42,000x K m

h 17x W m K
70K
⋅

= = ⋅  < 

 
and the convection coefficient increases linearly with x. 
 

 
The average coefficient over the range 0 ≤ x ≤ 5 m is 
 

 

52L 5 2
0 0

0

1 17 17 xh hdx xdx 42.5 W m K
L 5 5 2

= = = = ⋅∫ ∫  < 

 



PROBLEM 6.13 
 
KNOWN:  Variation of local convection coefficient with distance x from a heated plate with a 
uniform temperature Ts.  
FIND:  (a) An expression for the average coefficient 12h  for the section of length (x2 - x1) in terms of 
C, x1 and x2, and (b) An expression for 12h  in terms of x1 and x2, and the average coefficients 1h  and 

2h , corresponding to lengths x1 and x2, respectively. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Laminar flow over a plate with uniform surface temperature, Ts, and (2) Spatial 

variation of local coefficient is of the form 1/ 2
xh Cx−= , where C is a constant. 

 
ANALYSIS:  (a) The heat transfer rate per unit width from a longitudinal section, x2 - x1, can be 
expressed as 
 ( )( )12 12 2 1 sq h x x T T∞′ = − −  (1) 

where 12h  is the average coefficient for the section of length (x2 - x1).  The heat rate can also be 
written in terms of the local coefficient, Eq. (6.11), as 

 ( ) ( )2 2
1 1

x x
12 x s s xx x

q h dx T T T T h dx∞ ∞′ = − = −∫ ∫  (2) 

Combining Eq. (1) and (2), 

 
( )

2
1

x
12 xx2 1

1h h dx
x x

=
− ∫  (3) 

and substituting for the form of the local coefficient, 1/ 2
xh Cx−= , find that 

 
( )

2
2

1
1

x 1/ 2 1/ 21/ 2x 1/ 2 2 1
12 x2 1 2 1 2 1x

x x1 C xh Cx dx 2C
x x x x 1/ 2 x x

− ⎡ ⎤ −
= = =⎢ ⎥

− − −⎢ ⎥⎣ ⎦
∫  (4)< 

(b) The heat rate, given as Eq. (1), can also be expressed as 
 ( ) ( )12 2 2 s 1 1 sq h x T T h x T T∞ ∞′ = − − −  (5) 
 
which is the difference between the heat rate for the plate over the section (0 - x2) and over the section  
(0 - x1).  Combining Eqs. (1) and (5), find, 

 2 2 1 1
12

2 1

h x h xh
x x

−
=

−
 (6)< 

 
COMMENTS:  (1) Note that, from Eq. 6.6, 

 
x x 1/ 2 1/ 2

x x0 0
1 1h h dx Cx dx 2Cx
x x

− −= = =∫ ∫  (7) 
 
or xh  = 2hx.  Substituting Eq. (7) into Eq. (6), see that the result is the same as Eq. (4). 
 

hx = Cx-1/2 

dq’ 



PROBLEM 6.14  
KNOWN:  Radial distribution of local convection coefficient for flow normal to a circular 
disk.  
FIND:  Expression for average Nusselt number.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  Constant properties.  
ANALYSIS:  The average convection coefficient is  

 ( )

( )

As
ro

0
o

s
s

n
o o2

o
r2 n+2

o
3 n
o o 0

1h hdA
A

1 kh Nu 1 a r/r 2  rdr
D r

kNu r arh
2r n 2 r

π
π

=

⎡ ⎤= +⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥= +
⎢ ⎥+⎣ ⎦

∫

∫  

 
where Nuo is the Nusselt number at the stagnation point (r = 0).  Hence, 
 

 
( )

( )
( )

o

D

D

rn 22
o

o
o

0
o

r/rhD a rNu 2Nu
k 2 n+2 r

Nu Nu 1 2a/ n 2

+⎡ ⎤⎛ ⎞⎢ ⎥= = + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤= + +⎣ ⎦

 

 
 ( ) 1/2 0.36

D D1 2a/ n 2 0.814Re Pr .Nu ⎡ ⎤= + +⎣ ⎦        < 
 
COMMENTS:  The increase in h(r) with r may be explained in terms of the sharp turn which 
the boundary layer flow must make around the edge of the disk.  The boundary layer 
accelerates and its thickness decreases as it makes the turn, causing the local convection 
coefficient to increase. 



 
PROBLEM 6.15 

 
KNOWN:  Convection correlation and temperature of an impinging air jet.  Dimensions and initial 
temperature of a heated copper disk.  Properties of the air and copper. 
 
FIND:  Effect of jet velocity on temperature decay of disk following jet impingement. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Validity of lumped capacitance analysis, (2) Negligible heat transfer from sides 
and bottom of disk, (3) Constant properties. 
 
ANALYSIS:  Performing an energy balance on the disk, it follows that 

( )st s conv radE VcdT dt A q qρ ′′ ′′= = − +& .  Hence, with V = AsL, 
 

 
( ) ( )r surh T T h T TdT

dt cLρ
∞− + −

= −  

 

where, ( )( )2 2
r sur surh T T T Tεσ= + +  and, from the solution to Problem 6.14, 

 

 1/ 2 0.36D D
k k 2ah Nu 1 0.814Re Pr
D D n 2

⎛ ⎞= = +⎜ ⎟+⎝ ⎠
 

 
With a = 0.30 and n = 2, it follows that 
 
 ( ) 1/ 2 0.36

Dh k D 0.936 Re Pr=  
 
where ReD = VD/ν.  Using the Lumped Capacitance Model of IHT, the following temperature histories 
were determined. 
 
          Continued … 



 
 

PROBLEM 6.15 (Cont.) 
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The temperature decay becomes more pronounced with increasing V, and a final temperature of 400 K is 
reached at t = 2760, 1455 and 976s for V = 4, 20 and 50 m/s, respectively. 
 
COMMENTS:  The maximum Biot number, Bi = ( )r Cuh h L k+ , is associated with V = 50 m/s 

(maximum h  of 169 W/m2⋅K) and t = 0 (maximum hr of 64 W/m2⋅K), in which case the maximum Biot 
number is Bi = (233 W/m2⋅K)(0.025 m)/(386 W/m⋅K) = 0.015 < 0.1.  Hence, the lumped capacitance 
approximation is valid. 



PROBLEM 6.16  
KNOWN:  Local convection coefficient on rotating disk.  Radius and surface temperature of disk.  
Temperature of stagnant air.  
FIND:  Local heat flux and total heat rate.  Nature of boundary layer.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Negligible heat transfer from back surface and edge of disk.  
ANALYSIS:  If the local convection coefficient is independent of radius, the local heat flux at every 
point on the disk is 
 

 ( ) ( )2 2
sq h T T 20 W / m K 50 20 C 600 W / m∞′′ = − = ⋅ − ° =     < 

 

Since h is independent of location, 2h h 20 W / m K= = ⋅  and the total power requirement is 
 

 ( ) ( )2
elec s s o sP q hA T T h r T Tπ∞ ∞= = − = −  

 

 ( ) ( ) ( )22
elecP 20 W / m K 0.1m 50 20 C 18.9 Wπ= ⋅ − ° =     < 

 
If the convection coefficient is independent of radius, the boundary layer must be of uniform thickness 
δ.  Within the boundary layer, air flow is principally in the circumferential direction.  The 
circumferential velocity component uθ corresponds to the rotational velocity of the disk at the surface 
(y = 0) and increases with increasing r (uθ = Ωr).  The velocity decreases with increasing distance y 
from the surface, approaching zero at the outer edge of the boundary layer (y → δ). 
 



PROBLEM 6.17 
 

 
KNOWN:  Dimensions and temperatures of rotating and stationary disks, air gap spacing between 
disks, rotational speed. Correlation for the local Nusselt number. 
 
FIND:  Value of the average Nusselt number, total heat flux from the disk’s top surface, total power 
requirement. Comment on the nature of the flow between the disks. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Negligible viscous 
dissipation. 
 
PROPERTIES:  Table A-4, air (T = (50°C + 20°C)/2 = 35°C ≈ 308K): ν = 16.69×10-6 m2/s, k = 
0.0269 W/m⋅K. 
 

ANALYSIS:   From the problem statement, ( )140 0.456 0.478( ) 70 1
o

G
r r r

h r rNu e Re Re
k

− −= = + . 

Since 2 /rRe r ν= Ω , the local heat transfer coefficient is 
 

  ( )
0.456 0.4782

140 0.044( ) 70 1 G orh r k e r
ν ν

−
− −

⎡ ⎤⎛ ⎞Ω Ω⎛ ⎞⎢ ⎥= + ⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
     

 
The average heat transfer coefficient may be evaluated from 
 

 ( )
0.456 0.4782

140 0.044
2

0

1 2( ) 70 1
o

s

r
G o

s
s oA

k rh h r dA e r r dr
A r

π
ν νπ

−
− −

⎡ ⎤⎛ ⎞Ω Ω⎛ ⎞⎢ ⎥= = + ×⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
∫ ∫  

 
or 
 

 ( )
0.456 0.4782

140 1.956
2

1.022 70 1 G o
o

o

k rh e r
r ν ν

−
−

⎡ ⎤⎛ ⎞Ω Ω⎛ ⎞⎢ ⎥= + ⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
    

 
Continued… 
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PROBLEM 6.17 (Cont.) 
 
 

Substituting values, 
 

( ) ( ) ( )

2

0.4562 0.478
1.956140 0.01

6 2 6 2

1.022 0.0269W/m K
(0.100m)

150rad/s 0.100m 150rad/s   70 1 0.100m
16.69 10 m /s 16.69 10 m /s

h

e

−

− ×
− −

× ⋅
=

⎡ ⎤⎛ ⎞× ⎛ ⎞⎢ ⎥⎜ ⎟× + ⎜ ⎟⎢ ⎥⎜ ⎟× ×⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

 

 
or 
 

230.8 W/m Kh = ⋅        < 
 

The average Nusselt number is 
 

2/ 30.8W/m K 0.200m / 0.0269W/m K 229DNu hD k= = ⋅ × ⋅ =    < 
 

The heat flux from the top surface of the disk is 
 
  2 2" ( ) 30.8W/m K (50 20) C 924W/ms dq h T T= − = ⋅ × − ° =    < 
 
Therefore, the total electric power requirement is 
 
  2 2 2" " 924W/m (0.100m) 29Ws oP q A q rπ π= = = × × =     < 
 
Note that if only conduction were occurring between the two disks, the heat flux would be 
 
 2" ( / )( ) (0.0269W/m K / 0.001m) (50 20) C 807W/m .s dq k g T T= − = ⋅ × − ° =  
 
The conduction heat flux is slightly less than the calculated quantity with rotation, suggesting that 
advection in the cross-gap direction is small, and that heat transfer between the disks is dominated by 
conduction. The laminar flow between the disks is characterized by very small velocities in the cross-
gap direction. 
 
COMMENTS:  (1) The slight increase in heat transfer rate is due to edge effects where air can exit 
or enter the space between the disks, and enhance heat transfer between the disks by mixing. (2) The 
Reynolds number is ( )22 6 2/ 150rad/s 0.100m /16.69 10 m /s 90,000.

or oRe r ν −= Ω = × × =  Transition to 
turbulent flow begins at a Reynolds number of approximately 180,000 for this configuration. (3) See 
Pelle and Harmand, “Heat Transfer Measurements in an Opened Rotor-Stator System Air-Gap,” 
Experimental Thermal and Fluid Science, ‘Vol. 31, pp. 165 – 180, 2007, for more information. 
 
 



PROBLEM 6.18 
 

KNOWN: Air flow over a flat plate of known length, location of transition from laminar to 
turbulent flow, value of the critical Reynolds number. 
 
FIND: (a) Free stream velocity with properties evaluated at T = 350 K, (b) Expression for the 
average convection coefficient, lamh (x) , as a function of the distance x from the leading edge in 

the laminar region, (c) Expression for the average convection coefficient turbh (x) , as a function 
of the distance x from the leading edge in the turbulent region, (d) Compute and plot the local and 
average convection coefficients over the entire plate length. 
 
SCHEMATIC: 

T∞, u∞
hlam=Clamx-0.5

hturb=Cturbx-0.2

TurbulentLaminarx

xc

T∞, u∞
hlam=Clamx-0.5

hturb=Cturbx-0.2

TurbulentLaminarx

xc  
 
ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties. 
 
PROPERTIES: Table A.4, air (T = 350 K): k = 0.030 W/m⋅K, ν = 20.92 × 10-6 m2/s, Pr = 0.700.  
 
ANALYSIS: 
(a) Using air properties evaluated at 350 K with xc = 0.5 m, 

5c
x,c

u x
Re 5 10

ν
∞= = ×       

5 5 6
c

2u 5 10 x 5 10 20.92 10 m / s 0.5 m 20.9 m s−
∞ = × = × × × =ν                                 < 

(b) From Eq. 6.13, the average coefficient in the laminar region, 0 ≤ x ≤ xc, is 
 

( ) ( ) lam lam
x x -0.5 0.5C Clam lam lam lam0 o

1 1 1 -0.5h x = h x dx = x dx = x 2C 2
x x x

 = x   h (x)=∫ ∫  (1)  < 

          
(c) The average coefficient in the turbulent region, xc ≤ x ≤ L, is 

 ( ) ( ) ( )
c

c
c

c

x x0.5 0.8x x
turb lam turb lam turb0 x

0 x

1 x x
h x h x dx h x dx C C

x 0.5 0.8
= + = +

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦
∫ ∫  

Continued… 
 



 
 PROBLEM 6.18 (Cont.) 

 
 

( ) ( )0.5 0.8 0.8
turb lam c turb c

1
h x 2C x 1.25C x x

x
= + −⎡ ⎤

⎢ ⎥⎣ ⎦
                                                           (2) < 

 
(d) The local and average coefficients, Eqs. (1) and (2) are plotted below as a function of x for the 
range 0 ≤ x ≤ L. 
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PROBLEM 6.19  
KNOWN:  Air speed and temperature in a wind tunnel.  
FIND:  (a) Minimum plate length to achieve a Reynolds number of 108, (b) Distance from 
leading edge at which transition would occur.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Isothermal conditions, Ts = T∞. 
 
PROPERTIES:  Table A-4, Air (25°C = 298K):  ν = 15.71 × 10-6m2/s. 
 
ANALYSIS:  (a) The Reynolds number is  

 x
 u x u xRe .ρ
μ ν
∞ ∞= =  

 
To achieve a Reynolds number of 1 × 108, the minimum plate length is then 
 

 
( )8 6 2

x
min

1 10 15.71 10 m / sReL
u 50 m/s

ν
−

∞

× ×
= =  

 
 minL 31.4 m.=          < 
 
(b) For a transition Reynolds number of 5 × 105 
 

 
( )5 -6 2

x,c
c

5 10  15.71 10 m / sRe
x

u 50 m/s
ν

∞

× ×
= =  

 
 cx 0.157 m.=           < 
 
COMMENTS:  Note that  

 x,cc
L

Rex
L Re

=  

 
This expression may be used to quickly establish the location of transition from knowledge of 
Re .x,c L and Re  



PROBLEM 6.20 
 

 
KNOWN:  Flat plate in parallel flow, free stream velocity, expressions for the local heat transfer 
coefficient under laminar and fully turbulent conditions. Water temperature of 300K.  
 
FIND:  Plate length for which the average heat transfer coefficient is the same for laminar and 
turbulent flow conditions. 
 
SCHEMATIC: 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible viscous dissipation. 
 
ANALYSIS:   For laminar conditions and turbulent conditions, 
 

 0.5 0.2
lam lam lam turb turb turb

0 0

1 12     ;    1.25
L L

h h dx C L h h dx C L
L L

− −= = = =∫ ∫  

or 
 

 ( )
1.5

0.30 0.30 0.30lam
1.8

turb

2 395 W/m K1 0.271m
1.25 2330 W/m K

h L L
h

− −× ⋅
= = =

× ⋅
 

 
or  

 ( )3.33330.300.271m 0.0128 m 12.8 mmL = = =      < 

 
COMMENTS:  (1) A plot of the local 
laminar and turbulent convection coefficient 
distributions is shown. The areas under the 
two curves are identical, reflecting the fact 

that lam

turb
1h

h
= . (2) A plate shorter than L = 

12.8 mm is predicted to provide higher 
average coefficients under laminar flow 
conditions, as opposed to when turbulent 
conditions exist. However, this result may not 
be reliable because experimental measurement 
of local heat transfer coefficients is difficult, 
and the expressions of Example 6.4 may not 
be of sufficient accuracy to apply to such a 
short plate.  (3) The plate is much shorter than 
the transition length, xc = 0.43 m, that was 
calculated in Example 6.4. Hence, the laminar 
case is not subjected to a transition to 
turbulent flow. 
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PROBLEM 6.21   
KNOWN:  Transition Reynolds number.  Velocity and temperature of atmospheric air, 
engine oil, and mercury flow over a flat plate.  
FIND:  Distance from leading edge at which transition occurs for each fluid.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  Transition Reynolds number is Re .x,c = ×5 105  
 
PROPERTIES:  For the fluids at T = 300 K and 350 K:  
                        ν(m2/s) 
 Fluid   Table    T = 300 K   T = 350 K 
 Air (1 atm)  A-4  15.89 × 10-6  20.92 × 10-6 
 Engine Oil  A-5  550 × 10-6  41.7 × 10-6 

 Mercury  A-5  0.1125 × 10-6  0.0976 × 10-6 

 
ANALYSIS:  The point of transition is  

 
5

c x,c
5 10x Re .

u 1 m/s
ν ν
∞

×
= =  

 
Substituting appropriate viscosities, find  
          xc(m) 

 Fluid   T = 300 K           T = 350 K     < 
 Air      7.95   10.5 
 Oil      275   20.9 
 Mercury     0.056    0.049 
 
  
COMMENTS: (1) Note the great disparity in transition length for the different fluids.  Due 
to the effect which viscous forces have on attenuating the instabilities which bring about 
transition, the distance required to achieve transition increases with increasing ν.  (2) Note the 
temperature-dependence of the transition length, in particular for engine oil. (3) As shown in 
Example 6.4, the variation of the transition location can have a significant effect on the 
average heat transfer coefficient associated with convection to or from the plate. 
 

T = 27ºC or 
      77ºC 



PROBLEM 6.22 
 

KNOWN: Pressure dependence of the dynamic viscosity, thermal conductivity and specific heat. 
 
FIND: (a) Variation of the kinematic viscosity and thermal diffusivity with pressure for an 
incompressible liquid and an ideal gas, (b) Value of the thermal diffusivity of air at 350 K for 
pressures of 1, 5 and 10 atm, (c) Location where transition occurs for air flow over a flat plate 
with T∞ = 350 K, p = 1, 5 and 10 atm, and u∞ = 2 m/s. 
 
ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) Transition at Rex,c = 5 
× 105, (4) Ideal gas behavior. 
 
PROPERTIES: Table A.4, air (350 K): μ = 208.2 × 10-7 N⋅s/m2, k = 0.030 W/m⋅K, cp = 1009 
J/kg⋅K, ρ = 0.995 kg/m3. 
 
ANALYSIS: 
 
(a) For an ideal gas 
  

p = ρRT or ρ = p/RT                    (1) 
 

while for an incompressible liquid,  ρ = constant              (2) 
 
The kinematic viscosity is ν = μ/ρ        (3) 
 
Therefore, for an ideal gas  

 ν = μRT/p  or -1ν  p∝          (4)   < 
and for an incompressible liquid 
 

 ν = μ/ρ  or ν is independent of pressure.              < 
 
The thermal diffusivity is  
 
 k / cα = ρ  
 
Therefore, for an ideal gas, 

 -1α = kRT/pc   or  α p∝          (6)  < 

For an incompressible liquid α = k/ cρ or α is independent of pressure           < 
 
(b) For T = 350 K, p = 1 atm, the thermal diffusivity of air is 
 

 -6 2
3

0.030 W/m Kα =  = 29.9 × 10  m /s
0.995 kg/m  × 1009 J/kg K

⋅
⋅

            < 

 
Using Equation 6, at p = 5 atm, 

Continued… 



 PROBLEM 6.22 ( Cont.) 
 
 

-6 2α = 29.9 × 10  m /s/5 = 5.98 × 10-6 m2/s               < 
 
At p = 10 atm, 

 -6 2α = 29.9 × 10  m /s/10 = 2.99 × 10-6 m2/s             < 
 
(c) For transition over a flat plate,  

 5c
x,c

x uRe  = 5 × 10
ν
∞ =  

Therefore 
 5

cx  = 5 × 10 (ν/u )∞  
 
For T∞ = 350 K, p = 1 atm, 
 
 -7 2 3 -6 2ν = μ/ρ = 208.2 × 10  N s/m 0.995 kg/m  = 20.92 × 10  m /s⋅  
 
Using Equation 4, at p = 5 atm 
 
 -6 2 -6 2ν = 20.92 × 10  m /s 5 = 4.18 × 10  m /s  
 
At p = 10 atm,  
 
 -6 2 -6 2ν = 20.92 × 10  m /s 10 = 2.09 × 10  m /s  
 
Therefore, at p = 1 atm 

 5 -6 2
cx  = 5 × 10  × 20.92 × 10  m /s/(2m/s) = 5.23 m            < 

 
At p = 5 atm, 

 5 -6 2
cx  = 5 × 10  × 4.18 × 10  m /s/(2m/s) = 1.05 m            < 

 
At p = 10 atm 

 5 -6 2
cx  = 5 × 10  × 2.09 × 10  m /s/(2m/s) = 0.523 m            <  

 
COMMENT: Note the strong dependence of the transition length upon the pressure for the gas 
(the transition length is independent of pressure for the incompressible liquid).  
 



PROBLEM 6.23 
 
KNOWN:  Velocity of water flowing over a flat plate.  Length of plate.  Variation of local convection 
coefficient with x.  Water temperature. 
 
FIND:  Average convection coefficient for roughness applied over the range 0 ≤ xr ≤ L.  
 
SCHEMATIC:   
 

 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Transition occurs at a 
critical Reynolds number of 5 × 105 for the smooth plate, (4) Incompressible flow. 
 
PROPERTIES:  Table A.6, Water (T = 300 K):  ρ = vf

-1 = 997 kg/m3, μ = 855 × 10-6 N⋅s/m2. 
 
ANALYSIS:   For roughness applied over the range 0 ≤ xr ≤ xc = 0.43 m, transition occurs at xr. From 
Eq. 6.14, 
 

( ) ( )

0.5 0.8lam turb
lam turb0 0

0

1.5 1.8
0.5 0.8 0.8 0.5 0.8 0.8lam turb

1 1 1
0.5 0.8

1 1 395 W/m K 2330 W/m K (0.6 m)
0.5 0.8 0.6 m 0.5 0.8

1 395 W
0.6 m

r
r

r
r

x L
L x L

x
x

r r r r

C Ch hdx h dx h dx x x
L L L

C Cx L x x x
L

⎡ ⎤⎡ ⎤= = + = +⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
⎡ ⎤⋅ ⋅⎡ ⎤= + − = + −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

=

∫ ∫ ∫

( )
1.5 1.8

0.5 0.8 0.8

2.5 0.5 2 2.8 0.8

/m K 2330 W/m K (0.6 m)
0.5 0.8

1317 W/m K 3226 W/m K 4854 W/m K

r r

r r

x x

x x

⎡ ⎤⋅ ⋅
+ −⎢ ⎥

⎣ ⎦
= ⋅ × + ⋅ − ⋅ ×

 

 
Roughness applied over the range xr > 0.43 has no affect on the transition since the transition occurs at 
xc = 0.43 m for the smooth plate. That is, 21620 W/m Kh = ⋅ . 
 
This result is plotted below for 0 ≤ xr ≤ 0.6 m. 
 

    < 
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PROBLEM 6.23 (Cont.) 
 
The maximum value of h exists when transition occurs very close to the leading edge of the plate, at 
xr = 0.003 m. It does not occur exactly at the leading edge because the laminar heat transfer coefficient 
equation yields a slightly higher value than the turbulent heat transfer coefficient equation very near x 
= 0.                < 
 
The minimum value of h  exists when xr > xc = 0.43 m.                      < 
 
 
COMMENTS:  (1) Turbulent heat transfer coefficients are usually (but not always) larger than 
laminar heat transfer coefficients.  Therefore, tripping the transition to turbulence at or near the leading 
edge results in enhanced heat transfer.  (2) The conclusion that the laminar heat transfer coefficient is 
slightly higher than the turbulent heat transfer coefficient very near x = 0 may not be accurate.  
Turbulent heat transfer coefficient measurements are usually not performed very close to the leading 
edge since, in most cases, turbulence develops further downstream.  (3) Adding roughness at x 
locations downstream of where the transition to turbulence would normally occur has no influence on 
the transition or the average heat transfer rate. 
 
 
 



PROBLEM 6.24 
 

 
KNOWN:  Nondimensional form of the x-direction velocity boundary layer equation and boundary 
conditions, expressions for x*, y*, u* and v*. Laminar, incompressible flow. 
 
FIND:  Expressions for (a) the velocity boundary conditions and (b) x-momentum equation in 
dimensional form. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties. 
 
ANALYSIS:   (a) From Equation 6.38, the boundary conditions in nondimensional form are 
 

u*(x*,0) = 0      (1) 
v*(x*,0) = 0      (2) 

u*(x*,∞)= ( *)u x
V

∞      (3) 

Substituting * uu
V

= from Equation 6.32 and * xx
L

=  from Equation 6.31 into Equation (1) yields 

( )/ ,0 0u x L
V

= . After multiplying both sides of the resultant equation by V, we have ( )/ , 0 0u x L y = = . 

Hence, the x-component of the fluid velocity at any x location along the surface is zero.         < 
 

Substituting v* = v/V from Equation 6.32 and * xx
L

=  from Equation 6.31 into Equation (2) 

yields ( )/ ,0 0v x L
V

= . After multiplying both sides of the equation by V, we have ( )/ , 0 0v x L y = = . 

Hence, the y-component of the fluid velocity at any x location along the surface is zero.                        < 
 
The preceding two results are the familiar zero velocity boundary conditions that exist at an 
impenetrable, stationary surface. 
 

Substituting * uu
V

= from Equation 6.32 and * xx
L

=  from Equation 6.31 into Equation (3) yields 

( ) ( )/
/ , 1

u x Lu Vx L
V V V

∞∞ = = = . After multiplying both sides of the resultant equation by V, we have 

( )/ ,u x L y V u∞→ ∞ = = . Hence, the x-component of the velocity at any x location outside of the 

boundary layer is equal to the free stream value.                        < 
 

Continued… 
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PROBLEM 6.24 (Cont.) 
 

(b) Note that * ( / )
* ( / )

u u V L u
x x L V x
∂ ∂ ∂

= =
∂ ∂ ∂

. Likewise, * ( / )
* ( / )

u u V L u
y y L V y
∂ ∂ ∂

= =
∂ ∂ ∂

 and 

2 2 2

2 2
* *

* * ( / )*
u u L u L u

y y y L V y Vy y
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂

= = =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠
. Also, from the definition of p*, we note that 

2

2
* ( / ) 0
* ( / )

p p V L p
x x L xV

ρ
ρ

∞ ∞∂ ∂ ∂
− = − = − =
∂ ∂ ∂

. Substituting the preceding expressions, along with the 

definition of the Reynolds number, ReL = ρVL/μ = VL/ν into Equation 6.35 yields 
 

2 2

20u L u v L u L u
V V x V V y VL V y

ν∂ ∂ ∂
+ = +

∂ ∂ ∂
. Multiplying both sides of the preceding equation by 

2V
L

gives 

 
2

2
u u uu v
x y y

ν∂ ∂ ∂
+ =

∂ ∂ ∂
 which is identical to Equation 6.28 for the case where 0dp

dx
∞ = .                < 

 
COMMENTS:  (1) Equations 6.35 and 6.38 are nondimensional forms of Equations 6.28 and the 
no-slip boundary conditions. When converted to their nondimensional forms, the equations explicitly 
illustrate the importance of the Reynolds number in describing the velocity boundary layer. (2) For a 
flat plate subject to parallel flow, the Reynolds number is usually expressed as ReL = u∞L/ν, since u∞ = 
V. 
 



PROBLEM 6.25 
  

 
KNOWN:  Nondimensional form of the thermal boundary layer equation and boundary conditions, 
expressions for x*, y*, u*, v* and T*. Laminar, incompressible flow with negligible viscous 
dissipation. 
 
FIND:  Expressions for (a) the thermal boundary conditions and (b) energy equation in dimensional 
form. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties. 
 
ANALYSIS:   (a) From Equation 6.39, the thermal boundary conditions in nondimensional form are 
 

T*(x*,0) = 0      (1) 
T*(x*,∞)= 1      (2) 

Substituting * s

s

T TT
T T∞

−
=

−
from Equation 6.33 and * xx

L
=  from Equation 6.31 into Equation (1) yields 

( )/ ,0
0s

s

T x L T
T T∞

−
=

−
. After multiplying both sides of the resultant equation by T∞ - Ts, we have 

( )/ , 0 sT x L y T= = . Hence, the fluid temperature at any x location along the surface is Ts.  < 
 

Substituting * s

s

T TT
T T∞

−
=

−
from Equation 6.33 and * xx

L
=  from Equation 6.31 into Equation (2) 

yields ( )/ ,
1s

s

T x L y T
T T∞

→ ∞ −
=

−
. After multiplying both sides of the equation by T∞ - Ts, we 

have ( )/ ,T x L y T∞→ ∞ = . Hence, the fluid temperature at any x location outside of the boundary layer is 

equal to the free stream value.         < 

(b) Note that 
( )

*
* ( / )

s

s

s

T T
T TT L T

x x L T T x
∞

∞

⎛ ⎞−
∂ ⎜ ⎟−∂ ∂⎝ ⎠= =

∂ ∂ − ∂
. Likewise, 

( ) ( )
*
* /

s

s

s

T T
T TT L T

y y L T T y
∞

∞

⎛ ⎞−
∂ ⎜ ⎟−∂ ∂⎝ ⎠= =

∂ ∂ − ∂
. 

Also, note that 
( ) ( ) ( )

2 2 2

2 2
* *

* * /* s s

T T L T L T
y y T T y L y T Ty y∞ ∞

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
= = =⎜ ⎟∂ ∂ − ∂ ∂ −∂ ∂⎝ ⎠

. Substituting the 

preceding expressions, along with x* = x/L, y* = y/L, ReL = VL
ν

and Pr = ν
α

into Equation 6.36 

Continued… 
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PROBLEM 6.25  (Cont.)  
 

yields 
( ) ( ) ( )

2 2

2
s s s

u L T v L T L T
V T T x V T T y VL T T y

ν α
ν∞ ∞ ∞

∂ ∂ ∂
+ =

− ∂ − ∂ − ∂
. Multiplying both sides by 

( )sV T T
L

∞ −
gives 

2

2
T T Tu v
x y y

α∂ ∂ ∂
+ =

∂ ∂ ∂
 which is identical to Equation 6.29 when viscous dissipation 

is negligible.           < 
 
 
COMMENTS:  (1) Equations 6.36 and 6.39 are nondimensional forms of Equations 6.29 and the 
boundary conditions. When converted to their nondimensional forms, the resulting equations explicitly 
illustrate the importance of the Reynolds and Prandtl numbers in describing the thermal boundary 
layer. (2) For a flat plate subject to parallel flow, the Reynolds number is usually expressed as ReL = 
ρu∞L/μ, or u∞L/ν since u∞ = V. 
 



 

PROBLEM 6.26 
 

KNOWN: Critical Reynolds number for a cylinder in cross flow. Critical Mach number. 
 
FIND: Critical cylinder diameter below which, if the flow of air at atmospheric pressure and 
temperature is turbulent, compressibility effects may be important. 
 
SCHEMATIC: 

T∞ = 23°C
V

Air

 

ASSUMPTIONS: (1) Steady-state conditions. (2) Air behaves as an ideal gas. 

PROPERTIES:  Table A.4, air (T = 300 K): M = 28.97 kg/kmol, cp = 1.007 kJ/kg·K, μ = 184.6 × 
10-7 N·s/m2.  
 
ANALYSIS: The density of an ideal gas may be found from the equation of state,  

    
p

RT
ρ =  

and the speed of sound for an ideal gas is a RTγ= . 

From the definition of the Mach number, the air velocity may be expressed as 

    V = Ma⋅ a   

Substituting the preceding equations into the definition of the Reynolds number yields 

  D
Ma RT DpVD VD MaRe D Dp

RT RT
γρ γ

ν μ μ μ
= = = =  

Letting Re = Rec and Ma = Mac, the preceding equation can be rearranged to write an expression 
for the critical cylinder diameter, 

   c
c

c

Re RTD
Ma p

μ
γ

=  

Before evaluating the critical cylinder diameter, we note that the gas constant for air is 

Continued... 



 

PROBLEM 6.26 (Cont.) 
 

  
8315 J/kmol K 287 J / kg K
28.97 kg/kmol

R ⋅
= = = ⋅

R
M

 

 
and the specific heat at constant volume, cv, is 

 1007 J / kg K 287 J / kg K 720 J / kg Kv pc c R= − = ⋅ − ⋅ = ⋅  

Therefore, the ratio of specific heats for air is 

  
1007 J/kg K 1.399
720 J/kg K

p

v

c
c

γ ⋅
= = =

⋅
 

For the conditions of the problem, the critical cylinder diameter is 

5 7 2

5 2
2 10 287 J/kg K 300 K 184.6 10 N s/m 0.030 m 30 mm

0.3 1.399 1.0133 10  N/m
c

c
c

Re RTD
Ma p

μ
γ

−× ⋅ × × ⋅
= = × = =

×
 < 

COMMENTS:  (1) The expression for the critical Reynolds number (ReD,c = 2 × 105) is plotted using log-
log scales in the figure below. Laminar flow occurs to the left of the sloped line, while turbulent flow 
occurs to the right of the sloped line. The velocity associated with the critical Mach number is identified 
by the horizontal line that separates regions of incompressible flow (below the horizontal line) and 
compressible flow (above the horizontal line). From this plot, it is evident that below the critical cylinder 
diameter, Dc, if the flow is turbulent, compressibility effects may be important. If the flow is laminar, the 
flow may or may not be compressible. In general, turbulent flow is difficult to achieve in situations 
involving small length scales. 
 

 

 

 

 

 

 
(2) The value of the critical Reynolds number is geometry-dependent. Care must be taken to 
apply the correct value of the critical Reynolds number in any calculation involving convection 
heat transfer.  

Log D

Log V

Dc

Mac

ReD,c
Turbulent

Laminar

Compressible

Incompressible



PROBLEM 6.27  
KNOWN:  Characteristic length, surface temperature and average heat flux for an object 
placed in an airstream of prescribed temperature and velocity.  
FIND:  Average convection coefficient if characteristic length of object is increased by a 
factor of five and air velocity is decreased by a factor of five.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties.  
ANALYSIS:  For a particular geometry, 
 ( )L LNu f Re ,Pr .=  
 
The Reynolds numbers for each case are  

Case 1: ( ) 2
1 1

L,1
1 1 1

100m/s 1mV L 100 m / sRe
ν ν ν

= = =  

 

Case 2: ( ) 2
2 2

L,2
2 2 2

20m/s 5mV L 100 m / sRe .
ν ν ν

= = =  

 
Hence, with ν1 = ν2, ReL,1 = ReL,2.  Since Pr1 = Pr2, it follows that 
 L,2 L,1Nu Nu .=  

Hence, 

 
2 2 2 1 1 1

1
2 1 1

2

h L / k h L / k
Lh h 0.2 h .
L

=

= =  

For Case 1, using the rate equation, the convection coefficient is  

 
( )

( )
( ) ( ) ( )

1 1 1 s 1
21 1 21

1
s s1 1

q h A T T
q / A q 20,000 W/mh 200 W/m K.

T T T T 400 300 K

∞

∞ ∞

= −

′′
= = = = ⋅

− − −
 

 
Hence, it follows that for Case 2  
 2 2

2h 0.2 200 W/m K 40 W/m K.= × ⋅ = ⋅       < 
 
COMMENTS:  If ReL,2 were not equal to ReL,1, it would be necessary to know the specific 
form of f(ReL, Pr) before h2  could be determined. 



PROBLEM 6.28  
KNOWN:  Heat transfer rate from a turbine blade for prescribed operating conditions.  
FIND:  Heat transfer rate from a larger blade operating under different conditions.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Surface area A is 
directly proportional to characteristic length L, (4) Negligible radiation, (5) Blade shapes are 
geometrically similar.  
ANALYSIS:  For a prescribed geometry,  

 ( )L
hLNu f Re ,Pr .
k

= =  
 
The Reynolds numbers for the blades are  
 ( ) ( )L,1 1 1 L,2 2 2Re V L / 15 /           Re V L / 15 / .ν ν ν ν= = = =  
 
Hence, with constant properties, L,1 L,2Re Re .=   Also, Pr Pr .1 2=   Therefore, 
 

 ( ) ( )

( )

2 1
2 2 1 1

1 1 1
2 1

2 2 1 s,1

Nu Nu
h L / k h L / k

L L qh h .
L L A T T∞

=
=

= =
−

 

 
Hence, the heat rate for the second blade is  

 
( ) ( )

( )
( )
( ) ( )

s,21 2
2 2 2 s,2 1

2 1 s,1
s,2

2 1
s,1

T TL Aq h A T T   q
L A T T

T T 400 35
q q 1500 W

T T 300 35

∞
∞

∞
∞

∞

−
= − =

−
− −

= =
− −

 

 
 2q 2066 W.=           < 
 
COMMENTS:  The slight variation of ν from Case 1 to Case 2 would cause ReL,2 to differ 
from ReL,1.  However, for the prescribed conditions, this non-constant property effect is 
small. 



PROBLEM 6.29  
KNOWN:  Experimental measurements of the heat transfer coefficient for a square bar in 
cross flow.  
FIND:  (a) h  for the condition when L = 1m and V = 15m/s, (b) h  for the condition when L 
= 1m and V = 30m/s, (c) Effect of defining a side as the characteristic length.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Functional form m nNu CRe Pr=  applies with C, m, n being 
constants, (2) Constant properties.  
ANALYSIS:  (a) For the experiments and the condition L = 1m and V = 15m/s, it follows 
that Pr as well as C, m, and n are constants.  Hence  
 ( )mhL  VL .∝  
 
Using the experimental results, find m.  Substituting values  

 
m m

1 1 1 1
2 2 2 2

h L V L 50 0.5 20 0.5               
h L V L 40 0.5 15 0.5

⎡ ⎤ × ×⎡ ⎤= =⎢ ⎥ ⎢ ⎥× ×⎣ ⎦⎣ ⎦
 

 
giving m = 0.782.  It follows then for L = 1m and V = 15m/s,  

 
m 0.782

21
1 21 1

L V L W 0.5 15 1.0h h 50 34.3W/m K.
L V L 1.0 20 0.5m K

⎡ ⎤⋅ ×⎡ ⎤= = × = ⋅⎢ ⎥ ⎢ ⎥⋅ ×⎣ ⎦⋅⎣ ⎦
  < 

 
(b) For the condition L = 1m and V = 30m/s, find  

 
m 0.782

21
1 21 1

L V L W 0.5 30 1.0h h 50 59.0W/m K.
L V L 1.0 20 0.5m K

⎡ ⎤⋅ ×⎡ ⎤= = × = ⋅⎢ ⎥ ⎢ ⎥⋅ ×⎣ ⎦⋅⎣ ⎦
  < 

 
(c) If the characteristic length were chosen as a side rather than the diagonal, the value of C 
would change.  However, the coefficients m and n would not change.  
COMMENTS:  The foregoing Nusselt number relation is used frequently in heat transfer 
analysis, providing appropriate scaling for the effects of length, velocity, and fluid properties 
on the heat transfer coefficient. 



PROBLEM 6.30  
KNOWN:  Form of the Nusselt number correlation for forced convection and fluid properties.  
FIND:  Expression for figure of merit FF and values for air, water and a dielectric liquid. 
 
PROPERTIES:  Prescribed.  Air: k = 0.026 W/m⋅K, ν = 1.6 × 10-5 m2/s, Pr = 0.71.  Water:  k = 
0.600 W/m⋅K, ν = 10-6 m2/s, Pr = 5.0.  Dielectric liquid:  k = 0.064 W/m⋅K, ν = 10-6 m2/s, Pr = 25 
 
ANALYSIS:  With m n

L LNu ~ Re Pr ,  the convection coefficient may be expressed as 
 

 
m m n

n
1 m m

k VL V k Prh ~ Pr ~
L Lν ν−

⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

 
The figure of merit is therefore 
 

 
n

F m
k PrF
ν

=           < 

 
and for the three fluids, with m = 0.80 and n = 0.33, 
 

 ( )0.8 2.6
F

Air Water DielectricF W s / m K
167 64,400 11,700

⋅ ⋅    < 

 
Water is clearly the superior heat transfer fluid, while air is the least effective.  
COMMENTS:  The figure of merit indicates that heat transfer is enhanced by fluids of large k, large 
Pr and small ν. 
 



PROBLEM 6.31 
  

KNOWN:  Form of the Nusselt number correlation for forced convection and fluid properties.  
Properties of xenon and He-Xe mixture.  Temperature and pressure.  Expression for specific heat for 
monatomic gases. 
 
FIND:  Figures of merit for air, pure helium, pure xenon, and He-Xe mixture containing 0.75 mole 
fraction of helium. 
 
PROPERTIES:  Table A-4, Air (300 K): k = 0.0263 W/m⋅K, ν = 15.89 × 10-6 m2/s, Pr = 0.707.  Table 
A-4, Helium (300 K):  k = 0.152 W/m⋅K, ν = 122 × 10-6 m2/s, Pr = 0.680.  Pure xenon (given):  k = 
0.006 W/m⋅K, μ = 24.14 × 10-6 N·s/m2.  He-Xe mixture (given):  k = 0.0713 W/m·K, μ = 25.95 × 10-6 
N·s/m2. 
 
ANALYSIS:  With m n

L LNu ~ Re Pr ,  the convection coefficient may be expressed as 

m m n
n

1 m m
k VL V k Prh ~ Pr ~
L Lν ν−

⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

 
The figure of merit is therefore 

n
F m

k PrF
ν

=           (1) 

 
For xenon and the He-Xe mixture, we must find the density and specific heat.  Proceeding for pure 
xenon: 

3
-2 3

P 1 atm 131.29 kg/kmolρ 5.33 kg/m
T 8.205 10  m atm / kmol K 300 K

×
= = =
ℜ × ⋅ ⋅ ×

M

3

p
5 5 8.315 10  J/kmol Kc 158 J/kg
2 2 131.29 kg/kmol
ℜ × ⋅

= = =
M

 

 
Thus ν = μ/ρ = 24.14 × 10-6 N·s/m2/5.33 kg/m3 = 4.53 × 10-6 m2/s and Pr = μcp/k = 24.14 × 10-6 N·s/m2 
× 158 J/kg/0.006 W/m·K = 0.636. 
 
For the He-Xe mixture, the molecular weight of the mixture can be found from  

mix 0.75 kmol He/kmol 4.0 kg/kmol He 0.25 kmol Xe/kmol 131.29 kg/kmol Xe
         35.82 kg/kmol

= × + ×
=

M  

from which we can calculate ρ = 1.46 kg/m3, cp = 580 J/kg·K, ν = μ/ρ = 25.95 × 10-6 N·s/m2/1.46 
kg/m3 = 1.78 × 10-5 m2/s, and Pr = μcp/k = 25.95 × 10-6 N·s/m2 × 580 J/kg/0.0713 W/m·K = 0.211. 
 
Finally, for the four fluids, with m = 0.85 and n = 0.33, we can calculate the figure of merit from 
Equation (1): 

  FF (W·s0.85/m2.7·K)        < 
Air   281 
Helium   284 
Xenon   180 
He-Xe   465 
  
COMMENTS:  The effectiveness of the He-Xe mixture is much higher than that of pure He, pure Xe, 
or air.  By blending He and Xe, the high thermal conductivity of helium and the high density of xenon 
are both exploited in a manner that leads to a high figure of merit. 



PROBLEM 6.32  
KNOWN:  Local Nusselt number correlation for flow over a roughened surface.  
FIND:  Ratio of average heat transfer coefficient to local coefficient.  
SCHEMATIC:   
 

 
 
ANALYSIS:  The local convection coefficient is obtained from the prescribed correlation,  

 

0.9 1/3
x x x

0.9 0.9
1/3 -0.1

x 1

k kh Nu 0.04 Re Pr
x x

V xh 0.04 k Pr C x .
xν

= =

⎡ ⎤= ≡⎢ ⎥⎣ ⎦

 

 
To determine the average heat transfer coefficient for the length zero to x,  

 

x x

0 0
-0.1

x x 1
0.9

-0.11
x 1

1 1h h  dx C x dx
x x
C xh 1.11 C  x .
x 0.9

≡ ∫ = ∫

= =
 

 
Hence, the ratio of the average to local coefficient is 

 
-0.1

x 1
-0.1x 1

h 1.11 C  x 1.11.
h C  x

= =         < 

COMMENTS:  Note that x xNu / Nu  is also equal to 1.11.  Note, however, that 
x

x 0 x
1Nu Nu  dx.
x

≠ ∫  

 



PROBLEM 6.33  
KNOWN:  Freestream velocity and average convection heat transfer associated with fluid 
flow over a surface of prescribed characteristic length.  
FIND:  Values of L L HNu ,Re ,  Pr, j  for (a) air, (b) engine oil, (c) mercury, (d) water. 
 
SCHEMATIC:   
 

 
 
PROPERTIES:  For the fluids at 300K: 
 

Fluid  Table  ν(m2/s) k(W/m⋅K)      α(m2/s)       Pr 
 
 Air  A.4       15.89 × 10-6   0.0263   22.5 × 10-7       0.71 
 Engine Oil A.5         550 × 10-6   0.145  0.859 × 10-7 6400 
 Mercury A.5       0.113 × 10-6   8.54  45.30 × 10-7       0.025 
 Water  A.6       0.858 × 10-6   0.613    1.47 × 10-7       5.83 
 
ANALYSIS:  The appropriate relations required are 
 

L
L

2/3
L H

L

NuhL VLNu       Re       Pr       j StPr       St
k Re Pr

ν
ν α

= = = = =  

           
    Fluid   LNu        LRe       Pr         Hj   < 

           
 
 Air  3802  6.29 × 104        0.71 0.068 
 Engine Oil   690  1.82 × 103 6403  0.0204 
 Mercury     11.7  8.85 × 106       0.025 4.52 × 10-6 
 Water    163  1.17 × 106       5.84 7.74 × 10-5 
 
COMMENTS:  Note the wide range of Pr associated with the fluids. 



PROBLEM 6.34 
 
 
KNOWN:  Base fluid (water) and nanofluid properties. Fixed surface and ambient temperatures, fixed 
characteristic velocity. Fixed geometry. Form of Nusselt number correlation. 
 
FIND:  (a) Prandtl numbers of the base fluid and nanofluid. (b) Ratio of Reynolds numbers of the two 
fluids and ratio of Nusselt numbers necessary to provide the same convection heat transfer 
coefficients. (c) Whether the base fluid can provide greater convection heat transfer rates than the 
nanofluid. 
 
SCHEMATIC: 
 

 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Negligible viscous 
dissipation. 
 
PROPERTIES:  Table A.6 (T = 300 K): Water; kbf = 0.613 W/m⋅K, ρbf = 997 kg/m3, cp,bf = 4.179 
kJ/kg⋅K, μbf = 855 × 10-6 N⋅s/m2. Example 2.2: Nanofluid, knf = 0.705 W/m⋅K, ρnf = 1146 kg/m3, cp,nf = 
3.587 kJ/kg⋅K, μnf = 962 × 10-6 N⋅s/m2. 
 
ANALYSIS:   (a) The Prandtl numbers for the water and nanofluid are: 
 

  
6 2

bf ,bf
bf

bf

855 10 N s/m 4179 J/kg K 5.83
0.613 W/m K

pc
Pr

k
μ −× ⋅ × ⋅

= = =
⋅

  < 

 
6 2

nf ,nf
nf

nf

962 10 N s/m 3587 J/kg K 4.89
0.705 W/m K

pc
Pr

k
μ −× ⋅ × ⋅

= = =
⋅

  < 

 
(b) For a given velocity and characteristic length, 
 

  
3 6 2

nf nf bf
3 6 2

bf bf nf

1146 kg/m 855 10 N s/m 1.022
997 kg/m 962 10 N s/m

Re
Re

ρ μ
ρ μ

−

−
× × ⋅

= = =
× × ⋅

  < 

 
For the same convection heat transfer coefficients, 
 

      nf nf nfnf bf bf

bf bf bf nfbf nf

0.613 W/m K1    or   0.870
0.705 W/m K

h Nu k L Nu k
kh Nu k L Nu

⋅
= = = = =

⋅
  < 

 
(c) For the base fluid to have a greater convection heat transfer rate would require bf nfh h> , or 

1
0.870

bf nfNu Nu> . Using the relationship provided in the problem statement, 

1/ 3 1/ 3Re Pr Re Pr
0.870

m n
bf bf nf nf

CC >  which may be rearranged to yield 
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PROBLEM 6.34 (Cont.) 
 

 
 

  

1/ 3 1/ 3Re Pr 5.830.870 0.870 0.921
Re Pr 4.92

m
nf bf

bf nf

⎛ ⎞ ⎛ ⎞ ⎛ ⎞< = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

 
Since (Renf/Rebf) > 1 and m > 1, the equation cannot be satisfied. Therefore we conclude that the base 
fluid would not provide greater convection heat transfer rates than the nanofluid as long as m is 
positive.             < 
 
COMMENTS: (1) The conclusion regarding the relative efficacy of the nanofluid to the base fluid is 
valid only for situations involving unconstrained boundary layers. (2) For internal flow situations, 
such as will be discussed in Chapter 8, one cannot draw a general conclusion that the nanofluid would 
outperform the base fluid. In fact, in common instances, the base fluid would outperform the 
nanofluid. 



PROBLEM 6.35  
KNOWN:  Variation of hx with x for flow over a flat plate. 
 
FIND:  Ratio of average Nusselt number for the entire plate to the local Nusselt number at x 
= L.  
SCHEMATIC:   
 

 
 
ANALYSIS:  The expressions for the local and average Nusselt numbers are  

 
( )

L

-1/2 1/2
L

L

L

CL Lh L CLNu
k k k
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where 

 
L L

0 0
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L x
1 C 2Ch h  dx x dx L 2 CL .
L L L
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Hence, 

 ( )
L

-1/2 1/22 CL L 2 CLNu
k k

= =  
 
and 

 L

L

Nu
2.

Nu
=           < 

 
COMMENTS:  Note the manner in which LNu  is defined in terms of Lh .  Also note that 
 

 
L

L 0 x
1Nu Nu  dx.
L

≠ ∫  

 



PROBLEM 6.36  
KNOWN:  Laminar boundary layer flow of air at 20°C and 1 atm having t 1.13 .δ δ=  
 
FIND:  Ratio t/δ δ  when fluid is ethylene glycol for same conditions. 
 
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Laminar flow.  
PROPERTIES:  Table A-4, Air (293K, 1 atm):  Pr = 0.709; Table A-5, Ethylene glycol 
(293K):  Pr = 211.  
ANALYSIS:  The Prandtl number strongly influences relative growth of the velocity, ,δ  and 
thermal, t ,δ  boundary layers.  For laminar flow, the approximate relationship is given by 
 

 n
t

Pr δ
δ

≈  

 
where n is a positive coefficient.  Substituting the values for air  

 ( )n 10.709
1.13

=  
 
find that n = 0.355.  Hence, for ethylene glycol it follows that  

 0.355 0.355
t

Pr 211 6.69.δ
δ

= = =        < 

 
COMMENTS:  (1) For laminar flow, generally we find n = 0.33.  In which case, t/ 5.85.δ δ =  
 
(2) Recognize the physical importance of ν > α, which gives large values of the Prandtl 
number, and causes t .δ δ>  



PROBLEM 6.37  
KNOWN:  Air, water, engine oil or mercury at 300K in laminar, parallel flow over a flat plate.  
FIND:  Sketch of velocity and thermal boundary layer thickness.  
ASSUMPTIONS:  (1) Laminar flow.  
PROPERTIES:  For the fluids at 300K:  

Fluid  Table  Pr 
 
    Air  A.4  0.71 
    Water  A.6  5.83 
    Engine Oil A.5       6400 
    Mercury A.5  0.025  
ANALYSIS:  For laminar, boundary layer flow over a flat plate. 

 n
t

~ Prδ
δ

 

where n > 0.  Hence, the boundary layers appear as shown below.  
Air: 

  
Water: 

  
Engine Oil: 

  
Mercury: 

  
COMMENTS:  Although Pr strongly influences relative boundary layer development in laminar 
flow, its influence is weak for turbulent flow. 



PROBLEM 6.38 
 
KNOWN:  Flow over a flat plate.  Velocity and temperature of two fluids. Variation of boundary 
layer thickness with x for laminar flow.   
 
FIND:  (a) Location where transition to turbulence occurs for each fluid, (b) Plot of velocity boundary 
layer thickness for 0 ≤ x ≤ xc for each fluid, (c) Plot of thermal boundary layer thickness over the same 
range.  Which fluid has the largest local temperature gradient at the surface, Nusselt number, and heat 
transfer coefficient. 
 
SCHEMATIC:   
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Incompressible flow, (3) Transition occurs at a 
critical Reynolds number of 5 × 105. 
 
PROPERTIES:  Table A.4, Air (T = 300 K): ν = 15.89 × 10-6 m2/s, k = 0.0263 W/m⋅K, Pr = 0.707.  
Table A.5, Engine Oil (T = 380 K): ν = 16.9 × 10-6 m2/s, k = 0.136 W/m⋅K, Pr = 233. 
  
ANALYSIS:   (a) Transition occurs at Rex,c = u∞x/ν = 5 × 105.  Therefore, for air 
 

6 2
5 5 15.89 10  m / s5 10 5 10 4.0 m

2 m / scx
u
ν −

∞

×
= × = × =    < 

 
The value for engine oil is 4.2 m.            < 
 

(b) The velocity boundary layer thickness is given by 
5

xx Re
δ

= .  Thus, for air 

 
6 2

1/25 15.89 10  m / s5 / 5 0.0141
2 m / sx

x xx u x
Re

δ ν
−

∞

× ×
= = = =    < 

 
where x and δ are expressed in meters. The corresponding result for engine oil is 1/20.0145xδ = .     < 
 
These results are plotted below.  
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PROBLEM 6.38 (Cont.) 
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(c) From Eq. 6.55 with n = 1/3, δt = δ⋅Pr-1/3.  Thus, for air 
 

1/3 1/2 1/3 1/20.0141 (0.707) 0.0158t Pr x xδ δ − −= = × =    < 
 
Similarly for engine oil 1/20.00586t xδ = .           < 
 
The results for the two fluids are shown below. 
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PROBLEM 6.38 (Cont.) 
 

The two fluids are subjected to the same temperature difference between the surface and the free 
stream.  Since the thermal boundary layer thickness is the distance over which the temperature varies 
from the surface temperature to the free stream temperature, the fluid with the smaller value of δt must 
have a larger temperature gradient, −∂T/∂y⎜y = 0. 
 
Therefore, engine oil has the larger temperature gradient at the surface.        < 
 
The local Nusselt number is given by Nu = hx/k, where h is defined in Equation 6.5.  Therefore, 
 

0
/

y

s

T y
Nu x

T T
=

∞

−∂ ∂
=

−
 

 
At a given x location, since Ts – T∞ is the same for both fluids, the fluid with the larger temperature 
gradient has the larger local Nusselt number. 
 
Engine oil has the larger local Nusselt number.           < 
 
The heat transfer coefficient is given by Equation 6.5: 
 

0
/f y

s

k T y
h

T T
=

∞

− ∂ ∂
=

−
 

 
Since engine oil has a larger temperature gradient and a larger thermal conductivity, it is associated 
with a larger heat transfer coefficient.            < 
 
COMMENTS:  (1) Since the kinematic viscosity of the two fluids is nearly the same, their local 
Reynolds numbers, transition locations, and velocity boundary layer thicknesses are comparable.  (2) 
The much higher Prandtl number of the engine oil results in a much thinner thermal boundary layer 
and consequently a larger temperature gradient at the surface and higher heat transfer coefficient. 
 
 



PROBLEM 6.39  
KNOWN:  Expression for the local heat transfer coefficient of air at prescribed velocity and 
temperature flowing over electronic elements on a circuit board and heat dissipation rate for a 4 × 4 
mm chip located 120mm from the leading edge.  
FIND:  Surface temperature of the chip surface, Ts.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Power dissipated within chip is lost by convection 
across the upper surface only, (3) Chip surface is isothermal, (4) The average heat transfer coefficient 
for the chip surface is equivalent to the local value at x = L, (5) Negligible radiation.  
PROPERTIES:  Table A-4, Air (assume Ts = 45°C, Tf = (45 + 25)/2 = 35°C = 308K, 1atm): ν = 

16.69 × 10
-6

m
2
/s, k = 26.9 × 10

-3
 W/m⋅K, Pr = 0.703. 

 
ANALYSIS:  From an energy balance on the chip (see above), 
 conv gq E 30W.= =&          (1) 
Newton’s law of cooling for the upper chip surface can be written as 
 s conv chipT T q / h A∞= +         (2) 

where 2
chipA .= l   Assume that the average heat transfer coefficient ( )h  over the chip surface is 

equivalent to the local coefficient evaluated at x = L. That is, ( )chip xh h L≈  where the local 

coefficient can be evaluated from the special correlation for this situation, 

 
0.85

1/ 3x
x

h x VxNu 0.04 Pr
k ν

⎡ ⎤= = ⎢ ⎥⎣ ⎦
 

and substituting numerical values with x = L, find 

 
0.85

1/ 3
x

k VLh 0.04 Pr
L ν
⎡ ⎤= ⎢ ⎥⎣ ⎦

 
 

 ( )
0.85

1/ 3 2
x -6 2

0.0269 W/m K 10 m/s 0.120 mh 0.04  0.703 107 W/m K.
0.120 m 16.69 10  m / s

⎡ ⎤⋅ ×⎡ ⎤= = ⋅⎢ ⎥⎢ ⎥⎣ ⎦ ×⎣ ⎦
 

The surface temperature of the chip is from Eq. (2), 

 ( )2-3 2
sT 25 C 30 10  W/ 107 W/m K 0.004m 42.5 C.⎡ ⎤= + × ⋅ × =⎢ ⎥⎣ ⎦

o o    < 

COMMENTS:  (1) Note that the estimated value for Tf used to evaluate the air properties was 
reasonable.  (2) Alternatively, we could have evaluated chiph  by performing the integration of the 

local value, h(x). 



PROBLEM 6.40 
 

KNOWN: Expression for the local heat transfer coefficient of air at prescribed velocity and 
temperature flowing over electronic elements on a circuit board and heat dissipation rate for a 4 × 
4 mm chip located 120 mm from the leading edge. Atmospheric pressure in Mexico City. 
 
FIND: (a) Surface temperature of chip, (b) Air velocity required for chip temperature to be the 
same at sea level. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Steady-state conditions, (2) Power dissipated in chip is lost bey convection 
across the upper surface only, (3) Chip surface is isothermal, (4) The average heat transfer 
coefficient for the chip surface is equivalent to the local value at x = L, (5) Negligible radiation, 
(6) Ideal gas behavior. 
 
PROPERTIES: Table A.4, air (p = 1 atm, assume Ts = 45 °C, Tf = (45 °C + 25 °C)/2 = 35 °C): k 
= 0.0269 W/m⋅K, ν = 16.69 × 10-6 m2/s, Pr = 0.706.  
 
ANALYSIS: 
(a) From an energy balance on the chip (see above), 
 conv gq E 30W.= =&         (1) 

Newton’s law of cooling for the upper chip surface can be written as 
 s conv chipT T q / h A∞= +        (2) 

where 2
chipA .= l   From Assumption 4, ( )chip xh h L≈  where the local coefficient can be 

evaluated from the correlation provided in Problem 6.35.    

 
0.85

1/ 3x
x

h x VxNu 0.04 Pr
k ν

⎡ ⎤= = ⎢ ⎥⎣ ⎦
      (3) 

The kinematic viscosity is  

 μν = 
ρ

          (4) 

while for an ideal gas, 

 pρ = 
RT

         (5) 

 
Combining Equations 4 and 5 yields 
 -1ν  p∝          (6) 
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PROBLEM 6.40 (Cont.) 
 

The Prandtl number is  

 ν μρc μcPr =  =  = 
α ρk k

        (7) 

 
which is independent of pressure. 
 
Therefore, at sea level (p = 1 atm) 
 -6 2k = 0.0269 W/m K,  ν = 16.69 × 10  m /s,  Pr = 0.706⋅  
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x -6 2

k VLh  = 0.04  Pr
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0.0269 W/m K 10 m/s × 0.120 mh  = 0.04  (0.706)  = 107 W/m K
0.120 m 16.69 × 10  m /s

⎡ ⎤
⎢ ⎥⎣ ⎦

⋅ ⎡ ⎤⎡ ⎤ ⋅⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
-3

s 2 2
30 × 10  WT  = 25°C +  = 42.5°C

107 W/m K × (0.004 m)⋅
 

 
In Mexico City (p = 76.5 kPa) 

 -6 2 -6 2101.3lPaν = 16.69 × 10  m /s × = 22.10 × 10  m /s
76.5kPa

⎡ ⎤
⎢ ⎥⎣ ⎦

 

k = 0.0269 W/m K,   Pr = 0.706⋅  
 

0.85
1/3 2

x -6 2
0.0269 W/m K 10 m/s × 0.120 mh  = 0.04  (0.706)  = 84.5 W/m K

0.120 m 22.10 × 10  m /s
⋅ ⎡ ⎤⎡ ⎤ ⋅⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
-3

s 2 2
30 × 10  WT  = 25°C +  = 47.2°C

84.5 W/m K × (0.004 m)⋅
           < 

 
(b) For the same chip temperature, it is required that hx = 107 W/m2·K.  Therefore 
 

 
0.85

2 1/3
x -6 2

0.0269 W/m×K V × 0.120 mh  = 107 W/m K = 0.04  (0.706)  
0.120 m 22.10 × 10  m /s

⎡ ⎤⎡ ⎤⋅ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
 

 

From which we may find V = 13.2 m/s               < 
 
COMMENTS: (1) In Part (a), the chip surface temperature increased from 42.4 °C to 47.2 °C. 
This is considered to be significant and the electronics packaging engineer needs to consider the 
effect of large changes in atmospheric pressure on the efficacy of the electronics cooling scheme. 
(2) Careful consideration needs to be given to the effect changes in the atmospheric pressure on 
the kinematic viscosity and, in turn, on changes in transition lengths which might affect local 
convective heat transfer coefficients.  
 



PROBLEM 6.41 
 
KNOWN:  Location and dimensions of computer chip on a circuit board.  Form of the convection 
correlation.  Maximum allowable chip temperature and surface emissivity.  Temperature of cooling air 
and surroundings.  
FIND:  Effect of air velocity on maximum power dissipation, first without and then with consideration of 
radiation effects.  
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state, (2) Negligible temperature variations in chip, (3) Heat transfer 
exclusively from the top surface of the chip, (4) The local heat transfer coefficient at x = L provides a 
good approximation to the average heat transfer coefficient for the chip surface.  
PROPERTIES:  Table A.4, air ( ( )cT T T 2∞= +  = 328 K):  ν = 18.71 × 10-6 m2/s, k = 0.0284 W/m⋅K, 
Pr = 0.703. 
 
ANALYSIS:  Performing an energy balance for a control surface about the chip, we obtain Pc = qconv + 

qrad, where qconv = ( )s chA T T∞− , qrad = ( )r s c surh A T T− , and ( )( )2 2
r c sur c surh T T T Tεσ= + + .  With 

Lh h≈ , the convection coefficient may be determined from the correlation provided in Problem 6.39 

(NuL = 0.04 0.85
LRe Pr1/3).  Hence, 

 ( ) ( ) ( )( )( )2 0.85 1/ 3 2 2
c L c c sur c sur c surP 0.04 k L Re Pr T T T T T T T Tεσ∞= − + + + −⎡ ⎤

⎢ ⎥⎣ ⎦
l  

where ReL = VL/ν.  Computing the right side of this expression for ε = 0 and ε = 0.85, we obtain the 
following results. 
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Since hL increases as V0.85, the chip power must increase with V in the same manner.  Radiation exchange 
increases Pc by a fixed, but small (6 mW) amount.  While hL varies from 14.5 to 223 W/m2⋅K over the 
prescribed velocity range, hr = 6.5 W/m2⋅K is a constant, independent of V. 
 
COMMENTS:  Alternatively, h  could have been evaluated by integrating hx over the range 118 ≤ x ≤ 
122 mm to obtain the appropriate average.  However, the value would be extremely close to hx=L. 



PROBLEM 6.42  
KNOWN:  Form of Nusselt number for flow of air or a dielectric liquid over components of a circuit 
card.  
FIND:  Ratios of time constants associated with intermittent heating and cooling.  Fluid that provides 
faster thermal response. 
 
PROPERTIES:  Prescribed.  Air: k = 0.026 W/m⋅K, ν = 2 × 10-5 m2/s, Pr = 0.71.  Dielectric liquid:  
k = 0.064 W/m⋅K, ν = 10-6 m2/s, Pr = 25. 
 
ANALYSIS:  From Eq. 5.7, the thermal time constant is 
 

 t
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c
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ρτ ∀

=  

 
Since the only variable that changes with the fluid is the convection coefficient, where 
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the desired ratio reduces to 
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Since its time constant is nearly two orders of magnitude smaller than that of the air, the dielectric 

liquid is clearly the fluid of choice.           < 
 
COMMENTS:  The accelerated testing procedure suggested by this problem is commonly used to test 
the durability of electronic packages. 
 



PROBLEM 6.43  
KNOWN:  Ambient, interior and dewpoint temperatures.  Vehicle speed and dimensions of 
windshield.  Heat transfer correlation for external flow.  
FIND:  Minimum value of convection coefficient needed to prevent condensation on interior surface 
of windshield.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state, (2) One-dimensional heat transfer, (3) Constant properties. 
 
PROPERTIES:  Table A-3, glass:  kg = 1.4 W/m⋅K.  Prescribed, air:  k = 0.023 W/m⋅K, ν = 12.5 × 
10-6 m2/s, Pr = 0.70. 
 
ANALYSIS:  From the prescribed thermal circuit, conservation of energy yields 

 ,i s,i s,i ,o

i g o

T T T T
1/ h t / k 1/ h

∞ ∞− −
=
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where oh  may be obtained from the correlation 

 L
0.8 1/ 3o
L

h LNu 0.030Re Pr
k

= =  

With V = (70 mph × 1585 m/mile)/3600 s/h = 30.8 m/s, ReD = (30.8 m/s × 0.800 m)/12.5 × 10-6 m2/s 
= 1.97 × 106 and 

 ( ) ( )
0.8 1/ 36 2

o
0.023W / m Kh 0.030 1.97 10 0.70 83.1W / m K

0.800 m
⋅

= × = ⋅  

From the energy balance, with Ts,i = Tdp = 10°C 
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 2

ih 38.3W / m K= ⋅          < 
 
COMMENTS:  The output of the fan in the automobile’s heater/defroster system must maintain a 
velocity for flow over the inner surface that is large enough to provide the foregoing value of ih .   In 

addition, the output of the heater must be sufficient to maintain the prescribed value of T∞,i at this 
velocity. 



PROBLEM 6.44 
 

KNOWN: Characteristic length of a microscale chemical detector, free stream velocity and 
temperature, hydrogen wind tunnel pressure and free stream velocity. 
 
FIND: Model length scale and hydrogen temperature needed for similarity. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) Negligible microscale 
or nanoscale effects, (4) Ideal gas behavior. 
 
PROPERTIES: Table A.4, air (T = 25 °C): Prs = 0.707, νs = 15.71 × 10-6 m2/s, hydrogen (250 K) 
Pr = 0.707, ν = 81.4 × 10-6 m2/s.  
 
ANALYSIS: For similarity we require Rem = Res and Prm = Prs. For the sensor, 
 

 
-6

s s
s -5 2

s

V L 10 m/s × 80 × 10  mRe  =  =  = 50.93
ν 1.571 × 10  m /s

 

 Prs = 0.707 
 
For the model,  Prm = Prs = 0.707. 

From Table A.4, we note Prs = 0.707, ν = 81.4 ×10-6 m2/s at T∞ = 250 K and p = 1 atm.         < 
 
The value of the Prandtl number is independent of pressure for an ideal gas.  The kinematic 
viscosity is pressure-dependent.  Hence, 

 μ μ ρ(at 1.0 atm)ν(at 0.5 atm) =  =  × 
ρ(at 0.5 atm) ρ(at 1.0 atm) ρ(at 0.5 atm)

 

For an ideal gas, 

 1.0 atmν(at 0.5 atm) = ν(at 1.0 atm)×  = 2ν(at 1.0 atm)
0.5 atm

 

Therefore, 
 νm = 81.4 × 10-6 m2/s × 2 = 163 × 10-6 m2/s 
 
For similarity, 

  
Continued… 

 

Heated model

Lm = ? 

Hydrogen

T∞ = ?

V = 0.5 m/s

p = 0.5 atm

Heated model

Lm = ? 

Hydrogen

T∞ = ?

V = 0.5 m/s

p = 0.5 atm

Heated model

Lm = ? 

Hydrogen

T∞ = ?

V = 0.5 m/s

p = 0.5 atm

Heated model

Lm = ? 

Hydrogen

T∞ = ?

V = 0.5 m/s

p = 0.5 atm

sensor

Ls = 80 μm

Air

T∞ = 25°C

V = 10 m/s

p = 1 atm



PROBLEM 6.44 (Cont.) 
 

Rem = Res = 50.93 = m m m
-6 2

m

V L 0.5 m/s × L  =  
ν 163 × 10  m /s

 

 

or Lm = 16.6 × 10-3 m = 16.6 mm               < 
 
COMMENTS: (1) From Section 2.2.1, we know that the mean free path of air at room 
conditions is approximately 80 nm. Since Ls is three orders of magnitude greater than the mean 
free path, the air may be treated as a continuum. (2) Hydrogen can leak from enclosures easily. 
By keeping the wind tunnel pressure below atmospheric, we avoid possible leakage of flammable 
hydrogen into the lab. Also, if leaks occur, air must enter the wind tunnel. It is much easier to seal 
against air leaks than hydrogen leaks. (3) Prm = 0.707 at 100 K also. However, the operation of 
the hydrogen wind tunnel at such a low temperature would be much more difficult than at 250 K.  
 



PROBLEM 6.45  
KNOWN:  Drag force and air flow conditions associated with a flat plate.  
FIND:  Rate of heat transfer from the plate.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Chilton-Colburn analogy is applicable.  
PROPERTIES:  Table A-4, Air (70°C,1 atm): ρ = 1.018 kg/m3, cp = 1009 J/kg⋅K, Pr = 0.70, 
ν = 20.22 × 10-6m2/s. 
 
ANALYSIS:  The rate of heat transfer from the plate is  
 ( ) ( )2

sq 2h L  T T∞= −  
 
where h  may be obtained from the Chilton-Colburn analogy,  

 ( ) ( )
( )

2/3 2 / 3f
H

p
2

4sf
2 23

C hj St Pr Pr
2  u  c

0.075 N/2 / 0.2mC 1 1 5.76 10 .
2 2 2 u / 2 1.018 kg/m 40 m/s / 2

ρ

τ

ρ

∞

−

∞

= = =

= = = ×
 

 
Hence, 

 ( ) ( ) ( )

-2/3f
p

2 / 3-4 3

2

Ch  u  c  Pr
2

h 5.76 10 1.018kg/m 40m/s 1009J/kg K  0.70

h 30 W/m K.

ρ ∞
−

=

= × ⋅

= ⋅

 

 
The heat rate is 

 ( ) ( ) ( )22q 2 30 W/m K  0.2m  120 20 C= ⋅ − o  

 q 240 W.=           < 

COMMENTS:  Although the flow is laminar over the entire surface (ReL = u∞L/ν = 40 m/s 
× 0.2m/20.22 × 10-6m2/s = 4.0 × 105), the pressure gradient is zero and the Chilton-Colburn 
analogy is applicable to average, as well as local, surface conditions.  Note that the only 
contribution to the drag force is made by the surface shear stress. 



PROBLEM 6.46  
KNOWN:  Air flow conditions and drag force associated with a heater of prescribed surface 
temperature and area.  
FIND:  Required heater power.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Reynolds analogy is applicable, (3) 
Bottom surface is adiabatic.  
PROPERTIES:  Table A-4, Air (Tf = 350K, 1atm):  ρ = 0.995 kg/m3, cp = 1009 J/kg⋅K, Pr = 
0.700.  
ANALYSIS:  The average shear stress and friction coefficient are  

 

( )

2D
s 2

2
3s

f 2 23

F 0.25 N 1 N/m
A 0.25 m

1 N/mC 8.93 10 .
 u / 2 0.995 kg/m 15m/s / 2

τ

τ

ρ
−

∞

= = =

= = = ×
 

 
From the Reynolds analogy,  

 2 /3f
p

h CSt Pr .
 u c 2ρ

−

∞
= =  

 
Solving for h  and substituting numerical values, find  

 ( ) ( ) ( ) 2 / 33 -3

2
h 0.995 kg/m 15m/s  1009 J/kg K 8.93 10 / 2  0.7

h 85 W/m K.

−= ⋅ ×

= ⋅
 

 
Hence, the heat rate is  
 ( ) ( ) ( )2 2

sq h A T T 85W/m K 0.25m  140 15 C∞= − = ⋅ − o  
 
 q 2.66 kW.=           < 
 
COMMENTS:  Due to bottom heat losses, which have been assumed negligible, the actual 
power requirement would exceed 2.66 kW. 



PROBLEM 6.47 
 
KNOWN:  Velocity of water flowing over a flat plate.  Length and width of plate.  Variation of local 
convection coefficient with x for T = 300 K and T = 350 K.  Locations of turbulence transition. 
 
FIND:  Drag force for both water temperatures. 
 
SCHEMATIC:   

x

xc

Water
u∞ = 1 m/s
T∞ = 300K or 350 K 

L

Fd

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Transition occurs at a critical Reynolds number of 
5 × 105, (3) Incompressible flow. 
 
PROPERTIES:  Table A.6, Water (T = 300 K):  μ = 855 × 10-6 N⋅s/m2, k = 0.613 W/m⋅K. Water (T = 
350 K):  μ = 365 × 10-6 N⋅s/m2, k = 0.668 W/m⋅K. 
 
ANALYSIS:   According to the Reynolds analogy, Eq. 6.66 
 

2
L

f
ReC Nu=  

 
This relationship holds for the local values of Cf and Nu.  The local shear stress can be expressed as 
 

2
2

2s f
L

u u uNu hxC u hx Bhx
Re k L kL

ρ ρ ν μτ ρ∞ ∞ ∞
∞= = = = =  

 
where B =  μu∞/kL.  Therefore, τs,lam = BClamx0.5 and τs,turb = BCturbx0.8.  Now the drag force can be 
found: 
 

1.5 1.81.8
0.5 0.8

lam turb lam turb0 0 1.5 1.8 1.8
c

c

L x L c c
d s x

x xLF dx W BC x dx BC x dx W BW C Cτ
⎡ ⎤⎛ ⎞⎡ ⎤= ⋅ = + = + −⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

∫ ∫ ∫  

 
At T = 300 K, 
 

6 2

1.81.5 1.8
1.5 1.8

855 10  N s / m 1 m / s 1 m
0.613 W / m K 0.6 m

(0.6 m)(0.43 m) (0.43 m)395 W / m K 2330 W / m K
1.5 1.8 1.8

dF
−× ⋅ ×

= ×
⋅ ×

⎡ ⎤⎛ ⎞
× ⋅ × + ⋅ −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

 

 
0.714 NdF =               < 

 
Continued… 



 
PROBLEM 6.47 (Cont.) 

 
Similarly, at T = 350 K with Clam = 477 W/m1.5·K, Cturb = 3600 W/m1.8·K and xc = 0.19 m, 
 

0.659 NdF =               < 
 
 
COMMENTS:  (1) Even though transition to turbulence occurs earlier for the T = 350 K case, the net 
effect of the much smaller viscosity is a reduction in the drag force.  (2) It would be incorrect to apply 
Reynolds’ analogy, Eq. 6.66, directly to the average values of Cf and Nu because of the presence of x 
in the definition of the Nusselt number.  Applying Eq. 6.66 directly to the average values would result 
in the incorrect values Fd = 1.36 and 1.22 N for the 300 K and 350 K cases, respectively. 
 



PROBLEM 6.48  
KNOWN:  Heat transfer correlation associated with parallel flow over a rough flat plate.  
Velocity and temperature of air flow over the plate.  
FIND:  Surface shear stress l m from the leading edge.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Modified Reynolds analogy is applicable, (2) Constant properties.  
PROPERTIES:  Table A-4, Air (300K, 1atm):  ν = 15.89 × 10-6m2/s, Pr = 0.71, ρ = 1.16 
kg/m3. 
 
ANALYSIS:  Applying the Chilton-Colburn analogy  

 

0.9 1/ 3
2 /3 2 /3 2 /3f x x

x
x x

-0.1f
x

C Nu 0.04 Re PrSt Pr Pr Pr
2 Re Pr Re Pr

C 0.04 Re
2

= = =

=
 

 
where  

 6
x -6 2

u x 50 m/s 1mRe 3.15 10 .
15.89 10 m / sν

∞ ×
= = = ×

×
 

 
Hence, the friction coefficient is  

 ( ) ( )0.16 2
f sC 0.08 3.15 10 0.0179 /  u / 2τ ρ

−
∞= × = =  

 
and the surface shear stress is  
 ( ) ( )22 3

s fC  u / 2 0.0179 1.16kg/m 50 m/s / 2τ ρ ∞= = ×  
 
 2 2

s 25.96 kg/m s 25.96 N/m .τ = ⋅ =        < 
 
COMMENTS:  Note that turbulent flow will exist at the designated location. 



PROBLEM 6.49 
 
KNOWN: Dimensions and temperature of a thin, rough plate.  Velocity of air flow parallel to 
plate (at an angle of 45° to a side).  Heat transfer rate from plate to air.  
 
FIND: Drag force on plate.  
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) The modified Reynolds analogy holds, (2) Constant properties. 
 
PROPERTIES: Table A-4, Air (50°C = 323 K): cp = 1008 J/kg·K, Pr = 0.704.  
 
ANALYSIS: The modified Reynolds analogy, Equation 6.70, combined with the definition of the 
Stanton number, Equation 6.67, yields 
 -1/3

fC /2= (Nu/Re)Pr                 (1) 
 
The drag force is related to the friction coefficient according to  
 2

D s s f sF  = τ A  = C ρu A / 2∞⋅                (2) 
 
Combining Equations (1) and (2)  

 -1/3 2
D s

NuF  = Pr ρu A
Re ∞  

 
Substituting the definitions of Nu and Re, we find 

 -1/3 2 -1/3 2/3c
D s s s

c p p

hL ν h ν hF  = Pr ρu A  = Pr u A  = Pr u A
k u L c α c∞ ∞ ∞

∞
 

Where Lc is a characteristic length used to define Nu and Re.   With hAs = q/ ΔT we have 

 
2/32/3

D 
p

qu Pr 2000 W × 30 m/s × (0.704)F =  = 0.785 N     
c ΔT 1008 J/kg K × 60 K
∞ =

⋅
          < 

 
COMMENTS: (1) Heat transfer or friction coefficient correlations for this simple configuration 
apparently do not exist.  (2) Experiments to measure the drag force would be relatively simple to 
implement and measured drag forces could be used to determine the heat transfer coefficients 
using the Reynolds analogy.  (3) The solution demonstrates advantages associated with working 
the problem symbolically and only introducing numbers at the end.  First, the length scale in Nu 
and Re did not have to be defined because it cancelled out.  Second, the properties k, ν, and ρ also 
cancelled out. 

L = 0.2 m 

Air

T∞ = 20°C
u∞ = 30 m/s

Ts = 80°C    

L = 0.2 m 

Air

T∞ = 20°C
u∞ = 30 m/s

Ts = 80°C    



PROBLEM 6.50  
KNOWN:  Nominal operating conditions of aircraft and characteristic length and average friction 
coefficient of wing.  
FIND:  Average heat flux needed to maintain prescribed surface temperature of wing.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Applicability of modified Reynolds analogy, (2) Constant properties. 
 
PROPERTIES:  Prescribed, Air:  ν = 16.3 × 10-6 m2/s, k = 0.022 W/m⋅K, Pr = 0.72. 
 
ANALYSIS:  The average heat flux that must be maintained over the surface of the air foil is 

( )sq h T T ,∞′′ = −  where the average convection coefficient may be obtained from the modified 
Reynolds analogy. 
 

 L L2 /3 2 / 3f
1/ 3L L

Nu NuC St Pr Pr
2 Re Pr Re Pr

= = =  

 

Hence, with ( ) 6 2 7
LRe VL / 100 m / s 2m /16.3 10 m / s 1.23 10 ,ν −= = × = ×  

 

 ( )( )L
1/ 370.0025Nu 1.23 10 0.72 13,780

2
= × =  

 

 ( )L
2k 0.022 W / m Kh Nu 13,780 152 W / m K

L 2m
⋅

= = = ⋅  

 

 ( )2 2q 152 W / m K 5 23 C 4260 W / m′′ ⎡ ⎤= ⋅ − − ° =⎣ ⎦      < 
 
COMMENTS:  If the flow is turbulent over the entire airfoil, the modified Reynolds analogy 
provides a good measure of the relationship between surface friction and heat transfer.  The relation 
becomes more approximate with increasing laminar boundary layer development on the surface and 
increasing values of the magnitude of the pressure gradient. 
 



PROBLEM 6.51 
 
KNOWN:  Average frictional shear stress of sτ =  0.0625 N/m2 on upper surface of circuit board with 
densely packed integrated circuits (ICs) 
 
FIND:  Allowable power dissipation from the upper surface of the board if the average surface 
temperature of the ICs must not exceed a rise of 25°C above ambient air temperature.  
 
SCHEMATIC:   
 

 
 
ASSUMPTIONS: (1) Steady-state conditions, (2) The modified Reynolds analogy is applicable, (3) 
Negligible heat transfer from bottom side of the circuit board, and (4) Thermophysical properties 
required for the analysis evaluated at 300 K, 
 
PROPERTIES:  Table A-4, Air (Tf = 300 K, 1 atm):  ρ = 1.161 kg/m3, cp = 1007 J/kg⋅K, Pr = 0.707. 
 
ANALYSIS:  The power dissipation from the circuit board can be calculated from the convection rate 
equation assuming an excess temperature (Ts - T∞) = 25°C. 
 ( )s sq h A T T∞= −          (1) 
 
The average convection coefficient can be estimated from the Reynolds analogy and the measured 
average frictional shear stress s.τ  

 2 /3 sf
f 2 p

C hSt Pr C St
2 V cV / 2

τ
ρρ

= = =        (2,3,4) 

With V = u∞ and substituting numerical values, find h.  

 2 / 3s
2 p

h Pr
V cV

τ
ρρ

=  

 

 s p 2 /3c
h Pr

V
τ −=  

 

 ( )
2 2 / 3 20.0625 N / m 1007 J / kg Kh 0.707 39.7 W / m K

2 m / s
−× ⋅

= = ⋅  

 
Substituting this result into Eq. (1), the allowable power dissipation is 

 ( )2 2q 39.7 W / m K 0.120 0.120 m 25 K 14.3 W= ⋅ × × × =     < 

COMMENTS:  For this analysis using the modified or Chilton-Colburn analogy, we found Cf = 
0.0269 and St = 0.0170.  Using the Reynolds analogy, the results are slightly different with 

2h 31.5 W / m K= ⋅  and q = 11.3 W. 



PROBLEM 6.52  
KNOWN:  Evaporation rate of water from a lake.  
FIND:  The convection mass transfer coefficient, mh . 
 
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Equilibrium at water vapor-liquid surface, (2) Isothermal conditions, 
(3) Perfect gas behavior of water vapor, (4) Air at standard atmospheric pressure.  
PROPERTIES:  Table A-6, Saturated water vapor (300K):  pA,sat = 0.03531 bar, ρA,sat = 
1/vg = 0.02556 kg/m3. 
 
ANALYSIS:  The convection mass transfer (evaporation) rate equation can be written in the 
form  

 
( )

A
m

A,s A,

nh
ρ ρ ∞

′′
=

−
 

 
where  
 A,s A,sat ,ρ ρ=  
 
the saturation density at the temperature of the water and  
 A, A,satρ φρ∞ =  
 
which follows from the definition of the relative humidity, φ = pA/pA,sat and perfect gas 
behavior.  Hence, 

 
( )
A

m
A,sat

nh
1ρ φ

′′
=

−
 

and substituting numerical values, find 

 
( )

2
3

m 3
0.1 kg/m h 1/3600 s/hh 1.55 10  m/s.
0.02556 kg/m 1 0.3

−⋅ ×
= = ×

−
     < 

COMMENTS:  (1) From knowledge of pA,sat, the perfect gas law could be used to obtain the 
saturation density. 

 
( )

A,sat A 3
A,sat -2 3

p 0.03531 bar  18 kg/kmol 0.02548 kg/m .
T 8.314 10 m bar/kmol K 300K

×
= = =

ℜ × ⋅ ⋅
ρ

M
 

This value is within 0.3% of that obtained from Table A-6.  
(2) Note that psychrometric charts could also be used to obtain ρA,sat and ρA,∞. 



PROBLEM 6.53  
KNOWN:  Evaporation rate from pan of water of prescribed diameter.  Water temperature.  Air 
temperature and relative humidity.  
FIND:  (a) Convection mass transfer coefficient, (b) Evaporation rate for increased relative humidity, 
(c) Evaporation rate for increased temperature.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Water vapor is saturated at liquid interface and may be approximated as a 
perfect gas.  
PROPERTIES:  Table A-6, Saturated water vapor (Ts = 296K):  -1

A,sat gvρ = = (49.4 m3/kg)-1 = 

0.0202 kg/m3; (Ts = 320 K):  ( ) 1-1 3 3
A,sat gv 13.98 m / kg 0.0715 kg/m .ρ

−
= = =  

 
ANALYSIS:  (a) Since evaporation is a convection mass transfer process, the rate equation has the 
form ( )evap m A,s A,m h A ρ ρ ∞= −&  and the mass transfer coefficient is 

 
( )( ) ( )( )

5evap
m 22 3

A,s A,

m 1.5 10 kg/sh 0.0179 m/s
 D / 4 /4 0.23 m 0.0202 kg/mπ ρ ρ π

−

∞

×
= = =

−

&
 < 

with Ts = T∞ = 23°C and φ∞ = 0. 
 
(b) If the relative humidity of the ambient air is increased to 50%, the ratio of the evaporation rates is 

 
( )
( )

( ) ( )
( )

( )
( )

m A,s s A,sevap A,s

evap m A,s s A,s s

h A T Tm 0.5 T
1 .

m 0 h A T T

ρ φ ρφ ρ
φ

φ ρ ρ
∞ ∞∞ ∞

∞
∞

⎡ ⎤−= ⎣ ⎦= = −
=

&

&
 

Hence,  ( )
3

5 5
evap 3

0.0202 kg/mm 0.5 1.5 10 kg/s 1 0.5 0.75 10 kg/s.
0.0202 kg/m

φ − −
∞

⎡ ⎤
= = × − = ×⎢ ⎥

⎢ ⎥⎣ ⎦
&  

(c) If the temperature of the ambient air is increased from 23°C to 47°C, with φ∞ = 0 for both cases, 
the ratio of the evaporation rates is 

 
( )
( )

( )
( )

( )
( )

evap s m A,s A,s

evap s m A,s A,s

m T T 47 C h A 47 C 47 C
.

m T T 23 C h A 23 C 23 C

ρ ρ

ρ ρ

∞

∞

= =
= =

= =

o o o

o o o

&

&
 

Hence,  ( )
3

5 5
evap s 3

0.0715 kg/m
m T T 47 C 1.5 10 kg/s 5.31 10 kg/s.

0.0202 kg/m
− −

∞= = = × = ×o&  < 

 
COMMENTS:  Note the highly nonlinear dependence of the evaporation rate on the water 
temperature.  For a 24°C rise in s evapT , m&  increases by 350%. 



PROBLEM 6.54  
KNOWN:  Water temperature and air temperature and relative humidity.  Surface recession 
rate.  
FIND:  Mass evaporation rate per unit area.  Convection mass transfer coefficient.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Water vapor may be approximated as a perfect gas, (2) No water 
inflow; outflow is only due to evaporation.  
PROPERTIES:  Table A-6, Saturated water:  Vapor (305K), -1 3

g gv 0.0336 kg/m ;ρ = =   

Liquid (305K), -1 3
f fv 995 kg/m .ρ = =  

 
ANALYSIS:  Applying conservation of species to a control volume about the water,  

 ( ) ( )
A,out A,st

evap f f f

M M
d d dHm A V AH A .
dt dt dt

ρ ρ ρ

− =

′′− = = =

& &

&
 

 
Substituting numerical values, find  

 ( ) ( )3 4
evap f

dHm 995kg/m 10 m/h  1/3600 s/h
dt

ρ −′′ = − = − −&  
 
 5 2

evapm 2.76 10 kg/s m .−′′ = × ⋅&        < 
 
Because evaporation is a convection mass transfer process, it also follows that  
 evap Am n′′ ′′=&  
 
or in terms of the rate equation,  

 ( ) ( ) ( )
( ) ( )

evap m A,s A, m A,sat s A,sat
evap m A,sat

m h h T T
m h 305K  1 ,

ρ ρ ρ φ ρ
ρ φ

∞ ∞ ∞
∞

⎡ ⎤′′ = − = −⎣ ⎦
′′ = −
&

&
 

 
and solving for the convection mass transfer coefficient,  

 
( ) ( ) ( )

5 2evap
m 3A,sat

m 2.76 10 kg/s mh
305K  1 0.0336 kg/m 1 0.4ρ φ

−

∞

′′ × ⋅
= =

− −

&
 

 
 3

mh 1.37 10 m/s.−= ×         < 
 
COMMENTS:  Conservation of species has been applied in exactly the same way as a 
conservation of energy.  Note the sign convention. 



PROBLEM 6.55  
KNOWN:  CO2 concentration in air and at the surface of a green leaf.  Convection mass 
transfer coefficient.  
FIND:  Rate of photosynthesis per unit area of leaf.  
SCHEMATIC:   
 

 
 
ANALYSIS:  Assuming that the CO2 (species A) is consumed as a reactant in photosynthesis 
at the same rate that it is transferred across the atmospheric boundary layer, the rate of 
photosynthesis per unit leaf surface area is given by the rate equation, 
 
 ( )A m A, A,sn h .ρ ρ∞′′ = −  
 
Substituting numerical values, find 
 

 ( )2 -4 4 3
An 10 m/s 6 10 5 10 kg/m− −′′ = × − ×  

 
 6 2

An 10 kg/s m .−′′ = ⋅          < 
 
COMMENTS:  (1) It is recognized that CO2 transport is from the air to the leaf, and (ρA,s - 
ρA,∞) in the rate equation has been replaced by (ρA,∞ - ρA,s). 
 
(2) The atmospheric concentration of CO2 is known to be increasing by approximately 0.3% 
per year.  This increase in ρA,∞ will have the effect of increasing the photosynthesis rate and 
hence plant biomass production. 



PROBLEM 6.56  
KNOWN:  Species concentration profile, CA(y), in a boundary layer at a particular location 
for flow over a surface.  
FIND:  Expression for the mass transfer coefficient, hm, in terms of the profile constants, 
CA,∞ and DAB.  Expression for the molar convection flux, ′′NA.  
 
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Parameters D, E, and F are constants at any location x, (2) DAB, the 
mass diffusion coefficient of A through B, is known.  
ANALYSIS:  The convection mass transfer coefficient is defined in terms of the 
concentration gradient at the wall,  

 ( ) ( )
A y=0

m AB
A,s A,

 C /  y
h x D .

C C ∞
= −

−

∂ ∂
 

 
The gradient at the surface follows from the profile, CA(y), 
 

 ( )2A

y=0 y=0

 C Dy Ey F E.
 y  y

= + + = +
∂ ∂
∂ ∂

 

 
Hence,  

 ( ) ( ) ( )
AB AB

m
A,s A, A,

D E D Eh x .
C C F C∞ ∞

−
= − =

− −
      < 

 
The molar flux follows from the rate equation,  

 ( ) ( ) ( )AB
A m A,s A, A,s A,

A,s A,

D EN h C C C C .
C C∞ ∞

∞

−′′ = − = ⋅ −
−

 

 
 A ABN D E.′′ = −          < 
 
COMMENTS:  It is important to recognize that the influence of species B is present in the 
property DAB.  Otherwise, all the parameters relate to species A. 



PROBLEM 6.57  
KNOWN:  Cross flow of gas X over object with prescribed characteristic length L, Reynolds 
number, and average heat transfer coefficient.  Thermophysical properties of gas X, liquid Y, 
and vapor Y.  
FIND:  Average mass transfer coefficient for same object when impregnated with liquid Y 
and subjected to same flow conditions.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Heat and mass transfer analogy is applicable, (2) Vapor Y behaves as 
perfect gas  
PROPERTIES: (Given)    ν(m2/s)  k(W/m⋅K)   α(m2/s) 
 
   Gas X     21 × 10-6    0.030    29 × 10-6 
   Liquid Y 3.75 × 10-7    0.665  1.65 × 10-7 
   Vapor Y 4.25 × 10-5    0.023  4.55 × 10-5 
   Mixture of gas X - vapor Y:  Sc = 0.72  
ANALYSIS:  The heat-mass transfer analogy may be written as 

 ( ) ( )L L
m,LL

L L
AB

h Lh LNu f Re ,  Pr           Sh f Re ,Sc
k D

= = = =  

The flow conditions are the same for both situations.  Check values of Pr and Sc.  For Pr, the 
properties are those for gas X (B). 

 
6 2

B
-6 2B

21 10 m / sPr 0.72
29 10 m / s

ν
α

−×
= = =

×
 

while Sc = 0.72 for the gas X (B) - vapor Y (A) mixture.  It follows for this situation 

 L L
m,LL AB

m,L L
AB

h Lh L DNu Sh           or          h h .
k D k

= = = =  

Recognizing that 
 ( )-6 2 6 2

AB BD / Sc 21.6 10 m / s 0.72 30.0 10 m / sν −= = × = ×  
and substituting numerical values, find 

 
-6 2

2
m,L

30.0 10 m / sh 25 W/m K 0.0250 m/s.
0.030 W/m K

×
= ⋅ × =

⋅
    < 

 
COMMENTS:  Note that none of the thermophysical properties of liquid or vapor Y are 
required for the solution.  Only the gas X properties and the Schmidt number (gas X - vapor 
Y) are required. 



PROBLEM 6.58  
KNOWN:  Free stream velocity and average convection mass transfer coefficient for fluid 
flow over a surface of prescribed characteristic length.  
FIND:  Values of L L mSh ,  Re ,  Sc and j  for (a) air flow over water, (b) air flow over 
naphthalene, and (c) warm glycerol over ice.  
SCHEMATIC:   
 

 
 
PROPERTIES:  For the fluids at 300K:  
  Table      Fluid(s)  ν(m2/s)×10-6  DAB(m2/s) 
 
  A-4  Air         15.89        - 
  A-5  Glycerin        634        - 
  A-8  Water vapor - Air          -   0.26 × 10-4 
  A-8  Naphthalene - Air          -   0.62 × 10-5 
  A-8  Water - Glycerol          -   0.94 × 10-9 
 
ANALYSIS:  (a) Water (νapor) - Air:  

 

( )

( )

mL -4 2AB
4

L -6 2
6 2

-6 2AB

0.01m/s 1mh L
Sh 385

D 0.26 10 m / s
1 m/s 1mVL

Re 6.29 10
15.89 10 m / s
0.16 10 m / s

Sc 0.62
D 0.26 10 m / s

ν
ν −

= = =
×

= = = ×
×
×

= = =
×

 

 

 ( )2 / 32/3 2/3m
m m

h 0.01 m/s
j St Sc Sc 0.62 0.0073.

V 1 m/s
= = = =     < 

 
(b) Naphthalene (νapor) - Air:  
 4

L L mSh 1613      Re 6.29 10       Sc 2.56      j 0.0187.= = × = =     < 
 
(c) Water (1iquid) - Glycerol:  
 7 5

L L mSh 1.06 10       Re 1577      Sc 6.74 10       j 76.9.= × = = × =    < 
 
COMMENTS:  Note the association of ν with the freestream fluid B. 



PROBLEM 6.59  
KNOWN:  Characteristic length, surface temperature, average heat flux and airstream conditions 
associated with an object of irregular shape.  
FIND:  Whether similar behavior exists for alternative conditions, and average convection coefficient 
for similar cases.  

SCHEMATIC:   
 Case:     1    2   3   4   5 

 L,m      1    2   2   2   2 
 V, m/s    100   50  50  50 250 
 p, atm      1    1  0.2   1 0.2 
 T∞, K    275 275 275 300 300 
 Ts, K    325 325 325 300 300 

 2q , W/m′′  12,000   -   -   -   - 

 2h, W/m K⋅    240   -   -   -   - 

 4 2
ABD 10 ,  m / s+×   -   -   - 1.12 1.12 

ASSUMPTIONS:  (1) Heat and mass transfer analogy is applicable; that is, f(ReL,Pr) = f(ReL,Sc), see 
Eqs. 6.50 and 6.54.  
PROPERTIES:  Table A-4, Air (300K, 1 atm):  6 2

1 115.89 10 m / s, Pr 0.71,ν −= × =  1k 0.0263 W/m K.= ⋅  
 
ANALYSIS: For Case 1, h = q"/(Ts - T∞) = 12,000 W/m2/50 K = 240 W/m2·K. 

( ) 6 2 6
L,1 1 1 1 1Re V L / 100 m/s 1m / 15.89 10 m / s 6.29 10  and Pr 0.71.ν −= = × × = × =  

Case 2:  62 2
L,2 2-6 2

2

V L 50 m/s 2m
Re 6.29 10 ,           Pr 0.71.

15.89 10 m / sν

×
= = = × =

×
 

From Eq. 6.50 it follows that Case 2 is analogous to Case 1. Hence 2 1Nu Nu=  and 

 21 1 2 1
2 1 21 2 2

h L k L W 1m
h  h  240  120 W/m K.

k L L 2mm K
= = = = ⋅

⋅
    < 

Case 3: With p = 0.2 atm, 6 2
3 79.45 10 m / sν −= ×  and 63 3

L,3 3-6 2
3

V L 50 m/s 2m
Re 1.26 10 ,      Pr 0.71.

79.45 10 m / sν

×
= = = × =

×

 

Since L,3 L,1Re Re ,≠  Case 3 is not analogous to Case 1.      < 

Case 4:  
6 2

4
L,4 L,1 4 1-4 2

AB,4

15.89 10 m / s
Re Re ,  Sc 0.142 Pr .

D 1.12 10 m / s

ν −×
= = = = ≠

×
 

Hence, Case 4 is not analogous to Case 1.       < 

Case 5:  65 5
L,5 L,1-6 2

5

V L 250 m/s  2m
Re 6.29 10 Re

79.45 10 m / sν

×
= = = × =

×
 

  
6 2

5
5 1-4 2

AB,5

79.45 10 m / s
Sc 0.71 Pr .

D 1.12 10 m / s

ν −×
= = = =

×
 

Hence, conditions are analogous to Case 1, and with 5 1Sh Nu ,=  

 
4 2

AB,51
m,5 1 2

5 1

DL W 1m 1.12 10 m / s
h h  240 0.51 m/s.

L k 2m 0.0263 W/m Km K

−×
= = × × =

⋅⋅
    < 

COMMENTS:  Note that Pr, k and Sc are independent of pressure, while ν  and DAB vary inversely 
with pressure. 

 



PROBLEM 6.60  
KNOWN:  Surface temperature and heat loss from a runner’s body on a cool, spring day.  
Surface temperature and ambient air-conditions for a warm summer day.  
FIND:  (a) Water loss on summer day, (b) Total heat loss on summer day.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Heat and mass transfer analogy is applicable.  Hence, from Eqs. 6.50 
and 6.54, f(ReL,Pr) is of same form as f(ReL,Sc), (2) Negligible surface evaporation for Case 
1, (3) Constant properties, (4) Water vapor is saturated for Case 2 surface and may be 
approximated as a perfect gas.  
PROPERTIES:  Air (given): ν = 1.6×10-5 m2/s, k = 0.026 W/m⋅K, Pr = 0.70; Water vapor - 
air (given):  DAB = 2.3×10-5m2/s;  Table  A-6,  Saturated water vapor (T∞ = 303K):  

( )-1 3 -1 3
A,sat g s A,sat g fgv 0.030 kg/m ;  T 308K :  v 0.039 kg/m ,  h 2419 kJ/kg.ρ ρ= = = = = =  

 
ANALYSIS:  (a) With 5 2 -5 2

L,2 L,1 ABRe Re  and Sc= /D 1.6 10 m / s/2.3 10 m / s=0.70=Pr,ν −= = × ×  it 

follows that L LSh Nu .=   Hence 
 

 
( ) ( )

m AB
-5 2

AB 1 AB
m

s s s s1

h L/D hL/k
D q D 500 W 2.3 10 m / s 0.0221h h   m/s.

k A T T k A 20K 0.026 W/m K A∞

=
⎡ ⎤×

= = = = ⎢ ⎥− ⋅ ⎣ ⎦

 

 
Hence, from the rate equation, with As as the wetted surface  

 ( ) ( ) ( )A m s A,s A, s A,sat s,2 A,sat ,2
s

0.0221 mn h A  A T T
A s

ρ ρ ρ φ ρ∞ ∞ ∞
⎡ ⎤ ⎡ ⎤= − = −⎢ ⎥ ⎣ ⎦⎣ ⎦

 

 
 ( )3 3 4

An 0.0221 m / s 0.039 0.6 0.030 kg/m 4.64 10 kg/s.−= − × = ×    < 
 
(b) The total heat loss for Case 2 is comprised of sensible and latent contributions, where  
 ( )2 sen lat s s,2 ,2 A fgq q q hA T T n  h .∞= + = − +  
 
Hence, with ( )s 1 s,1 ,1hA q / T T 25 W/K,∞= − =  
 
 ( ) -4 6

2q 25 W/K 35 30 C 4.64 10 kg/s 2.419 10  J/kg= − + × × ×o  
 
 2q 125 W  1122 W  1247 W.= + =        < 
 
COMMENTS:  Note the significance of the evaporative cooling effect. 



PROBLEM 6.61  
KNOWN:  Heat transfer results for an irregularly shaped object.  
FIND:  (a) The concentration, CA, and partial pressure, pA, of vapor in an airstream for a 

drying process of an object of similar shape, (b) Average mass transfer flux, ( )2
An kg/s m .′′ ⋅  

 
SCHEMATIC: 
 

 
 
 Case 1:      Heat Transfer   Case 2:     Mass Transfer 
 
ASSUMPTIONS:  (1) Heat-mass transfer analogy applies, (b) Perfect gas behavior.  
PROPERTIES:  Table A-4, Air (323K, 1 atm):  ν = 18.20×10-6m2/s, Pr = 0.703, k = 
28.0×10-3W/m⋅K; Plastic vapor (given):  MA = 82 kg/kmol, psat(50°C) = 0.0323 atm, DAB = 
2.6×10-5 m2/s. 
 
ANALYSIS:  (a) Calculate Reynolds numbers 

 

61 1
1 -6 2

6
2 -6 2

V L 120 m/s  1mRe 6.59 10
18.2  10 m / s

60 m/s  2mRe 6.59 10 .
18.2 10 m / s

ν
×

= = = ×
×

×
= = ×

×

 

Note that 

 
6 2

1 2 -5 2AB

18.2 10 m / sPr 0.703               Sc 0.700.
D 2.6 10 m / s

ν −×
= = = =

×
 

Since Re1 = Re2 and Pr1 = Sc2, the dimensionless solutions to the energy and species 
equations are identical.  That is, from Eqs. 6.47 and 6.51, 

 ( ) ( )AT x , y   C x , y∗ ∗ ∗ ∗ ∗ ∗=  

 A A,ss
s A, A,s

C CT T
T T C C∞ ∞

−−
=

− −
        (1) 

where AT  and C∗ ∗  are defined by Eqs. 6.33 and 6.34, respectively.  Now, determine 

 ( )( )A,sat -2 3
A,s

3
A,s

p
C 0.0323 atm/8.205 10 m atm/kmol K 273 50 K

T
C 1.219 10  kmol/kg.−

= = × ⋅ ⋅ × +
ℜ

= ×
 

          Continued … 



PROBLEM 6.61 (Cont.) 
 
Substituting numerical values in Eq. (1),  

 

( )

( ) ( )
( )

s
A A,s A, A,s

s

3 3 3 3
A

T TC C C C
T T

80 100 C
C 1.219 10  kmol/m 0 1.219 10  kmol/m

0 100 C

∞
∞

− −

−
= + −

−
−

= × + − ×
−

o

o

 

 
 3 3

AC 0.975 10  kmol/m .−= ×         < 
 
The vapor pressure is then  
 A Ap C  T  0.0258 atm.= ℜ =        < 
 
(b) For case 1, 2q 2000 W/m .′′ =   The rate equations are 
 
 ( )sq h T T∞′′ = −          (2) 
 
 ( )A m A,s A, An h C C .∞′′ = − M        (3) 
 
From the analogy  

 1 m 2 2L L
AB m 1 AB

h L h  L h L kNu Sh                          or      .
k D h L D

= → = =   (4) 

 
Combining Eqs. (2) - (4),  

 
( )

( )
( )

( )
A,s A, A A,s A, Am 1 AB

A
s 2 s

C C C Ch L Dn q  q  
h T T L k T T

∞ ∞

∞ ∞

− −
′′ ′′ ′′= =

− −

M M
 

 
which numerically gives  

 
( )
( )

( ) ( )
( )

-5 2 -3 3
2

A -3

1m 2.6 10 m / s 1.219 10 0 kmol/m  82 kg/kmol
n 2000 W/m   

100-0 K2m 28 10 W/m K

× × −
′′ =

× ⋅
 

 
 4 2

An 9.28 10 kg/s m .−′′ = × ⋅         < 
 
COMMENTS:  Recognize that the analogy between heat and mass transfer applies when the 
conservation equations and boundary conditions are of the same form. 



PROBLEM 6.62  
KNOWN:  Convection heat transfer correlation for flow over a contoured surface.  
FIND:  (a) Evaporation rate from a water film on the surface, (b) Steady-state film temperature.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (b) Constant properties, (c) Negligible radiation, (d) 
Heat and mass transfer analogy is applicable.  
PROPERTIES:  Table A-4, Air (300K, 1 atm):  k = 0.0263 W/m⋅K, ν = 15.89×10

-6
m

2
/s, Pr = 0.707; 

Table A-6, Water (Ts ≈ 280K):  vg = 130.4 m
3
/kg, hfg = 2485 kJ/kg; Table A-8, Water-air (T ≈ 298K):  

DAB = 0.26×10
-4

m
2
/s.  

ANALYSIS:  (a) The mass evaporation rate is 
 ( ) ( ) ( )evap A m A,sat s A,sat m A,sat sm n h  A T  T h  A T .ρ φ ρ ρ∞ ∞⎡ ⎤= = − =⎣ ⎦&  

From the heat and mass transfer analogy: 0.58 0.4L LSh 0.43 Re  Sc=  

( )

( ) ( )

( )
( ) ( )

6 2
5

L -6 2 -6 2AB
0.58 0.45L

4 2
AB Lm

1 3
A,sat s g s

10 m/s  1mVL 15.89 10 m / sRe 6.29 10         Sc 0.61
D15.89 10 m / s 26 10 m / s

Sh 0.43 6.29 10 0.61 814

D 0.26 10 m / sh Sh 814 0.0212 m/s
L 1m
T v T 0.0077 kg/m .

ν
ν

ρ

−

−

−

×
= = = × = = =

× ×

= × =

×
= = =

= =

 

Hence,  2 3 4
evapm 0.0212m/s  1m  0.0077kg/m 1.63 10 kg/s.−= × × = ×&   < 

(b) From a surface energy balance, conv evapq q ,′′ ′′=  or 

 ( )
( )evap fg

L s evap fg s
L

m h
h T T m h           T T .

h∞ ∞
′′

′′− = = −
&

&  

With  ( ) ( )
0.58 0.45LNu 0.43 6.29 10 0.707 864= × =  

  2LL
k 0.0263 W/m Kh Nu 864 22.7 W/m K.
L 1m

⋅
= = = ⋅  

Hence,  
( )-4 2 6

s 2

1.63 10 kg/s m 2.485 10  J/kg
T 300K 282.2K.

22.7 W/m K

× ⋅ ×
= − =

⋅
  < 

COMMENTS:  The saturated vapor density, ρA,sat, is strongly temperature dependent, and if the 

initial guess of Ts needed for its evaluation differed from the above result by more than a few degrees, 
the density would have to be evaluated at the new temperature and the calculations repeated. 



PROBLEM 6.63 
 
KNOWN: Dimensions of rectangular naphthalene rod.  Velocity and temperature of air flow.  
Molecular weight and saturation pressure of naphthalene.   
 
FIND: Mass loss after 30 minutes.  
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Constant properties, (2) Mass loss is small, so dimensions remain 
unchanged, (3) Viscosity of air-naphthalene mixture is approximately that of air.  
 
PROPERTIES: Table A-4, Air (300 K): ν = 15.89 × 10-6 m2/s.  Table A-8, Naphthalene in air, 
(300 K): DAB = 0.62 × 10-5 m2/s, ABSc = ν/D  = 2.56.  
 
ANALYSIS: We will use the heat and mass transfer analogy, with the Nusselt number 
correlation known from Problem 6.10 to be of the form 
 m 1/3

d dNu  = CRe Pr  
 
Then invoking Equation 6.59, 
 m 1/3

d d m ABSh CRe Sc h d / D= =  
 
Now -6 2

dRe  = Vd/ν = 10 m/s × 0.03 m/15.89×10 m /s = 18,880 .  We find the values of C and m 
from Problem 6.10 with c/d = 0.33, for the front, sides, and back of the rod: 
 

 C m Shd hm(m/s) 
front 
sides 
back 

0.674 
0.153 
0.174 

1/2 
2/3 
2/3 

126.7 
148.5 
168.8 

0.0262 
0.0307 
0.0349 

  
The average mass transfer coefficient is 

m m,front m,side m,backh  = (h d + 2h c + h d)/(2d + 2c)
0.0262 m /s 0.03 m 2 0.0307 m /s 0.01 m 0.0349 m /s 0.03 m       

2 0.03 m 2 0.01 m
      = 0.0306 m/s

× + × × + ×
=

× + ×
 

 
Then the mass loss can be found from 
 A m tot A,s A,Δm = n Δt = h A (ρ  - ρ )Δt∞  

Continued… 

 

naphthalene

MA = 128.16 kg/kmol

ρA,sat = 1.33 ×10-4 bars

c = 10 mm
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T∞ = 300 K

V = 10 m/s

Air
naphthalene

MA = 128.16 kg/kmol

ρA,sat = 1.33 ×10-4 bars
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T∞ = 300 K

V = 10 m/s

Air

pA,sat



PROBLEM 6.63 (Cont.) 
 
    
Here ρA,∞ = 0 and ρA,s can be found from the saturation pressure, using the ideal gas law: 
        

A,sat A,sat A
A,s

i s s
-4

-2 3

-4 3

p p
ρ  =  = 

R T T

1.33 × 10  bar × 128.16 kg/kmol       = 
8.314 × 10  m bar/kmol K × 300 K

       = 6.83 × 10  kg/m
⋅ ⋅

M
R

 

 
Thus, finally, 

 -4 3

Δm = 0.0306 m/s × (2 × 0.03 m + 2 × 0.01 m) × 0.5 m 

                 × (6.83 × 10 - 0) kg/m  × 30 min × 60 s/min      
 

        -3= 1.50 × 10  kg                 < 
 
COMMENTS: The average depth of surface recession is given by m A,s A, A,solδ = h (ρ  - ρ )Δt/ρ∞  
where A,solρ  is the density of solid naphthalene, A,solρ = 1025 kg/m3.  Thus δ = 37 μm  and the 
assumption that the dimensions remain unchanged is good.  



PROBLEM 6.64  
KNOWN:  Surface area and temperature of a coated turbine blade.  Temperature and pressure of air 
flow over the blade.  Molecular weight and saturation vapor pressure of the naphthalene coating.  
Duration of air flow and corresponding mass loss of naphthalene due to sublimation.  
FIND:  Average convection heat transfer coefficient.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Applicability of heat and mass transfer analogy, (2) Negligible change in As 
due to mass loss, (3) Naphthalene vapor behaves as an ideal gas, (4) Solid/vapor equilibrium at surface 
of coating, (5) Negligible vapor density in freestream of air flow. 
 
PROPERTIES:  Table A-4, Air (T = 300K):  ρ = 1.161 kg/m3, cp = 1007 J/kg⋅K, α = 22.5 × 10-6 
m2/s.  Table A-8, Naphthalene vapor/air (T = 300K):  DAB = 0.62 × 10-5 m2/s. 
 
ANALYSIS:  From the rate equation for convection mass transfer, the average convection mass 
transfer coefficient may be expressed as 
 

 
( )

A
m

s A,ss A,s A,

n m / th
AA ∞

Δ Δ
= =

− ρρ ρ
 

 
where 
 

 ( ) ( )
( )

4A,sat 4 3A
A,s A,sat s 3s

p 128.16 kg / kmol 1.33 10 bar
T 6.83 10 kg / m

T 0.08314 m bar / kmol K 300K

−
−×

= = = = ×
ℜ ⋅ ⋅

ρ ρ
M

 

 
Hence, 
 

 
( )

( )m 2 4 3
0.008kg / 30min 60s / min

h 0.13m / s
0.05m 6.83 10 kg / m−

×
= =

×
 

 
Using the heat and mass transfer analogy with n = 1/3, we then obtain 
 

 ( )
2 / 3

2 / 3 3
m p m p

AB
h h c Le h c 0.130m / s 1.161kg / m

D
αρ ρ

⎛ ⎞
= = = ×⎜ ⎟

⎝ ⎠
 

  ( )2 /36 5 21007 J / kg K 22.5 10 / 0.62 10 359 W / m K− −⋅ × × = ⋅   < 
 
COMMENTS:  The naphthalene sublimation technique has been used extensively to determine 
convection coefficients associated with complex flows and geometries. 
 



PROBLEM 6.65 
 
KNOWN: Half-scale naphthalene model of human head.  Velocity and temperature of air flow 
while skiing.  Temperature of air in wind tunnel.  Depth of recession after 120 min for three 
locations.  Density of solid naphthalene.   
 
FIND: (a) Required wind tunnel velocity, (b) Heat transfer coefficients for full-scale head in 
skiing conditions, (c) Explain if uncovered regions would have same heat transfer coefficient 
when headgear is in place.  
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Constant properties, (2) Pr and Sc are raised to the one-third power in the 
heat and mass transfer correlations, (3) The properties of the air-naphthalene mixture are 
approximately those of air, (4) Properties can be evaluated at T∞ under the skiing conditions.  
 
PROPERTIES: Table A-4, Air (-13°C = 260 K): ν = 12.33 × 10-6 m2/s, k = 23.1 × 10-3 W/m·K. 
Air (300 K): ρ = 1.161 kg/m3, cp = 1007 J/kg·K, ν = 15.89 × 10-6 m2/s, k = 26.3 ×10-3 W/m·K,   
α = 22.5 × 10-6 m2/s. Table A-8, Naphthalene in air, (300 K): DAB = 0.62 × 10-5 m2/s. 
 
ANALYSIS: (a) In order for the results of the wind tunnel test to be directly applicable to the 
skiing conditions, the Reynolds numbers must be the same: 
 s w s s s w w wRe  = Re           V L / ν  = V L / ν  

-6 2
s w

w s -6 2
w s

L ν 15.89  × 10  m /sV  = V = 10 m/s × 2 × 25.8 m/s 
L ν 12.33 × 10  m /s

=    < 

 
(b) The mass flux and mass transfer coefficient can be found from knowledge of the recession 
depth: 

 A A,sol

m A A,s A, A,sol A,s A,

n  = ρ δ/Δt

h  = n /(ρ  - ρ ) = ρ δ/(ρ  - ρ )Δt∞ ∞

′′

′′
 

 
where ρA,∞ = 0 and ρA,s can be found from the saturation pressure and molecular weight (see 
Problem 6.63) using the ideal gas law.  
  

 
-4

A,sat A -4 3
A,s -2 3

s

1.33 × 10  bars × 128.16 kg/kmol=  = 6.83 × 10  kg/m
T 8.314 × 10  m bar/kmol K × 300 K

ρ
ρ =

⋅ ⋅

M
R

       < 
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T∞,w = 300 K

Wind tunnel conditions (w)

NBNB
NBNB



PROBLEM 6.65 (Cont.) 
 
 
Thus, with 1δ  = 0.1 mm,  
 3 -4 -4 3 -2

m,1h  = 1025 kg/m  × 10  m/(6.83 × 10  kg/m  × 120 min × 60 s/min)= 2.08 × 10  m/s  
 
Similarly for the other two locations,  
 hm,2 -2= 6.67 × 10  m/s ,   hm,3 -1= 1.33 × 10  m/s  
 
The heat transfer coefficients can then be found from the heat and mass transfer analogy as stated 
in Equation 6.60. 
 1-n

m ph = h ρc Le  
 
where n = 1/3 and 
 -6 2 -5 2

ABLe = α/D  = (22.5 × 10  m /s)/(0.62 × 10  m /s) = 3.63  
 
Thus at location 1,   
 -2 3 2/3 2

1h  = 2.08 × 10  m/s × 1.161 kg/m  × 1007 J/kg K × (3.63)  = 57.4 W/m K⋅ ⋅  
 
And for the other two locations, 
 h2 = 184 W/m2·K,   h3 = 368 W/m2·K 
 
These values are for the half-scale model. Since the Reynolds number is the same in the wind 
tunnel as in the skiing conditions, the local Nusselt numbers are also the same (see Equation 
6.49), thus 

  
s w s s s w w w

-3
w s

s w w -3
s w

Nu  = Nu           h L / k  = h L / k

L k 23.1  × 10  W/m Kh  = h = h  × 1/2 ×       
L k 26.3 × 10  W/m K

⋅
⋅

 

Thus  

  hs1 = hw1 × 0.439 = 57.4 W/m2·K × 0.439 = 25.2 W/m2·K          <  
 
And similarily 

  hs,2 = 80.8 W/m2·K,   hs,3 = 162 W/m2·K             < 
 
(c) When the headgear is in place, it will change the geometry of the surface and therefore change 
the heat transfer coefficients.  The regions that are left uncovered will be recessed relative to the 
rest of the surface.  This will probably reduce the local velocity near the surface slightly and 
reduce the local heat transfer coefficient. 
 
COMMENTS: (1) The properties should be evaluated at the film temperature, Tf = (Ts + T∞)/2. 
In the wind tunnel the conditions are isothermal, but in the ski conditions they are not.  However 
the surface temperature is unknown and cannot be found without a more complex analysis of heat 
transfer in the body and the headgear (when present).  (2) Heat loss is not the only consideration 
when designing winter clothing.  Comfort is also important and exposed areas could be 
uncomfortably cold, even though areas with small heat transfer coefficients will be warmer than 
those with larger coefficients.  



PROBLEM 6.66  
KNOWN:  Mass transfer experimental results on a half-sized model representing an engine strut.  
FIND:  (a) The coefficients C and m of the correlation m 1/3

L LSh CRe Sc=  for the mass transfer 

results, (b) Average heat transfer coefficient, h,  for the full-sized strut with prescribed operating 

conditions, (c) Change in total heat rate if characteristic length LH is doubled.  
SCHEMATIC:   

  
 Mass transfer       Heat transfer  
ASSUMPTIONS:  Analogy exists between heat and mass transfer.  
PROPERTIES:  Table A-4, Air ( )( ) -6 2

sT = T T / 2 400K, 1 atm :  =26.41 10 m / s,ν∞ + = ×  k = 

0.0338 W/m⋅K, Pr = 0.690; ( ) 6 2
BT 300K :  15.89 10  m / s;ν −= = ×  Table A-8, Naphthalene-air 

(300K, 1 atm):  5 2 6 2 -5 2
AB B ABD 0.62 10 m / s, Sc / D 15.89 10 m / s/0.62 10 m / s=2.56.ν− −= × = = × ×  

 
ANALYSIS:  (a) The correlation for the mass transfer experimental results is of the form 

m 1/3L LSh CRe  Sc .=   The constants C,m may be evaluated from two data sets of L LSh  and Re ;  
choosing the middle sets (2,3):  
( )
( )

( )
( )

) ) ]
) )

[ ]
[ ]

L

L

m
L L 3L 22 2

m
L LL 2 333

Sh log Sh / ShRe log 491/568
 or m = 0.80.

log 120,000/144,000Sh log Re / ReRe

⎡
⎣= = =
⎡ ⎤
⎣ ⎦

 < 

 

Then, using set 2, find  
)

) ( )
L 2

0.8m 1/3 1/3
L 2

Sh 491C 0.031.
Re  Sc 120,000  2.56

= = =    < 

(b) For the heat transfer analysis of the strut, the correlation will be of the form 
0.8 1/ 3L L H LNu h L / k 0.031 Re Pr= ⋅ =  where L HRe  V L /ν=  and the constants C,m were 

determined in Part (a).  Substituting numerical values, 
0.8

1/ 3 2
LL -6 2H

k 60 m/s 0.06 m 0.0338 W/m K
h Nu 0.031 0.690 198 W/m K.

L 0.06 m26.41 10 m / s

× ⋅
= ⋅ = = ⋅

×

⎡ ⎤
⎢ ⎥
⎣ ⎦

  < 

(c) The total heat rate for the strut of characteristic length LH  is ( )s sq=h A T T ,∞−  where As = 2.2 

LH⋅l and 
 -1 0.8 -1 0.8 -1 -0.2L s HH L H H H Hh~Nu L ~ RE L ~ L L ~ L    A ~ L⋅ ⋅ ⋅  

Hence, ( ) ( )-0.2 0.8
s HH Hq~h A ~ L  L ~ L .⋅   If the characteristic length were doubled, the heat rate 

would be increased by a factor of (2)
0.8

 = 1.74.       < 



PROBLEM 6.67  
KNOWN:  Boundary layer temperature distribution for flow of dry air over water film.  
FIND:  Evaporative mass flux and whether net energy transfer is to or from the water.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Heat and mass transfer analogy is applicable, (2) Water is well 
insulated from below.  
PROPERTIES:  Table A-4, Air (Ts = 300K, 1 atm):  k = 0.0263 W/m⋅K; Table A-6, Water 
vapor (Ts = 300K):  -1 3 6

A,s g fgv 0.0256 kg/m ,  h 2.438 10  J/kg;ρ = = = ×  Table A-8, Air-water 

vapor ( ) 4 2
s ABT 300K :   D 0.26 10 m / s.−= = ×  

 
ANALYSIS:  From the heat and mass transfer analogy,  

 A A,s

A, A,s

u y1  exp Sc .
ρ ρ
ρ ρ ν

∞

∞

− ⎡ ⎤= − −⎢ ⎥− ⎣ ⎦
 

 
Using Fick’s law at the surface (y = 0), the species flux is  

 
( )

y 0
A

A AB A,s AB

3 -4 2 -1 3 2
A

 un D  D  Sc 
 y

n 0.0256 kg/m   0.26 10 m / s  0.6 5000 m 2.00 10  kg/s m .

∂ ρ ρ
∂ ν=

∞

−

′′ = − = +

′′ = × × × = × ⋅

 

 
The net heat flux to the water has the form  

 ( )
y 0

net conv evap A fg s A fg
 T uq q q k  n  h k T T  Pr  n  h
 y

∂
∂ ν=

∞
∞′′ ′′ ′′ ′′ ′′= − = + − = − −  

 
and substituting numerical values, find  

 
( ) -1 3 6

net 2
2 2 2

net

W kgq 0.0263 100K  0.7  5000 m 2 10 2.438 10  J/kg
m K s m

q 9205 W/m 4876 W/m 4329 W/m .

−′′ = × − × × ×
⋅ ⋅

′′ = − =
 

 
Since netq 0,′′ >  the net heat transfer is to the water.      < 
 
COMMENTS:  Note use of properties (DAB and k) evaluated at Ts to determine surface 
fluxes. 

 



PROBLEM 6.68  
KNOWN:  Distribution of local convection heat transfer coefficient for obstructed flow over 
a flat plate with surface and air temperatures of 310K and 290K, respectively.  
FIND:  Average convection mass transfer coefficient.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  Heat and mass transfer analogy is applicable.  
PROPERTIES:  Table A-4, Air ( ) ( )( )f sT T T / 2 310  290 K/2  300 K, 1 atm :∞= + = + =  

-6 2k 0.0263 W/m K,   15.89 10 m / s, Pr  0.707.ν= ⋅ = × =   Table A-8, Air-napthalene (300K, 

1 atm): 5 2
AB ABD 0.62 10 m / s, Sc /D 2.56.ν−= × = =  

 
ANALYSIS:  The average heat transfer coefficient is  

 ( )L L 2
L x0 0

2 2
L

1 1h h dx 0.7  13.6x 3.4x dx
L L

h 0.7  6.8L  1.13L 10.9 W/m K.

= = + −

= + − = ⋅

∫ ∫  

 
Applying the heat and mass transfer analogy with n = 1/3, Equation 6.59 yields  

 L L
1/3 1/3

Nu Sh

Pr Sc
=  

 
Hence,  

 

1/3m,L L
1/3AB

1/ 31/3 -5 2
2AB

m,L L 1/3

h L h L Sc
D k Pr

D Sc 0.62 10 m / s 2.56h h 10.9 W/m K
k 0.0263 W/m K 0.707Pr

=

× ⎛ ⎞= = ⋅ ⎜ ⎟⋅ ⎝ ⎠

 

 
 m,Lh 0.00395 m/s.=          < 
 
COMMENTS:  The napthalene sublimation method provides a useful tool for determining 
local convection coefficients. 



PROBLEM 6.69  
KNOWN:  Radial distribution of local Sherwood number for uniform flow normal to a 
circular disk.  
FIND:  (a) Expression for average Nusselt number.  (b) Heat rate for prescribed conditions.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Constant properties, (2) Applicability of heat and mass transfer 
analogy.  
PROPERTIES:  Table A-4, Air ( )T 75 C 348 K :   k  0.0299 W/m K, Pr  0.70.= = = ⋅ =o  
 
ANALYSIS:  (a) From the heat and mass transfer analogy, Equation 6.57,  

 D D
0.36 0.36

Nu Sh

Pr Sc
=  

 
where  

 

( ) ( )

( )
( )

o
s

o

r noD A D s o2 0s o
r2 n 2

oD o2 n
o o 0

Sh1Sh  Sh r dA 2 1 a r/r rdr
A  r

2Sh r arSh Sh 1 2a/ n 2
2r n 2 r

π
π

+

⎡ ⎤= ∫ = +⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥ ⎡ ⎤= + = + +⎣ ⎦⎢ ⎥+⎣ ⎦

∫
 

 
Hence,  
 ( ) 1/2 0.36

DD=0.814 1 2a/ n 2 Re Pr .Nu ⎡ ⎤+ +⎣ ⎦        < 
 
(b) The heat rate for these conditions is  

 ( ) ( )
( )

( )

( ) ( )( ) ( ) ( )

2
1/2 0.36

s sD
1/ 2 0.364

 Dkq hA T T 0.814 1 2a/ n 2 Re Pr T T
D 4

q 0.814 1 2.4/7.5 0.0299 W/m K 0.02 m/4 5 10 0.7 100 C

∞ ∞⎡ ⎤= − = + + −⎣ ⎦

= + ⋅ × o

π

π

 

 
 q 9.92 W.=           < 
 
COMMENTS:  The increase in h(r) with r may be explained in terms of the sharp turn which 
the boundary layer flow must make around the edge of the disk.  The boundary layer 
accelerates and its thickness decreases as it makes the turn, causing the local convection 
coefficient to increase. 



PROBLEM 6.70  
KNOWN:  Convection heat transfer correlation for wetted surface of a sand grouse.  Initial 
water content of surface.  Velocity of bird and ambient air conditions.  
FIND:  Flight distance for depletion of 50% of initial water content.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Vapor behaves as a perfect gas, (3) 
Constant properties, (4) Applicability of heat and mass transfer analogy.  
PROPERTIES:  Air (given):  -6 2v 16.7 10 m / s;= ×  Air-water vapor (given): 

4 2
ABD 0.26 10 m / s;−= ×  Table A-6, Water vapor (Ts = 305 K): vg = 29.74 m3/kg; (Ts = 310 

K), vg = 22.93 m3/kg. 
 
ANALYSIS:  The maximum flight distance is  
 max maxX Vt=  
 
where the time to deplete 50% of the initial water content ΔM is  

 
( )max

evap m s A,s A,

M Mt .
m h A ρ ρ ∞

Δ Δ
= =

−&
 

 
The mass transfer coefficient is  

 
( )

( ) ( ) ( )

4/5 1/3AB ABLm L
1/ 2

AB s
5

L -6 2
4 / 5 1/ 35 4 2

m

D Dh Sh 0.034Re Sc
L L

Sc /D 0.642,           L A 0.2 m
VL 30 m/s 0.2 mRe 3.59 10

16.7 10 m / s
h 0.034 3.59 10 0.642 0.26 10 m / s/0.2 m 0.106 m/s.

ν

ν
−

= =

= = = =
×

= = = ×
×

= × × =

 

 
Hence,  

 
( ) ( ) ( )

max 1 12 3
0.025 kgt 259 s

0.106 m/s 0.04 m 29.74 0.25 22.93 kg/m− −
= =

⎡ ⎤−⎢ ⎥⎣ ⎦

 

 
 ( )maxX 30 m/s 259 s 7785 m 7.78 km.= = =      < 
 
COMMENTS:  Evaporative heat loss is balanced by convection heat transfer from air.  
Hence, Ts < T∞. 



PROBLEM 6.71 
 
KNOWN:   Water-soaked paper towel experiences simultaneous heat and mass transfer while subjected 
to parallel flow of air, irradiation from a radiant lamp bank, and radiation exchange with surroundings.  
Average convection coefficient estimated as h  = 28.7 W/m2⋅K. 
 
FIND:  (a) Rate at which water evaporates from the towel, nA (kg/s), and (b) The net rate of radiation 
transfer, qrad (W), to the towel.  Determine the irradiation G (W/m2). 
 
SCHEMATIC: 

  
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Vapor behaves as an ideal gas, (3) Constant 
properties, (4) Towel experiences radiation exchange with the large surroundings as well as irradiation 
from the lamps, (5) Negligible heat transfer from the bottom side of the towel, and  (6) Applicability of 
the heat-mass transfer analogy. 
 
PROPERTIES:   Table A.4, Air (Tf = 300 K):  ρ = 1.1614 kg/m3, cp = 1007 J/kg⋅K, α = 22.5 × 10-6 m2/s;  
Table A.6, Water (310 K):  ρA,s = ρg = 1/νg = 1/22.93 = 0.0436 kg/m3, hfg = 2414 kJ/kg.Table A.8, Water-
Air (T ≈ 300 K): DAB = 0.26 × 10-4 m2/s. 
 
ANALYSIS:  (a) The evaporation rate from the towel is 
 ( )A m s A,s A,n h A ρ ρ ∞= −  

where mh  can be determined from the heat-mass transfer analogy, Eq. 6.60, with n = 1/3, 
2 / 32 / 3 6

2 / 3 3 3
p p 4m AB

h 22.5 10
c Le c 1.614 kg m 1007 J kg K 1476 J m K

h D 0.26 10

−

−
×

= = = × ⋅ = ⋅
×

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

α
ρ ρ  

 2 3
mh 28.7 W m K 1476J m K 0.0194m s= ⋅ ⋅ =  

The evaporation rate is 

 ( ) ( )2 3 6
An 0.0194 m s 0.0925 0.0925 m 0.0436 0 kg m 7.25 10 kg s−= × × − = ×  < 

(b) Performing an energy balance on the towel considering processes of evaporation, convection and 
radiation, find 
 in out conv evap radE E q q q 0− = − + =& &  

 ( )s s A fg radhA T T n h q 0∞ − − + =  

 ( ) ( )26 3 2
radq 7.25 10 kg s 2414 10 J kg 28.7 W m 0.0925m 290 310 K−= × × × − −  

 radq 17.5W 4.91W 22.4 W= + =  < 
Continued... 



 
PROBLEM 6.71 (Cont.) 

 
The net radiation heat transfer to the towel is comprised of the absorbed irradiation and the net exchange 
between the surroundings and the towel, 
 

 ( )4 4
rad s s sur sq GA A T Tα ε σ= + −  

 

 ( ) ( ) ( )2 2 8 2 4 4 4 422.4 W 0.96G 0.0925 m 0.96 0.0925 m 5.67 10 W m K 300 310 K−= + × × ⋅ −  
 
Solving, find the irradiation from the lamps, 

 G = 2791 W/m2. < 
 
COMMENTS:  (1) From the energy balance in Part (b), note that the heat rate by convection is 
considerably smaller than that by evaporation. 
 
(2) As we’ll learn in Chapter 12, the lamp irradiation found in Part (c) is approximately 2 times that of 
solar irradiation to the earth’s surface. 



PROBLEM 6.72 
 
KNOWN:   Thin layer of water on concrete surface experiences evaporation, convection with ambient 
air, and radiation exchange with the sky.  Average convection coefficient estimated as h   = 53 W/m2⋅K. 
 
FIND:  (a) Heat fluxes associated with convection, convq′′ ,  evaporation, evapq′′ , and radiation exchange 

with the sky, radq′′ ,  (b)  Use results to explain why the concrete is wet instead of dry, and (c)  Direction 
of heat flow and the heat flux by conduction into or out of the concrete. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Vapor behaves as an ideal gas, (3) Constant 
properties, (4) Water surface is small compare to large, isothermal  surroundings (sky),  and  (4) 
Applicability of the heat-mass transfer analogy. 
 
PROPERTIES:   Table A.4, Air (Tf = (T∞ + Ts)/2 = 282.5 K):  ρ = 1.243 kg/m3, cp = 1007 J/kg⋅K, α = 
2.019 ×105 m2/s;  Table A.8, Water-air (Tf = 282.5 K):  DAB = 0.26 × 10-4 m2/s (282.5/298)3/2 = 0.24 ×   
10-4 m2/s;  Table A.6, Water (Ts = 275 K):  ρA,s = ρg = 1/νg = 1/181.7 = 0.0055 kg/m3, hfg = 2497 kJ/kg;  
Table A.6, Water (T∞  = 290 K):  ρA,s = 1/69.7 = 0.0143 kg/m3. 
 
ANALYSIS:  (a) The heat fluxes associated with the processes shown on the schematic are 
 
Convection:    

 ( ) ( )2 2
conv sq h T T 53W m K 290 275 K 795 W m∞′′ = − = ⋅ − = +  < 

 
Radiation Exchange:     

 ( ) ( )4 8 2 4 4 4 4 2
rad s

4q T T 0.96 5.76 10 W m K 275 240 K 131W msky
−′′ = − = × × ⋅ − = +εσ  < 

Evaporation: 

 4 3 22
evap A fgq n h 2.255 10 kg s m 2497 10 J kg 563.1W m−′′ ′′= = − × ⋅ × × = −  < 

 
where the evaporation rate from the surface is 

 ( ) ( ) 3 4 2
A m A,s A,n h 0.050 m s 0.0055 0.7 0.0143 kg m 2.255 10 kg s mρ ρ −

∞′′ = − = − × = − × ⋅  
 

Continued... 



 
PROBLEM 6.72 (Cont.) 

 
and where the mass transfer coefficient is evaluated from the heat-mass transfer analogy, Eq. 6.60, with n 
= 1/3, 
 

 

2 / 32 / 3 5
2 / 3 3

p p 4m AB

h 2.019 10c Le c 1.243kg m 1007 J kg K
h D 0.26 10

αρ ρ
−

−

⎛ ⎞⎛ ⎞ ×⎜ ⎟= = = × ⋅⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
 

 

 3
m

h 1058J m K
h

= ⋅  

 
 2 3

mh 53W m K 1058J m K 0.050m s= ⋅ ⋅ =  
 
(b) From the foregoing evaporation calculations, note that water vapor from the air is condensing on the 
liquid water layer.  That is, vapor is being transported to the surface, explaining why the concrete surface 
is wet, even without rain. 
 
(c)  From an overall energy balance on the water film considering conduction in the concrete as shown in 
the schematic, 
 
 in outE E 0− =& &  
 
 conv evap rad condq q q q 0′′ ′′ ′′ ′′− − − =  
 
 cond conv evap radq q q q′′ ′′ ′′ ′′= − −  

 ( ) ( )3 2 2
condq 1795W m 563.1W m 131W m′′ = − − − +  21227 W m=  < 

 
The heat flux by conduction is into the concrete. 



PROBLEM 6.73 
 
KNOWN:  Heater power required to maintain wetted (water) plate at 27°C, and average convection 
coefficient for specified dry air temperature, case (a). 
 
FIND:  Heater power required to maintain the plate at 37°C for the same dry air temperature if the 
convection coefficients remain unchanged, case (b). 
 
SCHEMATIC: 
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Convection coefficients unchanged for different 
plate temperatures, (3) Air stream is dry at atmospheric pressure, and (4) Negligible heat transfer from 
the bottom side of the plate. 
 
PROPERTIES:  Table A-6, Water (Ts,a = 27°C = 300 K):  ρA,s = 1/vg = 0.02556 kg/m3, hfg = 2.438 × 
106 J/kg; Water (Ts,b = 37°C = 310 K):  ρA,s = 1/vg = 0.04361 kg/m3, hfg = 2.414 × 106 J/kg. 
 
ANALYSIS:  For case (a) with Ts = 27°C and Pe = 432 W, perform an energy balance on the plate to 
determine the mass transfer coefficient hm. 
 in outE E 0− =& &  

 ( )e,a evap cv sP q q A 0′′ ′′− + =  

Substituting the rate equations and appropriate properties, 

 ( ) ( )e,a m A,s A, fg s,a sP h h h T T A 0ρ ρ ∞ ∞⎡ ⎤− − + − =⎣ ⎦  

 ( )3 6
m432 W h 0.02556 kg / m 0 2.438 10 J / kg⎡− − × × +⎢⎣

 

   ( )2 220 W / m K 27 32 K 0.2 m 0⎤⋅ − × =⎥⎦
 

where ρA,s and hfg are evaluated at Ts = 27°C = 300 K.  Find, 
 mh 0.0363 m / s=  
For case (b), with Ts = 37°C and the same values for mh and h ,  perform an energy balance to 
determine the heater power required to maintain this condition. 

 ( ) ( )e,b m A,s fg s,b sP h 0 h h T T A 0ρ ∞⎡ ⎤− − + − =⎣ ⎦  

 ( ) 3 6
e,bP 0.0363 m / s 0.04361 0 kg / m 2.414 10 J / kg⎡− − × × +⎢⎣

 

   ( )2 220 W / m K 37 32 0.2 m 0⎤⋅ − × =⎥⎦
 

 e,bP 784 W=           < 

where ρA,a and hfg are evaluated at Ts = 37°C = 310 K. 



PROBLEM 6.74 
 
KNOWN:  Dry air at 32°C flows over a wetted plate of width 1 m maintained at a surface temperature of 
27°C by an embedded heater supplying 432 W. 
 
FIND:  (a) The evaporation rate of water from the plate, nA (kg/h) and (b) The plate temperature Ts when 
all the water is evaporated, but the heater power remains the same. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Vapor behaves as an ideal gas, (3) Constant 
properties, and (4) Applicability of the heat-mass transfer analogy. 
 
PROPERTIES: Table A.4, Air (Tf = (32 + 27)°C/2 = 302.5 K):  ρ = 1.153 kg/m3, cp = 1007 J/kg⋅K, α = 
2.287 ×105 m2/s;  Table A.8, Water-air (Tf ≈ 300 K):  DAB = 0.26 × 10-4 m2/s;  Table A.6, Water (Ts = 
27°C = 300 K):  ρA,s = 1/νg = 1/39.13 = 0.0256 kg/m3, hfg = 2438 kJ/kg. 
 
ANALYSIS:  (a) Perform an energy balance on the wetted plate to obtain the evaporation rate, nA. 
 in out e conv evapE E 0 P q q 0− = + − =& &  

 ( )e s s A fgP hA T T n h 0∞+ − − =  (1) 

In order to find h , invoke the heat-mass transfer analogy, Eq. (6.60) with n = 1/3, 

 
2 / 32 / 3 5

2 / 3 3 3
p p 4m AB

h 2.287 10
c Le c 1.153 kg m 1007 J kg K 1066 J m K

h D 0.26 10

α
ρ ρ

−

−

×
= = = × ⋅ = ⋅

×

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

(2) 

The evaporation rate equation 
 ( )A m s A,s A,n h A ρ ρ ∞= −  

Substituting Eqs. (2) and (3) into Eq. (1), find mh  

 ( ) ( ) ( )3
e m s s m s A,s A, fgP 1066J m K h A T T h A h 0∞ ∞+ ⋅ − − − =ρ ρ  (4) 

 ( ) ( ) ( )3 3 3 2
m432 W 1066 J m K 32 27 K 0.0256 0 kg m 2438 10 J kg 0.200 1 m h 0+ ⋅ − − − × × × ⋅ =⎡ ⎤

⎣ ⎦  

 432 + [5330 - 62,413] × 0.20 mh  = 0 
 mh = 0.0378 m/s 
Using Eq. (3), find 

 ( ) ( )2 3 4
An 0.0378m s 0.200 1 m 0.0256 0 kg m 1.94 10 kg s 0.70 kg h−= × − = × =  < 

(b) When the plate is dry, all the power must be removed by convection,  
 Pe = qconv = h As(Ts - T∞ ) 
Assuming h  is the same as for conditions with the wetted plate, 
 ( )s e s e m sT T P h A T P 1066h A∞ ∞= + = +  

 ( )2 2
sT 32 C 432 W 1066 0.0378W m K 0.200m 85.6 C= + × ⋅ × =o o  < 



PROBLEM 6.75 
 
KNOWN:  Surface temperature of a 20-mm diameter sphere is 32°C when dissipating 2.51 W in a dry 
air stream at 22°C.  
FIND:  Power required by the imbedded heater to maintain the sphere at 32°C if its outer surface has a 
thin porous covering saturated with water for the same dry air temperature.    
SCHEMATIC: 
 

 
 
ASSUMPTIONS: (1) Steady-state conditions, (2) Heat and mass transfer analogy is applicable, (3) 
Heat transfer convection coefficient is the same for the dry and wet condition, and (3) Properties of air 
and the diffusion coefficient of the air-water vapor mixture evaluated at 300 K.  
PROPERTIES:  Table A-4, Air (300 K, 1 atm):  ρ = 1.1614 kg/m3, cp = 1007 J/kg⋅K, α = 22.5 × 10-6 
m2/s;  Table A-8, Water-air mixture (300 K, 1 atm):  DA-B = 0.26 × 10-4 m2/s;  Table A-4, Water (305 
K, 1 atm):  ρA,s = 1/vg = 0.03362 kg/m3, hfg = 2.426 × 106 J/kg. 
 
ANALYSIS:  For the dry case (d), perform an energy balance on the sphere and calculate the heat 
transfer convection coefficient. 
 in out e,d cvE E P q 0− = − =& &     ( )e,d s sP h A T T 0∞− − =  

 ( ) ( )22.51 W h 0.020 m 32 22 K 0π− × − =   2h 200 W / m K= ⋅  

Use the heat-mass analogy, Eq. (6.60) with n = 1/3, to determine mh .  

 
2 / 3

p
m AB

h
c

h D
α

ρ=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
2 / 32 6 2

3
4 2m

200 W / m K 22.5 10 m / s
1.1614 kg / m 1007 J / kg K

h 0.26 10 m / s

−

−
⋅ ×

= × ⋅
×

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 mh 0.188 m / s=  
For the wet case (w), perform an energy balance on the wetted sphere using values for mh and h  to 
determine the power required to maintain the same surface temperature. 
 in out e,w cv evapE E P q q 0− = − − =& &  

 ( ) ( )e,w s m A,s A, fg sP h T T h h A 0ρ ρ∞ ∞− − + − =⎡ ⎤⎣ ⎦  

 ( )2
e,wP 200 W / m K 32 22 K− ⋅ − +⎡

⎣  

   ( ) ( )23 60.188 m / s 0.03362 0 kg / m 2.426 10 J / kg 0.020 m 0π− × × =⎤
⎦  

 e,wP 21.8 W=           < 

COMMENTS:  Note that ρA,s and hfg for the mass transfer rate equation are evaluated at Ts = 32°C = 
305 K, not 300 K.  The effect of evaporation is to require nearly 8.5 times more power to maintain the 
same surface temperature. 



PROBLEM 6.76  
KNOWN:  Operating temperature, ambient air conditions and make-up water requirements 
for a hot tub.  
FIND:  Heater power required to maintain prescribed conditions.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Side wall and bottom are adiabatic, (2) Heat and mass transfer 
analogy is applicable.  
PROPERTIES:  Table A-4, Air ( ) 3T 300K, 1 atm :     1.161 kg/m ,ρ= =  cp = 1007 J/kg⋅K, 

α = 22.5× 10-6m2/s; Table A-6, Sat. water vapor (T = 310K): hfg = 2414 kJ/kg, ρA,sat(T) = 
1/vg = (22.93m3/kg)-1 = 0.0436 kg/m3; (T∞ = 290K): ρA,sat(T∞) = 1/vg = (69.7 m3/kg)-1 = 
0.0143 kg/m3; Table A-8, Air-water vapor (298K): DAB = 26 × 10-6m2/s. 
 
ANALYSIS:  Applying an energy balance to the control volume,  
 ( ) ( )elec conv evap evap fgq q q h A T T m  h T .∞= + = − + &  
 
Obtain h A  from Eq. 6.60 with n = 1/3,  

 

( ) ( )

2/3A
p

m m
evap2/3 2/3

m p p
A,sat A,sat

h h  c Le
h h A

m
h A h A  c Le  c Le .

T  T

ρ

ρ ρ
ρ φ ρ∞ ∞

= =

= =
−

&  

 
Substituting numerical values,  

 

( )

[ ]
( )

6 2 6 2
AB

-3 2 /3
3 3

Le /D 22.5 10 m / s / 26 10 m / s 0.865

10  kg/s kg JhA 1.161 1007 0.865
kg K0.0436 0.3 0.0143  kg/m m

hA 27.0 W/K.

α − −= = × × =

= ×
⋅− ×

=

 

 
Hence, the required heater power is  
 ( ) -3

elecq 27.0W/K 310 290 K 10 kg/s 2414kJ/kg 1000J/kJ= − + × ×  
 
 ( )elecq 540 2414  W  2954 W.= + =        < 
 
COMMENTS:  The evaporative heat loss is dominant. 



PROBLEM 6.77  
KNOWN:  Water freezing under conditions for which the air temperature exceeds 0°C.  
FIND:  (a) Lowest air temperature, T∞, before freezing occurs, neglecting evaporation, (b) 
The mass transfer coefficient, hm, for the evaporation process, (c) Lowest air temperature, 
T∞, before freezing occurs, including evaporation.  
SCHEMATIC: 

  
 No evaporation     With evaporation  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Water insulated from ground, (3) Water 
surface has ε = 1, (4) Heat-mass transfer analogy applies, (5) Ambient air is dry.  
PROPERTIES:  Table A-4, Air (Tf ≈ 2.5°C ≈ 276K, 1 atm): ρ = 1.2734 kg/m3, cp = 1006 
J/kg⋅K, α = 19.3 × 10-6m2/s; Table A-6, Water vapor (273.15K): hfg = 2502 kJ/kg, ρg = 1/vg 
= 4.847 × 10-3kg/m3; Table A-8, Water vapor - air (298K): D m s.AB

2= × −0 26 10 4. /  
 
ANALYSIS:  (a) Neglecting evaporation and performing an energy balance, 

 ( ) ( ) ( ) ( )
conv rad

4 4 4 4
s s s ssky sky

q q 0
h T T T T 0     or     T =T / h  T Tεσ εσ∞ ∞

′′ ′′− =
− − − = + −  

 

 ( ) ( )
-8 2 4 4 4

2
1 5.667 10  W/m KT 0 C 0 273 30 273 4.69 C.

25 W/m K
∞

× × ⋅ ⎡ ⎤= + + − − + =⎢ ⎥⎣ ⎦⋅
o o  < 

(b) Invoking the heat-mass transfer analogy in the form of Eq. 6.60 with n = 1/3, 

 2/3 2/3
p m p AB

m

h  c Le      or     h h/  c Le      where     Le /D
h

ρ ρ α= = =  

( ) ( )
2 / 3-6 2

2 3
m -4 2

19.3 10 m / s
h 25 W/m K /1.273 kg/m 1006 J/kg K  0.0238 m/s.

0.26 10 m / s

×
= ⋅ ⋅ =

×

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 < 

(c) Including evaporation effects and performing an energy balance gives conv rad evapq q q 0′′ ′′ ′′− − =  

where ( )evap fg m A,s A, fgq m  h h h ,ρ ρ ∞′′ ′′= = −&  A,s gρ ρ=  and A, 0.ρ ∞ =   Hence, 

 
( )( ) ( )( )4 4

s s m g fgsky
3 3 6

2

T T / h T T h / h 0 h
0.0238 m/sT 4.69 C 4.847 10 kg/m 2.502 10 J/kg

25 W/m K

εσ ρ∞

−
∞

= + − + −

= + × × × ×
⋅

o  

T 4.69 C 11.5 C 16.2 C.∞ = + =o o o         < 



PROBLEM 6.78  
KNOWN:  Wet-bulb and dry-bulb temperature for water vapor-air mixture.  
FIND:  (a) Partial pressure, pA, and relative humidity, φ, using Carrier’s equation, (b) pA and 
φ using psychrometric chart, (c) Difference between air stream, T∞, and wet bulb 
temperatures based upon evaporative cooling considerations.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Evaporative cooling occurs at interface, (2) Heat-mass transfer 
analogy applies, (3) Species A and B are perfect gases.  
PROPERTIES:  Table A-6, Water vapor:  pA,sat (21.1°C) = 0.02512 bar, pA,sat (37.8°C) = 
0.06603 bar, hfg (21.1°C) = 2451 kJ/kg; Table A-4, Air (Tam = [TWB + TDB]/2 ≅ 300K, 1 
atm): α = 22.5 × 10-6m2/s, cp = 1007 J/kg⋅K, ρ = 1.15 kg/m3; Table A-8, Air-water vapor 
(298K): DAB = 0.26 × 10-4m2/s. 
 
ANALYSIS:  (a) Carrier’s equation has the form 

 
( ) ( )gw DB WB

v gw
WB

p p  T T
p p

1810 T

− −
= −

−
 

where pv = partial pressure of vapor in air stream, bar 
 pgw = sat. pressure at TWB = 21.1°C, 0.02512 bar 
 p = total pressure of mixture, 1.033 bar 
 TDB = dry bulb temperature, 37.8°C 
 TWB = wet bulb temperature, 21.1°C. 
Hence, 

 ( ) ( )
( )v

1.013 0.02512 bar  37.8 21.1 C
p 0.02512 bar 0.0142 bar.

1810 21.1 273.1 K
− × −

= − =
− +

o

 

The relative humidity, φ, is then 

 
( )

vA
A,sat A

pp 0.0142 bar 0.214.
p 0.06603 barp 37.8 C

φ ≡ = = =
o

     < 

(b) Using a psychrometric chart 

 WB
DB

T 21.1 C 70 F         0.225
T 37.8 C 100 F

φ
⎫⎪= = ≈⎬

= = ⎪⎭

o o

o o       < 

 
 v satp p 0.225  0.06603 bar  0.0149 bar.φ= = × =      < 
          Continued … 



PROBLEM 6.78 (Cont.)  
(c) An application of the heat-mass transfer analogy is the process of evaporative cooling 
which occurs when air flows over water.  The change in temperature is estimated by Eq. 6.65.  

A fg A,sat s A,
s 2/3

spρ 

 h p (T ) p
T T

T T c  L e
∞

∞
∞

⎡ ⎤
− = −⎢ ⎥

⎣ ⎦

M

R
 

 
or 

 
3

2 / 36 2
2 3 3

4 2

A,

(18kg / kmol 2451 10 J / kg)(37.8 21.1)K
22.5 10 m / s8.314 10 m bar / kmol K 1.16kg / m 1007J / kg K
0.26 10 m / s

p0.02512bar                        
(273 21.1)K (273 37.8)K

−
−

−

∞

× ×
− =

⎛ ⎞×
× ⋅ × × ⋅ × ⎜ ⎟⎜ ⎟×⎝ ⎠

⎡ ⎤
× +⎢ ⎥+ +⎣ ⎦

 

 
Thus, pA,∞ = 0.016 bar 
 
and 
 

φ = pA/pA,sat = pv/pA,sat = 0.016 bar/0.06603 bar = 0.242   < 
 
COMMENTS:  The following table compares results from the two calculation methods.  
    Carrier’s Eq.  Psychrometric Chart  
   pv (bar) 0.0142   0.016 

         φ  0.214   0.242  
    

   % Difference: 0.242 0.214 100  13.1%.
0.214
−

× =  



PROBLEM 6.79 
 
KNOWN:  Initial temperature and droplet diameter of water mist.  Expression for Nusselt number.  
Temperature and relative humidity of air stream. 
 
FIND:  (a) Initial convection heat transfer rate, evaporative heat loss rate, and rate of change of 
droplet temperature, (b) Steady-state droplet temperature. 
 
SCHEMATIC:   

D = 100 μm

Ti = 10°C

T∞ = 32°C
f∞ = 0.20 or 0.95

Air

Water  
 
 
ASSUMPTIONS:  (1) The properties of the air-water vapor mixture can be approximated by pure air 
properties, (2) Air properties and DAB evaluated at Tam = (Ts + T∞)/2. 
 
PROPERTIES:  Table A-4, Air (T = 294 K):  k = 0.0258 W/m⋅K; Table A-8, H2O in Air (T = 294 K): 
DAB = 0.26 × 10-4 m2/s (294/298)3/2 = 0.255 × 10-4 m2/s; Table A-6, Water (T = 283 K): ρA,sat(Ts) = 
1/111.8 m3/kg = 0.00894 kg/m3, hfg = 2478 kJ/kg, ρw = 1000 kg/m3, cp,w = 4193 J/kg⋅K; (T = 305 K): 
ρA,sat(T∞) = 1/29.74 m3/kg = 0.0336 kg/m3.  
 
ANALYSIS:   (a) The convection heat transfer coefficient is 
 

6 2/ 2 / 2 0.0258 W/m K /100 10  m 516 W/m KDh Nu k D k D −= = = × ⋅ × = ⋅  
 

At the initial time, when the droplet temperature is Ti = 10°C, the convection heat transfer rate to the 
droplet is given by 
 
 2 6 2 6

conv ( ) 516 W/m K (100 10  m) (32 10) C 357 10  Ws iq hA T T π − −
∞= − = ⋅ × × × − ° = ×  < 

 
Referring to Eq. 6.59, since Nu is independent of Pr, n = 0, and we have 
 
 4 2 6

AB2      or       2 / 2 0.255 10  m /s /100 10  m 0.510 m/smNu Sh h D D − −= = = = × × × =  
 
Thus the rate of evaporative heat loss can be expressed as 
 

evap evap A, A,( )fg m s s fgq m h h A hρ ρ ∞= = −&  
 

For  φ∞ = 0.20, ρA,∞ = φ∞ρA,sat(T∞) = 0.2 × 0.0336 kg/m3 = 0.00672 kg/m3.  Thus, 
 

evap evap A, A,

6 2 3 3

( )

0.510 m/s (100 10  m) (0.00894 0.00672) kg/m 2478 10  J/kg
fg m s s fgq m h h A hρ ρ

π
∞

−

= = −

= × × × − × ×

&
 

         688.1 10  W−= ×          < 
Continued… 

 
 
 



 
PROBLEM 6.79 (Cont.) 

 
Similarly, for φ∞ = 0.95, ρA,∞ = φ∞ρA,sat(T∞) = 0.95 × 0.0336 kg/m3 = 0.0319 kg/m3 
 

6
evap 912 10  Wq −= − ×          < 

 
The rate of change of temperature of the droplet can be found from an energy balance on the droplet: 
 

( ) conv evapp w

dTc V q q
dt

ρ = −  

For  φ∞ = 0.20, 
 

( )
6

conv evap
3 6 3

(357 88.1) 10  W 122 K/s
1000 kg/m 4193 J/kg K (100 10  m) / 6p w

q qdT
dt c V πρ

−

−

− − ×
= = =

× ⋅ × × ×
 < 

And for φ∞ = 0.95, 
 

( )
6

conv evap
3 6 3

(357 912) 10  W 578 K/s
1000 kg/m 4193 J/kg K (100 10  m) / 6p w

q qdT
dt c V πρ

−

−

− + ×
= = =

× ⋅ × × ×
 < 

 
For φ∞ = 0.20, the evaporative heat loss is positive; the droplet is evaporating.  Convection from the 
warm air is warming the droplet, while evaporation is cooling it.  The net effect is to warm the droplet.  
For φ∞ = 0.95, the evaporative heat loss is negative; water from the humid environment is condensing 
on the droplet.  Both convection and condensation cause warming of the droplet, so the rate of 
temperature increase is higher in this case.  Eventually, the droplet will become warm enough so that 
condensation ceases and evaporation will begin.        < 

 
(b) At steady-state, an energy balance requires qconv = qevap.  Eq. 6.64 applies, with AB/ /mh h D k= .  
Thus, the following implicit equation must be solved for Ts: 
 

 AB
A,sat A,[ ( ) ]s fg s

DT T h T
k

ρ ρ∞ ∞− = −  

 
where the properties DAB and k should be evaluated at Tam = (Ts + T∞)/2, and hfg should be evaluated at 
Ts.  This equation is most easily solved in IHT, which yields 
 

Ts = 289 K for φ∞ = 0.20     < 

Ts = 304 K for φ∞ = 0.95     < 
 
COMMENTS:  (1) As expected, the steady-state droplet temperature is lower for the low humidity 
conditions. (2) The steady-state temperature does not depend on the droplet diameter because the areas 
for convection and evaporation are the same and the heat and mass transfer coefficients have the same 
dependence on diameter.  (3) Based on the initial rate of temperature increase, it appears that the 
droplet will take less than 1 s to reach its steady-state temperature.  A complete analysis of the 
transient problem shows that the steady-state temperature is reached in approximately 0.17 and 0.15 s 
for the φ∞ = 0.20 and 0.95 cases, respectively.  In this time period, the change in diameter of the 
droplet is less than 1% in both cases.  Of course, the droplet will eventually evaporate. 



PROBLEM 6.80  
KNOWN:  Wet and dry bulb temperatures.  
FIND:  Relative humidity of air.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Perfect gas behavior for vapor, (2) Steady-state conditions, (3) 
Negligible radiation, (4) Negligible conduction along thermometer.  
PROPERTIES:  Table A-4, Air (308K, 1 atm): ρ = 1.135 kg/m3, cp = 1007 J/kg⋅K, α = 23.7 
× 10-6m2/s; Table A-6, Saturated water vapor (298K): vg = 44.25 m3/kg, hfg = 2443 kJ/kg; 
(318K): vg = 15.52 m3/kg; Table A-8, Air-vapor (1 atm, 298K): DAB = 0.26 × 10-4m2/s, DAB 
(308K) = 0.26 × 10-4m2/s × (308/298)3/2 = 0.27 × 10-4m2/s, Le = α/DAB = 0.88. 
 
ANALYSIS:  From an energy balance on the wick, Eq. 6.64 follows from Eq. 6.61.  Dividing 
Eq. 6.64 by ρA,sat(T∞), 
 

 
( )

( )
( ) ( )

A,sat s A,s m
fg

A,sat A,sat A,sat

TT T hh  .
T h T T

ρ ρ
ρ ρ ρ

∞∞

∞ ∞ ∞

⎡ ⎤− ⎡ ⎤= −⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
 

 
With ( )A, A,sat/ Tρ ρ φ∞ ∞ ∞⎡ ⎤ ≈⎣ ⎦  for a perfect gas and h/hm given by Eq. 6.60, 
 

 
( )
( ) ( ) ( )

2/3
pA,sat s

s
A,sat A,sat fg

 c LeT
T T .

T T h∞ ∞
∞ ∞

= − −
ρρ

φ
ρ ρ

 

 
Using the property values, evaluate  

 

( )
( )

( )
( )

( ) ( )

gA,sat s

A,sat g s
13 3

A,sat

v TT 15.52 0.351
T v T 44.25

T 15.52 m / kg 0.064 kg/m .

ρ
ρ

ρ

∞

∞
−

∞

= = =

= =

 

Hence, 

 ( )( )

( ) ( )
2 / 33

3 6
1.135 kg/m  1007 J/kg K 0.88

0.351  45 25 K
0.064 kg/m  2.443 10  J/kg

∞
⋅

= − −
×

φ  

 0.351 0.133 0.218.∞ = − =φ         < 
 
COMMENTS:  Note that latent heat must be evaluated at the surface temperature 
(evaporation occurs at the surface). 



PROBLEM 6.81  
KNOWN:  Heat transfer correlation for a contoured surface heated from below while 
experiencing air flow across it.  Flow conditions and steady-state temperature when surface 
experiences evaporation from a thin water film.  
FIND:  (a) Heat transfer coefficient and convection heat rate, (b) Mass transfer coefficient 
and evaporation rate (kg/h) of the water, (c) Rate at which heat must be supplied to surface 
for these conditions.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Heat-mass transfer analogy applies, (3) 
Correlation requires properties evaluated at Tf = (Ts + T∞)/2. 
 
PROPERTIES:  Table A-4, Air (Tf = (Ts + T∞)/2 = (290 + 310)K/2 = 300 K, 1 atm):  ν = 
15.89 × 10-6m2/s, k = 0.0263 W/m⋅K, Pr = 0.707; Table A-8, Air-water mixture (300 K, 1 
atm):  DAB = 0.26 × 10-4 m2/s; Table A-6, Sat. water (Ts = 310 K):  ρA,sat = 1/vg = 1/22.93 
m3/kg = 0.04361 kg/m3, hfg = 2414 kJ/kg. 
 
ANALYSIS:  (a) To characterize the flow, evaluate ReL at Tf 

 5
L -6 2

VL 10 m/s 1 mRe 6.293 10
15.89 10 m / sν

×
= = = ×

×
 

and substituting into the prescribed correlation for this surface, find 

 ( ) ( )
0.58 0.45LNu 0.43 6.293 10 0.707 864.1= × =  

 L 2
L

Nu k 864.1 0.0263 W/m Kh 22.7 W/m K.
L 1 m
⋅ × ⋅

= = = ⋅     < 

Hence, the convection heat rate is  
 ( )conv L s sq h A T T∞= −  

 ( )2 2
convq 22.7 W/m K 1 m 310 290 K 454 W= ⋅ × − =     < 

 
(b) Invoking the heat-mass transfer analogy 

 0.58 0.4mL L
AB

h LSh 0.43Re Sc
D

= =  

where 

 
6 2

-4 2AB

15.89 10 m / sSc 0.611
D 0.26 10 m / s

ν −×
= = =

×
 

and ν is evaluated at Tf.  Substituting numerical values, find 
          Continued … 



PROBLEM 6.81 (Cont.)  

 ( ) ( )
0.58 0.45LSh 0.43 6.293 10 0.611 815.2= × =  

 

 
4 2L 2AB

m
Sh D 815.2 0.26 10 m / sh 2.12 10  m/s.

L 1 m

−
−⋅ × ×

= = = ×    < 
 
The evaporation rate, with ( )A,s A,sat sT ,  isρ ρ=  
 

 ( )
( )

m s A,s A,
-2 2 3

m h A

m 2.12 10  m/s 1 m 0.04361  0 kg/m

ρ ρ ∞= −

= × × −

&

&
 

 
 -4m 9.243 10 kg/s 3.32 kg/h.= × =&        < 
 
(c) The rate at which heat must be supplied to the plate to maintain these conditions follows 
from an energy balance. 
 

 
 

 in out
in conv evap

E E 0
q q q 0

− =
− − =

& &
 

 
where qin is the heat supplied to sustain the losses by convection and evaporation. 
 

 ( )
in conv evap
in L s s fg

-4 3
in

q q q
q h A T T mh
q 454 W  9.243 10  kg/s 2414 10  J/kg

∞

= +
= − +

= + × × ×

&  

 
 ( )inq 254 2231 W 2685 W.= + =        < 
 
COMMENTS:  Note that the loss from the surface by evaporation is nearly 5 times that due 
to convection. 



PROBLEM 6.82  
KNOWN:  Thickness, temperature and evaporative flux of a water layer.  Temperature of air flow and 
surroundings.  
FIND:  (a) Convection mass transfer coefficient and time to completely evaporate the water, (b) 
Convection heat transfer coefficient, (c) Heater power requirement per surface area, (d) Temperature 
of dry surface if heater power is maintained.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state, (2) Applicability of heat and mass transfer analogy with n = 1/3, 
(3) Radiation exchange at surface of water may be approximated as exchange between a small surface 
and large surroundings, (4) Air is dry (ρA,∞ = 0), (5) Negligible heat transfer from unwetted surface of 
the plate. 
 
PROPERTIES:  Table A-6, Water (Tw = 340K):  ρf = 979 kg/m3, 1 3

A,sat gv 0.174 kg / m ,ρ −= =  

fgh 2342 kJ / kg.=   Prescribed, Air:  ρ = 1.08 kg/m3, cp = 1008 J/kg⋅K, k = 0.028 W/m⋅K.  Vapor/Air:  

DAB = 0.29 × 10-4 m2/s.  Water:  εw = 0.95.  Plate:  εp = 0.60. 
 
ANALYSIS:  (a) The convection mass transfer coefficient may be determined from the rate equation 

( )A m A,s A,hn ,ρ ρ ∞= −′′  where ( )A,s A,sat w A,T and 0.ρ ρ ρ ∞= =   Hence, 
 

 
2

A
m 3A,sat

n 0.03kg / s mh 0.172m / s
0.174kg / mρ

′′ ⋅
= = =       < 

 
The time required to completely evaporate the water is obtained from a mass balance of the form 

A fn d / dt,ρ δ′′− =  in which case 
 

 
i

0 t
f A 0

d n dt
δ

ρ δ ′′= −∫ ∫  
 

 
( )3

f i
2A

979 kg / m 0.002m
t 65.3s

n 0.03kg / s m

ρ δ
= = =

′′ ⋅
      < 

 
(b) With n = 1/3 and Le = α/DAB = k/ρcp DAB = 0.028 W/m⋅K/(1.08 kg/m3 × 1008 J/kg⋅K × 0.29 × 
10-4 m2/s) = 0.887, the heat and mass transfer analogy yields 

 
( )
( )

2m
1/ 3 1/ 34 2

AB

0.028 W / m K 0.172 m / sk hh 173W / m K
D Le 0.29 10 m / s 0.887−

⋅
= = = ⋅

×
   < 

The electrical power requirement per unit area corresponds to the rate of heat loss from the water.  
Hence, 
          Continued … 



PROBLEM 6.82 (Cont.) 
 

 ( ) ( )4 4
elec evap conv rad A fg w w w surP q q q n h h T T T Tε σ∞′′ ′′ ′′ ′′ ′′= + + = + − + −  

 

( ) ( ) ( )2 6 2 8 2 4 4 4
elecP 0.03 kg / s m 2.342 10 J / kg 173 W / m K 40K 0.95 5.67 10 W / m K 340 300−′′ = ⋅ × + ⋅ + × × ⋅ −  

 
 2 2 2 2

elecP 70,260 W / m 6920 W / m 284 W / m 77,464 W / m′′ = + + =   < 
 
(c) After complete evaporation, the steady-state temperature of the plate is determined from the 
requirement that 
 

 ( ) ( )4 4
elec p p p surP h T T T Tε σ∞′′ = − + −  

 

 ( ) ( )2 2 8 2 4 4 4
p p77, 464 W / m 173 W / m K T 300 0.60 5.67 10 W / m K T 300−= ⋅ − + × × ⋅ −  

 
 pT 702K 429 C= = °          < 
 
COMMENTS:  The evaporative heat flux is the dominant contributor to heat transfer from the water 
layer, with convection of sensible energy being an order of magnitude smaller and radiation exchange 
being negligible.  Without evaporation (a dry surface), convection dominates and is approximately an 
order of magnitude larger than radiation. 
 



PROBLEM 6.83  
KNOWN:  Heater power required to maintain water film at prescribed temperature in dry 
ambient air and evaporation rate.  
FIND:  (a) Average mass transfer convection coefficient mh ,  (b) Average heat transfer 
convection coefficient h,  (c) Whether values of mh  and h  satisfy the heat-mass analogy, and 
(d) Effect on evaporation rate and disc temperature if relative humidity of the ambient air 
were increased from 0 to 0.5 but with heater power maintained at the same value.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Water film and disc are at same temperature; (2) Mass and heat 
transfer coefficient are independent of ambient air relative humidity, (3) Constant properties.  
PROPERTIES:  Table A-6, Saturated water (305 K):  vg = 29.74 m3/kg, hfg = 2426 × 103 
J/kg; Table A-4, Air ( )T 300 K, 1 atm :=  k = 0.0263 W/m⋅K, α = 22.5 × 10-6 m2/s, Table A-

8, Air-water vapor (300 K, 1 atm): DAB = 0.26 × 10-4 m2/s. 
 
ANALYSIS:  (a) Using the mass transfer convection rate equation,  
 ( ) ( )A m s A,s A, m s A,satn h A h A 1ρ ρ ρ φ∞ ∞= − = −  
 
and evaluating ρA,s = ρA,sat (305 K) = 1/vg (305 K) with φ∞ ~ ρA,∞ = 0, find 
 

 
( )

A
m

s A,s A,

nh
A ρ ρ ∞

=
−

 

 

 
( )

( )( )( )

4
3

m 2 3
2.55 10 kg/hr/ 3600s/hr

h 6.71 10  m/s.
0.020 m / 4 1/ 29.74 0 kg/mπ

−
−×

= = ×
−

   < 

 
(b) Perform an overall energy balance on the disc,  
 ( )conv evap s s A fgq q q hA T T n h∞= + = − +  
 
and substituting numerical values with hfg evaluated at Ts, find h: 
 
 ( ) ( )23 -8 3200 10  W h 0.020 m / 4 305 295 K 7.083 10  kg/s 2426 10  J/kgπ−× = − + × × ×  
 
 2h 8.97 W/m K.= ⋅          < 
 
          Continued … 



PROBLEM 6.83 (Cont.)  
(c) The heat-mass transfer analogy, Eq. 6.67, requires that  

 
1/ 3?

AB
m AB

h k D .
h D α

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
Evaluating k and DAB at ( )sT  T T / 2 300 K∞= + =  and substituting numerical values, 
 

 
1/ 32 4 2

-3 -4 2 -6 2
8.97 W/m K 0.0263 W/m K 0.26 10  m / s1337 1061
6.71 10  m/s 0.26 10  m / s 22.5 10 m / s

−⎛ ⎞⋅ ⋅ ×⎜ ⎟= ≠ =
⎜ ⎟× × ×⎝ ⎠

 

 
Since the equality is not satisfied, we conclude that, for this situation, the analogy is only 
approximately met (≈ 30%).  
(d) If φ∞ = 0.5 instead of 0.0 and q is unchanged, nA will decrease by nearly a factor of two, 
as will nAhfg = qevap.  Hence, since qconv must increase and h  remains nearly constant, Ts - 

T∞ must increase.  Hence, Ts will increase. 
 
COMMENTS:  Note that in part (d), with an increase in Ts, hfg decreases, but only slightly, 
and ρA,sat increases.  From a trial-and-error solution assuming constant values for mh  and h, 

the disc temperature is 315 K for φ∞ = 0.5. 



PROBLEM 6.84  
KNOWN:  Power-time history required to completely evaporate a droplet of fixed diameter 
maintained at 37°C.  
FIND:  (a) Average mass transfer convection coefficient when droplet, heater and dry 
ambient air are at 37°C and (b) Energy required to evaporate droplet if the dry ambient air 
temperature is 27°C.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Wetted surface area of droplet is of fixed diameter D, (2) Heat-mass 
transfer analogy is applicable, (3) Heater controlled to operate at constant temperature, Ts = 
37°C, (4) Mass of droplet same for part (a) and (b), (5) Mass transfer coefficients for parts (a) 
and (b) are the same.  
PROPERTIES:  Table A-6, Saturated water (37°C = 310 K): hfg = 2414 kJ/kg, ρA,sat = 1/vg 
= 1/22.93 = 0.04361 kg/m3; Table A-8, Air-water vapor (Ts = 37°C = 310 K, 1 atm): DAB = 
0.26 × 10-6m2/s(310/298)3/2 = 0.276 × 10-6 m2/s; Table A-4, Air ( T  = (27 + 37)°C/2 = 305 
K, 1 atm): ρ = 1.1448 kg/m3, cp = 1008 J/kg⋅K, ν = 16.39 × 10-6 m2/s, Pr = 0.706. 
 
ANALYSIS:  (a) For the isothermal conditions (37°C), the electrical energy Q required to 
evaporate the droplet during the interval of time Δt = te follows from the area under the P-t 
curve above, 

 ( ) ( )
te

0
3 -3Q  Pdt 20 10  W 50 60 s  0.5 20 10  W 100 50 60s

Q  90 J.

−⎡ ⎤= = × × × + × × − ×⎢ ⎥⎣ ⎦
=
∫  

From an overall energy balance during the interval of time Δt = te, the mass loss due to 
evaporation is 

 fg fg
3 -5

Q  Mh      or     M  Q/h
M  90 J/2414 10  J/kg  3.728 10  kg.

= =

= × = ×
 

To obtain the average mass transfer coefficient, write the rate equation for an interval of time 
Δt = te, 
 ( ) ( )e m s A,s A, e m s A,s eM  m t h A t h A 1 tρ ρ ρ φ∞ ∞= ⋅ = − ⋅ = − ⋅&  

Substituting numerical values with φ∞ = 0, find 

 ( )( ) ( )25 3
m3.278 10  kg  h 0.004 m / 4 0.04361 kg/m 100 60 sπ−× = × ×  

 
          Continued … 



PROBLEM 6.84 (Cont.)  
 mh 0.0113 m/s.=          < 
 
(b) The energy required to evaporate the droplet of mass M = 3.728 × 10-5 kg follows from an 
overall energy balance,  
 ( )fg s sQ  Mh hA T T∞= + −  
 
where h  is obtained from the heat-mass transfer analogy, Eq. 6.60, using n = 1/3,  

 2/3
pnm AB

h k  c Le
h D Le

ρ= =  

 
where  

 

6 2

-4 2AB

16.39 10  m / sSc 0.594
D 0.276 10  m / s
Sc 0.594Le 0.841.
Pr 0.706

ν −×
= = =

×
= = =

 

 
Hence,  
 ( )2 / 33 2h 0.0113 m/s 1.1448 kg/m 1008 J/kg K 0.841 11.62 W/m K.= × × ⋅ = ⋅  
 
and the energy requirement is  
 ( )( )( )2-5 2Q 3.728 10  kg 2414 kJ/kg  11.62 W/m K 0.004 m / 4 37 27 Cπ= × × + ⋅ − o  
 
 ( )Q  90.00 0.00145 J  90 J.= + =        < 
 
The energy required to meet the convection heat loss is very small compared to that required 
to sustain the evaporative loss. 



PROBLEM 6.85  
KNOWN:  Initial plate temperature Tp (0) and saturated air temperature (T∞) in a dishwasher at the 

start of the dry cycle. Thermal mass per unit area of the plate Mc/As = 1600 J/m
2
⋅K. 

 
FIND:  (a) Differential equation to predict plate temperature as a function of time during the dry cycle 
and (b) Rate of change in plate temperature at the start of the dry cycle assuming the average 
convection heat transfer coefficient is 3.5 W/m2⋅K.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Plate is spacewise isothermal, (2) Negligible thermal resistance of water film 
on plate, (3) Heat-mass transfer analogy applies.  
PROPERTIES:  Table A-4, Air ( T  =(55 + 65)°C/2 = 333 K, 1 atm): ρ = 1.0516 kg/m

3
, cp = 1008 

J/kg⋅K, Pr = 0.703, ν = 19.24× 10
-6

 m
2
/s; Table A-6, Saturated water vapor, (Ts = 65°C = 338 K): ρA 

= 1/vg = 0.1592 kg/m
3
, hfg = 2347 kJ/kg; (Ts = 55°C = 328 K): ρA = 1/vg = 0.1029 kg/m

3
; Table A-

8, Air-water vapor (Ts = 65°C = 338 K, 1 atm): DAB = 0.26 × 10
-4

 m
2
/s (338/298)

3/2
 = 0.314 × 10-4 

m
2
/s. 

 
ANALYSIS:  (a) Perform an energy balance on a rate basis on the plate, 
 ( )( )in out st conv evap s pE E E           q q Mc/A dT / dt .′′ ′′− = − =& & &  
Using the rate equations for the heat and mass transfer fluxes, find 

 ( ) ( ) ( ) ( )( )p m A,s s A, fg sh T T t h T T h Mc/A dT/dt .ρ ρ∞ ∞ ∞⎡ ⎤ ⎡ ⎤− − − =⎣ ⎦⎣ ⎦   < 

(b) To evaluate the change in plate temperature at t = 0, the start of the drying process when Tp (0) = 

65°C and T∞ = 55°C, evaluate mh  from knowledge of 2h 3.5 W/m K= ⋅  using the heat-mass 
transfer analogy, Eq. 6.60, with n = 1/3, 

 
2 /3 2 / 3

2/3 AB
p p p

m

h Sc / D c Le  c  c
h Pr Pr

νρ ρ ρ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

and evaluating thermophysical properties at their appropriate temperatures, find 
2 / 32 -6 2 -4 2

3 3
m

m

3.5 W/m K 19.24 10 m / s/0.314 10 m / s1.0516 kg/m 1008 J/kg K      h 3.619 10 m/s.
h 0.703

−⎛ ⎞⋅ × ×⎜ ⎟= × ⋅ = ×
⎜ ⎟
⎝ ⎠

 

Substituting numerical values into the conservation expression of part (a), find 
( ) ( ) ( )2 -3 3 3 2

p3.5 W/m K 55 65 C 3.619 10 m/s 0.1592 0.1029 kg/m 2347 10  J/kg 1600 J/m K dT / dt⋅ − − × − × × = ⋅o  

 [ ] 2 2
pdT / dt 35.0 478.2 W/m K/1600 J/m K 0.32 K/s.= − + ⋅ ⋅ = −    < 

COMMENTS:  This rate of temperature change will not be sustained for long, since, as the plate 
cools, the rate of evaporation (which dominates the cooling process) will diminish. 



PROBLEM 7.1 
 
KNOWN:  Temperature and velocity of fluids in parallel flow over a flat plate. 
 
FIND:  (a) Velocity and thermal boundary layer thicknesses at a prescribed distance from the leading 
edge, and (b) For each fluid plot the boundary layer thicknesses as a function of distance. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) Transition Reynolds number is 5 × 105. 
 
PROPERTIES:  Table A.4, Air (300 K, 1 atm):  ν = 15.89 × 10-6 m2/s, Pr = 0.707; Table A.6, Water (300 
K):  ν = μ/ρ = 855 × 10-6 N⋅s/m2/997 kg/m3 = 0.858 × 10-6 m2/s, Pr = 5.83; Table A.5, Engine Oil (300 K):  
ν = 550 × 10-6 m2/s, Pr = 6400; Table A.5, Mercury (300 K):   ν = 0.113 × 10-6 m2/s, Pr = 0.0248. 
 
ANALYSIS:  (a) If the flow is laminar, the following expressions may be used to compute δ and δt, 
respectively, 
 

 t1/ 2 1/ 3
x

5x

Re Pr

δδ δ= =  

where 

( ) 2
x

1m s 0.04 mu x 0.04 m s
Re

ν ν ν
∞= = =  

 

Fluid Rex δ (mm) δt  (mm) <
Air 2517 3.99 4.48  
Water 4.66 × 104 0.93 0.52  
Oil 72.7 23.5 1.27  
Mercury 3.54 × 105 0.34 1.17  

 

(b) Using IHT with the foregoing equations, the boundary layer thicknesses are plotted as a function of 
distance from the leading edge, x. 
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COMMENTS:  (1) Note that δ ≈ δt for air, δ > δt for water, δ >> δt for oil, and δ < δt for mercury.  As 
expected, the boundary layer thicknesses increase with increasing distance from the leading edge. 
 
(2) The value of δt for mercury should be viewed as a rough approximation since the expression for δ/δt 
was derived subject to the approximation that Pr > 0.6. 



PROBLEM 7.2 
 
KNOWN:  Temperature and velocity of engine oil.  Temperature and length of flat plate. 
 
FIND:  (a) Velocity and thermal boundary layer thickness at trailing edge, (b) Heat flux and surface shear 
stress at trailing edge, (c) Total drag force and heat transfer per unit plate width, and (d) Plot the boundary 
layer thickness and local values of the shear stress, convection coefficient, and heat flux as a function of x 
for 0 ≤ x ≤ 1 m. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Critical Reynolds number is 5 × 105, (2) Flow over top and bottom surfaces. 
 
PROPERTIES:  Table A.5, Engine Oil (Tf = 333 K):  ρ = 864 kg/m3, ν = 86.1 × 10-6 m2/s, k = 0.140 
W/m⋅K, Pr = 1081. 
 
ANALYSIS:  (a) Calculate the Reynolds number to determine nature of the flow, 
 

 L 6 2
u L 0.1m s 1mRe 1161

86.1 10 m sν
∞

−
×

= = =
×

 

 
Hence the flow is laminar at x = L.  From Eqs. 7.19 and 7.24,  

 ( )( ) 1/ 21/ 2
L5L Re 5 1m 1161 0.147 mδ −−= = =  < 

 ( ) 1/ 31/ 3
t Pr 0.147 m 1081 0.0143mδ δ −−= = =  < 

 
(b) The local convection coefficient, Eq. 7.23, and heat flux at x = L are 
 

 ( ) ( )1/ 2 1/ 31/ 2 1/ 3 2
L L

k 0.140 W m Kh 0.332Re Pr 0.332 1161 1081 16.25W m K
L 1m

⋅
= = = ⋅  

 ( ) ( )2 2
x L sq h T T 16.25W m K 20 100 C 1300 W m∞′′ = − = ⋅ − = −o  < 

 
Also, the local shear stress is, from Eq. 7.20, 

 ( ) ( )
2 3 2 1/ 21/ 2

s,L L
u 864kg m0.664Re 0.1m s 0.664 1161
2 2

ρτ −−∞= =  

 2 2
s,L 0.0842 kg m s 0.0842 N mτ = ⋅ =  < 

(c) With the drag force per unit width given by s,LD 2Lτ′ =  where the factor of 2 is included to account 
for both sides of the plate, it follows from Eq. 7.29 that 

( ) ( ) ( ) ( )2 1/ 22 1/ 2 3
LD 2L u 2 1.328 Re 1m 864 kg m 0.1m s 1.328 1161 0.337 N m−−

∞′ = = =ρ  < 

For laminar flow, the average value Lh  over the distance 0 to L is twice the local value, hL, 

 2
L Lh 2h 32.5W m K= = ⋅  

The total heat transfer rate per unit width of the plate is 

 ( ) ( ) ( )2
L sq 2Lh T T 2 1m 32.5W m K 20 100 C 5200 W m∞′ = − = ⋅ − = −o  < 

Continued... 



 
PROBLEM 7.2 (Cont.)  

(c) Using IHT with the foregoing equations, the boundary layer thickness, and local values of the 
convection coefficient and heat flux were calculated and plotted as a function of x. 
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COMMENTS:  (1) Note that since Pr >> 1, δ >> δt.  That is, for the high Prandtl liquids, the velocity 
boundary layer will be much thicker than the thermal boundary layer. 
 
(2) A copy of the IHT Workspace used to generate the above plot is shown below. 

 
// Boundary layer thickness, delta 
delta = 5 * x * Rex ^-0.5 
delta_mm = delta * 1000 
delta_plot = delta_mm * 10            // Scaling parameter for convenience in  plotting 
 
// Convection coefficient and heat flux, q''x 
q''x = hx * (Ts - Tinf) 
Nux = 0.332 * Rex^0.5 * Pr^(1/3) 
Nux = hx * x / k 
hx_plot = 100 * hx                          // Scaling parameter for convenience in plotting 
q''x_plot = ( -1 ) * q''x                      // Scaling parameter for convenience in plotting 
 
// Reynolds number 
Rex = uinf * x / nu 
 
// Properties Tool: Engine oil 
// Engine Oil property functions : From Table A.5 
// Units: T(K) 
rho = rho_T("Engine Oil",Tf)  // Density, kg/m^3 
cp = cp_T("Engine Oil",Tf)  // Specific heat, J/kg·K 
nu = nu_T("Engine Oil",Tf)  // Kinematic viscosity, m^2/s 
k = k_T("Engine Oil",Tf)  // Thermal conductivity, W/m·K 
Pr = Pr_T("Engine Oil",Tf)  // Prandtl number 
 
 
// Assigned variables 
Tf = (Ts + Tinf) / 2   // Film temperature, K 
Tinf = 100 + 273   // Freestream temperature, K 
Ts = 20 + 273   // Surface temperature, K 
uinf = 0.1    // Freestream velocity, m/s 

 x = 1    // Plate length, m 
 



PROBLEM 7.3  
KNOWN:  Velocity and temperature of air in parallel flow over a flat plate.  
FIND:  (a) Velocity boundary layer thickness at selected stations.  Distance at which boundary layers 
merge for plates separated by H = 3 mm.  (b) Surface shear stress and v(δ) at selected stations.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Steady flow, (2) Boundary layer approximations are valid, (3) Flow is laminar.  
PROPERTIES:  Table A-4, Air (300 K, 1 atm): ρ = 1.161 kg/m

3
, ν = 15.89 × 10

-6
 m

2
/s. 

 
ANALYSIS:  (a) For laminar flow, 

 

( ) ( )
( )
( )

1/2
1/2 3 1/2

1/2 1/ 2 1/ 2-6 2x

5x 5 5xx 3.99 10  x .
Re u / 25 m/s/15.89 10  m / s

x m           0.001          0.01          0.1
 mm        0.126          0.399         1.262

−

∞
= = = = ×

×
δ

ν

δ
 

Boundary layer merger occurs at x = xm when δ = 1.5 mm.  Hence 

 1/2 1/2
m m-3 1/2

0.0015 mx 0.376 m           x 141 mm.
3.99 10  m

= = =
×

    < 

(b) The shear stress is 

( )
( )

( )
( )

( )
( )

232 2
2

s,x 1/2 1/ 2 1/ 2 1/21/2 -6 2 1/2x

2
s,x

0.664 1.161 kg/m 25 m/s / 2u / 2 u / 2 0.1920.664 0.664 N/m .
Re xu / x 25 m/s/15.89 10  m / s x

x m                0.001      0.01        0.1
N/m    6.07        1.92        0.61

∞ ∞

∞

×
= = = =

×

ρ ρτ
ν

τ

 
The velocity distribution in the boundary layer is v = (1/2) (νu∞/x)

1/2
 (ηdf/dη - f).  At y = δ, η ≈ 5.0, f 

≈ 3.24, df/dη ≈ 0.991. 

 
( ) ( ) ( )

( )
( )

1/ 26 2 1/2
1/2
0.5v 15.89 10  m / s 25 m/s 5.0 0.991 3.28 0.0167 / x m/s.
x

x m           0.001          0.01          0.1
v m/s       0.528          0.167        0.053

−= × × × − =

 

 
COMMENTS:  (1) v << u∞ and δ << x are consistent with BL approximations.  Note, v → ∞ as x → 

0 and approximations breakdown very close to the leading edge.  (2) Since m
5

xRe 2.22 10 ,= ×  
laminar BL model is valid.  (3) Above expressions are approximations for flow between parallel 

plates, since du∞/dx > 0 and dp/dx < 0. 



PROBLEM 7.4  
KNOWN:  Liquid metal in parallel flow over a flat plate.  
FIND:  An expression for the local Nusselt number.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Steady, incompressible flow, (2) δ << δt, hence u(y) ≈ u∞, (3) Boundary layer 
approximations are valid, (4) Constant properties. 
ANALYSIS:  The boundary layer energy equation is 

 
2

2
 T  T Tu  v .
 x  y  y

∂ ∂ ∂α
∂ ∂ ∂

+ =  

Assuming u(y) = u∞, it follows that v = 0 and the energy equation becomes 

 
2 2

2 2
 T T  T Tu           or           .
 x  x u y  y

∂ ∂ ∂ α ∂α
∂ ∂∂ ∂

∞
∞

= =  

Boundary Conditions:  T(x,0) = Ts, T(x,∞) = T∞. 
Initial Condition:  T(0,y) = T∞. 
The differential equation is analogous to that for transient one-dimensional conduction in a plane wall, 
and the conditions are analogous to those of Fig. 5.7, Case (1).  Hence the solution is given by Eqs. 

5.60 and 5.61.  Substituting y for x, x for t, T∞ for Ti, and α/u∞ for α, the boundary layer temperature 
and the surface heat flux become 

 

( )
( )

( )
( )

s
1/ 2s

T x,y T y
erf

T T 2  x/u
s

s 1/ 2
k T T

q .
  x/u

α

π α

∞ ∞

−
=

−

∞

∞

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

−
′′ =

 

Hence, with  
( )

s
x

s

q xh x
Nu

k T T k∞

′′
≡ =

−
 

find  
( )

( )

( )

1/ 21/ 2
p

x 1/ 2 1/ 2 1/ 21/ 2
p

cxux 1  u x
Nu

k  x/u  k/  c

μρ
μππ α π ρ

∞ ∞

∞

= = = ⋅
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

  ( )1/ 2 1/2
x xNu 0.564 Re Pr 0.564 Pe= =      < 

where Pe = Re ⋅ Pr is the Peclet number. 
 
COMMENTS:  Because k is very large, axial conduction effects may not be negligible.  That is, the α 
∂

2
T/∂x

2 term of the energy equation may be important. 



PROBLEM 7.5  
KNOWN:  Form of velocity profile for flow over a flat plate. 

FIND:  (a) Expression for profile in terms of u∞ and δ, (b) Expression for δ(x), (c) Expression for 

Cf,x. 
 
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Steady state conditions, (2) Constant properties, (3) Incompressible flow, (4) 
Boundary layer approximations are valid. 
ANALYSIS:  (a) From the boundary conditions 
 ( ) ( )1 2u x,0 0 C 0          and          u x, u C u / .δ δ∞ ∞= → = = → =  

Hence,  ( )u u y/ .δ∞=          < 
 (b)From the momentum integral equation for a flat plate 

 

( )
0

0

0

0

s

2

y 0
2

2 3
2

2

d   u u u dy  /
dx

d u u  u  uu    1   dy    
dx u u  y
d y y  uu    1  dy  

dx
d y y  u u du                or             . 

dx 2 6 dx3

δ

δ

δ

δ

τ ρ

μ ∂ ν
ρ ∂ δ

ν
δ δ δ

μ δ ν
δ δ δδ

∞

∞
∞

∞ ∞ =
∞

∞

∞ ∞
∞

∫ − =

⎛ ⎞ ⎞
∫ − = =⎜ ⎟ ⎟

⎠⎝ ⎠
⎛ ⎞∫ − =⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟− = =
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

Separating and integrating, find 

x

0 0

1/ 2 1/ 2
-1/2
x

6 12 x  d     dx        3.46 x 3.46 x Re .
u u u x

δ ν ν νδ δ δ
∞ ∞ ∞

⎛ ⎞ ⎛ ⎞
∫ = ∫ = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
   < 

(c) The shear stress at the wall is 

 1/2
s x

y 0

 u u  u Re
 y 3.46 x

∂ μτ μ μ
∂ δ

∞ ∞

=

⎞
= = =⎟

⎠
 

and the friction coefficient is 

 1/2 1/2s
f,x x x2

2C  Re 0.578 Re .
 u x 3.46 u / 2

τ μ
ρρ

−

∞∞
= = =     < 

COMMENTS:  The foregoing results underpredict those associated with the exact solution 

( )-1/2 -1/2
x f,x x4.96 x Re ,  C 0.664 Reδ = =  and the cubic profile ( 1/2

x4.64 x Re ,δ −=  

)1/2
f,x xC 0.646 Re .−=  



PROBLEM 7.6  
KNOWN:  Velocity and temperature profiles and shear stress-boundary layer thickness 
relation for turbulent flow over a flat plate.  
FIND:  (a) Expressions for hydrodynamic boundary layer thickness and average friction 
coefficient, (b) Expressions for local and average Nusselt numbers.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady flow, (2) Constant properties, (3) Fully turbulent boundary 
layer, (4) Incompressible flow, (5) Isothermal plate, (6) Negligible viscous dissipation, (7) δ ≈ 
δt.  
ANALYSIS:  (a) The momentum integral equation is 

 
0

2
s

d u u u   1   dy  .
dx u u

δ
ρ τ∞

∞ ∞

⎛ ⎞
∫ − =⎜ ⎟

⎝ ⎠
 

Substituting the expression for the wall shear stress  
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1/ 7 1/ 7 1/ 4
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−
∞

∞ ∞
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥∫ − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 

 
0 0

1/ 7 2 / 7 8/7 9/7

1/7 2/7
d y y d 7 y 7 y  dy    

dx dx 8 9

δ δ

δ δ δ δ

⎡ ⎤ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎜ ⎟∫ − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎝ ⎠⎣ ⎦
 

 
1/ 4d 7 7 u  0.0228 

dx 8 9
δδ δ

ν

−
∞⎛ ⎞ ⎛ ⎞− =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
x

0 0

1/ 4 1/ 4
1/ 4 1/ 47 d 70.0228             d 0.0228  dx

72 dx u 72 u
δδ ν νδ δ δ−

∞ ∞

⎛ ⎞ ⎛ ⎞
= ∫ = ∫⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
1/ 4 1/ 5

5 / 4 4/5 1/5
x

7 4
0.0228 x,          0.376 x ,  0.376Re .

72 5 u u x
ν ν δ

δ δ −

∞ ∞
× = = =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 < 

 
Knowing δ, it follows 

 
1/ 4 1/ 42 1/5

s x
u0.0228 u  0.376 x Reτ ρ
ν

− −−∞
∞
⎛ ⎞ ⎡ ⎤= ⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠

 

 
1/ 41/ 5

1/5 -1/5s
f,x x2

u uC 0.0456 0.376 x x 0.0582 Re .
 u / 2
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∞
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⎢ ⎥⎝ ⎠⎣ ⎦

τ
ν νρ

 

 
          Continued … 



PROBLEM 7.6 (Cont.)  
The average friction coefficient is then 

 
x x

0 0

1/ 5
1/5

f,x f,x
u1 1C   C  dx 0.0582  x  dx

x x

−
−∞⎛ ⎞= ∫ = ∫⎜ ⎟

⎝ ⎠ν
 

 
1/ 5

4/5 1/5
f,x x

u1 5C 0.0582 x    0.073 Re .
x 4

−
−∞⎛ ⎞ ⎛ ⎞= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ν
    < 

 
(b) The energy integral equation for turbulent flow is 

 ( ) ( )t

0
s

s
p p

qd h  u T T dy  T T .
dx  c  c

δ

ρ ρ∞ ∞
′′

∫ − = = − −  

Hence, 

 ( ) ( )t t

0 0
1/ 7 1/ 7

t
s p

d u T T d hu     dy  u   y/ 1 y/  dy  
dx u T T dx  c

δ δ
δ δ

ρ
∞

∞ ∞
∞ ∞

− ⎡ ⎤∫ = ∫ − =⎢ ⎥⎣ ⎦−
 

 
8/7 8/7
t t
1/7 1/7 p

d 7 7 hu       
dx 8 9  c

δ δ
ρδ δ

∞
⎡ ⎤

− =⎢ ⎥
⎢ ⎥⎣ ⎦

 

or, with t / ,ξ δ δ≡  

 8/7 8/7    8 / 7
p p

d 7 7 h d 7 hu    δξ           u     .
dx 8 9  c dx 72  c∞ ∞

⎡ ⎤ ⎡ ⎤− = =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
δξ δξ

ρ ρ
 

Hence, with 1/5
x1 and /x  0.376 Re ,ξ δ −≈ =  

 ( )
( )4/51/ 5

p

d x7 u h u 0.376     
72 dx  cν ρ

−
∞

∞
⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

 1/5 1/5
p x x

k u xh  0.0292  c u  Re 0.0292    Re
x

νρ
α ν

− −∞
∞= =  

 4/5
x x

hxNu 0.0292 Re  Pr.
k

= =        < 

Hence, 
x x

0 0

4 / 5 4 /5
1/5

x
1 0.0292 Pr u k u x 5h   h dx   k   x  dx  0.0292  Pr 
x x x 4ν ν

−∞ ∞⎛ ⎞ ⎛ ⎞= ∫ = ∫ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 x
4/5x
x

h xNu 0.037 Re  Pr.
k

= =        < 
 
COMMENTS:  (1) The foregoing results are in excellent agreement with empirical 
correlations, except that use of Pr1/3 instead of Pr, would be more appropriate.  This result 
arose because of the assumption tδ ≈ δ , which is only valid for Pr ≈ 1. 
 
(2)  Note that the 1/7 profile breaks down at the surface.  For example, 

 
( ) 1/7 6/7

y 0

u/u 1   y
 y 7

∂
δ

∂
∞ − −

=

⎞
= = ∞⎟

⎠
 

or τs = ∞.  Despite this unrealistic characteristic of the profile, its use with integral methods 
provides excellent results. 



PROBLEM 7.7  
KNOWN:  Parallel flow over a flat plate and two locations representing a short span x1 to x2 
where (x2 - x1) << L. 
 
FIND:  Three different expressions for the average heat transfer coefficient over the short 
span x1 to x2, 1 2h .−  
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Parallel flow over a flat plate.  
ANALYSIS:  The heat rate per unit width for the span can be written as  
 ( )( )1 2 1 2 2 1 sq h x x T T− − ∞′ = − −        (1) 
 
where 1 2h −  is the average heat transfer coefficient over the span and can be evaluated in 
either of the following three ways:  
(a) Local coefficient at ( )1 2x x x / 2.= +   If the span is very short, it is reasonable to assume 
that 
 1 2 xh h− ≈          < (2) 
where hx  is the local convection coefficient at the mid-point of the span. 
 
(b) Local coefficients at x1 and x2.  If the span is very short it is reasonable to assume that 
h1 2−  is the average of the local values at the ends of the span, 

 [ ]1 2 x1 x2h h h / 2.− ≈ +        < (3) 

(c) Average coefficients for x1 and x2.  The heat rate for the span can also be written as 
 1 2 0 2 0 1q q q− − −′ ′ ′= −          (4) 

where the rate q0-x denotes the heat rate for the plate over the distance from 0 to x.  In terms 
of heat transfer coefficients, find 
 ( )1 2 2 1 2 2 1 1h x x h x h x− ⋅ − = ⋅ − ⋅  

 2 1
1 2 2 1

2 1 2 1

x xh h h
x x x x− = −

− −
      < (5) 

where 1 2h  and h  are the average coefficients from 0 to x1 and x2, respectively. 
 
COMMENTS:  Eqs. (2) and (3) are approximate and work better when the span is small and 
the flow is turbulent rather than laminar (hx ~ x-0.2 vs hx ~ x-0.5).  Of course, we require that 
xc < x1, x2 or xc > x1, x2; that is, the approximations are inappropriate around the transition 
region.  Eq. (5) is an exact relationship, which applies under any conditions. 



PROBLEM 7.8  
KNOWN:  Flat plate comprised of rectangular modules of surface temperature Ts, thickness a and 
length b cooled by air at 25°C and a velocity of 30 m/s.  Prescribed thermophysical properties of the 
module material.  
FIND:  (a) Required power generation for the module positioned 700 mm from the leading edge of the 
plate and (b) Maximum temperature in this module.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Laminar flow at leading edge of plate, (2) Transition Reynolds number of 5 × 
10

5
, (3) Heat transfer is one-dimensional in y-direction within each module, (4) &q  is uniform within 

module, (5) Negligible radiation heat transfer.  
PROPERTIES:  Module material (given):  k = 5.2 W/m⋅K, cp = 320 J/kg⋅K, ρ = 2300 kg/m

3
; Table 

A-4, Air ( )( )f sT T T / 2 360 K, 1 atm :∞= + =  k = 0.0308 W/m⋅K, ν = 22.02 × 10
-6

 m
2
/s, Pr = 0.698. 

 
ANALYSIS:  (a) The module power generation follows from an energy balance on the module 
surface,  
 conv genq q′′ ′′=  

 ( ) ( )s
s

h T T
h T T q a          or          q .

a
∞

∞
−

− = ⋅ =& &  
 
To select a convection correlation for estimating h,  first find the Reynolds numbers at x = L. 
 

 5
L -6 2

u L 30 m/s 0.70 mRe 9.537 10 .
22.02 10 m / sν

∞ ×
= = = ×

×
 

 
Since the flow is turbulent over the module, the approximation ( )xh h  L  b/2≈ +  is appropriate, 
with  

 ( ) 5
L b/2 -6 2

30 m/s 0.700 0.050/2 m
Re 9.877 10 .

22.02 10 m / s
+

× +
= = ×

×
 

 
Using the turbulent flow correlation with x = L + b/2 = 0.725 m, 

 ( ) ( )

4/5 1/3x
x x

4 /5 1/35
x

2x
x

h xNu 0.0296Re Pr
k

Nu 0.0296 9.877 10 0.698 1640
Nu k 1640 0.0308 W/m Kh h 69.7 W/m K.

x 0.725

= =

= × =
× ⋅

≈ = = = ⋅
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PROBLEM 7.8 (Cont.)  
Hence,  

 ( )2
5 369.7 W/m K 150 25 K

q 8.713 10  W/m .
0.010 m
⋅ −

= = ×&     < 
 
(b) The maximum temperature within the module occurs at the surface next to the insulation (y = 0).  
For one-dimensional conduction with thermal energy generation, use Eq. 3.42 to obtain  

 ( ) ( )25 32
s

8.713 10  W/m 0.010 mqaT 0 T 150 C 158.4 C.
2k 2 5.2 W/m K

× ×
= + = + =

× ⋅
o o&

  < 
 
COMMENTS:  An alternative approach for estimating the average heat transfer coefficient for the 
module follows from the relation  

 ( )
module 0 L b 0 L

L b L L b L

q q q
L b Lh b h L b h L          or          h h h .

b b

→ + →

+ +

= −
+

⋅ = ⋅ + − ⋅ = −  

 
Recognizing that laminar and turbulent flow conditions exist, the appropriate correlation is  
 ( )x

4/5 1/3
xNu 0.037Re 871 Pr= −  

 
With x = L + b and x = L, find  
 2 2

L b Lh 54.79 W/m K          and          h 53.73 W/m K.+ = ⋅ = ⋅  
 
Hence,  

 2 20.750 0.700h 54.79 53.73  W/m K 69.7 W/m K.
0.050 0.05

⎡ ⎤= − ⋅ = ⋅⎢ ⎥⎣ ⎦
 

 
which is in excellent agreement with the approximate result employed in part (a). 
 



PROBLEM 7.9 
 
KNOWN:  Dimensions and surface temperature of electrically heated strips.  Temperature and velocity 
of air in parallel flow. 
 
FIND:  (a) Rate of convection heat transfer from first, fifth and tenth strips as well as from all the strips, 
(b) For air velocities of 2, 5 and 10 m/s, determine the convection heat rates for all the locations of part 
(a), and (c) Repeat the calculations of part (b), but under conditions for which the flow is fully turbulent 
over the entire array of strips. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Top surface is smooth, (2) Bottom surface is adiabatic, (3) Critical Reynolds 
number is 5 × 105, (4) Negligible radiation. 
 
PROPERTIES:  Table A.4, Air (Tf = 535 K, 1 atm):  ν = 43.54 × 10-6 m2/s, k = 0.0429 W/m⋅K, Pr = 
0.683. 
 
ANALYSIS:  (a) The location of transition is determined from 

 
6 2

5 5
c

43.54 10 m sx 5 10 5 10 10.9m
u 2m s
ν −

∞

×
= × = × =  

Since xc >> L = 0.25 m, the air flow is laminar over the entire heater.  For the first strip, q1 = 1h (ΔL × 
w)(Ts - T∞) where h1 is obtained from 

 1/ 2 1/ 3
1 x

kh 0.664Re Pr
L

=
Δ

 

 ( )
1/ 2

1/ 3 2
1 6 2

0.0429 W m K 2m s 0.01mh 0.664 0.683 53.8W m K
0.01m 43.54 10 m s−

⎛ ⎞⋅ ×
⎜ ⎟= × = ⋅
⎜ ⎟×⎝ ⎠

 

 ( )( )2
1q 53.8W m K 0.01m 0.2m 500 25 C 51.1W= ⋅ × − =o  < 

For the fifth strip, 5 0 5 0 4q q q− −= − , 

 ( )( ) ( )( )5 0 5 s 0 4 sq h 5 L w T T h 4 L w T T− ∞ − ∞= Δ × − − Δ × −  

 ( )( )( )5 0 5 0 4 sq 5h 4h L w T T− − ∞= − Δ × −  

Hence, with x5 = 5ΔL = 0.05 m and x4 = 4ΔL = 0.04 m, it follows that 0 5h −  = 24.1 W/m2⋅K and 0 4h −  = 
26.9 W/m2⋅K and 

 ( ) ( ) ( )2 2
5q 5 24.1 4 26.9 W m K 0.01 0.2 m 500 25 K 12.2 W= × − × ⋅ × − = . < 

Similarly, where 0 10h −  = 17.00 W/m2⋅K and 0 9h −  = 17.92 W/m2⋅K. 

 ( )( )( )10 0 10 0 9 sq 10h 9h L w T T− − ∞= − Δ × −  

 ( ) ( ) ( )2 2
10q 10 17.00 9 17.92 W m K 0.01 0.2 m 500 25 K 8.3W= × − × ⋅ × − =  < 

Continued... 



 
PROBLEM 7.9 (Cont.) 

 
For the entire heater, 

 ( )
1/ 2

1/ 31/ 2 1/ 3 2
0 25 L 6

k 0.0429 2 0.25
h 0.664 Re Pr 0.664 0.683 10.75 W m K

L 0.25 43.54 10
− −

×
= = × = ⋅

×

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

and the heat rate over all 25 strips is 

 ( )( ) ( ) ( )2 2
0 25 0 25 sq h L w T T 10.75 W m K 0.25 0.2 m 500 25 C 255.3W− − ∞= × − = ⋅ × − =o < 

(b,c) Using the IHT Correlations Tool, External Flow, for Laminar or Mixed Flow Conditions, and 
following the same method of solution as above, the heat rates for the first, fifth, tenth and all the strips 
were calculated for air velocities of 2, 5 and 10 m/s.  To evaluate the heat rates for fully turbulent 
conditions, the analysis was performed setting Rex,c = 1 × 10-6.  The results are tabulated below. 
 
Flow conditions u∞  (m/s) q1 (W) q5 (W) q10 (W) q0-25 (W) 
Laminar 2 51.1 12.1 8.3 256 
 5 80.9 19.1 13.1 404 
 10 114 27.0 18.6 572 
Fully turbulent 2 17.9 10.6 9.1 235 
 5 37.3 22.1 19.0 490 
 10 64.9 38.5 33.1 853 
 
COMMENTS:  (1) An alternative approach to evaluating the heat loss from a single strip, for example, 
strip 5, would take the form ( )( )5 5 sq h L w T T∞= Δ × − , where 5 x 4.5 Lh h = Δ≈  or ( )5 x 5 L x 4 Lh h h 2= Δ = Δ≈ + . 
 
(2) From the tabulated results, note that for both flow conditions, the heat rate for each strip and the entire 
heater, increases with increasing air velocity.  For both flow conditions and for any specified velocity, the 
strip heat rates decrease with increasing distance from the leading edge. 
 
(3) To more fully appreciate the effects due to laminar vs. turbulent flow conditions and air velocity, it is 
useful to examine the local coefficient as a function of distance from the leading edge.  How would you 
use the results plotted below to explain heat rate behavior evident in the summary table above? 
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PROBLEM 7.10  
KNOWN:  Speed and temperature of atmospheric air flowing over a flat plate of prescribed 
length and temperature.  
FIND:  Rate of heat transfer corresponding to Rex,c = 105, 5 × 105 and 106. 
 
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Flow over top and bottom surfaces.  
PROPERTIES:  Table A-4, Air (Tf = 348K, 1 atm): ρ = 1.00 kg/m3, ν = 20.72 × 10-6 m2/s, k 
= 0.0299 W/m⋅K, Pr = 0.700.  
ANALYSIS:  With  

 6
L -6 2

u L 25 m/s  1mRe 1.21 10
20.72 10 m / sν

∞ ×
= = = ×

×
 

 
the flow becomes turbulent for each of the three values of Rex,c.  Hence, 
 

 ( )L
4/5 1/3
L

4/5 1/2
x,c x,c

Nu 0.037 Re A  Pr

A 0.037 Re 0.664 Re

= −

= −
 

 

     Rex,c        105   5×105   106 
   
  A        160     871   1671 
  LNu       2267  1635      926 

  ( )2
Lh W/m K⋅     67. 8              48.9               27.7 

  ( )q W/m′   13,560  9780   5530 
 
where ( )L sq 2 h L T T∞′ = −  is the total heat loss per unit width of plate. 
 
COMMENTS:  Note that Lh  decreases with increasing Rex,c, as more of the surface 
becomes covered with a laminar boundary layer. 



PROBLEM 7.11 
 
 
KNOWN:  Length of isothermal flat plate in parallel flow, L. 
 
FIND:  Expression for the average heat transfer coefficients for N plates each of length LN = L/N to 
the average coefficient for the single plate. 
 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Laminar flow, (2) Constant properties. 
 
ANALYSIS:  For the single plate, Equation 7.30 applies 
 

 ,1 1/ 2 1/30.664L
L L

h LNu Re Pr
k

= =   or    ( ) 1/ 2 1/3
,1 / 0.664L Lh k L Re Pr=   (1) 

 
For the multiple plates, 
 

 , 1/ 2 1/3
, 0.664

N

L N NL N L
h LNu Re Pr

k
= =   where  LN = L/N  and 

NL LRe = Re /N  (2a, b, c) 

 
Combining Equations 2a, 2b and 2c yields 
 

 ( )1/2 1/3
, 0.664L N L

kNh Re /N Pr
L

=       (3) 

 
Dividing Equation 3 by Equation 1 yields 
 
 1/ 2

, ,1/L N Lh h N=          < 
 
 
COMMENTS:  (1) By breaking the single plate into shorter segments, the average boundary layer 
thickness is reduced, resulting in an increase of the average heat transfer coefficient. This is an 
effective strategy for heat transfer enhancement. (2) If the boundary layer over the single plate is not 
completely laminar, breaking it into shorter segments may or may not result in an increase in the 
average heat transfer coefficient since the turbulent section of the boundary layer over the single plate 
may be eliminated. (3) The relationship for completely turbulent flow is 1/5/NL Lh h N= , revealing 
less sensitivity to the plate length than for laminar conditions. 

LL

LN = L/N
(N = 3 is shown)

T∞, u∞T∞, u∞ T∞, u∞T∞, u∞



PROBLEM 7.12 
 
 
 
KNOWN:  Length of isothermal flat plate in parallel flow, L.  
 
FIND:  Expression for the average heat transfer coefficients for N plates each of length LN = L/N to the 
average heat transfer coefficient for the single plate. 
 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Turbulent flow, (2) Constant properties. 
 
ANALYSIS:  Since Rex,c = 0, Equation 7.39 yields A = 0. Therefore, for the single plate, 
 

 ,1 4 /5 1/30.036L
L L

h LNu Re Pr
k

= =   or    ( ) 4 /5 1/3
,1 / 0.036L Lh k L Re Pr=   (1) 

 
For the multiple plates, 
 

 , 4 /5 1/3
, 0.037

N

L N NL N L
h LNu Re Pr

k
= =   where  LN = L/N  and 

NL LRe = Re /N  (2a, b, c) 

 
Combining Equations 2a, 2b and 2c yields 
 

 ( )4/5 1/3
, 0.037L N L

kNh Re /N Pr
L

=       (3) 

 
Dividing Equation 3 by Equation 1 yields 
 
 1/5

, ,1/L N Lh h N=          < 
 
COMMENTS:  (1) By breaking the single plate into shorter segments, the average boundary layer 
thickness is reduced, resulting in a slight increase of the average heat transfer coefficient. Hence, 
breaking the plate into shorter lengths results in modest heat transfer enhancement. (2) The 
relationship for laminar flow is 1/ 2

, /L N Lh h N= , revealing more sensitivity to the plate length for 
laminar conditions. 

LL

LN = L/N
(N = 3 is shown)

T∞, u∞T∞, u∞ T∞, u∞T∞, u∞



PROBLEM 7.13 
 
KNOWN: Dimensions and surface temperatures of a flat plate.  Velocity and temperature of air 
and water flow parallel to the plate.  
 
FIND:  (a) Average convective heat transfer coefficient, convective heat transfer rate, and drag 
force when L = 2 m, w = 2 m.  (b) Average convective heat transfer coefficient, convective heat 
transfer rate, and drag force when L = 0.1 m, w = 0.1 m. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Steady-state conditions, (2) Boundary layer assumptions are valid, (3) 
Constant properties, (4) Transition Reynolds number is 5 × 105. 
 
PROPERTIES: Using IHT, Air (p = 1 atm, Tf = 35°C = 308 K): Pr = 0.706, k = 26.9 × 10-3 
W/m⋅K, ν = 1.669 × 10-5 m2/s, ρ = 1.135 kg/m3.  Air (p = 1 atm, Tf = 50°C = 323 K): Pr = 0.704, 
k = 28.0 × 10-3 W/m⋅K, ν = 1.82 × 10-5 m2/s, ρ = 1.085 kg/m3.  Water (Tf = 308 K): Pr = 4.85,  
k = 0.625 W/m⋅K, ν = 7.291 × 10-7 m2/s, ρ = 994 kg/m3.  Water (Tf = 323 K): Pr = 3.56,  
k = 0.643 W/m⋅K, ν = 5.543 × 10-7 m2/s, ρ = 988 kg/m3.   
 
ANALYSIS: 
(a) We begin by calculating the Reynolds numbers for the two different surface temperatures: 

5
L1 -5 2

1

5
L2 -5 2

2

u L 5 m/s × 2 mRe  =  =  = 5.99 × 10
ν 1.669 × 10  m /s

u L 5 m/s × 2 mRe  =  =  = 5.49 × 10
ν 1.82 × 10  m /s

∞

∞
 

Therefore, in both cases the flow is turbulent at the end of the plate and the conditions in the 
boundary layer are “mixed.” 
     The average drag coefficient can be calculated from Equation 7.40.  For the first case,  

-1/5 -1
f,L1 L1 L1

5 -1/5 5 -1 -3

C  = 0.074 Re  - 1742 Re

         = 0.074(5.99 × 10 ) - 1742(5.99 × 10 ) = 2.27 × 10
 

Then 

 

2
f,L1D1 s

-3 3 2 2

1F  = C  ρu A
2

1       = 2.27 × 10  ×  × 1.135 kg/m  × (5 m/s) × 8 m  = 0.257 N    
2

∞
 

       = 0.257 N                              < 
 

Continued… 
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PROBLEM 7.13 (Cont.) 
 

The average Nusselt number is calculated from Equation 7.38, with A = 871 for a transition 
Reynolds number of 5 × 105. 
 

 
4/5 1/3

L1 L
5 4/5 1/3

Nu  = (0.037 Re  - 871) Pr

          = 0.037(5.99 × 10 ) - 871 (0.706) = 604.⎡ ⎤
⎣ ⎦

 

Then 

 -3 2
L1 L1h  = Nu k/L = 604 × 26.9 × 10  W/m K/2 m = 8.13 W/m K      ⋅ ⋅           < 

and 

 2 2
L11 s sq  = h A (T  - T ) = 8.13 W/m K × 8 m  × (50°C - 20°C) = 1950 W    ∞ ⋅          < 

 
Similarly for Ts = 80°C we find 

 FD2 = 0.227 N, L2h = 7.16 W/m2·K, q2 = 3440 W             < 
 
(b) Repeating the calculations for water 

5
L1 -7 2

5
L2

u L 5 m/s × 0.1 mRe  =  =  = 6.86 × 10
ν 7.291 × 10  m /s

Re  = 9.02 × 10

∞

 

 
The flow is turbulent at the end of the plate in both cases. 
 5 -1/5 5 -1 -3

f,L1C  = 0.074(6.86 × 10 ) - 1742(6.86 × 10 ) = 2.49 × 10  
-3 3 2 2

D1F  = 2.49 × 10  × 1/2 × 994 kg/m  × (5 m/s) × 0.02 m  = 0.620 N              < 
5 4/5 1/3

LNu  = 0.037(6.86 × 10 ) - 871 (4.85) = 1450⎡ ⎤
⎣ ⎦  

2
L1h  = 1450 × 0.625 W/m K/0.1 m = 9050 W/m K     ⋅ ⋅             < 

 2 2
1q  = 9050 W/m K × 0.02 m  × (50°C - 20°C) = 5430 W    ⋅           < 

 
For the higher surface temperature,  

 FD2 = 0.700 N, L2h = 12,600 W/m2·K, q2 = 15,100 W            < 
 
COMMENTS: (1) For air, kinematic viscosity increases with increasing temperature.  This 
decreases the Reynolds number which causes the transition to turbulence to move downstream, 
thereby decreasing the drag force and average heat transfer coefficient.  The heat transfer rate 
increases for the higher surface temperature, however, because of the greater temperature 
difference between the surface and air. (2) For water, kinematic viscosity decreases with 
increasing temperature, causing the opposite trends as for air.  The heat transfer rate increases 
dramatically for the higher surface temperature because of the increases in both the heat transfer 
coefficient and temperature difference. (3) Even though the water flows over a plate that is 400 
times smaller, the drag force and heat transfer rate are larger than for air because of the smaller 
viscosity and greater density, thermal conductivity, and Prandtl number.  The discrepancy is 
particularly great for the hear transfer rate. (4) The problem highlights the importance of carefully 
accounting for the temperature dependence of thermal properties.  



PROBLEM 7.14 
 
KNOWN:  Velocity and temperature of water in parallel flow over a flat plate of 1-m length. 
 
FIND:  (a) Calculate and plot the variation of the local convection coefficient, hx (x), with distance for 
flow conditions corresponding to transition Reynolds numbers of 5 × 105, 3 × 105 and 0 (fully turbulent), 
(b) Plot the variation of the average convection coefficient, ( )xh x , for the three flow conditions of part 
(a), and (c) Determine the average convection coefficients for the entire plate, hL , for the three flow 
conditions of part (a). 
 
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant surface temperature, and (3) Critical 
Reynolds depends upon prescribed flow conditions. 
 
PROPERTIES:  Table A.6, Water (300 K):  ρ = 997 kg/m3, μ = 855 × 10-6 N⋅s/m2, ν = μ/ρ = 0.858 ×  
10-6 m2/s, k = 0.613 W/m⋅K, Pr = 583. 
 
ANALYSIS: (a) The Reynolds number for the plate (L = 1 m) is 
 

 6
L 6 2

u L 2m s 1mRe 2.33 10
0.858 10 m sν

∞
−
×

= = = ×
×

. 

 
and the boundary layer is mixed with Rex,c = 5 × 105, 
 

 ( )
5

c x,c L 6
5 10x L Re Re 1m 0.215m

2.33 10

×
= = =

×
 

 
Using the IHT Correlation Tool, External Flow, Local coefficients for Laminar or Turbulent Flow, hx(x) 
was evaluated and plotted with critical Reynolds numbers of 5 × 105, 3.0 × 105 and 0 (fully turbulent).  
Note the location of the laminar-turbulent transition for the first two flow conditions. 
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Continued... 



 
PROBLEM 7.14 (Cont.) 

 
(b) Using the IHT Correlation Tool, External Flow, Average coefficient for Laminar or Mixed Flow, 

( )xh x  was evaluated and plotted for the three flow conditions.  Note that the change in ( )xh x  at the 
critical length, xc, is rather gradual, compared to the abrupt change for the local coefficient, hx(x). 
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(c) The average convection coefficients for the plate can be determined from the above plot since 
( )L xh h L= .  The values for the three flow conditions are 

 2
Lh 4110, 4490 and 5072 W m K= ⋅  < 

 
COMMENTS:  A copy of the IHT Workspace used to generate the above plot is shown below.  

/* Method of Solution:  Use the Correlation Tools, External Flow, Flat Plate, for (i) Local, laminar or turbulent 
flow and (ii) Average, laminar or mixed flow, to evaluate the local and average convection coefficients as a 
function of position on the plate.  In each of these tools, the value of the critical Reynolds number, Rexc, can be 
set corresponding to the special flow conditions.   */ 
 
// Correlation Tool: External Flow, Plate Plate, Local, laminar or turbulent flow. 
Nux = Nux_EF_FP_LT(Rex,Rexc,Pr)     // Eq 7.23,36 
Nux = hx * x / k 
Rex = uinf * x / nu 
Rexc = 1e-10 
// Evaluate properties at the film temperature, Tf. 
//Tf = (Tinf + Ts) / 2 
 
/*  Correlation description: Parallel external flow (EF) over a flat plate (FP), local coefficient; laminar flow (L) for 
Rex<Rexc, Eq 7.23; turbulent flow (T) for Rex>Rexc, Eq 7.36; 0.6<=Pr<=60. See Table 7.9.  */ 
 
// Correlation Tool: External Flow, Plate Plate, Average, laminar or mixed flow. 
NuLbar = NuL_bar_EF_FP_LM(Rex,Rexc,Pr)     // Eq 7.30, 7.38, 7.39 
NuLbar = hLbar * x / k                                      // Changed variable from L to x 
//ReL = uinf * x / nu 
//Rexc = 5.0E5 
 
/*  Correlation description: Parallel external flow (EF) over a flat plate (FP), average coefficient; laminar (L) if 
ReL<Rexc, Eq 7.30; mixed (M) if ReL>Rexc, Eq 7.38 and 7.39; 0.6<=Pr<=60. See Table 7.9.  */ 
 
// Properties Tool - Water: 
// Water property functions :T dependence, From Table A.6 
// Units: T(K), p(bars);  
xf =  0   // Quality (0=sat liquid or 1=sat vapor);  "x" is used as spatial coordinate 
p = psat_T("Water", Tf) // Saturation pressure, bar 
nu = nu_Tx("Water",Tf,x) // Kinematic viscosity, m^2/s 
k = k_Tx("Water",Tf,x) // Thermal conductivity, W/m·K 
Pr = Pr_Tx("Water",Tf,x) // Prandtl number 
 
// Assigned Variables: 
x = 1                            // Distance from leading edge; 0 <= x <= 1 m 
uinf = 2   // Freestream velocity, m/s 

 Tf = 300   // Film temperature, K      
 



PROBLEM 7.15  
KNOWN:  Two plates of length L and 2L experience parallel flow with a critical Reynolds 
number of 5 × 105. 
 
FIND:  Reynolds numbers for which the total heat transfer rate is independent of orientation.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Plate temperatures and flow conditions are equivalent.  
ANALYSIS:  The total heat transfer rate would be the same (qL = q2L), if the convection 
coefficients were equal, L 2Lh h .=   Conditions for which such an equality is possible may be 

inferred from a sketch of Lh  versus ReL. 
 

 
 
For laminar flow ( )L x,cRe Re ,<  1/2

Lh   Lα − , and for mixed laminar and turbulent flow 

( )L x,cRe >Re ,  1/5 1
L 1 2h C L C L .− −= −   Hence Lh  varies with ReL as shown, and two 

possibilities are suggested. 
 
Case (a):  Laminar flow exists on the shorter plate, while mixed flow conditions exist on the 
longer plate. 
 
Case (b):  Mixed boundary layer conditions exist on both plates. 
 
In both cases, it is required that 
 L 2L 2L Lh h           and          Re 2 Re .= =  
          Continued … 



PROBLEM 7.15 (Cont.)  
Case (a):  From expressions for Lh  in laminar and mixed flow 
 

 ( )1/2 1/3 4/5 1/3
L 2L

1/2 4/5
L L

k k0.664 Re  Pr 0.037 Re 871 Pr
L 2L

0.664 Re 0.032 Re 435.

= −

= −
 

 
Since ReL < 5 × 105 and Re2L = 2 ReL > 5 × 105, the required value of ReL may be narrowed 
to the range  
 2.5 × 105     <     ReL     <     5 × 105. 
 
From a trial-and-error solution, it follows that  
 5

LRe 3.2 10 .≈ ×          < 
 
Case (b):  For mixed flow on both plates  

 ( ) ( )4/5 1/3 4/5 1/3
L 2L

k k0.037 Re 871  Pr 0.037 Re 871  Pr
L 2L

− = −  
 
or  

 
4/5 4/5
L L
4/5
L

0.037 Re 871 0.032 Re 435
0.005 Re 436

− = −

=
 

 
 6

LRe 1.50 10 .≈ ×          < 
 
COMMENTS:  (1) Note that it is impossible to satisfy the requirement that Lh  = 2Lh  if 

ReL < 0.25 × 105 (laminar flow for both plates). 
 
(2) The results are independent of the nature of the fluid. 



PROBLEM 7.16 
 
KNOWN: Dimensions of and heat generation rate in thin membrane.  Velocity and temperature 
of air flow parallel to membrane.  Air streams above and below membrane are in same, opposite, 
or orthogonal directions.  
 
FIND:  (a) Minimum and maximum local membrane temperatures.  Flow configuration that 
minimizes the membrane temperature.  (b)  Plot the surface temperature distribution for flow in 
the same and opposite directions.  Find configuration that minimizes spatial temperature 
gradients.  
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Steady-state conditions, (2) Boundary layer assumptions hold, (3) 
Constant properties, (4) Solutions are bounded by constant surface temperature and constant heat 
flux cases for the opposite and orthogonal flow configurations. 
 
PROPERTIES: Table A-4, Air (Tf ≈ 323 K): ν = 18.20 × 10-6 m2/s, k = 0.0280 W/m⋅K,  
Pr = 0.704.   
 
ANALYSIS: 
(a) We begin by calculating the Reynolds number  

4
L -6 2

u L 2 m/s × 0.15 mRe  =  =  = 1.65 × 10
ν 18.20 × 10  m /s
∞  

Therefore, the flow is laminar.                      
 

(a) Top and bottom flows in same direction.   
By symmetry, the heat flux from the membrane to the air is 50 W/m2 everywhere for the top and 
bottom air flows.  Since the heat flux is uniform, the local Nusselt number is given by Equation 
7.45,  
 1/2 1/3

x xNu  = 0.453 Re  Pr  
Thus  hx = cqx-1/2  

where 

 
1/2 1/3

q

-6 2 1/2 1/3 3/2

c  = 0.453(u /ν)  Pr  k

     = 0.453(2 m/s/18.2 × 10  m /s) ×(0.704) × 0.028 W/m K = 3.74 W/m K

∞

⋅ ⋅
 

Then s x sq  = h (T  - T )∞′′  and 1/2s s
s

x q

q qT  - T  =  = x
h c∞
′′ ′′

           (1) 

Continued… 
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PROBLEM 7.16 (Cont.) 
 
Clearly the minimum temperature occurs at x = 0 and is  

 Tmin = T∞ = 25°C                <  
 
The maximum temperature occurs at x = L and is  

 2 1/2 3/2
maxT  = 25°C + 50 W/m  × (0.15 m) /3.74 W/m K = 30.2°C⋅            < 

 
(ii) Top and bottom flows in opposite direction.   
The heat flux entering each of the top and bottom flows will no longer be uniform.  Near x = 0, 
where the top flow first encounters the plate, the heat transfer coefficient on the top surface is 
theoretically infinite, and all the generated heat will enter the top flow.  The opposite situation 
will occur at x = L.  
 We bound the solution by considering Nusselt number correlations for uniform surface 
temperature and uniform surface heat flux, Equations 7.23 and 7.45.  In both cases, the heat 
transfer coefficient varies as x-1/2, where x is the distance from the leading edge, thus for the top 
and bottom, 
 hx,t = cx-1/2,   hx,b = c(L - x)-1/2 
 
And all of the generated heat is removed by the top and bottom flows: 
 x,t x,b sq  = (h + h )(T  - T )∞′′&   

Thus s
-1/2 -1/2x,t x,b

q qT  - T  =    =  
h +h c x  + (L - x)

∞
′′ ′′

⎡ ⎤
⎣ ⎦

& &
            (2) 

The minimum temperature occurs at x = 0 or x = L, and is 

 Tmin = T∞ = 25°C                <  
 
The maximum temperature occurs where the denominator is minimum: 

 

-1/2 -1/2

-3/2 -3/2

d x + (L - x)  = 0
dx
1 1- x + (L - x) = 0
2 2

x = L - x
x = L/2

⎡ ⎤
⎣ ⎦

 

 
At that location  

 max -1/2
qT   = T + 

c2(L/2)∞
′′&

 

 
For uniform surface temperature, 

 
1/2 1/3

T
-6 2 1/2 1/3 3/2

c  = 0.332(u /ν)  Pr  k

     = 0.332(2 m/s/18.2 × 10 m /s) × (0.704) × 0.0280 W/m K = 2.74 W/m K
∞

⋅ ⋅
 

 

And 
2

max 3/2 -1/2
100 W/mT   = 25°C +  = 30.0°C

2.74 W/m K  2  (0.15 m/2)⋅ × ×
 

Continued… 



PROBLEM 7.16 (Cont.) 
 
For uniform surface heat flux, we previously found cq = 3.74 W/m3/2·K, thus, Tmax = 28.7°C.   

Therefore, for the opposite flow case, 28.7°C ≤ Tmax ≤ 30.0°C                       < 
 
(iii) Top and bottom flows in orthogonal directions.   
Here the heat transfer coefficients are given by 
 hx,t = cx-1/2,   hy,b = cy-1/2  
 
And  -1/2 -1/2

sq  = c(x  + y )(T  - T )∞′′&  

So  
( )s -1/2 -1/2

qT  - T  =  
c x  + y

∞
′′&  

The temperature will be minimum along x = 0 or y = 0, where 

 Tmin = T∞ = 25°C               <  
 
The temperature will be maximum along x = y = L, where 

 max -1/2
qT   = T + 

c 2 L∞
′′&  

The values of c are the same as previously, therefore we find 30.2°C ≤ Tmax ≤ 32.1°C      < 
 
The surface temperature is minimized when the air streams are in opposite directions, because a 
small heat transfer coefficient on the top is paired with a large heat transfer coefficient on the 

bottom, and vice versa.                 <  
 
(b) IHT was used to plot Equation (1) and (2) for c = cT or cq.  The result is shown below.   
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The spatial temperature gradients are somewhat less for the opposite flow case.  
 
COMMENTS: To correctly treat the convective heat transfer would require a coupled numerical 
solution of the thermal energy equation for both boundary layers simultaneously. 
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PROBLEM 7.17  
KNOWN:  Temperature, pressure and Reynolds number for air flow over a flat plate of uniform 
surface temperature.  
FIND:  (a) Rate of heat transfer from the plate, (b) Rate of heat transfer if air velocity is doubled and 
pressure is increased to 10 atm.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Uniform surface temperature, (3) Negligible 

radiation, (4) Rexc = ×5 105.  
 
PROPERTIES:  Table A-4, Air (Tf = 348K, 1 atm): k = 0.0299 W/m⋅K, Pr = 0.70. 
 
ANALYSIS:  (a) The heat rate is 
 ( ) ( )L sq h w L  T T .∞= × −  

Since the flow is laminar over the entire plate for ReL = 4 × 10
4, it follows that 

 ( ) ( )L
1/ 2 1/ 31/2 1/3L

L
h LNu 0.664 Re  Pr 0.664 40,000 0.70 117.9.

k
= = = =  

Hence  h k
L

 W / m K
0.2m

 W / m KL
2= =

⋅
= ⋅117 9 117 9 0 0299 17 6. . . .  

 

and  ( ) ( )2
Wq 17.6 0.1m 0.2m  100 50 C 17.6 W.

m K
= × − =

⋅

o    < 

 
(b) With p2 = 10 p1, it follows that ρ2 = 10 ρ1 and ν2 = ν1/10. Hence 

 5
L,2 L,1

2 1

u L u LRe 2 10 20 Re 8 10
ν ν
∞ ∞⎛ ⎞ ⎛ ⎞= = × = = ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

and mixed boundary layer conditions exist on the plate.  Hence 

 ( ) ( ) ( )L

L

4 /5 1/ 34/5 1/3 5L
L

h LNu 0.037 Re 871  Pr 0.037 8 10 871  0.70
k

Nu 961.

⎡ ⎤
= = − = × × −⎢ ⎥

⎣ ⎦
=

 

Hence,  h  W / m K
0.2m

 W / m KL
2=

⋅
= ⋅9610 0299 1436. .  

 ( ) ( )2
Wq 143.6 0.1m 0.2m  100 50 C 143.6 W.

m K
= × − =

⋅

o     < 

COMMENTS:  Note that, in calculating ReL,2, ideal gas behavior has been assumed.  It has also been 
assumed that k, μ and Pr are independent of pressure over the range considered. 



PROBLEM 7.18 
 
KNOWN: Solar cell material dimensions and properties, solar-to-electrical conversion efficiency 
dependence on silicon temperature, solar irradiation and location where the irradiation is 
absorbed, air velocity and temperature. 
 
FIND: (a) Electrical power produced and silicon temperature for a L = 1 m long, w = 0.1 m wide 
solar cell with G = 700 W/m2 with tripped boundary layer, (b) Same as Part (a) but with L = 0.1 
m, w = 1 m, (c) Plot of the electrical power produced and the silicon temperature for air velocities 
in the range 0 ≤ um ≤ 10 m/s for the L = 0.1 m configuration. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) One-dimensional heat 
transfer, (4) Tripped and turbulent boundary layer, (5) Large surroundings, (6) Negligible contact 
resistances. 
 
PROPERTIES: Table A.4, air (assume Tf = 308 K, p = 1 atm): k = 0.0269 W/m⋅K, ν = 1.669 × 
10-5 m2/s, Pr = 0.706.  
 
ANALYSIS: 
(a) We begin by drawing the thermal circuit for the problem, recognizing that there is no heat 
transfer downward from the thin silicon layer. 

Continued… 
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PROBLEM 7.18 (Cont.) 
 

                          

Rt,conv = 1/ h A

T∞Tsur

Rt,rad = 1/hradA

T1

Rt,g = Lg/kgA

Rt,a = La/kaA

T2

T3 = Tsi

0.1 GA

0.83 GA ( 1 – η)

Rt,conv = 1/ h A

T∞Tsur

Rt,rad = 1/hradA

T1

Rt,g = Lg/kgA

Rt,a = La/kaA

T2

T3 = Tsi

0.1 GA

0.83 GA ( 1 – η)  
 
The thermal resistances are  
 -3 -3

t,g g gR  = L /k A = 3 × 10  m (1.4 W/m K × 1 m × 0.1 m) = 21.43 × 10  K/W⋅  

 -3 -6
t,a a aR  = L /k A = 0.1 × 10  m (145 W/m K × 1 m × 0.1 m) = 6.897 × 10  K/W⋅  

 2 2
rad g 1 sur 1 surh  = ε σ (T  + T )(T  + T )  

          t,rad -8 2 4 2 2
1 1

1R  = 
0.9 × 5.67 × 10  W/m K  × (T  + 295 K) × (T + (295K) ) × 1 m × 0.1 m⋅

   (1) 

 
For the tripped boundary layer, 

 3m
L -5 2

u L 4m/s 1mRe  = =  = 239.7×10
1.669 × 10  m /s

×
ν

 

From Equation 7.38 

 
0.84/5 1/3 3 1/3

L LNu  = 0.037Re Pr  = 0.037 × 239.7 × 10  × 0.706  = 662.8⎡ ⎤
⎣ ⎦  

 
 2

Lh = Nu k/L = 662.8 ×0.0269 W/m K/1m = 17.82 W/m K⋅ ⋅  
 

 3
t,conv 2

1R   = 1/hA = 561.2 10 K / W
17.82 W/m K × 1 m × 0.1 m

−= ×
⋅

 

 
From the thermal circuit, 
 3 1 t,g t,a 3 1 t,g t,a0.83GA (1 - η) = (T  - T )/(R  + R )  or  T  - T  = (R  + R ) 0.83GA (1 - η)  
 
 T3 – T1 = (21.43 × 10-3 K/W + 6.897 × 10-6 K/W)× 0.83 × 700 W/m2 × 1m × 0.1m × (1-η) 
 
 3 1T  - T  = 1.245(1 - η)                (2) 
 
We also note from the thermal circuit, 

Continued… 



 PROBLEM 7.18 (Cont.) 
 

1 sur t,rad 1 t,conv0.83GA (1 - η) + 0.1G = (T  - T )/R  + (T  - T )/R∞  
Since T∞ = Tsur 

1 sur
t,rad t,conv

1 10.83GA (1 - η) + 0.1G = (T  - T )  + 
R R
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

1 sur

t,rad t,conv

2 2

1 sur

t,rad

0.83GA (1 - η) + 0.1GAT  - T  = 
1 1 + R R

0.83 × 700 W/m  × 1 m × 0.1 m × (1 - η) + 0.1 × 700 W/m × 1 m × 0.1 mT  - T  = 
1  + 1.7819 W/KR

⎡ ⎤
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥⎣ ⎦

 

 1 sur

t,rad

58.1 W (1 - η) + 7 WT  - T  = 
1 + 1.7819 W/KR

⎡ ⎤
⎢ ⎥⎣ ⎦

             (3) 

 
where η = 0.28 – 0.001°C-1 × (T3 – 273)°C             (4) 
 
Equations (1) – (4) may be solved simultaneously to yield 

 3 si 1 t,radη = 0.2353, T  = T  = 44.7°C, T  = 43.7°C, R  = 1.71 K/W              < 

The electric power is P = 0.83GAη = 0.83 × 700 W/m2 × 1 m × 0.1 m × 0.2353 = 13.67 W       < 
  
(b) For the tripped boundary layer 

 2m
L -5 2

u L 4/ms 0.1mRe  = =  = 239.7×10
1.669 × 10  m /s

×
ν

 

From Equation 7.38 

 
0.84/5 1/3 2 1/3

LNu  = 0.037Re Pr  = 0.037 × 239.7 × 10  × 0.706  = 105⎡ ⎤
⎣ ⎦  

 
 2

L
0.0269 W/m Kh = Nu k/L = 105 ×  = 28.25 W/m K1m

⋅ ⋅  

 

 3
t,conv 2

1R   = 1/hA = 354.0 10 K / W
28.25 W/m K × 1 m × 0.1 m

−= ×
⋅

 

 
Proceeding as in Part (a) we find 

 3 si 1 t,radη = 0.242, T  = T  = 38.0°C, T  = 37.1°C,  R  = 1.768 K/W,  P = 14.06 W          < 
 
(c) Solving Equations 1 through 4 over the velocity range 0 ≤ um ≤ 10 m/s yields the following 
behavior 
 
 

Continued… 



PROBLEM 7.18 (Cont.) 
 
 

Silicon Temperature vs. Air Velocity
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Electric Power vs Air Velocity
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COMMENTS: (1) Changing the orientation of the solar panel to the L = 0.1 m configuration 
reduces the temperature of the silicon semiconductor significantly. The influence of the 
orientation on the electric power would be more pronounced for warmer air temperatures. (2) 
Decreasing the air velocity results in significantly diminished power output. At very low cross 
flow velocities, natural convection would become significant and would lead to slightly improved 
power output relative to that predicted here. (3) Film temperatures for Parts (a) and (b) are 31.9 
°C and 28.6 °C, respectively. The assumed value of the film temperature is good.  



PROBLEM 7.19 
 

KNOWN: Dimensions of a photovoltaic cell, cooling air velocity and temperature, size of 
concentrating lens, photovoltaic construction and properties. 
 
FIND: (a) The electric power output and silicon temperature of a system consisting of a 400 mm 
× 400 mm concentrating lens and a 100 mm × 100 mm photovoltaic cell, (b) Variation of the 
electric power output and silicon temperature for 100 mm ≤ Llens ≤ 600 mm. 
 
SCHEMATIC: 

Air
um = 5 m/s
T∞ = 25°C

Photovoltaic cell

Solar irradiation, G

Focusing lens

Concentrated
irradiation, GcL = 100 mm

Tsur = 25°C

See Problem 7.18

Tsur = 25°C

Llens

Air
um = 5 m/s
T∞ = 25°C

Photovoltaic cell

Solar irradiation, G

Focusing lens

Concentrated
irradiation, GcL = 100 mm

Tsur = 25°C

See Problem 7.18

Tsur = 25°C

Llens

 
 
 
ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) One-dimensional heat 
transfer, (4) Tripped and turbulent boundary layer, (5) Large surroundings, (6) Negligible contact 
resistances. 
 
PROPERTIES: Given, Glass: kg = 1.4 W/m·K, εg = 0.90, Adhesive: ka = 145 W/m·K, Solder, ks 

= 50 W/m·K, Aluminum nitride: kan = 120 W/m·K, Table A.4, air (assume Tf = 70°C): k = 
0.02948 W/m⋅K, ν = 2.022 × 10-5 m2/s, Pr = 0.701.  
 
ANALYSIS:  
 
(a) We begin by drawing the thermal circuit, 
 
 
 

Continued… 
 
 
 



PROBLEM 7.19 (Cont.) 
 

Rt,conv = 1/(hconvA)

T∞Tsur

Rt,rad,tp = 1/(hrad,tpA)

T1

Rt,g = Lg/(kgA)

Rt,a = La/(kaA)

T2

T30.83 GcA ( 1 – η)

Rt,conv = 1/(hconvA)

T∞Tsur

Rt,rad,b = 1/(hrad,bA)

T5

Rt,an = Lan/(kanA)

Rt,s = Ls/(ksA)

T4

qt

qb

Rt,conv = 1/(hconvA)

T∞Tsur

Rt,rad,tp = 1/(hrad,tpA)

T1

Rt,g = Lg/(kgA)

Rt,a = La/(kaA)

T2

T30.83 GcA ( 1 – η)

Rt,conv = 1/(hconvA)

T∞Tsur

Rt,rad,b = 1/(hrad,bA)

T5

Rt,an = Lan/(kanA)

Rt,s = Ls/(ksA)

T4

qt

qb

 
 
The thermal resistances are 
 ( )-3

t,g g gR  = L /(k A) =  3 × 10  m 1.4 W/m K × 0.1 m × 0.1 m  = 0.2143 K/W⋅  

 ( )-3 -5
t,a a aR  = L /(k A) =0.1 × 10  m 145 W/m K × 0.1 m × 0.1 m  = 6.897  10  K/W⋅ ×  

 ( )-3 -6
t,s s sR  = L /(k A) =  0.1 × 10  m 50 W/m K × 0.1 m × 0.1 m  = 200  10  K/W⋅ ×  

 ( )-3 -3
t,an an anR  = L /(k A) =  2 × 10  m 120 W/m K × 0.1 m × 0.1 m  = 1.67  10  K/W⋅ ×  

 2 2
rad,tp g 1 sur 1 surh  = ε σ (T  + T )(T  + T )  

 t,rad,tp -8 2 4 2 2
1 1

1R  = 
0.9 × 5.67 × 10  W/m K  × (T  + 298 K) × (T  + (298 K) )⋅

        (1) 

 2 2
rad,b b 5 sur 5 surh  = ε σ (T  + T )(T  + T )  

t,rad,b -8 2 4 2 2
5 5

1R  = 
0.95 × 5.67 × 10  W/m K  × (T  + 298 K) × (T + (298 K) )⋅

        (2) 

 
For the top and bottom tripped boundary layers, 
  

3
L -5 2

u L 5 m/s 0.1 mRe  = =  = 24.73×10
2.022 × 10  m /s

∞ ×
ν

 

From Equation 7.38 
Continued… 



 PROBLEM 7.19 (Cont.) 
 

0.84/5 1/3 3 1/3
L LNu  = 0.037Re Pr  = 0.037 × 24.73 × 10  × 0.701  = 107.5⎡ ⎤

⎣ ⎦  

 

 2
L

107.5 0.02948 W/m Kh = Nu k/L =  = 31.69 W/m K
0.1 m

× ⋅
⋅  

 
 t,conv 2

1R   = 1/hA = 3.155K / W
(31.69 W/m K × 0.1 m × 0.1 m)

=
⋅

 

 
From the thermal circuit, 

 
2

c lens t b
2 2

t b

0.83G A (1 - η) = 0.83G (L /L) A(1 -  η) = q  + q

0.83 × 700 W/m  × 4  × 0.1 m × 0.1 m × (1 - η) = q  + q
 

 t b9296 W = (q  + q )/(1 - η)               (3) 
 
where 
 qt = (T3 – T1) /(Rt,a + Rt,g) = (T3 – T1) /0.2144 K/W           (4) 
 
and 

 1 sur 1
b

t,rad,tp t,conv

(T  - T ) (T  - T )q  =  +      R R
∞  

 

      1 1
t,rad,tp

 (T  - 298 K) (T  - 298 K)=  + R 3.155 K/W            (5) 

Likewise 
 qb = (T3 – T5) /(Rt,s + Rt,an) = (T3 – T5) /1.87 × 10-3 K/W           (6) 
 
and  

 5 sur 5
b

t,rad,b t,conv

(T  - T ) (T  - T )q  =  +      R R
∞  

      5 5
t,rad,b

 (T  - 298 K) (T  - 298 K)=  + R 3.155 K/W            (7) 

The solar-to-electrical conversion efficiency is 
 
 -1

3η = 0.28 - 0.001°C  × (T  - 273)°C              (8) 
 
Equations (1) through (8) may be solved simultaneously to yield 
 

si 3 1 5

t,rad,tp t,rad,b t b

T  = T  - 273 = 125.9°C, η = 0.1541, T  = 390.9 K, T  = 398.8 K,
R  = 11.78 K/W, R  = 10.75 K/W, q  = 37.32 W, q  = 41.32 W.

 

The electric power produced is  
 2

lensP = 0.83G (L /L) Aη  

   2 2= 0.83 × 700 W/m  × 4  × 0.1 m × 0.1 m × 0.1541 = 14.33 W           < 
Continued… 



PROBLEM 7.19 (Cont.) 
 
(b) The IHT Software may be used to investigate the sensitivity of the silicon temperature and the 

electric power produced in response to the concentrating lense size.  Results are shown below.  < 
 

Electric Power vs Concentrator Size
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Silicon Temperature vs Concentrator Size
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COMMENTS: (1) The electric power output is highly sensitive to the size of the concentrating 
lens The concentrated irradiation continually increases as the concentrator is made larger until, 
eventually, the silicon temperature becomes very high and the solar-to-electrical conversion 
efficiency becomes small. (2) The electric power could be increased if heat sinks and/or liquid 
cooling could be applied to the solar cell, keeping the silicon temperature low and the conversion 
efficiency relatively high. (3) The assumed film temperature is a good estimate since Tf,tp = 71.4 
°C and Tf,bot = 75.4 °C.  



PROBLEM 7.20  
KNOWN:  Material properties, inner surface temperature and dimensions of roof of refrigerated truck 
compartment.  Truck speed and ambient temperature.  Solar irradiation.  
FIND:  (a) Outer surface temperature of roof and rate of heat transfer to compartment, (b) Effect of 
changing radiative properties of outer surface, (c) Effect of eliminating insulation.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible irradiation from the sky, (2) Turbulent flow over entire outer 
surface, (3) Average convection coefficient may be used to estimate average surface temperature, (4) 
Constant properties. 
 
PROPERTIES:  Table A-4, air (p = 1 atm, Tf ≈ 300K):  ν = 15.89 × 10-6 m2/s, k = 0.0263 W/m⋅K, Pr 
= 0.707.  
ANALYSIS:  (a) From an energy balance for the outer surface, 

 s,o s,i
S S conv cond

tot

T T
G q E q

R
α

−
′′ ′′+ − = =

′′
 

 ( ) s,o s,i4
S S s,o s,o

p i

T T
G h T T T

2R R
α εσ∞

−
+ − − =

′′ ′′+
 

where ( ) 5 2
p 1 pR t / k 2.78 10 m K / W,−′′ = = × ⋅  ( ) 2

i 2 iR t / k 1.923 m K / W,′′ = = ⋅  and with LRe u L /ν∞=  
6 2 729.2 m / s 10m /15.89 10 m / s 1.84 10 ,−= × × = ×  

 

 ( ) ( )
4 / 54 / 5 1/ 3 7 21/ 3

L
k 0.0263 W / m K

h 0.037 Re Pr 0.037 1.84 10 0.707 56.2 W / m K
L 10m

⋅
= = × = ⋅  

 
Hence, 
 

( ) ( )
( )

s,o2 2 8 2 4 4
s,o s,o 5 2

T 263K
0.5 750 W / m K 56.2 W / m K 305 T 0.5 5.67 10 W / m K T

5.56 10 1.923 m K / W

−

−

−
⋅ + ⋅ − − × × ⋅ =

× + ⋅

 

 
Solving, we obtain 
 
 s,oT 306.8K 33.8 C= = °         < 
 
Hence, the heat load is 
 

 ( ) ( ) ( )
cnd 2

33.8 10 C
q W L q 3.5m 10m 797 W

1.923m K / W

+ °
′′= ⋅ = × =

⋅
    < 

 
(b) With the special surface finish ( )S 0.15, 0.8 ,α ε= =  
          Continued … 



PROBLEM 7.20 (Cont.) 
 
 s,oT 300.1K 27.1 C= = °         < 
 
 q 675.3W=           < 
 
(c) Without the insulation (t2 = 0) and with αS = ε = 0.5, 
 
 s,oT 263.1K 9.9 C= = − °         < 
 
 q 90,630W=           < 
 
COMMENTS:  (1) Use of the special surface finish reduces the solar input, while increasing radiation 
emission from the surface.  The cumulative effect is to reduce the heat load by 15%.  (2) The thermal 
resistance of the aluminum panels is negligible, and without the insulation, the heat load is enormous. 
 
 

 
 
 



PROBLEM 7.21  
KNOWN:  Surface characteristics of a flat plate in an air stream.  
FIND:  Orientation which minimizes convection heat transfer.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Surface B is sufficiently rough to trip the boundary layer when in the 
upstream position (Configuration 2).  
PROPERTIES:  Table A-4, Air (Tf = 333K, 1 atm):  ν = 19.2 × 10-6 m2/s, k = 28.7 × 10-3 
W/m⋅K, Pr = 0.7.  
ANALYSIS:  Since Configuration (2) results in a turbulent boundary layer over the entire 
surface, the lowest heat transfer is associated with Configuration (1).  Find  

 6
L -6 2

u L 20 m/s 1mRe 1.04 10 .
19.2 10 m / sν

∞ ×
= = = ×

×
 

 
Hence in Configuration (1), transition will occur just before the rough surface (xc = 0.48m).  
Note that  

 
( )
( ) ( )

L,1

L,2 L,1

4 /56 1/3

4 / 5 1/ 36

Nu 0.037 1.04 10 871  0.7 1366

Nu 0.037 1.04 10 0.7 2139 Nu .

⎡ ⎤
= × − =⎢ ⎥
⎣ ⎦

= × = >

 

 

For Configuration (1):  L,1
L,1h L

Nu 1366.
k

= =  
 
Hence 

 ( )3 2
L,1h 1366 28.7 10 W/m K /1m 39.2 W/m K−= × ⋅ = ⋅  

and 
 ( ) ( )( )2

1 L,1 sq h A T T 39.2 W/m K 0.5m 1m 100 20 K∞= − = ⋅ × −  

 1q 1568 W.=           < 
 



PROBLEM 7.22 
 
KNOWN:  Dimensions and orientation of a flat plate placed in atmospheric airstream, airstream 
velocity and temperature, plate temperature. 
 
FIND:  The average convection coefficient for the entire surface. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Boundary layer on rough 
plate is tripped at leading edge, (4) Transition occurs at Rex,c = 500,000. 
 
PROPERTIES:  Table A.4, air (Tf = 60°C = 333K, p = 1 atm): ν = 19.24×10-6 m2/s, Pr = 0.702, k = 
0.0288 W/m⋅K. 
 
ANALYSIS:  For both the smooth and rough sections of the plate, 
 

   6 2
20m/s 0.5m 520,000

19.24 10 m /sL
u LRe
ν
∞

−
×

= = =
×

 

 
Therefore, flow over portion A of the plate is nearly all laminar except near the trailing edge. 
 
For portion A, Eq. 7.38 yields 
 

4 /5 1/3 4 /5 1/3 20.0288W/m K0.037 871 0.037 520,000 871 0.702 26.2 W/m K
0.5mA L

kh Re Pr
L

⋅⎡ ⎤ ⎡ ⎤= − = × − = ⋅⎣ ⎦ ⎣ ⎦
 
For portion B, Eq. 7.38 yields 
 

4 /5 1/3 4 /5 1/3 20.0288W/m K0.037 0.037 520,000 0.702 70.8 W/m K
0.5mB L

kh Re Pr
L

⋅⎡ ⎤ ⎡ ⎤= = × = ⋅⎣ ⎦ ⎣ ⎦  

 
Therefore, for the entire plate consisting of half portion A and half portion B, 
 

   248.5 W/m K
2

A Bh hh +
= = ⋅       < 

 
COMMENTS:  (1) The value of the average coefficient for orientations 1 and 2 of Problem 7.21 are 

2
1 39.2 W/m Kh = ⋅ and 2

2 61.4 W/m Kh = ⋅ , respectively. The average heat transfer coefficient found 
here is approximately midway between the values associated with the other two orientations. This is 
coincidental, since the nature of the flow is very different for the three different orientations. (2) In 
reality, boundary layer development cannot proceed on the smooth and rough parts of the plate 
independent of the other part of the plate, as implied in the solution above. Rather, there will be an 
intermediate region that will be characterized by complex flow and heat transfer phenomena. The 
solution should be viewed as a first approximation of actual heat transfer conditions. 

A
(smooth)

B
(rough)

u∞ = 20 m/s

T∞ = 20°C

Ts = 100°C

L = 0.5m

A
(smooth)

B
(rough)

u∞ = 20 m/s

T∞ = 20°C

Ts = 100°C

L = 0.5m



PROBLEM 7.23 
 
KNOWN:  Design of an anemometer comprised of a thin metallic strip supported by stiff rods serving as 
electrodes for passage of heating current.  Fine-wire thermocouple on trailing edge of strip. 
 
FIND:  (a) Relationship between electrical power dissipation per unit width of the strip in the transverse 
direction, P' (mW/mm), and airstream velocity u∞  when maintained at constant strip temperature, Ts; 
show the relationship graphically; (b) The uncertainty in the airstream velocity if the accuracy with which 
the strip temperature can be measured and maintained constant is ±0.2°C;  (c)  Relationship between strip 
temperature and airstream velocity u∞  when the strip is provided with a constant power, P' = 30 mW/mm; 
show the relationship graphically.  Also, find the uncertainty in the airstream velocity if the accuracy with 
which the strip temperature can be measured  is ±0.2°C; (d) Compare features associated with each of the 
operating nodes. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Strip has uniform temperature 
in the midspan region of the strip, (4) Negligible conduction in the transverse direction in the midspan 
region, and (5) Airstream over strip approximates parallel flow over two sides of a smooth flat plate. 
 
ANALYSIS:  (a) In the midspan region of uniform temperature Ts with no conduction in the transverse 
direction, all the dissipated electrical power is transferred by convection to the airstream, 
 
 ( )L sP 2h L T T∞′ = −  (1) 
 
where P′  is the power per unit width (transverse direction).  Using the IHT Correlation Tool for External 
Flow-Flat Plate the power as a function of airstream velocity was determined and is plotted below.  The 
IHT tool uses the flat plate correlation, Eq. 7.30 since the flow is laminar over this velocity range. 
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Continued... 



 
PROBLEM 7.23 (Cont.) 

 
(b) By differentiation of Eq. (1), the relative uncertainties of the convection coefficient and strip 
temperature are, assuming the power remains constant, 

 sL
s

Th
h T T∞

ΔΔ
= −

−
 (2) 

Since the flow was laminar for the range of airstream velocities, Eq. 7.30, 

 1/ 2 L
L

L

h uh ~ u or 0.5
h u

∞
∞

∞

Δ Δ
=  (3) 

Hence, the relative uncertainty in the air velocity due to uncertainty in Ts, ΔT Cs = ±0 2. o  

 
( )

s
s

Tu 0.2 C2 2 4%
u T T 35 25 C
∞

∞ ∞

ΔΔ ±
= = = ±

− −

o

o
 (4)< 

(c) Using the IHT workspace setting ′P  = 30 mW/mm, the strip temperature Ts as a function of the 
airstream velocity was determined and plotted.  Note that the slope of the Ts vs. u∞  curve is steep for low 
velocities and relatively flat for high velocities.  That is, the technique is more sensitive at lower 
velocities.  Using Eq. (4), but with Ts dependent upon u∞ , the relative uncertainty in u∞  can be 
determined. 
 

0 10 20 30 40 50

Airstream velocity, uinf (m/s)

25

35

45

55

St
rip

 te
m

pe
ra

tu
re

, T
s 

(C
)

 
 
 

0 10 20 30 40 50

Airstream velocity, uinf (m/s)

0

2

4

6
R

el
 u

nc
er

ta
in

ty
 in

 u
ni

f (
%

)

 
 
 

 
(d) For the constant power mode of operation, part (a), the uncertainty in u∞  due to uncertainty in 
temperature measurement was found as 4%, independent of the magnitude u∞ .  For the constant-
temperature mode of operation, the uncertainty in u∞ is less than 4% for velocities less than 30 m/s, with 
a value of 1% around 2 m/s.  However, in the upper velocity range, the error increases to 5%. 
 



PROBLEM 7.24  
KNOWN:  Plate dimensions and initial temperature.  Velocity and temperature of air in parallel flow 
over plates.  
FIND:  Initial rate of heat transfer from plate.  Rate of change of plate temperature.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible radiation, (2) Negligible effect of conveyor velocity on boundary 
layer development, (3) Plates are isothermal, (4) Negligible heat transfer from sides of plate, (5) 

5
x,cRe 5 10 ,= ×  (6) Constant properties. 

 
PROPERTIES:  Table A-1, AISI 1010  steel (573K):  kp = 49.2 W/m⋅K, c = 549 J/kg⋅K, ρ = 7832 
kg/m3.  Table A-4, Air (p = 1 atm, Tf = 433K):  ν = 30.4 × 10-6 m2/s, k = 0.0361 W/m⋅K, Pr = 0.688. 
 
ANALYSIS:  The initial rate of heat transfer from a plate is 

 ( ) ( )2
s i iq 2 h A T T 2 h L T T∞ ∞= − = −  

 
With 6 2 5

LRe u L / 10 m / s 1m / 30.4 10 m / s 3.29 10 ,ν −
∞= = × × = ×  flow is laminar over the entire surface 

and 
 

 ( ) ( )L
1/ 2 1/ 31/ 2 1/ 3 5

LNu 0.664Re Pr 0.664 3.29 10 0.688 336= = × =  
 
 ( ) ( )L

2h k / L Nu 0.0361W / m K /1m 336 12.1W / m K= = ⋅ = ⋅  
 
Hence, 
 

 ( ) ( )22q 2 12.1W / m K 1m 300 20 C 6780 W= × ⋅ − ° =     < 
 
Performing an energy balance at an instant of time for a control surface about the plate, out stE E ,− =& &  
we obtain, 
 

 ( )2 2
i

i

dTL c h 2L T T
dt

ρδ ∞= − −  

 

 
( )( )2

3i

2 12.1W / m K 300 20 CdT 0.26 C / s
dt 7832 kg / m 0.006m 549J / kg K

⋅ − °
= − = − °

× × ⋅
   < 

 
COMMENTS:  (1) With ( ) 4

pBi h / 2 / k 7.4 10 ,δ −= = ×  use of the lumped capacitance method is 
appropriate.  (2) Despite the large plate temperature and the small convection coefficient, if adjoining 
plates are in close proximity, radiation exchange with the surroundings will be small and the 
assumption of negligible radiation is justifiable. 



PROBLEM 7.25 
 
KNOWN:  Prevailing wind with prescribed speed blows past ten window panels, each of 1-m length, on 
a penthouse tower.  
 
FIND:  (a) Average convection coefficient for the first, third and tenth window panels when the wind 
speed is 5 m/s; evaluate thermophysical properties at 300 K, but determine suitability when ambient air 
temperature is in the range -15 ≤ T∞  ≤ 38°C; (b) Compute and plot the average coefficients for the same 
panels with wind speeds for the range 5 ≤ u∞  ≤ 100 km/h; explain features and relative magnitudes. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Wind over panels 
approximates parallel flow over a smooth flat plate, and (4) Transition Reynolds number is Res,c = 5 × 
105. 
 
PROPERTIES:  Table A.4, Air (Tf = 300 K, 1 atm):  ν = 15.89 × 10-5 m2/s, k = 26.3 × 10-3 W/m⋅K, Pr = 
0.707. 
 
ANALYSIS:  (a) The average convection coefficients for the first, third and tenth panels are 
 

 3 3 2 2 10 10 9 9
1 2 3 9 10

3 2 10 9

h x h x h x h xh h h
x x x x− −

− −
= =

− −
 (1,2,3) 

 
where ( )2 2 2h h x= , etc.  If Rex,c = 5 × 105, with properties evaluated at Tf = 300 K, transition occurs at 
 

 
6 2

5
c x,c

15.89 10 m sx Re 5 10 1.59m
u 5m s
ν −

∞

×
= = × × =  

 
The flow over the first panel is laminar, and h1 can be estimated using Eq. (7.30). 
 

 1/ 2 1/ 31 1x1 x
h xNu 0.664 Re Pr

k
= =  

( )( ) ( )
1/ 2 1/ 36 2 2

1h 0.0263W m K 0.664 lm 5 m s lm 15.89 10 m s 0.707 8.73 W m K−= ⋅ × × × = ⋅  < 
 
The flow over the third and tenth panels is mixed, and 2h , 3h , 9h  and 10h  can be estimated using Eq. 
(7.41).  For the third panel with x3 = 3 m and x2 = 2 m, 

 ( )4 / 5 1/33 3x3 x
h xNu 0.037 Re 871 Pr

k
= = −  

 
( )

( ) ( )
3

4 /5 1/ 36 2 2

h 0.0263W m K 3m

0.037 5m s 3m 15.89 10 m s 871 0.707 10.6 W m K−

= ⋅
⎡ ⎤

× × × − = ⋅⎢ ⎥
⎣ ⎦

 

 
Continued... 
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( )

( ) ( )
2

4 / 5 1/ 36 2 2

h 0.0263W m K 2m

0.037 5m s 2m 15.89 10 m s 871 0.707 8.68W m K−

= ⋅
⎡ ⎤

× × × − = ⋅⎢ ⎥
⎣ ⎦

 

From Eq. (2), 

 
( )

2 2
2

2 3
10.61W m K 3m 8.68W m K 2mh 14.5W m K

3 2 m−
⋅ × − ⋅ ×

= = ⋅
−

 < 

Following the same procedure for the tenth panel, find 10h  = 11.64 W/m2⋅K and 9h  = 11.71 W/m2⋅K, 
and 

 2
9 10h 11.1W m K− = ⋅  < 

Assuming that the window panel temperature will always be close to room temperature, Ts = 23°C = 296 
K.  If T∞  ranges from -15 to 38°C, the film temperature, Tf = (Ts + T∞ )/2, will vary from 275 to 310 K.  
We’ll explore the effect of Tf subsequently. 
 
(b) Using the IHT Tool, Correlations, External Flow, Flat Plate, results were obtained for the average 
coefficients h .  Using Eqs. (2) and (3), average coefficients for the panels as a function of wind speed 
were computed and plotted. 
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COMMENTS:  (1) The behavior of the panel average coefficients as a function of wind speed can be 
explained from the behavior of the local coefficient as a function of distance for difference velocities as 
plotted below. 
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For low wind speeds, transition occurs near the mid-panel, making 1h  and 9 10h −  nearly equal and very 
high because of leading-edge and turbulence effects, respectively.  As the wind speed increases, transition 
occurs closer to the leading edge.  Notice how 2 3h −  increases rather abruptly, subsequently becoming 

greater than 9 10h − .  The abrupt increase in h1 around 30 km/h is a consequence of transition occurring 
with x < 1m. 
 
(2) Using the IHT code developed for the foregoing analysis with u∞ = 5 m/s, the effect of Tf is tabulated 
below 
 

Tf (K) 275 300 310 

1h  (W/m2⋅K) 8.72 8.73 8.70 

2 3h −  (W/m2⋅K) 15.1 14.5 14.2 

9 10h −  (W/m2⋅K) 11.6 11.1 10.8 

 
The overall effect of Tf on estimates for the average panel coefficient is slight, less than 5%. 



PROBLEM 7.26 
 
KNOWN:  Length and surface temperature of a rectangular fin. 
 
FIND:  (a) Heat removal per unit width, q′ , when air at a prescribed temperature and velocity is in parallel, 
turbulent flow over the fin, and (b) Calculate and plot q′  for motorcycle speeds ranging from 10 to 100 km/h. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible radiation, (3) Turbulent flow over entire surface. 
 
PROPERTIES:  Table A.4, Air (412 K, 1 atm):  ν = 27.85 × 10-6 m2/s, k = 0.0346 W/m⋅K, Pr = 0.69. 
 
ANALYSIS:  (a) The heat loss per unit width is 
 ( )[ ]L sq 2 h L T T∞′ = × −  

where h  is obtained from the correlation, Eq. 7.38 but with turbulent flow over the entire surface, 

( )
4 / 5

1/ 34 / 5 1/ 3
L L 6 2

80 km h 1000 m km 1 3600 h s 0.15 m
Nu 0.037 Re Pr 0.037 0.69 378

27.85 10 m s−
× × ×

= = =
×

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Hence, 

 2
LL

k 0.0346 W m K
h Nu 378 87 W m K

L 0.15 m
⋅

= = = ⋅  

 ( )2q 2 87 W m K 0.15 m 523 300 K 5826 W m′ = × ⋅ × − =⎡ ⎤
⎣ ⎦ . < 

 
 
(b) Using the foregoing equations in the IHT 
Workspace, q′  as a function of speed was 
calculated and is plotted as shown. 
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COMMENTS:  (1) Radiation emission from the fin is not negligible.  With an assumed emissivity of ε = 

1, the rate of emission per unit width at 80 km/h would be q′  = ( )4
sT 2Lσ  = 1273 W/m.  If the fin 

received negligible radiation from its surroundings, its loss by radiation would then be approximately 
20% of that by convection. 
 
(2) From the correlation and heat rate expression, it follows that q′  ~ u∞

4 5/ .  That is, q′  vs. u∞  is nearly 
linear as evident from the above plot. 



PROBLEM 7.27 
 
KNOWN:  Wall of a metal building experiences a 10 mph (4.47 m/s) breeze with air temperature of  
90°F (32.2°C) and solar insolation of 400 W/m2.  The length of the wall in the wind direction is 10 m 
and the emissivity is 0.93.  
 
FIND:  Estimate the average wall temperature. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) The solar absorptivity of the wall  is unity, (3) Sky 
irradiation is negligible, (4) Wall is isothermal at the average temperature Ts, (5) Flow is fully 
turbulent over the wall, and (6) Negligible heat transfer into the building. 
 
PROPERTIES:  Table A-4, Air (assume Tf = 305 K, 1 atm):  ν = 16.27 × 106 m2/s, k = 0.02658 
W/m⋅K, Pr = 0.707. 
 
ANALYSIS:  Perform an energy balance on the wall surface considering convection, absorbed 
irradiation and emission.  On a per unit width basis, 
 in outE E 0′ ′− =& &  
 ( )cv S S sq G E L 0α′− + − =  

 ( ) ( )4
L s S S sh L T T G T L 0α εσ∞− − + =−       (1) 

The average convection coefficient is estimated using Eq. 7.41 assuming fully turbulent flow over the 
length of the wall in the direction of the breeze. 

 L
4 / 5 1/ 3L
L

h L
Nu 0.037 Re Pr

k
= =        (2) 

 6 2 6
LRe u L / 4.47 m / s 10 m /16.27 10 m / s 2.748 10−

∞= = × × = ×ν  

 ( ) ( ) ( )
4 / 5 1/ 36 2

Lh 0.02658 W / m K /10 m 0.037 2.748 10 0.707 12.4 W / m K= ⋅ × × = ⋅  

Substituting numerical values into Eq. (1), find Ts. 

 ( )[ ]2
s12.4 W / m 10 m T 32.2 273 K− × − +  

   2 8 2 4 4
s1.0 400 W / m 0.93 5.67 10 W / m K T 10 m 0−+ × × × ⋅ × =⎡ ⎤−⎣ ⎦  

 sT 302.2 K 29 C= = °          < 

COMMENTS:  (1) The properties for the correlation should be evaluated at Tf = (Ts + T∞)/2 =      
304 K.  The assumption of 305 K was reasonable. 
 
(2) Is the heat transfer by the emission process significant?  Would application of a low emissive 
coating be effective in reducing the wall temperature, assuming αS remained unchanged?  Or, should a 
low solar absorbing coating be considered? 



PROBLEM 7.28  
KNOWN:  Velocity, initial temperature, and dimensions of aluminum strip on a production line.  
Velocity and temperature of air in counter flow over top surface of strip.  
FIND:  (a) Differential equation governing temperature distribution along the strip and expression for 
outlet temperature, (b) Value of outlet temperature for prescribed conditions.  
SCHEMATIC:   
 

 
 
 
 
 
 
ASSUMPTIONS:  (1) Negligible variation of sheet temperature across its thickness, (2) Negligible 
effect of conduction along length (x) of sheet, (3) Negligible radiation, (4) Turbulent flow over entire 
top surface, (5) Negligible effect of sheet velocity on boundary layer development, (6) Negligible heat 
transfer from bottom surface and sides, (7) Constant properties. 
 
PROPERTIES:  Table A-1, Aluminum, 2024-T6 ( ) 3

ALT 500K 2770 kg / m ,:ρ≈ =  pc 983 J / kg K,= ⋅  

k=186 W/m⋅K.  Table A-4, Air ( )fp 1atm, T 400K := ≈  6 226.4 10 m / s,ν −= ×  k 0.0338 W / m K,= ⋅  
Pr 0.69=   
ANALYSIS:  (a) Applying conservation of energy to a stationary control surface, through which the 
sheet moves, steady-state conditions exist and in outE E 0.− =& &   Hence, with inflow due to advection 
and outflow due to advection and convection, 
 
 ( )c p c pV A c T dT V A c T dq 0ρ ρ+ − − =  
 
 ( ) ( )p xV W c dT h dx W T T 0ρ δ ∞+ − ⋅ − =  
 

 ( )x
p

dT h T T
dx V cρ δ ∞= + −              (1)  < 

 
Alternatively, if the control surface is fixed to the sheet, conditions are transient and the energy 
balance is of the form, out stE E ,− =& &  or 
 

 ( )( ) ( )x p
dTh dx W T T dx W c
dt

ρ δ∞− ⋅ − = ⋅ ⋅  
 

 ( )x
p

dT h T T
dt cρδ ∞= − −  

 
Dividing the left- and right-hand sides of the equation by dx/dt and dx/dt = - V, respectively, equation 
(1) is obtained.  The equation may be integrated from x = 0 to x = L to obtain 
 

 i
o

T L
xT 0p

dT L 1 h dx
T T V c Lρ δ∞

⎡ ⎤= ⎢ ⎥− ⎣ ⎦∫ ∫  

          Continued … 
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where ( ) 4 / 5 1/ 3

x xh k / x 0.0296 Re Pr=  and the bracketed term on the right-hand side of the equation 

reduces to ( ) 4 / 5 1/ 3
L Lh k / L 0.037 Re Pr .=  

 
Hence, 
 

 i L
o p

T T L hln
T T V cρ δ

∞

∞

⎛ ⎞−
=⎜ ⎟−⎝ ⎠

 

 

 o L
i p

T T L hexp
T T V cρ δ

∞

∞

⎛ ⎞−
= −⎜ ⎟⎜ ⎟− ⎝ ⎠

        < 

 
(b) For the prescribed conditions, 6 2 6

LRe u L / 20 m / s 5m / 26.4 10 m / s 3.79 10ν −
∞≈ = × × = ×  and 

 

 ( ) ( )
4 / 5 1/ 36 2

L
0.0338W / m Kh 0.037 3.79 10 0.69 40.5W / m K

5m
⋅⎛ ⎞= × = ⋅⎜ ⎟

⎝ ⎠
 

 

 ( )
2

o 3
5m 40.5 W / m K

T 20 C 280 C exp 213 C
2770 kg / m 0.1m / s 0.002m 983J / kg K

× ⋅
= ° + ° − = °

× × × ⋅

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 < 

 
COMMENTS:  (1) With oT 213 C,= °  Al fT 530K and T 411K= =  are close to values used to 
determine the material properties, and iteration is not needed.  (2) For a representative emissivity of 

sur0.2 and T T ,ε ∞= =  the maximum value of the radiation coefficient is 

( )( )2 2
r i sur i surh T T T Tεσ= ++  2

L4.1W / m K h .= ⋅ <<   Hence, the assumption of negligible radiation 

is appropriate. 
 



PROBLEM 7.29  
KNOWN:  Dimensions of aluminum heat sink.  Temperature and velocity of coolant (water) flow 
through the heat sink.  Power dissipation of electronic package attached to the heat sink.  
FIND:  Base temperature of heat sink.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Average convection coefficient associated with flow over fin surfaces may be 
approximated as that for a flat plate in parallel flow, (2) All of the electric power is dissipated by the 
heat sink, (3) Transition Reynolds number of Rex,c = 5 × 105, (4) Constant properties. (5) Water 
temperature is nearly constant as it flows through the array. 
 
PROPERTIES:  Given.  Aluminum:  khs = 180 W/m⋅K.  Water:  kw = 0.62 W/m⋅K, ν = 7.73 × 10-7 
m2/s, Pr = 5.2. 
 
ANALYSIS:  From the thermal circuit, 

 b
elec

b t,o

T Tq P
R R

∞−
= =

+
 

where ( ) ( ) 32
b b hs 1 2R L / k w w 0.01 m /180 W / m K 0.10 m 5.56 10 K / W−= × = ⋅ = ×  and, from Eqs. 

3.107 and 3.108, 

 ( )
1

f
t,o t f

t

NAR h A 1 1
A

η
−⎧ ⎫⎡ ⎤⎪ ⎪= − −⎨ ⎬⎢ ⎥

⎪ ⎪⎣ ⎦⎩ ⎭
 

The fin and total surface area of the array are ( ) ( ) 2
f 2 fA 2w L t / 2 0.2 m 0.055 m 0.011 m= + = =  and 

( )( ) ( ) ( ) ( )2 2
t f b f 2A NA A NA N 1 S t w 6 0.011 m 5 0.008 m 0.1 m 0.066 0.004 0.070 m .= + = + − − = + = + =

With 
2

7 2 5
w 2Re u w / 3 m / s 0.10 m / 7.73 10 m / s 3.88 10 ,ν −

∞= = × × = ×  laminar flow may be assumed 

over the entire surface.  Hence 

 ( ) ( )
2

1/ 21/ 2 1/ 3 5 21/ 3w
w

2

k 0.62 W / m K
h 0.664 Re Pr 0.664 3.88 10 5.2 4443 W / m K

w 0.10 m

⋅
= = × = ⋅
⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 

With ( ) ( )1/ 22 11/ 2
hsm 2h / k t 2 4443 W / m K /180 W / m K 0.01 m 70.3 m ,−= = × ⋅ ⋅ × =  1

cmL 70.3 m−=  

( )0.055 m 3.86=  and ctanh mL 0.9991,=  Eq. 3.94 yields 
 

 c
f

c

tanh mL 0.9991 0.259
mL 3.86

η = = =                                                                       Continued … 

w2 = 100 mmLb = 10 mm 

Lf = 50 mm 

1800 W

w1 = 100 mm 
S = 18 mm 
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Hence, 
 

 ( )
12

2 2
t,o 2

0.066 m
R 4443 W / m K 0.070 m 1 1 0.259 0.0107 K / W

0.070 m

−

= ⋅ × − − =
⎧ ⎡ ⎤⎫⎪ ⎪

⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎩ ⎣ ⎦⎭

  < 

 
and 
 

( ) ( )3
b elec b t,oT T P R R 17 C 1800 W 5.56 10 0.0107 K / W 46.2 C−

∞= + + = ° + × + = °  < 
 
COMMENTS:  (1) The boundary layer thickness at the trailing edge of the fin is 

( )2

1/ 2
2 w5w / Reδ =  ( )0.80 mm S t .= << −   Hence, the assumption of parallel flow over a flat plate is 

reasonable.  (2) If a finned heat sink is not employed and heat transfer is simply by convection from 
the 2 2w w×  base surface, the corresponding convection resistance would be 0.0225 K/W, which is 
only twice the resistance associated with the fin array.  The small enhancement by the array is 
attributable to the large value of h  and the correspondingly small value of f .η   Were a fluid such as 
air or a dielectric liquid used as the coolant, the much smaller thermal conductivity would yield a 
smaller h,  a larger fη  and hence a larger effectiveness for the array. (3) The water outlet temperature 
may be calculated based the energy balance, q = m& cp (Tm,o - Tm,i) or Tm,o = 17°C + 1800 W/(5 × 
0.008m × 0.05m × 3 m/s × 995 kg/m3 × 4178 J/kg·K) = 17.07°C where there are N = 5 channels. (The 
density and specific heat are evaluated at Pr = 5.2.) The assumption of constant water mean 
temperature is excellent. (4) If the increase in the water temperature was significant, an approach 
described in Chapter 11 would be needed to analyze the problem. See Problem 11.90. 
 



PROBLEM 7.30 
 

KNOWN: Dimensions of a photovoltaic cell, material and dimensions of a finned heat sink, solar 
irradiation and dimensions of concentrating lens, velocity and temperature of dielectric liquid. 
 
FIND: (a) Electric power produced and silicon temperature for a square concentrating lens with 
the heat sink in place, (b) Electric power and silicon temperature without the heat sink, (c) 
Electric power and silicon temperature for 100 mm ≤ Llens ≤ 3000 mm. 
 
SCHEMATIC: 

Gc

w2 = 100 mm

w1 = 100 mm
t = 10 mm S = 18 mm

Dielectric fluid
T∞ = 25°C
u∞ = 3 m/s

Lb = 10 mm

Lf = 50 mm

Lg = 3 mm

La = 0.1 mm

Ls = 0.1 mm

Lan = 2 mm

Gc

w2 = 100 mm

w1 = 100 mm
t = 10 mm S = 18 mm

Dielectric fluid
T∞ = 25°C
u∞ = 3 m/s

Lb = 10 mm

Lf = 50 mm

Lg = 3 mm

La = 0.1 mm

Ls = 0.1 mm

Lan = 2 mm

 
ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) One-dimensional heat 
transfer, (4) Average convection coefficient associated with flow over fin surfaces may be 
approximated as that for a flat plate in parallel flow, (5) Transition Reynolds number of Rex,c = 5 
× 105, (6) Negligible convection off of the top of the solar cell, (7), No radiation to or through the 
dielectric liquid, (8) Negligible increase in dielectric fluid temperature as if flows through the 
array. 
 
PROPERTIES:  Given: Aluminum: khs = 180 W/m·K, Dielectric liquid: kd = 0.064 W/m·K, ν 
= 10-6 m2/s, ρ = 1400 kg/m3, cp = 1300 J/kg·K, Pr = 25, Glass: kg = 1.4 W/m·K, Adhesive: , ka = 
145 W/m·K, Solder: ks = 50 W/m·K, Aluminum Nitride: kan = 120 W/m·K. 
  
ANALYSIS: (a) The base resistance is  

-3
b b hs 1 2 2

0.01mR  = L /k ( w  × w ) = = 5.56 × 10  K/W
180 W/m K(0.10m)⋅

  

and, from Equations 3.107 and 3.108  

 
-1

f
t,o t f

t

NAR  = hA 1 - (1 - η )
A

⎧ ⎫⎡ ⎤⎪ ⎪
⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

 

The fin and total surface areas of the array are 
 Af = 2w2(Lf + t/2) = 0.20m × (0.055m) = 0.0110 m2  and  

 t f b f 2
2 2 2 2

A  = NA  + A  = NA  + (N - 1)(S - t)w

     = 6(0.0110 m ) + 5(0.008 m)(0.100 m) = 0.0660 m  + 0.0040 m  = 0.071 m   
 

Continued… 
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with -6 2 5

w 22Re  = u w /ν = 3 m/s × 0.10 m/10  m /s = 3.00×10 ,∞  laminar flow may be assumed 
over the entire surface.  Hence 

 

1/2 1/3w
w

2

5 1/2 1/3 2

2
kh =  0.664 Re Pr  
w
0.064 W/m K   = ( ) 0.664 (3.00 × 10 ) (25)  = 681 W/m K

0.10 m

⎛ ⎞
⎜ ⎟
⎝ ⎠

⋅
⋅

  

with    
1/221/2 -1

hs
362 W/m2hm  = ( )  = = 27.50 m  k t (180 W/m K × 0.01 m)
⎡ ⎤
⎢ ⋅ ⎥⎣ ⎦

 

 mLc = 27.50 m-1(0.055 m) = 1.51   and  tanh mLc = 0.907 Equation 3.94 yields 

 c
f

c

tanh mL 0.907η  =  =  = 0.600
mL 1.51

 

Hence, 
 

 
-12

2 2 -3
t,o 2

0.066 mR  = 681 W/m K × 0.070 m 1 - (0.400)  = 33.70 × 10  K/W
0.070 m

⎧ ⎫⎡ ⎤⎪ ⎪⋅ ⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

 
The conduction resistances are 

 
-3g

t,g
g

L 3 × 10  mR  =  = = 0.2143 K/Wk A (1.4 W/m K × 0.1 m × 0.1 m)⋅  

 
-3 -5a

t,a
a

L 0.1 × 10  mR  =  = = 6.897  10  K/Wk A (145 W/m K × 0.1 m × 0.1 m) ×⋅  

 
-3 -6s

t,s
s

L 0.1 × 10  mR  =  = = 200  10  K/Wk A (50 W/m K × 0.1 m × 0.1 m) ×⋅  

 
-3 -3an

t,an
an

L 2 × 10  mR  =  = = 1.67  10  K/Wk A (120 W/m K × 0.1 m × 0.1 m) ×⋅  

 
-4 2 -3t,c

t,c
R 0.5 × 10  m K/WR  =  = = 5.0 × 10  K/WA (0.1 m × 0.1 m)
′′ ⋅  

2 2
rad,top g 1 sur 1 surh  = ε σ (T  + T )(T  + T )  

-8 2 4 2 2
t,rad,top 1 1R  = 1 0.9 × 5.67 × 10  W/m K  × (T  + 298 K) × (T  + (298 K) )⋅         (1) 

 
The thermal circuit is 
 
 
 
 
 
 

Continued… 

TsurT∞
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T6
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Rt,c Rt,an Rt,s Rt,a Rt,g Rt,rad,top
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T3 T2T4T5 T1

Rt,c Rt,an Rt,s Rt,a Rt,g Rt,rad,top
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where Gc = G(Llens/w1)2 

 

From the thermal circuit, 

 
2

lens 1 1 2 top bot

2 2
top bot

0.83G (L /w ) (w  × w )(1 - η) = q  + q

0.83 × 700 W/m (4) (0.1 m × 0.1 m)(1 - η) = q  - q
 

top bot92.96 W(1 - η) = q  + q               (2) 
 

( )

3 sur
top

t,a t,g t,rad,top

si
-5

t,rad,top

(T  - T )q  = (R  + R  + R )

       = (T  - 298 K)     
6.897 × 10  K/W + 0.2143 K/W + R

      

si
t,rad,top

 (T  - 298 K)  = (0.2143 K/W + R )                         (3) 

 

( )

3
bot

t,o t,c t,an t,s

si
-3 -3 -3 -3

(T  - T )q  = (R  + R  + R + R )

       = (T  - 298 K)     
33.70 × 10  K/W + 5.0  10  K/W + 1.67 × 10  K/W + 0.20 × 10  K/W

∞

×

      si
-3

 (T  - 298 K)  =
(40.57 × 10  K/W)

             (4) 

 
From the problem statement  
 -1

siη = 0.28 - 0.001°C (T  - 273)°C              (5) 
 

Solving Equations (1) through (5) simultaneously yields 

 Tsi = 28.2°C,  η = 0.252                 < 
 
The electric power is  
 P = 0.83G(Llens/w1)2(w1 × w2)( η)             (6) 

 2 2P = 0.83 × 700 W/m (4) (0.1 m × 0.1 m)(0.252) = 23.4 W            <  
 
(b) Substituting Llens = 1500 mm in Equations 2 and 6 yields 

Tsi = 72.6°C, P = 271 W                < 
  

with the heat sink in place.  For no heat sink we also substitute 
 Rt,c = 0 and Rt,o = Rt,conv = 1/ 2

1hw = 1/681W/m2·K(0.1m)2 = 146.8 × 10-3 K/W 
 
into Equation 4 and solving Equations (1) through (5) simultaneously yields 

Continued… 
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Tsi = 200°C, P = 105 W                              < 
 
(c) The variation of the silicon temperature and electric power with the heat sink in place is 
shown in the accompanying graphs. 
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COMMENTS: (1) In Problem 7.19, we see that, for air cooling and Llens = 400 mm, Tsi = 126 
°C, P = 14.3 W. Use of liquid cooling increases the electrical power output to 23.4 W, or 64 
percent. In Problem 7.19 we see the maximum power output to be about 15 W. With liquid 
cooling and the heat sink, maximum power output increases to about 420 W, or 2800%. (2) The 
electric power is highly sensitive to the size of the concentrator. Initially, the power output 
increases as the concentrated irradiation increases, but as the silicon temperature increases the 
efficiency drops, driving the power output down. (3) The boundary layer thickness at the trailing 
edge of the fin is δ = 5w2/

2

1/2
wRe = 0.91 mm << (S – t). Also, since Pr > 1, δt < δ. Hence, the 

assumption of parallel flow over a flat plate is reasonable. (4) The dielectric fluid outlet 
temperature may be calculated based the energy balance, qbot = (Tsi - 298 K)/(40.57 × 10-3 K/W) = 
79 W = m& cp (Tm,o - Tm,i) or Tm,o = 25°C + 79 W/(5 × 0.008m × 0.05m × 3 m/s × 1400 kg/m3 × 
1300 J/kg·K) = 25.007°C where there are N = 5 channels. The assumption of constant dielectric 
mean temperature is excellent. (5) If the increase in the dielectric fluid temperature was 
significant, an approach described in Chapter 11 would be needed to analyze the problem. (6) 
Solar irradiation values can be nearly 1100 W/m2 in clear environments. How do you think the 
maximum electric power will change when the solar irradiation is increased? You may want to 
re-work the solution to the problem to find the surprising result. 



PROBLEM 7.31  
KNOWN:  Velocity, initial temperature, properties and dimensions of steel strip on a production line.  
Velocity and temperature of air in cross flow over top and bottom surfaces of strip.  Temperature of 
surroundings.  
FIND:  (a) Differential equation governing temperature distribution along the strip, (b) Exact solution 
for negligible radiation and corresponding value of outlet temperature for prescribed conditions, (c) 
Effect of radiation on outlet temperature, and parametric effect of sheet velocity on temperature 
distribution.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Negligible variation of sheet temperature across its width and thickness, (2) 
Negligible effect of conduction along length (x) of sheet, (3) Constant properties, (4) Radiation 
exchange between small surface (both sides of sheet) and large surroundings, (5) Turbulent flow over 
top and bottom surfaces of sheet, (6) Motion of sheet has a negligible effect on the convection 
coefficient, (V << u∞), (7) Negligible heat transfer from sides of sheet. 
 
PROPERTIES:  Prescribed.  Steel: 3

p7850 kg / m c 620 J / kg K, 0.70.,ρ ε= = ⋅ =   Air:  k = 0.044 

W/m⋅K, 5 24.5 10 m / s,ν −= ×  Pr = 0.68. 
 
ANALYSIS:  (a) Applying conservation of energy to a stationary differential control surface, through 
which the sheet passes, conditions are steady and in outE E 0.− =& &   Hence, with inflow due to advection 
and outflow due to advection, convection and radiation 
 ( )c p c pV A c T V A c T dT 2dq 0ρ ρ− + − =  

 ( ) ( ) ( )4 4
p W surV Wc dT 2 Wdx h T T T T 0ρ δ εσ∞

⎡ ⎤− − − + − =⎢ ⎥⎣ ⎦
 

 ( ) ( )4 4
w sur

p

dT 2 h T T T T
dx V c

εσ
ρ δ ∞

⎡ ⎤= − − + −⎢ ⎥⎣ ⎦
    (1)  < 

Alternatively, if the control surface is fixed to the sheet, conditions are transient and the energy 
balance is of the form, out stE E ,− =& &  or 

 ( ) ( ) ( ) ( )4 4
W sur p

dT2 Wdx h T T T T W dx c
dt

εσ ρ δ∞
⎡ ⎤− − + − =⎢ ⎥⎣ ⎦

 

 ( ) ( )4 4
W sur

p

dT 2 h T T T T
dt c

εσ
ρ δ ∞

⎡ ⎤= − − + −⎢ ⎥⎣ ⎦
 

Dividing the left- and right-hand sides of the equation by dx/dt and V = dx/dt, respectively, Eq. (1) is 
obtained.  
(b) Neglecting radiation, separating variables and integrating, Eq. (1) becomes 

 
i

T xW
T 0p

2 hdT dx
T T V cρ δ∞

= −
−∫ ∫  

          Continued … 
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 W
i p

2 h xT Tln
T T V cρ δ

∞

∞

⎛ ⎞−
= −⎜ ⎟−⎝ ⎠

 

 ( ) W
i

p

2 h xT T T T exp
V cρ δ∞ ∞

⎛ ⎞
= + − −⎜ ⎟⎜ ⎟

⎝ ⎠
      (2)  < 

 
With 5 2 5

WRe u W / 20 m / s 1m / 4 10 m / s 5 10 ,ν −
∞= = × × = ×  the correlation for turbulent flow over a 

flat plate yields 

 ( ) ( )W
4/ 5 1/ 34 /5 1/ 3 5

WNu 0.037 Re Pr 0.037 5 10 0.68 1179= = × =  
 

 W
2

W
k 0.044 W / m Kh Nu 1179 51.9 W / m K
W 1m

⋅
= = = ⋅  

 
Hence, applying Eq. (2) at x = L = 10m, 
 

 ( )
2

o 3
2 51.9 W / m K 10m

T 20 C 480 C exp 256 C
7850 kg / m 0.1m / s 0.003m 620 J / kg K

× ⋅ ×
= ° + ° − = °

× × × ⋅

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 < 

 
(c) Using the DER function of IHT, Eq. (1) may be numerically integrated from x = 0 to x = L = 10m 
to obtain 
 
 oT 210 C= °           < 
 
Contrasting this result with that of Part (b), it is clear that radiation makes a discernable contribution to 
cooling of the sheet.  IHT was also used to determine the effect of the sheet velocity on the 
temperature distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The sheet velocity has a significant influence on the temperature distribution.  The temperature decay 
decreases with increasing V due to the increasing effect of advection on energy transfer in the x 
direction.  
COMMENTS:  (1) A critical parameter in the production process is the coiling temperature, that is, 
the temperature at which the wire may be safely coiled for subsequent storage or shipment.  The larger 
the production rate (V), the longer the cooling distance needed to achieve a desired coiling 
temperature.  (2) Cooling may be enhanced by increasing the cross stream velocity u∞. 
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PROBLEM 7.32  
KNOWN:  Length, thickness, speed and temperature of steel strip.  
FIND:  Rate of change of strip temperature 1 m from leading edge and at trailing edge.  Location of 
minimum cooling rate.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Constant properties, (2) Negligible radiation, (3) Negligible longitudinal 
conduction in strip, (4) Critical Reynolds number is 5 × 10

5. 
 
PROPERTIES:  Steel (given):  ρ = 7900 kg/m

3
, cp = 640 J/kg⋅K.  Table A-4, Air 

( )T 750K, 1 atm :=  ν = 76.4 × 10
-6

 m
2
/s, k = 0.0549 W/m⋅K, Pr = 0.702. 

 
ANALYSIS:  Performing an energy balance for a control mass of unit surface area As riding with the 
strip, 
 out stE dE / dt− =&  
 ( ) ( )x s s p2h A T T A c dT/dtρδ∞− − =  

 ( ) ( )
( )

( )x x
x3p

2h T T 2 900K h
dT/dt 0.119h K/s .

c 7900 kg/m 0.003 m 640 J/kg K
∞− −

= = − = −
⋅ρδ

 

At x = 1 m, ( ) 5
x x,c-6 2

20 m/s 1mVxRe 2.62 10 Re .
76.4 10  m / sν

= = = × <
×

  Hence, 

 

( ) ( )( ) ( )
1/ 2 1/ 31/2 1/3 5 2

x x
0.0549 W/m Kh k/x 0.332Re Pr 0.332 2.62 10 0.702 8.29W/m K

1 m
⋅

= = × = ⋅  
 
and at x = 1m,  dT/dt = -0.987 K/s.        < 
 
At the trailing edge, 7

x x,cRe 2.62 10 Re .= × >   Hence 
 

( ) ( )( ) ( )
4 / 5 1/ 34/5 1/3 7 2

x x
0.0549 W/m K

h k/x 0.0296Re Pr 0.0296 2.62 10 0.702 12.4W/m K
100 m

⋅
= = × = ⋅  

and at x = 100 m, dT/dt = -1.47 K/s.       < 

The minimum cooling rate occurs just before transition; hence, for 5
x,cRe 5 10= ×  

 ( )
5 6 2

5
c

5 10 76.4 10 m / sx 5 10 /V 1.91 m
20 m/s

ν
−× × ×

= × = =     < 
 
COMMENTS:  The cooling rates are very low and would remain low even if radiation were 
considered.  For this reason, hot strip metals are quenched by water and not by air. 



PROBLEM 7.33 
 
KNOWN: Thin metallic strip with thermocouple at trailing edge is used as an anemometer.  
Laminar flow.  
 
FIND:  (a) Calibration equations for constant surface temperature and constant heat flux 
conditions. (b) Percentage error in using the wrong calibration. (c) Location of thermocouple for 
which calibration is insensitive to thermal boundary condition.  
 
SCHEMATIC: 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Steady-state conditions, (2) Boundary layer assumptions hold, (3) Laminar 
flow, (4) Constant properties. 
 
ANALYSIS: 
(a) For constant surface temperature 

1/2 1/3
L LNu  = 0.664 Re  Pr  

 
Therefore 
 1/2 1/3

L Lh  = 0.664 Re  Pr k/L   

and  1/2 1/3
L s s

u LP  = 2h L(T  - T ) = 2 (0.664) ( )  Pr (T  - T )
ν
∞

∞ ∞′  

Solving for u∞, the calibration for constant Ts is: 

 { }21/3
s

νu  = P / 2 (0.664) Pr k (T  - T ) ( )
L∞ ∞⎡ ⎤′ ⎣ ⎦        (1)   < 

 
For constant heat flux, we consider the local heat transfer coefficient at the end of the strip. 
 
 1/2 1/3

L LNu  = 0.453 Re  Pr  
 1/2 1/3

L Lh  = 0.453 Re  Pr k/L  
 
Accounting for heat loss from both surfaces, 
 
 sP  = 2q L′ ′′  
 
The uniform heat flux can be related to the conditions at x = L: 
 s L s,Lq  = h (T - T )∞′′  
Thus 

 1/2 1/3
L s,L s,L 

u LP  = 2h L(T - T ) = 2 (0.453) ( )  Pr  k (T - T )
ν
∞

∞ ∞′       
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Solving for u∞, the calibration for constant sq′′  is: 

 { }21/3
s,L

νu  = P / 2 (0.453) Pr k(T  - T ) ( )
L∞ ∞⎡ ⎤′ ⎣ ⎦         (2)< 

 
(b) Since the true situation is uniform heat flux, the true velocity is found from Equation (2).  
However the predicted velocity is incorrectly calculated from Equation (1).  Thus 

2
,pred.

,true

u 0.453 =  = 0.47
u 0.664
∞

∞

⎛ ⎞
⎜ ⎟
⎝ ⎠

                                                                                            < 
The velocity is underpredicted by more than half, or 53%.   
  
(c) For constant surface heat flux, the local surface temperature is given by 

 s,q s x 1/2 1/3
x

P /2LT (x) - T  = q /h = 
0.453 Re  Pr k/x∞

′
′′  

 
where the q subscript on Ts indicates that it is for the constant heat flux case.  This should be 
equal to the surface temperature for the constant Ts case, namely 

Ls,T 1/2 1/3
L

P /2LT  - T  = P /2Lh  = 
0.664 Re  Pr k/L∞

′
′  

 
Equating Ts,q and Ts,T and solving for x yields   
 
 -1/2 -1/20.453x = 0.664L  

20.453(x/L) = = 0.47
0.664

⎛ ⎞
⎜ ⎟
⎝ ⎠

              < 
 
Thus, if the thermocouple is placed approximately at the midpoint of the strip it will be 
insensitive to the type of thermal boundary condition experienced by the strip.  



PROBLEM 7.34 
 

 
KNOWN:  Dimensions of flat plate in parallel flow. Plate and fluid temperatures, fluid velocities.  
 
FIND:  Average heat transfer coefficient, convection heat transfer rate, drag force for (a) water 
flowing at a velocity of 0.5 m/s, (b) nanofluid of Example 2.2 at a velocity of 0.5 m/s, (c) water at a 
velocity of 2.5 /m/s, (d) nanofluid at a velocity of 2.5 m/s. 
 
SCHEMATIC: 
 

 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, Rex,c = 5 × 105. 
 
PROPERTIES:  Table A.4, water (300 K): ρbf = 997 kg/m3, νbf = 857 × 10-9 m2/s, kbf = 0.613 W/m⋅K, 
Prbf = 5.83. Example 2.2, nanofluid (300 K): ρnf = 1146 kg/m3, μnf = 962 × 10-6 m2/s, νnf = μnf/ρnf = 839 
× 10-9 m2/s, knf = 0.705 W/m⋅K, αnf = 171 × 10-9 m2/s Prnf  = νnf/αnf = 4.91. 
 
ANALYSIS:  (a) For water flowing over the plate at um = 0.5 m/s, 
 

   3
9 2

bf

0.5m/s 0.2m 117 10
857 10 m /sL

u LRe
ν
∞

−
×

= = = ×
×

 

 
Since ReL < Rex,c the flow is laminar and Eq. 7.30 yields 
 

1/ 2 1/3 1/ 2 1/3 2bf
bf

0.613W/m K0.664 0.664 117,000 5.83 1253 W/m K
0.2mL L

kh Re Pr
L

⋅⎡ ⎤ ⎡ ⎤= = × =⎣ ⎦ ⎣ ⎦      < 

 
and the convection heat transfer rate from the top of the plate is 

2( ) 1m 0.2m 1253W/m K (32 22) C 2500WL sq wLh T T∞= − = × × ⋅ × − ° = = 2.51 kW                 < 
 
The drag force on the plate is 
 

 

2
bf,

2 3 2
bf

3

2
1.328 1.328 997 kg/m (0.5 m/s)    = 1 m 0.2 m

2 2 117 10

f
s L

L

C uF wL wL

u wL
Re

ρτ

ρ

∞

∞

= =

× ×
= × ×

×

  

      = 0.097 N          < 
 
where Equation 7.29 has been used to determine the average friction coefficient. 
 

Continued… 
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(b) For the nanofluid flowing over the plate at um = 0.5 m/s, 
 

   3
9 2

nf

0.5m/s 0.2m 119 10
839 10 m /sL

u LRe
ν
∞

−
×

= = = ×
×

 

 
The flow is laminar and Eq. 7.30 yields 
 

1/ 2 1/3 1/ 2 1/3 2nf
nf

0.705W/m K0.664 0.664 119,000 4.91 1372 W/m K
0.2mL L

kh Re Pr
L

⋅⎡ ⎤ ⎡ ⎤= = × =⎣ ⎦ ⎣ ⎦      < 

 
and the convection heat transfer rate from the top of the plate is 
 
 2( ) 1m 0.2m 1372W/m K(32 22) C 2740WL sq wLh T T∞= − = × × ⋅ − ° = = 2.74 kW                 < 
 
The drag force on the plate is 
 

 

2
nf,

2 3 2
nf

3

2
1.328 1.328 1146 kg/m (0.5 m/s)    = 1 m 0.2 m

2 2 119 10

f
s L

L

C uF wL wL

u wL
Re

ρτ

ρ

∞

∞

= =

× ×
= × ×

×

  

      = 0.110 N          < 
 
(c) For water flowing over the plate at um = 2.5 m/s, 
 

   5
9 2

bf

2.5m/s 0.2m 5.83 10
857 10 m /sL

u LRe
ν
∞

−
×

= = = ×
×

 

 
Therefore, the flow at the end of the plate is turbulent and Eq. 7.30 yields 
 

4 /5 1/3bf
bf

5 4 /5 1/3 2

0.037 871

0.613W/m K   0.037(5.83 10 ) 871 5.83 3562 W/m K
0.2m

L L
kh Re Pr
L

⎡ ⎤= −⎣ ⎦
⋅ ⎡ ⎤= × − =⎣ ⎦

        < 

 
 
 
and the convection heat transfer rate from the top of the plate is 
 
 2( ) 1m 0.2m 3562W/m K(32 22) C 7120WL sq wLh T T∞= − = × × ⋅ − ° = = 7.12 kW                 < 
 
The drag force on the plate is 
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( )

2
bf,

2
-1/5 bf

3 2-1/55
5

2
2 871    = 0.074

2

2 871 997 kg/m (2.5 m)= 0.074 5.83 10 1 m 0.2 m
25.83 10

s L f

L
L

uF wL C wL

uRe wL
Re

ρτ

ρ

∞

∞

= =

⎛ ⎞×
−⎜ ⎟

⎝ ⎠

× ×⎛ ⎞× × − × ×⎜ ⎟×⎝ ⎠

  

      = 1.379 N          < 
 
where Equation 7.40 has been used to determine the average friction coefficient. 
 
(d) For the nanofluid flowing over the plate at um = 2.5 m/s, ReL = 5.96 ×105, Lh = 4024 W/m2⋅K, q = 

8050 W = 8.05 kW, and F = 1.615 N.         < 
 
COMMENTS:  (1) The convection heat transfer rate is greater for the nanofluid than for the base 
fluid (water). For the laminar case, the nanofluid convection heat transfer rate is 9.5% larger when the 
nanofluid is used. For the turbulent flow case the convection heat transfer rate is 13% higher for the 
nanofluid. The higher efficacy of the nanofluid in the turbulent flow case is associated with its larger 
Reynolds number, ReL,nf > ReL,bf. Hence more of the plate experiences turbulent flow when the 
nanofluid is used. (2) The drag force is always greater when the nanofluid is used. For the laminar 
flow case, the drag force is 13.6% larger when the nanofluid is used, while for the turbulent flow case 
the drag force associated with the nanofluid is 17.1% larger than for the base fluid. Larger drag forces 
are expected due to the larger viscosity associated with the nanofluid. (c) For many cases involving 
nanofluids, a tradeoff exists between potentially increasing the heat transfer rates, but at a cost of 
experiencing larger friction losses. 



PROBLEM 7.35  
KNOWN:  Operating power of electrical components attached to one side of copper plate.  Contact 
resistance.  Velocity and temperature of water flow on opposite side.  
FIND:  (a) Plate temperature, (b) Component temperature.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Negligible heat loss from 
sides and bottom, (4) Turbulent flow throughout.  
PROPERTIES:  Water (given): ν = 0.96 × 10

-6
 m

2
/s, k = 0.620 W/m⋅K, Pr = 5.2. 

 
ANALYSIS:  (a) From the convection rate equation,  
 sT T q/hA∞= +  
 
where q = Nqc = 2500 W and A = L

2
 = 0.04 m

2.  The convection coefficient is given by the turbulent 
flow correlation 

 ( ) ( )L
4/5 1/3
Lh Nu k/L 0.037Re Pr k/L= =  

 
where 

 ( ) ( ) 6 2 5
LRe u L/ 2 m/s 0.2m / 0.96 10 m / s 4.17 10ν −

∞= = × × = ×  
 
and hence 

 ( ) ( ) ( )
4 / 5 1/ 35 2h 0.037 4.17 10 5.2 0.62 W/m K/0.2 m 6228 W/m K.= × ⋅ = ⋅  

 
The plate temperature is then  
 ( )( )22

sT 17 C 2500 W/ 6228 W/m K 0.20 m 27 C.= + ⋅ =o o     < 
 
(b) For an individual component, a rate equation involving the component’s contact resistance can be 
used to find its temperature, 
 ( ) ( ) ( )c c s t,c c s t,c cq T T / R T T / R / A′′= − = −  

 ( )-4 2 4 2
c s c t,c cT T q R / A 27 C 25 W 2 10  m K/W /10  m−′′= + = + × ⋅o  

 cT 77 C.= o           < 
 
COMMENTS:  With 5

LRe 4.17 10 ,= ×  the boundary layer would be laminar over the entire plate 

without the boundary layer trip, causing Ts and Tc to be appreciably larger. 



PROBLEM 7.36 
 
KNOWN:  Air at 27°C with velocity of 10 m/s flows turbulently over a series of electronic devices, each 
having dimensions of 4 mm × 4 mm and dissipating 40 mW. 
 
FIND:  (a) Surface temperature Ts of the fourth device located 15 mm from the leading edge, (b) 
Compute and plot the surface temperatures of the first four devices for the range 5 ≤ u∞  ≤ 15 m/s, and 
(c) Minimum free stream velocity u∞  if the surface temperature of the hottest device is not to exceed 
80°C. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Turbulent flow, (2) Heat from devices leaving through top surface by convection 
only, (3) Device surface is isothermal, and (4) The average coefficient for the devices is equal to the local 
value at the mid position, i.e. 4 xh h= (L). 
 
PROPERTIES:  Table A.4, Air (assume Ts = 330 K, ( )sT T T 2∞= +  = 315 K, 1 atm):  k = 0.0274 

W/m⋅K, ν = 17.40 × 10-6 m2/s, α = 24.7 × 10-6 m2/s, Pr = 0.705. 
 
ANALYSIS:  (a) From Newton’s law of cooling, 
 s conv 4 sT T q h A∞= +  (1) 

where 4h  is the average heat transfer coefficient over the 4th device.  Since flow is turbulent, it is 
reasonable and convenient to assume that 
 ( )4 xh h L 15mm= = . (2) 

To estimate hx, use the turbulent correlation evaluating thermophysical properties at fT  = 315 K (assume 
Ts = 330 K), 

 4 / 5 1/3
x xNu 0.0296Re Pr=  

where 

 x 6 2
u L 10m s 0.015mRe 8621

17.4 10 m sν
∞

−
×

= = =
×

 

giving 

 ( ) ( )4 / 5 1/ 3x
x

h LNu 0.0296 8621 0.705 37.1
k

= = =  

 2x
4 x

Nu k 37.1 0.0274 W m Kh h 67.8W m K
L 0.015m

× ⋅
= = = = ⋅  

Hence, with As = 4 mm × 4 mm, the surface temperature is 

 

( )
3

s 22 3

40 10 WT 300 K 337 K 64 C
67.8 W m K 4 10 m

−

−

×
= + = =

⋅ × ×

o . < 
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(b) The surface temperature for each of the four devices (i = 1, 2, 3 4) follows from Eq. (1), 
 
 s,i conv i sT T q h A∞= +  (3) 
 
For devices 2, 3 and 4, ih  is evaluated as the local coefficient at the mid-positions, Eq. (2), x2 = 6.5 mm, 
x3 = 10.75 mm and x4 = 15 mm.  For device 1, 1h  is the average value 0 to x1, where evaluated x1 = L1 = 
4.25 mm.  Using Eq. (3) in the IHT Workspace along with the Correlations Tool, External Flow, Local 
Coefficient for Laminar or Turbulent Flow, the surface temperatures Ts,i are determined as a function of 
the free stream velocity. 
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(c) Using the Explore option on the Plot Window associated with the IHT code of part (b), the minimum 
free stream velocity of 

 u∞  = 6.6 m/s < 
 
will maintain device 4, the hottest of the devices, at a temperature Ts,4 = 80°C. 
 
COMMENTS:  (1) Note that the thermophysical properties were evaluated at a reasonable assumed film 
temperature in part (a). 
 
(2) From the Ts,i vs. u∞  plots, note that, as expected, the surface temperatures of the devices increase with 
distance from the leading edge. 



PROBLEM 7.37 
 
 
 
KNOWN:  Length of isothermal flat plate in parallel flow, L.  
 
FIND:  Expression for the Reynolds number associated with the location of a trip wire to maximize 
heat transfer, Rex,c,opt. 
 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Constant properties. 
 
ANALYSIS:  From Equations 7.38 and 7.39 
 
 ( )4 /5 1/30.037 ReL LNu A Pr= −   where    4 /5 1/ 2

, ,0.037 0.664x c x cA Re Re= −   (1a, b) 

 
To maximize the average Nusselt number, it is necessary to minimize the value of A. Taking the 
derivative of A with respect to Rex,c results in 
 

  ( ) ( )1/5 1/ 2
, ,

,

4 10.037 0.664
5 2x c x c

x c

dA Re Re
dRe

− −⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

      

 
Setting dA/dRex,c equal to zero yields 
 

  ( )
( )

1/5 1/ 2
, ,opt , ,opt

0.664 1/ 2
11.216

0.037 4 /5x c x cRe Re− = =  

 
or   ( )1/0.3

, ,opt 11.216 3158x cRe = =        < 
 
 
COMMENTS:  Substituting Rex,c,opt = 3158  into Equation 1b yields Aopt = - 14. Since A = 0 
corresponds to tripping the boundary layer at the leading edge of the plate, and A = 871 corresponds to 
a critical Reynolds number of Rex,c = 5 × 105,  we know that placing the trip wire at an x location 
corresponding to Rex,c,opt = 3158 must maximize heat transfer from the plate (as opposed to minimizing 
heat transfer from the plate). 

LL

T∞, u∞T∞, u∞

Trip wire
xc



PROBLEM 7.38  
KNOWN:  Convection correlation for irregular surface due to electronic elements mounted on a 
circuit board experiencing forced air cooling with prescribed temperature and velocity  
FIND:  Surface temperature when heat dissipation rate is 30 mW for chip of prescribed area located a 
specific distance from the leading edge.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Situation approximates parallel flow over a flat plate with prescribed 
correlation, (2) Heat rate is from top surface of chip.  
PROPERTIES:  Table A-4, Air (assume Ts ≈ 45°C, then T  = (45 + 25)°C/2 ≈ 310 K, 1 atm):  k = 

0.027 W/m⋅K, ν = 16.90 × 10
-6

 m
2
/s, Pr = 0.706. 

 
ANALYSIS:  For the chip upper surface, the heat rate is 
 ( )chip chip s s s chip chip sq h A T T           or          T T q / h A∞ ∞= − = +  
Assuming the average convection coefficient over the chip length to be equal to the local value at the 
center of the chip (x = xo), ( )chip x oh h x ,≈  where 

 0.85 0.33
x xNu 0.04Re Pr=  

 ( ) ( )
0.85 0.33-6 2

xNu 0.04 10 m/s 0.120 m/16.90 10  m / s 0.706 473.4= × × =  

 2x
x

o

Nu k 473.4 0.027 W/m Kh 107 W/m K
x 0.120 m

× ⋅
= = = ⋅  

Hence, 

 ( ) ( )
23 2 3

sT 25 C 30 10  W/107 W/m K 4 10 m 25 17.5 C 42.5 C.− −= + × ⋅ × × = + =oo o   < 

COMMENTS:  (1) Note that the assumed value of T  used to evaluate the thermophysical properties 
was reasonable.  (2) We could have evaluated chiph  by two other approaches.  In one case the 

average coefficient is approximated as the arithmetic mean of local values at the leading and trailing 
edges of the chip. 

 ( ) ( ) 2
chip x2 2 x1 1h h x h x / 2 107 W/m K.⎡ ⎤≈ + = ⋅⎣ ⎦  

The exact approach is of the form 
 h h x h xchip x2 2 x1 1⋅ = ⋅ − ⋅l  

Recognizing that hx ~ x
-0.15, it follows that 

 
x

0x x x
1h h d x 1.176h
x

= ∫ ⋅ =  

and h  W / m K.chip
2= ⋅108   Why do results for the two approximate methods and the exact method 

compare so favorably? 



PROBLEM 7.39  
KNOWN:  Air at atmospheric pressure and a temperature of 25°C in parallel flow at a velocity of 5 
m/s over a 1-m long flat plate with a uniform heat flux of 1250 W/m2. 
 
FIND:  (a) Plate surface temperature, Ts(L), and local convection coefficient, hx(L),  at the trailing 
edge, x = L, (b) Average temperature of the plate surface, sT ,  (c) Plot the variation of the plate surface 

temperature, Ts(x), and the convection coefficient, hx(x), with distance on the same graph; explain key 
features of these distributions. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Flow is fully turbulent, and (3) Constant 
properties. 
 
PROPERTIES:  Table A-4, Air (assume Tf = 325 K, 1 atm):  ν = 18.76 × 10-6 m2/s; k = 0.0284 
W/m⋅K; Pr = 0.703. 
 
ANALYSIS:  (a) At the trailing edge, x = L, the convection rate equation is 
 ( ) ( )s cv x sq q h L T L T∞′′ ′′ ⎡ ⎤= = −⎣ ⎦        (1) 

where the local convection coefficient, assuming turbulent flow, follows from Eq. 7.46. 

 4 / 5 1/3x
x x

h xNu 0.0308 Re Pr
k

= =        (2) 

With x = L = 1m, find 
 
 6 2 5

xRe u L / 5 m / s 1 m /18.76 10 m / s 2.67 10ν −
∞= = × × = ×  

 ( ) ( ) ( ) ( )
4 /5 1/ 35 2

xh L 0.0284 W / m K /1m 0.0308 2.67 10 0.703 17.1 W / m K= ⋅ × × = ⋅  
 
Substituting numerical values into Eq. (1), 
 
 ( ) 2 2

sT L 25 C 1250 W / m /17.1 W / m K 98.3 C= ° + ⋅ = °     < 
 
(b) The average surface temperature sT  follows from the expression 
 

 ( )
L L

00
s

s s
x

q1 xT T T T dx dx
L L k Nu∞ ∞

′′
− = − =∫ ∫      (3) 

 
where Nux is given by Eq. (2).  Using the Integral function in IHT as described in Comment (3) find 

 sT 86.1 C.= °           < 
 
(c) The variation of the plate surface temperature Ts(x) and convection coefficient, hx(x), shown in the 
graph are calculated using Eqs. (1) and (2). 
          Continued … 



PROBLEM 7.39 (Cont.) 
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COMMENTS:  (1) The properties for the correlation should be evaluated at ( )f sT T T / 2.∞= +   

From the foregoing analyses, Tf = (86.1 + 25)°/2 = 55.5°C = 329 K.  Hence, the assumed value of 325 
K was reasonable. 
 
(2) The IHT code, excluding the input variables and air property functions, used to evaluate the 
integral of Eq. (3) and generate the graphs in part (c) is shown below. 
 

/* Programming note:  when using the INTEGRAL function, the value of the independent variable 
must not be specified as an input variable.  If done so, this error message will appear: 
"Redefinition of a constant variable." */ 
 
// Turbulent flow correlation, Eq. 7.45, local values 
Nu_x = 0.0308 * Re_x^0.8 * Pr^0.333 
Nu_x = h_x * x / k 
Re_x = uinf * x / nu 
 
// Plate temperatures 
// Local 
Ts_x = Tinf + q''s / h_x 
// Average 
Ts_avg - Tinf = q''s / L * INTEGRAL (y,x) 
delT_avg = Ts_avg - Tinf 
y = x / (k * Nu_x) 
 



PROBLEM 7.40 
 
KNOWN:  Experimental apparatus providing nearly uniform airstream over a flat test plate.  
Temperature history of the pre-heated plate for airstream velocities of 3 and 9 m/s were fitted to a fourth-
order polynomial.   
 
FIND:  (a) Convection coefficient for the two cases assuming the plate behaves as a spacewise isothermal 

object and (b) Coefficients C and m for a correlation of the form m 1/ 3
LNu C Re Pr= ; compare result with 

a standard-plate correlation and comment on the goodness of the comparison; explain any differences. 
 
SCHEMATIC: 
 

 
 

 
u∞  (m/s) 3 9 
Δt (s) 300 160 
a (°C) 56.87 57.00 
b (°C/s) -0.1472 -0.2641 
c (°C/s2) 3 × 10-4 9 × 10-4 
d (°C/s3) -4 × 10-7 -2 × 10-6 
e (°C/s4) 2 × 10-10 1 × 10-9 

ASSUMPTIONS:  (1) Airstream over the test plate approximates parallel flow over a flat plate, (2) Plate 
is spacewise isothermal, (3) Negligible radiation exchange between plate and surroundings, (4) Constant 
properties, and (5) Negligible heat loss from the bottom surface or edges of the test plate. 
 
PROPERTIES: Table A.4, Air (Tf = ( Ts + T∞)/2 ≈ 310 K, 1atm): ka = 0.0269 W/m⋅K, ν = 1.669 × 10-5 
m2/s, Pr = 0.706.  Test plate (Given):  ρ = 2770 kg/m3, cp = 875 J/kg⋅K, k = 177 W/m⋅K. 
 
ANALYSIS:  (a) Using the lumped-capacitance method, the energy balance on the plate is 

 ( )L s s p
dTh A T t T Vc
dt

ρ∞⎡ ⎤− − =⎣ ⎦  (1) 

and the average convection coefficient can be determined from the temperature history, Ts(t), 

 
( )
( )

p
L

s s

Vc dT dt
h

A T t T
ρ

∞
=

−
 (2) 

where the temperature-time derivative is 

 2 3sdT b 2ct 3dt 4et
dt

= + + +  (3) 

The temperature time history plotted below shows the experimental behavior of the observed data. 
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PROBLEM 7.40 (Cont.) 

 
Consider now the integrated form of the energy balance, Eq. (5.6), expressed as 

 
( )s L s
i

T t T h Aln t
T T Vcρ

∞

∞

− ⎛ ⎞
= −⎜ ⎟− ⎝ ⎠

 (4) 

If we were to plot the LHS vs t, the slope of the curve would be proportional to Lh .  Using IHT, plots 

were generated of Lh  vs. Ts, Eq. (1), and ( )( ) ( )s iln T t T T T∞ ∞⎡ ⎤− −⎣ ⎦  vs. t, Eq. (4).  From the latter 

plot, recognize that the regions where the slope is constant corresponds to early times (≤ 100s when u∞  
= 3 m/s and ≤ 50s when u∞  = 5 m/s). 
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Selecting two elapsed times at which to evaluate Lh , the following results were obtained 
 

u∞  (m/s) t (s) Ts (t), (°C) Lh  (W/m2⋅K) LNu  ReL 
3 100 44.77 30.81 152.4 2.39 × 104 
9 50 45.80 56.7 280.4 7.17 × 104 

 
where the dimensionless parameters are evaluated as 

 LL L
a

h L u LNu Re
k ν

∞= =  (5,6) 

where ka, ν are thermophysical properties of the airstream. 
 
(b) Using the above pairs of LNu  and ReL, C and m in the correlation can be evaluated, 
 
 m 1/ 3L LNu C Re Pr=  (7) 
 
 152.4 = C(2.39 × 104)m(0.706)1/3 
 
 280.4 = C(7.17 × 104)m(0.706)1/3 
 
Solving, find 

 C = 0.633                      m = 0.555 (8,9) < 
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PROBLEM 7.40 (Cont.) 

 
The plot below compares the experimental correlation (C = 0.633, m = 0.555) with those for laminar flow 
(C = 0.664, m = 0.5) and fully turbulent flow (C = 0.037, m = 0.8).  The experimental correlation yields 

LNu  values which are 25% higher than for the correlation.  The most likely explanation for this 
unexpected trend is that the airstream reaching the plate is not parallel, but with a slight impingement 
effect and/or the flow is very highly turbulent at the leading edge. 
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COMMENTS:  (1) A more extensive analysis of the experimental observations would involve 
determining LNu  for the full range of elapsed time (rather than at two selected times) and using a fitting 
routine to determine values for C and m. 



PROBLEM 7.41 
 
KNOWN:  Conditions for airflow over isothermal plate with optional unheated starting length. 
 
FIND:  (a) local coefficient, hx, at leading and trailing edges with and without an unheated starting 
length, ξ = 1 m. 
 
SCHEMATIC: 

 
PROPERTIES:  Table A.4, Air (Tf = 325 K, 1 atm):  ν = 18.4 × 10-6 m2/s, Pr = 0.703, k = 0.0282 
W/m⋅K. 
 
ANALYSIS:  (a) The Reynolds number at ξ = 1 m is 

 5
6 2

u 2m s 1mRe 1.087 10
18.4 10 m s

ξ
ξ

ν
∞

−
×

= = = ×
×

 

If Rex,c = 5 × 105, flow is laminar over the entire plate (with or without the starting length).  In general, 

 

( )

1/ 2 1/ 3
x

x 1/ 33/ 4

0.332Re PrNu
1 xξ

=
⎡ ⎤−⎢ ⎥⎣ ⎦

 (1) 

 

 
( )

( ) ( )

1/ 3 1/ 2 1/ 2x x
x 1/ 3 1/ 33/ 4 3/ 4

0.332k Pr Re Reh 0.00832 W m K
x 1 x x 1 xξ ξ

= = ⋅
⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. 

With Unheated Starting Length:  Leading edge (x = 1 m):  Rex = Reξ, ξ/x = 1, hx = ∞ < 
 
Trailing Edge (x = 2 m):          5

xRe 2Re 2.17 10ξ= = × ,     ξ/x = 0.5 
 

 
( )

( )

1/ 25
2

x 1/ 33/ 4

2.17 10
h 0.00832 W m K 2.61W m K

2m 1 0.5

×
= ⋅ = ⋅

⎡ ⎤−⎢ ⎥⎣ ⎦

 < 

Without Unheated Starting Length:  Leading edge (x = 0):               hx = ∞ < 
 
Trailing edge (x = 1 m):          Rex = 1.087 × 105 

 
( )1/ 25

2
x

1.087 10
h 0.00832 W m K 2.74 W m K

1m

×
= ⋅ = ⋅  < 

(b) The average convection coefficient Lh  for the two cases in the schematic are, from Eq. 6.14, 
 

Continued... 



 
PROBLEM 7.41 (Cont.) 

 

 ( )L
L x0

1h h x dx
L

= ∫  (2) 
 
where L is the x location at the end of the heated section.  Substituting Eq. (1) into Eq. (2) and 
numerically integrating, the results are tabulated below: 
 

ξ (m) hx (L)(W/m2⋅K) Lh  (W/m2⋅K)  
0 2.74 5.41 
1 2.61 4.22 <

(c) The variation of the local convection coefficient over the plate, with and without the unheated starting 
length, using Eq. (1) is shown below. The abscissa is x - ξ. 
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COMMENTS:  (1) When the velocity and thermal boundary layers grow simultaneously (without 
starting length), we expect the local and average coefficients to be larger than when the velocity boundary 
layer is thicker (with starting length). 
 
(2) When ξ = 0, Lh  = 2hL, when ξ = 1, Lh  < 2hL.  From Eq. (7.44), 2

Lh 4.25 W / m K.= ⋅  
 
(3) The numerical integration of Eq. (2) was performed using the INTEGRAL (f,x) operation in IHT as 
shown in the Workspace below. 
 

// Average Coefficient: 
hbarL =  1 / (L - zeta ) * INTEGRAL (hx,x) 
 
// Local Coefficient With Unheated Starting Length: 
hx  = ( k / x) *  0.332 *  Rex^0.5 * Pr^0.3333 /  ( 1 - (zeta / x)^(3/4) )^(1/3)  
Rex = uinf * x / nu 
 
// Properties Tool - Air: 
// Air property functions : From Table A.4 
// Units: T(K); 1 atm pressure 
nu = nu_T("Air",Tf)   // Kinematic viscosity, m^2/s 
k = k_T("Air",Tf)   // Thermal conductivity, W/m·K 
Pr = Pr_T("Air",Tf)   // Prandtl number 
Tf = 325    // Film temperature, K 
 
// Assigned Variables: 
uinf =  2    // Airstream velocity, m/s 
x = 1    // Distance from leading edge, m 
L = 2    // Full length of plate, m 
zeta = 1    // Starting length, m 

 xzeta = x - zeta    // Difference               



PROBLEM 7.42 
 
 
 
KNOWN:  Dimensions of thin fuel cell in parallel flow. Ambient and surroundings temperatures, fuel 
cell emissivity, desired fuel cell operating temperature. Fuel cell thermal generation rate. 
 
FIND:  Minimum velocity needed to sustain desired fuel cell temperature. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible temperature variations inside the fuel 
cell, (3) Large surroundings, (4) Insulated fuel cell edges, (5) Negligible energy entering or leaving the 
fuel cell due to gas or liquid flows, (6), Constant properties, (7) Isothermal fuel cell, (8) Trip wire 
causes laminar-to-turbulent transition. 
 
PROPERTIES:  Table A.4, air (Tf = (77°C + 27°C)/2 = 52°C = 325K, p = 1 atm): ν = 18.4×10-6 m2/s, 
Pr = 0.704, k = 0.0282 W/m⋅K. 
 
ANALYSIS:  An energy balance on the control volume yields gE& =qrad + qcv  or 
 

4 4
sur

3 2 8 2 4 4 4

2 ( )

     11W 2 (50 10 m) 0.85 5.67 10 W / m K (273 77K) (273 27K)

     9.34W

cv g cq E LW T Tεσ
− −

= − −

⎡ ⎤= − × × × × × ⋅ × + − +⎣ ⎦
=

&

 

 
Applying Newton’s law of cooling yields 
 

 2
-3 2
9.34W 37.4W/m K

2 ( ) 2 (50 10 m) (77 - 27) C
cv

c

qh
LW T T∞

= = = ⋅
− × × × °

 

 
Since the flow may transition at the location of the trip wire, Eqs. (7.38) and (7.39) may be applied, 
yielding 

 

( )4 /5 4 /5 1/ 2 1/3 2
, ,

0.0282W/m K 0.037 0.037 0.664 0.704 37.4 W/m K
0.050m L x c x ch Re Re Re⋅

= − + = ⋅    

 
where   6 2/ 0.050m /18.4 10 m /sLRe VL Vν −= = × ×   and  6 2

, / /18.4 10 m /sx c c cRe Vx Vxν −= = ×  

 
The preceding three equations may be solved for the free stream velocity, V, for various trip wire 
locations, xc. The results are shown in the following graph. From the graph, we note that the minimum 
air velocity is approximately Vmin = 3.84 m/s with a trip wire location of xc = 15 mm.  < 
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PROBLEM 7.42 (Cont.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
COMMENTS:  (1) The optimal trip wire location takes advantage of the very high local Nusselt 
numbers associated with very thin laminar boundary layers near the leading edge of the fuel cell. Once 
the local Nusselt numbers within the laminar section begin to decrease, the flow is tripped to take 
advantage of the increased local Nusselt numbers of turbulent boundary layers. Hence, an optimum 
trip wire location exists. (2) The maximum Reynolds number based upon the fuel cell length and a 
maximum velocity of approximately Vmax = 4.65 m/s is Remax,L = 4.65 m/s × 0.050 m/18.4 × 10-6 m2/s = 
12,630. This is far below the typical transition Reynolds number of 500,000, and the flow will be 
laminar if it is not tripped into a turbulent condition. (3) The reduction in the air velocity associated 
with placement of the trip wires is significant and will result in substantially reduced power 
requirements to operate the cooling fan. 
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PROBLEM 7.43  
KNOWN:  Cover plate dimensions and temperature for flat plate solar collector.  Air flow conditions.  
FIND:  (a) Heat loss with simultaneous velocity and thermal boundary layer development, (b) Heat 
loss with unheated starting length.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible radiation, (3) Boundary layer is not 

disturbed by roof-plate interface, (4) 5
x,cRe 5 10 .= ×  

 
PROPERTIES:  Table A-4, Air (Tf = 285.5K, 1 atm):  ν = 14.6 × 10

-6
 m

2
/s, k = 0.0251 W/m⋅K, Pr = 

0.71.  
ANALYSIS:  (a) The Reynolds number for the plate of L = 1m is 

 5
L x,c-6 2

u L 2 m/s  1mRe 1.37 10 Re .
14.6 10  m / sν

∞ ×
= = = × <

×
 

For laminar flow 

 ( ) ( )L
1/ 2 1/ 31/2 1/3 5

LNu 0.664 Re  Pr 0.664 1.37 10 0.71 219.2= = × =  

 ( ) ( )L
2

s s
k 0.0251 W/m Kq Nu A T T 219.2 2m 5 C 55 W.
L 1m∞

⋅
= − = =o   < 

(b) The Reynolds number for the roof and collector of length L = 3m is 

 5
L x,c-6 2

2 m/s 3mRe 4.11 10 Re .
14.6 10  m / s

×
= = × <

×
 

Hence, laminar boundary layer conditions exist throughout and the heat rate is 

 ( )
( )

L L1/ 2 1/2
1/3

s 1/ 33/ 4

u x dx
q  q  dA T T 0.332 Pr kW

1 /x
ξ ξν

ξ

−
∞

∞′′= ∫ = − ∫

−

⎛ ⎞
⎜ ⎟
⎝ ⎠ ⎡ ⎤

⎢ ⎥⎣ ⎦

 

 ( ) ( )
( )

L1/ 2 1/2
1/ 3

-6 2 1/ 33/ 4

2 m/s W x dx
q 5 C 0.332 0.71 0.0251 2m

m K14.6 10  m / s 1 /x
ξ

ξ

−
= ∫

⋅× −

⎛ ⎞
⎜ ⎟
⎝ ⎠ ⎡ ⎤

⎢ ⎥⎣ ⎦

o  

Using a numerical technique to evaluate the integral, 

 
( )

3

2

1/2

1/ 33/ 4

x dxq 27.50 27.50 1.417 39 W
1 2.0/x

−
= ∫ = × =

⎡ ⎤−⎢ ⎥⎣ ⎦

    < 

COMMENTS:  Values of h  with and without the unheated starting length are 3.9 and 5.5 W/m
2
⋅K.  

Prior development of the velocity boundary layer decreases h.  



PROBLEM 7.44  
KNOWN:  Surface dimensions for an array of 10 silicon chips.  Maximum allowable chip 
temperature.  Air flow conditions.  
FIND:  Maximum allowable chip electrical power (a) without and (b) with a turbulence promoter at 
the leading edge.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Film temperature of 52°C, (3) Negligible radiation, 
(4) Negligible heat loss through insulation, (5) Uniform heat flux at chip interface with air, (6) 

5
x,cRe 5 10 .= ×  

 
PROPERTIES:  Table A-4, Air (Tf = 325K, 1 atm):  ν = 18.4 × 10

-6
 m

2
/s, k = 0.0282 W/m⋅K, Pr = 

0.703.  
ANALYSIS:  -6 2 5

LRe u L/ 40 m/s 0.1 m/18.4 10  m / s 2.174 10 .ν∞= = × × = ×   Hence, flow is 
laminar over all chips without the promoter.  
(a) For laminar flow, the minimum hx exists on the last chip.  Approximating the average coefficient 
for Chip 10 as the local coefficient at x = 95 mm, 10 x 0.095mh h .==  

 1/2 1/3
10 x

k
h 0.453 Re Pr

x
=  

 5
x -6 2

u x 40 m/s 0.095 m
Re 2.065 10

18.4 10  m / sν
∞ ×

= = = ×
×

 

 ( ) ( )
1/ 2 1/ 35 2

10
0.0282 W/m K

h 0.453 2.065 10 0.703 54.3W/m K
0.095

⋅
= × = ⋅  

 ( ) ( ) ( )2
10 10 s 2

W
q h A T T 54.3 0.01 m 80 24 C 0.30 W.

m K
∞= − = − =

⋅

o  

Hence, if all chips are to dissipate the same power and Ts is not to exceed 80°C. 

 maxq 0.30 W.=          < 
(b) For turbulent flow, 

( ) ( )
4 / 5 1/ 34/5 1/3 5 2

10 x
k 0.0282W/m K

h 0.0308 Re Pr 0.0308 2.065 10 0.703 145W/m K
x 0.095 m

⋅
= = × = ⋅

 ( ) ( ) ( )2
10 10 s 2

Wq h A T T 145 0.01 m 80 24 C 0.81 W.
m K

∞= − = − =
⋅

o  

Hence,  maxq 0.81 W.=         < 
 
COMMENTS:  It is far better to orient array normal to the air flow.  Since h h1 10> ,  more heat 
could be dissipated per chip, and the same heat could be dissipated from each chip. 



PROBLEM 7.45  
KNOWN:  Dimensions and maximum allowable temperature of a silicon chip.  Air flow conditions.  
FIND:  Maximum allowable power with or without unheated starting length.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Tf = 52°C, (3) Negligible radiation, (4) Negligible 

heat loss through insulation, (5) Uniform heat flux at chip-air interface, (6) Rex,c = 5 × 10
5.  

PROPERTIES:  Table A-4, Air (Tf = 325K, 1 atm):  ν = 18.41 × 10
-6

 m
2
/s, k = 0.0282 W/m⋅K, Pr = 

0.703.  
ANALYSIS:  For uniform heat flux, maximum Ts corresponds to minimum hx.  Without unheated 
starting length, 

 L -6 2
u L 20 m/s 0.01 mRe 10,864.

18.41 10  m / sν
∞ ×

= = =
×

 

With the unheated starting length, L = 0.03 m, ReL = 32,591.  Hence, the flow is laminar in both cases 

and the minimum hx occurs at the trailing edge ( x = L).  
Without unheated starting length, 

 ( ) ( )1/ 2 1/ 31/2 1/3
L L

k 0.0282 W/m K
h 0.453Re Pr 0.453 10,864 0.703

L 0.01 m
⋅

= =  

 2
Lh 118 W/m K= ⋅  

 ( ) ( ) ( )2 2
L sq L h T T 118 W/m K 80 24 C 6630 W/m∞′′ = − = ⋅ − =o  

 ( )22 2
max sq A q 10 m 6630 W/m 0.66 W.−′′= = =      < 

 
With the unheated starting length, 

 
( )

( ) ( )

( )

1/ 2 1/ 31/2 1/3
L

L 1/ 3 1/ 33/ 4 3 / 4

32,951 0.703k Re Pr 0.0282 W/m K
h 0.453 0.453

L 0.03 m
1 /L 1 0.02 / 0.03ξ

⋅
= =

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 2
Lh 107 W/m K= ⋅  

 ( ) ( ) ( )2 2
L sq L h T T 107 W/m K 80 24 C 6013 W/m∞′′ = − = ⋅ − =o  

 -4 2 2
max sq A q 10 m 6013 W/m 0.60 W.′′= = × =      < 

 
COMMENTS:  Prior velocity boundary layer development on the unheated starting section decreases 
hx, although the effect diminishes with increasing x. 



PROBLEM 7.46 
 
KNOWN:  Cylinder diameter and surface temperature.  Temperature and velocity of fluids in cross flow. 
 
FIND:  (a) Rate of heat transfer per unit length for the fluids: atmospheric air and saturated water, and 
engine oil, for velocity V = 5 m/s, using the Churchill-Bernstein correlation, and (b) Compute and plot q′  
as a function of the fluid velocity 0.5 ≤ V ≤ 10 m/s. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Uniform cylinder surface temperature. 
 
PROPERTIES:  Table A.4, Air (Tf = 308 K, 1 atm):  ν = 16.69 × 10-6 m2/s, k = 0.0269 W/m⋅K, Pr = 
0.706;  Table A.6, Saturated Water (Tf = 308 K):  ρ = 994 kg/m3, μ = 725 × 10-6 N⋅s/m2, k = 0.625 
W/m⋅K, Pr = 4.85;  Table A.5, Engine Oil (Tf = 308 K):  ν = 340 × 10-6 m2/s, k = 0.145 W/m⋅K, Pr = 
4000. 
 
ANALYSIS:  (a) For each fluid, calculate the Reynolds number and use the Churchill-Bernstein 
correlation, Eq. 7.54, 

 

( )

4 / 55 /81/ 2 1/ 3
D DD 1/ 42 / 3

hD 0.62 Re Pr Re
Nu 0.3 1

k 282, 000
1 0.4 Pr

= = + +

+

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎡ ⎤ ⎣ ⎦

⎢ ⎥⎣ ⎦

   

Fluid:  Atmospheric Air 

 
( )

D 6 2
5 m s 0.01mVD

Re 2996
16.69 10 m sν −

= = =
×

 

 

 
( ) ( )

( )

4 / 51/ 2 1/ 3 5 / 8
D 1/ 42 / 3

0.62 2996 0.706 2996
Nu 0.3 1 28.1

282, 000
1 0.4 0.706

= + + =

+

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎡ ⎤ ⎣ ⎦

⎢ ⎥⎣ ⎦

 

 

 2
D

k 0.0269 W m K
h Nu 28.1 75.5 W m K

D 0.01m
⋅

= = = ⋅  

 ( ) ( )( )2
sq h D T T 75.5 W m K 0.01m 50 20 C 71.1W mπ π∞′ = − = ⋅ − =o  < 

 
Fluid:  Saturated Water 

 
( )

D 6 2 3
5 m s 0.01mVD

Re 68,552
725 10 N s m 994 kg mν −

= = =
× ⋅

 

 

 
( ) ( )

( )

4 / 51/ 2 1/ 3 5 / 8
D 1/ 42 / 3

0.62 68,552 4.85 68,552
Nu 0.3 1 347

282, 000
1 0.4 4.85

= + + =

+

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎡ ⎤ ⎣ ⎦

⎢ ⎥⎣ ⎦
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PROBLEM 7.46 (Cont.) 

 

 h k
D

Nu W m K
m

W m KD= =
⋅

= ⋅
0 625

0 01
347 21 690 2.

.
,                      ′ =q W m20 438,  < 

 
Fluid:  Engine Oil 
 

 
( )

D 6 2
5 m s 0.01mVD

Re 147
340 10 m sν −

= = =
×

 

 

 
( ) ( )

( )

4 / 51/ 2 1/ 3 5 / 8
D 1/ 42 / 3

0.62 147 4000 147
Nu 0.3 1 120

282, 000
1 0.4 4000

= + + =

+

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎡ ⎤ ⎣ ⎦

⎢ ⎥⎣ ⎦

 

 

 2
D

k 0.145 W m K
h Nu 120 1740 W m K

D 0.01m
⋅

= = = ⋅                      q 1639 W m′ =  < 

(b)  Using the IHT Correlations Tool, External Flow, Cylinder, along with the Properties Tool for each of 
the fluids, the heat rates, q′ , were calculated for the range 0.5 ≤ V ≤ 10 m/s.  Note the q′  scale 
multipliers for the air and oil fluids which permit easy comparison of the three curves. 

0 2 4 6 8 10

Fluid velocity, V (m/s)

0

10000

20000

30000

40000

H
ea

t r
at

e,
 q

'a
*1

00
, q

'w
, q

'o
*1

0 
(W

/m
)

Air - q'*100
Water - q'
Oil - q'*10  

 
COMMENTS:  (1) Note the inapplicability of the Zukauskas relation, Eq. 7.53, since Proil > 500. 
 
(2) In the plot above, recognize that the heat rate for the water is more than 10 times that with oil and 300 
times that with air.  How do changes in the velocity affect the heat rates for each of the fluids? 
 



PROBLEM 7.47  
KNOWN:  Conditions associated with air in cross flow over a pipe.  
FIND:  (a) Drag force per unit length of pipe, (b) Heat transfer per unit length of pipe.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Uniform cylinder surface temperature, (3) 
Negligible radiation effects.  
PROPERTIES:  Table A-4, Air (Tf = 335 K, 1 atm):  ν = 19.31 × 10

-6
 m

2
/s, ρ = 1.048 kg/m

3
, k = 

0.0288 W/m⋅K, Pr = 0.702.  
ANALYSIS:  (a) From the definition of the drag coefficient with Af = DL, find 

 

2
D D f

2
'
D D

VF C A
2

VF C D .
2

ρ

ρ

=

=
 

With 

 ( ) 4
D -6 2

15 m/s  0.025 mVDRe 1.942 10
19.31  10  m / sν

×
= = = ×

×
 

from Fig. 7.9, CD ≈ 1.1.  Hence 

 ( ) ( )23
DF 1.1 0.025 m  1.048 kg/m  15 m/s / 2 3.24 N/m.= =    < 

 
(b) Using Hilpert’s relation, with C = 0.193 and m = 0.618 from Table 7.2,  

 ( ) ( )
0.618 1/ 3m 1/3 4

D
2

k 0.0288 W/m Kh C Re  Pr 0.193 1.942 10 0.702
D 0.025 m

h 88 W/m K.

⋅
= = × ×

= ⋅
 

 
Hence, the heat rate per unit length is 

 ( ) ( ) ( ) ( )2
sq h D  T T 88 W/m K 0.025 m  100 25 C 520 W/m.π π∞′ = − = ⋅ × − =o  < 

 
COMMENTS:  Using the Zukauskas correlation and evaluating properties at T∞ (ν = 15.71 × 10

-6
 

m
2
/s, k = 0.0261 W/m⋅K, Pr = 0.707), but with Prs = 0.695 at Ts, 

 ( ) ( )
0.6

0.37 1/ 4 2
-6

0.0261 15 0.025h 0.26 0.707 0.707 / 0.695 102 W/m K.
0.025 15.71 10

⎛ ⎞×
= = ⋅⎜ ⎟

×⎝ ⎠
 

This result agrees with that obtained from Hilpert’s relation to within the uncertainty normally 
associated with convection correlations. 



PROBLEM 7.48 
 
 
KNOWN:  Dimensions of a vertical copper tube experiencing crossflow. Air velocity and 
temperature, water temperature inside the tube. 
 
FIND:  (a) The heat loss per unit mass from the water (W/kg) when the pipe is full. (b) The heat loss 
from the water (W/kg) when the pipe is half full. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Tube behaves as an 
infinite fin, (4) Water is well-mixed, (5) One-dimensional heat transfer, (6) Inside copper wall 
temperature at water temperature, (7) Negligible heat transfer to/from the gas above the liquid water, 
(8) Negligible radiation. 
 
PROPERTIES:  Table A.4, air assumed: (Tf = (0°C - 20°C)/2 = -10°C ≈ 263K, p = 1 atm): ν = 
12.6×10-6 m2/s, Pr = 0.717, k = 0.0233 W/m⋅K. Table A.1, copper: (T = 300 K): kCU = 401 W/m⋅K. 
Table A.6, water (T = 273 K), ρ = 1000 kg/m3. 
 
ANALYSIS:  For either case, the average convection coefficient about the tube must be evaluated. 
The Reynolds number, based upon the outer diameter Do = 20 mm + 4 mm = 24 mm is ReD = VDo/ν = 
3 m/s × 24 × 10-3 m/12.6 × 10-6 m2/s = 5714. Using Eq. 7.54, the average heat transfer coefficient 
about the exterior of the tube is 
 

( ) 4 /51/ 2 1/3 5/8
2

3 1/ 42 /3

0.62 5714 0.7170.0233W/m K 57140.3 1 38.56 W/m K
282,00024 10 m 1 (0.4 / 0.717)

h −

⎧ ⎫⎡ ⎤⋅ ⎛ ⎞⎪ ⎪= + + = ⋅⎢ ⎥⎨ ⎬⎜ ⎟× ⎝ ⎠⎢ ⎥⎡ ⎤⎪ ⎪+ ⎣ ⎦⎣ ⎦⎩ ⎭

 

 
(a) From Eq. 3.34 heat loss from the water is 
 

  ( )

3 2

0 ( 20) C
1m 58Wln(24 / 20) 1

2 401W/m K 24 10 m 38.56W/m K

q

π π −

− − °
= × =

+
× ⋅ × × × ⋅

 

 
while the mass of water is M = π(Di

2/4)Lρ = π×(20×10-3m)2/4×1m×1000kg/m3 = 0.314 kg. Hence, the 
heat loss per unit mass of water is 
 
   qM = q/M = 58 W/0.314 kg = 185 W/kg.     < 
 

Continued… 
 

Air

V = 3 m/s
T∞ = -20°C

Di = 20 mm

t = 2 mm

L = 1m

Case A: Full of water

Case B: Half full of water



PROBLEM 7.48 (Cont.) 
 
 
(b) When the tube is half full, the upper half of the tube will act as a fin. The total heat loss per unit 
mass will be qM = qM1 + qM2 where qM1 is the radial heat loss that is the same as in part (a) and qM2 is 
the heat loss to the upper half of the copper tubing, which serves as a fin.  From part (a) qM1 = 185 
W/kg. Assuming an infinite fin and recognizing that the cross-sectional area is associated with the 
inner and outer diameters of the tubing, 
 

( )
( )

2

2 3 3 2 3 2

/

       38.56W/m K 24 10 m 401W/m K (24 10 m) (20 10 m) / 4

       0 ( 20) C/0.157kg
        = 51.3 W/kg

M c bq hPkA Mθ

π π− − −

=

= ⋅ × × × × ⋅ × × − ×

× − − °
 

Therefore, qM = 185 W/kg + 51.3 W/kg = 236 W/kg      < 
 
COMMENTS:  (1) The fin effect is significant, and the water in the half-full tube will freeze before 
the water in the full tube. (2) The temperature distribution in the copper tubing above the water level in 
the half-full tubing is θ/θb = exp-mx where x is a local coordinate with origin at the water level. For this 
problem, 

( )
2 2

2 3 3 2 3 2

/ 4 / ( )

   4 38.56W/m K 24 10 m / 401W/m K (24 10 m) (20 10 m)

c o o im hP kA hD k D D

− − −

= = −

= × ⋅ × × ⋅ × − ×
= 7.24 m-1.  

Therefore, over a 0.5 m length above the water surface for part (b), the temperature decreases to T(x = 
0.5 m) = -20°C + (20°C)exp(-7.24m-1×0.5m) = - 19.5°C. The assumption of an infinitely long fin is 
reasonable. 



PROBLEM 7.49 
 
KNOWN:  Initial temperature, power dissipation, diameter, and properties of heating element.  Velocity 
and temperature of air in cross flow. 
 
FIND:  (a) Steady-state temperature, (b) Time to come within 10°C of steady-state temperature. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Uniform heater temperature, (2) Negligible radiation. 
 
PROPERTIES:  Table A.4, air (assume Tf ≈ 450 K):  ν = 32.39 × 10-6 m2/s, k = 0.0373 W/m⋅K, Pr = 
0.686. 
 
ANALYSIS:  (a) Performing an energy balance for steady-state conditions, we obtain 
 ( )( )conv elecq h D T T P 1000 W mπ ∞′ ′= − = =  
With 

 
( )

D 6 2
10m s 0.01mVDRe 3,087

32.39 10 m sν −
= = =

×
 

 
the Churchill and Bernstein correlation, Eq. 7.54, yields 
 

 

( )

4 / 51/ 2 1/ 3 5/8
DDD 1/ 42 / 3

0.62 Re Pr ReNu 0.3 1
282,000

1 0.4 Pr

⎡ ⎤⎛ ⎞⎢ ⎥= + + ⎜ ⎟⎢ ⎥⎝ ⎠⎡ ⎤ ⎣ ⎦+⎢ ⎥⎣ ⎦

 

 

 
( ) ( )

( )

4 / 51/ 2 1/ 3 5/8
D 1/ 42 /3

0.62 3087 0.686 3087Nu 0.3 1 28.2
282,000

1 0.4 0.686

⎡ ⎤⎛ ⎞⎢ ⎥= + + =⎜ ⎟⎢ ⎥⎝ ⎠⎡ ⎤ ⎣ ⎦+⎢ ⎥⎣ ⎦

 

 

 2D
k 0.0373W m Kh Nu 28.2 105.2 W m K
D 0.010m

⋅
= = = ⋅  

 
Hence, the steady-state temperature is 

 
( )

elec
2

P 1000 W mT T 300 K 603K
Dh 0.01m 105.2 W m Kπ π

∞
′

= + = + =
⋅

 < 

(b) With Bi = ohr k  = 105.2 W/m2⋅K(0.005 m)/240 W/m⋅K = 0.0022, a lumped capacitance analysis 
may be performed.  The time response of the heater is given by Eq. 5.25, which, for Ti = T∞ , reduces to 
 
 ( ) ( )T T b a 1 exp at∞ ⎡ ⎤= + − −⎣ ⎦  
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PROBLEM 7.49 (Cont.) 

 
where a = 4 ph D cρ  = 4 105 2 0 01 2700 9002 3× ⋅ × × ⋅. .W m K m kg m J kg Kc h c h  = 0.0173 s-1 and b/a = 

elecP Dhπ′  = ( )21000 W m 0.01m 105.2 W m Kπ × ⋅  = 302.6 K.  Hence, 

 

 ( ) ( )593 300 K
1 exp 0.0173t 0.968

302.6K
−

⎡ ⎤− − = =⎣ ⎦  

 t ≈ 200s < 
 
COMMENTS:  (1) For T = 603 K and a representative emissivity of ε = 0.8, net radiation exchange 

between the heater and surroundings at Tsur = T∞  = 300 K would be ( )( )4 4
rad surq D T Tεσ π′ = −  = 0.8 

× 5.67 × 10-8 W/m2⋅K4 (π × 0.01 m)(6034 - 3004)K4 = 177 W/m.  Hence, although small, radiation 
exchange is not negligible.  The effects of radiation are considered in Problem 7.50. 
 
(2) The assumed value of Tf is very close to the actual value, rendering the selected air properties 
accurate. 



PROBLEM 7.50 
 
KNOWN:  Initial temperature, power dissipation, diameter, and properties of a heating element.  
Velocity and temperature of air in cross flow.  Temperature of surroundings. 
 
FIND:  (a) Steady-state temperature, (b) Time to come within 10°C of steady-state temperature, (c) 
Variation of power dissipation required to maintain a fixed heater temperature of 275°C over a range of 
velocities. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  Uniform heater surface temperature. 
 
ANALYSIS:  (a) Performing an energy balance for steady-state conditions, we obtain 
 conv rad elecq q P′ ′ ′+ =  

 ( )( ) ( )( )4 4
sur elech D T T D T T Pπ εσ π∞ ′− + − =  

 ( ) ( ) ( )( )8 2 4 4 4 40.01m h T 300 K 0.8 5.67 10 W m K T 300 K 1000 W m−⎡ ⎤× − + × ⋅ − =⎢ ⎥⎣ ⎦
π  

Using the IHT Energy Balance Model for an Isothermal Solid Cylinder with the Correlations Tool Pad 
for a Cylinder in Crossflow and the Properties Tool Pad for Air, we obtain 

 T = 562.4 K < 

where 2h 105.4 W m K= ⋅ , 2
rh 15.9 W m K= ⋅ , convq 868.8W m′ = , and radq 131.2 W m′ = . 

 
(b) With Bi = ( )r oh h r k+  = (121.3 W/m2⋅K)0.005 m/240 W/m⋅K = 0.0025, the transient behavior may 

be analyzed using the lumped capacitance method.  Using the IHT Lumped Capacitance Model to 
perform the numerical integration, the following temperature histories were obtained. 
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The agreement between predictions with and without radiation for t < 50s implies negligible radiation.  
However, as the heater temperature increases with time, radiation becomes significant, yielding a reduced 
heater temperature.  Steady-state temperatures correspond to 562.4 K and 602.8 K, with and without 
radiation, respectively.  The time required for the heater to reach 552.4 K (with radiation) is t ≈ 155s. 
 
(c) If the heater temperature is to be maintained at a fixed value in the face of velocity excursions, 
provision must be made for adjusting the heater power.  Using the Explore and Graph options of IHT 
with the model of part (a), the following results were obtained. 
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For T = 275°C = 548 K, the controller would compensate for velocity reductions from 10 to 5 m/s by 
reducing the power from approximately 935 to 690 W/m. 
 
COMMENTS:  Although convection heat transfer substantially exceeds radiation heat transfer, radiation 
is not negligible and should be included in the analysis.  If it is neglected, T = 603 K would be predicted 
for elecP′  = 1000 W/m, in contrast to 562 K from the results of part (a). 
 
 



PROBLEM 7.51 
 
KNOWN:  Geometry and dimensions of three pin fins.  Velocity and temperature of air in cross flow. 
 
FIND:  Which fin has the largest heat transfer rate.  
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state, (2) Constant properties, (3) Fins can be treated as infinitely long, 
(4) Presence of fin base doesn’t affect heat transfer coefficients. 
  
PROPERTIES:  Table A-4 Air (T = 350 K):  νa = 20.92 × 10-6 m2/s 
 
ANALYSIS:  For infinitely long fins, the fin heat transfer rate is given by Equation 3.85: 
 

f c bq hPkA θ=  
 

In every case, the heat transfer coefficient is found from a correlation of the form, 1/3m
DDNu CRe Pr= , 

thus 
 

 1/3m
D c b

a
f aCRe Pr PkA

kq
D

θ=  

 
where subscript a refers to air properties.  Since each fin has the same cross-sectional area, the 
parameters that vary from one configuration to another are D, C, ReD, m, and P.  Thus, it is sufficient 
to examine the combination parameter /m

DCRe P D to determine which fin has the largest heat transfer 
rate.   
 
The cross-sectional area of the circular cylinder is Ac = πD2/4.  Thus the dimension of the square, Ds, is 

1/2 1/2 1/2/ 2 (15 mm) / 2 13.3 mms cD A Dπ π= = = = . The dimension of the diamond is the same, 

however Dd is defined differently.  Referring to Table 7.3, 1/22d sD D=  1/22 (13.3 mm)=  18.8 mm= .  
The perimeters are Pc = πD = 47.1 mm for the circular cylinder and Ps = Pd = 4Ds = 53.2 mm for both 
the square and diamond configurations. 
 
The Reynolds number can be calculated from Re = VD/νa, then C and m can be found from Tables 7.2 
and 7.3 for the different configurations. The results are tabulated below for all three configurations.  A 
line has been included to represent the heat transfer coefficient, which is proportional to /m

DCRe D . 
 

Continued… 
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Configuration A Configuration B Configuration C

V = 10 m/s for all cases



PROBLEM 7.51 (Cont.) 
 
 
 Configuration A 

(circular) 
Configuration B 

(square) 
Configuration C 

(diamond) 
D (mm) 15 13.3 18.8 
P (mm) 47.1 53.2 53.2 
ReD = VD/νa 7,170 6,358 8,987 
C 0.193 0.158 0.304 
m 0.618 0.66 0.59 

/m
DCRe D (m-1) ~ h 3106 3846 3478 

/m
DCRe P D ~ qf 146 205 185 

 
For fins of equal mass, the square fin configuration has the largest heat transfer rate.  < 
 
 
COMMENTS:  (1) For the same cross-sectional area, the square and diamond configurations have 
larger perimeters than the circular cylinder, which contributes to the larger heat transfer rate. (2) For 
the same cross-sectional area, the square and diamond configurations have larger heat transfer 
coefficients, which also contributes to the larger heat transfer rates. 
 
 



PROBLEM 7.52  
KNOWN:  Pin fin of 10 mm diameter dissipates 30 W by forced convection in cross-flow of air with 

ReD = 4000. 
 
FIND:  Fin heat rate if diameter is doubled while all conditions remain the same.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Pin behaves as infinitely long fin, (2) Conditions of flow, as well as base and 
air temperatures, remain the same for both situations, (3) Negligible radiation heat transfer.  
ANALYSIS:  For an infinitely long pin fin, the fin heat rate is  

 ( )1/ 2
f conv c bq q hPkA θ= =  

 
where P = πD and Ac = πD

2
/4.  Hence, 

 

 ( )1/ 22
convq ~ h D D .⋅ ⋅  

 
For forced convection cross-flow over a cylinder, an appropriate correlation for estimating the 
dependence of h  on the diameter is  

 D

m
m 1/3 1/3
D

hD VDNu CRe  Pr C Pr .
k ν

⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

 
 
From Table 7.2 for ReD = 4000, find m = 0.466 and 
 
 ( )0.4661 0.534h~D D D .− −=  
 
It follows that 

 ( )1/ 20.534 2 1.23
convq ~ D D D D .− ⋅ ⋅ =  

Hence, with q1 → D1 (10 mm) and q2 → D2 (20 mm), find 
 

 
1.23 1.23

2
2 1

1

D 20q q 30 W 70.4 W.
D 10

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

     < 

 
COMMENTS:  The effect of doubling the diameter, with all other conditions remaining the same, is 
to increase the fin heat rate by a factor of 2.35.  The effect is nearly linear, with enhancements due to 
the increase in surface and cross-sectional areas (D

1.5
) exceeding the attenuation due to a decrease in 

the heat transfer coefficient (D
-0.267

).  Note that, with increasing Reynolds number, the exponent m 
increases and there is greater heat transfer enhancement due to increasing the diameter. 



PROBLEM 7.53  
KNOWN:  Pin fin installed on a surface with prescribed heat rate and temperature.  
FIND:  (a) Maximum heat removal rate possible, (b) Length of the fin, (c) Effectiveness, εf, (d) 
Percentage increase in heat rate from surface due to fin.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Conditions over As are uniform for both situations, 
(3) Conditions over fin length are uniform, (4) Flow over pin fin approximates cross-flow.  
PROPERTIES:  Table A-4, Air (Tf = (T∞ + Ts)/2 = (27 + 127)°C/2 = 350 K):  ν = 20.92 × 10

-6 
m

2
/s, k = 30.0 × 10

-3
 W/m⋅K, Pr = 0.700.  Table A-1, SS AISI304 ( T  = Tf = 350 K): k = 15.8 

W/m⋅K.  
ANALYSIS:  (a) Maximum heat rate from fin occurs when fin is infinitely long, 

 ( )1/ 2
f c bq M hPkA θ= =         (1) 

from Eq. 3.85.  Estimate convection heat transfer coefficient for cross-flow over cylinder, 

 -6 2
D

VDRe 5 m/s 0.005 m/20.92 10 m / s 1195.
ν

= = × × =  

Using the Hilpert correlation, Eq. 7.52, with Table 7.2,find 

( ) ( ) ( )0.466 1/ 3m 2
D

kh CRe Pr 0.030W/m K/0.005m 0.683 1195 0.700 98.9W/m K
D

= = ⋅ = ⋅  

From Eq. (1), with P = πD, Ac = πD
2
/4, and θb = Ts - T∞, find 

( ) ( )( ) ( )
1/ 222

fq 98.9 W/m K 0.005 m 15.8 W/m K 0.005 m / 4 127 27 K 2.20 W.π π= ⋅ × × ⋅ × − =  < 

(b) From Example 3.9, L ≈ L∞ = 2.65(kAc/hP)
1/2

.  Hence, 

( ) ( )
1/ 22 2L L 2.65 15.8 W/m K 0.005 m / 4 / 98.9 W/m K 0.005 m 37.4 mm.π π∞≈ = ⋅ × ⋅ × =⎡ ⎤

⎢ ⎥⎣ ⎦
 < 

(c) From Eq. 3.86, with hs used for the base area As, the effectiveness is 

 
( )

( )

2
sf f

f 2s c,b b wo c,b

0.020 0.020 mAq q 2.2 W 89.6
h A q A 0.5 W 0.005 m / 4

ε
θ π

×
= = = ⋅ =    < 

where  s wo s bh q / A .θ=  
(d) The percentage increase in heat rate with the installed fin (w) is 

 ( )( )2w wo
f s s s wo wo

wo

q q 100 q h A D / 4 T T q 100 / q
q

π ∞
− ⎛ ⎞⎡ ⎤× = + − − − ×⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

 

[ ] ( )( )( )2 22q/q 2.2 W 12.5 W/m K 0.02 m / 4 0.005 m 100 K 0.5 W 100 / 0.5 Wπ⎧ ⎫⎡Δ = + ⋅ − − ×⎨ ⎬⎢⎣⎩ ⎭
 

 q/q 435%.Δ =          < 



PROBLEM 7.54 
 
KNOWN:  Dimensions of chip and pin fin.  Chip temperature.  Free stream velocity and temperature of 
air coolant. 
 
FIND:  (a) Average pin convection coefficient, (b) Pin heat transfer rate, (c) Total heat rate, (d) Effect of 
velocity and pin diameter on total heat rate. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in pin, (3) Constant 
properties, (4) Convection coefficients on pin surface (tip and side) and chip surface correspond to single 
cylinder in cross flow, (5) Negligible radiation. 
 
PROPERTIES:  Table A.1, Copper (350 K):  k = 399 W/m⋅K; Table A.4, Air (Tf ≈325 K, 1 atm):  ν = 
18.41 × 10-6 m2/s, k = 0.0282 W/m⋅K, Pr = 0.704. 
 
ANALYSIS:  (a) With V = 10 m/s and D = 0.002 m, 
 

 D 6 2
VD 10m s 0.002mRe 1087

18.41 10 m sν −
×

= = =
×

 

 
Using the Churchill and Bernstein correlations, Eq. (7.54), 
 

 

( )

4 / 55 /81/ 2 1/ 3
D DD 1/ 42 / 3

0.62 Re Pr Re
Nu 0.3 1 16.7

282, 000
1 0.4 Pr

= + + =

+

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎡ ⎤ ⎣ ⎦

⎢ ⎥⎣ ⎦

 

 ( ) ( ) 2
Dh Nu k D 16.7 0.0282 W m K 0.002 m 235 W m K= = × ⋅ = ⋅  < 

 
(b) For the fin with tip convection and 

 ( ) ( ) ( )
1/ 21/ 2 32 2

bM h Dk D 4 2 235 W m K 0.002 m 399 W m K 50 K 2.15 Wπ π θ π= = ⋅ ⋅ =⎡ ⎤
⎢ ⎥⎣ ⎦

 

 ( ) ( )1/ 21/ 2 2 1
cm hP kA 4 235 W m K 399 W m K 0.002 m 34.3m−= = × ⋅ ⋅ × =  

 ( )1mL 34.3m 0.012 m 0.412−= =  

 ( ) ( )2 1h mk 235 W m K 34.3m 399 W m K 0.0172−= ⋅ × ⋅ = . 

The fin heat rate is 

 
( )
( )f

sinh mL h mk cosh mL
q M 0.868 W

cosh mL h mk sinh mL

+
= =

+
. < 

 
Continued... 



 
PROBLEM 7.54 (Cont.) 

 
(c) The total heat rate is that from the base and through the fin, 

 ( ) ( )2 2
b f b fq q q h W D 4 q 0.151 0.868 W 1.019 Wπ θ= + = − + = + = . < 

 
(d) Using the IHT Extended Surface Model for a Pin Fin with the Correlations Tool Pad for a Cylinder in 
crossflow and Properties Tool Pad for Air, the following results were generated. 

10 20 30 40

Freestream velocity, V(m/s)

1

1.2

1.4

1.6

1.8

2

To
ta

l h
ea

t r
at

e,
 q

(W
)

D = 2 mm       

2 2.4 2.8 3.2 3.6 4

Pin diameter, D(mm)

1

1.4

1.8

2.2

2.6

3

To
ta

l h
ea

t r
at

e,
 q

(W
)

V = 10 m/s
V = 40 m/s  

 
Clearly, there is significant benefit associated with increasing V which increases the convection 
coefficient and the total heat rate.  Although the convection coefficient decreases with increasing D, the 
increase in the total heat transfer surface area is sufficient to yield an increase in q with increasing D.  The 
maximum heat rate is q = 2.77 W for V = 40 m/s and D = 4 mm. 
 
COMMENTS:  Radiation effects should be negligible, although tip and base convection coefficients will 
differ from those calculated in parts (a) and (d). 



PROBLEM 7.55  
KNOWN:  Diameter, resistivity, thermal conductivity and emissivity of Nichrome wire.  Electrical 
current.  Temperature of air flow and surroundings.  Velocity of air flow.  
FIND:  (a) Surface and centerline temperatures of the wire, (b) Effect of flow velocity and electric 
current on temperatures.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state, (2) Radiation exchange with large surroundings, (3) Constant 
Nichrome properties, (4) Uniform surface temperature. 
 
PROPERTIES:  Prescribed, Nichrome:  k = 25 W/m⋅K, 6

e 10 m,ρ −= Ω ⋅  0.2.ε =   Table A-4, air 

( )5 2
f aT 800K : k 0.057 W / m K, 8.5 10 m / s, Pr 0.71 .ν −≈ = ⋅ = × =  

 
ANALYSIS:  (a) The surface temperature may be obtained from Eq. 3.60, with c rh h h= +  and 

( )22 2 2 2 2 9 3
e e c eq I R / I / A I / D / 4 1.013 10 W / m .ρ ρ π= ∀ = = = ×&  

 

 
( )

( )s
c r

q D / 2
T T

2 h h∞= +
+

&
         (1) 

 
The convection coefficient is obtained from the Churchill and Bernstein correlation 

 

( )

4 / 51/ 2 1/ 3 5/8
2a DD

c 1/ 42 / 3

0.62Re Prk Reh 0.3 1 230 W / m K
D 282,000

1 0.4 / Pr

⎧ ⎫
⎪ ⎡ ⎤ ⎪⎛ ⎞⎪ ⎪⎢ ⎥= + + = ⋅⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎪ ⎪⎡ ⎤ ⎣ ⎦+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 
where DRe VD / 58.8,ν= =  and the radiation coefficient is obtained from Eq. 1.9 

 ( )( )2 2
r s sur s surh T T T Tεσ= + +        (2) 

 
From an iterative solution of Eqs. (1) and (2), we obtain 
 
 sT 1285K 1012 C≈ = °          < 
 
From Eq. 3.58, the centerline temperature is 
 

 
( ) ( )2 29 3

o s
q D / 2 1.013 10 W / m 0.0005m

T T 1012 C 1014 C
4k 100 W / m K

×
= + = + ° ≈ °

⋅

&
  < 

 
The centerline temperature is only approximately 2°C larger than the surface temperature, and the wire 
may be assumed to be isothermal. 
          Continued … 



PROBLEM 7.55 (Cont.) 
 

(b) Over the range 1 ≤ V < 100 m/s for I = 25A, ch  varies from approximately 2114 W / m K⋅  to 
21050 W / m K,⋅  while rh  varies from approximately 2 269 W / m K to 4 W / m K.⋅ ⋅   The effect on the 

surface temperature is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Maximum and minimum values of s sT 1433 C and T 290 C= ° = °  are associated with the smallest and 
largest velocities respectively, while the difference between the centerline and surface temperatures 
remains at ( )o sT T 2 C.− ≈ °  
 
For V = 5 m/s, the effect on Ts of varying the current over the range from 1 to 30A is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
From a value of sT 52 C≈ °  at 1A, Ts increases to 1320°C at 30A.  Over this range the temperature 
difference ( )o sT T−  increases from approximately 0.01°C to 3°C. 
 
COMMENTS:  (1) The radiation coefficient for the conditions of Part (a) is 2

rh 32 W / m K,= ⋅  which 
is approximately 1/8 of the total coefficient h.   Hence, except for small values of V less than 
approximately 5 m/s, radiation is negligible compared with convection.  (2) The small wire diameter 
and large thermal conductivity are responsible for maintaining nearly isothermal conditions within the 
wire.  (3) The calculations of Part (b) were performed using the IHT solver with the function 

( )f fluid _ avg s infT T T , T=  used to account for the effect of temperature on the air properties. 
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PROBLEM 7.56  
KNOWN:  Diameter, thickness and thermal conductivity of steel pipe.  Temperature of water flow in 
pipe.  Temperature and velocity of air in cross flow over pipe.  Cost of producing hot water.  
FIND:  (a) Cost of daily heat loss from an uninsulated pipe, (b) Savings associated with insulating the 
pipe.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state, (2) Negligible convection resistance for water flow, (3) 
Negligible contact resistance between insulation and pipe, (4) Negligible radiation. 
 
PROPERTIES:  Table A-4, air ( ) ,f ap 1atm, T 300K : k 0.0263 W / m K= ≈ = ⋅  

6 215.89 10 m / s, Pr 0.707.ν −= × =  
 
ANALYSIS:  (a) With 6 2

D oRe VD / 3 m / s 0.1m /15.89 10 m / s 18,880,ν −= = × × =  application of the 
Churchill-Bernstein correlation yields 
 

 
( ) ( )

( )
D

4/51/ 2 1/ 3 5/8

1/ 42 /3

0.62 18,800 0.707 18,880Nu 0.3 1 76.6
282,000

1 0.4 / 0.707

⎡ ⎤⎛ ⎞⎢ ⎥= + + =⎜ ⎟⎢ ⎥⎝ ⎠⎡ ⎤ ⎣ ⎦+⎢ ⎥⎣ ⎦

 

 

 D
2a

o

k 0.0263W / m Kh NU 76.6 20.1W / m K
D 0.1m

⋅
= = = ⋅  

 
Without the insulation, the total thermal resistance and heat loss per length of pipe are then 
 

( )
( ) ( )

( )
o i

tot wo 2p o

ln D / D ln 100 / 841 1
R

2 k D h 2 60W / m K 0.1m 20.1W / m Kπ π π π
′ = + = +

× ⋅ ⋅
 

  ( )44.63 10 0.158 m K / W 0.159 m K / W−= × + ⋅ = ⋅  
 

 
( )

wo
tot wo

T T 55 Cq 346 W / m 0.346kW / m
R 0.159m K / W

∞− °′ = = = =
′ ⋅

 

 
The corresponding daily energy loss is 
 
 woQ 0.346kW / m 24h / d 8.3kW h / m d′ = × = ⋅ ⋅  
 
and the associated cost is 
 
 ( )( )woC 8.3kW h / m d $0.05 / kW h $0.415 / m d′ = ⋅ ⋅ ⋅ = ⋅     < 
 
(b) The conduction resistance of the insulation is 
          Continued … 



PROBLEM 7.56 (Cont.) 
 

 
( ) ( )

( )
o i

cnd
i

ln D / D ln 120 /100
R 1.116m K / W

2 k 2 0.026 W / m Kπ π
′ = = = ⋅

⋅
 

 
Using the Churchill-Bernstein correlation with an outside diameter of oD 0.12m,=  DRe 22, 660,=  

D
2Nu 83.9 and h 18.4 W / m K.= = ⋅   The convection resistance is then 

 

 
( )

cnv 2o

1 1R 0.144 m K / W
D h 0.12m 18.4 W / m Kπ π

′ = = = ⋅
⋅

 

 
and the total resistance is 
 

 ( ) ( )4
tot wR 4.63 10 1.116 0.144 m K / W 1.261m K / W−′ = × + + ⋅ = ⋅  

 
The heat loss and cost are then 
 

 
( )

w
tot w

T T 55 Cq 43.6 W / m 0.0436kW / m
R 1.261m K / W

∞− °′ = = = =
′ ⋅

 

 
 wC 0.0436kW / m 24h / d $0.05 / kW h $0.052 / m d′ = × × ⋅ = ⋅  
 
The daily savings is then 
 
 wo wS C C $0.363/ m d′ ′ ′= − = ⋅        < 
 
COMMENTS:  (1) The savings are significant, and the pipe should be insulated.  (2) Assuming a 
negligible temperature drop across the pipe wall, a pipe emissivity of εp = 0.6 and surroundings at 

surT 268K,=  the radiation coefficient associated with the uninsulated pipe is ( )r surh T Tεσ= +  

( ) ( )2 2 8 2 4
surT T 0.6 5.67 10 W / m K 591K−+ = × × ⋅  ( )2 2 2 2323 268 K 3.5 W / m K.+ = ⋅   Accordingly, 

radiation increases the heat loss estimate of Part (a) by approximately 17%. 
 



PROBLEM 7.57 
 
KNOWN:  Dimension and initial temperature of long aluminum rods of square cross-section. 
Velocity and temperature of air in cross flow.  Rod emissivity and surroundings temperature. 
 
FIND:  Which orientation of the rod relative to the cross flow should be used to minimize the time 
needed for the rods to reach a temperature of 60°C.  Required cooling time for preferred configuration. 
 
SCHEMATIC: 
 

d = 25 mm

V = 8 m/s

T∞ = 30°C
Tsur = 20°C

Ti = 400°C
ε = 0.10  

ASSUMPTIONS:  (1) Constant properties. 
 
PROPERTIES:  Table A-4, Air (T = 400 K):  ν = 26.41 × 10-6 m2/s, k = 0.0338 W/m⋅K, Pr = 0.690. 
Table A-1, Pure aluminum (T = 500 K): ρs = 2702 kg/m3, cp,s = 991 J/kg⋅K, ks = 235 W/m⋅K. 
 
ANALYSIS:   The heat transfer coefficient can be calculated from Equation 7.52, with the dimension 
D defined differently for the two configurations, as shown in Table 7.3.  When the air flows 
perpendicular to a face of the rod, 
 
D = d = 0.025 m, ReD = VD/ν = 8 m/s  × 0.025 m/26.41 × 10-6 m2/s = 7573, and from Table 7.3, C = 
0.158 and m = 0.66.  Thus, 
 

 1/3 0.66 1/3 2 
0.0338 W/m K

0.158(7573) (0.69) 68.6 W/m K
0.025 m

m
D

k
h CRe Pr

D
⋅

= = = ⋅  

 
When the rod is rotated so that it presents an edge to the flow, D = 21/2d = 21/2 × 0.025 m = 0.0354 m, 
ReD = VD/ν = 8 m/s  × 0.0354 m/26.41 × 10-6 m2/s = 10,710, and from Table 7.3, C = 0.304 and m = 
0.59.  Thus, 
 

 1/3 0.59 1/3 2 
0.0338 W/m K

0.304(10,710) (0.69) 61.2 W/m K
0.0354 m

m
D

k
h CRe Pr

D
⋅

= = = ⋅  

 
Radiation will affect both rods in the same way, therefore the rod with the larger value of convection 
heat transfer coefficient will cool faster.  The rod should be oriented with a face perpendicular to the 
flow in order to minimize the cooling time.       < 
 
The importance of radiation can be estimated by calculating the radiation heat flux at the initial time, 

( )4 4 8 2 4 4 4 2
sur

"
rad 0.1 5.67 10  W/m K (673 K) (293 K) 1120 W/msq T Tεσ −= − = × × ⋅ × − =⎡ ⎤⎣ ⎦ .  The initial 

convection heat transfer flux is 2 2"
conv  ( 68.6 W/m K (400 C 30 C) 25,380 W/m)sq h T T∞ = ⋅ × ° − ° == − .  

Since the radiation heat transfer rate is only around 4% initially, and will decrease in relative 
importance with time, radiation can be neglected in a calculation of the cooling time. 

Continued… 



PROBLEM 7.57 (Cont.) 
 
The cooling process can be modeled using the lumped capacitance approximation, provided the Biot 
number is small.  Using a characteristic length of L = V/As = d/4 = 0.00625 m, the Biot number is 
 

 
268.6 W/m K 0.00625 m

0.0018
235 W/m K

hL
Bi

k
⋅ ×

= = =
⋅

 

 
Therefore, the lumped capacitance approximation is valid and the cooling time is given by Equation 
5.5, 
 

3

2

2702 kg/m 0.025 m 991 J/kg K 400 30ln ln ln 613 s
4 4 68.6 W/m K 60 30

i i

s

T TVc dct
hA h T T

θρ ρ
θ

∞

∞

− × × ⋅ −⎛ ⎞= = = =⎜ ⎟− × ⋅ −⎝ ⎠
 < 

 
 
COMMENTS:  IHT was used to solve this problem including the effect of radiation.  The required 
cooling time, including radiation, is 601 s. Inclusion of radiation has a minor effect on the cooling 
time, as expected.  
 
 
  . 
 
 



PROBLEM 7.58  
KNOWN:  Temperature and heat dissipation in a wire of diameter D.  
FIND:  (a) Expression for flow velocity over wire, (b) Velocity of airstream for prescribed conditions.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Uniform wire temperature, (3) Negligible 
radiation.  
PROPERTIES:  Table A-4, Air (T∞ = 298 K, 1 atm):  ν = 15.8 × 10

-6
 m

2
/s, k = 0.0262 W/m⋅K, Pr = 

0.71; (Ts = 313 K, 1 atm):  Pr = 0.705. 
 
ANALYSIS:  (a) The rate of heat transfer per unit cylinder length is  
 ( ) ( ) ( )sq q/L h D  T Tπ ∞′ = = −  
 
where, from the Zhukauskas relation, with Pr ≈ Prs,  

 
m

m n n
D

k k VDh C Re  Pr  C Pr
D D ν

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 

Hence, 

 
( ) ( ) ( )

1/ m

n
s

qV .
Dk/D C Pr D  T T

ν

π ∞

⎡ ⎤′ ⎛ ⎞⎢ ⎥= ⎜ ⎟⎢ ⎥ ⎝ ⎠−⎣ ⎦
     < 

 
(b) Assuming (10

3
 < ReD < 2 × 10

5
), C = 0.26, m = 0.6 from Table 7.4.  Hence, 

 

 
( ) ( )

1/ 0.6
6 2

0.37 -4
35 W/m 15.8 10 m / sV

5 10 m0.0262 W/m K 0.26 0.71 40 25 Cπ

−⎡ ⎤ ⎛ ⎞×⎢ ⎥ ⎜ ⎟=
⎜ ⎟⎢ ⎥ ×⋅ × − ⎝ ⎠⎣ ⎦

o
 

 
 V 97 m/s.=           < 
 
To verify the assumption of the Reynolds number range, calculate  

 
( )-4

D -6 2

97 m/s 5 10 mVDRe 3074.
15.8 10 m / sν

×
= = =

×
 

 
Hence the assumption was correct.  
COMMENTS:  The major uncertainty associated with using this method to determine V is that 
associated with use of the correlation for DNu .  



PROBLEM 7.59  
KNOWN:  Platinum wire maintained at a constant temperature in an airstream to be used for 
determining air velocity changes.  
FIND:  (a) Relationship between fractional changes in current to maintain constant wire temperature 
and fractional changes in air velocity and (b) Current required when air velocity is 10 m/s.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Cross-flow of air on wire with 40 < ReD < 1000, 
(3) Radiation effects negligible, (4) Wire is isothermal.  
PROPERTIES:  Platinum wire (given):  Electrical resistivity, ρe = 17.1 × 10

-5
 Ohm⋅m; Table A-4, 

Air (T∞ = 27°C = 300 K, 1 atm):  ν = 15.89 × 10
-6

 m
2
/s, k = 0.0263 W/m⋅K, Pr = 0.707; (Ts = 77°C = 

350 K, 1 atm):  Prs = 0.700. 
 
ANALYSIS:  (a) From an energy balance on a unit length of the platinum wire,  
 ( )2

elec conv e sq q I R hP T T 0∞′ ′ ′− = − − =       (1) 
 
where the electrical resistance per unit length is e e cR / A ,ρ′ =  P = πD, and Ac = πD

2
/4.  Hence, 

 

 ( ) ( )
1/ 21/ 2 2 3

c
s s

e e

hPA hDI T T T T
4

π
ρ ρ∞ ∞

⎡ ⎤⎡ ⎤
= − = −⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦
     (2) 

 
For the range 40 < ReD < 1000, using the Zhukauskas correlation for cross-flow over a cylinder with 
C = 0.51 and m = 0.5,  

 D

1/ 4 1/ 40.5
0.5 0.37 0.37
D

s s

hD Pr VD PrNu 0.51 Re Pr 0.51 Pr
k Pr Prν

⎛ ⎞ ⎛ ⎞⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 (3) 

 
note that 0.5h~V ,  which, when substituted into Eq. (2) yields 

 ( )1/ 21/2 0.5 1/4I~h V V .= =  

Differentiating the proportionality and dividing the result by the proportionality, it follows that 

 I 1 V .
I 4 V
Δ Δ

≈               (4)    < 

(b) For air at T∞ = 27°C and V = 10 m/s, the current required to maintain the wire of D = 0.5 mm at Ts 
= 77°C follows from Eq. (2) with h  evaluated by Eq. (3)  
          Continued … 



PROBLEM 7.59 (Cont.)  

 ( )
0.5 1/ 4

0.37
-6 2

2

0.0263 W/m K 10 m/s 0.0005 m 0.707h 0.51 0.707
0.0005 m 0.70015.89 10  m / s

h 420 W/m K

⎛ ⎞⋅ × ⎛ ⎞= × ⎜ ⎟ ⎜ ⎟
⎝ ⎠×⎝ ⎠

= ⋅

 

 
where ReD = 315.  Hence the required current is 
 

 ( ) ( )
1/ 232 2

5
420 W/m K 0.0005 m

I 77 27 K 195 mA.
4 17.1 10 m

π
−

⎡ ⎤× ⋅⎢ ⎥= − =
⎢ ⎥× × Ω⋅⎣ ⎦

   (5) 

 
COMMENTS:  (1) To measure 1% fractional velocity change, a 0.25% fractional change in current 
must be measured according to Eq. (4).  From Eq. (5), this implies that ΔI = 0.0025I = 0.0025 × 195 
mA = 488 μA.  An electronic circuit with such measurement sensitivity requires care in its design.  
(2) Instruments built on this principle to measure air velocities are called hot-wire anemometers.  
Generally, the wire diameters are much smaller (3 to 30 μm vs 500 μm of this problem) in order to 
have faster response times.  
(3) What effect would the presence of radiation exchange between the wire and its surroundings have? 



PROBLEM 7.60 
 
KNOWN:  Hot film sensor on a quartz rod maintained at Ts = 50°C. 
 
FIND: (a) Compute and plot the convection coefficient as a function of velocity for water, 0.5 ≤ Vw ≤ 5 
m/s, and air, 1 ≤ Va ≤ 20 m/s with T∞  = 20°C and (b) Suitability of using the hot film sensor for the two 
fluids based upon Biot number considerations.   
 
SCHEMATIC: 

 
ASSUMPTIONS: (1) Cross-flow over a smooth cylinder, (2) Steady-state conditions, (3) Uniform 
surface temperature. 
 
PROPERTIES: Table A.6, Water (Tf = 308 K, sat liquid); Table A.4, Air (Tf = 308 K, 1 atm). 
 
ANALYSIS:  (a) Using the IHT Tool, Correlations, Cylinder, along with the Properties Tool for Air and 
Water, results were obtained for the convection coefficients as a function of velocity. 
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(b) The Biot number, hD/2k, is the ratio of the internal to external thermal resistances.  When Bi >> 1, the 
thin film is thermally coupled well to the fluid.  When Bi ≤ 1, significant power from the heater is 
dissipated axially by conduction in the rod.  The Biot numbers for the fluids as a function of velocity are 
shown below. 
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 We conclude that the sensor is well suited for use with water, but not so for use with air. 
 

Continued... 



 
PROBLEM 7.60 (Cont.) 

 
COMMENTS:  A copy of the IHT workspace developed to generate the above plots is shown below. 
 

// Problem 7.60 
 
// Correlation Tool:  External Flow, Cylinder  
/*  Correlation description: External cross flow (EF) over cylinder (CY), average coefficient, ReD*Pr>0.2, 
Churchill-Bernstein correlation, Eq 7.57. See Table 7.7.  */ 
// Air flow  (a) 
NuDbara = NuD_bar_EF_CY(ReDa,Pra)      // Eq 7.54 
NuDbara = hDbara * D / ka 
ReDa = Va * D / nua 
// Evaluate properties at the film temperature, Tfa. 
Tf = (Tinf + Ts) / 2 
Bia = hDbara * D / (2 * k)                  // Biot number 
// Properties Tool: Air 
// Air property functions : From Table A.4 
// Units: T(K); 1 atm pressure 
nua = nu_T("Air",Tf)    // Kinematic viscoty, m^2/s 
ka = k_T("Air",Tf)    // Thermal conductivity, W/m·K 
Pra = Pr_T("Air",Tf)    // Prandtl number 
 
// Water flow (w) 
NuDbarw = NuD_bar_EF_CY(ReDw,Prw)      // Eq 7.54 
NuDbarw = hDbarw * D / kw 
ReDw = Vw * D / nuw 
// Evaluate properties at the film temperature, Tfw. 
//Tfw = (Tinfw + Tsw) / 2 
Biw = hDbarw * D / (2 * k )                // Biot number 
// Properties Tool: Water 
// Water property functions :T dependence, From Table A.6 
// Units: T(K), p(bars); x = quality (0=sat liquid or 1=sat vapor) 
xf = 0 
nuw = nu_Tx("Water",Tf,xf)   // Kinematic viscosity, m^2/s 
kw = k_Tx("Water",Tf,xf)   // Thermal conductivity, W/m·K 
Prw = Pr_Tx("Water",Tf,xf)   // Prandtl number 
 
// Assigned Variables: 
Va = 1                         // Air velocity, m/s; range 1 to 20 m/s 
Vw = 0.5                      // Water velocity, m/s; range 0.5 to 5 m/s 
k = 1.4                        // Thermal conductivity, W/m.K; quartz rod 
D = 0.0015    // Diameter, m 
Ts = 30 + 273    // Surface temperature, K 
Tinf = 20 + 273    // Fluid temperature, K 
 
/* Solve, Explore and Graph:  After solving, separate Explore sweeps for 1 <= Va <= 20 and 
0.5 <= Vw <= 5 m/s were performed saving results in different Data Sets.  Four separate 
plot windows were generated.  */ 

  
 



PROBLEM 7.61  
KNOWN:  Diameter, temperature and heat flux of a hot-film sensor.  Fluid temperature.  Thickness 
and thermal conductivity of deposit.  
FIND:  (a) Fluid velocity, (b) Heat flux if sensor is coated by a deposit.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state, (2) Constant properties, (3) Thickness of hot film sensor is 
negligible, (4) Applicability of Churchill-Bernstein correlation for uniform surface heat flux, (5) 

DRe 282, 000,<<  (6) Deposit may be approximated as a plane layer. 
 
PROPERTIES:  Table A-6, water ( ) 6 2

fT 292.5K :k 0.602 W / m K, 1.02 10 m / s, Pr 7.09.ν −= = ⋅ = × =  
 
ANALYSIS:  (a) With ( )D hf s,hfRe 282, 000 and h q / T T ,∞′′= −<<  Eq. (7.54) reduces to 
 

 
( ) ( )

D

1/ 2 1/ 3
hf D

1/ 42 /3s,hf

0.62 Re Prq DNu 0.3
k T T

1 0.4 / Pr∞

′′
= ≈ +

− ⎡ ⎤+⎢ ⎥⎣ ⎦

    (1) 

 
Substituting for D, ( )s,hfT T , k and Pr,∞−  
 
 4 1/ 2

hf D4.98 10 q 0.3 1.15Re− ′′× ≈ +  
 
or, with ( )1/ 2 1/ 2 1/ 21/ 2

DRe D / V 38.3 V ,ν= =  
 
 4 1/ 2

hf4.98 10 q 0.3 44.1V− ′′× ≈ +         (2) 
 
Substituting for hfq ,′′  
 
 V 0.20m / s=           < 
 
(b) For a fixed value of s,hfT ,  the thermal resistance of the deposit reduces hfq .′′   From the thermal 
circuit. 
 

 
( ) ( )

s,hf
hf

d

T T
q

1/ h / kδ
∞−

′′ =
+

 

 
Using Eq. (1) to evaluate h,  
          Continued … 



PROBLEM 7.61 (Cont.) 
 

 
( ) ( )

1/ 2 1/ 3
D

1/ 42 / 3

0.62Re Prkh 0.3
D

1 0.4 / Pr
δ

⎧ ⎫
⎪ ⎪⎪ ⎪≈ +⎨ ⎬+ ⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 
where, with V = 0.20 m/s, ( )DRe V D / 314,δ ν= + =  we obtain 
 

 { } 20.602 W / m Kh 20.7 7,780 W / m K
0.0016m

⋅
≈ = ⋅  

 

Hence,  
( )

4 2
hf 4 4 2

5 Cq 2.80 10 W / m
1.285 10 0.5 10 m K / W− −

°′′ = = ×
× + × ⋅

 < 

 
With the foregoing heat flux applied to the sensor and use of the model for Part (a), the sensor would 
indicate a velocity predicted from Eq. (2), or 
 

 ( ) 24 4V 4.98 10 2.80 10 0.3 / 44.1 0.096 m / s−⎡ ⎤= × × × − =⎢ ⎥⎣ ⎦
 

 
The error in the velocity measurement is therefore 
 

 
( ) ( )

( )
( )a b

a

V V 0.20 0.096% Error 100% 100 52%
V 0.20

− −
≡ = × =     < 

 
COMMENTS:  (1) The accuracy of the hot-film sensor is strongly influenced by the deposit, and in 
any such application it is important to maintain a clean surface.  (2) The Reynolds numbers are much 
less than 282,000 and assumption 5 is valid. 
 



PROBLEM 7.62 
 
 
KNOWN:  Dimensions of a flat plate in parallel flow. Plate and air temperatures and air velocity. 
Dimensions of a horizontal cylinder. 
 
FIND:  Convective heat loss from top and bottom of the flat plate and from the cylinder. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties. 
 
PROPERTIES:  Table A.4, air (Tf = (80°C + 25°C)/2 = 52.5°C ≈ 325K, p = 1 atm): ν = 18.4×10-6 
m2/s, Pr = 0.704, k = 0.0282 W/m⋅K. 
 
ANALYSIS:  For the plate, 

   
3

6 2
3m/s 25 10 m 4076
18.4 10 m /sL

u LRe
ν

−
∞

−
× ×

= = =
×

 

 
Therefore, the flow is laminar and Eq. 7.30 yields 
 

1/ 2 1/3 1/ 2 1/3 2
3

0.0282W/m K0.664 0.664 4076 0.704 42.5 W/m K
25 10 mL

kh Re Pr
L −

⋅⎡ ⎤ ⎡ ⎤= = × = ⋅⎣ ⎦ ⎣ ⎦×
 

 
and the convective heat transfer rate from the top and bottom of the flat plate is 
 
 3 3 22 ( ) 2 50 10 m 25 10 m 42.5W/m K(80 25) C 5.84Wsq wLh T T − −

∞= − = × × × × × ⋅ − ° =            < 
 

For the cylinder, 3 34 4 1 10 m 25 10 m 0.00564m 5.64mmD tL
π π

− −= = × × × × = = and 

 

   
3

6 2
3m/s 5.64 10 m 920

18.4 10 m /sD
VDRe
ν

−

−
× ×

= = =
×

 

 
Equation 7.54 yields 
 

4 /55/81/ 2 1/3

1/ 42 /3

4 /55/81/ 2 1/3

1/ 42 /3

0.620.3 1
282,0001 (0.4 / )

0.62 920 0.704 920        = 0.3 1 15.3
282,0001 (0.4 / 0.704)

D DD
Re Pr ReNu

Pr

⎡ ⎤⎛ ⎞= + +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎡ ⎤+ ⎣ ⎦⎣ ⎦

⎡ ⎤× ⎛ ⎞+ + =⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎡ ⎤+ ⎣ ⎦⎣ ⎦

 

Continued… 
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PROBLEM 7.62 (Cont.) 
 
 

and  2
3

15.3 0.0282W/m K 76.5W/m K
5.64 10 m

DNu kh
D −

× ⋅
= = = ⋅

×
 

 
Therefore, the heat transfer rate from the cylinder is, 
 
    3 3 2( ) 5.64 10 m 50 10 m 76.52W / m K(80 25) 3.73Wc sq DL h T T Cπ π − −

∞= − = × × × × × ⋅ − ° =         < 
 
COMMENTS:  (1) The heat transfer coefficient associated with the cylinder is 80% greater than that 
associated with the flat plate. However, for the same volume, the exposed surface area of the cylinder 
is 65% smaller than that of the flat plate, resulting in an overall smaller heat transfer rate for the 
cylinder. (2) A trial-and-error solution reveals that a larger cylinder of diameter D = 13.6 mm is 
necessary to transfer the same amount of energy by convection as the flat plate.  



PROBLEM 7.63 
 
 
KNOWN:  Dimensions of a rectangular fin in parallel flow. Circular pin fin of same cross-sectional 
area. 
 
FIND:  (a) Fin heat transfer rate for both fins. (b) Diameter of cylindrical fin needed to produce the 
same fin heat transfer rate as for the rectangular fin. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Infinite fins, (4) Uniform 
heat transfer coefficients, equal to the average values. 
 
PROPERTIES:  Table A.4, air (Tf = (85°C + 20°C)/2 = 52.5°C ≈ 325K, p = 1 atm): ν = 18.4×10-6 
m2/s, Pr = 0.704, k = 0.0282 W/m⋅K. 
 
ANALYSIS:  (a) For the rectangular fin, 

   
3

6 2
5m/s 20 10 m 5435
18.4 10 m /sw

u wRe
ν

−
∞

−
× ×

= = =
×

 

 
Therefore, the flow is laminar and Eq. 7.30 yields 
 

1/ 2 1/3 1/ 2 1/3 2
3

0.0282W/m K0.664 0.664 5435 0.704 61.4 W/m K
20 10 mw

kh Re Pr
w −

⋅⎡ ⎤ ⎡ ⎤= = × = ⋅⎣ ⎦ ⎣ ⎦×
 

 
The periphery of the fin is P = 2(w + t) = 2×(20×10-3 m + 1×10-3 m) = 42×10-3 m and the cross-
sectional area is Ac = wt = 20×10-3 m × 1×10-3 m = 20 × 10-6 m2. Evaluating the fin parameter M yields 
 

2 3 661.4W/m K 42 10 m 237W/m K 20 10 m (85 20) C = 7.19Wc bM hPkA θ − −= = ⋅ × × × ⋅ × × × − °  
 
For an infinite fin, 
 

qf = M = 7.19 W                     < 
 
  

For the cylindrical fin, 3 34 4 1 10 m 20 10 m 0.00505m 5.05mmD tw
π π

− −= = × × × × = =   and 

 

   
3

6 2
5m/s 5.05 10 m 1372

18.4 10 m /sD
VDRe
ν

−

−
× ×

= = =
×

 

 
Continued… 

Cross-sectional views of the rectangular fin (left) and the cylindrical fin (right). Tb = 85°C.
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PROBLEM 7.63 (Cont.) 
 
 
Equation 7.54 yields 
 

4 /55/81/ 2 1/3

1/ 42 /3

4 /55/81/ 2 1/3

1/ 42 /3

0.620.3 1
282,0001 (0.4 / )

0.62 1372 0.704 1372        = 0.3 1 18.7
282,0001 (0.4 / 0.704)

D DD
Re Pr ReNu

Pr

⎡ ⎤⎛ ⎞= + +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎡ ⎤+ ⎣ ⎦⎣ ⎦

⎡ ⎤× ⎛ ⎞+ + =⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎡ ⎤+ ⎣ ⎦⎣ ⎦

 

 

and  2
3

18.7 0.0282W/m K 104.4W/m K
5.05 10 m

DNu kh
D −

× ⋅
= = = ⋅

×
 

 
The periphery of the fin is P = πD = π×5.05×10-3 m = 15.9×10-3 m and the cross-sectional area is Ac = 
= 20 × 10-6 m2. Evaluating the fin parameter M yields 
 

2 3 6104.4W/m K 15.9 10 m 237W/m K 20 10 m (85 20) C = 5.77Wc bM hPkA θ − −= = ⋅ × × × ⋅ × × × − °  
 
For an infinite fin, 

qf = M = 5.77 W                     < 
 
The rectangular fin heat rate is 25% greater than that of the cylindrical fin.       < 
 
(b) A trial-and-error solution shows that a cylinder diameter of D = 6.02 mm is necessary to transfer 
the same amount of heat as the rectangular fin.               < 
  
COMMENTS:  (1) The Reynolds number and heat transfer coefficient associated with part (b) are 
1636 and 96.0 W/m2⋅K, respectively. (2) The ratio of the mass of the cylinder in part (b) to that of the 
cylinder in part (a) is 2 2 2( / ) (6.02 /5.05) 1.42.b ar D D= = =  Good thermal design, such as use of the 
rectangular fin rather than the cylindrical fin, can help conserve both natural resources and energy that 
is used to produce the aluminum.  



PROBLEM 7.64  
KNOWN:  Temperature sensor of 12.5 mm diameter experiences cross-flow of water at 80°C and 
velocity, 0.005 < V < 0.20 m/s.  Sensor temperature may vary over the range 20 < Ts < 80°C. 
 
FIND:  Expression for convection heat transfer coefficient as a function of Ts and V. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Sensor-water flow approximates a cylinder in 
cross-flow, (3) Prandtl number varies linearly with temperature over the range of interest.  
PROPERTIES:  Table A-6, Sat. water (T∞ = 80°C = 353 K):  k = 0.670 W/m⋅K,  ν = μvf = 352 × 10

-

6
 N⋅s/m

2
 × 1.029 × 10

-3
 m

3
/kg = 3.621 × 10

-7
 m

2
/s; Prs values for 20 ≤ Ts ≤ 80°C: 

 
  T (K)  293  300  325  350  353 
  Pr  7.00  5.83  3.42  2.29  2.20  
ANALYSIS:  Using the Zhukauskus correlation for the range 40 < ReD < 4000 with C = 0.51 and m 
= 0.5, 

 D

1/ 4
0.5 0.37
D

s

hD PrNu 0.51Re Pr .
k Pr

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
 

with ReD = VD/ν, the thermophysical properties of interest are k, ν and Pr, which are evaluated at T∞ 

= 80°C, and Prs which varies markedly with Ts for the range 20 < Ts < 80°C.  Assuming Prs to vary 

linearly with Ts and using the extreme values to find the relation, 

 ( )
( ) ( ) ( )s s s

2.20 7.00
Pr 7.00 T 293 K 7.00 0.0800 T 293

353 293 K
−

= + − = − −
−

 

where the units of Ts are [K].  Substituting numerical values, find 

( ) ( )
( )

1/ 40.5
0.37

s -7 2 s

0.670 W/m K V 0.0125 m 2.20
h T 0.51 2.20

0.0125 m 7.00 0.080 T 2933.621 10  m / s

⋅ ×
=

− −×

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
 ( ) ( ) 1/ 40.5

s sh T 6800V 3.182 0.0364 T 293 .−⎡ ⎤= − −⎣ ⎦     < 
 
COMMENTS:  (1) From the Prs vs Ts graph above, a linear fit is seen to be poor for this temperature 

range.  However, because the Prs dependence is to the ¼ power, the discrepancy may be acceptable. 



PROBLEM 7.65 
 
KNOWN:  Diameter, electrical resistance and current for a high tension line.  Velocity and temperature 
of ambient air. 
 
FIND:  (a) Surface and (b) Centerline temperatures of the wire, (c) Effect of air velocity on surface 
temperature. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) One-dimensional radial 
conduction. 
 
PROPERTIES:  Table A.4, Air (Tf ≈ 300 K, 1 atm):  ν = 15.89 × 10-6 m2/s, k = 0.0263 W/m⋅K, Pr = 
0.707;  Table A.1, Copper (T ≈ 300 K):  k = 400 W/m⋅K. 
 
ANALYSIS:  (a) Applying conservation of energy to a control volume of unit length, 

 ( )2
g e sE I R q h D T Tπ ∞′ ′ ′= = = −&  

With 

 
( )

D 6 2
10m s 0.025mVDRe 15,733

15.89 10 m sν −
= = =

×
 

 
the Churchill and Bernstein correlation, yields 
 

 

( )

4 / 51/ 2 1/ 3 5/8
DDD 1/ 42 / 3

0.62 Re Pr ReNu 0.3 1 69.0
282,000

1 0.4 Pr

⎡ ⎤⎛ ⎞⎢ ⎥= + + =⎜ ⎟⎢ ⎥⎝ ⎠⎡ ⎤ ⎣ ⎦+⎢ ⎥⎣ ⎦

 

Hence, 

 2D
k 0.0263W m Kh Nu 69.0 72.6 W m K
D 0.025m

⋅
= = = ⋅  

and 

 
( )

( ) ( )

2 42
e

s 2
1000 A 10 mI RT T 10 C 10 C 17.6 C 27.6 C

h D 72.6 W m K 0.025mπ π

−

∞
Ω′

= + = + = + =
⋅

o o o o  < 

 

(b) With ( ) ( ) ( ) ( )2 22 4 5 3
gq E D 4 4 1000A 10 m 0.025m 2.04 10 W mπ π−′= = Ω = ×&& , Equation 

3.58 yields 
 

 
( )25 32

o
s

2.041 10 W m 0.0125 mqr
T(0) T 27.6 C 0.02 C 27.6 C 27.6 C

4k 1600 W m K
×

= + = + = + ≈
⋅

o o o o&
 < 

 
Continued...



 
PROBLEM 7.65 (Cont.) 

 
(c)  The effect of V on the surface temperature was determined using the Correlations and Properties 
Tool Pads of IHT. 
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The effect is significant, with a surface temperature of Ts ≈ 70°C corresponding to V = 1 m/s.  For 
velocities of 1 and 10 m/s, respectively, convection coefficients are 21.1 and 72.8 W/m2⋅K and film 
temperatures are 313.2 and 291.7 K. 
 
COMMENTS:  The small values of q&  and ro and the large value of k render the wire approximately 
isothermal. 



PROBLEM 7.66 
 
KNOWN:  Aluminum transmission line with a diameter of 20 mm having an electrical resistance of 
R′  = 2.636×10-4 ohm/m carrying a current of 700 A subjected to severe cross winds.  To reduce 
potential fire hazard when adjacent lines make contact and spark, insulation is to be applied. 
 
FIND:  (a) The bare conductor temperature when the air temperature is 20°C and the line is subjected 
to cross flow with a velocity of 10 m/s; (b) The conductor temperature for the same conditions, but 
with an insulation covering of 2 mm thickness and thermal conductivity of 0.15 W/m⋅K; and (c) Plot 
the conductor temperatures of the bare and insulated conductors for wind velocities in the range of 2 to 
20 m/s.  Comment on the features of the curves and the effect that wind velocity has on the conductor 
operating temperatures. 
 
SCHEMATIC: 
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Uniform surface temperatures, (3) Negligible solar 
irradiation and radiation exchange, and (4) Constant properties. 
 
PROPERTIES:  Table A-4, Air (Tf = (Ts + T∞)/2, 1 atm):  evaluated using the IHT Properties library 
with a Correlation function; see Comment 2. 
 
ANALYSIS:  (a) For the bare conductor the energy balance per unit length is 
 in out genE E E 0′ ′ ′− + =& & &  

 cv c0 q q A 0′− + =&          (1) 
where the cross-sectional area of the conductor is Ac = πD2/4 and the generation rate is 

 ( ) ( )(2 22 4
e cq I R / A 700A 2.636 10 / m 0.020m / 4π−′= = × × Ω&    (2) 

 5 3q 4.111 10 W / m= ×&  
The convection rate equation can be expressed as 
 ( ) ( )cv c,bare t t Dq T T / R R 1/ h Dπ∞′ ′ ′= − = ×     (3,4) 
and the convection coefficient is estimated using the Churchill-Bernstein correlation, Eq. 7.54, with 
ReD = VD/ν, 

 
( )

L

4 /51/ 2 1/ 3 5/8
D DD

1/ 42 /3

0.62 Re Prh D ReNu 0.3 1
k 282,000

1 0.4 / Pr

⎡ ⎤⎛ ⎞⎢ ⎥= = + + ⎜ ⎟⎢ ⎥⎝ ⎠⎡ ⎤ ⎣ ⎦+⎢ ⎥⎣ ⎦

   (4) 

(b) For the conductor with insulation thickness t = 2 mm, the energy balance per unit length is 
 in out genE E E 0′ ′ ′− + =& & &  

 ( ) 2
c,ins t e c0 T T / R I R / A 0∞ ′ ′− − + =       (5) 

          Continued … 
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where tR′  is the sum of the insulation conduction and convection process thermal resistances, 

 ( ) ( ) ( )t D 2tR n D 2t / D / 2 k 1/ h D 2t+′ ⎡ ⎤⎡ ⎤= + + +⎣ ⎦ ⎣ ⎦l π π     (6) 
The results of the analysis using IHT are tabulated below. 
 
Condition    V    D      ReD  DNu       Dh       tR′     Tc 

  (m/s) (mm)    (W/m2⋅K) (m⋅K/W) (°C) 
 
bare  10 20 1.214 × 104 59.6       79.6    0.1998  45.8 
insulated 10 24 1.468 × 104 66.3       73.6    0.3736  68.3 
 
(c) Using the IHT code with the foregoing relations, the conductor temperatures Tc,base and Tc,ins for 
the bare and insulated conditions are calculated and plotted for the wind velocity range of 2 to 20 m/s. 
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COMMENTS:  (1) The effect of the 2-mm thickness insulation is to increase the conductor operating 
temperature by (68.3 – 46.1)°C = 22°C.  While we didn’t account for an increase in the electrical 
resistivity with increasing temperature, the adverse effect is to increase the I2R loss, which represents 
a loss of revenue to the power provider.  From the graph, note that the conductor temperature increases 
markedly with decreasing wind velocity, and the effect of insulation is still around +20°C. 
 
(2) Because of the tediousness of hand calculations required in using the convection correlation 
without fore-knowledge of Tf at which to evaluate properties, we used the IHT Correlation function 
treating Tf as one of the unknowns in the system of equations.  Salient portions of the IHT code and 
property values are provided below. 
 
          Continued … 
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// Forced convection, cross flow, cylinder 
NuDbar = NuD_bar_EF_CY(ReD,Pr)      // Eq 7.54 
NuDbar = hDbar * Do / k 
ReD = V * Do / nu   // Outer diameter; bare or with insulation 
 
// Evaluate properties at the film temperature, Tf. 
Tf =  Tfluid_avg (Tinf,Ts)                     // Ts is the outer surface temperature 
/*  Correlation description: External cross flow (EF) over cylinder (CY), average coefficient, 
ReD*Pr>0.2, Churchill-Bernstein correlation, Eq 7.54. See Table 7.9.  */ 
 
// Air property functions : From Table A.4 
// Units: T(K); 1 atm pressure 
nu = nu_T("Air",Tf)  // Kinematic viscosity, m^2/s 
k = k_T("Air",Tf)   // Thermal conductivity, W/m·K 
Pr = Pr_T("Air",Tf)  // Prandtl number 
 

 
 
(3) Is the temperature gradient within the conductor significant? 



PROBLEM 7.67  
KNOWN:  Velocities and temperatures of two air streams separated by a wall.  Dimensions of an 
aluminum pin fin inserted through the wall.  Distance it extends into the upper fluid.   
FIND:  (a) Heat transfer rate between the fluids via the pin fin, when it extends 50 mm into the upper 
fluid.  (b) Heat transfer rate as a function of the distance it extends into the upper fluid.   
SCHEMATIC:   
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Velocity is uniform – decreased velocity near wall can be neglected, (2) For 
the purpose of evaluating properties, the fin temperature is equal to the average of the two fluid 
temperatures, Ts = 25°C.  
 
PROPERTIES:  Table A-4, Air 1 (Tf1 = 17.5°C ≅ 290.5 K): ν1 = 1.504 × 10-5 m2/s, k1 = 0.02554 
W/m⋅K, Pr1 = 0.710. Air 2 (Tf2 = 32.5°C ≅ 305.5 K): ν2 = 1.644 × 10-5 m2/s, k2 = 0.02671 W/m⋅K,  
Pr2 = 0.706.  Table A-1, Aluminum 2024 (Ts = 25°C ≈ 300 K): k = 177 W/m⋅K.  
 
ANALYSIS:   
(a) The heat transfer coefficients between the air and the fin are analyzed as flow past a cylinder 
using the Churchhill-Bernstein correlation: 

1
D1 -5 2

1

2
D2 -5 2

2

V D 10 m/s × 0.005 mRe  =  =  = 3320
ν 1.504 × 10 m /s

V D 3 m/s × 0.005 mRe  =  =  = 912.
ν 1.644 × 10 m /s

 

 
From Equation 7.54, 

 
( ) ( )

4/55/81/2 1/3
D1 D1

D1 1/42/3
1

4/51/2 1/3 5/8

1/42/3

0.62 Re  Pr ReNu  = 0.3 +  1 + 
282,0001 + (0.4/Pr )

0.62 × 3320 × 0.710 3320          = 0.3 +  1 + = 29.7
282,0001 + (0.4/0.710)

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎡ ⎤ ⎣ ⎦⎣ ⎦

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎡ ⎤ ⎣ ⎦⎣ ⎦

 

 

and  2D1 1
1

Nu k 29.7 × 0.02554 W/m Kh  =  =  = 152 W/m K
D 0.005 m

⋅
⋅  
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Similarly, NuD2 = 15.3, h2 = 81.5 W/m2·K. 
 
Next we analyze heat transfer along the rod as if it were two fins joined at their base – the location 
where the fin passes through the wall.  Thus, using the corrected fin length approach, Equation 3.88, 
  

1 1 1 c1

2 2 2 c2

q  = M  tanh m L
q  = M  tanh m L

 

 
where   

i i c bi i b i
πDM  = h PkA θ  = h Dk  (T  - T )
2 ∞  

i i c im  = h P/kA  = 2 h /kD  
 
and Lci = Li + D/4.  In this expression, L1 = d and L2 = L - d.  Finally, since heat leaving one 
rod enters the other,  

q1 = -q2 

1 b 1 1 c1 2 b 2 2 c2
πD πDh Dk  (T  - T ) tanh m L h Dk  (T  - T ) tanh m L
2 2∞ ∞= −  

Solving for Tb: 

 1 1 1 c1 2 2 2 c2
b

1 c1 2 2 c2

h  T  tanh(m L ) + h  T  tanh(m L )
T  = 

h1 tanh(m L ) + h  tanh(m L )
∞ ∞        (1)  

  
We calculate 
 2 -1

1 1m  = 2 h /kD  = 2 152 W/m K/(177 W/m K × 0.005 m)  = 26.2 m⋅ ⋅  
 
and similarly,  m2 = 19.2 m-1. Also, Lc1 = Lc2 = d + D/4 = 0.05 m + 0.005 m/4 = 0.05125 m. 
 
Thus 

 

2 -1

b
2 -1

2 -1

152 W/m K  × 10°C ×  tanh (26.2 m  × 0.05125 m) 
T  = 

    + 81.5 W/m K  × 40°C × tanh (19.2 m  × 0.05125 m)

152 W/m K  × tanh (26.2 m  × 0.05125 m) 
                                    

    + 8

⎡ ⎤⋅⎢ ⎥
⎢ ⎥⋅⎣ ⎦

⋅
2 -1

 = 21.6°C
1.5 W/m K  × tanh (19.2 m  × 0.05125 m)

⎡ ⎤
⎢ ⎥
⎢ ⎥⋅⎣ ⎦

 

  
 
Finally 

1 2 1 b 1 1 c1
πDq = q  = -q  = h Dk  (T  - T ) tanh(m L )
2 ∞        (2) 

    
2

-1

π(0.005 m)= 152 W/m K × 0.005 m × 177 W/m K  ×  
2

                 × (21.6°C - 10°C) tanh (26.2 m × 0.05125 m)

⋅ ⋅
 

    = 0.924 W            < 
Continued… 
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(b) With Lc1 = d + D/4 and Lc2 = L - d + D/4, we vary d in the range 0 ≤ d ≤ 0.1 m and solve 
Equations (1) and (2).  The results for q are plotted below.  

 

d (m)
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q 
(W

)

1

0.8

0.6

0.4

0.2

0

 
 

We see that there is an optimal insertion distance, d ≅  40 mm.  A longer fin length (≈ 60 mm) is 
needed in fluid 2 to compensate for its smaller heat transfer coefficient.  
 
COMMENTS:  It is of interest to compare the heat transfer between the two fluids via the fin to the 
heat transfer through the wall.  In Chapter 8 we will see how to calculate heat transfer coefficients for 
flow in a channel.  Assuming that the channel widths are both approximately 50 mm, the heat transfer 
coefficients between the fluid and the wall are roughly 40 W/m2·K and 10 W/m2·K for the faster and 

slower streams, respectively.  Then 22 1

1 2

T  - Tq  =  240 W/m
1/h  + 1/h

′′ ≅ .  A wall area of 4 × 10-3 m2, for 

example a 60 mm-square area, would be required to transfer the same amount of heat as the fin (in part 
a), 0.924 W.  



PROBLEM 7.68 
 
KNOWN:  Diameter and surface temperature of an uninsulated steam pipe.  Velocity and temperature of 
air in cross flow. 
 
FIND:  (a) Heat loss per unit length, (b) Effect of insulation thickness on heat loss. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Uniform surface temperature, (3) Negligible radiation. 
 
PROPERTIES:  Table A.4, Air (Tf ≈ 350 K, 1 atm):  ν = 20.9 × 10-6 m2/s, k = 0.030 W/m⋅K, Pr = 0.70. 
 
ANALYSIS:  (a) Without the insulation, the heat loss per unit length is 
 
 ( )s,iq h D T Tπ ∞′ = −  
 
where h  may be obtained from the Churchill-Bernstein relation.  With 
 

 5
D 6 2

VD 5m s 0.5mRe 1.196 10
20.9 10 m sν −

×
= = = ×

×
 

 

 

( )

4 / 51/ 2 1/ 3 5/8
DDD 1/ 42 /3

0.62Re Pr ReNu 0.3 1 242
282,000

1 0.4 Pr

⎡ ⎤⎛ ⎞⎢ ⎥= + + =⎜ ⎟⎢ ⎥⎝ ⎠⎡ ⎤ ⎣ ⎦+⎢ ⎥⎣ ⎦

 

 

 2D
k 0.030 W m Kh Nu 242 14.5W m K
D 0.5m

⋅
= = = ⋅  

 
The heat rate is then 

 ( ) ( )( )2q 14.5 W m K 0.5m 150 10 C 3644 W mπ′ = ⋅ − − =o . < 
 
(b) With the insulation, the heat loss may be expressed as 
 ( )i s,iq U D T Tπ ∞′ = −  

where, from Eq. 3.36, 

 
( ) 1

i
i

D 2 1U ln r
k rh

−⎡ ⎤
= +⎢ ⎥
⎣ ⎦

 

and ( ) ( )r D 2 D 2δ≡ + .  The outer diameter, Do = D + 2δ, as well as the film temperature, Tf = (Ts,o + 
T∞)/2, must now be used to evaluate the convection coefficient, where 
 

Continued... 
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( )

( ) ( )
s,i s,o icond
s,i tot i

T T ln r kR
T T R ln r k 1 D 2 rh∞

− ′
= =

′− +
 

 
Using the IHT Correlations and Properties Tool Pads to evaluate h , the following results were obtained. 
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The insulation is extremely effective, with a thickness of only 10 mm yielding a 7-fold reduction in heat 
loss and decreasing the outer surface temperature from 150 to 10°C.  For δ = 50 mm, Ui = 0.56 W/m2⋅K, 
q′  = 140 W/m and Ts,o = -5.2°C. 
 
COMMENTS:  The dominant contribution to the total thermal resistance is made by the insulation. 
 
 



PROBLEM 7.69  
KNOWN:  Dimensions and thermal conductivity of a thermocouple well.  Temperatures at well tip 
and base.  Air velocity.  
FIND:  Air temperature.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) One-dimensional 
conduction along well, (4) Uniform convection coefficient, (5) Negligible radiation.  
PROPERTIES:  Steel (given):  k = 35 W/m⋅K; Air (given):  ρ = 0.774 kg/m

3
, μ = 251 × 10

-7
 N⋅s/m

2
, 

k = 0.0373 W/m⋅K, Pr = 0.686.  
ANALYSIS:  Applying Equation 3.75 at the well tip (x = L), where T = T1, 
 

 ( ) 11
2

T T cosh mL h/mk sinh mL
T T

−∞

∞

− ⎡ ⎤= +⎣ ⎦−
 

 ( ) ( )1/ 2
c om hP/kA           P D 0.010 m 0.0314 mπ π= = = =  

 ( )( ) ( )( )2 2 2 2 2 5 2
c o iA / 4 D D / 4 0.010 0.005 m 5.89 10  m .π π −= − = − = ×  

With ( )3
D -7 2

0.774 kg/m 3m/s 0.01 mVDRe 925
251 10  N s/m

= = =
× ⋅

ρ
μ

 

 
C = 0.51, m = 0.5, n = 0.37 and the Zhukauskas correlation yields 

 
( ) ( ) ( )D

D

1/ 4 0.5 0.370.5 0.37
D s

2

o

Nu 0.51Re Pr Pr/Pr 0.51 925 0.686 1 13.5
k 0.0373 W/m K

h Nu 13.5 50.4 W/m K.
D 0.01 m

= ≈ × =
⋅

= = = ⋅
 

Hence 

 
( )
( )

( )
1/ 22

-1 -1
5 2

50.4 W/m K 0.0314 m
m 27.7 m      mL 27.7 m 0.15 m 4.15.

35 W/m K 5.89 10  m−

⎡ ⎤⋅⎢ ⎥= = = =⎢ ⎥⋅ ×⎢ ⎥⎣ ⎦

 

With 

 ( ) ( ) ( )( )2 -1h/mk 50.4 W/m K / 27.7 m 35 W/m K 0.0519= ⋅ ⋅ =  

find ( ) 11
2

T T 31.9 0.0519 31.8 0.0298          T 452.2 K.
T T

−∞
∞

∞

−
⎡ ⎤= + = =⎣ ⎦−

  < 

 
COMMENTS:  Heat conduction along the wall to the base at 375 K is balanced by convection from 
the air. 



PROBLEM 7.70 
 
KNOWN:  Mercury-in-glass thermometer mounted on duct wall used to measure air temperature. 
 
FIND:  (a) Relationship for the immersion error, ΔTi = T(L) - T∞  as a function of air velocity, 
thermometer diameter and length, (b) Length of insertion if ΔTi is not to exceed 0.25°C when the air 
velocity is 10 m/s, (c) For the length of part (b), calculate and plot ΔTi as a function of air velocity for 2 to 
20 m/s, and (d) For a given insertion length, will ΔTi increase or decrease with thermometer diameter 
increase; is ΔTi more sensitive to diameter or velocity changes? 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Thermometer approximates a one-dimensional (glass) 
fin with an adiabatic tip, (3) Convection coefficient is uniform over length of thermometer. 
 
PROPERTIES:  Table A.3, Glass (300 K):  kg = 1.4 W/m⋅K;  Table A.4, Air (Tf = (15 + 77)°C/2 ≈ 320 
K, 1 atm):  k = 0.0278 W/m⋅K, ν = 17.90 × 10-6 m/s2, Pr = 0.704. 
 
ANALYSIS:  (a) From the analysis of a one-dimensional fin, see Table 3.4, 
 

 
( )

L
b

T T 1
T T cosh mL

∞

∞

−
=

−
                      2

g c g

hP 4hm
k A k D

= =  (1) 

 
where P = πD and Ac = πD2/4.  Hence, the immersion error is 
 
 ( ) ( ) ( )i bT T L T T T cosh mL∞ ∞Δ = − = − . (2) 
 
Using the Hilpert correlation for the circular cylinder in cross flow, 
 

 
m 1/ 3

m 1/ 3 1/ 3 m m 1
D m

k k VD k Prh C Re Pr C Pr C V D
D D ν ν

−⎛ ⎞= = = ⋅ ⋅ ⋅⎜ ⎟
⎝ ⎠

 (3) 

 
1/ 3

m m 1
m

k Prh N V D where N C
ν

−= ⋅ ⋅ =  (4,5) 

 
Substituting into Eq. (2), the immersion error is 

 ( ) ( ) ( )
1/ 2m m 2

i b gT V, D, L T T cosh 4 k N V D L−
∞

⎧ ⎫⎪ ⎪⎡ ⎤Δ = − ⋅ ⋅⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭
 (6) < 

 
where kg is the thermal conductivity of the glass thermometer. 
 
(b) When the air velocity is 10 m/s, find 
 

 D 6 2
VD 10m s 0.004mRe 2235

17.9 10 m sν −
×

= = =
×
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with C = 0.683 and m = 0.466 from Table 7.2 for the range 40 < ReD < 4000.  From Eqs. (5) and (6),  

 
( )

( )
1/ 3

0.4666 2

0.0278W m K 0.704
N 0.683 2.753

17.9 10 m s−

⋅
= × =

×
 

 

 ( ) ( ) ( )
1/ 2

0.466 0.466 2
i

4T 15 77 K cosh 2.753 10m s 0.004m L
1.4 W m K

−
⎧ ⎫⎡ ⎤⎪ ⎪Δ = − ×⎨ ⎬⎢ ⎥⋅⎣ ⎦⎪ ⎪⎩ ⎭

 

 
and when ΔTi = -0.25°C, find 

 L = 18.7 mm < 
 
(c) For the air velocity range 2 to 20 m/s, find 447 ≤ ReD ≤ 4470 for which the previous values of C and m 
of the Hilpert correlation are appropriate.  Hence, the immersion error for an insertion length of L = 18.7 
mm, part (b), find 

 ( ) ( )
1/ 2

0.466
i

4T 15 77 K cosh 2.753 V 0.004m 1.534 0.0187
1.4 W m K

⎧ ⎫⎡ ⎤⎪ ⎪Δ = − × × −⎨ ⎬⎢ ⎥⋅⎣ ⎦⎪ ⎪⎩ ⎭
 

 ( )0.233
iT 62 C cosh 3.629VΔ = − o  < 

where the units of V are [m/s].  Entering the above equation into the IHT Workspace the plot shown 
below was generated. 
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(d) For a given insertion length, the immersion error will increase if the diameter of the thermometer were 
increased.  This follows from Eq. (6) written as 

 ( )m 2 2
iT ~ 1 cosh A D −⎛ ⎞Δ ⋅⎜ ⎟

⎝ ⎠
 (7) 

where A is a constant depending on variables other than D.  For a given insertion length and air velocity, 
from Eq. (6) 

 ( )m 2
iT ~ 1 cosh B VΔ ⋅  (8) 

where B is a constant.  From Eq. (7) we see ΔTi relates to change in diameter as D-0.767 and to change in 
velocity as V0.233.  That is, to reduce the immersion error decrease D and increase V (both cause h  to 
increase!).  Based upon the exponents of each parameter, however, diameter change is the more 
influential. 



PROBLEM 7.71 
 
KNOWN:    Long coated plastic, 20-mm diameter rod, initially at a uniform temperature of Ti  = 25°C, is 
suddenly exposed to the cross-flow of air at T∞  = 350°C and V = 50 m/s. 
 
FIND:  (a) Time for the surface of the rod to reach 175°C, the temperature above which the special 
coating cures, and (b) Compute and plot the time-to-reach 175°C as a function of air velocity for 5 ≤ V ≤ 
50 m/s. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (a) One-dimensional, transient conduction in the rod, (2) Constant properties, and (3) 
Evaluate thermophysical properties at Tf = [(Ts + Ti)/2 + T∞]/2 = [(175 + 25)/2 + 350]°C/2 = 225°C = 500 
K. 
 
PROPERTIES:  Rod (Given):  ρ = 2200 kg/m3, c = 800 J/kg⋅K, k = 1 W/m⋅K, α = k/ρc = 5.68 × 10-7 
m2/s; Table A.4, Air (Tf ≈ 500 K, 1 atm):  ν = 38.79 × 10-6 m2/s, k = 0.0407 W/m⋅K, Pr = 0.684. 
 
ANALYSIS:  (a) To determine whether the lumped capacitance method is valid, determine the Biot 
number 

 
( )o

lc
h r 2

Bi
k

=  (1) 

The convection coefficient can be estimated using the Churchill-Bernstein correlation, Eq. 7.54, 

 

( )

4 / 55 /81/ 2 1/ 3
D DD 1/ 42 / 3

0.62 Re Pr RehD
Nu 0.3 1

k 282, 000
1 0.4 Pr

= = + +

+

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎡ ⎤ ⎣ ⎦

⎢ ⎥⎣ ⎦

 

 

 6 2
D

VDRe 50m s 0.020m 38.79 10 m s 25,780
ν

−= = × × =  
 

 
( ) ( )

( )

4 / 55 / 81/ 2 1/ 3

1/ 42 / 3

0.62 25, 780 0.6840.0407 W m K 25, 780
h 0.3 1

0.020 m 282, 000
1 0.4 0.684

⋅
= + +

+

⎧ ⎫
⎡ ⎤⎪ ⎪⎛ ⎞⎢ ⎥⎨ ⎬⎜ ⎟

⎝ ⎠⎢ ⎥⎪ ⎪⎡ ⎤ ⎣ ⎦
⎩ ⎣ ⎦ ⎭

 = 184 W/m2⋅K(2) 

 
Substituting for h  from Eq. (2) into Eq. (1), find  

 ( )2
lcBi 184 W m K 0.010 m 2 1W m K 0.92 0.1= ⋅ ⋅ = >>  

Hence, the lumped capacitance method is inappropriate.  Using the one-term series approximation, Eqs. 
5.52 with Table 5.1, 

 ( ) ( )* 2 * *
1 o 1 o1C exp Fo J r r r r 1θ ζ ζ= − = =  

 
( ) ( )

( )
o*
i

T r , t T 175 350 C
0.54

T T 25 350 C
θ ∞

∞

− −
= = =

− −

o

o
 

 o 1 1Bi hr k 1.84 1.546 rad C 1.318= = = =ζ  
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 0.54 = 1.318exp[-(1.546rad)2Fo]Jo(1.546 × 1) 
 
Using Table B.4 to evaluate Jo(1.546) = 0.4859, find Fo = 0.0725 where                
 

 
( )

7 2
3o o

o2 2
o

t 5.68 10 m s tFo 5.68 10 t
r 0.010 m

α −
−× ×

= = = ×  (6) 

 ot 12.8s=  < 
 
(b) Using the IHT Model, Transient Conduction, Cylinder, and the Tool, Correlations, External Flow, 
Cylinder, results for the time-to-reach a surface temperature of 175°C as a function of air velocity V are 
plotted below. 
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COMMENTS:  (1) Using the IHT Tool, Correlations, External Flow, Cylinder, the effect of the film 
temperature Tf on the estimated convection coefficient with V = 50 m/s can be readily evaluated. 
 

Tf (K) 460 500 623 
h  (W/m2⋅K) 187 184 176 

 
At early times, h  = 184 W/m2⋅K is a good estimate, while as the cylinder temperature approaches the 
airsteam temperature, the effect starts to be noticeable (10% decrease). 
 
(2) The IHT analysis performed for part (b) was developed in two parts.  Using a known value for h , the 
Transient Conduction, Cylinder Model was tested.  Separately, the Correlation Tools was assembled and 
tested.  Then, the two files were merged to give the workspace for determining the time-to-reach 175°C as 
a function of velocity V. 
 



PROBLEM 7.72  
KNOWN:  Velocity, diameter, initial temperature and properties of extruded wire.  Temperature and 
velocity of air.  Temperature of surroundings.  
FIND:  (a) Differential equation for temperature distribution T(x), (b) Exact solution for negligible 
radiation and corresponding value of temperature at prescribed length of wire, (c) Effect of radiation 
on temperature of wire at prescribed length.  Effect of wire velocity and emissivity on temperature 
distribution.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible variation of wire temperature in radial direction, (2) Negligible 
effect of axial conduction along the wire, (3) Constant properties, (4) Radiation exchange between 
small surface and large enclosure, (5) Motion of wire has a negligible effect on the convection 
coefficient (Ve << V). 
 
PROPERTIES:  Prescribed.  Copper: 3

p8900 kg / m , c 400 J / kg K, 0.55.ρ ε= = ⋅ =   Air: 

k 0.037 W / m K,= ⋅  5 23 10 m / s, Pr 0.69.ν −= × =  
 
ANALYSIS:  (a) Applying conservation of energy to a stationary control surface, through which the 
wire moves, steady-state conditions exist and in outE E 0.− =& &   Hence, with inflow due to advection and 
outflow due to advection, convection and radiation, 
 ( )e c p e c p conv radV A c T V A c T dT dq dq 0ρ ρ− + − − =  

 ( ) ( ) ( )2 4 4
e p surV D / 4 c dT Ddx h T T T T 0ρ π π εσ∞

⎡ ⎤− − − + − =⎢ ⎥⎣ ⎦
 

 ( ) ( )4 4
sur

e p

dT 4 h T T T T
dx V Dc

εσ
ρ ∞

⎡ ⎤= − − + −⎢ ⎥⎣ ⎦
        (1)    < 

Alternatively, if the control surface is fixed to the wire, conditions are transient and the energy balance 
is of the form, out stE E ,− =& &  or 

 ( ) ( )
2

4 4
sur p

D dTDdx h T T T T dx c
4 dt

ππ εσ ρ∞
⎛ ⎞⎡ ⎤ ⎜ ⎟− − + − =⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠

 

 ( ) ( )4 4
sur

p

dT 4 h T T T T
dt Dc

εσ
ρ ∞

⎡ ⎤= − − + −⎢ ⎥⎣ ⎦
 

Dividing the left- and right-hand sides of the equation by dx/dt and eV dx / dt,=  respectively, Eq. (1) 
is obtained. 
 
(b) Neglecting radiation, separating variables and integrating, Eq. (1) becomes 

 
i

T x
T 0e p

dT 4h dx
T T V Dcρ∞

= −
−∫ ∫  

          Continued … 
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i e p

T T 4h xln
T T V Dcρ

∞

∞

⎛ ⎞−
= −⎜ ⎟−⎝ ⎠

 

 ( )i
e p

4hxT T T T exp
V Dcρ∞ ∞

⎛ ⎞
= + − −⎜ ⎟⎜ ⎟

⎝ ⎠
          (2)    < 

With 5 2
DRe VD / 5 m / s 0.005 m / 3 10 m / s 833,ν −= = × × =  the Churchill-Bernstein correlation yields 

 
( ) ( )

( )
D

4/51/ 2 1/ 3 5/8

1/ 42 /3

0.62 833 0.69 833Nu 0.3 1 14.4
282,000

1 0.4 / 0.69

⎡ ⎤⎛ ⎞⎢ ⎥= + + =⎜ ⎟⎢ ⎥⎝ ⎠⎡ ⎤ ⎣ ⎦+⎢ ⎥⎣ ⎦

 

 D
2k 0.037 W / m Kh Nu 14.4 107 W / m K

D 0.005m
⋅

= = = ⋅  

Hence, applying Eq. (2) at x = L, 

 ( )
2

o 3
4 107 W / m K 5mT 25 C 575 C exp

8900 kg / m 0.2 m / s 0.005m 400 J / kg K

⎛ ⎞× ⋅ ×⎜ ⎟= ° + ° −
⎜ ⎟× × × ⋅⎝ ⎠

 

 oT 340 C= °           < 
(c) Using the DER function of IHT, Eq. (1) may be numerically integrated from x = 0 to x = L = 5.0m 
to obtain 

 oT 309 C= °           < 
Hence, radiation makes a discernable contribution to cooling of the wire.  IHT was also used to obtain 
the following distributions. 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
The speed with which the wire is drawn from the extruder has a significant influence on the 
temperature distribution.  The temperature decay decreases with increasing Ve due to the increasing 
effect of advection on energy transfer in the x direction.  The effect of the surface emissivity is less 
pronounced, although, as expected, the temperature decay becomes more pronounced with increasing 
ε. 
COMMENTS:  (1) A critical parameter in wire extrusion processes is the coiling temperature, that is, 
the temperature at which the wire may be safely coiled for subsequent storage or shipment.  The larger 
the production rate (Ve), the longer the cooling distance needed to achieve a desired coiling 
temperature.  (2) Cooling may be enhanced by increasing the cross-flow velocity, and the specific 
effect of V may also be explored. 
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PROBLEM 7.73 
 
KNOWN:   Experimental apparatus comprised of a flat plate subjected to an airstream in parallel flow.  
Electrical patch heater on backside dissipates 15.5 W for all conditions.  Pin fins fabricated from brass 
with prescribed diameter and length can be firmly attached to the plate.  Fin tip and base temperatures 
observed for five different configurations (N, number of fins).  
 
FIND:  (a) The thermal resistance between the plate and airstream for the five configurations, (b) Model 
of the plate-fin system using appropriate convection correlations to predict the thermal resistances for the 
five configurations; compare predictions and observations; explain differences, and (b) Predict thermal 
resistances when the airstream velocity is doubled. 
 
SCHEMATIC: 

  
 
 
Experimental observations:

 
N Ttip (°C) Ts (°C) 
0 -- 70.2 
1 40.6 67.4 
2 39.5 64.7 
5 36.4 57.4 
8 34.2 52.1 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible effect of flow interactions between pins, 
(3) Negligible radiation exchange with surroundings, (4) All heater power is transferred to airstream, and 
(5) Constant properties.   
 
PROPERTIES:  Table A.4, Air (Tf = 310 K, 1 atm):  k = 0.0270 W/m⋅K, ν = 1.69 × 10-5 m2/s, Pr = 
0.706;  Table A.1, Brass (T = 300 K): k = 110 W/m⋅K. 
 
ANALYSIS:  (a) The thermal resistance between the plate and the airstream is defined as 

 s
tot

T TR
q

∞−
=  (1) 

The heat rate is 15.5 W for all configurations and using Ts values from the above table with T∞  = 20°C, 
find 

Continued... 
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N 0 1 2 5 8 
Rtot (K/W) 3.24 3.06 2.88 2.41 2.07 <

 
(b) The thermal resistance of the plate-fin system can be expressed as 
 

 [ ] 1
tot base finR 1 R N R −= +  (2) 

 
where the thermal resistance of the exposed portion of the base, Ab, is 
 

 base
b b

1R
h A

=  (3) 

 
 b s cA A NA= −  (4) 
 
where Ac is the cross-sectional area of a fin and As is the plate surface area.  Approximating the airstream 
over the plate as parallel flow over a plate, use the IHT Correlation Tool, External Flow, Flat Plate 
assuming the flow is turbulated by the leading edge, to find 
 
 2

bh 51W m K= ⋅ . 
 
From the experimental observation with no fins (N = 0), the convection coefficient was measured as 
 

 
( ) ( ) ( )

2
b,cxp 2s s

q 15.5Wh 460 W m K
A T T 0.0259m 70.2 20 C∞

= = = ⋅
− − o

 

 
Since the predicted coefficient is nearly an order of magnitude lower, we chose to use the experimental 
value in our subsequent analyses to predict overall system thermal resistance. 
 
Approximating the airstream over a pin fin as cross-flow over a cylinder, use the IHT Correlation Tool, 
External Flow, Cylinder to find 
 
 2

finh 118W m K= ⋅ . 
 
Using the IHT Extended Surface Model for the Rectangular Pin Fin (Temperature Distribution and Heat 
Rate) with a convection tip condition, the following fin thermal resistance was found as 
 
 finR 25.4 K W=  
 
Using the foregoing values for Rfin and hb , the thermal resistances of the plate-fin system are tabulated 
below. 
 

N 0 1 2 4 8 <
Rbase (K/W) 3.241 3.331 3.426 3.746 4.133 
Rfin (K/W) -- 25.4 12.7 5.08 3.18 
Rtot (K/W) 3.24 2.95 2.70 2.16 1.80 

 
By comparison with the experimental results of part (a), note that we assured agreement for the N = 0 
condition by using the measured rather than estimated (correlation) convection coefficient.  The predicted 
thermal resistances are systematically lower than the experimental values, with the worst case (N = 8) 
being 13% lower. 
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(c)  The effect of doubling the velocity, from u∞  = 6 to 12 m/s, will cause the fin convection coefficient to 
increase from finh  = 118 to 169 W/m2⋅K.  For the base convection coefficient, we’ll assume the flow is 

fully turbulent so that ( )0.8h ~ u∞  according to Eq. 7.38, hence 
 

 ( ) ( ) ( )
0.8

0.82 2
b b

12h 12m s h 6m s 460 W m K 2 800 W m K
6

⎛ ⎞= = ⋅ = ⋅⎜ ⎟
⎝ ⎠

 

 
Using the same procedure as above, find 
 

N 0 1 2 4 8 
Rbase (K/W) 1.863 1.915 1.970 2.154 2.376 
Rfin (K/W) -- 18.96 9.480 4.740 2.370 
Rtot (K/W) 1.86 1.74 1.63 1.48 1.19 

 
The effect of doubling the airstream velocity is to reduce the thermal resistance by approximately 35%. 
 



PROBLEM 7.74 
 
KNOWN:  Temperature and velocity of air flow over a sphere of prescribed surface temperature and 
diameter. 
 
FIND:  (a) Drag force, (b) Heat transfer rate with air velocity of 25 m/s; and (c) Compute and plot the 
heat rate as a function of air velocity for the range 1 ≤ V ≤ 25 m/s. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Uniform surface temperature, (3) Negligible radiation 
exchange with surroundings. 
 
PROPERTIES:  Table A.4, Air (T∞  = 298 K, 1 atm):  μ = 184 × 10-7 N⋅s/m2;  ν = 15.71 × 10-6 m2/s, k = 
0.0261 W/m⋅K, Pr = 0.71; (Ts = 348 K):   μ = 208 × 10-7 N⋅s/m2; (Tf = 323 K):  ν = 18.2 × 10-6 m2/s, ρ = 
1.085 kg/m3. 
 
ANALYSIS:  (a) Working with properties evaluated at Tf  

 
( ) 4

D 6 2
25m s 0.01mVDRe 1.37 10

18.2 10 m sν −
= = = ×

×
 

 
and from Fig. 7.9, find CD ≈ 0.4.  Hence 

 ( )( ) ( )( ) ( )2 22 2 3
D DF C D 4 V 2 0.4 4 0.01m 1.085kg m 25m s 2 0.011Nπ ρ π= = = < 

 
(b) With 
 

 
( ) 4

D 6 2
25m s 0.01mVDRe 1.59 10

15.71 10 m sν −
= = = ×

×
 

 
it follows from the Whitaker relation that 
 

 
1/ 4

1/ 2 2 / 3 0.4D D D
s

Nu 2 0.4Re 0.06Re Pr μ
μ

⎛ ⎞⎡ ⎤= + + ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠
 

 ( ) ( ) ( )
1/ 41/ 2 2 / 3 0.44 4D

184Nu 2 0.4 1.59 10 0.06 1.59 10 0.71 76.7
208

⎡ ⎤ ⎛ ⎞= + × + × =⎢ ⎥ ⎜ ⎟
⎝ ⎠⎣ ⎦

 

 
Hence, the convection coefficient and convection heat rate are 

 2D
k 0.0261W m Kh Nu 76.7 200 W m K
D 0.01m

⋅
= = = ⋅  

 ( ) ( ) ( )22 2
sq h D T T 200 W m K 0.01m 75 25 C 3.14 Wπ π∞= − = ⋅ × − =o  < 
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(c) Using the IHT Correlation Tool, External Flow, Sphere, the average coefficient and heat rate were 
calculated and are plotted below. 
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COMMENTS:  (1) A copy of the IHT Workspace used to generate the above plot is shown below. 
 

// Correlation Tool - External Flow, Sphere: 
NuDbar = NuL_bar_EF_SP(ReD,Pr,mu,mus)     // Eq 7.56 
NuDbar = hbar * D / k 
ReD = V * D / nu 
/* Evaluate properties at Tinf and the surface temperature, Ts. */ 
 
/*  Correlation description: External flow (EF) over a sphere (SP), average coefficient, 3.5<ReD<7.6x10^4, 
0.71<Pr<380, 1.0<(mu/mus)<3.2, Whitaker correlation, Eq 7.56. See Table 7.7.  */ 
 
// Properties Tool - Air: 
// Air property functions : From Table A.4 
// Units: T(K); 1 atm pressure 
mu = mu_T("Air",Tinf)  // Viscosity,  N·s/m^2 
mus = mu_T("Air",Ts)  // Viscosity,  N·s/m^2 
nu = nu_T("Air",Tinf)  // Kinematic viscosity, m^2/s 
k = k_T("Air",Tinf)   // Thermal conductivity, W/m·K 
Pr = Pr_T("Air",Tinf)  // Prandtl number 
 
// Heat Rate Equation: 
q = hbar * pi * D^2 * (Ts - Tinf) 
 
// Assigned Variables: 
D = 0.01   // Sphere diameter, m 
Ts = 75 + 273   // Surface temperature, K 
V = 25    // Airstream velocity, m/s 

     Tinf = 25 + 273   // Airstream temperature, K 

 



PROBLEM 7.75 
 
KNOWN:  Sphere with a diameter of 20 mm and a surface temperature of 60°C that is immersed in a 
fluid at a temperature of 30°C with a velocity of 2.5 m/s.    
FIND:  The drag force and the heat rate when the fluid is (a) water and (b) air at atmospheric pressure.   
Explain why the results for the two fluids are so different.  
SCHEMATIC: 

 
 
ASSUMPTIONS: (1) Flow over a smooth sphere, (2) Constant properties. 
 
PROPERTIES:  Table A-6, Water (T∞ = 30°C = 303 K):  μ = 8.034 × 10-4 N⋅s/m2, ν = 8.068 × 10-7 
m2/s, k = 0.6172 W/m⋅K, Pr = 5.45; Water (Ts = 333 K):  μs = 4.674 × 10-4 N⋅s/m2; Table A-4, Air 
(T∞ = 30°C = 303 K, 1 atm ):  μ = 1.86 × 10-5 N⋅s/m2, ν = 1.619 × 10-5 m2/s, k = 0.0265 W/m⋅K, Pr = 
0.707; Air (T∞ = 333 K):  μs = 2.002 × 10-5 N⋅s/m2. 
 
ANALYSIS:   The drag force, Fo, for the sphere is determined from the drag coefficient, Eq. 7.50, 

 
( )

D
D 2

f

FC
A V / 2ρ

=  

where Af = πD2/4 is the frontal area. CD is a function of the Reynolds number DRe VD /ν=   
as represented in Figure 7.9.  For the convection rate equation, 
 ( )D s sq h A T T∞= −  

where As = πD2 is the surface area and the convection coefficient is estimated using the Whitaker 
correlation, Eq. 7.56, 

 ( )D
1/ 41/ 2 2 / 3 0.4

sD DNu 2 0.4Re 0.06Re Pr /μ μ⎡ ⎤= + +⎢ ⎥⎣ ⎦
 

where all properties except μs are evaluated at T∞.  For convenience we will evaluate properties 
required for the drag force at T∞.  The results of the analyses for the two fluids are tabulated below. 
 

Fluid       ReD  CD    FD (N) DNu       ( )2
Dh W / m K⋅      q(W) 

 
water 6.198 × 104 0.5     0.489   439  13,540      510 
air 3.088 × 103 0.4 0.452 × 10-3  31.9     42.3      1.59 

 
The frontal and surface areas, respectively, are Af = 3.142 × 10-4 m2 and As = 1.257 × 10-3 m2. 
 
COMMENTS:  The Reynolds number is the ratio of inertia to viscous forces.  We associate higher 
viscous shear and heat transfer with larger Reynolds numbers.  The drag force also depends upon the 
fluid density, which further explains why FD for water is much larger, by a factor of 1000, than for air.  

NuD is dependent upon n
DRe  where n is 1/2 to 2/3, and represents the dimensionless temperature 

gradient at the surface.  Since the thermal conductivity of water is nearly 20 times that of air, we 
expect a significant difference between Dh  and q for the two fluids. 



PROBLEM 7.76  
KNOWN:  Diameter, properties and initial temperature of niobium sphere.  Velocity and temperature 
of nitrogen.  Temperature of surroundings.  
FIND:  (a) Time for sphere to cool to prescribed temperature if radiation is neglected, (b) Cooling 
time if radiation is considered.  Effect of flow velocity.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Lumped capacitance method is valid, (2) Constant properties, (3) Radiation 
exchange with large surroundings. 
 
PROPERTIES:  Table A-4, nitrogen ( ) 7 2T 298K : 177 10 N s / m ,μ −

∞ = = × ⋅  6 215.7 10 m / s,ν −= ×  

k 0.0257 W / m K,= ⋅  Pr 0.716.=   Table A-4, nitrogen ( ) 7 2
s sT 873K : 368 10 N s / m .μ −= = × ⋅  

 
ANALYSIS:  (a) Neglecting radiation, the cooling time may be determined from Eq. (5.5), 
 

 
( )3

i i
2 f

D / 6 c c D T Tt ln ln
6h T Th D

ρ π θ ρ
θπ

∞

∞

−
= =

−
 

 
The convection coefficient is obtained from the Whitaker correlation with DRe VD /ν=  

6 25 m / s 0.01m /15.7 10 m / s 3185.−= × × =   Hence, 
 

 ( ) ( ) ( )D
1/ 41/ 2 2 / 3 0.4

sD DNu hD / k 2 0.4Re 0.06Re Pr /μ μ= = + +  
 

( ) ( ) ( )
0.25

21/ 2 2 / 3 0.40.0257 W / m K 177
h 2 0.4 3185 0.06 3185 0.716 71.8 W / m K

0.01m 368

⋅
= + + = ⋅

⎧ ⎫⎪ ⎪⎛ ⎞⎡ ⎤⎨ ⎬⎜ ⎟⎣ ⎦ ⎝ ⎠⎪ ⎪⎩ ⎭
 

 

 
( )
( )

3

2
900 258600kg / m 290J / kg K 0.01mt ln 67s
300 256 71.8W / m K

−× ⋅ ×
= =

−× ⋅
    < 

 
(b) If the effect of radiation is considered, the cooling time can be obtained by integrating Eq. (5.15).  

With ( )2 3
sA / V D / D / 6 6 / D,π π= =  the appropriate form of the equation is 

 

 ( ) ( )4 4
sur

dT 6 h T T T T
dt c D

εσ
ρ ∞

⎡ ⎤= − − + −⎢ ⎥⎣ ⎦
 

 
Using the DER function of IHT to integrate this equation over the limits from iT 1173 K=  to 

fT 573 K,=  we obtain 
 
 t 48s=           < 
          Continued … 
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For V = 1.0 and 25.0 m/s, the cooling times are t ≈ 80 and 24 s, respectively.  Temperature histories 
for the three velocities are shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
COMMENTS:  The cooling time is significantly affected by the flow velocity. 
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PROBLEM 7.77 
 
KNOWN:  An underwater instrument pod having a spherical shape with a diameter of 85 mm 
dissipating 300 W. 
 
FIND:  Estimate the surface temperature of the pod for these conditions: (a) when submersed in a bay 
where the water temperature is 15°C and the current is 1 m/s, and (b) after being hauled out of the 
water without deactivating the power and suspended in the ambient where the air temperature is 15°C 
and the wind speed is 3 m/s. 
 
SCHEMATIC: 
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Flow over a smooth sphere, (3) Uniform surface 
temperatures, (4) Negligible radiation heat transfer for air (a) condition, and (5) Constant properties. 
 
PROPERTIES:  Table A-6, Water (T∞ = 15°C = 288 K):  μ = 0.001053 N⋅s/m2, ν = 1.139 × 10-6 
m2/s, k = 0.5948 W/m⋅K, Pr = 8.06; Table A-4, Air (T∞ = 288 K, 1 atm):  μ = 1.788 × 10-5 N⋅s/m2, ν = 
1.482 × 10-5 m2/s, k = 0.02534 W/m⋅K, Pr = 0.710 ; Air (Ts = 945 K): μs = 4.099 × 10-5 N⋅s/m2. 
 
ANALYSIS:  The energy balance for the submersed-in-water (w) and suspended-in-air (a) conditions 
are represented in the schematics above and have the form 
 in out gen cv eE E E q P 0− + = − + =& & &        (1) 

 ( )D s s eh A T T P 0∞− − + =  

where As = πD2 and Dh  is estimated using the Whitaker correlation, Eq. 7.56, 

 ( )D
1/ 41/ 2 2 / 3 0.4

sD DNu 2 0.4Re 0.06Re Pr /μ μ⎡ ⎤= + +⎢ ⎥⎣ ⎦
    (2) 

where all properties except μs are evaluated at T∞.  The results are tabulated below. 
 

Condition       ReD  DNu        Dh     Ts 

      (W/m2⋅K) (°C) 
 

 (w) water 7.465 × 104   499     3491  18.8 
 (a) air  1.72 × 104   67.5      20.1  672 
 
COMMENTS:  (1) While submerged and dissipating 300 W, the pod is safely operating at a 
temperature slightly above that of the water.  When hauled from the water and suspended in air, the 
pod temperature increases to a destruction temperature (672°C).  The pod gets smoked! 
 
(2) The assumption that μ/μs ≈ 1 is appropriate for the water (w) condition.  For the air (a) condition, 
μ/μs = 0.436 and the final term of the correlation is significant.  Recognize that radiation exchange 
with the surroundings for the air condition should be considered for an improved estimate. 
 
          Continued … 
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(3) Why such a difference in Ts for the water (w) and air (a) conditions?  From the results table note 
that the ReD, NuD, and Dh  are, respectively, 4x, 7x and 170x times larger for water compared to air.  
Water, because of its thermophysical properties which drive the magnitude of Dh ,  is a much better 
coolant than air for similar flow conditions. 
 

 
/* Comment:  Because Ts is much larger than Tinf for the in-air operation, the ratio of mu / mus 
exceeds the limits for the correlation.  Hence, a warning message comes with the IHT solution.  */ 
 
/* Results  - operation in air 
As NuDbar Pr ReD Tinf Ts Ts_C hbar k mu
 mus nu D Pelec Tinf_C V 
0.0227 67.5 0.7101 1.72E4 288 944.8 671.8 20.12 0.02534 1.786E-5
 4.099E-5 1.482E-5 0.085 300 15 3  */ 
 
// Correlation, sphere 
NuDbar = NuL_bar_EF_SP(ReD,Pr,mu,mus)     // Eq 7.56 
NuDbar = hbar * D / k 
ReD = V * D / nu 
/* All properties except mus are evaluated at Tinf. */ 
/*  Correlation description: External flow (EF) over a sphere (SP), average coefficient, 
3.5<ReD<7.6x10^4, 0.71<Pr<380, 1.0<(mu/mus)<3.2, Whitaker correlation, Eq 7.56. See Table 7.9.  */ 
 
// Energy balance 
Pelec - hbar * As * (Ts - Tinf) = 0 
As = pi * D^2 
 
// Input variables 
D = 0.085 
//V = 1.0                    // Water current 
V = 3                          // Wind speed   
Tinf_C = 15 
Pelec = 300 
 
// Conversions 
Tinf = Tinf_C + 273 
Ts = Ts_C + 273 
 
// Air property functions : From Table A.4 
// Units: T(K); 1 atm pressure 
mu = mu_T("Air",Tinf) // Viscosity,  N·s/m^2 
mus = mu_T("Air",Ts) // Viscosity,  N·s/m^2 
// mus = mu 
nu = nu_T("Air",Tinf) // Kinematic viscosity, m^2/s 
k = k_T("Air",Tinf)  // Thermal conductivity, W/m·K 
Pr = Pr_T("Air",Tinf) // Prandtl number 
 
 
 
 



PROBLEM 7.78 
 
KNOWN: Method to manufacture small diameter lead solder balls. Properties of D = 130 μm 
diameter particles ejected into nitrogen gas at V = 2 m/s. Nitrogen temperature and pressure, 
initial particle temperature. Piezoelectric device oscillation frequency. 
 
FIND: (a) Terminal velocity of the droplets and distance traveled when a droplet completely 
solidifies, (b) Separation distance between droplets and pot size needed to produce solder balls 
continuously for one week. 
 
SCHEMATIC: 
 

V, T∞ = 30°C

Dp = 130 µm

FD

mg

Lead

ρp = 8230 kg/m3

cp = 240 J/kg·K

kp = 38 W/m·K

hsf = 42 kJ/kg

Tf = 183°C

Nitrogen

V, T∞ = 30°C

Dp = 130 µm

FD

mg

Lead

ρp = 8230 kg/m3

cp = 240 J/kg·K

kp = 38 W/m·K

hsf = 42 kJ/kg

Tf = 183°C

Nitrogen  
ASSUMPTIONS: (1) Negligible radiation heat transfer, (2) lumped capacitance thermal 
response. 
 
PROPERTIES: Table A.4, Nitrogen: (Tf ≈ (Ti + T∞)/2 = (225°C + 30 °C)/2 = 127.5 °C ≈ 400 
K): ρ = 0.8425 kg/m3, ν = 26.16 × 10-6 m2/s. ( sT = (225°C + 183°C)/2 = 205°C = 477 K: μs = 248 
× 10-7 N⋅s/m2. (T∞ = 30°C = 303 K): ρ = 1.1233 kg/m3, ν = 15.86 × 10-6 m2/s, k = 0.0259 W/m⋅K, 
μ = 178 × 10-7 N⋅s/m2, Pr = 0.716. 
 
ANALYSIS: 
(a) A force balance on the particle yields 

 ( ) ( )2 32
D p D f p p

4F  = mg = π D / 2 C ρ V /2 =  π D / 2 ρ g
3

 

 
Which may be rearranged to yield 
 

 
( ) 2

D p p f

-6 2 2
D

4C  =  D ρ / g/V
3
4C  =  × 130 × 10  m × (8230/0.8425) × 9.8 m/s /V
3

ρ
 

 2 2 2
DC (16.59m / s ) / V=               (1) 

and 
 

Continued… 



PROBLEM 7.78 (Cont.) 
 

p -6 -6 2
D

VD
Re  =  = V × 130 × 10  m/26.16 × 10  m /s

ν
 

 ReD = (4.97s/m)×V               (2) 
 
Equations 1 and 2 may be solved for CD and ReD for any value of V.  The resulting values of CD 
and ReD must be consistent with the results of Figure 7.9. 
 
A trial-and-error solution yields  V = 2.03 m/s, CD = 4.03, ReD = 10.09 from solution of Equations 

1 and 2.  From Figure 7.9, at ReD = 10, CD = 4. Therefore V ≈ 2 m/s.            < 
 
We note that the terminal velocity is identical to the injection velocity.  Hence, the particles travel 
at constant velocity.  The particle cooling process occurs in two steps.   
 
Step One: Particle cooling to Tf = 183°C. 
With nitrogen properties evaluated at T∞ = 30°C, the Reynolds number is 

 
-6

D -6 2
2 m/s × 130 × 10  mRe  =  = 16.39

15.86 × 10  m /s
 

 
The Whitaker correlation yields 

 
1/4

2/3 0.4
D

178Nu  = 2 + 0.4 16.39  + 0.06 × 16.39  × 0.716  × = 3.62
248

⎛ ⎞⎡ ⎤ ⎜ ⎟⎣ ⎦ ⎝ ⎠
 

Therefore 
 -6 2

DD ph  = Nu k/D  = 3.62 × 0.0259 W/m K/130 × 10  m = 721 W/m K⋅ ⋅  

Using Equation 5.6 with 2 -6 2 -9 2
sA  = 4π(D/2)  = 4 × π × (130 × 10  m/2)  = 53.1 × 10  m ,  

3 -6 3 -12 3 = (4/3) π (D/2)  = (4/3) × π × (130 × 10 m/2)  = 1.15 × 10  m∀ , 

      
2 -9 2

13 -12 3
i

T - T 183 - 30 721 W/m K × 53.1 × 10  m =  = 0.785 = exp - × t
T  - T 225 - 30 8230 kg/m  × 1.15 × 10  m  × 240 J/kg K

∞

∞

⎡ ⎤⎛ ⎞⋅
⎢ ⎥⎜ ⎟⎜ ⎟⋅⎢ ⎥⎝ ⎠⎣ ⎦

 

from which 
 t1 = 14.3 × 10-3 s 
 
Step Two: Particle solidification at Tf = 183°C.   
An energy balance on the particle during solidification yields 
 st outE  + E  = 0& &  
or 

 
p sf s f 2- ρ h  - hA (T  - T )t∞∀  

or 

 
-12 3 3

-3
2 2 -9 2

1.15 × 10  m  × 8230 kg/m  × 42,000 J/kgt  =  = 67.6 × 10  s
721 W/m K × 53.1 × 10  m × (183 - 30)°C⋅

 

Therefore, the time to completely solidify is  
 

Continued… 



 PROBLEM 7.78 (Cont.) 
 
T = t1 + t2 = 14.3 × 10-3 s + 67.6 × 10-3 s = 82 × 10-3 s                     
 
and the distance traveled is L = 2m/s × 0.082s = 0.163 m             < 
 
(b) The distance that one particle travels is  

L = (2 m/s) / (1800 s-1) = 1.11 mm              < 
                   
The required pot size for one week of operation is 

 
-12 3

pot  = 1.15 × 10  m /particle × 1800 particles/s × 7 days × 24 h/day × 3600 s/h∀  

-3 3
pot  = 1.25 × 10  m∀                < 

 
 
 
COMMENTS: (1) The Biot number associated with the cooling of the particle is Bi = h(Dp/6)/kp 
= 721 W/m2⋅K × (130 × 10-6 m/s)/(38 W/m⋅K) = 0.0004 << 0.1. Therefore, the lumped 
capacitance assumption is valid. (2) The maximum possible radiation heat transfer coefficient is 
associated with the initial particle temperature and an emissivity of unity. Assuming a 
surroundings temperature of 30°C = 303 K, we find a radiation heat transfer coefficient of hr = 
5.67 × 10-8 W/m2⋅K4 × (498 + 303) K × (4982 + 3032) K2 = 15 W/m2⋅K. Therefore, radiation heat 
transfer is negligible. (3) The terminal velocity of the very small spherical particle is relatively 
low. This is because the surface area to weight ratio of a sphere is inversely proportional to the 
sphere diameter. As the sphere becomes small, drag forces become relatively large at relatively 
low velocities.  
 



PROBLEM 7.79 
 
KNOWN:  A spherical workpiece of pure copper with a diameter of 15 mm and emissivity of 0.5 is 
suspended in a large furnace with walls at a uniform temperature of 600°C.  The air flow over the 
workpiece has a temperature of 900°C with a velocity of 7.5 m/s. 
 
FIND:  (a) The steady-state temperature of the workpiece; (b) Estimate the time required for the 
workpiece to reach within 5°C of the steady-state temperature if its initial, uniform temperature is 
25°C; (c) Estimate the steady-state temperature of the workpiece if the air velocity is doubled with all 
other conditions remaining the same; also, determine the time required for the workpiece to reach 
within 5°C of this value.  Plot on the same graph the workpiece temperature histories for the two air 
velocity conditions. 
 
SCHEMATIC: 
 

 
 
ASSUMPTIONS: (1) Flow over a smooth sphere, (2) Sphere behaves as spacewise isothermal object; 
lumped capacitance method is valid, (3) Sphere is small object in large, isothermal surroundings, and 
(4) Constant properties. 
 
PROPERTIES:  Table A-4, Air (T∞ = 1173 K, 1 atm):  μ = 4.665 × 10-5 N⋅s/m2, ν = 0.0001572 m2/s, 
k = 0.075 W/m⋅K, Pr = 0.728; Air (Ts = 1010 K, 1 atm):  μs = 4.268 × 10-5 N⋅s/m2. 
 
ANALYSIS:  (a) The steady-state temperature is determined from the energy balance on the sphere as 
represented in the schematic above. 
 
 in out genE E E 0− + =& & &  cv radq q 0 0− − + =  
 

 ( ) ( )4 4
D s s s s surh A T T A T T 0ε σ∞− − − − =      (1) 

 
where As = πD2/4.  The convection coefficient can be estimated using the Whitaker correlation, Eq. 
7.56, where all properties except μs are evaluated at T∞.  Assume Ts = 737°C = 1010 K to evaluate μs.  

 ( )D
1/ 41/ 2 2 / 3 0.4

sD DNu 2 0.4Re 0.06Re Pr /μ μ⎡ ⎤= + +⎢ ⎥⎣ ⎦
   (2) 

 
See the table below for results of the correlation calculations.  From the energy balance, canceling out 
As, with numerical values, find Ts. 

 ( ) ( )2 8 2 4 4 4 4
s s79.8 W / m K T 1173 K 0.5 5.67 10 W / m K T 873 K 0−− ⋅ − − × × ⋅ − =  

 sT 1010 K 737 C.= = °          < 
 
(b) The time required for the sphere initially at Ti = 25°C to reach within 5°C of the steady-
state temperature can be determined from the energy balance for the transient condition. 
 
          Continued … 
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 in out gen stE E E E− + =& & & &  

 ( ) ( ) ( )4 4 3
D s s s s sur

dTh A T T A T T c D / 6
dt

ε σ ρ π∞− − − − =     (3) 

Recognize that Dh  is not constant, but depends upon Ts(t).  Using IHT to perform the integration, 

evaluate Dh ,  and provide pure copper properties ρ and c as a function of Ts, the time to for T(to) = 
(737 – 5)°C = 732°C is 

 ot 274 s=           < 
See Comments 1 and 2 for details on the IHT calculation method. 
 
(c) Use Eq. (1) and (2) to find the steady-state temperature when the air velocity is doubled, V = 2 × 
7.5 ms = 15 m/s.  The results are tabulated below along with those from part (a). 
 

Part    V    ReD  DNu       Dh     Ts 

   (m/s)     (W/m2⋅K) (°C) 
 

   a  7.5   715.6  15.96     79.8  737 
   b  15   1431  22.42    112.1  760 
 
As expected, increasing the air velocity will cause the sphere temperature to increase toward T∞.  Note 
that Dh  increases by a factor of 1.4 as the air velocity is doubled.  From correlation Eq. (2) note that 

Dh  is approximately proportional to Vn where n is in the range 1/2 to 2/3.  Using the IHT code for the 
lumped capacitance analysis, the time for T(to) = (760 – 5)°C = 755°C is 

 ot 230 s=           < 
The temperature histories for the two air velocity conditions are calculated using the foregoing 
transient analyses in the IHT workspace. 
 

Workpiece temperature history
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V = 7.5 m/s, air velocity
V = 15 m/s  

          Continued … 
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COMMENTS:  (1) The portion of the IHT code for performing the energy balance and evaluating the 
convection correlation function using the properties function follows. 

 
// Convection correlation, sphere 
NuDbar = NuL_bar_EF_SP(ReD,Pr,mu,mus)     // Eq 7.56 
NuDbar = hbar * D / k 
ReD = V * D / nu 
/* All properties except mus are evaluated at Tinf. */ 
/*  Correlation description: External flow (EF) over a sphere (SP), average coefficient, 
3.5<ReD<7.6x10^4, 0.71<Pr<380, 1.0<(mu/mus)<3.2, Whitaker correlation, Eq 7.56. See Table 7.9.  */ 
 
// Energy balance, steady-state temperature 
-hbar * As * (Ts - Tinf) - eps * sigma * (Ts^4 - Tsur^4) * As = 0  
As = pi * D^2 
sigma = 5.67e-8 
 
// Air property functions : From Table A.4 
// Units: T(K); 1 atm pressure 
mu = mu_T("Air",Tinf) // Viscosity,  N·s/m^2 
mus = mu_T("Air",Ts) // Viscosity,  N·s/m^2 
nu = nu_T("Air",Tinf) // Kinematic viscosity, m^2/s 
k = k_T("Air",Tinf)  // Thermal conductivity, W/m·K 
Pr = Pr_T("Air",Tinf) // Prandtl number 
 
// Input variables 
D = 0.015 
eps = 0.5 
V = 7.5 
Tinf = 900 + 273 
Tsur = 600 + 273 

 
(2) Two modifications can be made to the code above to perform the lumped capacitance method for 
the transient analysis: (a) include the storage term in the energy balance and (b) provide the properties 
function for copper.  The initial condition, Ti = 288 K, is entered as the initial condition when the 
solver performs the integration. 
 

// Energy balance, steady-state; equilibrium temperature 
-hbar * As * (Ts - Tinf) - eps * sigma * (Ts^4 - Tfur^4) * As = M * ccu * der(Ts,t)  
As = pi * D^2 
sigma = 5.67e-8 
M = rhocu * pi * D^3 / 6 
  
// Copper (pure) property functions : From Table A.1 
// Units: T(K) 
rhocu = rho_300K("Copper") // Density, kg/m^3 
kcu = k_T("Copper",Ts) // Thermal conductivity,W/m·K 
ccu = cp_T("Copper",Ts) // Specific heat, J/kg·K 
 

(3) Show that the lumped capacitance method is valid for this application. 



PROBLEM 7.80  
KNOWN:  Diameter and initial and final temperatures of copper spheres quenched in a water bath.  
FIND:  (a) Terminal velocity in the bath, (b) Tank height.  
SCHEMATIC:   

 
 

ASSUMPTIONS:  (1) Sphere descends at terminal velocity, (2) Uniform, but time varying surface, 
temperature.  
PROPERTIES:  Table A-1, Copper (350K):  ρ = 8933 kg/m

3
, k = 398 W/m⋅K, cp = 387 J/kg⋅K; 

Table A-6, Water (T∞ = 280 K):  ρ = 1000 kg/m
3
, μ = 1422 × 10

-6
 N⋅s/m

2
, k = 0.582 W/m⋅K, Pr = 

10.26; (Ts ≈ 340 K):  μs = 420 × 10
-5

 N⋅s/m
2
. 

 
ANALYSIS:  A force balance gives ( ) ( )2 2 3

D cuC D / 4  V / 2  g D / 6,π ρ ρ ρ π= −  

 2 2 2 2cu
D

4D 4 0.02 m 8933 1000C  V g 9.8 m/s 2.07 m / s .
3 3 1000

ρ ρ
ρ
− × −

= = ⋅ =  

An iterative solution is needed, where CD is obtained from Figure 7.9 with ReD = VD/ν = 0.02 m 

V/1.42 × 10
-6

 m
2
/s = 14,085 V (m/s).  Convergence is achieved with 

 V 2.1 m/s≈           < 
for which ReD = 29,580 and CD ≈ 0.46.  Using the Whitaker expression 

 ( ) ( ) ( )D
0.4 1/ 41/ 2 2 /3Nu 2 0.4 29,850 0.06 29,850  10.26 1422 / 420 439= + × + × =  

 D
2h Nu  k/D 439 0.582 W/m K/0.02 m 12,775 W/m K.= = × ⋅ = ⋅  

To determine applicability of lumped capacitance method, find ( )o cuBi h r / 3 / k 12,775= =  

( )2W/m K 0.01 m/3 / 398W/m K 0.11.⋅ ⋅ =   Applicability is marginal.  Using Eq. 5.53c, 
2

o 1 1C exp( Fo)∗θ = −ξ  and from Table 5.1 at Bi = h ro/k = 0.32, C1 = 1.0937, 1ξ = 0.9472.  Substituting 
into the preceding equation yields 
 0.5 = 1.0937 exp (-0.94722 Fo) from which 
 Fo = 0.87 = αtf/ 2

or  

With αcu = k/ρcp = 398 W/m⋅K/(8933 kg/m
3
) (387 J/kg⋅K) = 1.15 × 10

-4
 m

2
/s, find 

 ( )2 4 2
ft 0.87 0.01 m /1.15 10 m / s 0.76 s.−= × =  

Required tank height is 

 fH t V 0.76 s 2.1 m/s 1.6 m.= ⋅ = × =        < 
COMMENTS:  Note that the terminal velocity is not reached immediately.  Reduced V implies 
reduced h  and increased tf.  The Fourier number, Fo, is greater than 0.2.  Hence, use of Eq. 5.53c is 
justified.  

b- 



PROBLEM 7.81  
KNOWN:  Diameter and initial and final temperatures of copper spheres quenched in an oil bath.  
FIND:  (a) Terminal velocity in bath, (b) Bath height.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Sphere descends at terminal velocity, (2) Uniform, but time varying, surface 
temperature.  
PROPERTIES:  Table A-1, Copper (350K):  ρcu =8933 kg/m

3
, k = 398 W/m⋅K, cp = 387 J/kg⋅K; 

Table A-5, Oil (T∞ = 300K):  ρ = 884 kg/m
3
, μ = 0.486 N⋅s/m

2
, k = 0.145 W/m⋅K, Pr = 6400; (Ts ≈ 

340K):  μ = 0.0531 N⋅s/m
2
.  

ANALYSIS:  (a) Force balance gives ( ) ( )2 2 3
D cuC D / 4 V / 2  g D / 6,π ρ ρ ρ π= −  

 2 2 2cu
D 2

4D 4 0.02 m 8933 884 m
C  V  g 9.8 2.38m / s .

3 3 884 s

ρ ρ
ρ
− × −

= = =  

An iterative solution is needed, where CD is obtained from Fig. 7.9 with 

 ( )
( )

( )D 2
0.02 m VVD

Re 36.4 V m/s .
0.486/884  m / sν

= = =  

Convergence is achieved for   V 1.1 m/s≈      < 
for which ReD = 40 and CD ≈ 1.97.  Using the Whitaker expression 

 ( ) ( )D
1/ 41/2 2/3 0.4

D D sNu 2 0.4 Re 0.06 Re Pr /μ μ= + +  

 ( ) ( ) ( )D
0.4 1/ 41/ 2 2 / 3Nu 2 0.4 40 0.06 40  6400 0.486 / 0.0531 189.2= + × + × =  

 D
2h Nu  k/D 189.2 0.145/0.02 1357 W/m K.= = × = ⋅  

To determine applicability of the lumped capacitance method, find ( )o cuBi h r / 3 / k= =  

( )21357 W/m K 0.01 m/3 / 398 W/m K 0.011.⋅ ⋅ =   Hence lumped capacitance method can be used; 
from Eq. 5.5, 

 
( ) 3

cu i
f 2 f

 c D / 6 T T
t n

T Th D

ρ π

π
∞

∞

−
=

−
l  

 
3

f 2
8933 kg/m 387 J/kg K 0.02 m 60

t n 9.33 s.
6 201357 W/m K

× ⋅
= =

⋅
l  

Required tank height is H = tf ⋅ V = 9.33 s × 1.1 m/s = 10.3 m.     < 
 
COMMENTS:  (1) Whitaker correlation has been used well beyond its limits (Pr >> 380).  Hence 
estimate of h  is uncertain.  (2) Since terminal velocity is not reached immediately, 

2
fh 1357 W/m K and t 9.33 s.< ⋅ >  



PROBLEM 7.82 
 
KNOWN:  Velocity of plasma jet and initial particle velocity in a plasma spray coating process.  
Distance from particle injection to impact. 
 
FIND:  (a) Particle velocity and distance of travel as a function of time.  Time-in-flight and particle 
impact velocity, (b) Convection heat transfer coefficient and time required to heat particle to melting 
point and to subsequently melt it. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Applicability of Stokes’ law, (2) Constant particle and plasma properties, (3) 
Negligible influence of viscosity ratio in Whitaker correlation, (4) Negligible radiation effects, (5) 
Validity of lumped capacitance approximation. 
 
ANALYSIS:  (a) From Eqs. 7.50 and 7.55, 

 
( )

D
D 2 D pf

F 24 24C
Re VDA V 2 ρ μρ

≡ = =  

where pV V V≡ −  is the relative velocity and Af = 2
pD 4π .  Hence, the drag force on the particle is 

 ( ) ( )D p p p pF 3 D V m dV dt m dV dtπμ= = = −  

Separating variables and integrating from the nozzle exit, where Vp = 0, V V=  and t = 0, 

 
V tp
V 0p

3 DdV dt
V m

πμ
= −∫ ∫  

 

 p

p

3 D tVln
V m

πμ
= −  

 ( )p p pV V exp 3 D t m V Vπμ= − = −  

Hence, 

 ( ) ( )p p pV t V 1 exp 3 D t mπμ⎡ ⎤= − −⎣ ⎦  < 

With p pV dx dt= , it follows that 
 

 ( )fL t
p p po o

dx V 1 exp 3 D t m dtπμ⎡ ⎤= − −⎣ ⎦∫ ∫  Continued... 
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 ( )p
f p f p

p

Vm
L Vt 1 exp 3 D t m

3 D
πμ

πμ
⎡ ⎤= − − −⎣ ⎦  < 

 
Substituting the prescribed values of Dp, L, V and the material properties, the foregoing equations yield 

 p fV 166.7 m / s t 0.001l s= =  < 
 
(b) Assuming an average value of V  = 315 m/s, the Reynolds number is 
 

 
6

D 3 2
315m s 50 10 mRe 2.81

5.6 10 m s

−

−
× ×

= =
×

 

 
From the Whitaker correlation, 

 ( )1/ 2 2 / 3 0.4D D DNu 2 0.4Re 0.06Re Pr= + +  
 

 ( )( )0.41/ 2 2 /3DNu 2 0.4 2.81 0.06 2.81 0.60 2.64= + × + × =  

 ( ) 6 2
ph 2.64k D 2.64 0.671W m K 50 10 m 35,400 W m K−= = ⋅ × = ⋅  < 

 
The two-step melting process involves (i) the time t1 to heat the particle to its melting point and (ii) the 
time t2 required to achieve complete melting.  Hence, tm = t1 + t2, where from Eq. 5.5, 

 p p p i
1

mp

D c T Tt ln
6h T T

ρ ∞

∞

−
=

−
 

 

 
( )

( )
( )
( )

3 6
4

1 2

3970kg m 50 10 m 1560J kg K 300 10,000
t ln 3.4 10 s

2318 10,0006 35,400 W m K

−
−

× ⋅ −
= = ×

−⋅
 

Performing an energy balance for the second step, we obtain 

 m
1

t
conv st p sft

q dt E hρ= Δ = ∀∫  

Hence, 

 
( )

( )
( ) ( )

3 6 6p p 4sf
2 2mp

3970kg m 50 10 mD h 3.577 10 J kgt 4.4 10 s
6h 10,000 2318 KT T 6 35,400 W m K

ρ
−

−

∞

× ×
= = × = ×

−− ⋅
 

Hence, 

 ( )4 4 4
mt 3.4 10 4.4 10 s 7.8 10 s− − −= × + × = ×  < 

and the prescribed value of L is sufficient to insure complete melting before impact. 
 
COMMENTS:  (1) Since Bi = ( )p ph r 3 k 0.03≈ , use of the lumped capacitance approach is 

appropriate. 
 
(2) With ReD = 2.81, conditions are slightly outside the ranges associated with Stokes’ law.  



PROBLEM 7.83  
KNOWN:  Diameter, velocity, initial temperature and melting point of molten aluminum droplets.  
Temperature of helium atmosphere.  
FIND:  Maximum allowable separation between droplet injector and substrate.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Lumped capacitance approximation is valid, (2) Constant properties, (3) 
Negligible radiation. 
 
PROPERTIES:  Table A-4, Helium ( ) 6 2T 300K : 122 10 m / s,ν −

∞ = = ×  7 2199 10 N s / m ,μ −= × ⋅  

k 0.152 W / m K,= ⋅  Pr 0.68.=   Helium ( ) 7 2
s sT 1000K : 446 10 N s / m .μ −≈ = × ⋅   Given, Aluminum:  

32500 kg / m , c 1200 J / kg K, k 200 W / m K.ρ = = ⋅ = ⋅  
 
ANALYSIS:  With ( )4 6 2

DRe VD / 3 m / s 5 10 m /122 10 m / s 12.3,ν − −= = × × =  the Whitaker correlation 

yields 
 

 ( ) ( )1/ 41/ 2 2 / 3 0.4
sD D

kh 2 0.4Re 0.06Re Pr /
D
⎡ ⎤= + +⎢ ⎥⎣ ⎦

μ μ  
 

( ) ( ) ( )
1/ 4

1/ 2 2 / 3 0.4 20.152 W / m K 199
h 2 0.4 12.3 0.06 12.3 0.68 975 W / m K

0.0005m 446
⋅

= + + = ⋅
⎧ ⎫⎪ ⎪⎛ ⎞⎡ ⎤⎨ ⎬⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎪ ⎪⎩ ⎭

 

 
The time-of-flight for the droplet to cool from 1100K to 933K may be obtained from Eq. 5.5. 
 

 i i
s f

c c D T Tt ln ln
h A 6h T T
ρ θ ρ

θ
∞

∞

∀ −
= =

−
 

 

 
( ) ( )3

2

2500kg / m 1200J / kg K 0.0005m 800t ln 0.06s
6336 975W / m K

⋅ ⎛ ⎞= =⎜ ⎟
⎝ ⎠× ⋅

 

 
The maximum separation is therefore 
 
 L V t 3m / s 0.06s 0.18m 180 mm= × = × = =       < 
 
COMMENTS:  (1) With ( ) 4Bi h D / 6 / k 4 10 ,−= = ×  the lumped capacitance approximation is 
excellent.  (2) With the surroundings assumed to be at surT T∞=  and a representative emissivity of ε = 

0.1 for molten aluminum, ( )( )2 2 2 2
r i ih T T T T 10 W / m K h 975 W / m K.εσ ∞ ∞≤ + ≈ ⋅ << = ⋅+   Hence, 

radiation is, in fact, negligible. (3) Note that, for liquid metals especially, surfaces can quickly become 
oxidized. The oxidation layer restricts surface motion and the droplet can behave like a solid sphere. 
Thus we have used the Whitaker correlation in lieu of the Ranz-Marshall correlation. 
 



PROBLEM 7.84 
 

KNOWN: Method to manufacture small diameter droplets. Properties of D = 75 μm diameter 
particles ejected into air. Air temperature and pressure, initial particle temperature. Desired 
temperature of drop upon impact of a substrate. 
 
FIND: (a) Terminal velocity of the droplets, (b) Separation distance between droplet injection 
location and substrate so that the droplets impact the substrate at T2 = 120 °C. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Negligible radiation heat transfer, (2) lumped capacitance thermal 
response, (3) Negligible microscale heat transfer effects. 
 
PROPERTIES: Table A.4, air: (Tf ≈ [(Ti + T2)/2 + T∞]/2) = [(150 °C + 120 °C)/2 + 25 °C]/2 = 
80 °C ≈ 353 K): ρ = 0.9876 kg/m3, ν = 21.25 × 10-6 m2/s, k = 0.03023 W/m⋅K, Pr = 0.6994. ( sT = 
(150 °C + 120 °C)/2 = 135 °C = 408 K: μs = 2.334 × 10-5 N⋅s/m2. (T∞ = 25 °C = 298 K): ν = 
15.71 × 10-6 m2/s, k = 0.02614 W/m⋅K, μ = 1.836 × 10-5 N⋅s/m2, Pr = 0.7075. 
 
ANALYSIS: 
(a) A force balance on the particle yields 

2
p D fρ g = C A (ρV /2)∀                (1) 

where  3 -6 3 -15 3
p

4 4 = π(D /2)  =  × π × (75 × 10  m/2)  = 220.9 × 10  m
3 3

∀  

 2 -6 2 -9 2
f pA  = π(D /2)  = π × (75 × 10  m/2)  = 4.42 × 10  m  

We also know 

 
-6

p
D -6 2

VD V × 75 × 10  mRe  =  =  = 3.53(s/m) × V
ν 21.25 × 10  m /s

           (2) 

The correct velocity will yield values of CD and ReD that are consistent with Figure 7.9.  A trial-
and-error solution yields (using properties at fT )  

 V ≈ 0.30 m/s, ReD = 1.06, CD = 24.2 (CD from Figure 7.8 ≈ 25)           < 
 
(b) Using the Whitaker correlation with properties evaluated at T∞, 
 ReD = 0.3 m/s × 75 × 10-6 m/1.571 × 10-5 m2/s = 1.43  
 
Therefore,  

Continued… 
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PROBLEM 7.84 (Cont.) 
 

 
1/4

2/3 0.4
D

1.836Nu  = 2 + 0.4 1.43 + 0.06 × 1.43  × 0.7075  × = 2.45
2.334

⎛ ⎞⎡ ⎤ ⎜ ⎟⎣ ⎦ ⎝ ⎠
 

 -6 2
D D ph  = Nu k/D  = 2.45 × 0.02614 W/m K/75 × 10  m = 854 W/m K⋅ ⋅  

 
Using Equation 5.6 with -6 2 -9 2

sA  = 4 × π × (75 × 10  m/2)  = 17.7 × 10  m ,  
  

2 -9 2
2

3 -15 3
i

T  - T 120 - 25 854 W/m K × 17.7 × 10  m =  = 0.76 = exp - × t
T  - T 150 - 25 2200 kg/m  × 220.9 × 10  m  × 700 J/kg K

∞

∞

⎡ ⎤⎛ ⎞⋅
⎢ ⎥⎜ ⎟⎜ ⎟⋅⎢ ⎥⎝ ⎠⎣ ⎦

 
yielding  t = 6.20 × 10-3 s = 6.2 ms.  The separation distance, L, is therefore 

  L = 0.30 m/s × 6.2 × 10-3 s = 1.86 × 10-3 m = 1.86 mm            < 
 

 
 
COMMENTS: (1) The maximum possible radiation heat transfer coefficient is 
associated with the initial particle temperature and an emissivity of unity. Assuming a 
surroundings temperature of 25 °C = 298 K, we find a radiation heat transfer coefficient 
of hr = 5.67 × 10-8 W/m2⋅K4 × (423 + 298) K × (4232 + 2982) K2 = 11 W/m2⋅K. Therefore, 
radiation heat transfer is negligible. (2) The terminal velocity of the very small spherical 
particle is very low. This is because the surface area to weight ratio of a sphere is 
inversely proportional to the sphere diameter. As the sphere becomes small, drag forces 
become relatively large at relatively low velocities. (3) The Whitaker correlation has been 
extrapolated outside of its recommended range of application. However, we know that 
the limiting value of the average Nusselt number is two. (4) The sphere is very small and 
the density of the sphere is relatively low. The lumped capacitance assumption is likely to 
be valid. 
 



PROBLEM 7.85 
 
KNOWN:  Velocity and temperature of combustion gases.  Diameter and emissivity of thermocouple 
junction.  Combustor temperature. 
 
FIND:  (a) Time to achieve 98% of maximum thermocouple temperature rise, (b) Steady-state 
thermocouple temperature, (c) Effect of gas velocity and thermocouple emissivity on measurement error. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Validity of lumped capacitance analysis, (2) Constant properties, (3) Negligible 
conduction through lead wires, (4) Radiation exchange between small surface and a large enclosure (parts 
b and c). 
 
PROPERTIES:  Thermocouple (given):  0.1 ≤ ε ≤ 1.0, k = 100 W/m⋅K, c = 385 J/kg⋅K, ρ = 8920 kg/m3; 
Gases (given):  k = 0.05 W/m⋅K, ν = 50 × 10-6 m2/s, Pr = 0.69. 
 
ANALYSIS:  (a) If the lumped capacitance analysis may be used, it follows from Equation 5.5 that 

 ( )i
s

Vc T T D ct ln ln 50
hA T T 6h
ρ ρ∞

∞

−
= =

−
. 

Neglecting the viscosity ratio correlation for variable property effects, use of V = 5 m/s with the Whitaker 
correlation yields 

 ( ) ( ) ( )1/ 2 2 / 3 0.4
D D D D 6 2

5 m s 0.001mVD
Nu hD k 2 0.4 Re 0.06 Re Pr Re 100

50 10 m sν −
= = + + = = =

×
 

 ( ) ( )( )( )1/ 2 2 / 3 0.4 20.05W m Kh 2 0.4 100 0.06 100 0.69 328W m K
0.001m

⋅ ⎡ ⎤= + + = ⋅⎢ ⎥⎣ ⎦
 

Since Bi = ( )oh r 3 k  = 5.5 × 10-4, the lumped capacitance method may be used.  Hence, 

 
( )

( )
3

2

0.001m 8920kg m 385J kg K
t ln 50 6.83s

6 328W m K

⋅
= =

× ⋅
 < 

 
(b) Performing an energy balance on the junction and evaluating radiation exchange, qconv = qrad.  Hence, 
with ε = 0.5, 

 ( ) ( )4 4
s s chA T T A T Tε σ∞ − = −  

 ( ) ( )
8 2 4 44 4

2
0.5 5.67 10 W m K1000 T K T 400 K

328W m K

−× × ⋅ ⎡ ⎤− = −⎢ ⎥⎣ ⎦⋅
. 

 T = 936 K < 
(c) Using the IHT First Law Model for a Solid Sphere with the appropriate Correlation for external flow 
from the Tool Pad, parametric calculations were performed to determine the effects of V and εg, and the 
following results were obtained. 

Continued... 
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Since the temperature recorded by the thermocouple junction increases with increasing V and decreasing 
ε, the measurement error, T∞  - T, decreases with increasing V and decreasing ε.  The error is due to net 
radiative transfer from the junction (which depresses T) and hence should decrease with decreasing ε.  
For a prescribed heat loss, the temperature difference ( T∞  - T) decreases with decreasing convection 
resistance, and hence with increasing h(V). 
 
COMMENTS:  To infer the actual gas temperature (1000 K) from the measured result (936 K), 
correction would have to be made for radiation exchange with the cold surroundings. 



PROBLEM 7.86 
 
KNOWN:  Diameter, emissivity and temperature of a thermocouple junction exposed to hot gases 
flowing through a duct of prescribed surface temperature. 
 
FIND:  (a) Relative magnitudes of gas and thermocouple temperatures if the duct surface temperature is 
less than the gas temperature, (b) Gas temperature for prescribed conditions, (c) Effect of Velocity and 
emissivity on measurement error. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Junction is diffuse-gray, (3) Duct forms a large 
enclosure about the junction, (4) Negligible heat transfer by conduction through the thermocouple leads, 
(5) Gas properties are those of atmospheric air. 
 
PROPERTIES:  Table A-4, Air (Tg ≈ 650 K, 1 atm):  ν = 60.21 × 10-6 m2/s, k = 0.0497 W/m⋅K, Pr = 
0.690, μ = 322.5 × 10-7 N⋅s/m2; Air (Tj = 593 K, 1 atm):  μ = 304 × 10-7 N⋅s/m2. 
 
ANALYSIS:  (a) From an energy balance on the thermocouple junction, 

( ) ( )
conv rad
g j j s

q q
→ →

= .  Hence, 

 ( ) ( )4 4
g j sjhA T T A T Tεσ− = −  or ( )4 4

g j sjT T T T
h
ε σ− = − .  

If Ts < Tj, it follows that Tj < Tg. < 
 

(b) Neglecting the variable property correction, ( ) ( )1/ 4 1/ 4
s 322.5 304μ μ =  = 1.01 ≈ 1.00, and using 

 

 
( )

D 6 2
3m s 0.002mVDRe 100

60.21 10 m sν −
= = =

×
 

 
the Whitaker correlation for a sphere gives 
 

 ( ) ( ) ( ){ }1/ 2 2 / 3 0.4 20.0497 W m Kh 2 0.4 100 0.06 100 0.69 163W m K
0.002m

⋅ ⎡ ⎤= + + = ⋅⎢ ⎥⎣ ⎦
. 

Hence 

 ( ) ( ) ( )4 48 2 4
g 2

0.6T 593K 5.67 10 W m K 593K 448K 17 K
163W m K

− ⎡ ⎤− = × ⋅ − =⎢ ⎥⎣ ⎦⋅
 

 gT 610K 337 C= = o . < 

 
(c) With Tg fixed at 610 K, the IHT First Law Model was used with the Correlations and Properties Tool 
Pads to compute the measurement error as a function of V and ε. 
 

Continued... 
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Since the convection resistance decreases with increasing V, the junction temperature will approach the 
gas temperature and the measurement error will decrease.  Since the depression in the junction 
temperature is due to radiation losses from the junction to the duct wall, a reduction in ε will reduce the 
measurement error. 
 
COMMENTS:  In part (b), calculations could be improved by evaluating properties at 610 K (instead of 
650 K). 
 



PROBLEM 7.87  
KNOWN:  Diameter and emissivity of a thermocouple junction exposed to hot gases of prescribed 
velocity and temperature flowing through a duct of prescribed surface temperature.  
FIND:  (a) Thermocouple reading for gas at atmospheric pressure, (b) Thermocouple reading when 
gas pressure is doubled.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Junction is diffuse-gray, (3) Duct forms a large 
enclosure about junction, (4) Negligible heat loss by conduction through thermocouple leads, (5) Gas 
properties are those of air, (6) Perfect gas behavior.  
PROPERTIES:  Table A-4, Air (Tg = 773 K, 1 atm):  ν = 80.5 × 10

-6
 m

2
/s, k = 0.0561 W/m⋅K, Pr = 

0.705.  
ANALYSIS:  (a) Performing an energy balance on the junction 

 ( ) ( )
conv rad
g j j s

q q
     → →
=

 

 ( ) ( )4 4
g j sjhA T T A T T .εσ− = −  

Neglecting the variable property correction, (μ/μs)
1/4, and using 

 D -6 2
VD 3 m/s 0.002 mRe 74.5

80.5 10  m / sν
×

= = =
×

 

the Whitaker correlation for a sphere gives, 

 ( ) ( ) ( ){ }1/ 2 2 / 3 0.4 20.0561 W/m Kh 2 0.4 74.5 0.06 74.5 0.705 166 W/m K.
0.002 m

⋅ ⎡ ⎤= + + = ⋅⎢ ⎥⎣ ⎦
 

 ( ) ( )48 4
j j166 773 T 0.6 5.67 10 T 473− ⎡ ⎤− = × × −⎢ ⎥⎣ ⎦

 

and from a trial-and-error solution, 

 jT 726 K.≈           < 
(b) Assuming all properties other than ν to remain constant with a change in pressure, ↑ p by 2 will ↓ 
ν by 2 and hence ↑ ReD by 2, giving ReD = 149.  Hence 

 ( ) ( ) ( ){ }1/ 2 2 / 3 0.4 20.0561h 2 0.4 149 0.06 149 0.705 216 W/m K.
0.002

⎡ ⎤= + + = ⋅⎢ ⎥⎣ ⎦
 

 ( ) ( )48 4
j j216 773 T 0.6 5.67 10 T 473− ⎡ ⎤− = × × −⎢ ⎥⎣ ⎦

 

and from a trial-and-error solution 

 jT 735 K.≈           < 
COMMENTS:  The thermocouple error will ↓ with ↑ h, which ↑ with ↑p. 



PROBLEM 7.88  
KNOWN:  Initial temperature, dimensions and properties of chip and solder connectors.  Velocity, 
temperature and properties of liquid.  
FIND:  (a) Ratio of time constants (chip-to-solder), (b) Chip-to-solder temperature difference after 
0.25s of heating.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Solder balls and chips are spatially isothermal, (2) Negligible heat transfer 
from sides of chip, (3) Top and bottom surfaces of chip act as flat plates in turbulent parallel flow, (4) 
Heat transfer from solder balls may be approximated as that from an isolated sphere, (5) Constant 
properties. 
 
PROPERTIES:  Given.  Dielectric liquid: ;6 2k 0.064 W / m K, 10 m / s, Pr 25ν −= ⋅ = =  Silicon 

chip: ;3
pk 150 W / m K, 2300kg / m , c 700J / kg Kρ= ⋅ = = ⋅  Solder ball: k 40 W / m K,= ⋅  

.3
p10,000kg / m , c 150J / kg Kρ = = ⋅  

 
ANALYSIS:  (a) From Eq. 5.7, the thermal time constant is ( )t sc / h A .τ ρ= ∀   Hence, 
 

 
( ) ( ) ( )

( ) ( )
( )
( )

2 2
sldcht,ch ch sld

2 3t,sld chsldch sld

c L t h D c ht3
D c h2h L c D / 6

ρ π ρτ
τ ρρ π

= =  

 
The convection coefficient for the chip may be obtained from Eq. 7.38 with A = 0, with 

6 2
LRe VL / 0.2 m / s 0.01m /10 m / s 2000.ν −= = × =  

 

 ( )( ) ( )4 / 5 1/ 3 2
ch

0.064 W / m Kh 0.037 2000 25 302 W / m K
0.01m

⋅
= = ⋅  

 
The convection coefficient for the solder may be obtained from Eq. 7.56, with DRe VD /ν=  

6 20.2 m / s 0.001m /10 m / s 200.−= × =   Neglecting the effect of the viscosity ratio, 
 

 ( ) ( ) ( ){ }1/ 2 2 / 3 0.4 2
sld

0.064 W / m Kh 2 0.4 200 0.06 200 25 1916 W / m K
0.001m

⋅ ⎡ ⎤= + + = ⋅⎢ ⎥⎣ ⎦
 

 

Hence,  
3 2t,ch
3 2t,sld

2300 kg / m 700J / kg K 1916 W / m K3 20.4
10,000 kg / m 150 J / kg K 302 W / m K

τ
τ

⎛ ⎞× ⋅ ⋅⎜ ⎟= =
⎜ ⎟× ⋅ ⋅⎝ ⎠

  < 

 
Hence, the solder responds much more quickly to the convective heating. 
 
(b) From Eq. 5.6, the chip-to-solder temperature difference may be expressed as 
          Continued … 



PROBLEM 7.88 (Cont.) 
  

 ( )ch sld i
ch sld

2h 6hT T T T exp t exp t
c t c Dρ ρ∞

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪− = − − − −⎢ ⎥ ⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

 

 

 
2 2

ch sld 2 2
604 W / m K 11,496 W / m KT T 60 C exp 0.25s exp 0.25s
1610J / m K 1500J / m K

⎧ ⎫⎡ ⎤ ⎡ ⎤⋅ ⋅⎪ ⎪− = ° − − −⎢ ⎥ ⎢ ⎥⎨ ⎬
⎢ ⎥ ⎢ ⎥⋅ ⋅⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

 

 
 { }ch sldT T 60 C 0.910 0.147 45.8 C− = ° − = °       < 
 
COMMENTS:  (1) The foregoing process is used to subject soldered chip connections (a major 
reliability issue) to rapid and intense thermal stresses.  (2) Some heat transfer by conduction will occur 
between the chip and solder balls, thereby reducing the temperature difference and thermal stress.  (3) 
Constriction of flow between the chip and substrate will reduce sldh ,  as well as chh  at the lower 
surface of the chip, relative to values predicted by the correlations.  The corresponding time constants 
would be increased accordingly.  (4) With ( )ch ch chipBi h t / 2 / k 0.001 1= = <<  and sld sldBi h=  

( ) sldD / 6 / k 0.008 1,= <<  the lumped capacitance analysis is appropriate for both components. 
 



PROBLEM 7.89  
KNOWN:  Conditions associated with Example 7.7, but with reduced longitudinal and transverse 
pitches.  
FIND:  (a) Air side convection coefficient, (b) Tube bundle pressure drop, (c) Heat rate.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Uniform tube surface temperature, (3) Negligible 
radiation and incompressible flow.  
PROPERTIES:  Table A-4, Atmospheric air (T∞ = 288 K):  ρ = 1.217 kg/m

3
, ν = 14.82 × 10

-6
 m

2
/s, 

k = 0.0253 W/m⋅K, Pr = 0.71, cp = 100.7 J/kg⋅K; (Ts = 343 K): Pr = 0.701. 
 
ANALYSIS:  (a) From the tube pitches, find  

 ( ) ( ) ( )
1/ 2 1/ 22 2 22

D TLS S S / 2 20.5 10.25 22.91 mm⎡ ⎤ ⎡ ⎤= + = + =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

 ( ) ( )TS D / 2 20.5 16.4 / 2 18.45 mm.+ = + =  
 
Hence, the maximum velocity occurs on the transverse plane, and  

 
( )

T
max

T

S 20.5 mmV V 6 m/s 30 m/s.
S D 20.5 16.4  mm

= = =
− −

 

 

With  ( ) 4max
D,max -6 2

30 m/s 0.0164 mV DRe 3.32 10
14.82 10  m / sν

= = = ×
×

 

 
and (ST/SL) = 1 < 2, it follows from Table 7.5 that 
 1C 0.35          m 0.60.= =  

Hence, from the Zukauskas correlation and Table 7.6 (C2 = 0.95), 

 ( ) ( )D
1/ 40.6 0.36

sD,maxNu 0.95 0.35 Re Pr Pr/ Pr=  

 ( ) ( ) ( ) ( )D
0.6 0.36 1/ 44Nu 0.95 0.35 3.32 10 0.71 0.71/ 0.701 152= × =  

 D
2k 0.0253 W/m Kh Nu 152 234 W/m K.

D 0.0164 m
⋅

= = × = ⋅     < 

(b) From the Zukauskas relation 

 
2
max

L
Vp N  f.

2
ρχ

⎛ ⎞
⎜ ⎟Δ =
⎜ ⎟
⎝ ⎠

 

With ReD,max = 3.32 × 10
4
, PT = (ST/D) = 1.25 and (PT/PL) = 1, it follows from Fig. 7.15 that 

 χ ≈ 1.02 f ≈ 0.38. 
          Continued … 
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Hence  

 ( )23
21.217 kg/m 30 m/s

p 7 1.02 0.38 1490 N/m
2

Δ = × =  
 
 p 0.0149Δ =  bar.         < 
 
(c) The air outlet temperature is obtained from  

 ( )s o s i
t t p

DNhT T T T exp
VN S c
π

ρ

⎛ ⎞
− = − −⎜ ⎟⎜ ⎟

⎝ ⎠
 

 

 
( ) ( )2

s o 3

0.0164 m 56 234 W/m K
T T 55 C exp 

1.217 kg/m 6 m/s 8 0.0205 m 1007 J/kg K

π⎛ ⎞− ⋅⎜ ⎟− = ⎜ ⎟
× × × × ⋅⎜ ⎟

⎝ ⎠

o  

 
 s oT T 31.4 C− = o  
 
 oT 38.5 C.= o           < 
 
The log mean temperature difference is  

 
( )

( )
( )

i o
m

i o

55 31.4 CT TT 42.1 C
n T / T n 55/31.4

−Δ −Δ
Δ = = =

Δ Δ

o
o

l
l l

 

 
 ( ) ( )2

mq Nh D T 56 234 W/m K 0.0164 m  42.1 Cπ π′ = Δ = ⋅ o
l  

 
 q 28.4 kW/m.′ =          < 
 
COMMENTS:  Making the tube bank more compact has the desired effect of increasing the 
convection coefficient and therefore the heat transfer rate.  However, it has the adverse effect of 
increasing the pressure drop and hence the fan power requirement.  Note that the convection 
coefficient increases by a factor of (234/135.6) = 1.73, while the pressure drop increases by a factor of 

(1490/246) = 6.1.  This disparity is a consequence of the fact that h ~ Vmax
0.6 ,  while Δp ~ Vmax

2 .   

Hence any increase in Vmax, which would result from a more closely spaced arrangement, would 
more adversely affect Δp than favorably affect h . 
 



PROBLEM 7.90  
KNOWN:  Surface temperature and geometry of a tube bank.  Velocity and temperature of air in cross 
flow.  
FIND:  (a) Total heat transfer, (b) Air flow pressure drop.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible radiation and incompressible flow, (3) 
Uniform surface temperature.  
PROPERTIES:  Table A-4, Atmospheric air (T∞ = 298 K):  ν = 15.8 × 10

-6
 m

2
/s, k = 0.0263 

W/m⋅K, Pr = 0.707, cp = 1007 J/kg⋅K, ρ = 1.17 kg/m
3
; (Ts = 373 K):  Pr = 0.695. 

 
ANALYSIS:  (a) The total heat transfer rate is 

 ( ) ( )
( ) ( )[ ]
s i s o

m
s i s o

T T T T
q hN DL hN DL  T .

n T T / T T
π π

− − −
= = Δ

− − l
l

 

With ( )T
max D,max -6 2T

15 m/s 0.01 mS 15 mm
V V 5 m/s 15 m/s, Re 9494.

S D 5 mm 15.8 10  m / s
= = = = =

− ×
  Tables 7.5 

and 7.6 give C1 = 0.27, m = 0.63 and C2 ≈ 0.99.  Hence, from the Zukauskas correlation 

 ( ) ( ) ( )D
0.63 0.36 1/ 4Nu 0.99 0.27 9494 0.707 0.707 / 0.695 75.9= × =  

 D
2h Nu  k/D 75.9 0.0263 W/m K/0.01 m 200 W/m K= = × ⋅ = ⋅  

( )
2

s o s i 3T T p

DNh 0.01 m 196 200 W/m K
T T T T exp 75 C exp

VN S c 1.17 kg/m 5 m/s 14 0.015 m 1007 J/kg K

π π
ρ

× × × ⋅
− = − − = −

× × × × ⋅

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

o  

 s oT T 27.7 C.− = o  
Hence 

 ( ) ( )
2 75 C 27.7 Cq 200 W/m K 196 0.01 m  1 m 58.5 kW.

n 75/27.7
π −

= ⋅ × =
o o

l
   < 

(b) With ReD,max = 9494, (PT - 1)/(PL - 1) = 1, Fig. 7.14 yields f ≈ 0.32 and χ = 1.  Hence, 

 ( ) ( )23
2
max

1.17 kg/m 15 m/s
p N V / 2  f 14 1  0.32

2
χ ρ

⎛ ⎞
⎜ ⎟Δ = = ×
⎜ ⎟
⎝ ⎠

 

 2 3p 590 N/m 5.9 10  bar.−Δ = = ×  
 
COMMENTS:  The heat transfer rate would have been substantially overestimated (93.3 kW) if the 
inlet temperature difference (Ts - Ti) had been used in lieu of the log-mean temperature difference. 



PROBLEM 7.91  
KNOWN:  Surface temperature and geometry of a tube bank.  Inlet velocity and inlet and outlet 
temperatures of air in cross flow over the tubes.  
FIND:  Number of tube rows needed to achieve the prescribed outlet temperature and corresponding 
pressure of drop of air.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state, (2) Negligible temperature drop across tube wall and uniform 
outer surface temperature, (3) Constant properties, (4) C2 ≈ 1, (5) Negligible radiation and 
incompressible flow.  
PROPERTIES:  Table A-4, Atmospheric air. ( )( ) 3

i oT T T / 2 323K : 1.085 kg / m ,ρ= + = =  

pc 1007 J / kg K,= ⋅  6 218.2 10 m / s, k 0.028 W / m K, Pr 0.707;ν −= × = ⋅ =  ( )iT 298K :=  31.17 kg / m ;ρ =  

( )s sT 373K : Pr 0.695.= =  
ANALYSIS:  The temperature difference ( )sT T−  decreases exponentially in the flow direction, and 
at the outlet 

 s o L

s i T p

T T D N h
exp

T T VS c
π
ρ

−
= −

−

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

where LN N / N .T=   Hence, 

 T p s o
L

s i

V S c T T
N n

D h T T

ρ

π
−

= −
−

⎛ ⎞
⎜ ⎟
⎝ ⎠

l        (1) 

With ( )[ ]max T T D,max maxV S / S D V 15 m / s, Re V D / 8240.ν= − = = =   Hence, with T LS / S 1 0.7,= >    
C1 = 0.27 and m = 0.63 from Table 7.5, and the Zukauskas correlation yields 

( ) ( ) ( )D

1/ 4
0.63 0.36 1/ 4m 0.36

2 D,max
s

Pr
Nu C C Re Pr 0.27 1 8240 0.707 0.707 / 0.695 70.11 Pr

= = × =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 D
2k 0.028 W / m K

h Nu 70.1 196.3W / m K
D 0.01m

⋅
= = = ⋅  

Hence,  
( ) ( )
( )

3

L 2
1.17 kg / m 5 m / s 0.015m 1007 J / kg K 25

N n 15.7
750.01m 196.3 W / m Kπ

⋅
= − =

⋅

⎛ ⎞
⎜ ⎟
⎝ ⎠

l  

and 16 tube rows should be used   LN 16=     < 
With D,max LRe 8240, P 1.5= =  and ( ) ( )T LP 1 / P 1 1, f 0.35− − = ≈  and χ = 1 from Fig. 7.14.  Hence, 

 
( )32 2

2max
L

1.085 kg / m 15 m / sV
p N f 16 0.35 684 N / m

2 2

ρ
χ

×
Δ ≈ = =

⎡ ⎤⎛ ⎞
⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

               < 

COMMENTS:  (1) With C2 = 0.99 for NL = 16 from Table 7.8, assumption 4 is appropriate.  (2) Note 
use of the density evaluated at Ti = 298K in Eq. (1). 



PROBLEM 7.92  
KNOWN:  Geometry, surface temperature, and air flow conditions associated with a tube bank.  
FIND:  Rate of heat transfer per unit length.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible radiation effects and incompressible 
flow, (3) Gas properties are approximately those of air.  
PROPERTIES:  Table A-4, Air (300K, 1 atm):  Pr = 0.707; Table A-4, Air (700K, 1 atm):  ν = 68.1 × 
10

-6
 m

2
/s, k = 0.0524 W/m⋅K, Pr = 0.695, ρ = 0.498 kg/m

3
, cp = 1075 J/kg⋅K.  

ANALYSIS:  The rate of heat transfer per unit length of tubes is  

 ( ) ( )
( ) ( )[ ]
s i s o

m
s i s o

T T T T
q hN D T hN D .

n T T / T T
π π

− − −
′ = Δ =

− −l
l

 

 

With maxT
max D,max -6 2T

V DS 20 10 m/s 0.01 m
V V  5 m/s 10 m/s, Re 1468.

S D 10 68.1 10  m / sν

×
= = = = = =

− ×
 

 
Tables 7.5 and 7.6 give C1 = 0.27, m = 0.63 and C2 = 0.97.  Hence from the Zukauskas correlation,  
 ( ) ( ) ( ) ( )D

1/ 4 0.63 0.36 1/ 4m 0.36
2 D,max sNu C C Re Pr Pr/ Pr 0.26 1468 0.695 0.695 / 0.7071= =  

 D D
2k

Nu 22.4     h Nu 0.0524 W/m K 22.4/0.01 m 117 W/m K.
D

= = = ⋅ × = ⋅  
 
Hence,  

( ) ( )
( ) ( )

2
s o s i 3T T p

DNh 0.01 m 500 117 W/m K
T T T T exp 400K exp 

VN S c 0.498 kg/m 5 m/s 50 0.02 m 1075J / kg K

π π
ρ

× × × ⋅
− = − − = − −

⋅

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

 s oT T 201.3K− = −  
 
and the heat rate is  

 ( ) ( ) ( )
( ) ( )[ ]

2 400 201.3 K
q 117 W/m K 500 0.01 m 532 kW/m

n 400 / 201.3
π

− +
′ = ⋅ = −

− −l
  < 

 
COMMENTS:  (1) There is a significant decrease in the gas temperature as it passes through the tube 
bank.  Hence, the heat rate would have been substantially overestimated (- 768 kW) if the inlet 
temperature difference had been used in lieu of the log-mean temperature difference.  (2) The negative 
sign implies heat transfer to the water.  (3) If the temperature of the water increases substantially, the 
assumption of uniform Ts becomes poor.  The extent to which the water temperature increases 
depends on the water flow rate. 



PROBLEM 7.93  
KNOWN:  An air duct heater consists of an aligned arrangement of electrical heating elements with SL = 
ST = 24 mm, NL = 3 and NT = 4. Atmospheric air with an upstream velocity of 12 m/s and temperature of 
25°C moves in cross flow over the elements with a diameter of 12 mm and length of 250 mm maintained 
at a surface temperature of 350°C.    
 
FIND:  (a) The total heat transfer to the air and the temperature of the air leaving the duct heater, (b) The 
pressure drop across the element bank and the fan power requirement, (c) Compare the average 
convection coefficient obtained in part (a) with the value for an isolated (single) element; explain the 
relative difference between the results; (d) What effect would increasing the longitudinal and transverse 
pitches to 30 mm have on the exit temperature of the air, the total heat rate, and the pressure drop? 
 
SCHEMATIC: 
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible radiation effects, (3) Negligible effect of 
change in air temperature across tube bank on air properties.  
 
PROPERTIES:  Table A-4, Air (Ti = 298, 1 atm ): ρ = 1.171 kg/m3, cp = 1007 J/kg⋅K; Air (Tm = (Ti + 
To)/2 = 309 K, 1 atm):  ρ = 1.130 kg/m3, cp = 1007 J/kg⋅K, μ = 1.89 × 10-5 N⋅s/m2, k = 0.02699 W/m⋅K, 
Pr = 0.7057; Air (Ts = 623 K, 1 atm): Prs = 0.687; Air (Tf = (Ti + To)/2 = 461 K, 1 atm):  ν = 3.373 × 10-5 
m2/s, k = 0.03801 W/m⋅K, Pr = 0.686. 
 
ANALYSIS:  (a) The total heat transfer to the air is determined from the rate equation 
 
 ( )D mq N h D Tπ= Δ l          (1) 
 
where the log mean temperature difference is 

 
( )
( )

s is i
m

s o s o

T TT TT ln
T T T T

−−
Δ =

− −l        (2) 

and from the overall energy balance, 

 s o D
s i T T p

T T DNhexp
T T VN S c

π
ρ

⎛ ⎞−
= ⎜ ⎟⎜ ⎟− ⎝ ⎠

       (3) 

The properties ρ and cp in Eq. (3) are evaluated at the inlet temperature Ti.  The average convection 
coefficient using the Zukauskus correlation, 

 ( )D
1/ 4m 0.36D

sD,max
hNu C Re Pr Pr/ Pr
k

= =      (4) 
 
where C1 = 0.27, m = 0.63 are determined from Table 7.5 for the aligned configuration with ST/SL = 1 > 
0.7 and 103 < ReD,max ≤ 105.  All properties except Prs are evaluated at the arithmetic mean temperature 
Tm = (Ti + To)/2.  The maximum Reynolds number is 
 
          Continued … 



PROBLEM 7.93 (Cont.) 
 
 D,max maxRe V D /ρ μ=         (5) 
 
where for the aligned arrangement, the maximum velocity occurs at the transverse plane 
 

 T
max

T

SV V
S D

=
−

         (6) 

 
The results of the analyses for ST = SL = 24 mm are tabulated below. 
 

Vmax 
(m/s) 

ReD,max DNu  Dh  
(W/m2⋅K) ( )

mT
C

Δ
°
l  

q 
(W) 

To 
(°C) 

 

24 1.723×104 96.2 216 314 7671 47.6 < 
 
(b) The pressure drop across the tube bundle is 
 

 ( )L
2
maxp N V / 2 fχ ρΔ =         (7) 

 
where the friction factor, f, and correction factor, χ, are determined from Fig. 7.14 using ReD,max = 1.723 
× 104, 
 f = 0.2  χ = 1 
 
Substituting numerical values, 

 ( )23p 3 1 1.171 kg / m 24 m / s / 2 0.2⎡ ⎤Δ = × × ×⎢ ⎥⎣ ⎦
 

 
 2p 195 N / mΔ =          < 
 
The fan power requirement is 
 T TP p V N S L p= ∀Δ = Δ         (8) 
 
 2P 12 m / s 4 0.024m 0.250m 195 N / m= × × × ×  
 
 P 56 W=           < 
 
where ∀ is the volumetric flow rate.  For this calculation, ρ in Eq. (7) was evaluated at Tm. 
 
(c) For a single element in cross flow, the average convection coefficient can be estimated using the 
Churchill-Bernstein correlation, 

 

( )
D

4/ 51/ 2 1/ 3 5/8
D DD

1/ 42 / 3

0.62 Re Prh D ReNu 0.3 1
k 282,000

1 0.4 / Pr

⎡ ⎤⎛ ⎞⎢ ⎥= = + + ⎜ ⎟⎢ ⎥⎝ ⎠⎡ ⎤ ⎣ ⎦+⎢ ⎥⎣ ⎦

  (9) 

 
where all properties are evaluated at the film temperature, Tf = (Ti + To)/2.  The results of the calculations 
are 

 D,1
2

D D,1Re 4269 Nu 33.4 h 106 W / m K= = = ⋅   < 

 
          Continued … 



PROBLEM 7.93 (Cont.) 
 

For the isolated element, 2
D,1h 106 W / m K,= ⋅  compared to the average value for the array, 

2
Dh 216 W / m K.= ⋅   Because the first row of the array acts as a turbulence grid, the heat transfer 

coefficient for the second and third rows will be larger than for the first row.  Here, the array value is 
twice that for the isolated element. 
 
(d) The effect of increasing the longitudinal and transverse pitches to 30 mm, should be to reduce the 
outlet temperature, heat rate, and pressure drop.  The effect can be explained by recognizing that the 
maximum Reynolds number will be decreased, which in turn will result in lower values for the 
convection coefficient and pressure drop.  Repeating the calculations of part (a) for SL = ST = 30 mm, 
find 
 
Vmax  ReD,max DNu       Dh   mTΔ l     q  To 

(m/s)      (W/m2⋅K) (°C)  (W)  (°C) 
 
  12  1.46 × 104 86.7     193  317  6925  41.3 
 
and part (b) for the pressure drop and fan power, find 
 

 2f 0.18 1 p 122 N / m P 44 Wχ= = Δ = =  
 
 



PROBLEM 7.94  
KNOWN:  Surface temperature and geometry of a tube bank.  Velocity and temperature of air in 
cross-flow.  
FIND:  (a) Air outlet temperature, (b) Pressure drop and fan power requirements.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible radiation, (3) Air pressure is 
approximately one atmosphere, (4) Uniform surface temperature.  
PROPERTIES:  Table A-4, Air (300 K, 1 atm):  ρ = 1.1614 kg/m

3
, cp = 1007 J/kg⋅K, ν = 15.89 × 10

-

6
 m

2
/s, k = 0.0263 W/m⋅K, Pr = 0.707; (373K):  Pr = 0.695. 

 
ANALYSIS:  (a) The air temperature increases exponentially, with 

 ( )o s s i
T T p

DNh
T T T T exp .

VN S c
π

ρ
= − − −

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

With T
max D,max -6 2T

S 60 m m 30 m/s 0.03 m
V V 15 30 ;  Re 56, 639.

S D 30 s s 15.89 10  m / s

×
= = = = =

− ×
 

Tables 7.5 and 7.6 give C1 = 0.27, m = 0.63 and C2 = 0.97.  Hence from the Zukauskas correlation, 

 ( )( ) ( ) ( )D
0.63 0.36 1/ 4Nu 0.27 0.97 56, 639 0.707 0.707 / 0.695 229= =  

 D
2h Nu k/D 229 0.0263 W/m K/0.03 m 201 W/m K.= = × ⋅ = ⋅  

Hence, 

( )
2

o 3
0.03 m 70 201 W/m K

T 373K 373 300 K exp
1.1614 kg/m 15 m/s 7 0.06 m 1007 J/kg K

π × × × ⋅
= − − −

× × × × ⋅

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 oT 373K 73K 0.835 312K 39 C.= − × = = o       < 

(b) With ReD,max = 5.66 × 10
4
, PL = 2, (PT - 1)/(PL - 1) = 1, Fig. 7.14 yields f ≈ 0.19 and χ = 1.  

Hence, 

( )32 2
2max

L
1.1614 kg/m 30 m/sV

p N  f 10 0.19 993 N/m 0.00993 bar.
2 2

ρ
χ

×
Δ = = = =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
  < 

The fan power requirement is 
2

a T TP m p/ VN S L p/ 15 m/s 7 0.06 m 1m 993 N/m 6.26 kW.ρ ρ ρ= Δ = Δ = × × × × =&   < 
COMMENTS:  The heat rate is 
 ( ) ( )a p o i T T p o iq m c T T VN S L c T Tρ= − = −&  

( )3q 1.1614 kg/m 15 m/s 7 0.06m 1m 1007 J/kg K 312 300 K 88.4 kW.= × × × × × ⋅ − =  



PROBLEM 7.95 
 
KNOWN:  Surface temperature and geometry of tube bank. Velocity and temperature of air in cross-
flow. 
 
FIND:  (a) Air outlet temperature, (b) Pressure drop and fan power requirements. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible radiation, (3) Air pressure 
approximately one atmosphere, (4) Uniform surface temperature. 
 
PROPERTIES:  Table A.4, air (300K, 1 atm): ν = 15.89×10-6 m2/s, Pr = 0.707, k = 0.0263 W/m⋅K, ρ 
= 1.1614 kg/m3, cp = 1007 J/kg·K;  (373 K): Prs = 0.695. 
 
ANALYSIS:  (a) The outlet air temperature may be found from 
 

( )expo s s i
T T p

DNhT T T T
VN S c
π

ρ
⎛ ⎞

= − − −⎜ ⎟⎜ ⎟
⎝ ⎠

  

With max ,max 6 2
60 21m/s 0.03m10.5m/s 21m/s;    Re 39,648
30 15.89 10 m /s

T
D

T

SV V
S D −

×
= = × = = =

− ×
 

Tables 7.5 and 7.6 give C1 = 0.27, m = 0.63 and C2 = 0.95. From the Zukauskas correlation, 
 

0.63 0.36 1/ 40.27 0.95 39,648 (0.707) (0.707 / 0.695) 179.3DNu = × × =  
 

2/ 179.3 0.0263W/m K / 0.03m 157W/m KDh Nu k D= = × ⋅ = ⋅  
 
and therefore, 
 

2

3
0.03m 70 157W/m K373K 73Kexp

1.1614kg/m 10.5m/s 10 0.06m 1007J/kg K

     373K 73K 0.869 310K 37 C

oT π⎛ ⎞× × × ⋅
= − −⎜ ⎟⎜ ⎟× × × × ⋅⎝ ⎠

= − × = = °
    <  

 
(b) With ReD,max = 39,648, PL = PT = 2, (PT - 1)/(PL - 1) = 1, Fig. 7.14 yields f ≈ 0.20 and χ = 1. 
Therefore,  

 
( )232

2max 1.1614kg/m 21m/s
7 0.20 359N/m

2 2L
Vp N fρχ

⎛ ⎞×⎛ ⎞
⎜ ⎟Δ = = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

 
and the fan power requirement is  

Continued… 
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To



PROBLEM 7.95 (Cont.) 
 

 
2/ 10.5m/s 10 0.06m 1m 359N/m 2.26kWa T TP m p VN S L pρ= Δ = Δ = × × × × =&   < 

 
COMMENTS:  Note that the mass flow rate here is the same as in Problem 7.94. In Problem 7.94, 
for NL = 7 and NT = 10, the outlet temperature, pressure drop, and fan power requirements are To = 
39°C, Δp = 993 N/m2, and P = 6.26 kW, respectively. Placing the tube bundle with fewer tubes in the 
streamwise direction (NL/NT < 1) results in a higher overall heat transfer rate (lower air outlet 
temperature) since the downstream tubes experience a larger temperature difference between the tube 
wall and the flowing air. In addition, a significantly lower pressure drop and pumping power is 
needed. However, the cross-sectional area of the duct within which the tube bundle is placed must be 
increased, and therefore capital cost of installation would be higher, for the NL/NT < 1 case. 



PROBLEM 7.96  
KNOWN:  Characteristics of pin fin array used to enhance cooling of electronic components.  
Velocity and temperature of coolant air.  
FIND:  (a) Average convection coefficient for array, (b) Total heat rate and air outlet temperature.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible radiation, (3) One-dimensional 
conduction in pins, (4) Uniform plate temperature, (5) Plates have a negligible effect on flow over 
pins, (6) Uniform convection coefficient over all surfaces, corresponding to average coefficient for 
flow over a tube bank.  
PROPERTIES:  Air (300 K, 1 atm):  ρ = 1.1614 kg/m

3
, Pr = 0.707, cp = 1007 J/kg⋅K, μ = 184.6 × 

10
-7

 kg/s⋅m, k = 0.0263 W/m⋅K.  Aluminum (given):  k = 240 W/m⋅K. 
 
ANALYSIS:  (a) From the Zukauskas relation  
 ( )D

1/ 4m 0.36
D,max sNu CRe Pr Pr / Pr∞=  

 

 ( )1/ 4 T
s max

T

S 4Pr / Pr 1          V V 10 m/s 20 m/s
S D 4 2∞ ≈ = = =

− −
 

 

 
3

D,max -7
1.164 kg/m 20 m/s 0.002 m

Re 2517
184.6 10  kg/s m

× ×
= =

× ⋅
 

 
From Table 7.5 find C1 = 0.27 and m = 0.63, hence  
 ( ) ( )D

0.63 0.36Nu 0.27 2517 0.707 33.1= =  
 

 D
2k 0.0263 W/m K

h Nu 33.1 435 W/m K.
D 0.002 m

⋅
= = × = ⋅     < 

 
(b) If Ts = 350 K is taken to be the temperature of all of the heat transfer surfaces, correction must be 
made for the actual temperature drop along the pins.  This is done by introducing the overall surface 
efficiency ηo and replacing t ohA by hA .η   Hence, to obtain the air outlet temperature, we use 
 

 s o t o

s i p

T T hA
exp

T T mc
η−

= −
−

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠&

 

 
where 
          Continued … 



PROBLEM 7.96 (Cont.)  
 ( ) ( )2 2

tA N DL 2W 2N D / 4π π= + −  

 ( ) ( ) ( )2 2 2
tA 625 0.002 m 0.1 m 2 0.1 m 2 625 0.002 m / 4 0.409 mπ π= × × + − × =  

Also ( )f
o f f

t

A
1 1  where 

A
η η η= − −  is given by Eq. (3.91).  With symmetry about the 

midplane of the pin, qf = M tanh (mL/2).  Hence 

 
( ) ( )

( )
( )

( )

1/ 22
b

f 1/ 2max b

h Dk D / 4 tanh mL/2 tanh mL/2q
q h D L/2 h/kD L

π π θ
η

π θ
= = =  

or, with ( ) ( )
1/ 2 1/ 22m h D/ k D / 4 2 h/kD ,π π= =⎡ ⎤

⎢ ⎥⎣ ⎦
 

 ( )
f

tanh mL/2
mL/2

η =  

 
1/ 22

1435 W/m K
m 2 60.2 m

240 W/m K 0.002 m
−⋅

= =
⋅ ×

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 ( )1mL/2 60.2 m 0.05 m 3.01     and     tanh mL/2 0.995−= × = =  

 f
0.995

0.331.
3.01

η = =  

Hence, ( )( ) ( )o 2
625 0.002 m 0.1 m

1 1 0.331 0.357
0.409 m

π
η

×
= − − =  

 ( ) ( )( )3
T Tm VLN S 1.1614 kg / m 10 m/s 0.1 m 25 0.004 m 0.116 kg/s.ρ= = =&  

Now evaluating the air outlet temperature,  

 
2 2

s o

s i

T T 435 W/m K 0.409 m 0.357
exp 0.581

T T 0.116 kg/s 1007 J/kg K
− ⋅ × ×

= − =
− × ⋅

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 ( ) ( )o s s iT T 0.581 T T 350 K 0.581 50 K= − − = −  

 oT 321 K.=           < 
 
The total heat rate is  
 ( ) ( )p o iq mc T T 0.116 kg/s 1007 J/kg K 21 K 2453 W.= − = ⋅ =&                < 
 
COMMENTS:  (1) The average surface heat flux which can be dissipated by the electronic 
components is q/2W

2
 = 122,650 W/m

2
, or 12.3 W/cm

2
.  (2) To check the numerical results, compute 

 
( ) ( )

o i
m

o i

T T 29 K 50 K
T 38.6 K

ln T / T ln 29/50
Δ − Δ −

Δ = = =
Δ Δl  

Hence 2 2
t o mq hA T 435 W/m K 0.409 m 0.357 38.6 K 2449 W.η= Δ = ⋅ × × × =l  



PROBLEM 7.97 
 
KNOWN:  Dimensions and properties of chip, board and pin fin assembly.  Convection conditions for 
chip and board surface.  Maximum allowable chip temperature. 
 
FIND:  Effect of design and operating conditions on maximum chip power dissipation. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Uniform chip temperature, (2) One-dimensional conduction in pins, (3) Insulated 
pin tips, (4) Negligible radiation, (5) Uniform convection coefficient over pin and base surfaces. 
 
PROPERTIES:  Table A.1, copper (T ≈ 340 K):  kp = 397 W/m⋅K.  Table A.4, air:  properties evaluated 
using IHT Properties Tool Pad. 
 
ANALYSIS:  The chip heat rate may be expressed as 
 

 
( )

( ) ( )
c c

c t
t,c b b b

A T T
q q

R L k 1 h
∞−

= +
′′ + +⎡ ⎤⎣ ⎦

 

 
where Ac = W2 and qt is the total heat rate for the fin array.  This heat rate must account for the variation 
of the air temperature across the array.  Hence, the appropriate driving potential is 

( ) ( )[ ] ( ) ( )[ ]1m c i c o c i c oT T T T T ln T T T TΔ = − − − − − .  However, the total surface area must account 
for the finite pin length and the exposed base (prime) surface.  Hence, from Eqs. 3.106 and 3.107, with 
ΔTlm replacing θb,  
 t t o lmq hA Tη= Δ  
 
where 2

t f bA N A A= + , 2
b c p,cA A N A= − , 2

p,c pA D 4π=  and 

 ( )
2

f
o f

t

N A
1 1

A
η η= − −  

For an adiabatic tip, Eq. 3.100 yields 

 p
f

p

tanh mL

mL
η =  

where ( )1/ 2
p pm 4h k D= .  The air outlet temperature is given by the expression 

 c o t o

c i p

T T hA
exp

T T mc
η−

= −
−

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠&
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PROBLEM 7.97 (Cont.) 

 
where pm VWLρ=&  and h  is obtained from the Zukauskas correlation, 
 

 ( )1/ 4m 0.36
D 1 D,max sNu C C Re Pr Pr Pr2=  

 
The foregoing model, including the convection correlation, was entered from the keyboard into the 
workspace of IHT and used with the Properties Tool Pad to perform the following parametric 
calculations. 
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Remaining within the limit NDp ≤ 9 mm, there is clearly considerable benefit associated with increasing 
N from 4 to 6 for Dp = 1.5 mm or with increasing Dp from 1.5 to 2.25 mm for N = 4.  However, the best 
configuration corresponds to N = 6 and Dp = 1.5 mm (a larger number of smaller diameter pins), for 
which both At and h  are approximately 50% and 20% larger than values associated with N = 4 and Dp = 
2.25 mm.  The peak heat rate is qc = 64.5 W for V = 10 m/s, N = 6, and Dp = 1.5 mm. 
 
COMMENTS:  (1) The heat rate through the board is only qb = 0.295 W and hence a negligible portion 
of the total heat rate.  (2) Values of C = 0.27 and m = 0.63 were used for the entire range of conditions.  
However, ReD,max was less than 1000 in the mid to low range of V, for which the correlation was therefore 
used outside its prescribed limits and the results are somewhat approximate.  (3) Using the IHT solver, the 
model was implemented in three stages, beginning with (i) the correlation and the Properties Tool Pad 
and sequentially adding (ii) expressions for qt and (Tc - To)/(Tc - Ti) without ηo, and (iii) inclusion of ηo  
in the model.  Results computed from one calculation were loaded as initial guesses for the next 
calculation. 



PROBLEM 7.98 
 
KNOWN:  Tube geometry and flow conditions for steam condenser.  Surface temperature and pressure 
of saturated steam. 
 
FIND:  (a) Coolant outlet temperature, (b) Heat and condensation rates, (c) Effects of reducing 
longitudinal pitch and change in velocity. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state, (2) Negligible radiation, (3) Negligible effect of temperature change 
on air properties, (parts a and b), (4) Applicability of convection correlation outside designated range. 
 
PROPERTIES:  Table A.4, air (Ti = 300 K):  ρ = 1.16 kg/m3, cp = 1007 J/kg⋅K, ν = 15.89 × 10-6 m2/s, k 
= 0.0263 W/m⋅K, Pr = 0.707.  (Ts = 390 K):  Pr = 0.692.  Table A.6, saturated water at 2.455 bars:  hfg = 
2.183 × 106 J/kg. 
 
ANALYSIS:  (a) From Section 7.6, 

 ( )o s s i
T T p

DNh
T T T T exp

VN S c
π

ρ
= − − −

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

With 

 T
max

T

S 30
V V 4 m s 12 m s

S D 10
= = =

−
 

 

 
( )max

D,max 6 2
12 m s 0.02 mV D

Re 15,104
15.89 10 m sν −

= = =
×

 

Using the Zhukauskas correlation outside its designated range ( )T LS S 0.5= , Table 7.5 yields C1 = 0.27 
and m = 0.63.  Hence, with C2 = 1, 

 ( ) ( ) ( )
1/ 4

1/ 4 0.63 0.36m 0.36
D D,max s

0.707
Nu C Re Pr Pr Pr 0.27 15,104 0.707 1031 0.692

= = =⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 ( ) ( ) 2
Dh Nu k D 103 0.0263W m K 0.02 m 135 W m K= = ⋅ = ⋅  

 

 ( )
( ) ( )

( ) ( )

2

o 3

0.02 m 400 135 W m K
T 390 K 90 K exp 363K

1.16 kg m 4 m s 20 0.03m 1007 J kg K

π ⋅
= − − =

⋅

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 < 

(b) With q = q′ L, 
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 ( )lmq N h DL Tπ= Δ  
where 

 
( ) ( ) ( )s i s o

lm
s i

s o

T T T T 90 27 K
T 52.3K

90T T lnln
27T T

− − − −
Δ = = =

−
−

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

Hence ( ) ( ) ( )2q 400 135 W m K 0.02 m 2 m 52.3K 355 kWπ= ⋅ =  < 
 
The condensation rate is 
 

 
5

cond 6fg

q 3.55 10 W
m 0.163kg s

h 2.183 10 J kg

×
= = =

×
&  < 

 
(c) For SL = 0.03 m, NL = 40 and N = 800, using IHT with the foregoing model and the Properties Tool 
Pad to evaluate air properties at (Ti + To)/2, we obtain 

 o lm condT 383.6 K, T 31.6 C, q 414 kW, m 0.190 kg s= Δ = = =&  < 
 
As expected, q and condm&  increase with increasing NL.  However, due to a corresponding increase in To, 
and hence a reduction in ΔTlm, the increase is not commensurate with the two-fold increase in surface area 
for the tube bank. 
 
The effect of velocity is shown below. 

0 2 4 6 8 10

Velocity, V(m/s)

0

0.1

0.2

0.3

0.4

0.5

C
on

de
ns

at
io

n 
ra

te
, m

do
t(k

g/
s)

      
0 2 4 6 8 10

Velocity, V(m/s)

20

24

28

32

36

40

D
el

ta
Tl

m
 (C

)

 
 
The heat rate, and hence condensation rate, is strongly affected by velocity, because in addition to 
increasing h , an increase in V decreases To, and hence increases ΔTlm. 
 
COMMENTS:  (1) The calculations of part (a) should be repeated with air properties evaluated at (Ti + 
To)/2.  (2) the condensation rate could be increased significantly by using a water-cooled (larger h ), 
rather than an air-cooled, condenser. 



PROBLEM 7.99 
 
KNOWN:  Temperature of single round air jet. 
 
FIND:  Minimum jet diameter for which Equation 7.71 can be applied.  
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state, (2) Constant properties, (3) Air is ideal gas, (4) Flow is 
incompressible for Ma < 0.3. 
 
PROPERTIES:  Table A-4, Air (T = 273 K):  cp = 1006.5 J/kg⋅K, ν = 13.5 × 10-6 m2/s; (T = 773 K): 
cp = 1092.5 J/kg⋅K, ν = 80.3 × 10-6 m2/s. 
 
ANALYSIS:   (a) Equation 7.71 is restricted to the Reynolds range: 
 
 2000 400,000Re≤ ≤  
 
With Re = VD/ν, this restricts VD, but does not limit D directly.  Therefore there must be another 
constraint, namely the flow must be incompressible, which is valid for Ma = V/a < 0.3, where a is the 
speed of sound.  The Mach number constraint implies V < 0.3a, which in turn means that Re < 
0.3aD/ν.  Incorporating the lower Reynolds number limit provides a minimum bound on D, namely 

0.32000 aDRe
ν

≤ <  

2000
0.3

D
a

ν
≥  

Also, the gas constant for air is R ≡ R/M = 8315 J/kmol·K/28.97 kg/kmol =  287 J/kg.   
 
(a) At T = 273 K, 1006.5 J / kg K 287 J / kg K 719.5 J / kg Kv pc c R≡ − = ⋅ − ⋅ = ⋅ .  The ratio of 
specific heats is therefore γ = cp/cv = 1006.5 J/kg·K/719.5 J/kg·K = 1.40 and the speed of sound is 

1.40 287 J/kg K 273 K 331 m/sa RTγ= = × ⋅ × = . Hence the minimum diameter jet is given by 
 

6 2
413.5 10  m /s2000 2.7 10  m 0.27 mm

0.3 331 m/s
D

−
−×

≥ = × =
×

  < 

 
(b) For T = 773 K, 1092.5 J / kg K 287 J / kg K 805.5 J / kg Kv pc c R≡ − = ⋅ − ⋅ = ⋅ .  The ratio of 
specific heats is therefore γ = cp/cv = 1092.5 J/kg·K/805.5 J/kg·K = 1.36 and the speed of sound is 

1.36 287 J/kg K 773 K 549 m/sa RTγ= = × ⋅ × = . Hence the minimum diameter jet is given by 
 

6 280.3 10  m /s2000 0.00098 m 0.98 mm
0.3 549 m/s

D
−×

≥ = =
×

   < 

 
COMMENTS:  If jet diameters smaller than these limits are to be used, alternative approaches 
would need to be taken to estimate the corresponding convection heat transfer rates.  

Dmin

Air, Te = 0°C, 500°C



PROBLEM 7.100  
KNOWN:  Geometry of air jet impingement on a transistor.  Jet temperature and velocity.  Maximum 
allowable transistor temperature.  
FIND:  Maximum allowable operating power.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Isothermal surface, (3) Bell-shaped nozzle, (4) All 
of the transistor power is dissipated to the jet.  
PROPERTIES:  Table A-4, Air (Tf = 323 K, 1 atm):  ν = 18.2 × 10

-6
 m

2
/s, k = 0.028 W/m⋅K, Pr = 

0.704.  
ANALYSIS:  The maximum power or heat transfer rate by convection is 

 ( )( )2
max max t s e maxP q h D / 4 T T .π= = −  

For a single round nozzle, 

 ( ) ( )10.42
Nu

G A , H/D F Rer
Pr

=  

where Ar = D2/4r2 = 0.04 and 

 
1/ 2 1/ 2

1/ 2 1/ 2rG ZAr 1/ 2 1/ 2
r

1 2.2A 1 2.2(0.04)2(0.04) 0.233
1 0.2(H / D 6)A 1 0.2(5 6)(0.04)

=
− −

= =
+ − + −

 

 
With 

 ( )e
-6 2

20 m/s 0.002 mV D
Re 2198

18.2 10  m / sν
= = =

×
 

 

 ( ) ( ) ( )
1/ 21/ 2 1/ 2 0.551/2 0.55

1F 2Re 1 0.005Re 2 2198 1 0.005 2198 108.7= + = + =⎡ ⎤
⎢ ⎥⎣ ⎦

 
 

Hence ( )( )( )0.420.42 2
1

k 0.028 W/m K
h GF Pr 0.233 108.7 0.704 306 W/m K

D 0.002 m
⋅

= = = ⋅  
 
Hence ( )( )( ) ( )22

maxP 306 W/m K / 4 0.01 m 70 C 1.68 W.π= ⋅ =o     < 
 
COMMENTS:  (1) All conditions required for use of the correlation are satisfied.  
(2) Power dissipation may be enhanced by allowing for heat loss through the side and base of the 
transistor. 



PROBLEM 7.101  
KNOWN:  Dimensions of heated plate and slot jet array.  Jet exit temperature and velocity.  Initial 
plate temperature.  
FIND:  Initial plate cooling rate.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (a) Negligible variation in h along plate, (b) Negligible heat loss from back surface 
of plate, (c) Negligible radiation from front surface of plate.  
PROPERTIES:  Table A-1, AISI 304 Stainless steel (1200 K):  k = 28.0 W/m⋅K, cp = 640 J/kg⋅K, ρ = 

7900 kg/m
3
; Table A-4, Air ( fT  = 800 K):  ν = 84.9 × 10

-6
 m

2
/s, k = 0.0573 W/m⋅K, Pr = 0.709. 

 
ANALYSIS:  Performing an energy balance on a control surface about the plate, 

 ( ) ( ) ( ) ( )i e
conv s i e st s p i

pi

h T TdT
q hA T T E A t c dT/dt      .

dt  c t
ρ

ρ
−

− = − − = = = −⎞
⎟
⎠

&  

For an array of slot nozzles, 

 
2 / 3

3/4
r,o0.42 r r,o r,o r

Nu 2 2Re
A

3 A / A A / APr
=

+

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

where Ar = W/S = 0.1 
 

 ( )[ ]{ } ( ){ }
1/ 22 1/ 2

r,oA 60 4 H/2W 2 60 4 64 0.0563
− −= + − = + =  

 ( ) ( )e
-6 2

V 2W 30 m/s 0.02 m
Re 7067

84.9 10  m / sν
= = =

×
 

 ( )
2 / 3

3/ 4 20.0573 W/m K 2 2 7067
h 0.0563 73.2 W/m K.

0.02 m 3 1.776 0.563
⋅ ×

= = ⋅
+

⎡ ⎤
⎢ ⎥⎣ ⎦

 
 
Hence,  

 ( )

( )( )( )

2

3i

73.2 W/m K 800 KdT
1.45 K/s.

dt 7900 kg/m 640 J/kg K 0.008 m

⋅
= − =

⋅

⎞
⎟
⎠

    < 

 
COMMENTS:  (1) Bi = ht/k  = (73.2 W/m

2
⋅K) (0.008 m)/28 W/m⋅K = 0.02 and use of the lumped 

capacitance method is justified.  
(2) Radiation may be significant.  
(3) Conditions required for use of the correlation are satisfied. 



PROBLEM 7.102 
 
KNOWN:  Dimensions and material of a cryogenic probe.  Temperature and velocity of nitrogen at jet 
exit.  Cancerous tissue thermal conductivity and temperature far from the probe. 
 
FIND:  (a) Skin surface temperature under probe.  
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Negligible contact 
resistance between skin and probe, (4) Incompressible flow, (5) Due to wall confinement, jet can be 
modeled as if it were one in an array. 
 
PROPERTIES:  Table A-4, Nitrogen (T ≈100 K):  k = 9.58 × 10-3 W/m⋅K, ν = 2.00 ×10-6 m2/s, Pr = 
0.768.  Table A-1, AISI 302 Stainless Steel (T ≈  300 K): kp = 15.1 W/m⋅K. 
 
ANALYSIS:   (a) The Reynolds number is 
 

 4
6 2

20 m/s 0.002 m 2 10
2.00 10  m /s

eV DRe
ν −

×
= = = ×

×
 

 
The jet behaves as if it were in a staggered array, with the probe walls behaving as if they were the 
symmetry planes between jets (see Figure 7.18c).  Thus S = Do – 2t = 11 mm and 
 
 2 2 2 2 2/ 2 3 (0.002 m) / 2 3(0.011 m) 0.030 mr eA D Sπ π= = =  
 
Furthermore, H/De = 2.5.  Based on all of these values, the correlation for an array of round nozzles is 
valid.  From Equations 7.72 and 7.74, 
 

 
1/2 2 1/2

1/2 2 1/2
1/2 2 1/2

1 2.2 1 2.2(0.030 m )2 2(0.030 m ) 0.244
1 0.2( / 6) 1 0.2(2.5 6)(0.030 m )

r
r

e r

AG A
H D A
− −

= = =
+ − + −

 

 

 

0.05 0.056 6

1/2 1/2

/ 2.51 1 0.993
0.6 / 0.6 / (0.030 m)

e

r

H DK
A

− −
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞

= + = + =⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎝ ⎠⎝ ⎠ ⎢ ⎥⎣ ⎦⎣ ⎦

 

 
Thus from Equation 7.73, 
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PROBLEM 7.102 (Cont.) 
 

 2 / 3 0.42 4 2 / 3 0.420.5 0.5 0.993 0.244 (2 10 ) (0.768) 79.9Nu KGRe Pr= = × × × × =  
 
and 
 
 3 2/ 79.9 9.58 10  W/m K / 0.002 m 383 W/m Keh Nuk D −= = × × ⋅ = ⋅  

 
Next, consider the heat transfer from the cancerous tissue at Tc to the probe surface, through the probe 
wall, and from the wall to the jet.  The heat transfer rate can be written by considering a sum of 
thermal resistances, as follows: 
 

 
jet

c e

c p

T Tq
R R R

−
=

+ +
 

In this expression, 
 
Rc is the resistance associated with the semi-infinite cancerous tissue having a disk of diameter Do at 
temperature Ts, as in Table 4.1, Case 10:   
 

Rc = 1/2Dokc = 1/(2 × 0.015 m × 0.2 W/m⋅K) = 167 K/W 
 
Rp represents conduction through the probe wall:   
 

Rp = t/(kpπ 2
oD /4) = 0.002 m × 4/(15.1 W/m⋅K × π × 0.0152 m2) = 0.750 K/W 

 
Rjet = 1/( h π 2

oD /4) =4/(383 W/m2⋅K × π × 0.0152 m2) = 14.8 K/W 
 
The heat transfer rate is 
 

(310 100)K 1.15 W
(167 0.75 14.8)K / W

q −
= =

+ +
 

 
and q = (Tc – Ts)/Rc, so that 
 
 

310 K 1.15 W 167K / W 118 Ks c cT T qR= − = − × =    < 
 

 
 
COMMENTS:  (1) The assumption of incompressible flow can be checked as follows.  For nitrogen, 
the gas constant is R ≡ R/M = 8315 J/kmol·K/28 kg/kmol =  297 J/kg.  At 100 K, 

1070 J / kg K 297 J / kg K 773 J / kg Kv pc c R= − = ⋅ − ⋅ = ⋅ . The ratio of specific heats is 
therefore γ = cp/cv = 1070 J/kg·K/773 J/kg·K = 1.38 and the speed of sound is 

1.38 297 J/kg K 100 Ka = × ⋅ × = 203 m/s. Hence the Mach number is Ma = V/a = 20 m/s/203 m/s 
= 0.1, and the flow may be treated as incompressible. 
 
 



PROBLEM 7.103  
KNOWN:  Air at 10 m/s and 15°C is available for cooling hot plastic plate.  An array of slotted 
nozzles with prescribed width, pitch and nozzle-to-plate separation.  
FIND:  (a) Improvement in cooling rate achieved using the slotted nozzle arrangement in place of 
turbulent air in parallel flow over the plate, (b) Change in heat rates if air velocities were doubled, (c) 
Air mass rate requirement for the slotted nozzle arrangement.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) For parallel flow over plate, flow is turbulent, (3) 
Negligible radiation effects.  
PROPERTIES:  Table A-4, Air (Tf = (140 + 15)°C/2 = 350 K, 1 atm):  ρ = 0.995 kg/m

3
, ν = 20.92 × 

10
-6

 m
2
/s, k = 30.3 × 10

-3
 W/m⋅K, Pr = 0.700. 

 
ANALYSIS:  (a) For turbulent flow over the plate of length L with  

 5
L -6 2

u L 10 m/s 0.5 mRe 2.390 10
20.92 10  m / sν

∞ ×
= = = ×

×
 

 
using the turbulent flow correlation, find  

 ( ) ( )
4 / 5 1/ 34/5 1/ 3 5L L

hLNu 0.037Re Pr 0.037 2.390 10 0.700 659.6
k

= = = × =  

 2Lh Nu k/L 659.6 0.030 W/m K/0.5 m 39.6 W/m K.= = × ⋅ = ⋅  
 
For an array of slot nozzles,  

 
2 /3

3/4 0.42
r,o

r r,o r,o r

hD 2 2ReNu A Pr
k 3 A / A A / A

⎡ ⎤
= = ⎢ ⎥

+⎢ ⎥⎣ ⎦
 

 

where  ( )e h
-6 2

10 m/s 2 0.004 mV DRe 3824
20.92 10  m / sν

×
= = =

×
 

 

 ( ){ } [ ]{ }1/ 2 1/ 22 2
r,oA 60 4 H/2W 2 60 4 40 / 2 4 2 0.1021

− −
⎡ ⎤= + − = + × − =⎣ ⎦  

 rA W/S 4 mm/56 mm 0.0714= = =  

 ( ) ( )
2 /3

3/ 4 0.422 2 3824Nu 0.1021 0.700 24.3
3 0.0714 / 0.1021 0.1021/ 0.0714

×⎡ ⎤= =⎢ ⎥+⎣ ⎦
 

 2
hh Nuk/D 24.3 0.030 W/m K/2 0.004 m 91.1 W/m K.= = × ⋅ × = ⋅  
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PROBLEM 7.103 (Cont.)  
The improvement in heat rate with the slot nozzles (sn) over the flat plate (fp) is  

 
2

sn sn
2fp fp

q h 91.1 W/m K 2.3.
q h 39.6 W/m K

′′ ⋅
= = =

′′ ⋅
       < 

 
(b) If the air velocities were doubled for each arrangement in part (a), the heat transfer coefficients are 
affected as  
 2/3 4/5

sn fph ~ Re           h ~ Re .  
 
Hence  

 
2 / 3

sn
4 /5fp

h 22.3 2.1.
h 2

⎛ ⎞
⎜ ⎟= =
⎜ ⎟
⎝ ⎠

        < 

 
That is, comparative advantage of the slot nozzle over the flat plate decreases with increasing velocity.  
(c) The mass rate of air flow through the array of slot nozzles is  
 ( )3

c,em NA 0.995kg/m 9 0.5 m 0.004 m 10m/s 0.179kg/sρ= = × × =&  
 
where the number of slots is determined as  
 N L/S 0.5m/0.056 m 8.9 9.≈ = = ≈        < 
 
COMMENTS:  Note, for the slot nozzle, the hydraulic diameter is Dh = 2W and the relative nozzle 

area (Ac,e/Acell) is Ar = W/S. 
 



PROBLEM 7.104  
KNOWN:  Air jet velocity and temperature of 10 m/s and 15°C, respectively, for cooling hot plastic 
plate..  
FIND:  Design of optimal round nozzle array.  Compare cooling rate with results for a slot nozzle 
array and flow over a flat plate.  Discuss features associated with these three methods relevant to 
selecting one for this application.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible radiation effects.  
PROPERTIES:  Table A-4, Air (Tf = (140 + 15)°C/2 = 350 K, 1 atm):  ρ = 0.995 kg/m

3
, ν = 20.92 × 

10
-6

 m
2
/s, k = 30.0 × 10

-3
 W/m⋅K, Pr = 0.700. 

 
ANALYSIS:  To design an optimal array of round nozzles, we require that Dh,op ≈ 0.2H and Sop ≈ 
1.4H.  Choose H = 40 mm, the nozzle-to-plate separation, hence 
 h,op opD D 0.2 40 mm 8 mm          S 1.4 40 mm 56 mm.= = × = = × =  
For an array of round nozzles,  
 ( ) ( ) ( ) 0.42

r r 2Nu K A ,H/D G A , H/D F Re Pr= ⋅ ⋅ ⋅  
 
where for an in-line array, see Fig. 7.18, 

 ( )
( )

22
r 2 2

8 mmD
A 0.0160

4S 4 56 mm

ππ
= = =  

 

0.05 0.056 6

1/2 1/ 2
r

H/D 40 / 8
K 1 1 0.9577

0.6/A 0.6 / 0.0160

− −

= + = + =
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎜ ⎟ ⎥ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦⎢ ⎥⎣ ⎦

 

 
( ) ( )

1/2 1/ 2r
r 1/2 1/ 2

r

1 2.2A 1 2.2 0.0160
G 2A 2 0.0160

1 0.2 H/D 6 A 1 0.2 40 / 8 6 0.0160

− − ×
= = ×

+ − + −
 

 G 0.2504=  

 
2 / 3

2/3
2 -6 2

10 m/s 0.008 m
F 0.5Re 0.5 122.2.

20.92 10  m / s

×
= = =

×

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

The average heat transfer coefficient for the optimal in-line (op, il) array of round nozzles is, 

 ( )0.42
op,il h,op

0.030 W/m K
h Nu k/D 0.9577 0.2504 122.2 0.700

0.008 m
⋅

= = × × ×  

 2
op,ilh 94.6 W/m K.= ⋅  

          Continued … 
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If an optimal staggered (op,s) array were used, see Fig. 7.18, with  

 
( )

( )
( ) ( )

22
r 1/ 2 1/ 2 22

8 mmDA 0.0185
2 3 S 2 3 56 mm

ππ ×
= = =  

 
find K = 0.9447, G = 0.2632, F2 = 122.2 and 2

op,sh 100.0 W/m K.= ⋅  
 
Using the previous results for parallel flow (pf) and the slot nozzle (sn) array, the heat rates, which are 
proportional to the average convection coefficients, can be compared. 
 
 Arrangement  Flat plate Slot nozzle Optimal round nozzle (op) 
        (fp)      (sn)  In-line (il) Staggered (s)  
 2h, W/m K⋅      39.6     91.1      94.6      100.0 
 fph/h       1.0     2.30      2.39       2.53 

 m, kg/s&      ---    0.199     0.040      0.046 
 
For these flow conditions, we conclude that there is only slightly improved performance associated 
with using the round nozzles.  As expected, the staggered array is better than the in-line arrangement, 
since the former has a higher area ratio (Ar).  The air flow requirements for the round nozzle arrays are 
 
 ( )c,e e s cell c,e e r s em NA V A / A A V A A  Vρ ρ ρ= = =&  
 
where N = As/Acell is the number of nozzles and As is the area of the plate to be cooled.  Substituting 
numerical values, find  
 ( )3 2

op,ilm 0.995 kg/m 0.0160 0.5 0.5 m 10 m/s 0.040 kg/s= × × × =&  
 
 ( )3 2

op,sm 0.995 kg/m 0.0185 0.5 0.5 m 10 m/s 0.046 kg/s.= × × × =&  
 
For this application, selection of a nozzle arrangement should be based upon air flow requirements 
(round nozzles have considerable advantage) and costs associated with fabrication of the arrays (slot 
nozzle may be easier to form from sheet metal). 
 



PROBLEM 7.105 
 
KNOWN:  Exit diameter of plasma generator and radius of jet impingement surface.  Temperature and 
velocity of plasma jet.  Temperature of impingement surface.  Droplet deposition rate. 
 
FIND:  Rate of heat transfer to substrate due to convection and release of latent heat. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible radiation, (3) Negligible sensible energy 
change due to cooling of droplets to Ts.  
ANALYSIS:  The total heat rate to the substrate is due to convection from the jet and release of the latent 
heat of fusion due to solidification, q = qconv + qlat.  With Re = VeD/ν = (400 m/s)0.01 m/5.6 × 10-3 m2/s = 
714, Ar = D2/4r2 =0.04, and H/D = 10, F1 = 2Re1/2(1 + 0.005 Re0.55)1/2 = 58.2 and G = 

1/ 2 1/ 2 1/ 2
r r r2A (1 2.2A ) / 1 0.2(H / D 6)A 0.193⎡ ⎤− + − =⎣ ⎦ , the correlation for a single round nozzle (Section 

7.7) yields 
 

 ( )( )0.42 0.42
1Nu GF Pr 0.193 58.2 0.60 9.07= = =  

 
 ( ) ( ) 2h Nu k D 9.07 0.671W m K 0.01m 609 W m K= = ⋅ = ⋅  
Hence, 

 ( ) ( ) ( )22
s e sq hA T T 609 W m K 0.025m 10,000 300 K 11,600 Wπ= − = ⋅ × − =  < 

 
The release of latent heat is 

 ( ) ( )2 2 6
lat s p sfq A m h 0.025m 0.02kg s m 3.577 10 J kg 140 Wπ′′= = ⋅ × =&  < 

 
COMMENTS:  (1) The large plasma temperature renders heat transfer due to droplet deposition 
negligible compared to convection from the plasma.  (2) Note that Re = 714 is outside the range of 
applicability of the correlation, which has therefore been used as an approximation to actual conditions. 



PROBLEM 7.106 
 
KNOWN:  A round nozzle with a diameter of 1 mm located a distance of 2 mm from the surface 
mount area with a diameter of 2.5 mm; air jet has a velocity of 70 m/s and a temperature of 500°C.    
 
FIND:  (a) Estimate the average convection coefficient over the area of the surface mount, (b) 
Estimate the time required for the surface mount region on the PCB, modeled as a semi-infinite 
medium initially at 25°C, to reach 183°C; (c) Calculate and plot the surface temperature of the surface 
mount region for air jet temperatures of  500, 600 and 700°C as a function time for 0 ≤ t ≤ 150 s.  
Comment on the outcome of your study, the appropriateness of the assumptions, and the feasibility of 
using the jet for a soldering application. 
 
SCHEMATIC: 
 

 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Air jet is a single round nozzle, (2) Uniform temperature over the PCB surface, 
and (3) Surface mount region can be modeled as a one-dimensional semiinfinite medium.  
 
PROPERTIES: Table A-4, Air (Tf = 536 K, 1 atm):  ν = 4.36 × 10-5 m2/s, k = .0497 W/m⋅K, Pr = 
0.6833; Solder (given): ρ = 8333 kg/m3, cp = 188 J/kg⋅K, and k = 51 W/m⋅K; eutectic temperature, Tsol 
= 183°C;  PCB (given): glass transition temperature, Tgl = 250°C.  
 
ANALYSIS:  For a single round nozzle, from the correlation of Eqs. 7.71 and 7.72, estimate the 
convection coefficient, 
 

 ( )10.42
Nu r H hDG , F Re Nu

D D kPr
⎛ ⎞= =⎜ ⎟
⎝ ⎠

      (1,2) 

 
where 

 ( )1/ 21/ 2 0.55
1F 2Re 1 0.005 Re= +        (3) 

 

 
( )

1/ 2
1/ 2 r
r 1/ 2

r

1 2.2 AG 2 A
1 0.2 H / D 6 A

−
=

+ −
       (4) 

 
 2 2

r oA D / 4r=           (5) 
 
The Reynolds number is based on the jet diameter and velocity at the nozzle, 
 
 D eRe V D /ν=          (6) 
 
and ro is the radius of the region over which the average coefficient is being evaluated.  The 
thermophysical properties are evaluated at the film temperature, Tf = (Te + Ti)/2.  The results of the 
calculation are tabulated below. 
 
          Continued … 
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PROBLEM 7.106 (Cont.) 
 

Re F1 G Ar Nu  h (W/m2⋅K)  
1605 91.01 0.1412 0.16 10.95 470.5 < 

 
Consider the surface mount region as a semi-infinite medium, with solder properties, initially at a 
uniform temperature of 25°C, that experiences sudden exposure to the convection process with the air 
jet at a temperature T∞ = 500°C and the convection coefficient as found in part (a).  The surface 
temperature, T(0,t), is determined from Case 3, Fig. 5.7 and Eq. 5.63, 

 
( ) ( )1/ 22

i
2i

T 0, t T h th t1 exp erfc
T T kk∞

⎛ ⎞⎛ ⎞− ⎜ ⎟⎜ ⎟= − ×
⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠

αα
     (7) 

where α = k/ρcp. With Ti = 25°C and T∞ = Te, by trial-and-error, or by using the appropriate IHT 
model, find 

 ( )o oT 0, t 183 C t 40.1 s= ° =       < 
(c) Using the foregoing relations in IHT, the surface temperature T(0,t) is calculated and plotted for jet 
air temperatures of 400, 500 and 600°C for 0 ≤ t ≤ 40 s. 
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Te = 500 C
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Te = 700 C
Tgl = 250 C  

 
 
The effect of increasing the jet air temperature is to reduce the time for the surface 
temperature to reach the solder temperature of 183°C.  With the 700°C air jet, it takes about 
14 s to reach the solder temperature, and the glass transition temperature is achieved in 35 s.  
The analysis represents a first-order model giving approximate results only.  While the 
estimates for the average convection coefficients are reasonable, modeling the surface 
mount region as a semi-infinite medium is an over simplification.  The region is of limited 
extent on the PCB, which is thin and also a poor approximation to an infinite medium.  
However, the model has provided insight into the conditions under which an air jet could be 
used for a soldering operation. 
 
COMMENTS:  (1) Note that for our application, the round nozzle correlation of part (a) 
exceeds the ranges of validity. 
 
(2) The jet convection coefficient is not strongly dependent upon the air temperature.  
Values for 500, 600, and 700°C, respectively, are 464, 471, and 458 W/m2⋅K. 



PROBLEM 7.107  
KNOWN:  Diameter and properties of aluminum spheres used in packed bed.  Porosity of bed and 
velocity and temperature of inlet air.  
FIND:  Time for sphere to acquire 90% of maximum possible thermal energy.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Negligible heat transfer to or from a sphere by radiation or conduction due to 
contact with other spheres, (2) Validity of lumped capacitance method, (3) Constant properties. 
 
PROPERTIES:  Prescribed, Aluminum:  32700 kg / m , c 950 J / kg K, k 240 W / m K.ρ = = ⋅ = ⋅   Table 

A-4, Air (573K):  3 6 2
a p,a0.609 kg / m , c 1045 J / kg K, 48.8 10 m / s,ρ ν −= = ⋅ = ×  ak 0.0453 W / m K,= ⋅  

Pr 0.684.=   
ANALYSIS:  From Eqs. 5.7 and 5.8a, achievement of 90% of the maximum possible thermal energy 
storage corresponds to 
 

 s
i t

h A tQ t0.9 1 exp 1 exp
c cρ θ τ ρ

⎛ ⎞ ⎛ ⎞
= = − − = − −⎜ ⎟ ⎜ ⎟∀ ∀⎝ ⎠⎝ ⎠

 

 
where the convection coefficient is given by 
 

 2 /3 2 / 3 0.575
H D

a p,a

hj St Pr Pr 2.06 Re
V c

−= = =ε ε ε
ρ

 

 
With 6 2

DRe VD / 1m / s 0.075m / 48.8 10 m / s 1537,ν −= = × × =  
 

 
( ) ( )

3
2

2 / 3 0.575
2.06 0.609 kg / m 1m / s 1045J / kg Kh 62.1W / m K

0.4 0.684 1537

× × × ⋅
= = ⋅  

 
Hence, with sA / 6 / D,∀ =  
 

 ( )
3

2
c D 2700kg / m 950J / kg K 0.075m 2.30t ln 0.1 1189s

6h 6 62.1W / m K
ρ × ⋅ × ×

= − = =
× ⋅

  < 

 
COMMENTS:  (1) With ( )Bi h D / 6 / k 0.003,= =  the spheres are spatially isothermal and the 
lumped capacitance approximation is excellent.  (2) Before the packed bed becomes fully charged, the 
temperature of the air decreases as it passes through the bed.  Hence, the time required for a sphere to 
reach a prescribed state of thermal energy storage increases with increasing distance from the bed 
inlet. 
 



PROBLEM 7.108  
KNOWN:  Overall dimensions of a packed bed of rocks.  Rock diameter and thermophysical 
properties.  Initial temperature of rock and bed porosity.  Flow rate and upstream temperature of 
atmospheric air passing through the pile.  
FIND:  Rate of heat transfer to pile.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Rocks are spherical and at a uniform temperature, (2) Steady-state conditions.  
PROPERTIES:  Table A-4, Atmospheric air (T∞ = 363K): ν = 22.35 × 10

-6
 m

2
/s, k = 0.031 W/m⋅K, 

Pr = 0.70, ρ = 0.963 kg/m
3
, cp = 1010 J/kg⋅K. 

 
ANALYSIS:  The heat transfer rate may be expressed as p,t mq hA T= Δ l  where the total surface area 

of the rocks is  

( ) ( ) ( )
22

2 2br
p,t r b3 rr

DD 6
A V 1 L  1 0.42  (1 m) 2 m/4 6 / 0.03 m 182.2 m .

4 DD / 6
= = − = − =

⎛ ⎞
⎜ ⎟ ×
⎜ ⎟
⎝ ⎠

ππ
ε π

π
 

 
The upstream velocity and Reynolds number are 

( )
a r

D2 -6 23 2
b

m 4 1 kg/s VD 1.32 m/s 0.03 m
V 1.32 m/s   Re 1772.

D / 4 22.35 10  m / s0.963 kg/m  1m νρπ π

× ×
= = = = = =

×

&
 

From Section 7.8, it follows that 

 2/3 2 / 3 0.575
H D

p

h
j StPr Pr 2.06 Re

Vc
ε ε ε

ρ
−= = =  

 0.575 2 / 3
p D

2.06
h Vc Re Prρ

ε
− −=  

( ) ( )0.575 2 / 33 22.06
h 0.963 kg/m 1.32 m/s 1010J/kg K 1772 0.70 108 W/m K.

0.42
− −= × × ⋅ = ⋅  

The appropriate form of the mean temperature difference, mT ,Δ l  may be obtained by performing an 
energy balance on a differential control volume about the rock.  That is, 
 ( )a p a a p a a rm  c  T m  c T dT dq 0− + − =& &  

where ( )r p,t a s p,tdq hA dx T T  and A′ ′= −  is the rock surface area per unit length of bed.  Hence 

 ( ) ( )p,ta
a p a p,t a s a s

a p

hAd T
m  c  dT hA dx T T           T T .

dx m  c

′
′= − − = − −&

&
 

          Continued … 
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Integrating between inlet and outlet, it follows that  

 ( )
o

i

p,t p,t p,ta,o s
a s b

a p a a,i s a p

hA hA hAT T
n T T L           n .

m  c m  cp T T m  c

′ −
− = − = − = −

−
l l

& & &
 

 
With  ( ) ( ) ( )a p a,i a,o a p a,i s a,o sq m  c T T m  c T T T T= − = − − −⎡ ⎤⎣ ⎦& &  
 
it follows that  

 
( ) ( )
( ) ( )
a,i s a,o s

p,t p,t m
a,i s a,o s

T T T T
q hA hA T

n T T / T T

− − −
= = Δ

− −⎡ ⎤⎣ ⎦
l

l
 

 

where  
( ) ( )
( ) ( )
a,i s a,o s

lm
a,i s a,o s

T T T T
T .

ln T T / T T

− − −
Δ =

− −⎡ ⎤⎣ ⎦
 

 
The air outlet temperature may be obtained from the requirement  

 
2 2p,ta,o s 9

a,i s a p

hAT T 108W/m K 182.2 m
 exp  exp 3.46 10

T T m  c 1 kg/s 1010 J/kg K
−− ⋅ ×

= − = − = ×
− × ⋅

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠&

 

 
 ( )-9 -7

a,oT 25 C 65 C 3.46 10 25 C 2.25 10  C= + × = + ×o o o o  
 
 a,o sT T 25 C.≈ = o  
 

Hence  
( )

-7
m -7

65 C 2.25 10  C
T 3.34 C

n 65 C/2.25 10  C

− ×
Δ = =

×

o o
o

l o ol
 

 
and  ( )2 2q 108W/m K 182.2 m 3.34 C 65.7 kW.= ⋅ =o     < 
 
COMMENTS:  (1) The above result may be checked from the requirement that q = 

( )a p a,i a,om  c T T 1 kg/s 1010 J/kg K 65 C 65.7 kW.− = × ⋅ × =o&  
 
(2) The heat rate would be grossly overpredicted by using a rate equation of the form 

( )p,t a,i sq hA T T .= −  
 
(3) The foregoing results are reasonable during the  
early stages of the heating process; however q would 
decrease with increasing time as the temperature 
of the rock increases.  The axial temperature distribution 
of the rock in the pile would be as shown for different 
times. 
 



PROBLEM 7.109 
 

KNOWN: Dimensions of a pebble bed nuclear reactor. Dimensions of core and cladding of 
pellets. Porosity of the reactor and helium properties, inlet temperature, and upstream velocity. 
Graphite properties. Correlation for convective heat transfer from the spherical pellets in the 
packed bed. 
 
FIND: (a) Mean helium outlet temperature and amount of thermal energy generated per pellet for 
an overall thermal energy transfer rate of q = 125 MW, (b) Maximum internal temperature of the 
hottest pellet. 
 
SCHEMATIC: 

D = 3 m

L = 10 m

Helium

V = 3.2 m/s, Ti = 450°C, P = 40 bars

cp= 5193 J/kg•K, k = 0.3355 W/m•K, ρ = 2.1676 kg/m3, µ = 4.214 x 10-5 kg/s•m

Pr = 0.654

T0

Dp = 50 mm &q

TsTs,1

δ = 5 mm

ε = 0.4

ε j
H

= − −+1 0.35
D D2.876Re 0.3023Re

D = 3 m

L = 10 m

Helium

V = 3.2 m/s, Ti = 450°C, P = 40 bars

cp= 5193 J/kg•K, k = 0.3355 W/m•K, ρ = 2.1676 kg/m3, µ = 4.214 x 10-5 kg/s•m

Pr = 0.654

T0

Dp = 50 mm &q

TsTs,1

δ = 5 mm

ε = 0.4

ε j
H

= − −+1 0.35
D D2.876Re 0.3023Re

 
 
ASSUMPTIONS: (1) Negligible radiation heat transfer, (2) One-dimensional heat transfer, (3) 
Uniform volumetric thermal generation inside the core, (4) Negligible contact resistance between 
core and cladding. 
 
ANALYSIS: 
(a)   From the simplified steady-flow thermal energy equation of Chapter 1 we may write 

p o i p o iq = mc (T  - T ) = ρAVc (T  - T )&  
Thus 

 ( )
o i p

6 3 2

T  = T  + q/ρAVc  

     = 450°C + 125 × 10  W 2.1676 kg/m × π ×(0.3 m/2) × 3.2 m/s × 5193 J/k K⋅
 

 To = 941°C                 < 
 
The number of pellets in the chamber is 
 
 

Continued…. 
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( )

( )

32
p

32 -3 -3

4N = (1 - ε)(π)(D/2) ×L π D  + 2δ /2
3

4N = (1 - 0.4) × (1.5m)  × 10 m × 50 × 10  m + 10 × 10  m /2  
3

⎡ ⎤
⎣ ⎦

⎛ ⎞⎡ ⎤⎜ ⎟⎣ ⎦⎝ ⎠

 

  N = 375,000 
 
The energy generated per pellet is  

 6
gE = q/N = 125 × 10  W/375,000 = 333 W&              < 

 
(b) The Reynolds number based on the pellet diameter is 

3 -6 -6
p

D -5

ρV(D  + 2δ) 2.1676 kg/m  × 3.2 m/s × (50 × 10  m + 10 × 10  m)Re  =  = 
μ 4.214 × 10  kg/s m⋅

 

ReD = 9876 
 
From the problem statement we know 

 2/3
H 0.35

p D D

h 2.876 0.3023ε j  = ε Pr  =  + 
ρVc Re Re

 

or 

 p
2/3 0.35

D D

ρVc 2.876 0.3023h =  + 
ReεPr Re

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
3

2
2/3 0.35

2.1676 kg/m  × 3.2 m/s × 5193 J/kg K 2.876 0.3023h =  ×  + 1480 W/m K
98760.4 × (0.654) 9876

⋅ ⎡ ⎤ = ⋅⎢ ⎥⎣ ⎦
 

 
A sphere at the exit of the chamber will be adjacent to the highest helium temperature and will be, 
in turn, the hottest.  An energy balance about the single sphere yields 

 g
s s o 2

p

Eqq = hA(T  - T )   or   T  = T  +  = T  + 
hA hπ(D  + 2δ)∞ ∞

&
 

 s 2 -3 -3 2
333 WT  = 941°C + 

1480 W/m K × π × (50 × 10  m + 10 × 10  m)⋅
 

  Ts = 960.9°C 
 
The temperature at the inner surface of the cladding may be found using Equation 3.40 

 s,1 s
r

p p

4πk(T  - T )
q  = 1 1 - 

(D /2) (D /2 + δ)

 

 s,1 s
p p

1 1T  = T  +q   -  4πk
(D /2) (D /2  +  δ)
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
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s,1 -3 -3 -3
1 1T  = 960.9°C + 333 W ×  - (4π × 2W/m K)

25 × 10  m (25 × 10  m + 5 × 10  m)
⎡ ⎤

⋅⎢ ⎥
⎣ ⎦

 

  Ts,1 = 1049.2°C 
 
The maximum temperature occurs at the center of the sphere at the exit plane.  Beginning with 
the heat equation for the pellet, find 

 

2 2

2 3
1

2 1
2

d dT qr  = - r
dr dr k

dT qr  = - r  + C
dr 3k

CqT(r) = -  r  -  + C
6k r

⎛ ⎞
⎜ ⎟
⎝ ⎠

&

&

&

 

 
Applying boundary conditions, 
 at r = 0,    1r=0dT dr = 0  C  = 0→  

 at r = rp = Dp/2,  2
p s,1 2 s,1 p

qT(r ) T C  = T  + r
6k

= →
&

 

 2 2
s,1 p

qT(r) = T  + (r  - r )
6k
&

 

2
p

s,1
qD

T(0)  =  T   +  
24k

&
 

For  3
g g p

4q = E /  = E / π(D /2)
3
⎡ ⎤∀ ⎢ ⎥⎣ ⎦

& &&  

 -3 34q  =  333W/  × π × (50 × 10  m/2)
3
⎡ ⎤
⎢ ⎥⎣ ⎦

&  

 6 3q = 5.09 × 10  W/m&  

 
26 3 -35.09 × 10  W/m  × (50 × 10  m)T(o) = 1049.2°C +  = 1314°C

24 × 2 W/m K⋅
         < 

 
COMMENTS: (1) The maximum temperature is below the temperature associated with 
reduction in the thermal energy generation. (2) Helium is an excellent choice for the working 
fluid due to its high thermal conductivity and extremely small nuclear cross section (Helium does 
not absorb gamma radiation. Therefore the helium that exists the chamber can be fed directly to a 
turbine as opposed to transferring thermal energy from the helium to a second working fluid.) 



PROBLEM 7.110  
KNOWN:  Diameter and properties of phase-change material.  Dimensions of cylindrical vessel and 
porosity of packed bed.  Inlet temperature and velocity of air.  
FIND:  (a) Outlet temperature of air and rate of melting, (b) Effect of inlet velocity and capsule 
diameter on outlet temperature, (c) Location at which complete melting of PCM is first to occur and 
subsequent variation of outlet temperature.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible thickness (and thermal resistance) of capsule shell, (2) All capsules 
are at Tmp, (3) Constant properties, (4) Negligible heat transfer from surroundings to vessel. 
 
PROPERTIES:  Prescribed, PCM:  3

mpT 4 C, 1200 kg / m ,ρ= ° =  sfh 165 kJ / kg.=   Table A-4, Air 

( )( )i oAssume T T / 2 17 C 290K :+ = ° =   3
a 1.208 kg / m ,ρ =  pc 1007 J / kg K,= ⋅  6 215.00 10 m / s,ν −= ×  

Pr = 0.71.  
ANALYSIS:  (a) For a packed bed the outlet temperature is given by 

 ( ) p,t
o mp mp i

a c,b p

h A
T T T T exp

VA cρ

⎛ ⎞
= − − −⎜ ⎟⎜ ⎟

⎝ ⎠
 

where ( )2 2
c,b vA D / 4 0.40m / 4 0.126m2π π= = =  and ( )( )( ) ( )2

p,t v c cA 1 / D 1ε π ε= − ∀ ∀ = −  

( ) ( )2 3 2
v v c1.5 L D / D 0.5 1.5 0.4m / 0.05m 3.02m .π π= × =   With D cRe VD /ν= =  1m / s 0.05m /15.00×  

6 210 m / s 3333,−× =  the convection correlation for a packed bed yields 

 2 / 3 2 /3 0.575
H D

a p

hj St Pr Pr 2.06 Re
V c

ε ε ε
ρ

−= = =  

 
( ) ( )

3a p 2
2 / 3 0.575 2 / 3 0.575

D

2.06 V c 2.06 1.208 kg / m 1m / s 1007 J / kg K
h 59.4 W / m K

Pr Re 0.5 0.71 3333

ρ

ε

× × × ⋅
= = = ⋅  

Hence,  ( )
2

o 3 2

259.4 W / m K 3.02 m
T 4 C 21 C exp 10.5 C

1.208 kg / m 1m / s 0.126 m 1007 J / kg K

⋅ ×
= ° + ° − = °

× × × ⋅

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 < 

The rate at which PCM in the vessel changes from the solid to liquid state, ( )M kg / s ,&  may be 
obtained from an energy balance that equates the total rate of heat transfer to the capsules to the rate of 
increase in latent energy of the PCM.  That is 
 

 ( )sf sf
dq M h h M
dt

= = &  

          Continued … 
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where M is the total mass of PCM and 
 

( ) ( )mp i mp o 2 2
p,t

mp i

mp o

T T T T 14.5 Cq h A 59.4 W / m K 3.02m 2220 W
21T T nn 6.5T T

− − − − °
= − = − ⋅ × =

−⎛ ⎞ ⎛ ⎞−
⎜ ⎟⎜ ⎟ −⎝ ⎠⎜ ⎟−⎝ ⎠

ll

 

 
Hence,   sfM q / h 2220 W /165,000J / kg 0.0134kg / s= = =&     < 
 
(b) The effect of the inlet velocity and capsule diameter are shown below. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
Despite the reduction in h  with decreasing V, the reduction in the mass flow rate of air through the 
vessel and the corresponding increase in the residence time of air in the vessel allow it to more closely 
achieve thermal equilibrium with the capsules before it leaves the vessel.  Hence, To decreases with 
decreasing V, approaching Tmp in the limit V → 0.  Of course, the production of chilled air in kg/s 
decreases accordingly.  With decreasing capsule diameter, there is an increase in the number of 
capsules in the vessel and in the total surface area Ap,t for heat transfer from the air.  Hence, the heat 
rate increases with decreasing Dc and the outlet temperature of the air decreases. 
 
(c) Because the temperature of the air decreases as it moves through the vessel, heat rates to the 
capsules are largest and smallest at the entrance and exit, respectively, of the vessel.  Hence, complete 
melting will first occur in capsules at the entrance.  After complete melting begins to occur in the 
capsules, progressing downstream with increasing time, heat transfer from the air will increase the 
temperatures of the capsules, thereby decreasing the heat rate.  With decreasing heat rate, the outlet 
temperature will increase, approaching the inlet temperature after melting has occurred in all capsules 
and they achieve thermal equilibrium with the inlet air.  
COMMENTS:  (1) The estimate of To used to evaluate the properties of air was good, and iteration 
of the solution is not necessary.  (2) The total mass of phase change material in the vessel is cM N=  

( )[ ] ( ) ( ) ( ) ( )2 3 3
c c c v v1 / 1 L D / 4 0.5 1200 kg / m 0.4m 30.2 kg./ 4νρ ε ρ ε ρ π π∀ = − ∀ ∀ ∀ = − = × =   At 

the maximum possible melting rate of M 0.0134 kg / s,=&  it would therefore take 2250s = 37.5 min to 
melt all of the PCM in the vessel.  Why would it, in fact, take longer to melt all of the PCM? 
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PROBLEM 7.111  
  
KNOWN:  Diameter and properties of phase-change material.  Dimensions of cylindrical vessel and 
porosity of packed bed.  Inlet temperature and velocity of air.  
FIND:  (a) Outlet temperature of air and rate of melting for ε = 0.3 and length reduced to compensate, 
(b) Outlet temperature of air and rate of melting for ε = 0.3 and diameter reduced to compensate.  
Which geometry is preferred.  
SCHEMATIC:   

 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Negligible thickness (and thermal resistance) of capsule shell, (2) All capsules 
are at Tmp, (3) Constant properties, (4) Negligible heat transfer from surroundings to vessel. 
 
PROPERTIES:  Prescribed, PCM:  3

mpT 4 C, 1200 kg / m ,ρ= ° =  sfh 165 kJ / kg.=   Table A-4, Air 

( )( )i oAssume T T / 2 17 C 290K :+ = ° =   3
a 1.208 kg / m ,ρ =  pc 1007 J / kg K,= ⋅  6 215.00 10 m / s,ν −= ×  

Pr = 0.71.  
ANALYSIS:  (a) The new length of the vessel is determined from the fact that the same mass, or 
volume, of capsules is now compressed to give a porosity of 0.3 instead of 0.5.  We can relate the total 
capsule volume, c∀ , to the vessel volume, 2

v v vD Lπ∀ = , as follows.  
 

( ) ( )c old v,old new v,new1 ε 1 ε= − = −∀ ∀ ∀     (1) 
 
Thus, 
 

( )
( )

old
v,new v,old

new

1 ε

1 ε

0.5L L 0.4 m 0.286 m
0.7

−
=

−
= =  

 
For a packed bed the outlet temperature is given by 
 

  ( ) p,t
o mp mp i

a c,b p

h A
T T T T exp

VA cρ

⎛ ⎞
= − − −⎜ ⎟⎜ ⎟

⎝ ⎠
     (2) 

 

where ( )2 22
c,b vA D / 4 0.40 m / 4 0.126 mπ π= = =  and ( )( )( ) ( )2

p,t v c cA 1 / D 1ε π ε= − ∀ ∀ = −  

( ) ( )2 2

v v c

2 21.5 L D / D 0.7 1.5 0.286 m 0.4 / 0.05 m 3.02 m . mπ π= × × =   With D cRe VD /ν= =  

1m / s 0.05m /15.00×  6 210 m / s 3333,−× =  the convection correlation for a packed bed yields 
 

 
 
Continued … 
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 2 / 3 2 /3 0.575
H D

a p

hj St Pr Pr 2.06 Re
V c

ε ε ε
ρ

−= = =  

 
( ) ( )

3
a p 2

2/3 0.575 2/3 0.575
D

2.06 V c 2.06 1.208 kg / m 1m / s 1007 J / kg K
h 99.0 W / m K

Pr Re 0.3 0.71 3333

ρ

ε

× × × ⋅
= = = ⋅  

Hence,  ( )
2

o 3 2

299.0 W / m K 3.02 m
T 4 C 21 C exp 7.0 C

1.208 kg / m 1m / s 0.126 m 1007 J / kg K

⋅ ×
= ° + ° − = °

× × × ⋅

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 < 

The rate at which PCM in the vessel changes from the solid to liquid state, ( )M kg / s ,&  may be 
obtained from an energy balance that equates the total rate of heat transfer to the capsules to the rate of 
increase in latent energy of the PCM.  That is 
 

 ( )sf sf
dq M h h M
dt

= = &  

           
where M is the total mass of PCM and 
 

( ) ( )mp i mp o 2 2
p,t

mp i

mp o

T T T T 18 Cq h A 99.0W / m K 3.02 m 2770W
21T T nn 3.0T T

− − − − °
= − = − ⋅ × =

−⎛ ⎞ ⎛ ⎞−
⎜ ⎟⎜ ⎟ −⎝ ⎠⎜ ⎟−⎝ ⎠

ll

 

 
Hence,   sfM q / h 2770W /165,000J / kg 0.0168kg / s= = =&    < 
 
(b)The new vessel diameter is found from Eq. (1) to be 
 

( )
( )

old
v,new v,old

new

1 ε

1 ε

0.5D D 0.4 m 0.338 m
0.7

−
=

−
= =  

 
Since the mass flow rate of air is unchanged, the velocity must be increased to compensate for the 
reduced diameter, thus 
 

2 2 2
new old v,old v,newV V D / D 1 m/s(0.4 m/0.338 m) 1.40 m/s= = =  

 
Repeating all of the calculations, we find 
 

( )2 22
c,b vA D / 4 0.338 m / 4 0.0897 mπ π= = =  , 2

p,tA 3.02 m=  (unchanged), DRe 4667= , 

2h 114 W / m K= ⋅ , and  

oT 6.2 C= °       < 
Continued … 
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Then q 2870W= and   
 

M 0.0173kg / s=&      < 
 

This configuration results in a lower air outlet temperature and an increased PCM melting rate. < 
 
COMMENTS:  (1) The estimate of To used to evaluate the properties of air was reasonably good, and 
iteration of the solution is not necessary.  (2) Compared to Problem 7.110 which had ε = 0.5, both of 
these configurations yield a higher heat transfer coefficient and result in a lower outlet temperature and 
are therefore preferable from the heat transfer point-of-view.  However, a more thorough design would 
also consider the pressure drop and pumping power requirements for the various configurations. 
Which configuration do you expect to have the lowest pumping power requirement? (3) By reducing 
the vessel diameter in part (b), the velocity and Reynolds number increase, thereby increasing the heat 
transfer coefficient.  This yields a lower outlet temperature compared to part (a). 
 
 



PROBLEM 7.112  
KNOWN:  Diameter and properties of phase-change material.  Dimensions of cylindrical vessel and 
porosity of packed bed.  Inlet temperature and velocity of air.  
FIND:  (a) Outlet temperature of air and rate of freezing, (b) Effect of inlet velocity and capsule 
diameter on outlet temperature, (c) Location at which complete melting of PCM is first to occur and 
subsequent variation of outlet temperature.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible thickness (and thermal resistance) of capsule shell, (2) All capsules 
are at Tmp, (3) Constant properties, (4) Negligible heat transfer from vessel to surroundings. 
 
PROPERTIES:  Prescribed, PCM:  Tmp = 50°C, 3

sf900 kg / m , h 200 kJ / kg.ρ = =   Table A-4, Air 

(Assume (Ti + To)/2 = 30°C = 303K):  3
a p1.151kg / m , c 1007 J / kg K,ρ = = ⋅  6 216.2 10 m / s,ν −= ×  

Pr 0.707.=   
ANALYSIS:  (a) For a packed bed the outlet temperature is given by 

 ( ) p,t
o mp mp i

a c,b p

h A
T T T T exp

V A cρ

⎛ ⎞
= − − −⎜ ⎟⎜ ⎟

⎝ ⎠
 

where 2 2
c,b vA D / 4 0.126 mπ= =  and ( )( ) 2 2

p,t v c cA 1 / D 3.02 m .ε π= − ∀ ∀ =   With 

D cRe VD / 3086,ν= =  the convection correlation for a packed bed yields 

 2 / 3 2 / 3 0.575
H D

a p

hj St Pr Pr 2.06 Re
V c

ε ε ε
ρ

−= = =  

 
( ) ( )

3a p 2
2 /3 0.575 2 /3 0.575

D

2.06 V c 2.06 1.151kg / m 1m / s 1007 J / kg Kh 59.1W / m K
Pr Re 0.5 0.707 3086

× × × ⋅
= = = ⋅

ρ

ε
 

Hence, 

 ( )
2 2

o 3 2
59.1W / m K 3.02 m

T 50 C 30 C exp 41.2 C
1.151kg / m 1m / s 0.126 m 1007 J / kg K

⋅ ×
= ° − ° − = °

× × × ⋅

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 < 

The rate at which PCM in the vessel solidifies, ( )M kg / s ,&  may be obtained from an energy balance 
that equates the total rate of heat transfer from the capsules to the rate at which the latent energy of the 
PCM decreases.  That is, 

 ( )s,f sf
dq M h h M
dt

= = &  
 
where M is the total mass of PCM and 
          Continued … 
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( ) ( )mp i mp o 2 2

p,t
mp i

mp o

T T T T 21.2 Cq h A 59.1W / m K 3.02m 3085W
30T T nn 8.8T T

− − − °
= = ⋅ × =

⎛ ⎞ ⎛ ⎞−
⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟−⎝ ⎠

ll

 

 
Hence,  sfM q / h 3085W / 200,000J / kg 0.0154kg / s= = =&    < 
 
(b) The effect of V and Dc are shown below 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
Despite the reduction in h  with decreasing V, the reduction in the mass flow rate of air in the vessel 
and the corresponding increase in the residence time of air in the vessel allow it to more closely reach 
thermal equilibrium with the capsules before it leaves the vessel.  Hence, To increases with decreasing 
V, approaching Tmp in the limit V → 0.  Of course, the production of warm air in kg/s decreases 
accordingly.  With decreasing capsule diameter, there is an increase in the number of capsules in the 
vessel and in the total surface area Ap,t for heat transfer to the air.  Hence, the heat rate and the air 
outlet temperature increase with decreasing Dc. 
 
(c) Because the air temperature increases as it moves through the vessel, heat rates from the capsules 
are largest and smallest at the entrance and exit, respectively, of the vessel.  Hence, complete freezing 
will first occur in capsules at the entrance.  After complete freezing begins to occur in the capsules, 
progressing downstream with increasing time, heat transfer to the air will decrease the temperatures of 
the capsules, thereby decreasing the heat rate.  With decreasing heat rate, the outlet temperature will 
decrease, approaching the inlet temperature after freezing has occurred in all capsules and they achieve 
thermal equilibrium with the inlet air.  
COMMENTS:  (1) The estimate of To used to evaluate the properties of air was good, and iteration of 
the solution is not necessary.  (2) The total mass of phase change material in the vessel is c cM N ρ= ∀  

( )[ ] ( ) ( )2
v c c v v1 / 1 L D / 4 22.6 kg.ε ρ ε ρ π= − ∀ ∀ ∀ = − =   At the maximum possible melting rate of 

M 0.0154 kg / s,=&  it would therefore take 1470s = 24.5 min to freeze all of the PCM in the vessel.  
Why would it, in fact, take longer to freeze all of the PCM? 
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PROBLEM 7.113 
 
KNOWN:  Dimensions, particle diameter, and porosity of bronze foam sheet.  Temperature of upper 
and lower surfaces of foam.  Velocity and inlet temperature of air flowing through foam. 
 
FIND:  (a) Convection heat transfer rate to air assuming foam is at uniform temperature Ts.  Whether 
actual heat transfer rate would be greater, less, or the same.  (b) Convection heat transfer rate to air 
treating foam as an extended surface with one-dimensional conduction in the x-direction.  Whether 
actual heat transfer rate would be greater, less, or the same.  Effective perimeter and effective thermal 
conductivity of the foam. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional heat transfer, (3) Constant 
properties, (4) Foam behaves as packed bed in part (a), (5) Foam behaves as extended surface in part 
(b), (6) Negligible radiation transfer. 
 
PROPERTIES:  Table A-1, Commercial bronze (T ≈  325 K):  kb = 52 W/m⋅K.  Table A-4, Air (T ≈  
325 K): ρ = 1.0782 kg/m3, cp = 1008 J/kg⋅K, k = 0.0282 W/m⋅K, ν = 18.41 × 10-6 m2/s, Pr = 0.704. 
 
ANALYSIS:  (a) The heat transfer coefficient can be found from Equation 7.81: 
 

 2/3 0.5752.06H D
p

h
j Pr Re

c V
ε ε

ρ
−= =  

 
where ReD = VD/ν = 10 m/s × 0.0006 m/18.41 × 10-6 m2/s = 326 
 

 0.575 2/32.06 p
D

c V
h Re Pr

ρ

ε
− −=  

    ( )
3

0.575 2/32.06 1.0782 kg/m 1008 J/kg K 10 m/s
326 (0.704)

0.25
− −× × ⋅ ×

= 24060 W/m K= ⋅   

         
The surface area can be found as follows, where N = number of particles: 
 
Vp = NπD3/6 = (1 – ε)Vtot = (1 – ε)WtL and  

Ap,t = NπD2 = 6(1 – ε)WtL/D = 26 0.75 0.04 m 0.01 m 0.04 m
0.12 m

0.0006 m
× × × ×

= =  

 
The outlet air temperature is given by Equation 7.83: 
 

,

,

( ) exp p t
o s s i

c b p

hA
T T T T

VA cρ

−
= − −

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Continued... 
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2 2

3 2

4060 W/m K 0.12 m
80 C 60 Cexp 80 C

1.0782 kg/m 10 m/s (0.04 m) 1008 J/kg K
− ⋅ ×

= ° − ° = °
× × × ⋅

⎛ ⎞
⎜ ⎟
⎝ ⎠

   

 
From Equation 7.82, or equivalently from an energy balance on the air,  
 

,( ) ( )p o i c b p o iq mc T T VA c T Tρ= − = −&  

   3 21.0782 kg/m 10 m/s (0.04 m) 1008 J/kg K (80 20) C 1043 W= × × × ⋅ × − ° =    < 
 
We would expect the actual convection heat transfer rate to be less because the foam has a conduction 
resistance and there are temperature gradients in the foam, primarily in the x-direction.  Thus, near the 
center of the cross-section, the foam temperature will be reduced and so will the heat transfer rate. 
 
(b) For a slice of the foam of length dx, the surface area of foam in contact with the air is dAs = 
Ap,tdx/L.  Thus,  
 

,
conv ( ( ) )p thA dx

dq T x T
L ∞= −       

 
By analogy with conv ( ( ) )dq hPdx T x T∞= −  for a solid fin, we find 

2
,

eff

0.12 m
3.0 m

0.04 m
p tA

P
L

= = =      < 

     
 
From Equation 3.25 with ks = kb,  
 

eff

2 2 ( )
2 ( )

f b b f
b

f b b f

k k k k
k k

k k k k
ε

ε

+ − −
=

+ + −

⎡ ⎤
⎢ ⎥
⎣ ⎦

     

      
(0.0282 2 52 2 0.25 (52 0.0282))W/m K

52 W/m K 34.7 W/m K
(0.0282 2 52 0.25 (52 0.0282))W/m K

+ × − × × − ⋅
= × ⋅ = ⋅

+ × + × − ⋅
⎡ ⎤
⎢ ⎥⎣ ⎦

 < 

 
Due to symmetry, the foam sheet can be treated as a fin of length L/2 with an insulated fin tip.  From 
Equation 3.81, 
 

eff eff ,2 ( ) tanh( / 2)f c f s iq hP k A T T mL= −      

 
where the factor of 2 accounts for both halves of the foam, each of length L/2, Ac,f is the fin cross-
sectional area, Ac,f = Wt = 0.04 m × 0.01 m = 4 × 10-4 m2, and 
 

2 4 2 1
eff eff ,/ 4060 W/m K 3 m /(34.7 W/m K 4 10  m ) 937 mc fm hP k A − −= = ⋅ × ⋅ × × =  

 
 

Continued... 
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Thus, 
 

2 4 2 12 4060 W/m K 3 m 34.7 W/m K 4 10  m (80 20) C tanh(933 m 0.02 m)fq − −= ⋅ × × ⋅ × × − ° ×  

     1560 W=            < 
 
We would expect the actual rate of heat transfer to be less because the air temperature increases as it 
flows through the foam. This is not accounted for in the extended surface analysis, and if it were to be 
accounted for, we would have a smaller driving overall temperature difference through most of the 
foam, reducing qf.          < 
 
COMMENTS:  (1) The results suggest that the foam might be an effective heat transfer medium. The 
heat transfer rates are quite high. However, the actual heat transfer rate will be lower than calculated 
here because of the simultaneous conduction resistance in the foam and increase in the air temperature 
as it passes through the foam. (2) In Problem 11.93, this problem is solved accounting for both the 
variation of air temperature in the flow direction and the variation of foam temperature in the x-
direction. By accounting for both effects, you will learn that the heat transfer rates calculated here 
significantly overestimate the actual heat transfer rate. 
 
 



PROBLEM 7.114  
KNOWN:  Flow of air over a flat, smooth wet plate.  
FIND:  (a) Average mass transfer coefficient, mh ,  (b) Water vapor mass loss rate, nA (kg/s). 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Heat-mass transfer analogy applies, (3) 
Rex,c = 5 × 105. 
 
PROPERTIES:  Table A-4, Air (300K):  ν = 15.89 × 10-6 m2/s, Pr = 0.707; Table A-8, 
Water vapor-air (300K, 1 atm):  DAB = 0.26 × 10-4 m2/s, Sc = ν/DAB = 0.611; Table A-6, 
Water vapor (300K):  ρA,sat = 1/vg = 0.0256 kg/m3. 
 
ANALYSIS:  (a) The Reynolds number for the plate, x = L, is  

 6
L -6 2

u L 35 m/s 0.5 m
Re 1.10 10 .

15.89 10  m / sν
∞ ×

= = = ×
×

 

 
Hence flow is mixed and the appropriate flat plate convection correlation is given by Eq. 
7.41,  

 ( ) 0.84/5 1/3 6 0.33mL L
AB

h L
Sh 0.037 Re 871 Sc 0.037 1.10 10 871 0.611

D
= = − = × −

⎛ ⎞⎡ ⎤⎜ ⎟⎣ ⎦⎝ ⎠
 

 
giving  

 
4 2

L m
1399 0.26 10  m / s

Sh 1399          h 0.0728 m/s.
0.5 m

−× ×
= = =    < 

 
(b) The evaporative mass loss rate is  
 ( )A m s A,s A,n h A ρ ρ ∞= −  
 
where ( )s A, A,s A,satA L w, 0 dry air  and .ρ ρ ρ∞= ⋅ = =   Hence, 
 
 ( ) ( )2 3

An 0.0728 m/s 0.5 3  m  0.0256 0  kg/m 0.0028 kg/s.= × × − =   < 
 



PROBLEM 7.115 
 
KNOWN:  Air flow conditions over a wetted flat plate of known length and temperature. 
 
FIND:  (a) Heat loss and evaporation rate, per unit plate width, q′  and An′ , respectively, (b) Compute 
and plot q′  and An′  for a range of water temperatures 300 ≤ Ts ≤ 350 K with air velocities of 10, 20 and 
35 m/s, and (c) Water temperature Ts at which the heat loss will be zero for the air velocities and 
temperatures of part (b). 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Heat and mass transfer analogy is applicable, (2) Constant properties, (3) Rex,c = 5 
× 105. 
 
PROPERTIES:  Table A.4, Air (T = 300 K, 1 atm):  ν = 15.89 × 10-6 m2/s;  Table A.6, Water (300 K):  
vg = 39.13 m3/kg, hfg = 2438 kJ/kg;  Table A.8, Water-air (298 K, 1 atm):  DAB = 0.26 × 10-4 m2/s, Sc = 
0.61. 
 
ANALYSIS:  (a) The heat loss from the plate is due only to the transfer of latent heat.  Per unit width of 
the plate, 
 A fgq n h′ ′=  (1) 

 ( ) ( )A m A,sat s A, m A,sat sn h L T h L Tρ ρ ρ∞⎡ ⎤′ = − =⎣ ⎦  (2) 

With 

 6
L 6 2

u L 35m s 0.5mRe 1.10 10
15.89 10 m sν

∞
−
×

= = = ×
×

 

mixed boundary layer condition exists and the appropriate correlation is Eq. 7.41 with A = 871, 

 ( ) ( ) ( )
4 /5 1/ 34 /5 1/3 6L LSh 0.037 Re 871 Sc 0.037 1.10 10 871 0.61

⎡ ⎤
= − = × −⎢ ⎥

⎣ ⎦
 (3) 

giving LSh  = 1398 and 

 
4 2

ABLm
D 0.26 10 m sh Sh 1398 0.0727 m s

L 0.5m

−×
= = = . 

with ( ) 1 3
A,sat s gT v 0.0256kg mρ −= = , 

 ( )( )3 4
An 0.0727 m s 0.5m 0.0256kg m 9.29 10 kg s m−′ = = × ⋅  < 

Hence, the evaporative heat loss per unit plate width is 

 ( )4 6
A fgq n h 9.29 10 kg s m 2.438 10 J kg−′ ′= = × ⋅ ×  2265 W m=  < 

Continued... 
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Heat would have to be applied to the plate in the amount of 2265 W/m to maintain its temperature at 300 
K with the evaporative heat loss. 
 
(b) When Ts and T∞  are different, convection heat transfer will also occur, and the heat loss from the 
water surface is 
 
 ( )loss conv evap s A fgq q q hL T T n h∞′ ′ ′ ′= + = − +  (4) 
 
Invoking the heat-mass analogy, Eq. 6.60 with n = 1/3, 
 

 ( )2 / 3
m ABh h c Dρ α=  (5) 

 
where mh  and An′  are evaluated using Eqs. (3) and (2), respectively.  Using the foregoing relations in 
the IHT Workspace, but evaluating h  (rather than mh ) with the Correlations Tool, External Flow, for 
the Average coefficient for Laminar or Mixed Flow, lossq′  was evaluated as a function of u∞  with T∞  = 
300 K. 
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(c) To determine the water temperature Ts at which the heat loss is zero, the foregoing IHT model was run 
with lossq′  = 0 with the result that, for all velocities, 

 Ts = 281 K < 
 
COMMENTS:  Why is the result for part (c) independent of the air velocity? 



PROBLEM 7.116  
KNOWN:  Flow over a heated flat plate coated with a volatile substance.  
FIND:  Electric power required to maintain surface at Ts = 134°C. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Heat-mass transfer analogy is applicable, (3) 

Transition occurs at Rexc = 5 × 10
5
, (4) Perfect gas behavior of vapor A, (5) Upstream air is dry, ρA,∞ 

= 0.  
PROPERTIES:  Table A-4, Air (Tf = (134 + 20)°C/2 = 350 K, 1 atm):  ν = 20.92 × 10

-6
 m

2
/s, k = 

0.030 W/m⋅K, Pr = 0.700; Substance A (given):  AM  = 150 kg/kmol, pA,sat (134°C) = 0.12 atm, 

DAB = 7.75 × 10
-7

 m
2
/s, hfg = 5.44 × 10

6
 J/kg. 

 
ANALYSIS:  From an overall energy balance on the plate, the power required to maintain Ts is 
 ( ) ( )elec conv evap L s s m,L s A,s A, fgq q q h A T T h A h .ρ ρ∞ ∞= + = − + −    (1) 

To estimate Lh ,  first determine ReL, 

 -6 2 6
LRe u L/ 8 m/s 4 m/20.92 10  m / s 1.530 10 .ν∞= = × × = ×  

Hence the flow is mixed and the appropriate correlation: 

 ( )4/5 1/ 3
L L LNu h L/k 0.037 Re 871 Pr= = −  

( ) ( ) ( )
4 / 5 1/ 36 2

Lh 0.030 W/m K/4m  0.037 1.530 10 871  0.700 16.0 W/m K.= ⋅ × − = ⋅
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

To estimate m,Lh ,  invoke the heat-mass analogy, with Sc = νB/DAB, 
1/ 31/ 3 -7 2 -6 2

AB
m,L L 2 -7 2

D Sc W 7.75 10 m / s 20.92 10 m / s m
h h 16.0   / 0.700 0.00140 .

k Pr 0.030 W/m K sm K 7.75 10 m / s

× ×
= = =

⋅⋅ ×

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

The density of species A at the surface, ρA,s(Ts), follows from the perfect gas law, 

( )
-2 3

A,s A,s s 3A

8.205 10 m atm/kmol K kg
p / T 0.12 atm/ 134 273 K 0.539 .

150 kg/kmol m

ℜ × ⋅ ⋅
= = ⋅ + =

M
ρ  

Using values calculated for L m,Lh ,  h  and ρA,s in Eq. (1), find 

( ) ( ) ( ) 6
elec 2 3

W m kg J
q 4m 0.25m  16.0 134 20 C 0.00140 0.539 0 5.44 10

s kgm K m
= × − + − × ×

⋅

⎡ ⎤
⎢ ⎥
⎣ ⎦

o  

 [ ]2 2
elecq 1.0 m 1,824 4,105  W/m 5.93 kW.= + =      < 

 
COMMENTS:  For these conditions, nearly 70% of the heat loss is by evaporation. 



PROBLEM 7.117 
 
KNOWN:  Flow of dry air over a water-saturated plate for prescribed flow conditions and mixed 
temperature. 
 
FIND:  (a) Mass rate of evaporation per unit plate width, ( )An kg s m′′ ⋅ , and (b) Calculate and plot An′  
as a function of velocity for the range 1 ≤ u∞  ≤ 25 m/s for air and water temperatures of Ts = T∞  = 300, 
325, and 350 K. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Water surface is smooth, (2) Heat and mass transfer analogy is applicable, (3) 
Rex,c = 5 × 105. 
 
PROPERTIES:  Table A.6, Water vapor (Ts = 350 K, 1 atm):  ρA,s = 1/vg = 1/3.846 m3/kg = 0.2600 
kg/m3;  Table A.4, Air (Tf = T∞  = 350 K, 1 atm):  ν = 20.92 × 10-6 m2/s, α = 29.9 × 10-6 m2/s;  Table A.8, 
Air-water (Tf = T∞  = 350 K, 1 atm):  DAB = 0.26 × 10-4 m2/s (350 K/298 K)3/2 = 0.331 × 10-4 m2/s. 
 
ANALYSIS:  (a) Determine the nature of the air flow by calculating ReL.  With L = 1 m, 
 

 6
L 6 2

u L 25m s 1mRe 1.195 10
20.92 10 m sν

∞
−
×

= = = ×
×

. (1) 

 
Since ReL > 5 × 105, it follows that the flow is mixed, and with Eq. 7.41 with A = 871, using Sc = ν/DAB, 
 

 ( )4 / 5 1/3mL L
AB

h LSh 0.037 Re 871 Sc
D

= = − . (2) 

 

1/ 36 24 / 56L 4 2
20.92 10 m sSh 0.037 1.195 10 871 1563
0.331 10 m s

−

−

⎛ ⎞⎛ ⎞ ×⎡ ⎤ ⎜ ⎟= × − =⎜ ⎟⎢ ⎥⎣ ⎦ ⎜ ⎟×⎝ ⎠⎝ ⎠
 

 
The average mass transfer coefficient for the entire plate is 
 

 
4 2

ABLm
D 0.331 10 m sh Sh 1563 0.0517 m s

L 1m

−×
= = = . 

 
The mass rate of water evaporation per unit plate width is 

 ( ) ( ) 3
A m A,s A,n h L 0.0517 m s 1m 0.260 0 kg m 0.0135kg s m∞′ = − = × − = ⋅ρ ρ  < 

 
(b) Using Eq. (1) and (3) in the IHT Workspace with the Correlations Tool, External Flow, Flat Plate, 
Average coefficient for Laminar or Mixed Flow, replacing heat transfer with mass transfer parameters, the 
evaporation rate as a function of a velocity for selected air-water velocities was calculated and is plotted 
below. 
 

Continued... 



PROBLEM 7.117 (Cont.) 
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COMMENTS:  (1) Note carefully the use of the heat-mass transfer analogy, recognizing that air is 
species B. 
 
(2) How do you explain the abrupt slope changes in the evaporation rate as a function of velocity in the 
above plot? 



PROBLEM 7.118  
KNOWN:  Temperature of water bath used to dissipate heat from 100 integrated circuits.  Air flow 
conditions.  
FIND:  Heat dissipation per circuit.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Heat and mass transfer analogy is applicable, (2) Vapor may be approximated 
as a perfect gas, (3) Turbulent boundary layer over entire surface, (4) All heat loss is across air-water 
interface.  
PROPERTIES:  Table A-4, Air (325 K, 1 atm):  ν = 18.4 × 10

-6
 m

2
/s, k = 0.0282 W/m⋅K, Pr = 

0.704; Table A-8, Air-vapor (325 K, 1 atm):  DAB = 0.26 × 10
-4

 m
2
/s(325/298)

3/2
 = 0.296 × 10

-4
 

m
2
/s, Sc = ν/DAB = 0.622; Table A-6, Saturated water vapor (Tb = 350 K):  ρg = 0.260 kg/m

3
, hfg = 

2.32 × 10
6
 J/kg; (T∞ = 300 K):  ρg = 0.026 kg/m

3
. 

 
ANALYSIS:  The heat rate is 

 ( )
2

1 A fg b
q L

q q n h T .
N N

′′ ′′= = +⎡ ⎤⎣ ⎦  

Evaluate the heat and mass transfer convection coefficients with 

 L -6 2
u L 10 m/s 0.1 m

Re 54,348
18.4 10  m / sν

∞ ×
= = =

×
 

( ) ( ) ( ) ( )4 / 5 1/ 34/5 1/ 3 2
Lh k/L 0.037Re Pr 0.0282 W/m K/0.1 m 0.037 54,348 0.704 57 W/m K= = ⋅ = ⋅  

 
( ) ( ) ( ) ( )4 / 5 1/ 34/5 1/3 4 2

m AB Lh D / L 0.037Re Sc 0.296 10  m / s/0.1 m 0.037 54,348 0.622 0.0574 m/s.−= = × =  
 
The convection heat transfer rate is 

 ( ) ( )2 2
bq h T T 57 W/m K 350 300 K 2850 W/m∞′′ = − = ⋅ − =  

 
and the evaporative cooling rate is  
 ( ) ( ) ( )A fg m A,sat b A,sat fg bn h h T T h Tρ φ ρ∞ ∞′′ = −⎡ ⎤⎣ ⎦  

 [ ] 3 6 2
A fgn h 0.0574 m/s 0.260 0.5 0.026 kg/m 2.32 10  J/kg 32,890 W/m′′ = − × × × =  

Hence 

 ( ) ( )
2

2
1

0.1 m
q 2850 32,890 W/m 3.57 W.

100
= + =      < 

 
COMMENTS:  Heat loss due to evaporative cooling is approximately an order of magnitude larger 
than that due to the convection of sensible energy. 



PROBLEM 7.119 
 
KNOWN:  Dry air flows at 300 K over water-filled trays, each 222 mm long, with velocity of 15 m/s 
while radiant heaters maintain the surface temperature at 330 K. 
 
FIND:  (a) Evaporative flux (kg/s⋅m2) at a distance 1 m from leading edge, (b) Radiant flux at this 
distance required to maintain water temperature at 330 K, (c) Evaporation rate from the tray at location L 
= 1 m, An′  (kg/s⋅m) and (d) Irradiation which should be applied to each of the first four trays such that 
their rates are identical to that found in part (c). 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Heat-mass transfer analogy applicable, (3) Water 
vapor behaves as perfect gas, (4) All incident radiant power absorbed by water, (5) Critical Reynolds 
number is 5 × 105. 
 
PROPERTIES:  Table A.4, Air (Tf = 315 K, 1 atm):  ν = 17.40 × 10-6 m2/s, k = 0.0274 W/m⋅K, Pr = 
0.705;  Table A.8, Water vapor-air (Tf = 315 K):  DAB = 0.26 × 10-4 m2/s (315/298)3/2 = 0.28 × 10-4 m2/s, 
Sc = ν/DAB = 0.616;  Table A.6, Saturated water vapor (Ts = 330 K):  ρA,sat = 1/vg = 0.1134 kg/m3, hfg = 
2366 kJ/kg. 
 
ANALYSIS:  (a) The evaporative flux of water vapor (A) at location x is 
 
 ( ) ( ) ( )A,x m,x A,s A, m,x A,sat s A,satn h h T Tρ ρ ρ φ ρ∞ ∞ ∞′′ = − = −⎡ ⎤⎣ ⎦&  (1) 
 
Evaluate Rex to determine the nature of the flow and then select the proper correlation. 
 

 6 2 5
x

u x
Re 15 m s 1m 17.40 10 m s 8.621 10

ν
−∞= = × × = × . 

 
Hence, the flow is turbulent, and invoking the heat-mass analogy with Eq. 7.37, 
 

 4 / 5 1/ 3m
x x

AB

h x
Sh 0.0296 Re Sc

D
= =  

 

 ( ) ( )
4 2 4 / 5 1/ 35 2

m
0.28 10 m s

h 0.0296 8.621 10 0.616 3.952 10 m s
1m

−
−×

= × × = × . 

 
Hence, the evaporative flux at x = 1 m is 

 ( )2 3 3 2
A,xn 3.952 10 m s 0.1134 kg m 0 4.48 10 kg s m− −′′ = × − = × ⋅&  (2) < 

(b) From an energy balance on the differential element at x = 1 m, 
 ( )rad conv evap x s A,x fgq q q h T T n h∞′′ ′′ ′′ ′′= + = − + &  (3) 

 
Continued... 



PROBLEM 7.119 (Cont.) 
 
To estimate hx, invoke the heat-mass analogy using the correlation, Eq. 7.37, 
 

 ( )1/ 3
x xNu Sh Pr Sc=                or               ( )1/ 3

x m,x ABh h k D Pr Sc=  (4) 
 

( )( )1/ 32 2 4 2 2
xh 3.95 10 kg s m 0.0274 W m K 0.28 10 m s 0.705 0.616 40.45 W m K− −= × ⋅ ⋅ × = ⋅  

 
Hence, the required radiant flux is 

 ( )2 3 2 3
radq 40.45 W m K 330 300 K 4.48 10 kg s m 2366 10 J kg−′′ = ⋅ − + × ⋅ × ×  

 2 2 2
radq 1,214 W m 10,600 W m 11,813W m′′ = + =  < 

 
(c) The flow is turbulent over tray 5 having its mid-length at x = 1 m, so that it is reasonable to assume, 
 ( )5 xh h 1m≈  (5) 
 
so that the evaporation rate can be determined from the evaporative flux as, 

 3 2 4
A A,xn n L 4.48 10 kg s m 0.222 m 9.95 10 kg s m− −′ ′′= Δ = × ⋅ × = × ⋅  < 

 
(d) For tray 5, following the form of Eq. (3), the energy balance is 
 ( )rad,5 5 s,5 A,5 fgq L h L T T n h∞′′ ′Δ = Δ − +  (6) 

and the evaporation rate for the tray is 
 ( )A,5 m,5 A,sn h L 0ρ′ = Δ −  (7) 

While 5h  and m,5h  represent tray averages, Eq. (4) is still applicable.  Using the IHT Correlation Tool, 

External Flow, Average coefficient for Laminar, or Mixed Flow, 5h  is evaluated as 

 ( ) ( )5 x 5 x 4h h 1.10m L h 0.880m L L⎡ ⎤= − Δ⎣ ⎦  (8) 
 
where ΔL = L5 - L4 = 0.22 m.  The same relations can be applied to trays 2, 3 and 4.  For tray 1, 1h  = 
h (0.22 m)⋅L1, where L1 = ΔL.  With Eqs. (3, 6, 7 and 8) in the IHT Workspace, along with the 
Correlations and Properties Tools, the following results were obtained with the requirement that the 
evaporation rate for each tray is equal at A,5n′  = 10.01 × 10-4 kg/s⋅m. 
 

Tray 1 2 3 4 5 
Ts 342.7 357 348.1 329 330 
radq′′  11,920 11,150 11,400 11,950 11,920 

 
COMMENTS:  (1) Note carefully at which temperatures the thermophysical properties are evaluated. 
 
(2) Recognize that in part (d), if we require equal evaporation rates for each tray, A,5n′ , the water 

temperature, Ts, and radiant flux, radq′′ , for each tray must be different since the convection coefficients 

xh  and m,xh  are different for each of the trays.  How do you explain the changes in Ts?  Which tray has 

the highest h ?  The lowest h ? 
 
(3) For tray 5, using Eq. (5) we found 5h  = 40.45 W/m2⋅K; using the more accurate formulation, Eq. (8), 
the result is 40.49 W/m2⋅K.  If the flow were laminar or mixed over the tray, Eq. (5) would be 
inappropriate. 



PROBLEM 7.120 
 
KNOWN:  Irradiation on sequential water-filled trays of prescribed length and width.  Temperature and 
velocity of airflow over the trays. 
 
FIND:  Rate of water loss from first, third and fourth trays and temperature of water in each tray. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Uniform irradiation of each container, (3) Complete 
absorption of irradiation by water, (4) Negligible heat transfer between containers and from bottom of 
containers, (5) Validity of heat-mass transfer analogy, (6) Applicability of convection correlations for an 
isothermal surface, (7) Rex,c = 5 × 105. 
 
PROPERTIES:  Table A.4, air (1 atm, assume Tf = 315 K):  ν = 17.4 × 10-6 m2/s, k = 0.0274 W/m⋅K, Pr 
= 0.705.  Table A.8, vapor/air (1 atm, 315 K):  DAB = 0.26 × 10-4 m2/s (315/298)3/2 = 0.28 × 10-4 m2/s, Sc = 
ν/DAB = 0.616. 
 
ANALYSIS:  The temperature of each tray is determined by a balance between the absorbed radiation 
and the convection and evaporative losses.  Hence, 
 
 ( )conv evap s m A,sat fgG q q h T T h hρ∞′′ ′′= + = − +  
 
where, assuming an exponent of n = 1/3, the heat-mass transfer analogy yields 
 

( ) ( ) ( )( ) ( )4 2 4 31/ 3 1/ 3
m ABh D k Sc Pr h 0.26 10 m s 0.0274 W m K 0.616 0.705 h 9.07 10 m K W s h− −= = × ⋅ = × ⋅ ⋅  

 
Hence, 

 ( ) 4
s A,sat fgG h T T 9.07 10 hρ−

∞= − + ×⎡ ⎤
⎣ ⎦  

 
With ReN = u N x∞ Δ ν  = 15 m/s(N × 0.25 m)/17.4 × 10-6 m2/s = (2.155 × 105)N, the flow is laminar for N 
= 1,2 with transition to turbulence occurring for N = 3. 
 
For tray 1, 

 
( )

( ) ( ) ( )

1/ 2 1/ 3
1

1/ 2 1/ 35 2

h k x 0.664 Re Pr

0.0274 W m K 0.25 m 0.664 2.155 10 0.705 30.1W m K

= Δ

= ⋅ × = ⋅
 

 
For tray 4, with x = 0.875 m (N = 7/2), 

 
( )

( ) ( ) ( )

4 / 5 1/ 3
4 7 / 2

4 / 5 1/ 35 2

h k x 0.0296 Re Pr

0.0274 W m K 0.875 m 0.0296 7.543 10 0.705 41.5 W m K

≈

= ⋅ × = ⋅
 

 
Continued... 



 
PROBLEM 7.120 (Cont.) 

 
For tray 3, ( )3 1 3 3 1 2 2h h L h L x− −= − Δ , where 
 

 ( )
( )( )

4 / 5 1/ 3
1 3 3 3

1/ 3
h L k 0.037 Re 871 Pr

0.0274 W m K 0.037 44,510 871 0.705 18.9 W m K

− = −

= ⋅ × − = ⋅
 

 

 ( )
( )( )

1/ 2 1/ 3
1 2 2 2

1/ 3
h L k 0.664Re Pr

0.0274 W m K 0.664 656.5 0.705 10.6 W m K

− =

= ⋅ × = ⋅
 

 
 ( ) 2

3h 18.9 10.6 W m K 0.25m 33.1W m K= − ⋅ = ⋅  
 
For tray 1, the energy balance yields 
 

 ( )4 2 2 4
s A,sat fg10 W m 30.1W m K T T 9.07 10 hρ−

∞⎡ ⎤= ⋅ − + ×⎢ ⎥⎣ ⎦
 

 
Since ρA,sat depends strongly on Ts, the solution to this equation must be obtained by trial-and-error, with 
ρA,sat (and hfg) determined from Table A.6.  The solution yields 

 s,1T 334.7 K≈  < 
 
Similarly, for trays 3 and 4 

 s,3 s,4T 332.8K T 327.1K≈ ≈  < 
 
The evaporation rate for tray N is 
 
 ( ) 4

evap m A,sat A,satm h W x 2.27 10 hρ ρ−= Δ = ×&  
 
from which it follows that 

 4 4 4
evap,1 evap,3 evap,4m 9.5 10 kg s , m 9.5 10 kg s , m 9.3 10 kg s− − −≈ × ≈ × ≈ ×& & &  < 

 
COMMENTS:  (1) The largest convection coefficient is associated with the tray for which the entire 
flow is turbulent.  (2) The temperature of the water varies inversely with the average convection 
coefficient for its tray. 



PROBLEM 7.121 
 
KNOWN:  Apparatus as described in Problem 7.40 providing a nearly uniform airstream over a flat test 
plate to experimentally determine the heat and mass transfer coefficients.  Temperature history of the pre-
heated plate for airstream velocities of 3 and 9 m/s were fitted to a fourth-order polynomial for 
determining the heat transfer coefficient.  Water mass loss observations from a water-saturated paper over 
the plate and its surface temperature for determining the heat transfer coefficient. 
 
FIND:  (a)  From the temperature-time history, determine the heat transfer coefficients and evaluate the 

constants C and m for a correlation of the form m 1/ 3
LNu C Re Pr= ; compare results with a standard-plate 

correlation and comment on the goodness of the comparison; explain any differences; (b)  From the water 
mass loss observations, determine the mass transfer coefficients for the two flow conditions; evaluate the 

constants C and m for a correlation of the form m 1/ 3
LSh C Re Sc= ; and (c) Using the heat-mass analogy, 

compare the experimental results with each other and against standard correlations; comment on the 
goodness of the comparison; explain any differences. 
 
SCHEMATIC:  

 

 
Temperature Observations 
u∞  (m/s) 3 9 

Δt (s) 300 160 
a (°C) 56.87 57.00 
b (°C/s) -0.1472 -0.2641 
c (°C/s2) 3 × 10-4 9 × 10-4 
d (°C/s3) -4 × 10-7 -2 × 10-6 
e (°C/s4) 2 × 10-10 1 × 10-9 
 
 
 
Mass Loss Observations 
V Ts  m (t) m (t + Δt) Δt 

(m/s) (°C) (g) (g) (s) 
3 15.3 55.62 54.45 475 
9 16.0 55.60 54.50 240 

 
ASSUMPTIONS:  (1) Airstream over the test plate approximates parallel flow over a flat plate, (2) Plate 
is spacewise isothermal, (3) Negligible radiation exchange between plate and surroundings, (4) Constant 
properties, and (5) Negligible heat loss from the bottom surface or  edges of the test plate. 
 
PROPERTIES: Heat transfer coefficient, Table A.4, Air ( ( )f sT T T 2∞= +  = 310 K, 1 atm):  ka = 

0.0269 W/m⋅K, ν = 1.669 × 10-5 m2/s, Pr = 0.706.  Test plate (Given):  ρ = 2770 kg/m3, cp = 875 J/kg⋅K, k 
= 177 W/m⋅K.  Mass transfer coefficient:  Table A.6, Water vapor (Ts  = 15.3°C = 288.3 K):  ρA sat,  = 1/vg 
= 79.81 m3/kg = 0.01253 kg/m3;  Table A.6, Water vapor (Ts  = 16.0°C = 289 K):  ρA sat,  = 0.01322 kg/m3; 
Table A.6, Water vapor (Tinf  = 27°C = 300 K):  ρA sat,  = 0.02556 kg/m3;  Table A.8, Water vapor-air [Tf = 
T Ts + ∞c h 2 ≈ 295 K]:  DAB = 0.26 × 10-4 m2/s (295/298)1.5 = 0.256 × 10-4 m2/s. 

 
ANALYSIS:  (a) Using the lumped-capacitance method, the energy balance on the plate is 

 ( )[ ]L s s p
dT

h A T t T Vc
dt

ρ∞− − =  (1) 
 

Continued... 



 
PROBLEM 7.121 (Cont.) 

 
and the average convection coefficient can be determined from the temperature history, Ts(t),  

 
( )
( )

p
L

s s

Vc dT dt
h

A T t T
ρ

∞
=

−
 (2) 

 
where the temperature-time derivative is 
 

 2 3sdT b 2ct 3dt 4et
dt

= + + +  (3) 
 
The temperature time history plotted below shows the experimental behavior of the observed data. 
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Consider now the integrated form of the energy balance, Eq. (5.6), expressed as 

 
( )s L s
i

T t T h Aln t
T T Vcρ

∞

∞

− ⎛ ⎞
= −⎜ ⎟− ⎝ ⎠

 (4) 

If we were to plot the LHS vs t, the slope of the curve would be proportional to Lh .  Using IHT, plots 

were generated of Lh  vs. Ts, Eq. (1), and ( )( ) ( )s iln T t T T T∞ ∞⎡ ⎤− −⎣ ⎦  vs. t, Eq. (4).  From the latter 

plot, recognize that the regions where the slope is constant corresponds to early times (≤ 100s when u∞  = 
3 m/s and ≤ 50s when u∞  = 5 m/s). 
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PROBLEM 7.121 (Cont.) 

 
Selecting two elapsed times at which to evaluate Lh , the following results were obtained 
 

u∞  (m/s) t (s) Ts (t), (°C) Lh  (W/m2⋅K) LNu  ReL 

3 100 44.77 30.81 152.4 2.39 × 104 
9 50 45.80 56.7 280.4 7.17 × 104  

where the dimensionless parameters are evaluated as 

 LL L
a

h L u LNu Re
k ν

∞= =  (5,6) 

where ka, ν are thermophysical properties of the airstream.  
(b) Using the above pairs of LNu  and ReL, C and m in the correlation can be evaluated, 

 m 1/ 3L LNu C Re Pr=  (7) 

 152.4 = C(2.39 × 104)m(0.706)1/3                   280.4 = C(7.17 × 104)m(0.706)1/3 

Solving, find  C = 0.633                      m = 0.555 (8,9) < 
 
The plot below compares the experimental correlation (C = 0.633, m = 0.555) with those for laminar flow 
(C = 0.664, m = 0.5) and fully turbulent flow (C = 0.037, m = 0.8).  The experimental correlation yields 

LNu  values which are 25% higher than for the correlation.  The most likely explanation for this 
unexpected trend is that the airstream reaching the plate is not parallel, but with a slight impingement 
effect and/or the flow is very highly turbulent at the leading edge. 
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(b) From the convection mass transfer rate equation, 
 ( )A m,L s A,s A,n h A ρ ρ ∞= −  (10) 

where the evaporation rate can be determined from the paper mass and time interval observations, 
 ( ) ( )An m t t m t t⎡ ⎤= + Δ − Δ⎣ ⎦  (11) 

and the species densities, ρA,s and A,ρ ∞ , correspond to ( ) ( )A,sat s A,satT and Tρ φ ρ∞ ∞ , respectively. 
 
Using the ASHRAE psychrometric chart (1 atm) with Twb = 13°C and Tdb = 27°C, find the relative 
humidity as φ∞  = 0.17.  The correlation dimensionless parameters are evaluated as 

 m,L
L L

AB AB

h L u LSh Re Sc
D D

ν
ν
∞= = =  (12,13,14) 

 
Continued... 



 
 

PROBLEM 7.121 (Cont.) 
 
where all the properties are evaluated at Tf = ( )sT T 2∞+ .  The results of the analyses are summarized 

in the following table. 
 

u∞ nA hm L,  ShL  ReL  Sc 
(m/s) kg/s (m/s)    

3 2.463 × 10-6 0.0168 87.58 2.594 × 104 0.603 
9 4.583 × 10-6 0.0288 150 7.767 × 104 0.603 

 
Using the two sets of tabulated values for LSh , ReL and Sc and the standard correlation of the form, 
 
 m 1/ 3L LSh C Re Sc=  (15) 
 

 ( ) ( )
m 1/ 3487.58 C 2.594 10 0.603= ×                     ( ) ( )

m 1/ 34150 C 7.767 10 0.603= ×  
 
solve simultaneously to find                      C = 0.711                    m = 0.490 (16,17) 
 
From the heat-mass analogy, we expect the constants C and m in Eq. (7) for heat transfer and in Eq. (13) 
for mass transfer to be the same.  From the two experiments, we found 
 

 C m 
Heat transfer 0.633 0.555 
Mass transfer 0.711 0.490 

 
In the plot below, the parameters 1/ 3LSh Sc  or 1/ 3LNu Pr  are plotted against ReL using Eq. (15) or 
(7).  Note that the curves are nearly parallel on the log-log axes since their “m” constants are of similar 
value.  The mass transfer results are, however, nearly 50% higher than those for heat transfer.  We have 
no way to explain this systematic difference without more information on the apparatus, observation 
procedures and repeated observations.  However, overall the results support the general form of the heat-
mass analogy. 
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PROBLEM 7.122 
 
KNOWN:   Dry air at prescribed temperature and velocity flowing over a wetted plate of length 500 mm 
and width 150 mm.  Imbedded electrical heater maintains the surface at Ts = 20°C. 
 
FIND:  (a)  Water evaporation rate (kg/h) and electrical power Pe (W) required to maintain steady-state 
conditions, and (b) The temperature of the plate after all the water has evaporated, for the same airstream 
conditions and heater power of part (a). 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties and (3) Heat-mass transfer 
analogy is applicable. 
 
PROPERTIES:  Table A.4, Air ( ( )f sT T T 2∞= +  = 300 K, 1 atm):  ρ = 1.16 kg/m3, cp = 1007 J/kg⋅K, 

k = 0.0263 W/m⋅K, ν = 15.94 × 10-6 m2/s, α = 2.257 × 10-5 m2/s, Table A.6, Water (Ts = 20°C = 293 K):  
ρA,s = 1/νg = 1/59.04 = 0.0169 kg/m3, hfg = 2454 kJ/K; Table A.8, Water-air (Tf = 300 K):  DAB = 0.26 × 
10-4 m2/s. 
 
ANALYSIS:  (a) Perform an energy balance on the plate, 
 in outE E 0− =& &                       e conv evapP q q 0− − =  (1) 

where the convection and evaporation rate equations are, 
 ( )conv L s sq h A T T∞= −  (2) 

 ( )evap A fg m s A,s A, fgq n h h A hρ ρ ∞= = −  (3) 

The Reynolds number for the plate length L is 

 5
L 6 2

u L 20m s 0.50mRe 6.274 10
15.94 10 m sν

∞
−

×
= = = ×

×
 

so that the flow is mixed and Eq. 7.38 is appropriate to estimate hL , 

 ( )4 / 5 1/3LL D
h LNu 0.037 Re 871 Pr

k
= = −  

 ( )
4 / 5 1/ 35 2

L
0.0263W m Kh 0.037 6.274 10 871 0.707 34.5W m K

0.5m
⎛ ⎞⋅ ⎡ ⎤= × − = ⋅⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

 

 
Invoking the heat-mass analogy, Chapter 6, with n = 1/3 
 

2 / 32 / 3 5 2
3 3L

p 4 2m AB

h 2.257 10 m s
c 1.16 kg m 1007 J kg K 1284 J m K

h D 0.26 10 m s

α
ρ

−− −

−
×

= = × ⋅ = ⋅
×

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

 
Continued... 



 
PROBLEM 7.122 (Cont.) 

 

 2 3
mh 34.5W m K 1284J m K 0.0269m s= ⋅ ⋅ =  

 
Substituting numerical values, the energy balance, Eq. (1), with As = 0.5 m × 0.15 m = 0.075 m2, 
 

 ( )
( )

2 2
e

2 3 3
P 34.5W m K 0.075m 20 35 K

0.0269 m s 0.075m 0.0169 0 kg m 2454 10 J kg K 0
− ⋅ × −

− × − × × ⋅ =
 

 eP 38.8W 83.7 44.9 W= − + =  < 
 
The evaporation rate is 

( ) 2 3
A m s A,s A,n h A 0.0269 m s 0.075m 0.0169 kg m 3600s / h 0.123kg h∞= − = × × × =ρ ρ < 

 
(b) When the plate is dry, the energy balance is 
 
 ( )e L s sP h A T T∞= −  
 
and with Pe and hL  as determined in part (a), 

 2 2
s e L sT T P h A 35 C 44.9 W 34.5W m K 0.075m 52.3 C∞= + = + ⋅ × =o o  < 

 
COMMENTS:  Using IHT Correlations Tool, External Flow, Flat Plate, the calculation of part (b) was 
performed using the proper film temperature, Tf = 318 K, to find Lh  = 32.7 W/m2⋅K and Ts = 53.3°C. 
 



PROBLEM 7.123  
KNOWN:  Convection mass transfer with turbulent flow over a flat plate (van roof).  
FIND:  (a) Location on van that will dry last, (b) Evaporation rate at trailing edge, kg/s⋅m

2
. 

 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Turbulent flow over entire plate (van top), (2) Heat-mass transfer analogy is 
applicable, (3) Perfect gas behavior for water vapor (A).  
PROPERTIES:  Table A-4, Air (300 K, 1 atm):  ν = 15.89 × 10

-6
 m

2
/s, k = 0.0263 W/m⋅K, Pr = 

0.707; Table A-8, Air-water vapor (25°C):  DAB = 0.26 × 10
-4

 m
2
/s; Table A-6, Saturated water vapor 

(300K):  ρA,sat g
1 3v  kg / m= =− 0 0256. .  

 
ANALYSIS:  (a) The mass transfer coefficient, hm(x), will be largest at x = 0 and smallest at x = L for 
turbulent flow conditions.  Hence, the trailing edge will dry last.  
(b) The evaporation rate on a per unit area basis, at the trailing edge where x = L, is given by the rate 
equation,  
 ( ) ( )A m,L A,s A, m,L A,satn h  h  1ρ ρ ρ φ∞ ∞′′ = − = −  
 
For turbulent flow the appropriate correlation for estimating hm,L is of the form 
 
 4/5 1/3

x m,x AB xSh h x/D 0.0296 Re  Sc .= =  
 
Substituting numerical values,  

 
3

-6 2 6
L

B

u L 90 10  m/h
Re 6m/15.89 10  m / s 9.44 10

3600 s/hν
∞ ×

= = × × = ×  

 

 6 2 -4 2B

AB
Sc 15.89 10  m / s/0.26 10  m / s 0.611

D
ν −= = × × =  

 

 ( ) ( ) ( )
4 / 5 1/ 34 2 6

m,Lh 0.26 10  m / s/6m 0.0296 9.44 10 0.611 0.0414 m/s.−= × × × =  
 
Hence, the evaporation flux (rate per unit area) is  
 ( )3 4 2

An 0.0414 m/s 0.0256 kg/m  1 0.8 2.12 10  kg/s m .−′′ = × − = × ⋅    < 
 
COMMENTS:  Recognize how the heat-mass analogy is utilized and the appropriate correlation 
selected from Table 7.7. 



PROBLEM 7.124  
KNOWN:  Length and thickness of a layer of benzene.  Velocity and temperature of air in parallel 
flow over the layer.  
FIND:  Time required for complete evaporation.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Smooth liquid surface and negligible free-stream 
turbulence, (3) Heat and mass transfer analogy is applicable, (4) Negligible benzene vapor 
concentration in free-stream air, (5) Isothermal conditions at 25°C.  
PROPERTIES:  Table A-4, Air (25°C, 1 atm):  ν = 15.7 × 10

-6
 m

2
/s; Table A-8, Benzene-air, (25°C, 

1 atm):  DAB = 0.88 × 10
-5

 m
2
/s, Sc = 1.78. 

 
ANALYSIS:  Applying conservation of mass to a control volume about the liquid,  

 ( )
A

d VdM
n .

dt dt
ρ

= = −l  
 
For a unit width, V = L⋅δ.  Hence  

 ( )A m A,sat A,
d

L n h L
dt
δ

ρ ρ ρ ∞′= − = − −l  
 
and integrating  

 

0 t

i 0
m

A,sat

i

m A,sat

h
 d   dt

 
t .

h

δ δ ρ
ρ

δ ρ
ρ

∫ = − ∫

=
l

l
 

 

With 5
L -6 2

u L 1 m/s 2 m
Re 1.27 10 ,

15.7 10  m / sν
∞ ×

= = = ×
×

 

the flow is laminar throughout and from Eq. 7.31,  

 ( ) ( )
5 2 1/ 2 1/ 31/2 1/3 5AB

m L
3

m

D 0.88 10  m / s
h 0.664 Re Sc 0.664 1.27 10  1.78

L 2 m
h 1.26 10  m/s

−

−

×
= = × ×

= ×

 

 
and 

 
( )

( ) ( )
3

-3 3

0.001 m 900 kg/m
t 1713 s 28.6 min.

1.26 10  m/s  0.417 kg/m
= = =

×
    < 



PROBLEM 7.125  
KNOWN:  Parallel air flow over a series of water-filled trays.  
FIND:  Power required to maintain each of the first three trays at 300K.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (a) Steady-state conditions, (2) Heat-mass transfer analogy applicable, (3) 
Perfect gas behavior for water vapor, (4) Rex,c = 5 × 105. 
 
PROPERTIES:  Table A-4, Air (300 K, 1 atm):  ν = νB = 15.89 × 10-6 m2/s; Table A-8, 
Water vapor-air (300K):  DAB = 0.26 × 10-4 m2/s, Sc = νB/DAB = 0.611; Table A-6, 
Saturated water vapor (300K):  ρA,sat = vg

1−  = 0.02556 kg/m3, hfg = 2438 kJ/kg. 
 
ANALYSIS:  Since Ts = T∞, there is no convective heat transfer, hence, 
 
 ( )tray tray fg m s A,sat fgq m h h A 1 hρ φ∞= = ⋅ ⋅ −&      (1) 
 
where  
 ( )A, A,sat A,s A,sat s/  and T .φ ρ ρ ρ ρ∞ ∞≡ =   Calculate the Reynolds number at x3, 
 
 -6 2 6

x3 3 BRe u x / 12 m/s 1.5m/15.89 10  m / s 1.133 10ν∞= = × × = ×  
 
finding that transition occurs at x = 0.662 m, a location on tray 2.  The average mass transfer 
coefficients hm  and heat rates for each tray are as follows: 
 
Tray 1:  The flow is laminar and the appropriate correlation for hm,1  and heat rate are 
 
 1/2 1/3x1 m,1 1 AB x1Sh h x / D 0.664 Re  Sc= =  

( ) ( )
1/ 2

1/ 34 2 2
m,1 -6 2

12 m/s 0.5 m
h 0.26 10  m / s/0.5 m 0.664 0.611 1.800 10  m/s

15.89 10  m / s
− −×

= × × = ×
×

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

( )2 3 3
1q 1.800 10  m/s 0.5 m 0.02556 kg/m  1 0.40 2438 10  J/kg 337 W/m.−′ = × × × − × × =    < 

 
Tray 2:  Since transition occurs over the span of tray 2, the rate equation has the form  
 ( )2 2 m,0 2 1 m,0 1 A,sat fgq x h x h  1 h .ρ φ− − ∞⎡ ⎤′ = − −⎣ ⎦      (2) 
 
          Continued …. 



PROBLEM 7.125 (Cont.)  
Note that m,0 1 m,1h h− =  from above and that m,0 2h −  is evaluated using the correlation 
 
 ( )4/5 1/3x xSh 0.037 Re 871  Sc= −  

 2
m,0 2 2h 2.193 10  m/s          q 483 W/m.−

− ′= × =      < 
 
Tray 3:  The rate equation is of the same form as Eq. (2).  Alternatively, an approximation can 
be used,  
 ( ) ( ) ( )3 m 3 2 A,sat fgq h x  x x   1  hρ φ∞′ = − −  
 
where ( )mh x  is the local value at the midspan, ( )2 3x x x / 2= + .  Using 
 
 4/5 1/3

x xSh 0.0296 Re  Sc=  
 
and substituting numerical values, find  
 ( )

2
3m xh 3.148 10  m/s          q 589 W/m.− ′= × =      < 

 



PROBLEM 7.126  
KNOWN:  Air and surface conditions for a drying process in which photographic plates are 
aligned in the direction of the air flow.  
FIND:  (a) Variation of local mass transfer convection coefficient, (b) Drying rate for fastest 
drying plate, (c) Heat addition needed to maintain the plate temperature.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Heat and mass transfer analogy is applicable, (2) Critical Reynolds 
number is Rex.c = 5 × 105, (3) Radiation effects are negligible. 
 
PROPERTIES:  Table A-4, Air (50°C = 323K):  ν = 18.2 × 10-6 m2/s; Table A-6, Water 
vapor (50°C = 323K):  ρA,sat = 0.082 kg/m3, hfg = 2383 kJ/kg; Table A-8, Water vapor-air 
(25°C = 298K) DAB = 0.26 × 10-4 m2/s; since DAB α T3/2, DAB(50°C = 323K) = 0.26 × 10-4 
(323/298)3/2 = 0.29 × 10-4 m2/s, Sc = ν/DAB = 0.62. 
 
ANALYSIS:  (a) With Rex,c = u∞xc/ν = 5 × 105, the point of transition is 
 

 
( )5 -6 2

c
5 10  18.2 10  m / s

x 1 m
9.1 m/s

× ×
= =  

 
and the variation of the local mass transfer coefficient is as shown below  

         < 
 
 
 
 
 
 
                         < 
(b) The largest evaporation will be associated with either the first plate or the fifth plate.  For 
the first plate,  
 ( )A,1 m,1 s,1 A,s A,n h A  ρ ρ ∞= −  
 
where ρA,∞ = 0 since the upstream air is dry.  Since the boundary layer is laminar over the 
entire plate, with 

 ( ) ( ) ( )6 2 5
x,1Re 9.1 m/s  0.25 m / 18.2 10  m / s 1.25 10−= × = ×  

 
          Continued … 

Eq. 7.26

Eq. 7.36

Eq. 7.26

Eq. 7.36



PROBLEM 7.126 (Cont.)  
Eq. 7.31 may be used to obtain  

( ) ( )
4 2 1/ 2 1/ 31/2 1/3 5AB

m,1 x,1
1

m,1

D 0.29 10  m / s
h  0.664 Re  Sc  0.664 1.25 10 0.62

x 0.25 m
h 0.0232 m/s.

−×
= = ×

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

 
Hence  ( ) ( )3 4

A,1n 0.0232m/s 0.25 m 1 m  0.082kg/m 4.72 10  kg/s m.−= × = × ⋅  
 
For the fifth plate,  
 ( ) ( ) ( )A,5 A,0 5 A,0 4 m s m s A,s A,0 5 0 4

n n n h A h A  .ρ ρ− − ∞− −
⎡ ⎤= − = − −⎢ ⎥⎣ ⎦

 
 
With Rex,5 = 6.25 ×105, Eq. 7.41 gives 
 

 4/5 1/3AB
m,0 5 x,5

5

Dh  0.037 Re 871  Sc
x−

⎛ ⎞ ⎡ ⎤= −⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠
 

 

 ( ) ( )
4 2 4 / 5 1/ 35

m,0 5
0.29 10  m / sh  0.037 6.25 10 871  0.62

1.25 m

−
−

⎛ ⎞ ⎡ ⎤×⎜ ⎟= × −⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠
 

 
 m,0 5h 0.0145 m/s.− =  
 
With Rex,4 = 5 × 105, Eq. 7.31 gives 
 

 1/4 1/3AB
m,0 4 x,4

4

Dh  0.664 Re  Sc
x−

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

 

 ( ) ( )
4 2 1/ 2 1/ 35

m,0 4
0.29 10  m / sh  0.664 5 10  0.62

1 m

−
−

⎛ ⎞ ⎡ ⎤×⎜ ⎟= ×⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠
 

 
 m,0 4h 0.0116 m/s.− =  
 
Hence,  
 [ ] ( )3

A,5n 0.0145m/s 1.25 m 1 m 0.0116m/s 1 m 1 m  0.082kg/m= × × − × ×  

 4
A,5n 5.35 10  kg/s m.−= × ⋅         < 

Hence the evaporation rate is largest for Plate 5.  
(c) Heat would have to be supplied to each plate at a rate which is equal to the evaporative 
cooling rate in order to maintain the prescribed temperature.  Hence  
 4 6

5 A,5 fgq n h 5.35 10 kg/s m 2.383 10  J/kg 1.275 kW/m.−= = × ⋅ × × =   < 
 
COMMENTS:  The large value of q5 is a consequence of the significant evaporative cooling 
effect. 



PROBLEM 7.127  
KNOWN:  Dimensions and temperature of a cooling pond.  Conditions of air flow.  
FIND:  Daily make-up water requirement.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Turbulent boundary layer over the entire 
surface, (3) Heat and mass transfer analogy is applicable.  
PROPERTIES:  Table A-4, Air (T = 300K, 1 atm):  ν = 15.89 × 10-6 m2/s, k = 0.0263 
W/m⋅K, Pr = 0.707; Table A-6, Water vapor (300K):  ρA,sat g

1v= −  = 0.0256 kg/m3; Table A-

8, Water vapor-air (300K):  DAB = 0.26 × 10-4 m2/s, Sc = ν/DAB = 0.61. 
 
ANALYSIS:  The make-up water requirement must equal the daily water loss due to 
evaporation,  
 ( ) ( ) ( )evap m A,sat s A,satM m t h W L  T T t.ρ φ ρ∞ ∞⎡ ⎤Δ = Δ = ⋅ − ⋅Δ⎣ ⎦&  
 
From Eq. 7.41 with A = 0, 4/5 1/3L LSh 0.037 Re  Sc ,=  with 
 

 8
L -6 2

u L 2 m/s 1000 mRe 1.26 10
15.89 10  m / sν

∞ ×
= = = ×

×
 

 

 ( ) ( )
4 / 5 1/ 38 4LSh 0.037 1.26 10  0.61 9.48 10= × = ×  

 

 
4 2 4LAB

m,L
D Sh 0.26 10  m / s 9.48 10h

L 1000 m

−× × ×
= =  

 
 3

m,Lh 2.47 10  m/s.−= ×  
 
Hence, the make-up water requirement is  
 ( ) ( )-3 3M 2.47 10  m/s 500 m 1000 m  0.0256 kg/m 24h 3600 s/hΔ = × × ×  
 
 6M 2.73 10  kg/day.Δ = ×         < 



PROBLEM 7.128  
KNOWN:  Dimensions and initial temperature of plate covered by liquid film.  Properties of liquid.  
Velocity and temperature of air flow over the plates.  
FIND:  Initial rate of heat transfer from plate and rate of change of plate temperature.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Negligible effect of conveyor velocity on boundary layer development, (2) 
Plates are isothermal and at same temperature as liquid film, (3) Negligible heat transfer from sides of 
plate, (4) Smooth air-liquid interface, (5) Applicability of heat/mass transfer analogy, (6) Negligible 
solvent vapor in free stream, (7) Rex,c = 5 × 105, (8) Constant properties. 

PROPERTIES:  Table A-1, AISI 1010 steel (313K):  c = 441 J/kg⋅K, 37832 kg / m .ρ =   Table A-4, 

Air (p = 1 atm, Tf = 303K): 6 216.2 10 m / s, k 0.0265 W / m K, Pr 0.707.ν −= × = ⋅ =   Prescribed:  Solvent:  
3 5 2 5

A,sat AB fg0.75 kg / m , D 10 m / s, h 9 10 J / kg.ρ −= = = ×  
SOLUTION:  The initial rate of heat transfer from the plate is due to both convection and 
evaporation. 
 ( ) ( )conv evap s i A fg s i m s A,sat fgq q q h A T T n h h A T T h A hρ∞ ∞= + = − + = − +  

With 6 2 4
LRe u L / 1m / s 1m /16.2 10 m / s 6.17 10 ,ν −

∞= = × × = ×  flow is laminar over the entire surface.  
Hence, 

 ( ) ( )L
1/ 2 1/ 31/ 2 1/ 3 4

LNu 0.664 Re Pr 0.664 6.17 10 0.707 147= = × =  

 ( ) ( )L
2h k / L Nu 0.0265 W / m K /1m 147 3.9 W / m K= = ⋅ = ⋅  

Also, with 6 2 5 2
ABSc / D 16.2 10 m / s /10 m / s 1.62,ν − −= = × =  

 ( ) ( )L
1/ 2 1/ 31/ 2 1/ 3 4

LSh 0.664 Re Sc 0.664 6.17 10 1.62 194= = × =  

 ( ) ( )L
5 2

m ABh D / L Sh 10 m / s /1m 194 0.00194m / s−= = =  

Hence, with As = 2 L2 = 2 m2, 

( )2 2 3 5q 2 m 3.9 W / m K 20 C 0.00194 m / s 0.75 kg / m 9 10 J / kg 156 W 2619 W 2775 W= ⋅ ° + × × × = + =⎡ ⎤
⎣ ⎦ < 

Performing an energy balance at an instant of time for a control surface about the plate, out stE E ,− =& &  
we obtain (Eq. 5.2), 

 
( )2 23i

dT q 2775W 0.13 C / s
dt L c 7832kg / m 0.006m 1m 441J / kg Kρδ

= − = − = − °
× ⋅

 < 

 
COMMENTS:  (1) Heat transfer by evaporation exceeds that due to convection by more than an 
order of magnitude, (2) The total heat rate is small enough to render the lumped capacitance 
approximation excellent. 



PROBLEM 7.129  
KNOWN:  Dimensions of round jet array.  Jet exit velocity and temperature.  Temperature of paper.  
FIND:  Drying rate per unit surface area.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Applicability of heat and mass transfer analogy.  (2) Paper motion has a 
negligible effect on convection (u << Ve), (3) Air is dry. 
 
PROPERTIES:  Table A-4, Air (300K, 1 atm):  215.89 10 m / s;6ν = × −  Table A-6, Saturated water 

(300K): 1 3
A,sat gv 0.0256 kg / m ;ρ −= =  Table A-8, water vapor-air (300K):  4 2

ABD 0.26 10 m / s,−= ×  
Sc = 0.61.  
ANALYSIS:  The average mass evaporation flux is 
 ( )A m A,s A,e m A,sn h hρ ρ ρ′′ = − =  

For an array of round nozzles, 

 2 / 3 0.42Sh 0.5K G Re Sc=  

where 6 2
eRe V D / 20 m / s 0.02m /15.89 10 m / s 25,170ν −= = × × =  and, with H/D = 10 and 

2 2
rA D / 4S 0.0314,π= =  

 

 

0.05 0.056 6

1/ 2
r

H / D 10K 1 1 0.723
3.390.6 / A

− −⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥⎜ ⎟= + = + =⎜ ⎟⎢ ⎥⎜ ⎟ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎣ ⎦⎢ ⎥⎣ ⎦

 

 

 
( ) ( )

1/ 2
1/ 2 r
r 1/ 2

r

1 2.2 A 1 0.390G 2 A 0.354 0.189
1 0.2 4 0.1771 0.2 H / D 6 A

− −
= = =

++ −
 

 
Hence, 
 

 ( ) ( )
4 2

2 / 3 0.42AB
m

D 0.26 10 m / s
h Sh 0.5 0.723 0.189 25,170 0.61 0.062 m / s

D 0.02m

−×
= = × × =⎡ ⎤

⎢ ⎥⎣ ⎦
 

 
The average evaporative flux is then 
 

( )3 2
An 0.062m / s 0.0256kg / m 0.0016kg / s m′′ = = ⋅     < 

 
COMMENTS:  Note that, for maximum evaporation, the ratio D/H = 0.1 is less than the optimum of 

)opD / H 0.2,≈  as is S/H = 0.5 less than )opS / H 1.4.≈   If H is reduced by a factor of 2 and S is 

increased by 40%, a near optimal condition could be achieved. 
 



PROBLEM 7.130 
 
KNOWN:  Paper mill process using radiant heat for drying. 
 
FIND:  (a) Evaporative flux at a distance 1 m from roll edge; corresponding irradiation, G (W/m2),  
required to maintain surface at Ts = 300 K, and (b) Compute and plot variations of hm,x(x), AN′′ (x), and 
G(x) for the range 0 ≤ x ≤ 1 m when the velocity and temperature are increased to 10 m/s and 340 K, 
respectively. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Heat-mass transfer analogy, (3) Paper slurry (water-
fiber mixture) has water properties, (4) Water vapor behaves as perfect gas, (5) All irradiation absorbed 
by slurry, (6) Negligible emission from the slurry, (7) Rex,c = 5 × 105. 
 
PROPERTIES:  Table A.4, Air (Tf = 315 K, 1 atm):  ν = 17.40 × 10-6 m2/s, k = 0.0274 W/m⋅K, Pr = 
0.705;  Table A.8, Water vapor-air (Tf = 315 K):  DAB = 0.26 × 10-4 m2/s (315/298)3/2 = 0.28 × 10-4 m2/s, 
Sc = νB/DAB = 0.616;  Table A.6, Saturated water vapor (Ts = 330 K):  ρA,sat = 1/vg = 0.1134 kg/m3, hfg = 
2366 kJ/kg. 
 
ANALYSIS:  (a) Recognize that the drying process can be modeled as flow over a flat plate with heat 
and mass transfer.  For a unit area at x = 1 m, 
 
 ( ) ( ) ( )A,x m,x A,s A, m,x A,sat s A,satn h h T Tρ ρ ρ φ ρ∞ ∞ ∞⎡ ⎤′′ = − = −⎣ ⎦  (1) 
 
Evaluate Rex to determine the nature of flow, select a correlation to estimate hm,x,  
 ( ) 6 2 5

x BRe u x 5m s 1m (17.40 10 m s) 2.874 10−
∞= = × × = ×ν . 

 
Since Rex < 5 × 105, the flow is laminar.  Invoking the heat-mass analogy, 

 m,x 1/ 2 1/ 3
x x

AB

h x
Sh 0.332 Re Sc

D
= =  (2) 

 ( ) ( ) ( )
1/ 2 1/ 34 2 5 3

m,xh 0.28 10 m s 1m 0.332 2.874 10 0.616 4.24 10 m s− −= × × × = × . 

Hence, the evaporative flux at x = 1 m is 

 ( )3 3 4 2
A,xn 4.24 10 m s 0.1134kg m 0 4.81 10 kg s m− −′′ = × − = × ⋅  < 

From an energy balance on the differential element at x = 1 m (see above), 
 ( )conv evap x s A,x fgG q q h T T n h∞′′ ′′ ′′= + = − + . (3) 
 

Continued... 



 
PROBLEM 7.130 (Cont.) 

 
To estimate hx, invoke the heat-mass transfer analogy using the correlation of Eq. (2), 
 

1/ 3 1/ 3
3 2

x m,x 4 2AB

k Pr 0.0274 W m K 0.705
h h 4.24 10 m s 4.34 W m K

D Sc 0.6160.28 10 m s
−

−
⋅

= = × = ⋅
×

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 (4) 

 
Hence, from Eq. (3), the radiant power required to maintain the slurry at Ts = 330 K is 
 
 ( )2 4 2 3G 4.34 W m K 330 300 K 4.81 10 kg s m 2366 10 J kg−= ⋅ − + × ⋅ × ×  

 ( ) 2 2G 130 1138 W m 1268 W m= + = . < 
 
(b) Equations (1), (3) and (4) were entered into the IHT Workspace.  The Correlations Tool, External 
Flow, Local coefficients for Laminar or Turbulent Flow was used to estimate the heat transfer convection 
coefficient.  The results for hm,x(x), A,xn′′ (x) and G(x) were evaluated, and are plotted below for Ts = 340 

K and u∞  = 10 m/s. 
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COMMENTS:  (1) The abrupt change in the parameter plots occurs at the transition, xc = 0.9 m. 
 



PROBLEM 7.131  
KNOWN:  Geometry and air flow conditions for a water storage channel.  
FIND:  (a) Evaporation rate, (b) Expression for rate of change of water layer depth and time required 
for complete evaporation.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Smooth water surface and negligible free stream 
turbulence, (3) Heat and mass transfer analogy is applicable, (4) Rex,c = 5 × 10

5
, (5) Perfect gas 

behavior for water vapor.  
PROPERTIES:  Table A-4 Air (25°C = 298K):  ν = 15.71 × 10

-6
 m

2
/s; Table A-6, Water (25°C = 

298K):  ρA,sat = vg
1−  = 0.0226 kg/m

3
, ρf = vf

1−  = 997 kg/m
3
; Table A-8, Water vapor-air (25°C = 

298K):  DAB = 0.26 × 10
-4

 m
2
/s, Sc = ν/DAB = 0.60. 

 
ANALYSIS:  (a) The evaporation rate is ( ) ( )A m s A,sat A, m A,satn h A  h w Lρ ρ ρ∞= − = ×  

( )1 φ∞− .  With 
 
 -6 2 6

LRe u L/ 5 m/s 25 m/15.71 10  m / s 7.96 10ν∞= = × × = ×  
 

Eq. 7.42 yields  ( ) ( )
4 / 5 1/ 36

LSh 0.037 7.96 10 871  0.6 9616= × − =
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

   ( )-4 2
m ABh 9616 D / L 9616 0.26 10  m / s / 25 m 0.010 m/s.= = × × =  

With w = 2z = 2m, 

 ( ) ( )3
An 0.01 m/s 2m 25m 0.0226 kg/m 0.5 0.00565 kg/s 20.3 kg/h.= × = =  < 

(b) Performing a mass balance on a control volume about the water, 

 ( ) ( ) ( ) ( )2
A A,st f m A,sat f

d d
n m V           h 2 z L  1  z L

dt dt
ρ ρ φ ρ∞− = = − − =&  

 ( )A.sat
m

f

dz
h 1 .

dt
ρ

φ
ρ ∞= − −  

Integrating, ( )
0 t

z 0

A,sat
m

f
 dz h 1   dt

ρ
φ

ρ ∞∫ = − − ∫  

( )

3
6f

3m A,sat

z 1 1 m 997 kg/m
t  8.82 10  s 2451 h 102 d.

h 1 0.01 m/s 0.0226 kg/m  1 0.5

ρ

ρ φ∞

×
= = = × = =

− × −
 < 

 
COMMENTS:  Although the evaporation rate decreases with increasing time due to decreasing As, 
dz/dt remains constant and the water depth decreases linearly. 



PROBLEM 7.132  
KNOWN:  Mass change for a given time period of a solid naphthalene cylinder subjected to cross 
flow of air for prescribed conditions.  
FIND:  (a) Mass transfer coefficient, mh ,  based upon experimental observations and (b) mh  based 
upon appropriate correlation.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible naphthalene vapor in free stream, (3) 
Heat-mass transfer analogy applies.  
PROPERTIES:  Table A-4, Air (299K, 1 atm):  ν = 15.80 × 10

-6
 m

2
/s; Table A-6, Naphthalene 

vapor-air (298K, 1 atm):  DAB = 0.62 × 10
-5

 m
2
/s; Naphthalene (given):  M = 128.16 kg/kmol, psat = 

p × 10
E

 where E = 8.67 - (3766/T) with p[bar] and T[K]. 
 
ANALYSIS:  (a) The rate equation for the sublimation of naphthalene vapor from the solid 
naphthalene can be written in terms of the mass transfer coefficient. 

 
( )

A
m

s A,s A,

nh
A ρ ρ ∞

=
−

        (1) 

 
where sA D .π= l   From the mass loss and time observations 

 
3

7
A

m 0.35 10 kgn 1.50 10  kg/s.
t 39 60 s

−
−Δ ×

= = = ×
Δ ×

 
 
The saturation density of the vapor at the solid surface, ρA,s, can be determined from the perfect gas 
relation,  

 ( )
( )

sat s
A,s A,s A

A s

p T
C M .

/ T
= =

ℜ M
ρ        (2) 

 
The saturation pressure, psat, is given by 
 
 E

satp p 10= ×          (3) 
 
where ( ) ( )E 8.67 3766/T 8.67 3766 / 299K 3.925= − = − = −  

 
2

4 5 2
1 N/m 1 in 1 barp 750.6 mm Hg 1.001 bar

25.4 mm2.953 10 in Hg 1 10  N/m−
= × × × =

× ×
 

or 3.925 4
satp 1.001 bar 10 1.190 10 bar.− −= × = ×  

          Continued … 



PROBLEM 7.132 (Cont.)  
Substituting into Eq. (2),  

-2 3
4 4 3

A,s
8.314 10  m bar/kmol K1.190 10 bar/ 299K 6.135 10 kg/m .

128.16 kg/kmol
ρ − −× ⋅ ⋅

= × × = ×  
 
Using the parameters required for Eq. (1), the mass transfer coefficient is  

 
( ) ( )

7
4 3

m -3 3
1.50 10 kg/sh 6.135 10 0  kg/m

18.4 10 m  88.9 10 mπ

−
−

−
× ⎡ ⎤= × −⎢ ⎥⎣ ⎦× ×

 

 
 2

mh 4.76 10 m/s.−= ×          < 
 
(b) Invoking the heat-mass transfer analogy and assuming a Prandtl number ratio of unity, Eq. 7.53 
can be used to estimate hm,  
 

 m nmD D
AB

h DSh C Re  Sc .
D

= =  

 
With  

 ( )3 6 2
D

VDRe 12 m/s 18.4 10 m/15.80 10 m / s 13,975
ν

− −= = × × =  
 
it follows from Table 7.4 that C = 0.26 and m = 0.6.  With  
 6 2 5 2

ABSc /D 15.80 10 m / s/0.62 10 m / s 2.55ν − −= = × × =  
 

n = 0.37 and  
 ( ) ( )0.6 0.37

DSh 0.26 13,975 2.55 112.9= =  
 
and  

 
5 2

2ABDm 3
D 0.62 10  m / sh Sh  112.9 3.80 10  m/s.

D 18.4 10  m

−
−

−
×

= = × = ×
×

   < 

 
COMMENTS:  The result from the correlation is 20% less than the experimental result.  This may be 
considered reasonable in view of the uncertainties associated with the observations and the 
approximate nature of the correlation. 
 



PROBLEM 7.133 
 
KNOWN:  Flow of dry air over a cylindrical medium saturated with water. 
 
FIND:  (a) Mass rate of water vapor evaporated per unit length An′ , when water-air is at 300 K, (b) 
Briefly explain change in mass rate if temperatures are at 325 K. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Heat-mass transfer analogy. 
 
PROPERTIES:  Table A.4, Air (300 K, 1 atm):  ν = 15.89 × 10-6 m2/s, Pr = 0.707; Air (325 K, 1 atm):  ν 
= 18.41 × 10-6 m2/s, Pr = 0.703;  Table A.8, Water vapor-air (300 K):  DAB = 0.26 × 10-4 m2/s;  Table A.6, 
Water vapor (300 K, 1 atm):  ρA,sat = (vg)-1 = (39.13 m3/kg)-1 = 0.0256 kg/m3; Water vapor (325 K, 1 atm):  
ρA,sat = (vg)-1 = (11.06 m3/kg)-1 = 0.0904 kg/m3. 
 
ANALYSIS:  (a) For cross-flow over a cylinder, Eq. 7.52, 
 

 m 1/ 3DSh C Re Sc=  (1) 
 
where m,n are taken from Table 7.2.  Calculate the Reynolds number, ReD = VD ν  = 15 m/s × 0.04 
m/15.89 × 10-6 m2/s = 37,760.  With C = 0.193, m = 0.618, and Sc ≡ ABDν , 
 

 ( )
1/ 30.618 6 2 4 2mD

AB

h DSh 0.193 37,760 15.89 10 m s 0.26 10 m s 110.4
D

− −⎡ ⎤= = × × =⎢ ⎥⎣ ⎦
(2) 

 

 4 2Dm ABh Sh D D 110.4 0.26 10 m s 0.04m 0.0717 m s−= = × × =  
 
The evaporation rate, with sA Dπ= ⋅l , is 
 
 ( )A m s A,s A,n h A ρ ρ ∞= −                   ( )A A m A,s A,n n h Dπ ρ ρ ∞′ = = −l  (3) 

 ( )( ) 3 4
An 0.0717 m s 0.04 m 0.0256 0 kg m 2.31 10 kg s mπ −′ = × − = × ⋅  < 

 
(b) The foregoing equations were entered into the IHT Workspace, and using the Properties Tools for air 
and water vapor thermophysical properties, the evaporation rate An′  was calculated as a function of air-
water temperatures (Ts = Tinf). 
 

Continued... 



PROBLEM 7.133 (Cont.)  
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As expected, the evaporation rate increased with increasing temperature markedly.  For a 50 K increase, 
the evaporation rate increased by a factor of approximately 12. 
 
COMMENTS:  (1) What parameters cause this high sensitivity of An′  to Ts?  From the IHT analysis, we 
observed only modest changes in DAB (0.26 to 0.33 × 10-4 m2/s) and mh  (0.07273 to 0.0779 m/s) over the 
range 300 to 350 K.  The density of water vapor, A,sρ , however, is highly temperature dependent as can 

be seen by examining the steam tables, Table A.6.  Find A,sρ  (300 K) = 0.02556 kg/m3 while A,sρ  
(350 K) = 0.260 kg/m3, which accounts for more than a factor of 10 change. 
 
(2) A copy of the IHT Workspace used to perform the analysis is shown below. 
 

// The Mass Transfer Rate Equation: 
n'A = hmbar * pi * D * (rhoAs - 0 )       // Eq (3) 
n'A_plot = 1e4 * n'A                           // Scale change for plotting 
 
// Mass Transfer Coefficient Correlation: 
ShDbar = C * ReD^m * Sc^(1/3)        // Eq (1,2) 
ShDbar = hmbar * D / DAB 
C = 0.193                // Table 7.2,  4000 <= ReD <= 40000 
m = 0.618 
ReD = uinf * D / nu 
Sc = nu / DAB 
 
// Properties Tool - Water Vapor: 
// Water property functions :T dependence, From Table A.6 
// Units: T(K), p(bars);  
xs = 1   // Quality (0=sat liquid or 1=sat vapor) 
rhoAs = rho_Tx("Water",Ts,xs) // Density, kg/m^3 
 
// Properties Tool - Air: 
// Air property functions : From Table A.4 
// Units: T(K); 1 atm pressure 
nu = nu_T("Air",Tf)  // Kinematic viscosity, m^2/s 
 
// Properties, Table A.8, Water Vapor - Air: 
DAB = 0.26e-4 * ( Tf / 298 )^1.5 // Table A.8 
Tf = (Ts + Tinf ) / 2 
 
// Assigned Variables: 
Ts = 300   // Surface temperature, K 
D = 0.040   // Diameter, m 
uinf = 15   // Airstream velocity, m/s 
Tinf = Ts   // Airstream temperature, K 

 



PROBLEM 7.134 
 

KNOWN:  Dry air at prescribed temperature and velocity flowing over a long, wetted cylinder of 
diameter 20 mm.  Embedded electrical heater maintains the surface at Ts = 20°C. 
 
FIND:  (a) Water evaporation rate per unit length (kg/h⋅m) and electrical power per unit length eP′  (W/m) 
required to maintain steady-state conditions, and (b) The temperature of the cylinder after all the water 
has evaporated for the same airstream conditions and heater power of part (a). 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties and (3) Heat-mass transfer 
analogy is applicable. 
 
PROPERTIES: Table A.4, Air ( ( )f sT T T 2∞= +  = 300 K, 1 atm):  ρ = 1.16 kg/m3, cp = 1007 J/kg⋅K, 

k = 0.0263 W/m⋅K, ν = 15.94 × 10-6 m2/s, α = 2.257 × 10-5 m2/s, Pr = 0.707. Table A.6, Water (Ts = 20°C 
= 293 K):  ρA,s = 1/νg = 1/59.04 = 0.0169 kg/m3, hfg = 2454 kJ/K; Table A.8, Water-air (Tf = 300 K):  DAB 
= 0.26 × 10-4 m2/s. 
 
ANALYSIS: (a) Perform an energy balance on the cylinder, 
 in outE E 0− =& &                       e conv evapP q q 0′ ′ ′− − =  (1) 

where the convection and evaporation rate equations are, 
 ( )conv D sq h D T Tπ ∞′ = −  (2) 

 ( )evap A fg m A,s A, fgq n h h D hπ ρ ρ ∞= = −  (3) 

The convection coefficient can be estimated from the Churchill-Bernstein correlation, Eq. 7.54, 

 
( )

4 / 55 /81/ 2 1/ 3
D DD 1/ 42 / 3

0.62 Re Pr Re
Nu 0.3 1

282,000
1 0.4 Pr

= + +

+

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎡ ⎤ ⎣ ⎦

⎣ ⎦

 

 D 6 2
VD 15 m s 0.020 m

Re 18,821
15.94 10 m sν −

×
= = =

×
 

 ( ) ( )

( )

4 / 55/81/ 2 1/ 3
D 1/ 42 / 3

0.62 18,821 0.707 18,821
Nu 0.3 1 76.5

282,000
1 0.4 0.707

= + + =

+

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎡ ⎤ ⎣ ⎦

⎣ ⎦

 

 

 2
DD

k 0.0263 W m K
h Nu 76.5 101W m K

D 0.020 m
⋅

= = × = ⋅  

Continued... 



 
PROBLEM 7.134 (Cont.) 

 
Invoking the heat-mass analogy, Chapter 6, with n = 1/3 
 

 
2 / 32 / 3 5 2

3 3D
p 4 2m AB

h 2.257 10 m s
c 1.16 kg m 1007 J kg K 1063J m K

h D 0.26 10 m s

α
ρ

−

−

×
= = × ⋅ = ⋅

×

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

 
 2 3

mh 101W m K 1063J m K 0.095m s= ⋅ ⋅ =  
 
Substituting numerical values, the energy balance, Eq. (1), 
 

 ( )
( )

2
e

3 3
P 101W m K 0.020m 20 35 K

0.095m s 0.020m 0.0169 0 kg m 2454 10 J kg K 0
π

π
− ⋅ × × −

− × × − × × ⋅ =
 

 eP 95.1W m 247 W m 152 W m= − + =  < 
 
The evaporation rate is 

 ( ) ( ) 3
A m A,s A,n h D 0.095m s 0.020 m 0.0169 0 kg m 0.362 kg h mπ ρ ρ π∞= − = × − = ⋅  < 

 
(b) When the cylinder is dry, the energy balance is 
 
 ( )e D sP h D T Tπ ∞′ = −  

 ( )2
s e DT T P h D 35 C 152 W m 101W m K 0.020m 58.9 Cπ π∞ ′= + = + ⋅ × =o o  < 

 
COMMENTS:  Using IHT Correlations Tool, External Flow, Cylinder, the calculation of part (b) was 
performed using the proper film temperature, Tf = 316.8 K, to find Dh  = 99.4 W/m2⋅K and Ts = 52.6°C. 
 
 
 



PROBLEM 7.135 
 

KNOWN:  Dry air at prescribed temperature and velocity flows over a rod covered with a thin porous 
coating saturated with water.  The ends of the rod are attached to heat sinks maintained at a constant 
temperature. 
 
FIND:  Temperature at the midspan of the rod and evaporation rate from the surface using a steady-state, 
finite-difference analysis.  Validate your code, without the evaporation process,  by comparing the 
temperature distribution with the analytical solution of a fin. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in rod, (3) Constant 
properties, and (4) Heat-mass transfer analogy is applicable. 
 
PROPERTIES:  Table A.4, Air ( fT , see Eq. (2); 1 atm):  ρ, cp, k, α, Pr;  Table A.6, Water (Tm = Tsat,m, 1 
atm):  A,sat g1ρ ν= , hfg;   Table A.8, Water Vapor-Air ( fT , 1 atm):  DAB = DAB(298 K) × ( fT /298)1.5. 
 
ANALYSIS:   As suggested,  the 10-node network shown above represents the half-length of the system.  
Performing an energy balance on the control volume about the m-th node, the finite-difference equation 
for the system is derived. 
 in outE E 0− =& &  
 a evap b cq q q q 0− + + =  

 ( )m 1 m m 1 m
c A,m fg,m m c

T T T TkA n h hP x T T kA 0
x x

+ −
∞

− −
− + Δ − + =

Δ Δ
 (1) 

where the cross-sectional area and perimeter are Ac = πD2/4 and P = πD, respectively.  The average heat 
transfer coefficient h  can be evaluated using the Churchill-Bernstein correlation, Eq. 7.54, evaluating 
thermophysical properties at an average film temperature for the system, 
 
 ( )f 1 bT T T 2 T 2∞⎡ ⎤= + +⎣ ⎦  (2) 
 
The evaporation rate from Eq. (1) can be expressed as 
 ( )A,m D,m A,s,mn h P x 0ρ= Δ −  (3) 

where D,mh  can be determined from the heat-mass analogy, Eq. 6.60, with n = 1/3, 

 
2 /3

p
m AB

h c
h D

αρ
−⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (4) 
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where all properties are evaluated at fT .  The density of water vapor, A,s,mρ , as well as the heat of 

vaporization, fg,mh , must be evaluated at the nodal temperature Tm. 
 
Using the IHT Correlation Tool, External Flow, Cylinder, an estimate of Dh  = 101 W/m2⋅K was 
obtained with fT  = 298.5 K (based upon assumed value of T1 = 27°C).  From the analogy, Eq. (4), find 
that D,mh  = 0.0772 m/s.  Using the IHT Workspace, the finite-difference equations, Eq. (1), were 
entered and the temperature distribution (K, Case 1) determined as tabulated below.  Using this same code 
with D,mh  = 1.0 × 10-10 m/s, the temperature distribution (K, Case 2) was obtained.  The results 
compared identically with the analytical solution for a fin with an adiabatic tip using the IHT Model, 
Extended Surface, Rectangular Pin Fin. 
 
Case T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Tb <
1 287 287.2 287.6 288.3 289.4 290.9 292.9 295.4 298.6 302.7 308 
2 300.3 300.4 300.6 300.9 301.4 302.1 302.8 303.8 305 306.4 308 
 
The evaporation rate obtained by summing rates from each nodal element including node b is 

 5
A,totn 1.08 10 kg s−= ×  < 

COMMENTS:  A copy of the IHT Workspace used to perform the above analysis is shown below. 
 

// Nodal finite-difference equations (Only Nodes 1, 2 and 10 shown): 
k * Ac * (T2 - T1) / delx - mdot1 * hfg1 + hbar * P * delx * (Tinf - T1) + k * Ac * (T2 - T1) / delx = 0 
mdot1 = hmbar * P * delx * rhoA1 
k * Ac * (T3 - T2) / delx - mdot2 * hfg2 + hbar * P * delx * (Tinf - T2) + k * Ac * (T1 - T2) / delx = 0 
mdot2 = hmbar * P * delx * rhoA2 
........ 
........ 
k * Ac * (Tb - T10) / delx - mdot10 * hfg10 + hbar * P * delx * (Tinf - T10) + k * Ac * (T9 - T10) / delx = 0 
mdot10 = hmbar * P * delx * rhoA10 
 
// Evaporation Rate: 
mtot = mdot1/2 + mdot2 + mdot3 + mdot4 + mdot5 + mdot6 + mdot7 + mdot8 + mdot9 + mdot10 + mdotb 
mdotb = hmbar * P * delx/2 * rhoAb 
 
// Properties Tool - Water Vapor, rhoAm and hfgm 
// Water property functions :T dependence, From Table A.6 
// Units: T(K), p(bars);  
x = 1    // Quality (0=sat liquid or 1=sat vapor) 
rhoA1 = rho_Tx("Water",T1,x)  // Density, kg/m^3 
hfg1 = hfg_T("Water",T1)  // Heat of vaporization, J/kg 
rhoA2 = rho_Tx("Water",T2,x)  // Density, kg/m^3 
hfg2 = hfg_T("Water",T2)  // Heat of vaporization, J/kg 
..... 
..... 
rhoA10 = rho_Tx("Water",T10,x) // Density, kg/m^3 
hfg10 = hfg_T("Water",T10)  // Heat of vaporization, J/kg 
rhoAb = rho_Tx("Water",Tb,x)  // Density, kg/m^3 
hfgb = hfg_T("Water",Tb)  // Heat of vaporization, J/kg 
 
// Assigned Variables 
Ac = pi * D^2 /4   // Cross-sectional area, m^2 
P = pi * D    // Perimeter, m 
D = 0.020    // Diameter, m 
delx = 0.125 /10   // Spatial increment, m 
k = 175    // Thermal conductivity, W/m.K 
Tb = 35 + 273   // Base temperature, K 
Tinf = 20 + 273   // Fluid temperature, K 
hmbar = 0.07719   // Average mass transfer coefficient, m/s 
hbar = 101   // Average heat transfer coefficient, W/m^2.K 
 



PROBLEM 7.136 
KNOWN:  The dimensions of a cylinder which approximates the human body.  
FIND:  (a) Heat loss by forced convection to ambient air, (b) Total heat loss when a water film covers 
the surface.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Direct contact between skin and air (no clothing), (2) Negligible radiation 
effects, (3) Heat and mass transfer analogy is applicable, (4) Water vapor is an ideal gas.  
PROPERTIES:  Table A-6, Water (30°C = 303 K):  ρA,sat = 1

gv−  = 0.0336 kg/m
3
, hfg = 2431 kJ/kg; 

Water (20°C = 293K):  ρA,sat = 0.017 kg/m
3; Table A-4, Air: (T∞ = 20°C = 293K):  ν = 15.27 × 10

-6
 

m
2
/s, k = 25.7 × 10

-3
 W/m⋅K, Pr = 0.71; Table A-8, Water vapor-air (300K):  DAB = 26 × 10

-6
 m

2
/s, 

Sc = ν/DAB = 0.59. 
 
ANALYSIS:  (a) The heat rate is  
 ( ) ( )sq h DL  T T .π ∞= −  
 
With 

 ( ) ( ) 5
D -6 2

10 m/s  0.3 mVDRe 1.96 10
15.27 10  m / sν

= = = ×
×

 

obtain h  from Eq. 7.53, where n = 0.37 and, from Table 7.4, C = 0.26 and m = 0.6,  

 ( ) ( ) ( )
0.6 0.37 0.255DNu 0.6 1.96 10  0.71  0.71/0.71 343.= × =  

 

Hence 
3

2D
k 25.7 10  W/m Kh Nu  343 29.4 W/m K
D 0.3 m

−× ⋅
= = × = ⋅  

and ( ) ( )2q 29.4 W/m K 0.3 m 1.75 m  30 20 C 485 W.π= ⋅ × × − =o    < 
 
(b) The total heat loss with the water film includes latent, as well as sensible, contributions and may be 
expressed as  
 ( ) ( )s A fgq h DL  T T n  hπ ∞= − + &  
 
where ( ) ( )A m A,sat s A,n h  DL  Tπ ρ ρ ∞⎡ ⎤= −⎣ ⎦&  

 ( ) ( ) ( )3 3
A,sat s A, A,satT 0.0336 kg/m           T 0.6 0.017 0.010 kg/m .ρ ρ φρ∞ ∞= ≈ = =  

 
          Continued … 



PROBLEM 7.136 (Cont.)  
The convection mass transfer coefficient may be obtained by expressing the mass transfer analog of 
Eq. 7.53.  Neglecting the Pr ratio, the analogous form is  

 ( ) ( )

0.6 0.37D D
0.6 0.375D

Sh 0.26 Re  Sc

Sh 0.26 1.96 10 0.59 320.

=

= × =
 

 
Hence  

 
4 2

AB
m

D 320 0.26 10  m / sh 320 0.028 m/s.
D 0.3 m

−× ×
= = =  

 
The evaporation rate is then  

 ( ) [ ] 3
A

3
A

n 0.028m/s 0.3 m 1.75 m  0.0336 0.010  kg/m
n 1.09 10  kg/s.

π
−

= × × −
= ×

&

&
 

 
Hence,  
 -3 6q 485 W 1.09 10 kg/s 2.431 10  J/kg= + × × ×  
 
 q 485 W 2650 W 3135 W.= + =        < 
 
COMMENTS:  The evaporative (latent) heat loss dominates over the sensible heat loss.  Its effect is 
often felt when stepping out of a swimming pool or other body of water. 
 



PROBLEM 7.137 
KNOWN:  Horizontal tube exposed to transverse stream of dry air.  
FIND:  Equation to determine heat transfer enhancement due to wetting.  Evaluate enhancement for 
prescribed conditions.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Heat-mass transfer analogy applicable, (3) Water 
vapor behaves as perfect gas.  
PROPERTIES:  Table A-4, Air (310K, 1 atm):  ρ = 1.1281 kg/m

3
,  cp = 1007.4 J/kg,  ν = 16.90 × 10

-

6
 m

2
/s, Pr = 0.706; Table A-8, Air-water vapor mixture (310K):  DAB ≈ 0.26 × 10

-4
 m

2
/s, Sc = 

νB/DAB = 0.650; Table A-6, Saturated water vapor (320K):  ρA,sat = 1/vg = 0.07153 kg/m
3
, hfg = 

2390 kJ/kg.  
ANALYSIS:  The enhancement due to wetting can be expressed as the ratio of the wet-to-dry cylinder 
heat fluxes.  

 conv evap evapw
d conv conv

q q qq 1
q q q

′′ ′′ ′′+′′
= = +

′′ ′′ ′′
 

 
where  
 ( ) ( )conv s evap A fg m A,s fg m A,sat fgq h T T           q m h h  A, h h   h .ρ ρ ρ∞′′ ′′ ′′= − = = − ∞ =&  
 
Invoking the heat-mass transfer analogy, using Eq. 6.60, find  

 ( ) ( ) ( )2 / 31 n
p pB Bm

h  c  Le  c  Sc/Pr
h

ρ ρ−= =  

 
assuming n = 1/3 with ρA,∞ = 0, find 
 

 ( ) ( ) ( )
1 A,sat fg2 / 3w

p Bd s

hq 1  c Sc/Pr  .
q T T

ρ
ρ

−

∞

′′ ⎡ ⎤= + ⎢ ⎥′′ ⎣ ⎦ −
     < 

 
Substituting numerical values, the enhancement is  

( )

12 / 3 3 3
w

3d

q kg J 0.650 0.07153 kg/m 2390 10  J/kg
1  1.1281 1007.4  9.0.

q kg 0.706 320 300 Km

−
′′ × ×

= + × =
′′ −

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟ ⎝ ⎠⎢ ⎝ ⎠ ⎥⎣ ⎦
 < 

 
COMMENTS:  For the prescribed conditions, the effect of wetting is to enhance the heat transfer by 
nearly an order of magnitude.  Will the enhancement increase or decrease with increasing Ts? 



PROBLEM 7.138 
 

KNOWN:  Moisture-soaked paper is cylindrical form maintained at given temperature by imbedded 
heaters.  Dry air at prescribed velocity and temperature in cross flow over cylinder. 
 
FIND:  (a) Required electrical power and the evaporation rate per unit length, evapq′  and An′ , 

respectively, and (b) Calculate and plot q′  and An′  as a function of dry air velocity 5 ≤ V ≤ 20 m/s and 
paper temperatures of 65, 70 and 75°C. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Heat-mass transfer analogy applicable, (3) Negligible 
radiation effects. 
 
PROPERTIES:  Table A.4, Air (T∞  = 20°C = 293 K, 1 atm):  ρ = 1.1941 kg/m3, cp = 1007 J/kg⋅K, k = 
25.7 × 10-3 W/m⋅K, ν = 15.26 × 10-6 m2/s, Pr = 0.709;  (Ts = 70°C = 343 K):  Prs = 0.701;  Table A.6, Sat. 
water vapor (Ts = 70°C = 343 K):  ρA,s = 1/vg = 0.196 kg/m3, hfg = 2334 × 103 J/kg;  Table A.8, Air-water 
vapor mixture (Tf  = (T∞  + Ts)/2 = 318 K, 1 atm):  DAB = 0.26 × 10-4 m2/s(318/298)3/2 = 0.29 × 10-4 m2/s. 
 
ANALYSIS:  (a) From an energy balance on the cylinder on a per unit length basis, 

 elec conv evapq q q′ ′ ′= +                 ( ) ( )elec s m A,s A, fgq D h T T h hπ ρ ρ∞ ∞⎡ ⎤′ = − + −⎣ ⎦  (1) 

where A,ρ ∞  = 0, the freestream air is dry, and A,sρ  = A,satρ (Ts).  To estimate h , find 

 D 6 2
VD 10m s 0.15mRe 98,296

15.26 10 m sν −
×

= = =
×

 (2) 

and using the Zhukauskus correlation, from Table 7.4:  C = 0.26, m = 0.6, and n = 0.37, 

 ( )0.250.6 0.37D s
hDNu 0.26Re Pr Pr Pr
k

= =  (3) 

 ( ) ( ) ( )0.6 0.37 0.25 20.0257 W m Kh 0.26 98,296 0.709 0.709 0.701 38.9 W m K
0.15m

⋅
= × = ⋅ . 

Using the heat-mass analogy with n = 1/3, find 

 ( ) ( ) ( ) ( )2 /3 2 / 3
m p p ABB B

h h c Sc Pr c D Prρ ρ ν= =  (4) 

 ( )
2 / 36 2 4 2

2 3
m

15.26 10 m s 0.29 10 m s
h 38.9 W m K 1.1941kg m 1007 J kg K

0.709

− −× ×
= ⋅ × ⋅

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 mh 0.03946m s= . 
Hence, the electric power requirement is 

 ( ) ( )2 3 3
elecq 0.15 m 38.9 W m K 70 20 K 0.03946 m s 0.196 0 kg m 2334 10 J kgπ′ = × ⋅ − + − × ×⎡ ⎤

⎣ ⎦  
 

Continued... 



 
PROBLEM 7.138 (Cont.) 

 

 ( )elecq 917 8507 W m 9424 W m′ = + =  (5) < 
 
(b) The foregoing equations were entered into the IHT Workspace, and using the Properties Tools, for air 
and water vapor required thermophysical properties, the required electrical power, q′ , and evaporation 
rate, An′ , were calculated as a function of dry air velocity for selected water temperatures. 
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COMMENTS:  (1) Note at which temperatures the thermophysical properties are evaluated. 
 
(2) From Equation (5), note that the evaporation heat rate far exceeds that due to convection. 
 
(3) From the plots, note that both elecq′  and An′  are nearly proportional to air velocity, and increase with 
increasing water temperature. 
 



PROBLEM 7.139  
KNOWN:  Dry-and wet-bulb temperatures associated with a moist airflow through a large diameter 
duct of prescribed surface temperature.  
FIND:  Temperature and relative humidity of airflow.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Conduction along the thermometers is negligible, 
(3) Duct wall forms a large enclosure about the thermometers.  
PROPERTIES:  Table A-4, Air (318K, 1 atm):  ν = 17.7 × 10

-6
 m

2
/s, k = 0.0276 W/m⋅K, Pr = 0.70; 

Table A-4, Air (298K, 1 atm):  ν = 15.7 × 10
-6

 m
2
/s, k = 0.0261 W/m⋅K, Pr = 0.71; Table A-6, 

Saturated water vapor (298K):  vg = 44.3 m
3
/kg, hfg = 2442 kJ/kg; Saturated water vapor (318.5K):  

vg = 15.5 m
3
/kg; Table A-8, Water vapor-air (298K):  DAB = 0.26 × 10

-4
 m

2
/s, Sc = 0.60. 

 
ANALYSIS:  Dry-bulb Thermometer:  Since Tdb > Ts, there is net radiation transfer from the surface 
of the dry-bulb thermometer to the duct wall.  Hence to maintain steady-state conditions, the 

thermometer temperature must be less than that of the air (Tdb < T∞) to allow for convection heat 

transfer from the air.  Hence, from application of a surface energy balance to the thermometer, qconv = 

qrad, or, 

 ( ) ( )4 4
db db g db sdbhA T T A T T .ε σ∞ − = −  

The air temperature is then 

 ( )( )4 4
db g sdbT T / h T Tε σ∞ = + −        (1) 

where h  may be obtained from Eq. 7.53.  
Wet-bulb Temperature:  The relative humidity may be obtained by performing an energy balance on 
the wet-bulb thermometer.  In this case convection heat transfer to the wick is balanced by evaporative 
and radiative heat losses from the wick,  

( ) ( )conv evap rad evap A wb fg m A,sat wb A,sat wb fgq q q           q =n A h h T T A h .ρ φ ρ∞ ∞⎡ ⎤′′= + = −⎣ ⎦

( ) ( ) ( ) ( )4 4
wb wb m A,sat wb A,sat wb fg w wb swbhA T T h T T A h A T Tρ φ ρ ε σ∞ ∞ ∞⎡ ⎤− = − + −⎣ ⎦  

 ( ) ( ) ( ){ } ( )4 4
A,sat wb w s wb fg m A,satwbT T T h T T / h h / Tφ ρ ε σ ρ∞ ∞ ∞

⎡ ⎤= + − − −⎢ ⎥⎣ ⎦
 (2) 

 
where mh  may be determined from the mass transfer analog of Eq. 7.53. 
          Continued … 



PROBLEM 7.139 (Cont.)  
Convection Calculations:  For the prescribed conditions, the Reynolds number associated with the 
dry-bulb thermometer is 

 ( )
-6 2

dbD dbRe VD / 5 m/s 0.003 m/17.7 10  m / s 847.= = × × =ν  

Approximating the Prandtl number ratio as unity, from Eq. 7.53 and Table 7.4, 

 ( ) ( ) ( ) ( )0.5 0.37m nD db D dbNu CRe Pr 0.51 847 0.70 13.01= = =  

 2
db

k 0.0276 W/m Kh 13.01 13.01 120 W/m K.
D 0.003 m

⋅
= = = ⋅  

From Eq. (1) the air temperature is 

( )
8 2 4

4 4 4
2

0.95 5.67 10 W/m KT 45 C 318 308 K 45 C 0.55 C 45.6 C.
120 W/m K

−
∞

× × ⋅
= + − = + =

⋅
o o o o  < 

The relative humidity may now be obtained from Eq. (2).  The Reynolds number associated with the 
wet-bulb thermometer is  
 ( )

-6 2
wbD wbRe VD / 5 m/s 0.004 m/15.7 10  m / s 1274.ν= = × × =  

 
From Eq. 7.53 and Table 7.4, it follows that 

 ( ) ( ) ( )0.6 0.37
D wbNu 0.26 1274 0.71 16.71= =  

 2
wb

k 0.0261 W/m Kh 16.71 16.71 109 W/m K.
D 0.004 m

⋅
= = = ⋅  

Using the mass transfer analog of Eq. 7.53, it also follows that  
 ( ) ( ) ( ) ( )0.6 0.370.6 0.37D wb D wbSh 0.26Re Sc 0.26 1274 0.6 15.7= = =  

 
4 2

AB
m

wb

D 15.7 0.26 10  m / sh 15.7 0.102 m/s.
D 0.004 m

−× ×
= = =  

 

Also, ( ) ( ) ( ) 11 3 3
A,sat wb gT v 298 K 44.3 m / kg 0.0226 kg/mρ

−−= = =  

 ( ) ( ) ( ) 11 3 3
A,sat gT v 318.5 K 15.5 m / kg 0.0645 kg/m .ρ

−−
∞ = = =  

Hence the relative humidity is, from Eq. (2) 

( ) ( )

( )( )

8 2 4 4 4 4 2
3 3

6

0.95 5.67 10 W/m K 298 308 K 109W/m K 45.55 25 K
0.0226 kg/m / 0.0645 kg/m

2.442 10  J/kg 0.102 m/s
φ

−

∞

× × ⋅ − − ⋅ −
= +

×

⎛ ⎞⎡ ⎤
⎢ ⎥⎜ ⎟⎣ ⎦

⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 0.21φ∞ =           < 
 
COMMENTS:  (1) The effect of radiation exchange between the duct wall and the thermometers is 

small.  For this reason T∞ = Tdb.  (2) The evaporative heat loss is significant due to the small value of 

φ∞, causing Twb to be significantly less than T∞. 



PROBLEM 7.140  
KNOWN:  Velocity, diameter and temperature of a spherical droplet.  Conditions of surroundings.  
FIND:  (a) Expressions for droplet evaporation and cooling rates, (b) Evaporation and cooling rates 
for prescribed conditions.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible temperature gradients in the drop, (2) Heat and mass transfer 
analogy is applicable, (3) Perfect gas behavior for vapor.  
PROPERTIES:  Table A-4, Air (T∞ = 298K, 1 atm):  ν = 15.71 × 10

-6
 m

2
/s, k = 0.0261 W/m⋅K, Pr = 

0.71; Table A-6, Water (T = 40°C):  ρA,sat = 0.050 kg/m
3
, hfg = 2407 kJ/kg, ρl  = 992 kg/m

3
, p,c l  = 

4179 J/kg⋅K; (T∞ = 25°C):  ρA,sat = 0.023 kg/m
3
; Table A-8, Water vapor-air (298K):  DAB = 0.26 × 

10
-4

 m
2
/s. 

 
ANALYSIS:  (a) The evaporation rate is given by  
 ( ) ( ) ( )2

evap m s A,s A, m A,sat A,satm h A h D T T .ρ ρ π ρ φ ρ∞ ∞ ∞⎡ ⎤= − = −⎣ ⎦&   < 
 
The cooling rate is obtained from an energy balance performed for a control surface about the droplet,  
 ( )st out conv rad evapE q q q q= − = − + +&  
 

or ( ) ( )
3

4 4
p, s s s sur evap fg

d D c T A h T T T T m h .
dt 6

πρ εσ∞
⎛ ⎞ ⎡ ⎤′′⎜ ⎟ = − − + − +⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠

l l &  

With As = πD
2
, it follows that 

 

 ( ) ( )4 4
s s sur evap fg

p,

dT 6 h T T T T m h .
dt c D

εσ
ρ ∞

⎡ ⎤′′= − − + − +⎢ ⎥⎣ ⎦l l
&    < 

 
(b) To obtain mh ,  the mass transfer analog of the Ranz-Marshall correlation gives 
 
 1/2 1/3D DSh 2 0.6Re Sc= +  
 
where  

 
6

D -6 2 6AB

VD 7 m/s 0.003 m 15.71 10Re 1337,      Sc 0.60.
D15.71 10  m / s 26 10

ν
ν

−

−
× ×

= = = = = =
× ×

 

 
          Continued … 



PROBLEM 7.140 (Cont.)  
Hence 

 ( ) ( )1/ 2 1/ 3
DSh 2 0.6 1337 0.6 20.5= + =  

 

 
4 2

ABDm
D 0.26 10  m / sh Sh 20.5 0.18 m/s

D 0.003 m

−×
= = =  

 
 ( ) [ ]2 3 7

evapm 0.18 m/s 0.003 m 0.05 0.6 .023 kg/m 1.82 10 kg/s.π −= − × = ×&  < 
 
The evaporative heat flux is then  

 
( )

( )

7 6
evap evap fg

evap 2 2s

1.82 10  kg/s 2.407 10  J/kgq m h
q

A D 0.003 mπ π

−× ×
′′ = = =

&
 

 2
evapq 15,494 W/m .′′ =  

 
Using the heat transfer correlation, the Nusselt number is  
 ( ) ( )1/ 2 1/ 31/2 1/ 3D DNu 2 0.6Re Pr 2 0.6 1337 0.71 21.58.= + = + =  
 

Hence  2D
k 0.0261 W/m Kh Nu  21.58 188 W/m K
D 0.003 m

⋅
= = = ⋅  

 
and the sensible heat flux is  
 ( ) ( )2

convq h T T 188 W/m K 40 25 C∞′′ = − = ⋅ − o  

 2
convq 2815 W/m .′′ =  

 
The net radiative flux is  
 ( )4 4 8 2 4 4 4 4

rad surq T T 0.95 5.67 10  W/m K 313 288  K− ⎡ ⎤′′ = − = × × ⋅ −⎢ ⎥⎣ ⎦
εσ  

 2
radq 146 W/m K.′′ = ⋅  

 

Hence 
( )

( ) 2
3

dT 6 2815 146 15, 494  W/m
dt 992 kg/m 4179 J/kg K 0.003 m

= − + +
× ⋅

 

 dT 8.9 K/s.
dt

= −          < 
 
COMMENTS:  (1) Evaporative cooling provides the dominant heat loss from the drop.  (2) To test 
the validity of assuming negligible temperature gradients in the drop, calculate  

 ( )eff o 2tot
eff

h r / 3 q 18,455Bi ,    where   h 738 W/m K.
k T T 25∞

′′
≈ ≡ = = ⋅

−l
 

From Table A-6, k 0.631 W/m K,= ⋅l  hence 
 

 
( )2738 W/m K 0.0005 m

Bi 0.58.
0.631 W/m K

⋅
≈ =

⋅
 

Hence, although suspect, the assumption is not totally unreasonable. 



PROBLEM 7.141 
 

KNOWN:  Cranberries with an average diameter of 15 mm rolling over a fine screen.   Thickness of 
the water film is 0.2 mm.  
 
FIND:  Time required to dry the berries exposed to heated air with a velocity of 2 m/s and temperature 
of 30°C. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2)  Air stream is dry, (3) Water film on the berries is 
also at 30°C, (4) Convection process is uniform over the exposed surface, and (5) Heat-mass analogy 
is applicable. 
 
PROPERTIES:  Table A-6, Water (Tf = 30°C = 303 K):  3

A,f 995.8 kg / m ,ρ =  ρA,g = 0.02985 

kg/m3; Table A-8, Water-air (Tf = 303 K, 1 atm): DAB = 0.26 × 10-4 m2/s (303/298)1.5 =  
2.67 × 10-5 m2/s; Table A-4, Air (Tf = 303 K, 1 atm):  μ = μs = 1.86 × 10-5 N⋅s/m2, ν = 1.619 × 10-5 
m2/s, α = 2.294 × 10-5 m2/s, k = 0.02652 W/m⋅K, Pr = 0.707. 
 
ANALYSIS:  The evaporation rate of water from the berry surface is given by the rate equation, 
 
 ( )m s A,s A,n h A ρ ρ ∞= −         (1) 
 
where As = πD2 and mh  is determined using the heat-mass analogy, Eq. 6.60, 
 

 n
m AB

h k Le
h D

−=          (2) 

 
where Le = α/DAB and typically n = 1/3.  The heat transfer coefficient h  is estimated with the 
Whitaker correlation, Eq. 7.56, 
 

 ( )D
1/ 41/ 2 2 / 3 0.4

sD D
hDNu 2 0.4 Re 0.06 Re Pr /
k

μ μ⎡ ⎤= = + +⎢ ⎥⎣ ⎦
   (3) 

 
Substituting numerical values, find 
 

 D 5 2
VD 2 m / s 0.015 mRe 1853

1.619 10 m / s−
×

= = =
×ν

 

 ( ) ( ) ( )1/ 2 2 / 3 0.4
DNu 2 0.4 1853 0.06 1853 0.707 1 24.9⎡ ⎤= + + × × =⎢ ⎥⎣ ⎦

 

 2h 24.9 0.02652 W / m K / 0.015 m 44.0 W / m K= × ⋅ = ⋅  
 
and using the heat-mass analogy, 

 ( ) ( )1/ 32 5 2
mh 44.0 W / m K 2.67 10 m / s 0.02652 W / m K 0.861−= ⋅ × × ⋅ ×  

 mh 0.0420 m / s=  
          Continued … 



PROBLEM 7.141 (Cont.) 
 
where 

   5 2 5 2
ABLe / D 2.294 10 m / s 2.667 10 m / s 0.861α − −= = × × =  

 
Using Eq. (1), the evaporation rate is 
 

 ( )( )( )2 3 7n 0.0420 m / s 0.015 m 0.02985 0 kg / m 8.87 10 kg / s−= × − = ×π  
 
The time, to, required to evaporate the water film of thickness δ = 0.2 mm is 
 

 ( )2
o film A,nt M D= = lρ π δ  

 

 ( )3 2 7
ot 995.8 kg / m (0.015 m) 0.0002 m / 8.87 10 kg / s−= × × ×π  

 
 ot 159 s=           < 
 
 
 
 
 
 



PROBLEM 7.142  
KNOWN:  Spherical droplet at prescribed temperature and velocity falling in still, hotter dry air.  
FIND:  Instantaneous rate of evaporation.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Heat-mass transfer analogy applicable.  
PROPERTIES:  Table A-4, Air (T∞ = 100°C = 373K, 1atm):  ρ = 0.9380 kg/m

3, cp = 1011 J/kg⋅K, 

k = 0.0317 W/m⋅K, ν = 23.45 × 10
-6 m2/s, Pr = 0.695; Table A-6, Sat. water (Ts = 60°C = 333 K):  

ρl l= 1/ v  = 983 kg/m
3, ρA,s = 1/vf = 0.129 kg/m

3; Table A-8, Air-water vapor mixture (T∞ = 

373K, 1 atm):  DAB = 0.267 × 10
-4 m2/s (373/298)

3/2 = 0.36 × 10
-4 m2/s. 

 
ANALYSIS:  The instantaneous evaporation rate is 
 ( )A m s A,s A,n h A ρ ρ ∞= −&  

where As = πD
2
, ρA,∞ = 0 and ρA,s = ρA,sat (Ts).  To estimate mh  use the Whitaker correlation, 

written in terms of mass transfer parameters and with μ/μs ≈ 1, 

 ( )1/2 2/3 0.4mD D D
AB

h DSh 2 0.4Re 0.06Re Sc
D

= = + +  

 ( ) ( )( )4 2 1/ 2 2 / 3 0.4
m

0.36 10  m / sh 2 0.4 45.8 0.06 45.8 0.651 0.355 m/s
0.0005 m

−× ⎡ ⎤= + + × =⎢ ⎥⎣ ⎦
 

where  D -6 2
VD 2.15 m/s 0.0005 mRe 45.8

23.45 10  m / sν
×

= = =
×

 

  6 2 -4 2
ABSc /D 23.45 10  m / s/0.36 10  m / s 0.651.ν −= = × × =  

Hence, the evaporation rate is

 ( ) ( )2 3 8
An 0.355 m/s 0.0005 m 0.129 0 kg/m 3.60 10  kg/s.π −= × − = ×&   < 

 
COMMENTS:  If this evaporation rate were to remain constant with time, the droplet of mass M 
would be completely evaporated in  

 
( ) ( )( )333

A 8A

983 kg/m 0.0005 m / 6D / 6
t M/n 1.8 s.

n 3.60 10  kg/s−
Δ = = = =

×

l
&

&

πρ π
 

To determine whether the droplet temperature will increase or decrease with time, it is necessary to 
compare convective heat and evaporation rates.  Hence it is not clear whether the time to completely 
evaporate will be less or greater than 1.8 s. 



PROBLEM 7.143 
 
KNOWN:  Diameter, velocity and surface vapor concentration of alcohol droplet falling in quiescent air.  
Latent heat of vaporization and diffusion coefficient.  Air temperature. 
 
FIND:  Droplet surface temperature 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Applicability of heat and mass transfer analogy, (3) 
Negligible radiation, (4) Negligible vapor concentration in air ( A,ρ ∞  = 0). 
 
PROPERTIES:  Table A.4, air ( T∞  = 300 K):  ν = 15.89 × 10-6 m2/s, k = 0.0263 W/m⋅K, Pr = 0.707. 
 
ANALYSIS:  Application of a surface energy balance yields 
 
 evap convq q′′ ′′=  
 
 ( ) ( )m A,s A, fg sh h h T Tρ ρ ∞ ∞− = −  
 

 m
s A,s fg

hT T h
h

ρ∞= −  
 
With 4 6 2

DRe VD 1.8m s 5 10 m 15.89 10 m sν − −= = × × ×  = 56.6 and Sc = ABDν  = 1.59, the 
Ranz-Marshall correlation yields 
 

 ( ) ( )1/ 2 1/ 31/ 2 1/ 3D DNu 2 0.6Re Pr 2 0.6 56.6 0.707 6.02= + = + =  
 

 ( ) ( )1/ 21/ 2 1/ 3 1/ 3D DSh 2 0.6Re Sc 2 0.6 56.6 1.59 7.27= + = + =  
 
With mh h  = ( ) ( )D AB DSh D D Nu k D , 
 

 
( )
( )

5 2D AB 4 3m
D

Sh Dh 7.27 10 m s 4.59 10 m K J
h 6.02 0.0263W m KNu k

−
−×

= = = × ⋅
× ⋅

 

Hence, 

 ( )( )4 3 3 5
sT 300K 4.59 10 m K J 0.0573kg m 8.42 10 J kg 277.9K−= − × ⋅ × =  < 

 
COMMENTS:  The large vapor density, A,sρ , renders the evaporative cooling effect significant. 



PROBLEM 7.144 
 

KNOWN: Diameter and density of liver cells, diameter of droplets. 
 
FIND: (a) Terminal velocity of the droplets when each droplet contains one liver cell, (b) Time 
of flight of a droplet containing one liver cell if the distance between injector and scaffold is L = 
4 mm, (c) Initial evaporation rate from the droplet, (d) Comparison of the mass variation due to 
evaporation to variation due to liver cell populations ranging from one to five per droplet. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Constant properties, (2) Negligible evaporative cooling, (3) Stokes’ law is 
valid, CD = 24/ReD, (4) Neglect mass of displaced air in force balance, (5) Evaporation rate is 
unaffected by change in droplet diameter, (6) Negligible microscale mass transfer effects. 
 
PROPERTIES: Table A.4, air: (T = 25 °C = 298 K): ρ = 1.171 kg/m3, ν = 15.71 × 10-6 m2/s, 
Table A.6, liquid water: (T = 25 °C = 298 K): ρ = 997.4 kg/m3, Table A.6, water vapor: (T = 25 
°C = 298 K): vg = 44.25 m3/kg. Table A.8, water vapor in air: (T = 25 °C = 298 K): DAB = 0.26 × 
10-4 m2/s. 
 
ANALYSIS: 
(a)  At terminal velocity, the face balance is 
 2

g D fM = C A (ρV /2)              (1) 
The mass of the particle, M, is 
 lc lc p lc pM = ρ  + (  - )ρ∀ ∀ ∀             (2) 

The volume of the droplet is -6 3 -14 3
p

4 = π × (25 × 10 m)  = 6.54 × 10 m
3

∀   while the volume of a 

liver cell is -6 3 -15 3
lc

4 = π × (10 × 10 m)  = 4.12 × 10 m
3

∀  and the frontal area is 

-6 2 -9 2
fA  = π × (25 × 10 m)  = 1.963 × 10 m . 

The mass is therefore 
  -15 3 3 -14 3 -15 3 3M = 4.12 × 10 m  × 2400 kg/m  + (6.54 × 10 m - 4.12 × 10 m ) × 997.4 kg/m  

  M = 7.10 × 10-11 kg             (3) 
Note that CD = 24/ReD = 24 ν/VDP            (4) 

Continued….  

FD

DP = 50 µm

Droplet, Ti = 25°C

Human liver cell

ρlc= 2400 kg/m3mg

Dlc = 20 µm

Air

V, T∞ = 25°C, φ = 0.5

FD

DP = 50 µm

Droplet, Ti = 25°C

Human liver cell

ρlc= 2400 kg/m3mg

Dlc = 20 µm

Air

V, T∞ = 25°C, φ = 0.5



PROBLEM 7.144 (Cont.) 
 

Combining Equations 1, 2 and 3 yields 

 
-11 2 -6

g p
-6 2 -9 2 3

f

M D 7.10 × 10 kg × 9.8 m/s  × 50 × 10  mV =  = 
12νA ρ 12 × 15.71 × 10 m /s × 1.963 × 10 m  × 1.171 kg/m

 

  V = 0.080 m/s               <   
 
The volume fraction of liver cells in the slurry is  

 -15 3 -14 3
lc pf = /  = 4.12 × 10 m /6.54 × 10  m  = 0.063∀ ∀           <   

 
(b) The time of flight is 

 t = L/V = 4 × 10-3 m / 0.080 m/s = 50 × 10-3 s = 50 ms          < 
 
(c) With Sc = ν/DAB = 1.571 × 10-5 m2/s / 0.26 × 10-4 m2/s = 0.604, the heat and mass transfer 
analogy may be applied to Whitaker’s correlation to yield 

 { }2/3 0.4AB
D D D

p

Dh  = 2 + 0.4 Re  + 0.06(Re ) Pr
D

⎡ ⎤
⎣ ⎦  

The Reynolds number is -6 -6 2
D pRe  = VD /ν = 0.08 m/s × 50 × 10  m/15.71 × 10  m /s = 0.255.   

Hence, 

 { }
-4 2

2/3 0.4
D -6

0.26 × 10  m /sh  = 2 + 0.4 0.255 + 0.06(0.255) 0.604
50 × 10  m

⎡ ⎤
⎣ ⎦  

 Dh  = 1.14 m/s  
The initial evaporation rate is  
 A D A,sat A,satn  = h A(ρ  - ρ )φ  

 -6 2 -10
A 3

1 0.5 kgn  = 1.14 m/s × π × (50 × 10 m)  ×  -  = 1.01 × 10  kg/s
44.25 44.25 m
⎡ ⎤
⎢ ⎥⎣ ⎦

       < 

(d) The sensitivity may be estimated by comparing the change in mass due to evaporation to the 
difference in mass due to liver cell loading. 
Evaporation 

 -10 -3 -12
AΔM = n t = 1.01 × 10  kg/s × 50 × 10 s = 5.05 × 10 kg          < 

Loading 
The droplet mass with 3 liver cells is 

-15 3 3 -14 3 -15 3 3
3M  = 3 × 4.12 × 10 m  × 2400 kg/m  + (6.54 × 10 m  - 3 × 4.12 × 10 m ) × 997.4 kg/m  

M3 = 8.26 × 10-11 kg 
 
The change in mass relative to one liver cell in the droplet is  

 -11 -11 -11
3 1ΔM = M  - M  = 8.26 × 10  kg - 7.10 × 10  kg = 1.16 × 10  kg        < 

 
The change in mass is more sensitive to variations in the number of liver cells than to 
evaporation. 
 
COMMENTS: (1) Inspection of Figure 7.9 shows that Stokes’ law is valid at ReD = 0.255.  



PROBLEM 7.145 
 

KNOWN: Dimension and approximate shape of E. coli bacterium. Binary diffusivity, nutrient 
value, propulsion efficiency and concentration difference from free stream water-based solution 
to bacterium shell. 
 
FIND: Estimate the maximum E. coli speed in body diameters per second. 
 
SCHEMATIC: 
 

D = 2 µm

ρA,s

V

Water-based solution

DAB = 0.7 × 10-9 m2/s

N = 16,000 kJ/kg

ρA,8 = ρA,s + 860 × 10-12 kg/m3

T8 = 37°C

D = 2 µm

ρA,s

V

Water-based solution

DAB = 0.7 × 10-9 m2/s

N = 16,000 kJ/kg

ρA,8 = ρA,s + 860 × 10-12 kg/m3

T8 = 37°C

 
 
ASSUMPTIONS: (1) Negligible capability of bacterium to store energy, (2) Constant properties, 
(3) Steady-state, (4) Stokes’ law is valid, that is CD = 24/ReD, (5) Negligible microscale mass 
transfer effects. 
 
PROPERTIES: Table A.6, water (T = 37 °C = 310 K): ρ = 993 kg/m3, ν = 6.999 × 10-7 m2/s, Pr 
= 0.701. 
 
ANALYSIS: For the spherical bacterium shell 
 
 -6 -7 2

DRe  = VD/ν = (V × 2 × 10 m)/(6.999 × 10 m /s) = 2.858 (s/m) × V         (1) 
The power required to propel the bacterium is 

 
2 2 3

D f D
D

C A ρV C πD ρVP = F V = V = 
2 8

            (2) 

assuming D
D

24 24C  =  = 
Re 2.858 (s/m) V

 

We may combine Equations 1 and 2 to yield 

 

2 2
-6 2 3 2

-9 2 2 2

24 πD ρV 3P =  =  × π ×(2 × 10 m) × 993 kg/m × V
2.858 8 2.858 s/m

   = 13.1 × 10  Ws /m (V)
 

 
For η = 0.5, the energy to be delivered from the water-based solution to the bacterium is 
 -9 2 2 2E = P/η = 26.2 × 10  Ws /m (V)              (3) 
The energy supplied to the bacterium is 
 mE = h ANΔC = mh pD2NΔC/4 

 -6 2 -12 3
mE = h π(2 × 10 m) × 16,000 kJ/kg × 860 × 10 kg/m / 4  

Continued… 



PROBLEM 7.145 (Cont.) 
 
 -18

mE = 43.23 × 10  Ws/m × h               (4) 
 
Applying the heat and mass transfer analogy to the Whitaker correlation yields 

 2/3 0.4m
D D D

AB

h D 1Sh  =  = 2 + (0.4 Re  + 0.06 Re ) Sc ( )
D 1

 

where -7 2 -9 2
c ABS  = ν/D  = 6.999 × 10  m /s/(0.7 × 10  m /s) = 1000  

 
Therefore 

        ( )( )
-9 2

2/3 0.4
m -6

0.7 × 10  m /sh  = 2 + 0.4 2.858 s/m × V  + 0.06 2.858 s/m × V  × 1000
2 × 10  m

⎡ ⎤
⎢ ⎥⎣ ⎦

  (5) 

 
Combining Equations (3) through (5) and solving for V yields 
 
 V = 70 × 10-6 m/s = 70 μm/s 
 

or V = 70 μm/s × 1 body diameter/2 μm = 35 body diameters/s           < 
 
 
COMMENTS: (1) The maximum Reynolds number is ReD = VD/ν = 70 × 10-6 m/s × 2 × 10-6 
m/6.999 × 10-7 m2/s = 200 × 10-6. The Whitaker correlation is extrapolated outside of its range of 
application and provides a Sherwood number of 2.093 and a mass transfer coefficient of 732 × 
10-6 m/s. Using a Sherwood number of two, one would calculate a mass transfer coefficient of 
700 × 10-6 m/s. Using the limiting value of the Sherwood number would change the answer by 
less than 5%.  (2) The small Reynolds number validates the application of Stokes’ law. (3) It is 
hypothesized that the direction of rotation of the flagellum (clockwise or counterclockwise) is 
driven by the spatial concentration gradient in the solution. The direction of rotation changes with 
the solutions’ nutrient concentration gradient in a manner that consistently “steers” the bacterium 
into more fertile feeding grounds. (4) The bacterium splits into multiple bacteria when it is 
stationary. Presumably, the energy needed to split the bacterium is available since no power is 
needed to propel the E. coli during splitting. 



PROBLEM 7.146 
 
KNOWN:  Humidity and temperature of air entering heater; temperature of air leaving heater.  Diameter, 
temperature and relative velocity of injected droplets. 
 
FIND:  Droplet evaporation rate. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Negligible change in droplet diameter due to evaporation, (2) Negligible cooling 
of droplet due to evaporation, (3) Applicability of heat/mass transfer analogy, (4) Ideal gas behavior for 
vapor. 
 
PROPERTIES:  Table A.4, air (T∞  = To = 320 K):  ν = 17.90 × 10-6 m2/s, k = 0.0278 W/m⋅K, Pr = 0.705.  
Table A.6, saturated water (Ti = 290 K):  psat = 0.01917 bars; (To = 320 K):  psat = 0.1053 bars, vg = 13.98 
m3/kg.  Table A.8, H2O/air (T = 320 K):  DAB = 0.26 × 10-4 m2/s (320/298)3/2 = 0.289 × 10-4 m2/s. 
 
ANALYSIS:  Due to an increase in temperature, the air leaves the heater with a smaller relative humidity.  
With φi = 0.7 and psat,i = 0.01917 bars, the vapor pressure at the heater inlet is pi = φi psat,i = 0.7(0.01917 
bars) = 0.0134 bars.  Since the vapor pressure doesn’t change with passage through the heater, 

 i
o

sat,o

p 0.0134 bars 0.127
p 0.1053bars

φ = = =  

The vapor density associated with air flow around the droplets is therefore  

 ( ) ( ) 1 3 3
A, o A,sat o o g oT v T 0.127 0.0715kg m 0.0091kg mρ φ ρ φ −
∞ = = = × =  

 
The droplet evaporation rate is 
 ( )evap m s A,sat s A,m h A Tρ ρ ∞⎡ ⎤= −⎣ ⎦&  
 
where mh  may be obtained from the mass transfer analog to the Whitaker correlation.  With ReD = VD/ν 
= 15 m/s × 0.001 m/17.9 × 10-6 m2/s = 838, Sc = ν/DAB = 17.9 × 10-6 m2/s/28.9 × 10-6 m2/s = 0.62, and 
μ/μs = 1, 

 ( ) ( ) ( ) ( )1/ 2 2 / 3 0.41/ 2 2 / 3 0.4
D D DSh 2 0.4 Re 0.06 Re Sc 2 0.4 838 0.06 838 0.62 16.0= + + = + + =⎡ ⎤

⎢ ⎥⎣ ⎦
 

 ( ) ( )4 2Dm ABh Sh D D 16 0.289 10 m s 0.001m 0.462m s−= = × =  

 ( ) ( ) ( )2 3 8
evapm 0.462 m s 0.001m 0.0715 0.0091 kg m 9.06 10 kg sπ −= − = ×&  < 

 
COMMENTS:  The energy required for evaporation must be supplied by convection heat transfer from 
the heated air to the droplet.  Hence, in actuality, the droplet temperature Ts must be less than that of the 
freestream air, T∞ , which in turn will decrease from the value To at the heater outlet. 



PROBLEM 7.147  
KNOWN:  Diameter and temperature of sphere wetted with kerosene.  Air flow conditions.  
FIND:  (a) Minimum kerosene flow rate, (b) Air temperature required to maintain wetted surface at 
300K.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Sphere mount has a negligible influence on the 
flow field and hence on h,  (3) Negligible kerosene vapor concentration in free stream. 
 
PROPERTIES:  Table A-4, Air (300K):  ν = 15.89 × 10

-6
 m

2
/s, k = 0.0263 W/m⋅K, ρ = 1.161 kg/m

3
, 

Pr = 0.707; Kerosene (given):  ρA,sat = 0.015 kg/m
3
, hfg = 300 kJ/kg; Kerosene vapor-air (given):  

DAB = 10
-5

 m
2
/s. 

 
ANALYSIS:  (a) The kerosene flowrate is ( )A m A,sat A,n h A .ρ ρ ∞= −   Using the mass transfer 

analog of Eq. 7.56 and neglecting the viscosity ratio, 

 ( )1/2 2/3 0.4D D DSh 2 0.4 Re 0.06 Re  Sc= + +  

with 
6

D -6 2 6AB

VD 15 m/s 0.001 m 15.89 10Re 944     Sc 1.59
D15.89 10  m / s 10 10

ν
ν

−

−
× ×

= = = = = =
× ×

 

 ( ) ( )0.41/ 2 2/3DSh 2 0.4 944 0.06944  1.59 23.7= + × + =  

 -5 2Dm ABh Sh  D / D 23.7 10  m / s/0.001 m 0.237 m/s= = × =  

 ( )2-3 3 8
An 0.237 m/s 10  m  0.015 kg/m 1.12 10  kg/s.π −= = ×    < 

 
(b) An energy balance on the sphere yields ( )A fg sn  h hA T T .∞= −   Using the Whitaker 

correlation and neglecting the viscosity ratio, 

 ( ) ( )0.41/ 2 2 / 3DNu 2 0.4 944 0.06 944  0.707 17.72= + × + × =  

 2Dh Nu k/D 17.72 0.0263 W/m K/0.001 m 466 W/m K= = × ⋅ = ⋅  

 
( )

-8 5A fg
s 2 22

n  h 1.12 10  kg/s 3 10  J/kgT T 300K
h D 466 W/m K 0.001 mπ π

∞
× × ×

= + = +
⋅ ×

 

 T 300K 2.3K 302.3K∞ = + =         < 
or sT T 2.3K.∞ − =  
 
COMMENTS:  The small temperature excess (2.3K) is due to comparatively small values of ρA,sat 
and hfg for kerosene. 



PROBLEM 7.148  
KNOWN:  Geometry and surface temperature of a tube bank with or without wetted surfaces.  
Temperature, velocity and flowrate associated with air in cross flow.  
FIND:  (a) Ratio of air cooling with water film to that without film, (b) Air outlet temperature and 
specific humidity for prescribed conditions.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Heat and mass transfer analogy is applicable, (3) 
Air is dry, (4) Heat and mass transfer driving potentials are Ta,i - Ts and ρA,sat(Ts), (5) Vapor has 
negligible effect on flowrate.  
PROPERTIES:  Table A-4, Air (assume aT 305K):≈   ρ = 1.1448 kg/m

3
, cp = 1007 J/kg⋅K, ν = 

16.39 × 10
-6

 m
2
/s, k = 0.0267 W/m⋅K, Pr = 0.706, α = 23.2 × 10

-6
 m

2
/s; Table A-6, Water vapor (Ts 

= 10°C):  vg = 111.8 m
3
/kg, ρA,sat = 8.94 × 10

-3
 kg/m

3
, hfg = 2.478 × 10

6
 J/kg; Table A-8, Water 

vapor-air (Tf ≈ 298K):  DAB = 0.26 × 10
-4

 m
2
/s, Sc = (ν/DAB) = 0.630. 

 
ANALYSIS:  (a) The rate of heat loss from the air may be expressed as 
 ( )a p,a a,i a,oq m c  T T= −&  
in which case, the amount of air cooling is 

 ( )a,i a,o
a p,a

qT T .
m c

− =
&

        (1) 

Without the water film, ( )wo a,i sq hA T T≈ −        (2) 

With the film,   ( )w a,i s evap fgq hA T T m  h≈ − + &  

    ( ) ( )w a,i s m A,sat A, fgq hA T T h A  hρ ρ ∞≈ − + −   (3) 
where ρA,∞ = 0.  Hence 

 
( )
( ) ( )

a,i a,o m A,sat fgw

a,i a,o a,i swo

T T h h
1

T T h T T

ρ−
≈ +

− −
 

or substituting from Eq. 6.60, with Le = α/DAB and a value of n = 0.33, 

 
( )
( )

( )
( )

0.67a,i a,o A,sat fgABw
pa,i a,o a,i swo

T T hD /
1  

 cT T T T

ρα
ρ

−
≈ +

− −
     < 

 
          Continued … 



PROBLEM 7.148 (Cont.)  
For the prescribed conditions, 

( )
( ) ( )

0.674 2

4 2 3 3 6a,i a,o w
3a,i a,o wo

0.26 10 m / s
T T 0.232 10 m / s 8.94 10 kg/m 2.478 10 J/kg

1 1.83.
T T 1.145 kg/m 1007 J/kg K 35 10 C

−

− −
×

− × × × ×
≈ + × ≈

− × ⋅ −

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

o
 < 

 
(b) Ta,o may be obtained from Eq. (1), where q is approximated by Eq. (2) or Eq. (3).  With SD = 

26.83 mm > (ST + D)/2 = 16, Vmax is at the transverse plane.  Hence 
T

max D,max -6 2T

S 24 4.5 m/s 0.008 m
V V 3m/s 4.5m/s          Re 2196.

S D 16 16.39 10  m / s

×
= = × = = =

− ×
 

From Tables 7.5 and 7.6, C1 = 0.35, m = 0.60, C2 = 0.98 and the Zukauskas relation gives 

 ( )( ) ( )0.6 0.36
DNu 0.35 0.98 2196 0.706 30.6= =  

where(Pr/Prs)
1/4

 is 1.00.  Hence 

 ( ) 2Dh Nu  k/D 30.6 0.0267 W/m K / 0.008 m 102 W/m K.= = ⋅ = ⋅  

Also ( ) ( )0.67 0.67
AB

m 2 3p

D / 0.26 / 0.232Wh h 102 0.0956 m/s.
 c m K 1.145 kg/m 1007 J/kg K

α
ρ

= = =
⋅ × ⋅

 

Hence 

 ( ) ( ) ( )2
conv a,i sq hA T T 102W/m K 0.008 m 0.5 m 60 35 10 C 1923 Wπ≈ − = ⋅ × × − =o  

 evap A fg m A,sat fgq n h h A  hρ= =  

 ( ) ( )-3 3 6
evapq 0.0956 m/s 0.008 m 0.5 m 60 8.94 10 kg/m 2.478 10  J/kgπ= × × × ×  

 evapq 1597W.≈  
 
With water film, 

 
( )conv evap

a,o a,i
a p,a

q q 1923 1597 W
T T 35 C 28.0 C.

m  c 0.5 kg/s 1007 J/kg K
+ +

= − ≈ − =
× ⋅

o o

&
  < 

The specific humidity of the outlet air is 

 m A,satA
o

a a

h 60 DL n
m m

π ρ
ω = =

& &
 

 
( ) ( ) ( )-3 3

o
0.0956 m/s 60  0.008 m 0.5 m 8.94 10 kg/m

0.00129.
0.5 kg/s

π
ω

×
= =   < 

 
COMMENTS:  (1) Enhancement of air cooling by evaporation is significant (Ta,o = Ta,i 

conv a p,a-q / m  c 31.1 C≈ o&  without the film).  (2) Small value of ωo justifies neglecting effect of 

evaporation on am .&   (3) qconv has been overestimated by using (Ta,i - Ts) as the driving potential for 

convection heat transfer.  A more accurate determination involves mTΔ l  rather than (Ta,i - Ts).  (4) 
Apparently the air properties were evaluated at an appropriate aT .  



PROBLEM 7.149  
KNOWN:  Dimensions of slot jet array.  Jet exit velocity and temperature.  Temperature of paper.  
FIND:  Drying rate per unit surface area.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Applicability of heat and mass transfer analogy, (2) Paper motion has 
negligible effect on convection (U << Ve). 
 
PROPERTIES:  Table A-4, Air (300 K, 1 atm):  ν = 15.89 × 10-6 m2/s; Table A-6, Saturated water 

(300 K):  ρA,sat = 1
gv−  = 0.0256 kg/m3; Table A-8, Water vapor-air (300 K):  DAB = 0.26 × 10-4 m2/s, 

Sc = 0.61.  
ANALYSIS:  The mass evaporation flux is 
 ( )A m A,s A,e m A,satn h hρ ρ ρ′′ = − =  

For an array of slot nozzles, 

 
2 /3

3/ 4
r,o0.42 r r,o r,o r

Sh 2 2ReA
3 A / A A / ASc

⎛ ⎞
= ⎜ ⎟⎜ ⎟+⎝ ⎠

 

where 
 rA W / S 0.1= =  

 ( ){ } ( ){ }
1/ 22 1/ 2

r,oA 60 4 H / 2W 2 60 4 64 0.0563
− −⎡ ⎤= + − = + =⎣ ⎦  

 

 
( ) ( )e

6 2
V 2W 20 m / s 0.02 m

Re 25,173.
15.89 10 m / sν −

= = =
×

 

Hence 

 ( )
2 / 3

3/ 4
0.42
Sh 50,3460.667 0.0563 59.6

1.776 0.563Sc
⎛ ⎞= =⎜ ⎟+⎝ ⎠

 

 

 ( )
4 2 0.420.42AB

m
D 0.26 10 m / sh 59.6Sc 59.6 0.61 0.063 m / s.
2W 0.02 m

−×
= = =  

The evaporative flux is then 

 ( )3 2
An 0.063 m / s 0.0256 kg / m 0.0016 kg / s m .′′ = = ⋅     < 

 
COMMENTS:  The mass fraction of water vapor to air leaving the sides of the dryer is 

( ) ( ) 4
A air en S L / V W L 7 10 .ρ −′′ × × = ×   Hence, the assumption of dry air throughout the dryer is 

reasonable. 



PROBLEM 8.1  
KNOWN:  Flowrate and temperature of water in fully developed flow through a tube of 
prescribed diameter.  
FIND:  Maximum velocity and pressure gradient.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Isothermal flow, (3) Horizontal tube.  
PROPERTIES:  Table A-6, Water (300 K):  ρ = 998 kg/m3, μ = 855 × 10-6 N⋅s/m2. 
 
ANALYSIS:  From Eq. 8.6,  

 
( )

D 6
4m 4 0.01 kg/sRe 596.
D 0.025m  855 10  kg/m sπ μ π −

×
= = =

× ⋅

&
 

 
Hence the flow is laminar and the velocity profile is given by Eq. 8.15,  

 ( ) ( )2o
m

u r
2 1 r/r .

u
⎡ ⎤= −⎢ ⎥⎣ ⎦

 

 
The maximum velocity is therefore at r = 0, the centerline, where  
 ( ) mu 0 2 u .=  
 
From Eq. 8.5  

 
( )

m 2 23
m 4 0.01 kg/su 0.020 m/s,

 D / 4 998 kg/m 0.025mρπ π

×
= = =

×

&
 

 
hence  
 ( )u 0 0.041 m/s.=  
 
Combining Eqs. 8.16 and 8.19, the pressure gradient is  

 
2
m

D

dp 64 u 
dx Re 2D

ρ
= −  

 

 
( )23

2 2998 kg/m  0.020 m/sdp 64 0.86 kg/m s
dx 596 2 0.025 m

= − × = − ⋅
×

 
 

 2 -5dp 0.86N/m m 0.86 10  bar/m.
dx

= − ⋅ = − ×       < 

 



PROBLEM 8.2  
KNOWN:  Temperature and mean velocity of water flow through a cast iron pipe of 
prescribed length and diameter.  
FIND:  Pressure drop.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Fully developed flow, (3) Constant 
properties.  
PROPERTIES:  Table A-6, Water (300 K):  ρ = 997 kg/m3, μ = 855 × 10-6 N⋅s/m2. 
 
ANALYSIS:  From Eq. 8.22, the pressure drop is  

 
2
m up f L.

2D
ρ

Δ =  
 
With  

 
3

4m
D -6 2

 u D 997 kg/m 0.2 m/s 0.15 mRe 3.50 10
855 10  N s/m

ρ
μ

× ×
= = = ×

× ⋅
 

 
the flow is turbulent and with e = 2.6 ×10-4 m for cast iron (see Fig. 8.3), it follows that e/D = 
1.73 × 10-3 and from Eq. 8.20 (or Fig. 8.3) 
 

 
D

1 e / D 2.512.0log          f = 0.027
3.7f Re f

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
 

 
Hence,  

 ( ) ( )
23997 kg/m 0.2 m/s

p 0.027 600m
2 0.15 m

Δ =
×

 
 
 2 2p 2154 kg/s m 2154 N/mΔ = ⋅ =  
 
 p 0.0215 bar.Δ =          < 
 
COMMENTS:  For the prescribed geometry, L/D = (600/0.15) = 4000 >> (xfd,h/D)turb ≈ 10, 
and the assumption of fully developed flow throughout the pipe is justified. 
 



PROBLEM 8.3 
 
KNOWN:  Temperature and velocity of water flow in a pipe of prescribed dimensions. 
 
FIND:  Pressure drop and pump power requirement for (a) a smooth pipe, (b) a cast iron pipe with a clean 
surface, and (c) smooth pipe for a range of mean velocities 0.05 to 1.5 m/s. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady, fully developed flow. 
 
PROPERTIES:  Table A.6, Water (300 K):  ρ = 997 kg/m3, μ = 855 × 10-6 N⋅s/m2, ν = μ/ρ = 8.576 ×  
10-7 m2/s. 
 
ANALYSIS:  From Eq. 8.22a and 8.22b, the pressure drop and pump power requirement are 

 
2
mup f L

2D
ρ

Δ =                          ( )2
mP pV p D 4 uπ= Δ = Δ&  (1,2) 

 
The friction factor, f, may be determined from Figure 8.3 or Eq. 8.20 for different relative roughness, e/D, 
surfaces or from Eq. 8.21 for the smooth condition, 3000 ≤ ReD ≤ 5 × 106, 

 ( )( ) 2
Df 0.790ln Re 1.64 −= −  (3) 

 
where the Reynolds number is 
 

 5m
D 7 2

u D 1m s 0.25mRe 2.915 10
8.576 10 m sν −

×
= = = ×

×
 (4) 

 
(a) Smooth surface:  from Eqs. (3), (1) and (2), 
 

 ( )( ) 25f 0.790ln 2.915 10 1.64 0.01451
−

= × − =  
 

 ( )3 2 2 4 2p 0.01451 997 kg m 1m s 2 0.25 m 1000 m 2.89 10 kg s mΔ = × × = × ⋅  = 0 289. bar  < 

 ( )4 2 2 2P 2.89 10 N m 0.25 m 4 1m s 1418 N m s 1.42kWπ= × × = ⋅ =  < 
 
(b) Cast iron clean surface:  with e = 260 μm, the relative roughness is e/D = 260 × 10-6 m/0.25 m = 1.04 
× 10-3.  From Figure 8.3 or Eq. 8.20 with ReD = 2.92 × 105, find f = 0.021.  Hence, 

 Δp = 0.402 bar                   P = 1.97 kW < 
 
(c) Smooth surface:  Using IHT with the expressions of part (a), the pressure drop and pump power 
requirement as a function of mean velocity, um, for the range 0.05 ≤ um ≤ 1.5 m/s are computed and 
plotted below. 

Continued... 



PROBLEM 8.3 (Cont.) 
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The pressure drop is a strong function of the mean velocity.  So is the pump power since it is proportional 
to both Δp and the mean velocity. 
 
COMMENTS:  (1) Note that L/D = 4000 >> (xfd,h/D) ≈ 10 for turbulent flow and the assumption of fully 
developed conditions is justified. 
 
(2) Surface fouling results in increased surface roughness and increases operating costs through 
increasing pump power requirements. 
 
(3) The IHT Workspace used to generate the graphical results follows. 
 

// Pressure drop: 
deltap = f * rho * um^2 * L / ( 2 * D )  // Eq (1); Eq 8.22a 
deltap_bar = deltap / 1.00e5  // Conversion, Pa to bar units 
Power = deltap * ( pi * D^2 / 4 ) * um  // Eq (2); Eq 8.22b 
Power_kW = Power / 1000   // Useful for scaling graphical result 
 
// Reynolds number and friction factor: 
ReD = um * D / nu   // Eq (3) 
f =  (0.790 * ln (ReD) - 1.64 ) ^ (-2)  // Eq (4); Eq 8.21, smooth surface condition 
 
// Properties Tool - Water: 
// Water property functions :T dependence, From Table A.6 
// Units: T(K), p(bars);  
x = 0    // Quality (0=sat liquid or 1=sat vapor) 
rho = rho_Tx("Water",Tm,x)  // Density, kg/m^3 
nu = nu_Tx("Water",Tm,x)  // Kinematic viscosity, m^2/s 
 
// Assigned variables: 
um = 1    // Mean velocity, m/s 
Tm = 300   // Mean temperature, K  
D = 0.25   // Tube diameter, m 
L = 1000   // Tube length, m 
 



PROBLEM 8.4 
 
KNOWN:  Number, diameter and length of tubes and flow rate for an engine oil cooler. 
 
FIND:  Pressure drop and pump power (a) for flow rate of 24 kg/s and (b) as a function of flow rate for 
the range 10 ≤ m&  ≤ 30 kg/s. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Fully developed flow throughout the tubes. 
 
PROPERTIES:  Table A.5, Engine oil (300 K):  ρ = 884 kg/m3, μ = 0.486 kg/s⋅m. 
 
ANALYSIS:  (a) Considering flow through a single tube, find 

 
( )

( )D
4 24 kg s4m

Re 251.5
D 25 0.010 m 0.486 kg s mπ μ π

= = =
⋅

&
 (1) 

Hence, the flow is laminar and from Equation 8.19, 

 
D

64 64
f 0.2545

Re 251.5
= = = . (2) 

With 

 
( )

( ) ( )

( ) ( )
1

m 22 3
24 / 25 kg s 4m

u 13.8 m s
D 4 884 kg m 0.010 m

= = =
&

ρ π π
 (3) 

Equation 8.22a yields 

 
( )( )

( )

3 22
m

884 kg m 13.8 m su
p f L 0.2545 2.5 m

2D 2 0.010 m

ρ
Δ = =  6 25.38 10 N m 53.8 bar= × =  (4)< 

The pump power requirement from Equation 8.22b, 

 6 2
3

m 24 kg s
P p V p 5.38 10 N m

884 kg mρ
= Δ ⋅ = Δ ⋅ = ×

&&  = 1.459 × 105 N⋅m/s = 146 kW. (5)< 

(b) Using IHT with the expressions of part (a), the pressure drop and pump power requirement as a 
function of flow rate, m&  , for the range 10 ≤ m&  ≤ 30 kg/s are computed and plotted below. 
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PROBLEM 8.4 (Cont.) 

 
In the plot above, note that the pressure drop is linear with the flow rate since, from Eq. (2), the friction 
factor is inversely dependent upon mean velocity.  The pump power, however, is quadratic with the flow 
rate. 
 
COMMENTS:  (1) If there is a hydrodynamic entry region, the average friction factor for the entire tube 
length would exceed the fully developed value, thereby increasing Δp and P. 
 
(2) The IHT Workspace used to generate the graphical results follows. 

 
/* Results: base case, part (a) 
P_kW  ReD deltap_bar f mu rho um D N
 mdot 
145.9  251.5 53.75  0.2545 0.486 884.1 13.83 0.01 25
 24                           */ 
 
// Reynolds number and friction factor 
ReD = 4 * mdot1 / (pi * D * mu)           // Reynolds number, Eq (1)                  
f = 64 / ReD                                          // Friction factor, laminar flow, Eq. 8.19, Eq. (2) 
 
// Average velocity and flow rate 
mdot1 = rho * Ac * um           // Flow rate, kg/s; single tube 
mdot = mdot1 * N                  // Total flow rate, kg/s; N tubes 
Ac = pi * D^2 / 4                    // Tube cross-sectional area, m^2 
 
// Pressure drop and power 
deltap = f * rho * um^2 * L / (2 * D)       // Pressure drop, N/m^2 
deltap_bar = deltap * 1e-5                   // Pressure drop, bar 
P = deltap * mdot / rho                         // Power, W 
P_kW = P / 1000                                 // Power, kW 
 
// Input variables 
D = 0.01                    // Diameter, m 
mdot = 24                  // Total flow rate, kg/s 
L = 2.5                       // Tube length, m 
N = 25                        // Number of tubes 
Tm = 300                   // Mean temperature of oil, K 
 
// Engine Oil property functions : From Table A.5 
rho = rho_T("Engine Oil",Tm) // Density, kg/m^3 
mu = mu_T("Engine Oil",Tm) // Viscosity,  N·s/m^2 
 

 



PROBLEM 8.5  
KNOWN:  The x-momentum equation for fully developed laminar flow in a parallel-plate channel 

2

2

dp d uconstant
dx dy

μ= =  
 
FIND:  Following the same approach as for the circular tube in Section 8.1: (a) Show that the velocity 
profile, u(y), is parabolic of the form 

( )

2

2
3( ) 1
2 / 2

m
yu y u

a

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
 

where um is the mean velocity expressed as  
 

2

12m
a dPu

dxμ
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 
 
and -dp/dx = Δp/L where Δp is the pressure drop across the channel of length L; (b) Write the 
expression defining the friction factor, f, using the hydraulic diameter as the characteristic length, Dh;  
What is the hydraulic diameter for the parallel-plate channel?  (c) The friction factor is estimated from 
the expression 

hDf C Re=  where C depends upon the flow cross-section as shown in Table 8.1; 
What is the coefficient C for the parallel-plate channel (b/a → ∞ ) ?  (d) Calculate the mean air 
velocity and the Reynolds number for air at atmospheric pressure and 300 K in a parallel-plate channel 
with separation of 5 mm and length of 100 mm subjected to a pressure drop of Δp = 3.75 N/m2;  Is the 
assumption of fully developed flow reasonable for this application?  If not, what effect does this have 
on the estimate for um? 
 
SCHEMATIC: 

 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Fully developed laminar flow, (2) Parallel-plate channel, a << b. 
 
PROPERTIES:  Table A-4, Air (300 K, 1 atm):  μ = 184.6 × 10-7 N⋅s/m2, ν = 15.89 × 10-6 m2/s. 
 
ANALYSIS:  (a) The x-momentum equation for fully developed laminar flow is 
 

 
2

2
d u dp constant

dxdy
μ
⎛ ⎞
⎜ ⎟ = =
⎜ ⎟
⎝ ⎠

        (1) 

 
Since the longitudinal pressure gradient is constant, separate variables and integrate twice, 
 

 1
d du 1 dp du 1 dp y C
dy dy dx dy dxμ μ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 

 2
1 2

1 dpu y C y C
2 dxμ

⎛ ⎞= + +⎜ ⎟
⎝ ⎠
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PROBLEM 8.5 (Cont.) 
 
The integration constants are determined from the boundary conditions, 
 

 ( )
y 0

du 0 u a / 2 0
dy =

= =  

 
to find 
 

 ( )21 2
1 dpC 0 C a / 2

2 dxμ
⎛ ⎞= = − ⎜ ⎟
⎝ ⎠

 

 
giving 
 

 ( ) ( )
( )

2 2

2
a / 2 dp yu y 1
2 dx a / 2μ

⎡ ⎤⎛ ⎞ ⎢ ⎥= − −⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
       (2) 

 
The mean velocity is 
 

 ( ) ( )
( )

a / 2

0

a / 22 3
m 2

0

a / 22 2 dp y / 3u u y dy y
a a 2 dx a / 2μ

⎡ ⎤⎛ ⎞ ⎢ ⎥= = − −⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
∫  

 

 
2

m
a dpu

12 dxμ
⎛ ⎞= −⎜ ⎟
⎝ ⎠

         (3) 

 
Substituting Eq. (3) for dp/dx into Eq. (2) find the velocity distribution in terms of the mean velocity 
 

 ( )
( )

2
m 2

3 yu y u 1
2 a / 2

⎡ ⎤
⎢ ⎥= −
⎢ ⎥
⎣ ⎦

            <   (4) 

 
(b) The friction factor follows from its definition, Eq. 8.16, 
 

 
( ) h

2
m

dp / dx D
f

u / 2ρ

−
=

⋅
         (5) 

 
where the hydraulic diameter for the channel using Eq. 8.66 is 
 

 
( )
( )

c
h

4 a b4 AD 2a
P 2 a b

×⋅
= = =

+
            <   (6) 

 
since a << b. 
 
(c) Substituting for the pressure gradient, Eq. (3), and rearranging, find using Eq. (6), 
 

 
h

m h
2 2 m h Dm

u D 96 96f
u D / Rea /12 u / 2 νμ ρ

= = =           <   (7) 

 
where the Reynolds number is 
 
 hD m hRe u D /ν=          (8) 

 
          Continued … 



PROBLEM 8.5 (Cont.) 
 
This result is in agreement with Table 8.1 for the cross-section with b/a → ∞ where 
 
 C = 96.          < 
 
(d) For the conditions shown in the schematic, with air properties evaluated at 300 K, using Eqs. (3) 
and (8), find 
 

 
2 2

m 7 2
(0.005m) 3.75N / mu 2.12m / s

0.200m12 184.6 10 N s / m−

⎛ ⎞
= =⎜ ⎟⎜ ⎟× × ⋅ ⎝ ⎠

 

 

D 6 2
2.12m / s 2 0.005mRe 1332

15.89 10 m / s−
× ×

= =
×

 

 
The flow is laminar since ReDh < 2300,  and from Eq. 8.3, the laminar entry length is  
 

 

fd,h
Dh

h lam

fd,h

x
0.05Re

D

x 2 0.005m 0.05 1332 0.67m

⎛ ⎞
=⎜ ⎟

⎝ ⎠

= × × × =
 

 
We conclude that the flow is not fully developed, and the friction factor in the entry region will be 
higher than for fully developed conditions.  Hence, for the same pressure drop, the mean velocity will 
be less than our estimate. 
 



PROBLEM 8.6  
 
KNOWN: Water, engine oil and NaK flowing in a 20 mm diameter tube, temperature of the 
fluids. 
 
FIND: (a) The mean velocity as well as hydrodynamic and thermal entrance lengths, for a flow 
rate of 0.01 kg/s and mean temperature of 366 K, (b) The mass flow rate as well as hydrodynamic 
and thermal entrance lengths for water and oil at a mean velocity of 0.02 m/s at mean 
temperatures of 300 and 400 K. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Constant properties. 
 
PROPERTIES:  
 
 Liquid  T(K) Table ρ(kg/m3) μ(N⋅s/m2) ν(m2/s)  Pr 
 Water  300 A.6 997  855 × 10-6 -  5.83 
   366 A.6 963  303 × 10-6 -  1.89 
   400 A.6 937  217 × 10-6 -  1.34 
 
 Oil  300 A.5 884  48.6 × 10-2 -  6400 
   366 A.5 844  2.12 × 10-2 -  338 
   400 A.5 825  0.874 × 10-2 -  152 
 
 NaK  366 A.7 849  -  5.797 × 10-7 0.019 
 
 
ANALYSIS: (a) The mean velocity is given by 

2 2
m cu  = m ρA  = 0.01 kg/s/ (0.020m) /4  = 31.8 kg/s m /⎡ ⎤ρπ ⋅ ρ⎣ ⎦&          (1) 

The Reynolds number is  

 D
4m 4 × 0.01 kg/s 0.636 kg/s mRe  =  =  = 
πDμ π(0.020 m)μ μ

⋅&
           (2) 

The hydrodynamic entrance length is 

 fd,h D
0.636 kg/s mx  = 0.05Re D = 0.05 ×  × (0.020 m)        

μ
⋅  

   
-6636 × 10  kg/s m= 
μ

⋅              (3) 
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PROBLEM 8.6 (Cont.) 
 

The thermal entrance length is  
 fd,t D fd,hx  = 0.05Re DPr = x Pr  

           
-6636 × 10  kg/s m= Pr
μ

⋅              (4) 

Solving Equations (1), (3) and (4) yields                < 
 

Liquid um (m/s) xfd,h (m) xfd,t (m) 
water 

engine oil 
NaK 

0.033 
0.038 
0.037 

2.1 
0.030 

1.3 

3.97 
10.1 

0.025 
  
 
where, for the NaK, μ is found from the definition 
 -7 2 3 -6 2μ = νρ = 5.797 × 10 m /s × 849 kg/m  = 492 × 10 N s/m⋅  
 
(b) The mass flow rate is given by 

2 3
-6

c m
0.02 m/s × π × (0.020 m) mm = ρA u  = ρ = 6.28 × 10 ρ

4 s
&          (5) 

The Reynolds number is 

 
-6 3

-6 2
D

4m 4 × 6.28 × 10  m /s × ρRe  =  =  = 400 × 10  m /s × (ρ/μ)
πDμ π(0.020 m)μ
&

        (6) 

 
The hydrodynamic entrance length is  
 -6 2

fd,h Dx  = 0.05Re D = 0.05 × 400 × 10  m /s × 0.02 m (ρ/μ)  
-9 3

fd,hx  = 400 × 10  m /s (ρ/μ)               (7) 
 
The thermal entrance length is 
 -9 3

fd,t fd,hx  = x Pr = 400 × 10  m /s (ρ/μ) Pr            (8)  

Solving Equations (5), (7) and (8) yields                < 
 

Liquid T (k) m& (kg/s) xfd,h (m) xfd,t (m) 
Water 
Water 

Engine Oil 
Engine Oil 

300 
400 
300 
400 

0.0063 
0.0059 
0.0056 
0.0052 

0.464 
1.72 

7.27 × 10-4 

37.7 × 10-3 

2.72 
2.30 
4.65 
5.74 

 
 
COMMENTS: (1) As the momentum and thermal diffusivities approach similar values (Pr → 1) 
xfd,h/xfd,t → 1. (2) Note the variation of xfd,h/xfd,t with Pr for large and small values of the Prandtl 
number. (c) The Reynolds number associated with the oil is very small. Buoyancy forces are 
likely to be significant and may induce secondary fluid motion which, in turn, may increase the 
convection heat transfer coefficients. We will treat buoyancy effects in Chapter 9. 



PROBLEM 8.7 
 
KNOWN:  Velocity and temperature profiles for laminar flow in a tube of radius ro = 10 mm. 
 
FIND:  Mean (or bulk) temperature, Tm, at this axial position. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Laminar incompressible flow, (2) Constant properties. 
 
ANALYSIS:  The prescribed velocity and temperature profiles, (m/s and K, respectively) are  
 
 u(r) = 0.1 [1-(r/ro)2]                    T(r) = 344.8 + 75.0 (r/ro)2 - 18.8 (r/ro)4  (1,2) 
 
For incompressible flow with constant cv in a circular tube, from Eq. 8.26, the mean temperature and um, 
the mean velocity, from Eq. 8.8 are, respectively, 
  

 ( ) ( )or
m 2 0

m o

2T u r T r r dr
u r

= ⋅ ⋅ ⋅∫                          ( )or
m 2 0

o

2u u r r dr
r

= ⋅ ⋅∫  (3,4) 

 
Substituting the velocity profile, Eq. (1), into Eq. (4) and integrating, find 
 

 ( ) ( ) ( )1 22
m o o o o2 0

o

2
u r 0.1 1 r r r r d r r

r
= −⎡ ⎤

⎢ ⎥⎣ ⎦∫  ( ) ( )
1

2 4
o o

0

1 1
2 0.1 r r r r 0.05 m / s

2 4
= − =⎧ ⎫⎡ ⎤

⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
 

 
Substituting the profiles and um into Eq. (3), find 
 

 
( )

( ){ } ( ) ( ){ } ( ) ( )1 2 2 42
m o o o o o o2 0

o

2
T r 0.1 1 r r 344.8 75.0 r r 18.8 r r r r d r r

0.05 m s r
= − + − ⋅ ⋅⎡ ⎤

⎢ ⎥⎣ ⎦∫  

 

( ) ( ) ( ) ( ) ( ) ( ){ } ( )1 3 5 3 5 7
m o o o o o o o0

T 4 344.8 r r 75.0 r r 18.8 r r 344.8 r r 75.0 r r 18.8 r r d r r= + − − + −⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦∫  

 [ ] [ ]{ }mT 4 172.40 18.75 3.13 86.20 12.50 2.35 367 K= + − − + − =   < 
 
The velocity and temperature profiles appear as shown below.  Do the values of um and Tm found above 
compare with their respective profiles as you thought?  Is the fluid being heated or cooled? 
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PROBLEM 8.8 
 
KNOWN:  Velocity and temperature profiles for laminar flow in a parallel plate channel. 
 
FIND:  Mean velocity, um, and mean (or bulk) temperature, Tm, at this axial position.  Plot the velocity 
and temperature distributions.  Comment on whether values of um and Tm appear reasonable. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Laminar incompressible flow, (2) Constant properties. 
 
ANALYSIS:  The prescribed velocity and temperature profiles (m/s and °C, respectively) are 
 

 ( ) ( )2ou y 0.75 1 y y⎡ ⎤= −⎢ ⎥⎣ ⎦
                       ( ) ( ) ( )2 4

o oT y 5.0 95.66 y y 47.83 y y= + − (1,2) 

The mean velocity, um, follows from its definition, Eq. 8.7, 
 ( )

c
c m cA

m A u u y dAρ ρ= = ⋅∫&  

where the flow cross-sectional area is dAc = 1⋅dy, and Ac = 2yo, 

 ( ) ( )
c o

y
m A yc o

1 1u u y dy u y dy
A 2y

+
−

= ⋅ =∫ ∫  (3) 

 

 ( ) ( )1 2
m o o o1o

1u y 0.75 1 y y d y y
2y

+
−

⎡ ⎤= ⋅ −⎢ ⎥⎣ ⎦∫  

 

 ( ) ( ){ } 13
m o o

1
u 1 2 0.75 y y 1 3 y y

+

−

⎡ ⎤= −⎢ ⎥⎣ ⎦
 

 

 [ ] [ ]{ }mu 1 2 0.75 1 1 3 1 1 3 1 2 0.75 4 3 2 3 0.75 0.50m s= × − − − + = × × = × =  < 
 
The mean temperature, Tm, follows from its definition, Eq. 8.25, 
 t v mE mc T=& &                          where                          c mm A uρ=&  
 
 ( ) ( )

c
c m p m p cA

A u c T c u y T y dA= ⋅∫ρ ρ  

Hence, substituting velocity and temperature profiles, 

 ( ) ( )o
o

y
m ym c

1T u y T y dy
u A

+
−

= ⋅∫  (4) 

 
( )

( ){ } ( ) ( ){ } ( )1 2 2 4
m o o o o o1o

1
T y 0.75 1 y y 5.0 95.66 y y 47.83 y y d y y

0.5 m s 2y

+
−

= − + −⎡ ⎤
⎣ ⎦∫  

 

( ) ( ) ( ) ( ) ( ) ( ){ } 13 5 3 5 7
m o o o o o o

1

0.75
T 5 y y 31.89 y y 9.57 y y 1.67 y y 19.13 y y 6.83 y y

0.5 2

+

−
= + − − + −

×
⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦  

 

 [ ] ( )[ ]{ }m
0.75

T 27.32 13.97 27.32 13.97 20.0 C
0.5 2

= − − − − − =
×

o  < 

Continued... 



 
PROBLEM 8.8 (Cont.) 

 
The velocity and temperature profiles along with the um  and Tm values are plotted below. 

-1 -0.6 -0.2 0.2 0.6 1

Dimensionless coordinate, x/xo

0

0.2

0.4

0.6

0.8

1

V
el

oc
ity

, u
(y

) (
m

/s
)

Velocity profile, u(y)
Mean velocity, um = 0.5 m/s  

-1 -0.6 -0.2 0.2 0.6 1

Dimensionless coordinate, y/yo 

0
10
20
30
40
50
60

Te
m

pe
ra

tu
re

, T
(y

) (
C

)

Temperature profile, T(y)
Mean temperature, Tm = 20 C  

 
For the velocity profile, the mean velocity is 2/3 that of the centerline velocity, um = 2u(0)/3.  Note that 
the areas above and below the um line appear to be equal.  Considering the temperature profile, we’d 
expect the mean temperature to be closer to the centerline temperature since the velocity profile weights 
the integral toward the centerline. 
 
COMMENTS:  The integrations required to obtain um and Tm, Eqs. (3) and (4), could also be performed 
using the intrinsic function INTEGRAL (y,x) in the IHT Workspace. 
 



PROBLEM 8.9  
KNOWN:  Flow rate and properties of oil flowing in pipe.  Dimensions of pipe.   
FIND:  Pressure drop, flow work, temperature rise caused by flow work.   
SCHEMATIC:   
 
 
 
 
 
 

 
 
 
 
ASSUMPTIONS:  (1) Steady-state, (2) Incompressible flow, (3) Negligible kinetic and potential 
energy changes, (4) No work other than flow work.    
 
ANALYSIS:  We begin by determining whether the flow is laminar or turbulent.  From Equation 8.6 

 d 2
4m 4 × 500 kg/sRe  =  =  = 693
πDμ π × 1.2 m × 0.765 N s/m⋅

&
 

and the flow is laminar.  The friction factor is given by Equation 8.19,  
 f = 64/ReD 
and the pressure drop by Equation 8.22a, 

 
2 2
m m

2 1
D

ρu ρuΔp = f (x  - x ) = 32 L
2D DRe

 

where um can be found from m cm = ρu A& : 

 m 2 3 2
c

m m 4 × 500 kg/su  =  =  =  = 0.491 m/s
ρA πD /4 900 kg/m  × π × (1.2 m)ρ

& &
 

Thus 

 
3 2

5
in out

32 × 900 kg/m  × (0.491 m/s)  × 100,000 mp  - p  = Δp =  = 8.4 × 10  Pa
1.2 m × 693

 

 Δp = 0.84 MPa                       < 
 
The flow work is then found from its definition (see discussion leading to Equation 1.11d), 

 3
flow in out

mW  = (p  - p ) = 500 kg/s × 0.84 MPa/900 kg/m
ρ
&&  

            = 0.46 MW           < 
Finally, with reference to Equation 1.12d, the portion of the temperature rise due to flow work is given 
by 

 
p flow in out flow

flow flow p

mmc ΔT  =  (p  - p ) = W
ρ

ΔT  = W /mc  = 0.46 MW/(500 kg/s × 2000 J/kg K) ⋅

& &&

& &

 

             = 0.46°C            < 
 
COMMENTS: Despite the long length of pipeline and high viscosity of the oil, which results in a 
large pressure drop, the temperature rise due to the flow work is quite small.  
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PROBLEM 8.10  
KNOWN:  Thermal energy equation describing laminar, fully developed flow in a circular pipe with 
viscous dissipation.   
FIND:  (a) Left hand side of equation integrated over the pipe volume, (b) viscous dissipation term 
integrated over the same volume, (c) temperature rise caused by viscous dissipation.   
SCHEMATIC:   
 
 
 
 

 
ASSUMPTIONS:  (1) Steady-state, (2) Laminar, (3) Fully-developed.    
 
ANALYSIS:  (a) The thermal energy equation is given as 

 2
p

T k T duρ c  u  =  (r ) + μ( )
x r r r dr
∂ ∂ ∂
∂ ∂ ∂

 

 
where u is given by Equation 8.15, 
 u = 2 um [1 - (r/r0)2] 
 
Integrating the advection term on the left-hand side over a section of the pipe of length L, we have 

 
c

c

L

p c
0 A

L

p c
0 A

TAdv. = ρ c  u  dA  dx
dx

d         = ρ c  u T dA dx
dx

∂

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

∫ ∫

∫ ∫
 

 
From Equation 8.25, the term in square brackets is p mmc T& , thus 

 
L

m
p p m,o m,i

0

dTAdv. = m c  dx = m c  (T  - T )
dx∫ & &          < 

which coincides with the right-hand side of Equation 8.34. 
 
(b) Integrating the viscous dissipation term, we have 

 

c

o

o

L
2

c
0 A

rL
2

0 0
r 2

2
m 4

o0

duVisc. Diss. = μ ( )  dA  dx
dr

du                  =  2 π μ  ( ) r dr dx 
dr

r                  = 2 π μ L 16 u  r dr 
r

∫ ∫

∫ ∫

∫

 

     
or2

2 2
m m4

o 0

r=  32 π μ L u = 8 π μ L u
 4r

         < 
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PROBLEM 8.10 (Cont.) 
 
(c) Using the values from Problem 8.9,  

 
2

p v.d. m

2
v.d. m p

m c  ΔT  = 8 π μ L u

         ΔT  = 8 π μ L u /m c

&

&
 

 
where um = cm / A .ρ&   Thus 

 

v.d. 2 2
p c

2

3 2 2 2

8 π μ L m ΔT  = 
ρ  c  A

8π × 0.765 N s/m  × 100,000 m × 500 kg/s           = 
(900 kg/m )  × 2000 J/kg K × (π × (1.2 m) /4)

⋅
⎡ ⎤⋅⎣ ⎦

&

 

             = 0.46°C            < 
 
COMMENTS: (1) Even in the case of a long pipe with a highly viscous fluid, the temperature rise 
due to viscous dissipation is quite small.  (2) The temperature rise due to viscous dissipation is 
identical to the temperature rise due to flow work in Problem 8.9.  This is no coincidence.  In fully-
developed pipe flow, there is a balance between the viscous forces (friction) and the pressure drop 
needed to overcome them.  As a result, viscous dissipation exactly equals the work done by the 
pressure forces (flow work).  Conservation of energy can be expressed in a form that includes flow 
work (for example, Equation 1.12d) or in a form that includes viscous dissipation (for example, 
Equation 6.29), and in the case of fully-developed pipe flow they are equal.  
 
 
 
 



PROBLEM 8.11  
 
KNOWN:  Mass flow rate in a circular tube, tube length and diameter, thermal conditions. 
 
FIND: (a) Expression for (Ts(x = L) – Tm,i)/q for constant heat flux conditions, (b) (Ts – Tm,i)/q for 
constant surface temperature conditions. 
 
SCHEMATIC:  
 
 
 
 

 
 
 

 
ASSUMPTIONS:  (1) Constant properties. 
 
ANALYSIS (a) From Newton’s law of cooling,  
 
   ( ) ( ) /s mT x L T x L q h′′= − = =      (1) 
 
and from an energy balance on the entire tube, 
 
   ,( ) /m m i pT x L T q mc= = + &      (2) 
 
Combining Eqs. (1) and (2) and noting that q q DLπ′′=  yields 
 

   ,( ) 1 1s m i

p

T x L T
q DLh mcπ

= −
= +

&
 

 
Substituting the expression for the local Nusselt number, NuD = hD/k gives 
 

   ,( ) 1 1s m i

D p

T x L T
q Nu Lk mcπ

= −
= +

&
    < 

 
(b) From Eq. (8.41b) 
 

   
,

( ) exps m

s m i p

T T x L DhL
T T mc

π⎛ ⎞− =
= −⎜ ⎟⎜ ⎟− ⎝ ⎠&

    (3) 

Combining Eqs. (2) and (3) yields 
 

   
,

/
1 exp

( )
p

s m i p

q mc DhL
T T mc

π⎛ ⎞
− = −⎜ ⎟⎜ ⎟− ⎝ ⎠

&

&
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PROBLEM 8.11 (Cont.) 
 

 
which may be rearranged to yield 
 

  ( ),
1 expp

ps m i

q DhLmc
mcT T
π⎡ ⎤⎛ ⎞

= − −⎢ ⎥⎜ ⎟⎜ ⎟− ⎢ ⎥⎝ ⎠⎣ ⎦
&

&
 

 
or 
 

  ,( ) 1

1 exp

s m i

D
p

p

T T
q Nu kLmc mc

π

−
=

⎡ ⎤⎛ ⎞
− −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
&

&

     < 

 
 
 
COMMENTS:  (1) The ratio on the LHS is a figure of merit that, in many applications, is sought to 
be minimized. (2)The two terms on the RHS of the final expression for the constant heat flux case may 
be thought of as thermal resistances. The first term on the RHS is a thermal resistance associated with 
heat transfer between the fluid and the tube wall at the tube exit, and the second term is associated 
with the increase in temperature between the tube inlet and the tube exit. (3) As the argument of the 
exponential term increases in magnitude for the constant surface temperature expression, the mean 
outlet temperature approaches the surface temperature value (see Eq. 3), and the figure of merit 
expression reduces to Eq. (2). 



PROBLEM 8.12 
 
KNOWN:  Internal flow with prescribed wall heat flux as a function of distance. 
 
FIND:  (a) Beginning with a properly defined differential control volume, the temperature distribution, 
Tm(x), (b) Outlet temperature, Tm,o, (c) Sketch Tm(x), and Ts(x) for fully developed and developing flow 
conditions, and (d) Value of uniform wall flux ′′qs  (instead of ′qs  = ax) providing same outlet temperature 
as found in part (a);  sketch Tm(x) and Ts(x) for this heating condition. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Incompressible liquid with 
negligible viscous dissipation.  
 
PROPERTIES:  Table A.6, Water (300 K):  cp = 4.179 kJ/kg⋅K. 
 
ANALYSIS:  (a) Applying energy conservation to the control volume above, 
 conv p mdq mc dT= &  (1) 

where Tm(x) is the mean temperature at any cross-section and dqconv = q dx′ ⋅ .  Hence, 

 m
p

dTax mc
dx

= & . (2) 

Separating and integrating with proper limits gives 

 
( )m

m,i

x T x
p mx 0 T

a xdx mc dT
=

=∫ ∫&                     ( )
2

m m,i
p

axT x T
2mc

= +
&

 (3,4)< 

 
(b) To find the outlet temperature, let x = L, then 
 
 ( ) 2

m m,o m,i pT L T T aL 2mc= = + & . (5) 
 
Solving for Tm,o , we find 
 

 
( )

( )( )

2 2

m,o
20 W m 30 m

T 27 C
2 450 kg h 3600s h 4179 J kg K

= +
× ⋅

o  27 C 17.2 C 44.2 C= + =o o o . < 

 
(c) For linear wall heating, ′ =q axs , the fluid temperature distribution along the length of the tube is 
quadratic as prescribed by Eq. (4).  From the convection rate equation, 
 
 ( ) ( ) ( )( )s s mq h x D T x T xπ′ = ⋅ −  (6) 
 
For fully developed flow conditions, h(x) = h is a constant; hence, Ts(x) - Tm(x) increases linearly with x.  
For developing conditions, h(x) will decrease with increasing distance along the tube eventually 
achieving the fully developed value. 
 

Continued... 



PROBLEM 8.12 (Cont.) 
 
 
 

 
 
(d) For uniform wall heat flux heating, the overall energy balance on the tube yields 
 
 ( )s p m,o m,iq q DL mc T Tπ′′= = −&  
 
Requiring that Tm,o = 44.2°C from part (a), find 
 

 
( ) ( ) 2

s
450 3600 kg s 4179J kg K 44.2 27 K

q 95.3/ D W m
D 30mπ

× ⋅ −
′′ = =

×
 < 

 
where D is the diameter (m) of the tube which, when specified, would permit determining the required 
heat flux, sq′′ .  For uniform heating, Section 8.3.2, we know that Tm(x) will be linear with distance.  Ts(x) 
will also be linear for fully developed conditions and appear as shown below when the flow is 
developing. 

 
 
COMMENTS:  (1) Note that cp should be evaluated at Tm = (27 + 44)°C/2 = 309 K. 
 
(2) Why did we show Ts(0) = Tm(0) for both types of history when the flow was developing? 
 
(3) Why must Tm(x) be linear with distance in the case of uniform wall flux heating? 



PROBLEM 8.13  
KNOWN:  Internal flow with constant surface heat flux, ′′qs.  
 
FIND:  (a) Qualitative temperature distributions, T(x), under developing and fully-developed 
flow, (b) Exit mean temperature for both situations.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (a) Steady-state conditions, (b) Constant properties, (c) Incompressible 
flow with negligible viscous dissipation.  
ANALYSIS:  Based upon the analysis leading to Eq. 8.39, note for the case of constant 
surface heat flux conditions,  

 mdT  constant.
dx

=  
 
Hence, regardless of whether the hydrodynamic or thermal boundary layer is fully developed, 
it follows that  
 ( )mT x   is linear and 
 
 m,2T   will be the same for all flow conditions.    < 
 
The surface heat flux can also be written, using Eq. 8.27, as  
 ( ) ( )s s mq h T x T x .′′ ⎡ ⎤= −⎣ ⎦  
 
Under fully-developed flow and thermal conditions, h = hfd is a constant.  When flow is 
developing h > hfd.  Hence, the temperature distributions appear as below. 
 

            < 
 



PROBLEM 8.14  
KNOWN:  Geometry and coolant flow conditions associated with a nuclear fuel rod.  Axial 
variation of heat generation within the rod.  
FIND:  (a) Axial variation of local heat flux and total heat transfer rate, (b) Axial variation of 
mean coolant temperature, (c) Axial variation of rod surface temperature and location of 
maximum temperature.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant fluid properties, (3) Uniform 
surface convection coefficient, (4) Negligible axial conduction in rod and fluid, (5) 
Incompressible liquid with negligible viscous dissipation, (6) Outer surface is adiabatic.  
ANALYSIS:  (a) Performing an energy balance for a control volume about the rod,  
 in out g gE E E 0          dq E 0− + = − + =& & & &  
or 

 ( ) ( ) ( ) ( ) ( )2
o oq  D dx q  sin  x/L   D / 4  dx=0           q q D/4  sin  x/L .π π π π′′ ′′− + =& &  < 

 
The total heat transfer rate is then  

 ( ) ( )
L L

0 0
2

oq  q   D dx  D / 4 q   sin  x/L  dxπ π π′′= ∫ = ∫&  
 

 ( )
L

0

22
o

o
D q L D L  xq  q  cos  1 1

4 L 4
π π

π
⎛ ⎞= − = +⎜ ⎟
⎝ ⎠

&
&  

 

 
2

o
D Lq q .

2
= &                (1)  < 

 
(b) Performing an energy balance for a control volume about the coolant,  
 ( )p m p m mm c  T dq m c  T dT 0.+ = + =& &  
 
Hence  
 ( )p mm c  d T dq  D dx  qπ ′′= =&  
 

 om
p

q Dd T  D  x  sin .
dx m c 4 L

π π⎛ ⎞= ⎜ ⎟
⎝ ⎠

&

&
 

          Continued … 



PROBLEM 8.14 (Cont.)  
Integrating,  

 ( )
x

0

2
o

m m,i
p

q D  xT x T    sin  dx
4 m c L

π π
− = ∫

&

&
 

 

 ( )
2

o
m m,i

p

qL D  xT x T   1 cos 
4 m c L

π⎡ ⎤= + −⎢ ⎥⎣ ⎦

&

&
          (2)  < 

 
(c) From Newton’s law of cooling,  
 ( )s mq h T T .′′ = −  
 
Hence  

 s m
qT T
h
′′

= +  
 

 
2

o o
s m,i

p

q  D q x LD  xT  sin T   1 cos .
4h L 4 m c L

π π⎡ ⎤= + + −⎢ ⎥⎣ ⎦

& &

&
    < 

 
To determine the location of the maximum surface temperature, evaluate  

 
2

s o o
p

d T q  D q x LD  x0 cos    sin 
dx 4hL L 4 m c L L

π π π π
= = +

& &

&
 

 
or  

 
p

1  x D  x cos  sin 0.
hL L m c L

π π
+ =
&

 

 
Hence  

 pm c xtan 
L D h L
π

= −
&

 
 

 p1
max

m cLx  tan  x .
D h Lπ

− ⎛ ⎞
= − =⎜ ⎟

⎝ ⎠

&
       < 

 
COMMENTS:  Note from Eq. (2) that  

 ( )
2

o
m,o m m,i

p

L D qT T L T
2 m c

= = +
&

&
 

 
which is equivalent to the result obtained by combining Eq. (1) and Eq. 8.34. 
 



PROBLEM 8.15 
 

KNOWN:  Laminar boundary layer development in a tube entrance. 
 
 
FIND: (a) Expression for NuD in terms of 1

DGz−  and Pr. Plot of NuD versus 1
DGz−  for Pr = 0.7. (b) 

Expression for DNu  in terms of 1
DGz−  and Pr. Comparison to combined entrance length correlation in 

the limit of small x. 
 
SCHEMATIC: 

 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Constant properties. (2) Laminar conditions. 
 
ANALYSIS:  (a) From Equation 7.23, the Nusselt number based upon the streamwise coordinate x is 
 

    1/ 2 1/ 30.332x x
hxNu Re Pr
k

= =      (1) 

 
Multiplying both sides of Equation 1 by D/x and substituting Rex = ReDx/D yields 
 
   

1/ 2 1/ 2
1/ 3 1/ 30.332 0.332D x x

hD x D DNu Re Pr Re Pr
k D x x

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎡ ⎤ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎝ ⎠⎣ ⎦ ⎣ ⎦
 (2) 

 
Substituting 1

DGz−  = (x/D)/(ReDPr) into Equation 2 and noting that Pr1/3 = Pr1/2⋅Pr-1/6 yields 
 
    
    NuD = 0.332 [ 1

DGz− ]-1/2 Pr-1/6    < 
 
The expression for the local Nusselt number, NuD with Pr = 0.7 is plotted below. 

Continued... 
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PROBLEM 8.15 (Cont.) 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
(b) Equation 7.30 gives the following for the average Nusselt number: 
 

1/ 2 1/ 30.664x
x x

h xNu Re Pr
k

= =  

 
Following the same steps as in part (a), this can be rewritten as 
 

1 1/ 2 1/ 60.664[ ]D DNu Gz Pr− − −=            (3) 
 

The average Nusselt number for the combined entrance length is given as 
 

( )

( )

1
1/3 2/3

1/6 1/6

3.66 0.0499 tanh
tanh 2.264 1.7

tanh 2.432

D D
D D

D
D

Gz Gz
Gz Gz

Nu
Pr Gz

−
− −

−

+
⎡ ⎤+⎣ ⎦=  

 
In the limit of small x, 1

DGz−  is also small.  Furthermore, 2 / 3 1/ 3
D DGz Gz− −<<   Noting that tanh(ε) → ε as ε 

→ 0, we find 
 

 

( )

( )

1
1/3 2 /3

1/6 1/6

1
1/3

1 1/ 2 1/6
1/6 1/6 1/6 1/3 1/6

3.66 0.0499 tanh
tanh 2.264 1.7

tanh 2.432

3.66 0.0499
3.662.264 0.665[ ]

2.432 2.264 2.432

D D
D D

D
D

D D
D

D
D D D

Gz Gz
Gz Gz

Nu
Pr Gz

Gz Gz
Gz Gz Pr

Pr Gz Gz Gz Pr

−
− −

−

−
−

− − −
− − −

+
⎡ ⎤+⎣ ⎦=

+
→ → =

×

 

 
This is in excellent agreement with Eq. (3). 

Continued... 

Boundary layer solution (Pr = 0.7)

Combined thermal
entrance (Pr = 0.7)



PROBLEM 8.15 (Cont.) 
 
 
COMMENT:  The combined thermal entrance length solution and the boundary layer solution based 
upon the results of Chapter 7 exhibit asymptotic behavior at small inverse Graetz numbers. Small 
values of 1

DGz−  correspond to the locations where the boundary layer is very thin. 



PROBLEM 8.16  
KNOWN:  Axial variation of surface heat flux for flow through a tube.  
FIND:  Axial variation of fluid and surface temperatures.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Convection coefficient is independent of x, (2) Applicability of Eq. 
8.34.  
ANALYSIS:  Since Equation 8.37 is applicable,  

 
( ) ( )s,msm

p p

 D q sin  x/Lq PdT
dx m c m c

π π′′′′
= =
& &

 

 
Separating variables and integrating from x = 0  

 
T xm,o

T 0m,i

s,m
m

p

Dq  x dT   sin  dx
m c L

π π′′
∫ = ∫

&
 

 

 ( )
x

0
s,m

m m,i
p

LDq  xT x -T cos  
m c L

π′′
= −

&
 

 

 ( ) ( )s,m
m m,i

p

LDq
T x T 1 cos x/L .

m c
π

′′
= + −

&
      < 

 
From Newton’s law of cooling, Eq. 8.27,  
 ( ) ( ) ( )s s mT x q / h T x′′= +  
 

 ( ) ( )s,m s,m
s m,i

p

q LDq xT x sin T 1 cos  x/L .
h L m c

π π
′′ ′′

= + + −
&

    < 

 
COMMENTS:  For the prescribed surface condition, the flow is not fully developed.  Hence, 
the assumption of constant h should be viewed as a first approximation. 
 



PROBLEM 8.17  
KNOWN:  Surface heat flux for air flow through a rectangular channel.  
FIND:  (a) Differential equation describing variation in air mean temperature, (b) Air outlet 
temperature for prescribed conditions.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Ideal gas with negligible viscous dissipation and pressure variation, 
(2) No heat loss through bottom of channel, (3) Uniform heat flux at top of channel.  
PROPERTIES:  Table A-4, Air (T ≈ 50°C, 1 atm):  cp = 1008 J/kg⋅K. 
 
ANALYSIS:  (a) For the differential control volume about the air,  
 in outE =E& &  
 
 ( ) ( )p m o p m mm c  T q  w dx m c  T d T′′+ ⋅ = +& &  
 

 om
p

q wd T
dx m c

′′ ⋅
=

&
 

 
Separating and integrating between the limits of x = 0 and x, find  

 ( ) ( )o
m m,i

p

q w x
T x T

m c
′′ ⋅

= +
&

 

 

 ( )o
m,o m,i

p

q w L
T T .

m c
′′ ⋅

= +
&

        < 

 
(b) Substituting numerical values, the air outlet temperature is  

 
( ) ( )

( )

2 2

m,o
700 W/m  1 3 m

T 40 C
0.1 kg/s 1008 J/kg K

×
= +

⋅
o  

 
 m,oT 60.8 C.= o          < 
 
COMMENTS:  Due to increasing heat loss with increasing Tm, the net flux oq′′  will actually 
decrease slightly with increasing x. 
 



PROBLEM 8.18 
 
KNOWN:  Air inlet conditions and heat transfer coefficient for a circular tube of prescribed geometry.  
Surface heat flux. 
 
FIND:  (a) Tube heat transfer rate, q, air outlet temperature, Tm,o, and surface inlet and outlet 
temperatures, Ts,i and Ts,o, for a uniform surface heat flux, ′′qs .  Air mean and surface temperature 
distributions.  (b) Values of q, Tm,o, Ts,i and Ts,o for a linearly varying surface heat flux ′′qs  = 500x (m). Air 
mean and surface temperature distributions, (c) For each type of heating process (a & b), compute and 
plot the mean fluid and surface temperatures, Tm(x) and Ts(x), respectively, as a function of distance;  
What is effect of four-fold increase in convection coefficient, and (d) For each type of heating process, 
heat fluxes required to achieve an outlet temperature of Tm,o = 125°C; Plot temperatures. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Fully developed conditions in the tube, (2) Applicability of Eq. 8.34, (3) Heat 
transfer coefficient is the same for both heating conditions. 
 
PROPERTIES:  Table A.4, Air (for an assumed value of Tm,o = 100°C, mT  = (Tm,i + Tm,o)/2 = 60°C = 
333 K):  cp = 1.008 kJ/kg⋅K. 
 
ANALYSIS:  (a) With constant heat flux, from Eq. 8.38, 

 ( ) ( )2
sq q DL 1000 W m 0.05m 3m 471Wπ π′′= = × × = . (1) 

From the overall energy balance, Eq. 8.34, 

 m,o m,i
p

q 471WT T 20 C 113.5 C
mc 0.005kg s 1008J kg K

= + = + =
× ⋅

o o

&
 (2) < 

From the convection rate equation, it follows that 
 

 
2

s
s,i m,i 2

q 1000 W mT T 20 C 60 C
h 25W m K

′′
= + = + =

⋅
o o  (3) < 

 s,o m,o sT T q h 113.5 C 40 C 153.5 C′′= + = + =o o o  < 
 
From Eq. 8.39, (dTm/dx) is a constant, as is (dTs/dx) for constant h from Eq. 8.30.  In the more realistic 
case for which h decreases with x in the entry region, (dTm/dx) is still constant but (dTs/dx) decreases with 
increasing x.  See the plot below. 
 
(b) From Eq. 8.37, 
 

 
( ) ( )2

m
p

500x D 500x W m 0.05mdT 15.6x K m
dx mc 0.005kg s 1008J kg K

π π ×
= = =

× ⋅&
. (4) 

Continued... 



 
PROBLEM 8.18 (Cont.) 

 
Integrating from x = 0 to L it follows that 

 

323
m,o m,i 0

0

xT T 15.6 xdx 20 C 15.6 20 C 70.2 C
2

= + = + = +∫ o o o  = 90.2°C. (5) < 

The heat rate is 

 ( )
323

s s 0
0

xq q dA 500 0.05m xdx 78.5 353W
2

π′′= = × = =∫ ∫  < 

From Eq. 8.27 it then follows that 

 
2

2
s m s m,i

x 500T T q h T 15.6 x 20 C 7.8x 20x
2 25

′′= + = + + = + +o  (6) 

Hence, at the inlet (x = 0) and outlet (x = L), 

 s,i m,iT T 20 C= = o                and                   s,oT 150.2 C= o  < 
Note that (dTs/dx) and (dTm/dx) both increase linearly with x, but (dTs/dx) > (dTm/dx). 
 
(c) The foregoing relations can be used to determine Tm(x) and Ts(x) for the two heating conditions: 
 
Uniform surface flux, ′′qs ; Eqs. (1-3), 
 ( )m m,i s pT x T q Dx mcπ′′= + &                      ( ) ( )s m sT x T x q h′′= +  (7,8) 

Linear surface heat flux, sq′′  = aox, ao = 500 W/m3; Eqs. (4-6), 

 ( ) ( ) 2
m m,i o pT x T a D 2mc xπ= + &                      ( ) ( )s m oT x T x a x h= +  (9, 10) 

Using Eqs. (7-10) in IHT, the mean fluid and surface temperatures as a function of distance are evaluated 
and plotted below.  The calculations were repeated with the coefficient increased four-fold, h = 4 × 25 = 
100 W/m2⋅K.  As expected, the fluid temperature remained unchanged, but the surface temperatures 
decreased since the thermal resistance between the surface and fluid decreased. 
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(d) The foregoing set of equations, Eqs. (7-10), in the IHT model can be used to determine the required 
heat fluxes for the two heating conditions to achieve Tm,o = 125°C.  The results with h = 25 W/m2⋅K are: 

Uniform flux:      sq′′  = 1123 W/m2                    Linear flux:         sq′′  = 748.7x W/m2 < 
 

Continued... 
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The temperature distributions resulting from these heat fluxes are plotted below.  The heat rate for both 
heating processes is 529 W. 
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COMMENTS:  Note that the assumed value for Tm,o (100°C) in determining the specific heat of the air 
was reasonable. 



PROBLEM 8.19 
 
KNOWN:  Tube length, diameter and surface temperature. Mass flow rate and inlet temperature of 
fluid.  
 
FIND:  (a) Heat transfer rate if the fluid is water. (b) Heat transfer rate for the nanofluid of Example 
2.2. 
 
SCHEMATIC: 
 

 Ts = 30°C
D = 15 mm 

m = 0.015 kg/s•
Tm,i = 20°C
Water or nanofluid

m = 0.015 kg/s•
Tm,i = 20°C

m = 0.015 kg/s•
Tm,i = 20°C
Water or nanofluid

L = 6 m
 

 
 
ASSUMPTIONS:  (1) Constant properties, (2) Negligible viscous dissipation. 
 
PROPERTIES:  Table A.4, water (300 K): μbf = 855 × 10-6 m2/s, kbf = 0.613 W/m⋅K, cp,bf = 4179 
J/kg⋅K, Prbf = 5.83. Example 2.2, nanofluid (300 K): ρnf = 1146 kg/m3, μnf = 962 × 10-6 m2/s, νnf =  
μnf /ρnf  = 839 × 10-9 m2/s, knf = 0.705 W/m⋅K, cp,nf = 3587 J/kg⋅K, αnf = 171 × 10-9 m2/s,  Prnf  = νnf /αnf 
= 4.91. 
 
ANALYSIS:  (a) The Reynolds number is  
 

6 2
bf4 / 4 0.015 kg/s / 0.015m 855 10 m /s 1489DRe m Dπ μ π −⎡ ⎤= = × × × × =⎣ ⎦&  

 
Therefore the flow is laminar.  The hydrodynamic and thermal entry lengths are 
 

, 0.05 0.05 0.015 m 1489 1.12 mfd h Dx DRe= = × × =  
  , bf0.05 0.05 0.015 m 1489 5.83 6.51 mfd t Dx DRe Pr= = × × × =  
 
Since the tube length is L = 6 m, the temperature is still developing.  The hydrodynamic entry length is 
less than the tube length, but perhaps not sufficiently shorter to consider the velocity to be fully 
developed through the entire tube.  With Prbf > 5, the Hausen correlation, Equation 8.57, could be used 
as an approximation.  However the nanofluid Prandtl number is less than 5.  To compare the two fluids 
on an equal basis, we will use the combined entry correlation, Equation 8.58, for both.  With GzD = 
(D/L)ReDPrbf = (0.015 m/6 m) × 1489 × 5.83 = 21.7, Equation 8.58 is 
 

( )

( )

1
1/3 2/3

1/6 1/6

3.66 0.0499 21.7 tanh 21.7
tanh 2.264 21.7 1.7 21.7

4.98
tanh 2.432 5.83 21.7

DNu

−
− −

−

+ × ×
⎡ ⎤× + ×⎣ ⎦= =

× ×
 

 
 
Therefore 2

bf / 4.98 0.613 W/m K / 0.015 m = 203 W/m KDh Nu k D= = × ⋅ ⋅ . From Equation 8.41b 
 

Continued… 
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, ,
,bf

2

( )exp

0.015 m 6m      30 C 10 Cexp 203 W/m K 26.0 C
0.015 kg/s 4179 J/kg K

m o s s m i
p

DLT T T T h
mc
π

π

⎛ ⎞
= − − −⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞× ×

= ° − ° − ⋅ = °⎜ ⎟× ⋅⎝ ⎠

&
 

 
Therefore the heat transfer rate to the water is 
 
       ,bf , ,( ) 0.015 kg/s×4179 J/kg K (26.0 C - 20°C) 376 Wp m o m iq mc T T= − = ⋅ × ° =&   < 
 
(b) The preceding calculations may be repeated for the nanofluid. The results are: 
 
       ReD = 1324, xfd,h = 0.99 m, xfd,t = 4.87 m 
 
The combined entry solution is again appropriate.  The remaining results are: 
 

GzD = 16.2, DNu = 4.68 220h = W/m2⋅K, Tm,o = 26.9°C, and q = 369 W   < 
 
COMMENTS: (1) The nanofluid of Example 2.2 is water containing Al2O3 nanoparticles. The 
thermal conductivity of the nanofluid is 15% greater than that of the base fluid (water). In addition, the 
convection heat transfer coefficient of the nanofluid is 8% greater than that of the water, and the 
temperature increase of the nanofluid is 15% higher than for the water. However, less heat is 
transferred to the nanofluid than to the water. This is because the nanofluid suffers from a reduced 
specific heat relative to the pure water. Any claim that a nanofluid is a better heat transfer medium 
than its corresponding base fluid because of its larger thermal conductivity is suspect. In this problem, 
the pure water is the preferred heat transfer fluid if the objective is to maximize the heat transfer rate. 
In addition, the nanofluid is more costly to produce, and because of its larger viscosity, would suffer 
from larger pressure drops and higher pumping costs. (2) Use of the Hausen correlation, Equation 8.57 
yields q = 366 W and 362 W for the water and nanofluid, respectively. Hence, the predictions of the 
Hausen correlation are within 3% of the predictions using the correlation of Baehr and Stephan. Use of 
the Hausen correlation also predicts less heat transfer for the nanofluid than for the pure water. 
 



PROBLEM 8.20  
KNOWN:  Water at prescribed temperature and flow rate enters a 0.25 m diameter, black thin-walled tube of 8-
m length, which passes through a large furnace whose walls and air are at a temperature of Tfur = T∞ = 700 K.  
The convection coefficients for the internal water flow and external furnace air are 300 W/m2

⋅K and 50 W/m2
⋅K, 

respectively.  
FIND:  (a) An expression for the linearized radiation coefficient for the radiation exchange process between the 
outer surface of the pipe and the furnace walls; represent the tube by an average temperature and explain how to 
calculate this value, and (b) determine the outlet temperature of the water, To. 
 
SCHEMATIC:   
 

  
ASSUMPTIONS:  (1) Steady-state conditions; (2) Tube is small object with large, isothermal surroundings; (3) 
Furnace air and walls are at the same temperature; (4) Tube is thin-walled with black surface; and (5) 
Incompressible liquid with negligible viscous dissipation.  
PROPERTIES:  Table A-6, Water (Tm = (Tm,i + Tm,o)/2 = 304 K):  cp = 4178 J/kg⋅K. 
 
ANALYSIS:  (a) The linearized radiation coefficient follows from Eq. 1.9 with ε = 1, 

 ( )( )2 2
rad t fur t furh T T T Tσ= + +  

where tT  represents the average tube wall surface temperature, which can be evaluated from an energy balance 
on the tube as represented by the thermal circuit above. 
 ( )m m,i m,oT T T / 2= +  

 tot cv,i
cv,o rad

1R R
1/ R 1/ R

= +
+

 

 ( ) ( )m t
t fur cv,o rad

cv,i

T T T T 1 / R 1 / R
R
−

= − +  

The thermal resistances, with As = PL = πDL, are 
 cv,i i s cv,o o s rad rad sR 1 / h A R 1/ h A R 1 / h A= = =  

(b) The outlet temperature can be calculated using the energy balance relation, Eq. 8.45b, with Tfur = T∞, 

 m,o

m,i p tot

T T 1exp
T T mc R
∞

∞

⎛ ⎞−
= −⎜ ⎟⎜ ⎟− ⎝ ⎠&

 

where cp is evaluated at Tm.  Using IHT, the following results were obtained. 
4 3 3

cv,i cv,o radR 5.31 10 K / W R 3.18 10 K / W R 3.96 10 K / W− − −= × = × = ×

 m tT 304 K T 396 K= =   m,oT 308 K=     < 

COMMENTS:  Since T∞ = Tfur, it was possible to use Eq. 8.45b with Rtot.  How would you write the energy 

balance relation if T∞ ≠ Tfur? 



PROBLEM 8.21  
KNOWN:  Laminar, slug flow in a circular tube with uniform surface heat flux.  
FIND:  Temperature distribution and Nusselt number.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady, incompressible flow, with negligible viscous dissipation, (2) Constant 
properties, (3) Fully developed, laminar flow, (4) Uniform surface heat flux.  
ANALYSIS:  With v = 0 for fully developed flow and ∂T/∂x = dTm/dx = const, from Eqs. 8.32 and 
8.39, the energy equation, Eq. 8.48, reduces to 

 m
o

d T  Tu   r .
dx r  r  r

α ∂ ∂
∂ ∂

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

Integrating twice, it follows that 

 ( ) ( )
2

o m
1 2

u d T rT r   C  n r C .
dx 4α

= + +l  

Since T(0) must remain finite, C1 = 0.  Hence, with T(ro) = Ts 

 ( ) ( )
2

2 2o o om m
2 s s o

u r ud T d TC T             T r T   r r .
dx 4 4 dxα α

= − = − −    < 

From Eq. 8.26, with um = uo, 
 

 ( )r ro o

0 0
2 3o m

m s o2 2
o o

u2 2 d TT   Tr dr   T r   rr r  dr
4 dxr r α

⎡ ⎤= ∫ = ∫ − −⎢ ⎥⎣ ⎦
 

 

 
2 4 4 2
o o o o o om m

m s s2
o

r u r r u r2 d T d TT  T     T  .
2 4 dx 2 4 8 dxr α α

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − − = −

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

 
From Eq. 8.27 and Fourier’s law,  

 
ors

s m s m

 Tk  q  rh
T T T T

∂
∂′′

= =
− −

 

 
hence,  

 

o o m

D2 oo o m

u r d Tk  
4k 8k hD2 dxh           Nu 8.
r D ku r d T 

8 dx

α

α

⎛ ⎞
⎜ ⎟
⎝ ⎠= = = = =     < 

 



PROBLEM 8.22  
KNOWN:  Heat transfer between fluid flow over a tube and flow through the tube.  
FIND:  Axial variation of mean temperature for inner flow.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Applicability of Eq. 8.34, (2) Negligible axial conduction, (3) 
Constant cp, (4) Uniform T∞. 
 
ANALYSIS:  From Eq. 8.36, 
 p mdq m c d T= &  
with 
 ( ) ( )m mdq UdA T T UP T T dx.∞ ∞= − = −  
The overall heat transfer coefficient may be defined in terms of the inner or outer surface 
area, with 
 i i o oU P U P .=  
For the inner surface, from Eq. 3.36,  

 
1

oi i
i

i i o o

r1 r r 1U ln .
h k r r h

−⎡ ⎤
= + +⎢ ⎥
⎣ ⎦

 

 
Hence,  

 m
m p

d T UP dx
T T m c∞

= +
− &

 

 
or, with ΔT ≡ T∞ - Tm, 
 

 ( )T Lo

T 0i p

d T P  Udx.
T m c

Δ

Δ

Δ
∫ = − ∫

Δ &
 

 
Hence,  

 
L

0
o
i p

T PL 1ln Udx
T m c L

⎛ ⎞Δ
= − ∫⎜ ⎟Δ ⎝ ⎠&

 

 

 m,o

m,i p

T T PLexp U .
T T m c
∞

∞

⎛ ⎞−
= −⎜ ⎟⎜ ⎟− ⎝ ⎠&

       < 

 
COMMENTS:  The development and results parallel those for a constant surface 
temperature, with sU and T  replacing h and T .∞  



PROBLEM 8.23 
 
KNOWN:  Thin-walled tube experiences sinusoidal heat flux distribution on the wall. 
 
FIND:  (a) Total rate of heat transfer from the tube to the fluid, q, (b) Fluid outlet temperature, Tm,o, (c) 
Axial distribution of the wall temperature Ts(x) and (d) Magnitude and position of the highest wall 
temperature, and (e) For prescribed conditions, calculate and plot the mean fluid and surface 
temperatures, Tm(x) and Ts(x), respectively, as a function of distance along the tube; identify features of  
the distributions; explore the effect of ±25% changes in the convection coefficient on the distributions. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Applicability of Eq. 8.34, (3) Turbulent, fully 
developed flow. 
 
ANALYSIS:  (a) The total rate of heat transfer from the tube to the fluid is 
 

 ( ) ( ) ( )L D L
s o o o00 0

q q Pdx q D sin x L dx q D L cos x L 2DLqπ π π π π′′ ′′ ′′ ′′⎡ ⎤= = = − =⎣ ⎦∫ ∫  (1) < 
 
(b) The fluid outlet temperature follows from the overall energy balance with knowledge of the total heat 
rate, 

 ( )p m,o m,i oq mc T T 2DLq′′= − =&             ( )m,o m,i o pT T 2DLq mc′′= + &  (2) < 
 
(c) The axial distribution of the wall temperature can be determined from the rate equation 
 ( ) ( )s s mq h T x T x′′ ⎡ ⎤= −⎣ ⎦                           ( )s,x m,x sT T x q h′′= +  (3) 
 
where, by combining expressions of parts (a) and (b), Tm,x(x) is 

 ( )x
s p m,x m,io

q Pdx mc T T′′ = −∫ &  
 

 ( ) ( )xo o
m,x m,i m,i0p p

q D DLqT T sin x L dx T 1 cos x L
mc mc
π π π
′′ ′′

⎡ ⎤= + = + −⎣ ⎦∫& &
 (4) 

 
Hence, substituting Eq. (4) into (3), find 

 ( ) ( ) ( )o o
s m,i

p

DLq qT x T 1 cos x L sin x L
mc h

π π
′′ ′′
⎡ ⎤= + − +⎣ ⎦&

 (5) < 

(d) To determine the location of the maximum wall temperature ′x  where Tx( x′ ) = Ts,max, set 

 
( ) ( )[ ] ( )s o o

p

dT x DLq qd
0 1 cos x L sin x L

dx dx mc h
π π

′′ ′′
= = − +

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭&

 

 

 ( ) ( )o o

p

DLq q
sin x L cos x L 0

mc L h L
π π

π π
′′ ′′

′ ′⋅ ⋅ + ⋅ ⋅ =
&

             ( ) po

o p

mcq h
tan x L

DLq mc DLh
π

′′
′ = − = −

′′

&

&
 

 
Continued... 
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 ( )1
p

Lx tan mc DLh
π

−′ = − &  (6) < 
 
At this location, the wall temperature is 
 

 ( ) ( ) ( )o o
s,max s m,i

p

DLq qT T x T 1 cos x L sin x L
mc h

π π
′′ ′′

′ ′ ′⎡ ⎤= = + − +⎣ ⎦&
 (7) < 

 
(e) Consider the prescribed conditions for which to compute and plot Tm(x) and Ts(x), 
 
 D = 40 mm m&  = 0.025 kg/s h = 1000 W/m2 oq′′  = 10,000 W/m2 
 L = 4 m cp = 4180 J/kg⋅K Tm,i = 25°C 
 
Using Eqs. (4) and (5) in IHT, the results are plotted below. 
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The effect of a lower convection coefficient is to increase the wall temperature.  The position of the 
maximum temperature, Ts,max, moves away from the tube exit with decreasing convection coefficient. 
 
COMMENTS:  (1) Because the flow is fully developed and turbulent, assuming h is constant along the 
entire length of the tube is reasonable. 
 
(2) To determine whether the Tx(x) distribution has a maximum (rather than a minimum), you should 
evaluate d2Ts(x)/dx2 to show the value is indeed negative. 



PROBLEM 8.24  
KNOWN:  Water is heated in a tube having a wall flux that is dependent upon the wall temperature.  
FIND:  (a) Beginning with a properly defined differential control volume in the tube, derive 
expressions that can be used to obtain the temperatures for the water and the wall surface as a function 
of distance from the inlet, Tm(x) and Ts(x), respectively; (b) Using a numerical integration scheme, 
calculate and plot the temperature distributions, Tm(x) and Ts(x), on the same graph.  Identify and 
comment on the main features of the distributions; and (c) Calculate the total heat transfer rate to the 
water.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Fully developed flow and thermal conditions, (3) 
No losses to the outer surface of the tube, (3) Constant properties, and (4) Incompressible liquid with 
negligible viscous dissipation . 
 
PROPERTIES:  Table A-6, Water ( )( )m m,i m,oT T T / 2 300 K := + =   cp = 4179 J/kg⋅K 
 
ANALYSIS:  (a) The properly defined control volume of perimeter P = πD shown in the above 
schematic follows from Fig. 8.6.  The energy balance on the CV includes advection, convection at the 
inner tube surface, and the heat flux dissipated in the tube wall.  (See Eq. 8.37). 

 ( ) ( ) ( )m
p s s m

dTmc q x P h P T x T x
dx

′′ ⎡ ⎤= = −⎣ ⎦&       (1,2) 
 
where ( )sq x′′  is dependent upon Ts(x) according to the relation 

 ( ) ( )( )s s,o s refq x q 1 T x Tα⎡ ⎤′′ ′′= + −⎣ ⎦        (3) 
 
(b) Eqs. (1 and 2) with Eq. (3) can be solved by numerical integration using the Der function in IHT as 
shown in Comment 1.  The temperature distributions for the water and wall surface are plotted below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          Continued … 
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PROBLEM 8.24 (Cont.)  
(c) The total heat transfer to the water can be evaluated from an overall energy balance on the water, 
 ( )p m,o m,iq m c T T= −&         (4) 

 ( )q 0.1 kg / s 4179 J / kg K 34.4 20 K 6018 W= × ⋅ − =     < 
Alternatively, the heat rate can be evaluated by integration of the heat flux from the tube surface over 
the length of the tube, 

 ( )
L

0
sq q x Pdx′′= ∫          (5) 

where ( )sq x′′  is given by Eq. (3), and Ts(x) and Tm(x) are determined from the differential form of the 
energy equation, Eqs. (1) and (2).  The result as shown in the IHT code below is 6005 W.  
COMMENTS:  (1) Note that Tm(x) increases with distance greater than linearly, as expected since sq (x)′′  

does.  Also as expected, the difference, Ts(x) – Tm(x), likewise increases with distance greater than linearly.  
(2) In the foregoing analysis, cp is evaluated at the mean fluid temperature Tm = (Tm,i + Tm,o)/2.  
(3) The IHT code representing the foregoing equations to calculate and plot the temperature 
distribution and to calculate the total heat rate to the water is shown below.  

/* Results: integration for distributions; conditions at x = 2 m 
F_xTs Ts q' q''s_x x Tm 
11.64 73.18 5483 1.164E5 2 34.39  
3 30 1414 3E4 0 20   */  
/* Results: heat rate by energy balances on fluid and tube surface 
q_eb q_hf  
6018 6005 */  
/* Results: for evaluating cp at Tm 
Ts cp q''s_x x Tm 
73.31 4179 1.166E5 2 34.44 
30 4179 3E4 0 20          */  
// Energy balances 
mdot * cp * der(Tm,x) = q'                                // Energy balance, Eq. 8.37  
q' = q''s_x * P 
q''s_x = q''o * F_xTs                
q' = h * P * (Ts - Tm)                                       // Convection rate equation 
P = pi * D  
// Surface heat flux specification 
F_xTs = (1 + alpha * (Ts -Tref))     
alpha = 0.2 
Tref = 20  
// Overall heat rate 
// Energy balance on the fluid   
q_eb = mdot * cp * (Tmo - Tmi) 
Tmi = 20 
Tmo = 34.4                  // From initial solve 
// Integration of the surface heat flux 
q_hf =  q''o * P * INTEGRAL(F_xTs, x)      
// Input variables 
mdot = 0.1 
D = 0.015 
h = 3000 
q''o = 1.0e4 
// L = 2    // Limit of integration over x  
// Tmi = 20                   // Initial condition for integration  
// Water property functions :T dependence, From Table A.6 
// Units: T(K), p(bars);  
xx = 0  // Quality (0=sat liquid or 1=sat vapor) 
cp = cp_Tx("Water",Tmm,xx) // Specific heat, J/kg·K 
Tmm = (20 + 34.4) / 2 + 273 



PROBLEM 8.25 
 
KNOWN:  Inlet temperature and flowrate of oil flowing through a tube of prescribed surface temperature 
and geometry. 
 
FIND:  (a) Oil outlet temperature and total heat transfer rate, and (b) Effect of flowrate. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Negligible temperature drop across tube wall, (2) Incompressible liquid with 
negligible viscous dissipation.  
 
PROPERTIES:  Table A.5, Engine oil (assume Tm,o = 140°C, hence mT  = 80°C = 353 K):  ρ = 852 
kg/m3, ν = 37.5 × 10-6 m2/s, k = 138 × 10-3 W/m⋅K, Pr = 490, μ = ρ⋅ν = 0.032 kg/m⋅s, cp = 2131 J/kg⋅K. 
 
ANALYSIS:  (a) For constant surface temperature the oil outlet temperature may be obtained from Eq. 
8.41b.  Hence 

 ( )m,o s s m,i
p

DLT T T T exp h
mc
π⎛ ⎞

= − − −⎜ ⎟⎜ ⎟
⎝ ⎠&

 

 
To determine h , first calculate ReD from Eq. 8.6, 
 

 
( )

( )( )D
4 0.5kg s4mRe 398

D 0.05m 0.032kg m sπ μ π
= = =

⋅
&

 

 
Hence the flow is laminar.  Moreover, from Eq. 8.23 the thermal entry length is 
 
 ( )( )( )fd,t Dx 0.05D Re Pr 0.05 0.05m 398 490 486 m≈ = = . 
 
Since L = 25 m the flow is far from being thermally fully developed.  Since Pr > 5, h may be determined 
from Eq. 8.57 

 DD 2/3
D

0.0668GzNu 3.66
1 0.04Gz

= +
+

. 

 
With GzD = (D/L)ReDPr = (0.05/25)398 × 490 = 390, it follows that 

 D
26Nu 3.66 11.95.

1 2.14
= + =

+
 

Hence, 2D
k 0.138W m Kh Nu 11.95 33W m K
D 0.05m

⋅
= = = ⋅  and it follows that 

Continued... 



 
PROBLEM 8.25 (Cont.) 

 

 ( ) ( )( ) 2
m,o

0.05m 25m
T 150 C 150 C 20 C exp 33W m K

0.5kg s 2131J kg K
π⎡ ⎤

= − − − × ⋅⎢ ⎥× ⋅⎣ ⎦

o o o  

 Tm,o = 35°C. < 
 
From the overall energy balance, Eq. 8.34, it follows that 
 

 ( ) ( )p m,o m,iq mc T T 0.5kg s 2131J kg K 35 20 C= − = × ⋅ × − o&  

 q = 15,980 W. < 
 
The value of Tm,o has been grossly overestimated in evaluating the properties.  The properties should be 
re-evaluated at T  = (20 + 35)/2 = 27°C and the calculations repeated.  Iteration should continue until 
satisfactory convergence is achieved between the calculated and assumed values of Tm,o.  Following such 
a procedure, one would obtain Tm,o = 36.4°C, ReD = 27.8, h  = 32.8 W/m2⋅K, and q = 15,660 W.  The 
small effect of reevaluating the properties is attributed to the compensating effects on ReD (a large 
decrease) and Pr (a large increase). 
 
(b) The effect of flowrate on Tm,o and q was determined by using the appropriate IHT Correlations and 
Properties Toolpads. 
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The heat rate increases with increasing m&  due to the corresponding increase in ReD and hence h .  
However, the increase is not proportional to &m , causing ( )m,o m,i pT T q mc− = & , and hence Tm,o, to 

decrease with increasing &m .  The maximum heat rate corresponds to the maximum flowrate ( m&  = 0.20 
kg/s). 
 
COMMENTS:  Note that significant error would be introduced by assuming fully developed thermal 
conditions and DNu  = 3.66.  The flow remains well within the laminar region over the entire range of 
m& . 



PROBLEM 8.26 
 
KNOWN:  Inlet temperature and flowrate of oil moving through a tube of prescribed diameter and 
surface temperature. 
 
FIND:  (a) Oil outlet temperature Tm,o for two tube lengths, 5 m and 100 m, and log mean and arithmetic 
mean temperature differences, (b) Effect of L on Tm,o and DNu . 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Incompressible liquid with negligible viscous 
dissipation, (3) Constant properties. 
 
PROPERTIES:  Table A.4, Oil (330 K):  cp = 2035 J/kg⋅K, μ = 0.0836 N⋅s/m2, k = 0.141 W/m⋅K, Pr = 
1205. 
 
ANALYSIS:  (a) Using Eqs. 8.41b and 8.6 

 ( )m,o s s m,i
p

DLT T T T exp h
mc
π⎛ ⎞

= − − −⎜ ⎟⎜ ⎟
⎝ ⎠&

             

D 2
4m 4 0.5kg sRe 304.6
D 0.025m 0.0836 N s mπ μ π

×
= = =

× × ⋅

&
 

 
With xfd,h = 0.05DReD = 0.4 m, it is reasonable to assume the flow is hydrodynamically fully developed. 
However, with xfd,t = xfd,hPr = 495 m, the flow is thermally developing. Since thermal entry length effects 
will be significant and Pr > 5, use Eq. 8.57 with Eq. 8.56 for the Graetz number: 

 
( )

( ) ( )

4D
2/ 3 2 /3

D

0.0688 D L Re Prk 0.141W m K 2.45 10 D Lh 3.66 3.66
D 0.025m 1 205 D L1 0.04 D L Re Pr

⎡ ⎤ ⎡ ⎤⋅ ×⎢ ⎥ ⎢ ⎥= + = +
⎢ ⎥ ⎢ ⎥+⎡ ⎤+⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

 

 
For L = 5 m, ( ) 2h 5.64 3.66 17.51 119 W m K= + = ⋅ , hence 

 ( )
2

m,o
0.025m 5m 119 W m KT 100 C 75 C exp 28.4 C

0.5kg s 2035J kg K
π⎛ ⎞× × × ⋅⎜ ⎟= − − =

⎜ ⎟× ⋅⎝ ⎠

o o o  < 

For L = 100 m, ( ) 2h 5.64 3.66 3.38 40 W m K= + = ⋅ ,      Tm,o = 44.9°C. < 
 
Also, for L = 5 m, 

 
( ) ( )

o i
m

o i

T T 71.6 75
T 73.3 C

n T T n 71.6 75
Δ − Δ −

Δ = = =
Δ Δ

o
l

l l
          ( )am o iT T T 2 73.3 CΔ = Δ + Δ = o  < 

For L = 100 m,          mT 64.5 CΔ = o
l ,            amT 65.1 CΔ = o  < 

 
(b) The effect of tube length on the outlet temperature and Nusselt number was determined by using the 
Correlations and Properties Toolpads of IHT. 

Continued... 



PROBLEM 8.26 (Cont.) 
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The outlet temperature approaches the surface temperature with increasing L, but even for L = 100 m, 
Tm,o is well below Ts.  Although DNu  decays with increasing L, it is still well above the fully developed 
value of NuD,fd = 3.66. 
 
COMMENTS:  (1) The average, mean temperature, mT  = 330 K, was significantly overestimated in 
part (a).  The accuracy may be improved by evaluating the properties at a lower temperature.  (2) Use of 
ΔTam instead of mTΔ l  is reasonable for small to moderate values of (Tm,i - Tm,o).  For large values of (Tm,i 
- Tm,o), mTΔ l  should be used. 



PROBLEM 8.27 
 
KNOWN:  Inlet and outlet temperatures and velocity of fluid flow in tube.  Tube diameter and length. 
 
FIND:  Surface heat flux and temperatures at x = 0.5 and 10 m. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Negligible heat loss to 
surroundings, (4) Incompressible liquid with negligible viscous dissipation, (5) Negligible axial 
conduction. 
 
PROPERTIES:  Pharmaceutical (given):  ρ = 1000 kg/m3, cp = 4000 J/kg⋅K, μ = 2 × 10-3 kg/s⋅m, k = 
0.80 W/m⋅K, Pr = 10. 
 
ANALYSIS:  With 
 

 ( ) ( )23m VA 1000 kg/m 0.2 m/s 0.0127 m / 4 0.0253 kg/sρ π= = =&  
 
Eq. 8.34 yields 
 
 ( ) ( )p m,o m,iq m c T T 0.0253 kg/s 4000 J/kg K 50 K 5060 W.= − = ⋅ =&  
 
The required heat flux is then 
 
 ( ) 2

s sq q/A 5060 W/ 0.0127 m 10 m 12,682 W/m .π′′ = = =     < 
 
With 
 
 ( )3 -3

DRe VD/ 1000 kg/m 0.2 m/s 0.0127 m/2 10  kg/s m 1270ρ μ= = × ⋅ =  
 
the flow is laminar and Eq. 8.23 yields 
 
 ( ) ( )fd,t Dx 0.05Re Pr D 0.05 1270 10 0.0127 m 8.06 m.= = =  
 
Hence, with fully developed hydrodynamic and thermal conditions at x = 10 m, Eq. 8.53 yields 
 
 ( ) ( ) ( ) 2

D,fdh 10 m Nu k/D 4.36 0.80 W/m K/0.0127 m 274.6 W/m K.= = ⋅ = ⋅  
 
Hence, from Newton’s law of cooling, 
 

 ( ) ( )2 2
s,o m,o sT T q / h 75 C 12,682 W/m /274.6 W/m K 121 C.′′= + = + ⋅ =o o   < 

 
At x = 0.5 m, (x/D)/(ReDPr) = 0.0031 and Figure 8.10 yields NuD ≈ 8 for a thermal entry region with 
uniform surface heat flux.  Hence, h(0.5 m) = 503.9 W/m2⋅K and, since Tm increases linearly with x, 
Tm(x = 0.5 m) = Tm,i + (Tm,o - Tm,i) (x/L) = 27.5°C.  It follows that 
 

 ( ) ( )2 2
sT x 0.5 m 27.5 C 12,682 W/m /503.9 W/m K 52.7 C.= ≈ + ⋅ =o o   < 



PROBLEM 8.28  
KNOWN:  Oil at 75°C enters a single-tube preheater of 10-mm diameter and 5-m length; tube surface 
maintained at 175°C by swirling combustion gases.  
FIND:  Determine the flow rate and heat transfer rate when the outlet temperature is 100°C.  
SCHEMATIC:  
 
   

 
 
 
 
 
 
ASSUMPTIONS:  (1) Laminar flow, (2) Tube wall is isothermal, (3) Incompressible liquid with 
negligible viscous dissipation, (4) Constant properties. 
 
PROPERTIES:  Table A-5, Engine oil, new (Tm = (Tm,i + Tm,o)/2 = 361 K):  ρ = 847.5 kg/m3, cp = 
2163 J/kg⋅K, ν = 2.931 × 10-5 m2/s, k = 0.1379 W/m⋅K, Pr = 390.2, μ = 0.0245. 
 
ANALYSIS:  The overall energy balance, Eq. 8.34, and rate equation, Eq. 8.41b, are 
 
 ( )p m,o m,iq m c T T= −&         (1) 
 

 s m,o

s m,i p

T T PLhexp
T T m c

⎛ ⎞−
= −⎜ ⎟⎜ ⎟− ⎝ ⎠&

        (2) 

 
Not knowing the flow rate m,&  the Reynolds number cannot be calculated.  Assume that the flow is 
laminar. Since Pr > 5, the average convection coefficient can be estimated using the Hausen 
correlation, Eq. 8.57, with Eq. 8.56 for the Graetz number: 
 

 
[ ]D

D
2/3

D

0.0668(D / L) Re PrNu 3.66
1 0.04 (D / L) Re Pr

= +
+

      (3) 

 
where all properties are evaluated at Tm = (Tm,i + Tm,o)/2.  The Reynolds number follows from Eq. 
8.6, 
 
 DRe 4m / Dπ μ= &          (4) 
 
A tedious trial-and-error solution is avoided by using IHT to solve the system of equations with the 
following result: 
 

DRe  DNu  Dh (W/m2⋅K) q(W) ( )m kg / h&   

130 7.25 100 1360 90      < 
 
Note that the flow is laminar, and evaluating xfd,t using Eq. 8.23, find xfd,t = 25 m, so the flow is not 
thermally fully developed. 
 
COMMENT: Use of the Baehr and Stephan correlation for the combined entry problem yields the 
identical values. Hence it may also be used. 
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PROBLEM 8.29  
KNOWN:  Oil flow rate.  Pipe diameter.  Inlet, outlet, and pipe surface temperatures.  
FIND:  Length of tube required to achieve desired outlet temperature.  
SCHEMATIC:   
 
 
 
 
 

 
ASSUMPTIONS:  (1) Steady-state, (2) Incompressible flow, (3) Negligible viscous dissipation.    
 
PROPERTIES:  Table A-5, Engine oil (Ti = 45°C = 318 K): μi = 16.3 × 10-2 N·s/m2; (To = 80°C = 
353 K): μo = 3.25 × 10-2 N·s/m2. 
 
ANALYSIS:  We begin by calculating the Reynolds numbers at the inlet and outlet, from Equation 
8.6, 

Di -2 2
i

4 m 4 × 1 kg/sRe  =  =  = 1560
π D μ π × 0.005 m × 16.3 × 10 N s/m⋅

&
 

 

 Do -2 2
4 × 1 kg/sRe  =  = 7840

π × 0.005 m × 3.25 × 10 N s/m⋅
     

 
Therefore the flow is laminar at the inlet and turbulent at the outlet.  The transition occurs when ReD = 
2300, that is, where  

 -2 24 m 4 × 1 kg/sμ =  =  = 11.1 × 10 N s/m
π D 2300 π × 0.005 m × 2300

⋅
&  

 
From Table A-5, this occurs at a transition temperature of Tm,t = 325 K = 52°C.  Now we proceed to 
analyze separately the heat transfer in the laminar and turbulent regions.  
 
Laminar Region.  The mean temperature in the laminar region is m1T = (45°C + 52°C)/2 = 48.5°C = 
321.5 K.   The properties are cp1 = 1999 J/kg·K, μ1 = 13.2 × 10-2 N·s/m2, k1 = 0.143 W/m·K, Pr1 = 
1851.  We recalculate the Reynolds number,   

D1 -2 2
1

4 m 4 × 1 kg/sRe  =  =  = 1930
π D μ π × 0.005 m × 13.2 × 10 N s/m⋅

&
 

 
The hydrodynamic and thermal entry lengths are given by  

fd,h Dix  = 0.05 Re  D = 0.05 × 1930 × 0.005 m = 0.48 m  

fd,t fd,h ix  = x Pr  = 0.48 m  × 1851 = 890 m⋅   
Based on this information, we assume the flow is hydrodynamically developed but thermally 
developing, and use Equations 8.56 and 8.57 for the Nusselt number (with Pr > 5),  

 
[ ]

1 D1 1
D1 1 1 2/3

1 D1 1

0.0668 (D/L ) Re  PrNu  = h D/k  = 3.66 + 
1 + 0.04 (D/L ) Re Pr

       (1) 

where L1 is the length of the laminar region, which is as yet unknown.   We can also use Equation 8.42 
for the mean temperature variation: 

s m,t 1
1

s i p1

T  - T π D L = exp - h
T  - T m c

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠&
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PROBLEM 8.29 (Cont.) 
 
Solving for 1h L1, we have 

 p1 s m,t
1 1

s i

mc T T 1 kg/s × 1999 J/kg K 150°C 52°Ch L  =  ln  =  ln
πD T T π × 0.005 m 150°C 45°C

−⎛ ⎞ ⋅ −⎛ ⎞− −⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠

&
 

         = 8780 W/m·K           (2) 
 
We can solve by iterating between Equations (1) and (2). Beginning with the estimate D1Nu = 3.66, 
we find 1h = 3.66 k1/D = 105 W/m2·K.  From Equation (2), L1 = 84 m.  Then from Equation (1), 

D1Nu = 22.3 and 1h = 639 W/m2·K.  Continuing the iterations, we find D1Nu = 16.9, 1h = 484 
W/m2·K, and L1 = 18.1 m. 
 
Turbulent Range.  The mean temperature in the turbulent region is m2T = (52°C + 80°C)/2 = 66°C = 
339 K.   The properties are cp2 = 2072 J/kg·K, μ2 = 5.62 × 10-2 N·s/m2, k2 = 0.139 W/m·K, Pr2 = 834.  
Thus 

 D2
2

4 mRe  =  = 4530
π D μ

&
 

  
We assume the flow is fully-developed hydrodynamically and thermally and use Equation 8.62,  

D2 2
D2 1/2 2/3

2

(f/8) (Re  - 1000) PrNu  = 
1 + 12.7 (f/8) (Pr  - 1)

 

 
where from Equation 8.21,   
 f = (0.790 ln ReD2 – 1.64)-2 = (0.790 ln (4530) – 1.64)-2 = 0.0398 
Thus 

 D2 1/2 2/3
(0.0398/8) (4530 - 1000) 834Nu  =  = 184

1 + 12.7 (0.0398/8) (834  - 1)
 

 
and h2 = NuD2k2/D = 5120 W/m2 ·K.  Then the required length L2 can be found from Equation 8.42, 
expressed between the transition point and the outlet,  

 s o 2 2
s m,t p2

T  - T π D L = exp h
T  - T m c

⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠&

  

 p2 s o
2 2

2 s m,t

m c T T 1 kg/s × 2072 J/kg K 150°C 80°CL  =  ln  =  ln
π D h T T 150°C 52°Cπ × 0.005 m × 5120 W/m K

⎛ ⎞− ⋅ −⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎜ ⎟− −⋅ ⎝ ⎠⎝ ⎠

&
 

       = 8.7 m 
 

The total required length is L = L1 + L2 = 26.8 m.          < 
 
COMMENTS: (1) If we had simply calculated the properties based on the mean temperature of mT = 
(45°C + 80°C)/2 = 62.5°C = 335.5 K, we would have found ReD = 3810.   Assuming the flow to be 
turbulent throughout would have resulted in a higher average Nusselt number, DNu  = 159, and 
correspondingly lower total length, L = 11.9 m.  The variation of properties with temperature can be 
very important for some fluids such as oils.  (2) If the oil were being cooled by exposure to a cooler 
wall, the Reynolds number could decrease from a turbulent to a laminar value.  The flow would likely 
not completely “relaminarize,” and the heat transfer in the section for which ReD < 2300 would fall 
between the values calculated using laminar and turbulent Nusselt number correlations.    



PROBLEM 8.30 
 

 
KNOWN:  Diameter and length of tube, air flow rate, air temperature and pressure at the tube inlet. 
Surface temperature at the tube exit. 
 
FIND:  (a) The heat transfer rate of the problem. (b) Conditions at the tube exit for reduced tube 
length. (c) Conditions at the tube exit for increased air flow rate. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Negligible viscous 
dissipation. 
 
PROPERTIES:  Table A.4, Air ( mT  ≈ 400 K, p = 1 atm): μ = 230.1×10-7 N⋅s/m2, Pr = 0.690, k = 
0.0338 W/m⋅K, cp = 1014 J/kg⋅K. 
 
ANALYSIS:  (a) We begin by calculating the Reynolds number 
 

   
6

7 2
4 4 135 10  kg/s 1494

0.005m 230.1 10 N s/mD
mRe

Dπ μ π

−

−
× ×

= = =
× × × ⋅

&
 

 
Therefore, the flow is laminar. The hydrodynamic and thermal entrance lengths are 
 

 , 0.05 0.05 0.005 m 1494 0.37 m

 =  = 0.37 m 0.690 = 0.26 m
fd h D

fd,t fd,h

x DRe

x x Pr

= = × × =

×
 

 
Therefore, the flow is fully-developed at the tube exit. For fully-developed laminar flow with constant 
heat flux conditions, the Nusselt number is NuD = 4.36. Therefore, the local heat transfer coefficient at 
the tube exit is 
 
  24.36 / 4.36 0.0338 W/m K / 0.005m 29.47 W/m Kh k D= = × ⋅ = ⋅  
 
Two independent expressions for the heat flux may be written based upon application of Newton’s law 
of cooling at the tube exit and an overall energy balance. 
 

   , ,
, ,

( )
" ( )   ;   p m o m i

s o m o
mc T T

q h T T q" =
DLπ
−

= −
&

   (1, 2) 

 
Equating Eqs. (1) and (2) yields 
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, , ,

6
2

6
2

135 10 kg/s 1014 J/kg K29.47W/m K 160 C 100 C
0.005 m 2 m

      
135 10 kg/s 1014 J/kg K 24.97W/m K

0.005 m 2 m

p p
m o s o m i

mc mc
T hT T h

DL DLπ π

π

π

−

−

⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤× × ⋅
⋅ × ° + × °⎢ ⎥× ×⎣ ⎦=

⎡ ⎤× × ⋅
+ ⋅⎢ ⎥× ×⎣ ⎦

& &

 

 
             = 152.3°C 
 
Hence, the heat rate is 
 
  6

, ,( ) 135 10 kg/s 1014J/kg K 52.3 C = 7.16 Wp m o m iq mc T T −= − = × × ⋅ × °&       < 
 
(b) If L = 0.2 m, conditions at x = L are not fully developed and the value of the heat transfer 
coefficient at the tube exit would exceed that of part (a). 
 
(c) If the flow rate is increased by an order of magnitude, the Reynolds number will increase to ReD = 
14,940, and the flow will be turbulent at the tube exit. Since L/D = 2 m / 0.005 m = 400, the turbulent 
flow at the tube exit will also be fully developed. The heat transfer coefficient at the tube exit would 
exceed that of part (a). 
 
COMMENTS:  In part (b), the local heat transfer coefficient would exceed h = 29.47 W/m2 at the 
tube exit and could be estimated using Fig. 8.10a. Specifically, for Gz-1 = (x/D)/(ReDPr) = (0.2 m/ 
0.005 m)/(1494 × 0.690) = 0.039,  NuD ≈ 4.6. Hence, h = 29.47 W/m2 × (4.6/4.36) = 31.1 W/m2⋅K. In 
part (c), the local heat transfer coefficient would exceed h = 29.47 W/m2 and could be evaluated using 
the Dittus-Boelter correlation. Specifically, NuD = 0.023×(14,940)4/50.6900.4 = 43.3. Hence, h = 29.47 
W/m2 × (43.3/4.36) = 292.7 W/m2⋅K. For Ts,o to remain the same, the heat rate associated with either 
part (b) or part (c)  would have to exceed that of part (a). 
 
 



PROBLEM 8.31  
KNOWN:  Thermal conductivity and inner and outer diameters of plastic pipe.  Volumetric flow rate and inlet 
and outlet temperatures of air flow through pipe.  Convection coefficient and temperature of water.  
FIND:  Pipe length and fan power requirement.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state, (2) Negligible heat transfer from air in vertical legs of pipe, (3) 
Ideal gas with negligible viscous dissipation and pressure variation, (4) Smooth interior surface, (5) 
Constant properties.  
PROPERTIES:  Table A-4, Air (Tm,i = 29°C):  3

i 1.155 kg / m .ρ =   Air ( )mT 25 C := °  cp = 1007 

J/kg⋅K, μ = 183.6 × 10-7 N⋅s/m2, ka = 0.0261 W/m⋅K, Pr = 0.707.  
ANALYSIS:  From Eq. (8.45a) 

 m,o s

m,i p

T T UA
exp

T T m c
∞

∞

−
= −

−

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠&

 

where, from Eqs. (3.34) and (3.35), ( ) ( )1 o i
s tot

i i o o

ln D / D1 l
UA R

h D L 2 Lk h D Lπ π π
− = = + +  

With i im 0.0289 kg / sρ= ∀ =&&  and D iRe 4m / D 13, 350,π μ= =&  flow in the pipe is turbulent.  Assuming 
fully developed flow throughout the pipe, and from Eq. (8.60), 

 ( ) ( )4 / 5 0.3 24 / 5 0.3a
i D

i

k 0.0261W / m K 0.023
h 0.023 Re Pr 13, 350 0.707 7.20 W / m K

D 0.15m

⋅ ×
= = = ⋅  

( ) ( )1
s 2 2

l 1 ln 0.17 / 0.15 1
UA

L 2 0.15 W / m K7.21 W / m K 0.15m 1500 W / m K 0.17mππ π

− = + +
× ⋅⋅ × × ⋅ × ×

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
( )s

L
UA 2.335 L W / K

0.294 0.133 0.001
= =

+ +
 

 ( )m,o

m,i

T T 17 21 2.335 L
0.333 exp exp 0.0802L

T T 17 29 0.0289 kg / s 1007 J / kg K
∞

∞

− −
= = = − = −

− − × ⋅

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
( )ln 0.333

L 13.7m
0.0802

= − =          < 

From Eqs. (8.22a) and (8.22b) and with ( )2
m,i i iu / D / 4 1.415 m / s,π= ∀ =&  the fan power is 

( ) ( )
( )

2 3 2
i m,i 3

i
i

u 1.155 kg / m 1.415 m / s
P p f L 0.0291 13.7m 0.025 m / s 0.077 W

2 D 2 0.15m

ρ
= Δ ∀ ≈ ∀ = × =& &  < 

where  2
Df (0.790 ln Re 1.64) 0.0291−= − =  from Eq. (8.21). 

COMMENTS:  (1) With L/Di = 91, the assumption of fully developed flow throughout the pipe is 
justified.  (2) The fan power requirement is small, and the process is economical.  (3) The resistance to 
heat transfer associated with convection at the outer surface is negligible. 



PROBLEM 8.32  
KNOWN:  Inlet temperature, flow rate and properties of hot fluid.  Initial temperature, volume and 
properties of pharmaceutical.  Heat transfer coefficient at outer surface and dimensions of coil.  
FIND:  (a) Expressions for Tc(t) and Th,o(t), (b) Plots of Tc(t) and Th,o(t) for prescribed conditions.  
Effect of flow rate on time for pharmaceutical to reach a prescribed temperature.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Constant properties, (2) Negligible heat loss from vessel to surroundings, (3) 
Pharmaceutical is isothermal, (4) Negligible work due to stirring, (5) Negligible thermal energy 
generation (or absorption) due to chemical reactions associated with the batch process, (6) Hot fluid is 
an incompressible liquid with negligible viscous dissipation, (7) Negligible tube wall conduction 
resistance. 
 
ANALYSIS:  (a) Performing an energy balance for a control surface about the stirred liquid, it 
follows that 

 ( ) ( )c c
c c v,c c c c v,c

d U d Td V c T V c q t
dt dt dt

= = =ρ ρ      (1) 

where,  ( ) ( )h p,h h,i h,oq t m c T T= −&        (2) 
 
or,  ( ) s mq t UA T= Δ l         (3a) 
 
where 
 

 
( ) ( ) ( )h,i c h,o c h,i h,o

m
h,i c h,i c

h,o c h,o c

T T T T T T
T

T T T T
n n

T T T T

− − − −
Δ = =

⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

l

l l

     (3b) 

 
Substituting (3b) into (3a) and equating to (2), 
 

 ( ) ( )h,i h,o
h p,h h,i h,o s

h,i c

h,o c

T T
m c T T UA

T T
n

T T

−
− =

⎛ ⎞−
⎜ ⎟⎜ ⎟−⎝ ⎠

&

l

 

 

Hence,  h,i c s
h,o c h p,h

T T UAn
T T m c

⎛ ⎞−
=⎜ ⎟⎜ ⎟−⎝ ⎠

l
&

 

 
or,  ( ) ( ) ( )h,o c h,i c s h p,hT t T T T exp UA / m c= + − − &          (4)  < 
 
Substituting Eqs. (2) and (4) into Eq. (1), 
          Continued … 
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 ( ) ( )c
c c v,c h p,h h,i c h,i c s h p,h

d TV c m c T T T T exp UA / m c
dt

⎡ ⎤= − − − −⎣ ⎦
& &ρ  

 

 
( ) ( )h p,h h,i cc

s h p,h
c c v,c

m c T Td T 1 exp UA / m c
dt V c

−
⎡ ⎤= − −⎣ ⎦

&
&

ρ
 

 

 
( )

( ) ( )c
c,i

T t th p,hc
s h p,hT oc c v,cc h,i

m cd T 1 exp UA / m c dt
V cT T

⎡ ⎤− = − −⎣ ⎦−∫ ∫
&

&
ρ

 

 

 ( )h p,hc h,i
s h p,h

c,i h,i c c v,c

m cT T
n 1 exp UA / m c t

T T V cρ

⎛ ⎞− ⎡ ⎤− = − −⎜ ⎟ ⎣ ⎦⎜ ⎟−⎝ ⎠

&
&l  

 

 ( ) ( ) ( )h p,h s h p,h
c h,i h,i c,i

c c v,c

m c 1 exp UA / m c t
T t T T T exp

V c

⎧ ⎫⎡ ⎤− −⎪ ⎪⎣ ⎦= − − −⎨ ⎬
⎪ ⎪⎩ ⎭

& &

ρ
      (5)  < 

 
Eq. (5) may be used to determine Tc(t) and the result used with (4) to determine Th,o(t). 
 

(b) To evaluate the temperature histories, the overall heat transfer coefficient, ( ) 11 1
o iU h h ,

−
− −

= +  must 

first be determined.  With ( ) 2
DRe 4 m / D 4 2.4 kg / s / 0.05m 0.002 N s / m 30, 600,π μ π= = × ⋅ =&  the flow 

is turbulent and 
 

 ( ) ( )4 /5 0.3 2
i D

k 0.260 W / m Kh Nu 0.023 30,600 20 1140 W / m K
D 0.05m

⋅ ⎡ ⎤= = = ⋅⎢ ⎥⎣ ⎦
 

 

Hence, ( ) ( )
1 2 21 1U 1000 1140 W / m K 532 W / m K.
−− −= + ⋅ = ⋅⎡ ⎤

⎣ ⎦   As shown below, the temperature of 

the pharmaceuticals increases with time due to heat transfer from the hot fluid, approaching the inlet 
temperature of the hot fluid (and its maximum possible temperature of 200°C) at t = 3600s. 
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With increasing Tc, the rate of heat transfer from the hot fluid decreases (from 4.49 × 105 W at t = 0 to 
6760 W at 3600s), in which case Th,o increases (from 125.2°C at t = 0 to 198.9°C at 3600s).  The time 
required for the pharmaceuticals to reach a temperature of Tc = 160°C is 
 
 ct 1266s=           < 
 
With increasing hm ,&  the overall heat transfer coefficient increases due to increasing hi and the hot 
fluid maintains a higher temperature as it flows through the tube.  Both effects enhance heat transfer to 
the pharmaceutical, thereby reducing the time to reach 160°C from 2178s for hm 1kg / s=&  to 906s at 5 
kg/s. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For 2
h D i1 m 5 kg / s, 12, 700 Re 63, 700 and 565 h 2050 W / m K.≤ ≤ ≤ ≤ ≤ ≤ ⋅&  

 
COMMENTS:  (1) Although design changes involving the length and diameter of the coil can be 
used to alter the heating rate, process control parameters are limited to h,i hT and m .& (2) Coiling the 
tube can increase the inside heat transfer coefficient, as will be seen in Section 8.7. 
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PROBLEM 8.33 
 
KNOWN:  Diameter and surface temperature of ten tubes in an ice bath.  Inlet temperature and flowrate 
per tube.  Volume (∀) of container and initial volume fraction, fv,i, of ice. 
 
FIND:  (a) Tube length required to achieve a prescribed air outlet temperature Tm,o and time to 
completely melt the ice, (b) Effect of mass flowrate on Tm,o and suitable design and operating conditions. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state, (2) Ideal gas with negligible viscous dissipation and pressure 
variation, (3) Constant properties, (4) Fully developed flow throughout each tube, (5) Negligible tube 
wall thermal resistance. 
 
PROPERTIES:  Table A.4, air (assume mT  = 292 K):  cp = 1007 J/kg⋅K, μ = 180.6 × 10-7 N⋅s/m2, k = 
0.0257 W/m⋅K, Pr = 0.709;  Ice:  ρ = 920 kg/m3, hsf = 3.34 × 105 J/kg. 
 
ANALYSIS:  (a) With ReD = 4 m& /πDμ = 4(0.01 kg/s)/π(0.05 m)180.6 × 10-7 N⋅s/m2 = 14,100 for m&  = 
0.01 kg/s, the flow is turbulent, and from Eq. 8.60, 
 

 ( ) ( )0.8 0.30.8 0.3D D DNu Nu 0.023Re Pr 0.023 14,100 0.709 43.3= = = =  
 
 ( ) ( ) 2Dh Nu k D 43.3 0.0257 W m K 0.05m 22.2 W m K= = ⋅ = ⋅  
 
With Tm,o = 14°C, the tube length may be obtained from Eq. 8.41b, 
 

 
( )( )

( )

2
s m,o

s m,i p

0.05m 22.2 W m K LT T 14 DLhexp exp
T T 24 mc 0.01kg s 1007 J kg K

ππ
⎡ ⎤⋅⎛ ⎞− − ⎢ ⎥= = − = −⎜ ⎟ ⎢ ⎥⎜ ⎟− − ⋅⎝ ⎠ ⎢ ⎥⎣ ⎦

&
 

 L = 1.56 m < 
 
The time required to completely melt the ice may be obtained from an energy balance of the form, 
 
 ( ) ( )v,i sfq t f hρ− = ∀  
 
where ( ) ( ) ( )p m,i m,oq Nmc T T 10 0.01kg s 1007 J kg K 10 K 1007 W= − = ⋅ =& .  Hence, 

 
( )( )3 3 5

6
0.8 10m 920kg m 3.34 10 J kg

t 2.44 10 s 28.3days
1007 W

×
= = × =  < 

(b) Using the appropriate IHT Correlations and Properties Tool Pads, the following results were obtained. 
Continued... 
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Although heat extraction from the air passing through each tube increases with increasing flowrate, the 
increase is not in proportion to the change in m&  and the temperature difference (Tm,i - Tm,o) decreases.  If 
0.05 kg/s of air is routed through a single tube, the outlet temperature of Tm,o = 16.2°C slightly exceeds 
the desired value of 16°C.  The prescribed value could be achieved by slightly increasing the tube length.  
However, in the interest of reducing pressure drop requirements, it would be better to operate at a lower 
flowrate per tube.  If, for example, air is routed through four of the tubes at 0.01 kg/s per tube and the 
discharge is mixed with 0.01 kg/s of the available air at 24°C, the desired result would be achieved. 
 
COMMENTS:  Since the flow is turbulent and L/D = 31, the assumption of fully developed flow 
throughout a tube is marginal and the foregoing analysis overestimates the discharge temperature. 
 



PROBLEM 8.34 
 
 

 
KNOWN:  Initial food temperature and mass flow rate. Length of heating and cooling sections in a 
food sterilizer. Diameter of sterilizer tube. Time-at-temperature constraint, and constraint on local 
maximum food temperature. 
 
FIND:  (a) Heat flux in the heating section. (b) Maximum local product temperature and its location. 
(c) Minimum required sterilizing section length. (d) Sketch of the axial distributions of the mean, 
surface, and centerline food temperatures from entrance to exit of sterilizer. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Negligible viscous 
dissipation. 
 
PROPERTIES:  Table A.6, Water ( mT  = 330 K, p = 1 atm): μ = 489×10-6 N⋅s/m2, Pr = 3.15, k = 0.65 
W/m⋅K, cp = 4184 J/kg⋅K, ρ = 984 kg/m3. 
 
ANALYSIS:  (a) An energy balance applied to the heating section yields 
 
   , , , ,( )h p m o h m i hq q A q DL mc T Tπ′′ ′′= = = −&  
 
which may be rearranged to provide the expression 
 

      , , , , 2 2( ) 1kg/s 4184J/kg K (90 20) C" 466,000W/m 466kW / m
0.04m 5m

p m o h m i h

h

mc T T
q

DLπ π
− × ⋅ × − °

= = = =
× ×

&
   < 

 
(b) The maximum local product temperature occurs at the tube wall at the end of the heating section. 
The Reynolds number is 
 

 6 2
4 4 1kg/s 65,090

0.04m 489 10 N s/mD
mRe

Dπ μ π −
×

= = =
× × × ⋅

&
 

 
Hence, the flow is turbulent. Since Lh/D = 5m/0.04m = 125, the flow is fully-developed. Using the 
Dittus-Boelter correlation, 
 

 4 /5 0.4 4 /5 0.4 20.65W/m K0.023 0.023 65,090 3.15 4190W/m K
0.04mD

kh Re Pr
D

⋅⎡ ⎤ ⎡ ⎤= = × × = ⋅⎣ ⎦ ⎣ ⎦  

 
From Newton’s law of cooling,  
 

 
2

, , 2
466,000W/m( 5m) 90 C 201 C
4190W/m Ks h m o h

qT x L T
h
′′

= = = + = ° + = °
⋅

    < 
Continued… 
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The second constraint is satisfied.        < 
 
(c) The minimum length of the sterilizing section is 
 

 2 3 2
4 4 1 kg/s 10 s 8.1m

984 kg/m (0.04 m)s m s s
mL u t t
Dρπ π

×
= = = × =

× ×

&
    < 

 
 (d) The axial distributions of the mean, surface, and centerline temperatures are shown below. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Important features of the temperature distribution are as follows. 
 
0 ≤ x ≤ xfd,t:  Near the tube entrance, the heat transfer coefficient is theoretically infinite, and all three 
temperatures are nearly the same value.  
 
xfd,t ≤ x ≤ Lh:  The flow is fully-developed; the shape of the radial temperature distribution does not 
change down the tube length. Therefore, the three temperature distributions are parallel. 
 
Lh ≤ x ≤ Lh + Ls: The heat transfer coefficient is zero. However, temperature differences exist in the 
fluid, with warm temperatures adjacent to the tube wall and cool temperatures near the centerline of 
the tube. As the flow progresses down the insulated sterilizing section, the temperatures equilibrate by 
way of diffusion and turbulent mixing. The equilibration takes place over a distance approximately 
equal to xfd,t. 
 
 

Continued… 
 
 

20

90

x, m

T, °C

0 5 10 15 20 25

13.1

xfd,t

200

Tm

Ts

TCL

Cooling sectionInsulated
sterilizing
section

Heating
section



PROBLEM 8.34 (Cont.) 
 

 
Lh + Ls ≤ x ≤ Lh + Ls + Lc: The fluid is cooled. Hence, the warmest temperature fluid is at the 
centerline, and the coolest fluid is adjacent to the tube wall. Since the fluid is cooled by exposure of 
the tube to the environment, the cooling rate is expected to be smaller than the heating rate in the 
heating section. Hence, the radial temperature differences in the cooling section are smaller than the 
radial temperature differences in the heating section. 
 
 
COMMENTS:  (1) The velocity of the fluid at the centerline exceeds velocities at any other radial 
location. Hence, the fluid at the centerline of the tube will not satisfy the time-at-temperature criterion. 
Therefore, use of a coiled tube or other heat transfer enhancement devices (Section 8.7) would be 
appropriate in this application. (2) The insulation thickness in the sterilizing section should be much 
greater than the critical insulation thickness. 
 



PROBLEM 8.35 
 
KNOWN:  Flow rate, inlet temperature and desired outlet temperature of water passing through a tube of 
prescribed diameter and surface temperature. 
 
FIND:  (a) Required tube length, L, for prescribed conditions, (b) Required length using tube diameters 
over the range 30 ≤ D ≤ 50 mm with flow rates m&  = 1, 2 and 3 kg/s;  represent this design information 
graphically, and (c) Pressure gradient as a function of tube diameter for the three flow rates assuming the 
tube wall is smooth. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Incompressible liquid with negligible viscous 
dissipation, (3) Constant properties. 
 
PROPERTIES:  Table A.6, Water ( mT  = 323 K):  cp = 4181 J/kg⋅K, μ = 547 × 10-6 N⋅s/m2, k = 0.643 
W/m⋅K, Pr = 3.56. 
 
ANALYSIS:  (a) From Eq. 8.6, the Reynolds number is 

 
( )

5
D 6 2

4m 4 2 kg sRe 1.16 10
D 0.04 m 547 10 N s mπ μ π −

×
= = = ×

× ⋅

&
. (1) 

Hence the flow is turbulent, and assuming fully developed conditions throughout the tube, it follows from 
the Dittus-Boelter correlation, Eq. 8.60, 

 ( ) ( )
4 / 54 / 5 0.4 5 20.4

D
k 0.643 W m K

h 0.023 Re Pr 0.023 1.16 10 3.56 6919 W m K
D 0.04 m

⋅
= = × = ⋅  (2) 

From Eq. 8.41a, we then obtain 

 
( ) ( ) ( )

( )
p o i

2

2 kg s 4181J kg K n 25 C 75 Cmc n T T
L 10.6 m

Dh 0.04 m 6919 W m Kπ π

⋅− Δ Δ
= = − =

⋅

o ol& l
. < 

 
 
 
 
(b) Using the IHT Correlations Tool, Internal 
Flow, for fully developed Turbulent Flow, along 
with appropriate energy balance and rate 
equations, the required length L as a function of 
flow rate is computed and plotted on the right. 
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(c) From Eq. 8.22a the pressure drop is 

 
2
mp uf

x 2D
ρΔ

=
Δ

 (4) 

The friction factor, f, for the smooth surface condition, Eq. 8.21 with 3000 ≤ ReD ≤ 5 × 106, is 

 ( )( ) 2
Df 0.790 n Re 1.64 −= −l  (5) 

 
 
 
Using IHT with these equations and Eq. (1), the 
pressure gradient as a function of diameter  for 
the selected flow rates is computed and plotted 
on the right. 
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COMMENTS:  (1) Since L/D = (10.6/0.040) = 265, the assumption of fully developed conditions 
throughout is justified. 
 
(2) The IHT Workspace used to generate the graphical results are shown below. 
 

// Rate Equation Tool - Tube Flow with Constant Surface Temperature: 
/* For flow through a tube with a uniform wall temperature, Fig 8.7b, the  
overall energy balance and heat rate equations  are */ 
q = mdot*cp*(Tmo - Tmi)    // Heat rate, W; Eq 8.34 
(Ts - Tmo) / (Ts - Tmi) = exp ( - P * L * hDbar / (mdot * cp))  // Eq 8.41b 
// where the fluid and constant tube wall temperatures are 
Ts =  100 + 273  // Tube wall temperature, K 
Tmi = 25 + 273   // Inlet mean fluid temperature, K 
Tmo = 75 + 273  // Outlet mean fluid temperature, K 
// The tube parameters are 
P = pi * D  // Perimeter, m 
Ac = pi * (D^2) / 4 // Cross sectional area, m^2 
D = 0.040  // Tube diameter, m 
D_mm = D * 1000 
// The tube mass flow rate and fluid thermophysical properties are 
mdot = rho * um * Ac 
mdot = 1  // Mass flow rate, kg/s 

 
// Correlation Tool - Internal Flow, Fully Developed Turbulent Flow (Assumed): 
NuDbar = NuD_bar_IF_T_FD(ReD,Pr,n)     // Eq 8.60 
n = 0.4   // n = 0.4 or 0.3 for Ts>Tm or Ts<Tm 
NuDbar = hDbar * D / k 
ReD = um * D / nu 
/* Evaluate properties at the fluid average mean temperature, Tmbar. */ 
Tmbar = Tfluid_avg (Tmi,Tmo) 

 
// Properties Tool - Water: 
// Water property functions :T dependence, From Table A.6 
// Units: T(K), p(bars);  
x = 0  // Quality (0=sat liquid or 1=sat vapor) 
rho = rho_Tx("Water",Tmbar,x) // Density, kg/m^3 
cp = cp_Tx("Water",Tmbar,x) // Specific heat, J/kg·K 
nu = nu_Tx("Water",Tmbar,x) // Kinematic viscosity, m^2/s 
k = k_Tx("Water",Tmbar,x) // Thermal conductivity, W/m·K 
Pr = Pr_Tx("Water",Tmbar,x) // Prandtl number 

 
// Pressure Gradient, Equations 8.21, 8.22a: 
dPdx = f * rho * um^2 / ( 2 * D ) 
f = ( 0.790 * ln (ReD) - 1.64 ) ^ -2 



PROBLEM 8.36  
KNOWN:  Diameters and thermal conductivity of steel pipe.  Temperature and velocity of water flow 
in pipe.  Temperature and velocity of air in cross flow over pipe.  Cost of producing hot water.  
FIND:  Daily cost of heat loss per unit length of pipe.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady state, (2) Constant properties, (3) Negligible radiation from outer 
surface, (4) Fully-developed flow in pipe. 
 
PROPERTIES:  Table A-4, air (p = 1 atm, Tf ≈ 300K):  ka = 0.0263 W/m⋅K, νa = 15.89 × 10-6 m2/s, 
Pra = 0.707.  Table A-6, water (Tm = 323 K): ρw = 988 kg/m3, μw = 548 × 10-6 N⋅s/m2, kw = 0.643 
W/m⋅K, Prw = 3.56. 
 
ANALYSIS:  The heat loss per unit length of pipe is 

 

( ) ( ) ( )
m m

1 1o icnv,w cnd cnv,a
w i a o

p

T T T Tq
ln D / DR R R

h D h D
2 k

π π
π

∞ ∞
− −

− −′ = =
′ ′ ′+ +

+ +
 

With 3 6 2
D,w w m i wRe u D / 988 kg / m 0.5 m / s 0.084 m / 548 10 N s / m 75, 700,ρ μ −= = × × × ⋅ =  flow is 

turbulent, and for fully developed conditions, the Dittus-Boelter correlation yields 
 

( ) ( )
w

0.8 0.30.8 0.3 2w
w wDi

k 0.643W / m K
h 0.023Re Pr 0.023 75, 700 3.56 2060 W / m K

D 0.084 m
⋅

= = = ⋅  

 
With ( ) 6 2

D,a o aRe VD / 3 m / s 0.1m /15.89 10 m / s 18,880,ν −= = × × =  the Churchill-Bernstein 
correlation yields 

 

( )

4 / 51/ 2 1/ 3 5/8
aD,a D,w 2a

a 1/ 4o 2 / 3
a

0.62Re Pr Rekh h 0.3 1 20.1W / m K
D 282,000

1 0.4 / Pr

⎧ ⎫
⎡ ⎤⎪ ⎪⎛ ⎞⎪ ⎪⎢ ⎥= = + + = ⋅⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎪ ⎪⎡ ⎤ ⎣ ⎦+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

Hence,  
( )

( )3 3 3
50 C 5 C

q 342 W / m 0.342 kW / m
1.84 10 0.46 10 158.3610 K / W− − −

° − − °
′ = = =

× + × +
 

The daily energy loss is then  Q 0.346kW / m 24h / d 8.22kW h / d m′ = × = ⋅ ⋅  

and the associated cost is ( )( )C 8.22 kW h / d m $0.05 / kW h $0.411/ m d′ = ⋅ ⋅ ⋅ = ⋅  < 

COMMENTS:  Because cnv,a cnv,wR R ,′ ′>>  the convection resistance for the water side of the pipe 
could have been neglected, with negligible error.  The implication is that the temperature of the pipe’s 
inner surface closely approximates that of the water.  If cnv,wR′  is neglected, the heat loss is 
q 346 W / m.′ =  



PROBLEM 8.37  
KNOWN:  Inner and outer diameter of a steel pipe insulated on the outside and experiencing 
uniform heat generation.  Flow rate and inlet temperature of water flowing through the pipe.  
FIND:  (a) Pipe length required to achieve desired outlet temperature, (b) Location and value 
of maximum pipe temperature.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Incompressible 
liquid with negligible viscous dissipation, (4) One-dimensional radial conduction in pipe wall, 
(5) Outer surface is adiabatic.  
PROPERTIES:  Table A-1, Stainless steel 316 (T ≈ 400K):  k = 15 W/m⋅K; Table A-6, 
Water ( )mT 303K :=   cp = 4178 J/kg⋅K, k = 0.617 W/m⋅K, μ = 803 × 10-6 N⋅s/m2, Pr = 5.45. 
 
ANALYSIS:  (a) Performing an energy balance for a control volume about the inner tube, it 
follows that  
 ( ) ( ) ( )2 2

p m,o m,i o im c T T q q /4  D D Lπ− = = −& &  
 

 
( )

( ) ( )
( ) ( )

( ) ( ) ( )
p m,o m,i

2 2 2 26 3
o i

m c T T 0.1 kg/s 4178 J/kg K 20 C
L

q /4  D D 10  W/m / 4  0.04m 0.02mπ π

− ⋅
= =

⎡ ⎤− −⎢ ⎥⎣ ⎦

o&

&
 

 
 L 8.87m.=           < 
 
(b) The maximum wall temperature exists at the pipe exit (x = L) and the insulated surface (r 
= ro).  From Eq. 3.56, the radial temperature distribution in the wall is of the form 
 

 ( ) 2
1 2

qT r r C n r C .
4k

= − + +
&

l  
 
Considering the boundary conditions;  

 
o

2
o1

o o 1
or r

qrdT q Cr r :      0  r      C
dr 2k r 2k=

⎞= = = − + =⎟
⎠

&&
 

 
          Continued … 



PROBLEM 8.37 (Cont.)  

 ( )
2 2

2 2o o
i i s i 2 2 i si i

q r q rq qr r :      T r T r n r C      C r n r T .
4k 2k 4k 2k

= = = − + + = − +
& && &

l l  
 
The temperature distribution and the maximum wall temperature (r = ro) are 

 ( ) ( )
2

2 2 o
si i

q rq rT r r r n T
4k 2k r

= − − + +
&&

l  

 ( ) ( )
2

2 2 o o
w,max o o si i

q r rqT T r r r n T
4k 2k r

= = − − + +
&&

l  

where Ts, the inner surface temperature of the wall at the exit, follows from 

 
( ) ( ) ( ) ( )

2 2 2 2
o oi i

s s m,o
i i

q /4  D D L q D D
q h T T

 D L 4 D

π

π

− −
′′ = = = −

& &
 

 
where h is the local convection coefficient at the exit.  With 

 
( )

D 6 2i

4 m 4 0.1 kg/sRe 7928
 D 0.02m 803 10 N s/mπ μ π −

×
= = =

× ⋅

&
 

the flow is turbulent and, with (L/Di) = (8.87 m/0.02m) = 444 >> (xfd/D) ≈ 10, it is also fully 
developed.  Hence, from the Gnielinski correlation, Eq. 8.62,  

i

k Dh 1/ 2 2 / 3D

2
1/2 2/3

(f / 8)(Re 1000) Pr

1 12.7(f / 8) (Pr 1)
0.617 W/m K (0.033618)(7928 - 1000)5.45   = = 1796 W/m K

0.02 m 1 + 12.7(0.033618) (5.45 - 1)

=
⎡ ⎤−
⎢ ⎥
⎢ ⎥+ −⎣ ⎦

⎡ ⎤⋅
⋅⎢ ⎥

⎢ ⎥⎣ ⎦

 

where from Eq. 8.21, f = (0.790 ln ReD-1.64)-2 = 0.0336.  Hence, the inner surface 
temperature of the wall at the exit is 

 
( ) ( ) ( )

( )

2 26 32 2
o i

s m,o 2i

10  W/m 0.04m 0.02mq D D
T T 40 C 48.4 C

4 h D 4 1796 W/m K 0.02m

⎡ ⎤−− ⎢ ⎥⎣ ⎦= + = + =
× ⋅

o o
&

 

and ( ) ( )
6 3 2 2

w,max
10  W/mT 0.02m 0.01m

4 15 W/m K
⎡ ⎤= − −⎢ ⎥⎣ ⎦× ⋅

 
 

   ( )26 310  W/m 0.02m 0.02n 48.4 C 52.6 C.
2 15 W/m K 0.01

+ + =
× ⋅

o ol    < 

COMMENTS:  The physical situation corresponds to a uniform surface heat flux, and Tm 
increases linearly with x.  In the fully developed region, Ts also increases linearly with x. 
 

 



PROBLEM 8.38  
KNOWN:  Inlet temperature, pressure and flow rate of air.  Tube diameter and length.  Pressure of 
saturated steam.  
FIND:  Outlet temperature and pressure of air.  Mass rate of steam condensation.  
SCHEMATIC:   
 

  
ASSUMPTIONS:  (1) Steady-state, (2) Outer surface of annulus is adiabatic, (3)Ideal gas with 
negligible viscous dissipation and pressure variation, (4) Fully-developed flow throughout the tube, 
(5) Smooth tube surface, (6) Constant properties.  
PROPERTIES:  Table A-4, air ( )mT 325 K, p 5 atm :≈ =  ( ) 35 1atm 5.391kg / m ,ρ ρ= × =  

pc 1008 J / kg K,= ⋅  7 2196.4 10 N s / m ,μ −= × ⋅  k 0.0281W / m K,= ⋅  Pr 0.703.=   Table A-6, sat. steam (p 

= 2.455 bars):  Ts = 400 K, hfg = 2183 kJ/kg.  
ANALYSIS:  With a uniform surface temperature, the air outlet temperature is 

 ( ) i
m,o s s m,i

p

D LT T T T exp h
m c
π⎛ ⎞

= − − −⎜ ⎟⎜ ⎟
⎝ ⎠&

 

With ( ) 7
D iRe 4m / D 0.12 kg / s / 0.05m 196.4 10 kg / s m 38,980,π μ π −= = × ⋅ =&  the flow is 

turbulent, and the Dittus-Boelter correlation yields 

( ) ( )4 / 5 0.4 24 / 5 0.4
fd D

i

k 0.0281W / m K
h h 0.023 Re Pr 0.023 38, 980 0.703 52.8 W / m K

D 0.05m

⋅
≈ = = = ⋅

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 ( )
2

m,o
0.05m 5m 52.8 W / m KT 127 C 110 C exp 99 C
0.03kg / s 1008J / kg K

π⎛ ⎞× × × ⋅⎜ ⎟= ° − ° − = °
⎜ ⎟× ⋅⎝ ⎠

  < 

The pressure drop is ( )2
m ip f u / 2 D L,ρΔ =  where, with 2 3 2

c iA D / 4 1.963 10 m ,π −= = ×  m cu m / Aρ= &  

2.83m / s,= and with DRe 38, 980,=  Eq. 8.21 gives f = [0.790ln(ReD) – 1.64]– 2 = 0.022.  Hence, 

 
( )23 2 42.83m / s 5m

p 0.022 5.391kg / m 47.5N / m 4.7 10 atm
2 0.05m

−Δ = × = = ×
×

  < 

The rate of heat transfer to the air is 
 ( ) ( )p m,o m,iq m c T T 0.03kg / s 1008J / kg K 82 C 2480 W= − = × ⋅ ° =&  

and the rate of condensation is then 

 3
c 6fg

q 2480 Wm 1.14 10 kg / s
h 2.183 10 J / kg

−= = = ×
×

&      < 

COMMENTS:  (1) With ( )m m,i m,oT T T / 2 331K,= + =  the initial estimate of 325 K is reasonable 
and iteration is not necessary.  (2) For a steam flow rate of 0.01 kg/s, approximately 10% of the 
outflow would be in the form of saturated liquid, (3) With L/Di = 100, it is reasonable to assume fully 
developed flow throughout the tube. 



PROBLEM 8.39 
 

 
KNOWN:  Fully-developed conditions for laminar or turbulent flow characterized by a fixed mass 
flow rate. Constant surface temperature conditions with Ts < Tm.  
 
FIND:  Determine whether a small or large diameter tube will be more effective in minimizing heat 
loss from the flowing fluid. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Fully-developed, (2) Constant properties, (3) Negligible viscous dissipation. 
 
ANALYSIS:  The heat loss rate per unit tube length is 
 

( )s mq Dh T Tπ′ = −   where /Dh Nu k D=  
 

Combining the preceding equations yields 
 
    ( )D s mq Nu k T Tπ′ = −       (1) 
 
Laminar Conditions 
 
For laminar conditions, NuD = 3.66. Substituting this expression into Eq. (1) yields 
 
    3.66 ( )s mq k T Tπ′ = −  
 
and the heat loss rate is independent of the tube diameter.     < 
 
Turbulent Conditions 
 
For turbulent flow, we may substitute the Dittus-Boelter correlation, 4 /5 0.30.023D DNu Re Pr= with 

( )4 /DRe m Dπ μ= & into Eq. (1) to find 
 

   
4/5

4/5 0.34(0.023) ( )s m
mq D Pr k T Tπ
πμ

−⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

&
 

 
Hence, to minimize the heat loss, a large diameter tube is preferred.     < 
 
COMMENTS: The large diameter tube will result in reduced heat loss, but will be more expensive 
relative to a small diameter tube. If the cool surface temperature is induced by heat losses to the 
environment, a more effective approach to minimize heat loss would be to insulate the exterior of the 
tube. 
 

m•

Ts

Tm D



PROBLEM 8.40  
KNOWN:  Dimensions and thermal conductivity of concrete duct.  Convection conditions of ambient 
air.  Flow rate and inlet temperature of water flow through duct.  
FIND:  (a) Outlet temperature, (b) Pressure drop and pump power requirement, (c) Effect of flow rate 
and pipe diameter on outlet temperature.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state, (2) Fully developed flow throughout duct, (3) Negligible pipe 
wall conduction resistance, (4)Water is incompressible liquid with negligible viscous dissipation, (5) 
Constant properties. 
 
PROPERTIES:  Table A-6, water ( )mT 360 K :≈  3967 kg / m ,ρ =  pc 4203 J / kg K,= ⋅  6324 10μ −= ×  

2N s / m ,⋅  wk 0.674 W / m K, Pr 2.02.= ⋅ =  
 
ANALYSIS:  (a) The outlet temperature is given by 
 ( ) ( )m,o m,i pT T T T exp UA / m c∞ ∞= + − − &  

where 

 ( ) ( ) 11
tot cnv,w cnd cnv,aUA R R R R

−−= = + +  

From Table 4.1, Case 6, 
 

 
( ) ( )

( )
4

cnd
ln 1.08w / D ln 1.08 0.30m / 0.15m

R 8.75 10 K / W
2 kL 2 1.4 W / m K 100mπ π

−×
= = = ×

⋅
 

 ( ) ( ) 11 2 4
cnv,aR 4 w L h 4 0.3m 100m 25W / m K 3.33 10 K / W

−− −= = × × × ⋅ = ×  

With ( ) ( )6 2
DRe 4m / D 4 2kg / s / 0.15m 324 10 N s / m 52,400,π μ π −= = × × × × ⋅ =&  

( ) ( )4 / 5 0.3 24 / 5 0.3w
w fd D

k 0.674 W / m K 0.023
h h 0.023 Re Pr 52, 400 2.02 761W / m K

D 0.15m

⋅ ×
≈ = = = ⋅  

 ( ) ( ) 11 2 5
cnv,w wR D L h 0.15m 100m 761W / m K 2.79 10 K / Wπ π

−− −= = × × × ⋅ = ×  
 

 ( ) 15 4 4UA 2.79 10 8.75 10 3.33 10 K / W 809 W / K
−− − −⎡ ⎤= × + × + × =⎢ ⎥⎣ ⎦

 
 

 m,o
809 W / KT 0 C 90 C exp 81.7 C

2 kg / s 4203J / kg K
⎛ ⎞

= ° + ° − = °⎜ ⎟× ⋅⎝ ⎠
   < 

          Continued … 



PROBLEM 8.40 (Cont.) 
 

(b) From Eq. 8.21, f = [0.790ln(ReD) – 1.64] –2 = 0.0207 and 2
mu m / D / 4 0.117 m / s,ρπ= =&  

 

 
( )232

2 4m 967 kg / m 0.117 m / su
p f L 0.0207 100m 91N / m 9.1 10 bars

2D 2 0.15m
ρ −Δ = = = = ×

×
 < 

 
With 3 3m / 2.07 10 m / s,ρ −∀ = = ×& &  the pump power requirement is 
 

 ( )2 3 3P p 91N / m 2.07 10 m / s 0.19 W−= Δ ∀ = × =&      < 
 
(c) The effects of varying the flowrate and duct diameter were assessed using the IHT software, and 
results are shown below. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
Although cnv,wR ,  and hence totR ,  decreases with increasing m& , thereby increasing UA, the effect is 

significantly less than that of m&  to the first power, causing the exponential term, ( )pexp UA / m c ,− &  to 

approach unity and m,oT  to approach m,iT .   The effect can alternatively be attributed to a reduction in 

the residence time of the water in the pipe (um increases with increasing m&  for fixed D).  With 
increasing D for fixed m&  and w, m,oT  decreases due to an increase in the residence time, as well as a 

reduction in the conduction resistance, cndR .  
 
COMMENTS:  (1) Use of mT 360 K=  to evaluate properties of the water for Parts (a) and (b) is 
reasonable, and iteration is not necessary.  (2) The pressure drop and pump power requirement are 
small. 
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PROBLEM 8.41  
KNOWN:  Water flow through a thick-walled tube immersed in a well stirred, hot reaction tank 
maintained at 85°C; conduction thermal resistance of the tube wall based upon the inner surface area is 

2
cdR 0.002 m K / W.′′ = ⋅  

 
FIND:  (a) The outlet temperature of the process fluid, Tm,o; assume, and then justify, fully developed 
flow and thermal conditions within the tube; and (b) Do you expect Tm,o to increase or decrease if the 
combined entry condition exists within the tube?  Estimate the outlet temperature of the process fluid 
for this condition.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Flow is fully developed, part (a), (2) Constant properties, (3) Incompressible 
liquid with negligible viscous dissipation, and (4) Constant wall temperature heating, with Ts ≈ T∞ 
because of small thermal resistance associated with well-stirred reaction fluid.  
PROPERTIES:  Table A-6,   Water (Tm = (Tm,o + Tm,i)/2 = 315 K):  cp = 4179 J/kg⋅K, μ = 6.31 × 
10-4 N⋅s/m2, k = 0.634 W/m⋅K, Pr =4.16.  
ANALYSIS:  (a) The outlet temperature is determined from the rate equation, Eq. 8.45a, written as 

 s m,o s
s m,i p

T T UAexp
T T m c

⎛ ⎞−
= −⎜ ⎟⎜ ⎟− ⎝ ⎠&

        (1) 

where the overall coefficient, based upon the inner surface area of the tube is expressed in terms of the 
convection and conduction thermal resistances, 

 cd,i
1 1 R
U h

′′= +          (2) 

To estimate h,  begin by characterizing the flow 
 DRe 4 m / Dπ μ= &          (3) 

 ( ) 4 2
DRe 4 33/ 3600 kg / s / 0.012 m 6.31 10 N s / m 1540−= × × × ⋅ =π  

Consider the flow as laminar, and assuming fully developed conditions, estimate h  with the 
correlation of Eq. 8.55, 
 DNu hD / k 3.66= =          (4) 

 2h 3.66 0.634 W / m K / 0.012 m 193 W / m K= × ⋅ = ⋅  
From Eq. (2), 

 
12 2 2U 1/193 W / m K 0.002 m K / W 139 W / m K
−⎡ ⎤= ⋅ + ⋅ = ⋅⎢ ⎥⎣ ⎦

 

and from Eq. (1), with As = πDL, calculate Tm,o. 
 
          Continued … 



PROBLEM 8.41 (Cont.) 
 

 
2m,o85 T 139 W / m K 0.012 m 8 mexp

85 20 33/ 3600 kg / s 4179 J / kg K

⎛ ⎞− ⋅ × × ×⎜ ⎟= −
⎜ ⎟− × ⋅⎝ ⎠

π
 

 m,oT 63 C= °           < 
 
Fully developed flow and thermal conditions are justified if the tube length is much greater than the 
fully developed lengths xfd,h and xfd,t.  From Eqs. 8.3 and 8.23, 
 

 fd,h D
fd,t fd,h

x 0.05 Re D 0.05 1540 0.012 m 0.92 m
x x Pr 0.92 m 4.16 3.8 m

= = × × =
= = × =  

 
That is, while fully developed velocity conditions may be justifiable, the length is only twice that 
required to reach thermally fully developed conditions. 
 
(b) We expect the calculated outlet temperature to be larger if the combined entrance effect exists, 
since the average heat transfer coefficient would be larger relative to that associated with fully-

developed conditions.            < 
 
Considering combined entry length conditions, estimate the convection coefficient using the Baehr 
and Stephan correlation, Eq. 8.58,  where from Eq. 8.56, GzD = (D/L)ReDPr = (0.012 m/8 m) × 1540 × 
4.16 = 9.61: 
  

1
D D1/3 2/3

D D
1/6 1/6

D
D

3.66 0.0499Gz tanh(Gz )
hD tanh[2.264Gz 1.7Gz ]Nu
k tanh(2.432 Pr Gz )

−
− −

−

+
+

= =  (5) 

1
1/3 2/3

1/6 1/6
2

3.66 0.0499 9.61tanh(9.61 )
0.634 W m K tanh[2.264 9.61 1.7 9.61 ]h 225W m K

0.012 m tanh(2.432 4.16 9.61 )

−
− −

−

⎛ ⎞+ ×⎜ ⎟⋅ × + ×⎜ ⎟= = ⋅
⎜ ⎟× ×
⎜ ⎟
⎝ ⎠

 
which is a 17% increase over the fully developed analysis result.  Using the foregoing relations, find 
 
 2

m,oU 155 W / m K T 65.9 C= ⋅ = °      < 
 
COMMENTS:  (1) The thermophysical properties for the fully developed correlation should be 
evaluated at the mean fluid temperature Tm = (Tm,o + Tm,i)/2 = 316 K.  This is very close to the 
assumed value of 315 K. (2) For the Baehr and Stephan correlation, the properties are also evaluated at 
Tm. (3) For this case where the tube length is about twice xfd,t, the average heat transfer coefficient is 
larger than the fully developed value, as we would expect. (4) The thermal entry length correlation due 
to Hausen yields h  = 222 W/m2⋅K, close to the combined entry length value.  This is not surprising, 
considering that the Prandtl number of 4.16 is close to meeting the Pr > 5 condition for the Hausen 
correlation to be valid. 
 



PROBLEM 8.42 
 
KNOWN:  Flow rate and temperature of atmospheric air entering a duct of prescribed diameter, length 
and surface temperature. 
 
FIND:  (a) Air outlet temperature and duct heat loss for the prescribed conditions and (b) Calculate and 
plot q and Δp for the range of diameters, 0.1 ≤ D ≤ 0.2 m, maintaining the total surface area, As = πDL, at 
the same value as part (a).  Explain the trade off between the heat transfer rate and pressure drop. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3)Ideal gas with negligible 
viscous dissipation and pressure variation, (4) Uniform surface temperature, (5) Fully developed flow 
conditions. 
 
PROPERTIES: Table A.4, Air ( mT  ≈ 310 K, 1 atm):  ρ = 1.128 kg/m3, cp = 1007 J/kg⋅K, μ = 189 × 10-7 
N⋅s/m2, k = 0.027 W/m⋅K, Pr = 0.706. 
 
ANALYSIS:  (a) With 

 
( )

D 7 2
4m 4 0.04 kg sRe 17,965
D 0.15m 189 10 N s mπ μ π −

×
= = =

× ⋅

&
 

 
the flow is turbulent.  Assuming fully developed conditions throughout the tube, it follows from the 
Dittus-Boelter correlation, Eq. 8.60, that 

 ( ) ( )4/5 0.34/5 0.3 2
D

k 0.027 W m K
h 0.023Re Pr 0.023 17,965 0.706 9.44 W m K

D 0.15m
⋅

= = = ⋅ . 

 
Hence, from the energy balance relation, Eq. 8.41b, 

 ( )m,o s s m,i
p

DLT T T T exp h
mc
π⎛ ⎞

= − − −⎜ ⎟⎜ ⎟
⎝ ⎠&

 

 
( ) ( )

( )

2

m,o
0.15m 10 m 9.44 W m K

T 15 C 45 Cexp 29.9 C
0.04 kg s 1007 J kg K

π⎛ ⎞⋅⎜ ⎟= + − =⎜ ⎟⋅⎜ ⎟
⎝ ⎠

o o o  < 

From the overall energy balance, Eq. 8.34, it follows that 

 ( ) ( )p m,o m,iq mc T T 0.04 kg s 1007 J kg K 29.9 60 C 1212 W= − = × ⋅ − = −o& . < 

From Eq. 8.22a, the pressure drop is 

 
2
mup f L

2D
ρ

Δ =  

Continued... 



 
PROBLEM 8.42 (Cont.) 

 
and for the smooth surface conditions, Eq. 8.21 can be used to evaluate the friction factor, 
 

 ( )( ) ( )( )2 2
Df 0.790ln Re 1.64 0.790ln 17,965 1.64 0.0269− −= − = − =  

 
Hence, the pressure drop is 
 

 
( )23

21.128kg m 2.0 m s
p 0.0269 10 m 4.03 N m

2 0.15m
Δ = × =

×
 < 

 

where um = cm Aρ&  = ( )3 2 20.04kg s 1.128kg m 0.15 m 4 2.0m sπ× = . 
 
(b) For the prescribed conditions of part (a), As = πDL = π(0.15 m) × 10 m = 4.712 m2, using the IHT 
Correlations Tool, Internal Flow for fully developed Turbulent Flow along with the energy balance 
equation, rate equation and pressure drop equations used above, the heat rate q and Δp are calculated and 
plotted below. 
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From above, as D increases, L decreases so that 
As remains unchanged.  The decrease in heat 
rate with increasing diameter is nearly linear, 
while the pressure drop decreases markedly.  
This is the trade off: increased heat rate requires 
a more significant increase in pressure drop, and 
hence fan blower power requirements. 
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COMMENTS:  (1) To check the calculations, compute q from Eq. 8.43, where mTΔ l  is given by Eq. 
8.44. It follows that mTΔ l  = -27.1°C and q = -1206 W.  The small difference in results may be attributed 
to round-off error. 
 
(2) For part (a), a slight improvement in accuracy may be obtained by evaluating the properties at mT  = 
318 K:  h  = 9.42 W/m2⋅K, Tm,o = 303 K = 30°C, q = -1211 W, f = 0.0271 and Δp = 4.20 N/m2. 
 



PROBLEM 8.43 
 

 
KNOWN:  Flow rate of NaK, NaK inlet and outlet temperatures, tube wall temperature, tube 
diameter.  
 
FIND:  Tube length, and local convective flux at the tube exit. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Constant properties, (2) Negligible viscous dissipation, (3) Fully developed 
flow. 
 
PROPERTIES: Table A.7 NaK (45%/55%; (332K 400K) / 2 366KmT = + = ): ρ = 887 kg/m3, k = 
25.6 W/m⋅K, ν = 6.52 × 10-7 m2/s, Pr = 0.026, cp = 1130 J/kg⋅K. 
 
ANALYSIS:  The Reynolds number is  
 

7 2 34 / 4 1 kg/s / 0.05 m 6.52 10 m /s 887 kg/m 44,000DRe m Dπ νρ π −⎡ ⎤= = × × × × × =⎣ ⎦&  

 
and the flow is turbulent.  The Peclet number is PeD = ReDPr = 44,000 × 0.026 = 1145. Therefore, we 
may use Eq. 8.65 if the flow is fully developed. Hence, 
 

 ( ) ( )0.8 0.8 225.6W/m K5.0 0.025 5.0 0.025 1145 6140W/m K
0.05mD

kh Pe
D

⋅
= + = × + × = ⋅  

 
The required tube length is, from Eq. 8.41a, 
 

2
1 kg/s 1130 J/kg K 50ln ln 1 m

1180.05m 6140W/m K
p o

i

mc TL
Dh Tπ π

Δ × ⋅ ⎛ ⎞= − = − =⎜ ⎟Δ × × ⋅ ⎝ ⎠

&    < 

 
The local convective heat flux at x = L = 1 m is  
 

( )2 2
," ( ) 6140W/m K 450 400  K 30,700 W/ms m oq h T T= − = ⋅ × − =    < 

 
COMMENTS: The dimensionless tube length is L/D = 1m/0.05m = 20. The flow is therefore fully 
developed, and use of Eq. 8.65 is appropriate. 
 

Ts = 450 K
D = 50 mm 

m = 1 kg/s•
Tm,i = 332 K
NaK

m = 1 kg/s•
Tm,i = 332 K

m = 1 kg/s•
Tm,i = 332 K
NaK

L

Tm,o = 400 K



PROBLEM 8.44  
KNOWN:  Duct diameter and length.  Thermal conductivity of insulation.  Gas inlet temperature and 
velocity and minimum allowable outlet temperature.  Temperature and velocity of air in cross flow.  
FIND:  Minimum allowable insulation thickness.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1)Combustion gases are ideal with negligible viscous dissipation and pressure 
variation, (2) Fully developed flow throughout duct, (3) Negligible duct wall conduction resistance, 
(4) Negligible effect of insulation thickness on outer convection coefficient and thermal resistance, (5) 
Properties of gas may be approximated as those of air. 
 
PROPERTIES:  Table A-4, air (p = 1 atm).  Tm,i = 1600K: (ρi = 0.218 kg/m3).  mT  = (Tm,i +Tm,o)/2 

= 1500K: (ρ = 0.232 kg/m3, cp = 1230 J/kg⋅K, μ = 557 × 10-7 N⋅s/m2, k = 0.100 W/m⋅K, Pr = 0.685).  
Tf ≈ 300K (assumed): ν = 15.89 × 10-6 m2/s, k = 0.0263 W/m⋅K, Pr = 0.707. 
 
ANALYSIS:  From Eqs. (8.45a) and (3.19), 

 m,o s
m,i p tot p

T T UA1150K 10.852 exp exp
T T 1350K m c R m c
∞

∞

⎛ ⎞ ⎛ ⎞− −
= = = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− − ⎝ ⎠ ⎝ ⎠& &

 

Hence, with ( ) ( )3 2
m c im u A 0.218 kg / m 10 m / s 1m / 4 1.712 kg / s,ρ π= = × × =&  

 ( ) ( )[ ]1 1 3
tot pR m c ln 0.852 1.712 kg / s 1230 J / kg K 0.160 2.96 10 K / W

− − −= − = − × ⋅ × − = ×⎡ ⎤⎣ ⎦&  
The total thermal resistance is 
 

( ) ( ) ( )1 1o i
tot conv,i cond,ins conv,o i i o o

ins

ln D / D
R R R R h D L h D L

2 k L
π π

π
− −= + + = + +  (1) 

 
With ( ) ( )7 2

D,i iRe 4m / D 4 1.712 kg / s / 1m 557 10 N s / m 39,130,π μ π −= = × × × × ⋅ =&  the Dittus-Boelter 

correlation yields 
 

 ( ) ( )4 / 5 0.3 24 / 5 0.3
i D

k 0.100 W / m K
h 0.023 Re Pr 0.023 39,130 0.685 9.69 W / m K

D 1m

⋅
= = = ⋅⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 
 
The internal resistance is then 
 

 ( ) ( ) 11 2 4
conv,i i iR h D L 9.69 W / m K 1m 100m 3.28 10 K / W

−− −= = ⋅ × × × = ×π π  
 
With ReD ≈ VDi/ν = 15 m/s × 1m/15.89 × 10-6 m2/s = 9.44 × 105, the Churchill-Bernstein correlation 
yields 
          Continued … 



PROBLEM 8.44 (Cont.) 
 

 

( )

4 /51/ 2 1/ 3 5/8
2DD

o 1/ 42 /3

0.62 Re Prk Reh 0.3 1 30.9 W / m K
D 282,000

1 0.4 / Pr

⎧ ⎫
⎪ ⎡ ⎤ ⎪⎛ ⎞⎪ ⎪⎛ ⎞ ⎢ ⎥≈ + + = ⋅⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎡ ⎤ ⎣ ⎦+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 

 ( ) ( ) 11 2 4
conv,o o iR h D L 30.9 W / m K 1m 100m 1.03 10 K / Wπ π

−− −≈ = ⋅ × × × = ×  
 
Hence, from Eq. (1) 
 

 
( ) ( )o i 3 4 4 3

ins

ln D / D
2.96 10 3.33 10 1.03 10 K / W 2.53 10 K / W

2 k L
− − − −= × − × − × = ×

π
 

 

( ) ( )3 2
o i insD D exp 2 k L 2.53 10 K / W 1m exp 1.59 10 K / W 0.125 W / m K 100m 1.22m− −= × × = × × × ⋅ × =π  

 
Hence, the minimum insulation thickness is 
 
 ( )min o it D D / 2 0.11m= − =         < 
 
COMMENTS:  With Do = 1.22m, use of Di = 1m to evaluate the outer convection coefficient and 
thermal resistance is a reasonable approximation.  However, improved accuracy may be obtained by 
using the calculated value of Do to determine conditions at the outer surface and iterating on the 
solution. 
 



PROBLEM 8.45  
KNOWN:  Flow rate, inlet temperature and desired outlet temperature of liquid mercury flowing 
through a tube of prescribed diameter and surface temperature.  
FIND:  Required tube length and error associated with use of a correlation for moderate to large Pr 
fluids.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3)Incompressible liquid with 
negligible viscous dissipation, (4) Fully developed flow.  
PROPERTIES:  Table A-5, Mercury T Km = 350c h:   cp = 137.7 J/kg⋅K, μ = 0.1309 × 10

-2
 N⋅s/m

2
, k 

= 9.18 W/m⋅K, Pr = 0.0196.  
ANALYSIS:  The Reynolds and Peclet numbers are  

 
( )

D 2 2
4m 4 0.5 kg/sRe 9727
 D 0.05m 0.1309 10 N s/mπ μ π −

×
= = =

× ⋅

&
 

 
 ( )D DPe Re  Pr 9727 0.0196 191.= = =  
 
Hence, assuming fully developed turbulent flow throughout the tube, it follows from Eq. 8.65 that  

 ( ) ( )0.8 0.8 2
D

k 9.18 W/m Kh 5.0 0.025 Pe 5.0 0.025 191 1224 W/m K.
D 0.05 m

⋅
= + = + × = ⋅  

 
From Eq. 8.41a, it follows that  

 ( )
( )

p o
2i

m c 0.5 kg/s 137.7 J/kg KT 450 400L n n 0.39 m.
 Dh T 450 3000.05 m 1224 W/m Kπ π

⋅Δ −
= − = − =

Δ −⋅

&
l l   < 

 
If the Dittus-Boelter correlation, Eq. 8.60, is used in place of Eq. 8.65,  

( ) ( )
2 4 / 5 0.44/5 0.4 2

D
k 9.18 W/m Kh 0.023 Re  Pr 0.023 9727 0.0196 1358 W/m K
D 0.05 m

⋅
= = = ⋅  

 
and the required tube length is  

 ( )
( )

p o
2i

m c 0.5 kg/s 137.7 J/kg KT 450 400L n n 0.35 m.
 Dh T 450 3000.05 m 1358 W/m Kπ π

⋅Δ −
= − = − =

Δ −⋅

&
l l   < 

 
COMMENTS:  (1) Such good agreement between results does not occur in general.  For example, if 
ReD = 2 × 104, h  = 1463 from Eq. 8.65 and 2417 from Eq. 8.60.  Large errors are usually associated 
with using conventional (moderate to large Pr) correlations with liquid metals. (2) The Dittus-Boelter 
correlation is recommended for ReD >

%
10,000, which is not quite satisfied here. 



PROBLEM 8.46 
  

KNOWN:  Surface temperature and diameter of a tube.  Velocity and temperature of air in 
cross flow.  Velocity and temperature of air in fully developed internal flow.  
FIND:  Convection heat flux associated with the external and internal flows.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Uniform cylinder surface temperature, (3) 
Fully developed internal flow, (4) For internal flow, air is an ideal gas with negligible viscous 
dissipation and pressure variations.  
PROPERTIES:  Table A-4, Air (336 K):  ν = 19.51 × 10-6 m2/s, k = 0.0290 W/m⋅K, Pr = 
0.702.  
ANALYSIS:  For the external and internal flows,  

 4m
D -6 2

u DVD 30 m/s 0.05 mRe 7.69 10 .
19.71 10 m / s

×
= = = = ×

×ν ν
 

 
From the Churchill-Bernstein relation for the external flow,   

 

4 /51/ 2 1/ 3 5/8
D DD 1/ 42 /3

4 /55/84 1/ 2 1/ 3 4

1/ 42 /3

0.62 Re Pr ReNu 0.3 1
282,000

1 (0.4 / Pr)

0.62(7.69 10 ) 0.702 7.69 10          0.3 1 180
282,000

1 (0.4 / 0.702)

⎡ ⎤⎛ ⎞⎢ ⎥= + + ⎜ ⎟⎢ ⎥⎝ ⎠⎡ ⎤ ⎣ ⎦+⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞× ×⎢ ⎥⎜ ⎟= + + =⎢ ⎥⎜ ⎟⎡ ⎤ ⎝ ⎠+ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

 

 
Hence, the convection coefficient and heat flux are  

 2D
k 0.0290 W/m Kh Nu 180 104 W/m K
D 0.05 m

⋅
= = × = ⋅  

 
 ( ) ( )2 2

sq h T T 104W/m K 100 25 C 7840 W/m .∞′′ = − = ⋅ − =o   < 
 
Using the Dittus-Boelter correlation, Eq. 8.60, for the internal flow, which is turbulent,  

 ( ) ( )
4 /5 0.44/5 0.4 4D DNu 0.023 Re  Pr 0.023 7.69 10 0.702 162= = × =  

 

 2D
k 0.0290 W/m Kh Nu 162 94 W/m K
D 0.05 m

⋅
= = × = ⋅  

Continued… 



PROBLEM 8.46 (Cont.) 
 

 
and the heat flux is  
 ( ) ( )2 2

s mq h T T 94 W/m K 100 25 C 7040 W/m .′′ = − = ⋅ − =o   < 
 
 
COMMENT:  Convection effects associated with the two flow conditions are comparable. 
 



PROBLEM 8.47 
 
KNOWN:  Length and diameter of tube submerged in paraffin of prescribed dimensions.  Inlet 
temperature and flow rate of water flowing through tube. 
 
FIND:  (a) Outlet temperature, heat rate, and time required for complete melting, and (b) Effect of 
flowrate on operating conditions. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Negligible KE/PE and flow work changes for water, (2) Constant water 
properties, (3) Negligible tube wall conduction resistance, (4) Negligible convection resistance in melt (Ts 
= T∞  = Tmp), (5) Fully developed flow, (6) No heat loss to the surroundings. 
 
PROPERTIES:  Water (given):  cp = 4.185 kJ/kg⋅K, k = 0.653 W/m⋅K, μ = 467 × 10-6 kg/s⋅m, Pr = 2.99;  
Paraffin (given):  Tmp = 27.4°C, hsf = 244 kJ/kg, ρ = 770 kg/m3. 
 

ANALYSIS:  (a) From Eq. 8.41b,  m,o

m,i p

T T DLhexp
T T mc

π∞

∞

⎛ ⎞−
= −⎜ ⎟⎜ ⎟− ⎝ ⎠&

.  With ReD = 
4m
Dπ μ
&

 = 

6
4 0.1kg s

0.025m 467 10 kg s mπ −
×

× × × ⋅
 = 10,906, the flow is turbulent.  Assuming fully developed 

conditions, 
 

 ( ) ( )4 / 5 0.3 24 / 5 0.3D
D

Nu k k 0.653 W m K
h 0.023 Re Pr 0.023 10, 906 2.99 1418 W m K

D D 0.025 m

⋅
= = = = ⋅  

 

 ( ) 2
m,o

0.025 m 3m
T 27.4 C 27.4 60 C exp 1418 W m K 42.17 C

0.1kg s 4185 J kg K
π × ×

= − − − ⋅ =
× ⋅

⎛ ⎞
⎜ ⎟
⎝ ⎠

oo o  < 

From the overall energy balance, 

 ( ) ( )p m,i m,oq mc T T 0.1kg s 4185J kg K 60 42.17 C 7500 W= − = × ⋅ − =o&  < 

Applying an energy balance to a control volume about the paraffin, Ein = ΔEst, the time tm required to melt 
the paraffin is 

 ( )2
m sf sfqt Vh L WH D 4 h= = −ρ ρ π  

 
( )( )23 2

5
m

770 kg m 3m 0.25 0.25m 0.025m 4
t 2.44 10 J kg 4660s 1.29 h

7500 W

π× × −
= × = =  < 

 
Continued... 



 
PROBLEM 8.47 (Cont.) 

 
(b) The effect of m&  on q and Tm,o was determined by accessing the Correlations Toolpad of IHT, and the 
results are plotted as follows. 
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Although q increases with increasing m&  due to the attendant increase in ReD, and therefore h , the 
increase is not linearly proportional to the change in m& .  Hence, from the overall energy balance, q = 
m& cp(Tm,i - Tm,o), there is a reduction in (Tm,i - Tm,o), which corresponds to an increase in Tm,o.  With the 
increase in q, there is a reduction in tm, and for m&  = 0.5 kg/s, 

 mt 1167s 0.324 h= =  < 
 
COMMENTS:  Heat transfer from the water to the paraffin is also affected by free convection in the melt 
region around the tube.  The effect is to decrease U, increase Ts, and decrease q with increasing time.  The 
actual time to achieve complete melting would exceed values computed in the foregoing analysis. 



PROBLEM 8.48 
 

 
KNOWN:  Diameter and length of circular tube, liquid water flow rate, liquid water entrance 
temperatures and tube surface temperatures. 
 
FIND:  Water outlet temperatures for (a) Tm,i = 500 K, Ts = 510 K and (b) Tm,i = 300 K, Ts = 310 K. (c) 
Discuss whether the flow is laminar or turbulent for Tm,i = 300 K, Ts = 647 K. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties in parts (a) and (b), (3) 
Negligible viscous dissipation. 
 
PROPERTIES:  Table A.6, liquid water ( mT  = 505 K, assumed): μ = 115.5×10-6 N⋅s/m2, Pr = 0.855, 
k = 0.635 W/m⋅K, cp = 4700 J/kg⋅K. Liquid water ( mT  = 305 K, assumed): μ = 769×10-6 N⋅s/m2, Pr = 
5.20, k = 0.620 W/m⋅K, cp = 4178 J/kg⋅K. 
 
 
ANALYSIS:  (a) We begin by calculating the Reynolds number 
 

   6 2
4 4 0.1 kg/s 11,014

0.1m 115.5 10 N s/mD
mRe

Dπ μ π −
×

= = =
× × × ⋅

&
 

 
Therefore, the flow is in a fully turbulent condition. Since L/D = 6m/0.1m = 60, we conclude that 
entrance effects are not important. We may use Dittus-Boelter (Eq. 8.60) to determine the average heat 
transfer coefficient and the mean outlet temperature may be found from Eq. (8.41b). 
 

4 /5 0.4 4 /5 0.4 2
D

0.635W/m K0.023 0.023 11,014 0.855 235 W/m K
0.1m

kh Re Pr
D

⋅⎡ ⎤ ⎡ ⎤= = × = ⋅⎣ ⎦ ⎣ ⎦  

 

 
, ,

2

( )exp

0.1 m 6 m      510 K 10 K exp 235 W/m K 506.1 K
0.1 kg/s 4700 J/kg K

m o s s m i
p

PLT T T T h
mc

π

⎛ ⎞
= − − −⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞× ×

= − × − ⋅ =⎜ ⎟× ⋅⎝ ⎠

&
  < 

 
(b) The Reynolds number is 
 

   6 2
4 4 0.1 kg/s 1655

0.1m 769 10 N s/mD
mRe

Dπ μ π −
×

= = =
× × × ⋅

&
 

 
Continued… 

 

L = 6 m

D = 0.1 m

m = 0.1 kg/s
.

Tm,i = 300 K or 500 K

Liquid water
Ts = 310 K, 510 K or 647 K 

L = 6 m

D = 0.1 m

m = 0.1 kg/s
.

Tm,i = 300 K or 500 K

Liquid water
Ts = 310 K, 510 K or 647 K 



PROBLEM 8.48 (Cont.) 
 

 
Therefore, the flow is laminar. The thermal entrance length is xfd,t = 0.05 × D × ReD × Pr = 0.05 × 0.1m 
× 1655 × 5.20 = 43.0 m > L. Therefore, we expect entrance effects to be significant. With Pr > 5, we 
may use Eq. (8.57) with Eq. (8.56) for the Graetz number, to estimate the value of h . 
 

[ ]

[ ]

2 /3

2
2 /3

0.0668( / )3.66
1 0.04 ( / )

0.620W/m K 0.0668(0.1 m / 6 m) 1655 5.20   = 3.66 51.0 W/m K
0.1 m 1 0.04 (0.1 m / 6.0 m) 1655 5.20

D

D

k D L Re Prh
D D L Re Pr

⎧ ⎫⎪ ⎪= +⎨ ⎬
+⎪ ⎪⎩ ⎭
⎧ ⎫⋅ × ×⎪ ⎪+ = ⋅⎨ ⎬

+ × ×⎪ ⎪⎩ ⎭

 

 
Using Eq. (8.41b) 
 

, ,

2

( )exp

0.1 m 6 m      310 K 10 K exp 51 W/m K 302.1 K
0.1 kg/s 4178 J/kg K

m o s s m i
p

PLT T T T h
mc

π

⎛ ⎞
= − − −⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞× ×

= − × − ⋅ =⎜ ⎟× ⋅⎝ ⎠

&
      < 

 
(c) The temperature variations within the water are very large. Therefore, properties are expected to 
vary significantly from location to location. Near the entrance of the tube, average temperatures will 
be low, and the flow is expected to be laminar. However, as the boundary layer regions grow, higher 
temperatures will exist in a greater portion of the liquid and viscosities may drop to very low values. 
Hence, the flow may trip into turbulent conditions at a location between the tube entrance and the tube 
exit. The assumption of constant properties under the conditions of part (c) may not be appropriate. 
 
 
COMMENTS:  Even though entrance effects are important for the laminar flow conditions of part 
(b), the heat transfer coefficient is small relative to that associated with the turbulent conditions of part 
(a). 



PROBLEM 8.49 
 
KNOWN:  Diameter, length and surface temperature of condenser tubes.  Water velocity and inlet 
temperature. 
 
FIND:  (a) Water outlet temperature evaluating properties at Tm = 300 K, (b) Repeat calculations using 
properties evaluated at the appropriate temperature, mT  = (Tm,i + Tm,o)/2, and (c) Coolant mean velocities 
for the range 4 ≤ L ≤ 7 m which provide the same Tm,o as found in part (b). 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Negligible tube wall conduction resistance, (2) Incompressible liquid with 
negligible viscous dissipation. 
 
PROPERTIES:  Table A.6, Water ( mT  = 300 K):  ρ = 997 kg/m3, cp = 4179 J/kg⋅K, μ = 855 × 10-6 
kg/s⋅m, k = 0.613 W/m⋅K, Pr = 5.83. 
 
ANALYSIS:  (a) From Equation 8.41b 

 ( ) ( )m,o s s m,i pT T T T exp DL mc hπ⎡ ⎤= − − −⎣ ⎦& . 

and evaluating properties at mT  = 300 K, find 

 
( )3

m
D 6

997 kg m 1m s 0.0254mu DRe 29,618
855 10 kg s m

ρ
μ −

= = =
× ⋅

 

The flow is turbulent, and since L/D = 197, it is reasonable to assume fully developed flow throughout the 
tube.  Hence, h  ≈ hfd.  From the Dittus-Boelter equation, 

 ( ) ( )4 / 5 0.44 /5 0.4
D DNu 0.023Re Pr 0.023 29,618 5.83 176= = =  

 ( ) ( ) 2
Dh Nu k D 176 0.613W m K 0.0254 m 4248 W m K= = ⋅ = ⋅ . 

With 

 ( ) ( ) ( )( )22 3
mm u D 4 4 997 kg m 1m s 0.0254m 0.505kg sρ π π= = =& . 

Equation 8.41b yields 

 ( )
( ) ( )

( )

2

m,o
0.0254m 5m 4248W m K

T 350 K 60 K exp 323K 50 C
0.505kg s 4179 J kg K

π⎡ ⎤⋅⎢ ⎥= − − = =⎢ ⎥⋅
⎢ ⎥⎣ ⎦

o  < 

(b) Using the IHT Correlations Tool, Internal Flow, for fully developed Turbulent Flow, along with the 
energy balance and rate equations above, the calculation of part (a) is repeated with mT  = (Tm,i + Tm,o)/2 
giving these results: 

 mT 307.3K=              Tm,o = 51.7°C = 324.7 K < 
 
(c) Using the IHT model developed for the part (b) analysis, the coolant mean velocity, um, as a function 
of tube length L with Tm,o = 51.7°C is calculated and the results plotted below. 
 

Continued... 



PROBLEM 8.49 (Cont.) 
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COMMENTS:  (1) Using mT  = 300 K vs. mT  = (Tm,i + Tm,o)/2 = 307 K for this application resulted in 
a difference of Tm,o = 50°C vs.Tm,o = 51.7°C.  While the difference is only 1.7°C, it is good practice to use 
the proper value for mT . 
 
(2) Note that um must be increased markedly with increasing length in order that Tm,o remain fixed. 



PROBLEM 8.50 
 
KNOWN:  Gas turbine vane approximated as a tube of prescribed diameter and length maintained at a 
known surface temperature.  Air inlet temperature and flowrate. 
 
FIND:  (a) Outlet temperature of the air coolant for the prescribed conditions and (b) Compute and plot 
the air outlet temperature Tm,o as a function of flow rate, 0.1 ≤ m&  ≤ 0.6 kg/h.  Compare this result with 
those for vanes having passage diameters of 2 and 4 mm. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Ideal gas with negligible viscous dissipation and 
pressure variation. 
 
PROPERTIES:  Table A.4, Air (assume mT  = 780 K, 1 atm):  cp = 1094 J/kg⋅K, k = 0.0563 W/m⋅K, μ = 
363.7 × 10-7 N⋅s/m2, Pr = 0.706. 
 
ANALYSIS:  (a) For constant wall temperature heating, from Eq. 8.41b, 

 s m,o

s m,i p

T T PLhexp
T T mc

⎛ ⎞−
= −⎜ ⎟⎜ ⎟− ⎝ ⎠&

 (1) 

where P = πD.  For flow in a circular passage, 

 
( )

( )
D 7 2

4 0.18kg h 1 3600s h4mRe 584
D 0.003m 363.7 10 N s mπ μ π −

×
= = =

× ⋅

&
. (2) 

The flow is laminar, and from Eq. 8.3, xfd,h = 0.05ReDD = 88 mm.  Thus, the flow is in the combined 
entry length.  From Eq. 8.56, GzD = (D/L)ReDPr = 16.5 and from Eq. 8.58,  

1
D D1/3 2/3

D D
1/6 1/6

D
D

3.66 0.0499Gz tanh(Gz )
hD tanh[2.264Gz 1.7Gz ]Nu
k tanh(2.432 Pr Gz )

−
− −

−

+
+= =  (3) 

1
1/3 2/3

1/6 1/6
2

3.66 0.0499 16.5tanh(16.5 )
0.0563W m K tanh[2.264 16.5 1.7 16.5 ]h 95.0W m K

0.003m tanh(2.432 0.706 16.5 )

−
− −

−

⎛ ⎞+ ×⎜ ⎟⋅ × + ×⎜ ⎟= = ⋅
⎜ ⎟× ×
⎜ ⎟
⎝ ⎠

Hence, the air outlet temperature is 
 

 
( )

( )
( )

2
m,o650 T 0.003m 0.075m 95.0W m K

exp
0.18 3600 kg s 1094  J kg K650 427 C

π⎛ ⎞− × × ⋅
⎜ ⎟= −
⎜ ⎟× ⋅− ⎝ ⎠

o
 

 m,oT 585 C= o  < 
Continued... 



PROBLEM 8.50 (Cont.) 
 

 
(b) Using the IHT Correlations Tool, Internal Flow, for Laminar Flow with combined entry length, along 
with the energy balance and rate equations above, the outlet temperature Tm,o was calculated as a function 
of flow rate for diameters of D = 2, 3 and 4 mm.  The plot below shows that Tm,o decreases strongly with 
increasing flow rate, but is independent of passage diameter. 
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COMMENTS:  (1) Based upon the calculation for Tm,o = 585°C, mT  = 779 K which is in good 
agreement with our assumption to evaluate the thermophysical properties.  (2) Why is Tm,o independent of 
D?  Since ReD varies inversely with D, GzD is independent of D, and so is NuD.  From Eq. (3), note that h  
is inversely proportional to D, h  ~ D-1.  From Eq. (1), note that on the right-hand side the product P⋅ h  
will be independent of D.  Hence, Tm,o will depend only on the mass flow rate.  This is, of course, a 
consequence of the laminar flow condition and will not be the same for turbulent flow. 
 



PROBLEM 8.51  
KNOWN:  Gas-cooled nuclear reactor tube of 20 mm diameter and 780 mm length with helium 
heated from 600 K to 1000 K at 8 × 10

-3
 kg/s. 

 
FIND:  (a) Uniform tube wall temperature required to heat the helium, (b) Outlet temperature and 
required flow rate to achieve same removal rate and wall temperature if the coolant gas is air.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Ideal gas with negligible viscous dissipation and 
pressure variation, (3) Fully developed conditions.  
PROPERTIES:  Table A-4, Helium ( )mT 800K, 1 atm :=   ρ = 0.06272 kg/m

3
, cp = 5193 J/kg⋅K, k = 

0.304 W/m⋅K, μ = 382 × 10
-7

 N⋅s/m
2
, ν = 6.39 × 10

-4
 m

2
/s, Pr = 0.654; Air ( )mT 800K, 1 atm :=   ρ 

= 0.4354 kg/m
3
, cp = 1099 J/kg⋅K, k = 57.3 × 10

-3
 W/m⋅K, ν = 84.93 × 10

-6
 m

2
/s, Pr = 0.709. 

 
ANALYSIS:  (a) For helium and a constant wall temperature, from Eq. 8.41b,  

 s m,o

s m,i p

T T PLhexp
T T m c

⎛ ⎞−
= −⎜ ⎟⎜ ⎟− ⎝ ⎠&

 

 
where P = πD.  For the circular tube,  

 
3

4
D -7 2

4m 4 8 10  kg/sRe 1.333 10
 D 0.020 m 382 10 N s/mπ μ π

−× ×
= = = ×

× × × ⋅

&
 

 
and using the Dittus-Boelter correlation for turbulent, fully developed flow,  

 ( ) ( )
4 /5 0.44/5 0.4 4

DNu 0.023 Re Pr 0.023 1.333 10 0.654 38.7= = × =  

 2h Nu k/D 38.7 0.304 W/m K/0.02 m 588 W/m K.= ⋅ = × ⋅ = ⋅   
Hence, the surface temperature is  

 ( ) 2
s

-3s

0.020 m 0.780 m 588 W/m KT 1000 K exp 0.500
T 600 K 8 10  kg/s 5193 J/kg K

π⎡ ⎤× × ⋅− ⎢ ⎥= − =
− ⎢ ⎥× × ⋅⎣ ⎦

 

 
 sT 1400 K.=           < 
 
The heat rate with helium coolant is  
 ( ) ( )3

p m,o m,iq m c T T 8 10  kg/s 5193 J/kg K 1000 600 K 16.62 kW.−= − = × × ⋅ − =&  
 
          Continued … 



PROBLEM 8.51 (Cont.)  
(b) For the same heat removal rate (q) and wall temperature (Ts) with air supplied at Tm,i, the relevant 
relations are  
 ( )a p m,o m,iq 16,620 W m  c T T= = −&       (1) 
 

 s m,o a
s m,i a p

T T PLhexp
T T m  c

⎡ ⎤−
= −⎢ ⎥

− ⎢ ⎥⎣ ⎦&
        (2) 

 

 4/5 0.4a
D

4m hDRe           0.023 Re Pr
 D kπ μ

= =
&

             (3,4) 
 
where Tm,o and m&  are unknown.  An iterative solution is required:  assume a value of Tm,o and find 
&m  from Eq. (1); use m&  in Eqs. (3) and (4) to find h  and then Eq. (2) to evaluate Tm,o; compare 

results and iterate.  Using thermophysical properties of air evaluated at mT  = 800K, the above 
relations, written in the order they would be used in the iteration, become  

 a
m,o

15.1m
T 600

=
−

&          (5) 

 
 4/5

a ah 5600m= &          (6) 
 
 ( )-5

m,o a aT 1400 K 800 K exp 4.459 10 h / m⎡ ⎤= − × − ×⎢ ⎥⎣ ⎦
&     (7) 

 
Results of the iterative solution are  
 Trial    Tm,o (K)  m&  (kg/s) ( )2

ah  W/m K⋅  Tm,o (K) 

   (Assumed)     Eq. (5)  Eq. (6)    Eq. (7)  
   1    1000   3.781 × 10-2  407    905 
   2      950   4.321 × 10-2  453    899 
   3      900   5.041 × 10-2  513    891 
   4      890   5.215 × 10-2  527    890 
 
Hence, we find  
 2

a m,om 5.22 10  kg/s          T 890 K.−= × =&       < 
 
COMMENTS:  To achieve the same cooling rate with air, the required mass rate is 6.5 times that 
obtained with helium. 
 



PROBLEM 8.52  
KNOWN:  Air at prescribed inlet temperature and mean velocity heated by condensing steam 
on its outer surface.  
FIND:  (a) Air outlet temperature, pressure drop and heat transfer rate and (b) Effect on 
parameters of part (a) if pressure were doubled.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible kinetic and potential energy 
changes, (3) Thermal resistance of tube wall and condensate film are negligible.  
PROPERTIES:  Table A-4, Air (assume Tm  = 450 K, 1 atm = 101.3 kPa):  ρ = 0.7740 

kg/m3, cp = 1021 J/kg⋅K, μ = 250.7 × 10-7 N⋅s/m2, k = 0.0373 W/m⋅K, Pr = μcp/k = 0.686.  
Note that only ρ is pressure dependent; i.e., ρ ∝  p; Table A-6, Saturated water (20 bar):  Tsat 
= Ts = 485 K.  
ANALYSIS:  (a) For constant wall temperature heating, from Eq. 8.41b,  

 s m,o
i

s m,i p

T T PLexp h
T T m c

⎛ ⎞−
= −⎜ ⎟⎜ ⎟− ⎝ ⎠&

 

 
where P = πD.  For the air flow, find the mass rate and Reynolds number,  
 ( ) ( )( )23

c mm A u 0.7740 kg/m 200 kPa/101.3 kPa 0.025 m / 4 6 m/sρ π= = ×&  

 -3m 4.501 10 kg/s.= ×&  

 
( )

3
3

D -7 2
4m 4 4.501 10  kg/sRe 9.143 10 .

 D 250.7 10  N s/m 0.025 mμπ π

−× ×
= = = ×

× ⋅ ×

&
 

 
Using the Dittus-Boelter correlation for fully-developed turbulent flow, 

 ( ) ( )
4 /5 0.44/5 0.4 3

DNu 0.023Re Pr 0.023 9.143 10 0.682 29.12= = × =  

 2
ih Nu k/D 29.12 0.0373 W/m K/0.025 m 43.4 W/m K.= ⋅ = × ⋅ = ⋅  

Hence, the outlet temperature is 

 
( )

( ) 2
m,o

-3
212 T 0.025 m 2 m 43.4 W/m K

exp
4.501 10  kg/s 1021 J/kg K212 150 C

π⎡ ⎤− × × ⋅
⎢ ⎥= −
⎢ ⎥× × ⋅− ⎣ ⎦

o
 

 m,oT 198 C.= o          < 
 
          Continued … 



PROBLEM 8.52 (Cont.)  
The pressure drop follows from Eqs. 8.21 and 8.22,  

 ( ) ( ) 22 3
Df 0.790ln(Re ) 1.64 0.790ln(9.143 10 ) 1.64 0.0323

−−= − = × − =  
 

 
2
mup f L

2D
ρ

Δ =  
 

 ( )( )23
20.7740 kg/m 200 /101.3 6 m/s 2 m

p 0.0323 71.1 N/m .
2 0.025 m

×
Δ = =

×
  < 

 
The heat transfer rate is  
 ( ) ( )3

p m,o m,iq m c T T 4.501 10  kg/s 1021 J/kg K 198 150 K 221 W.−= − = × × ⋅ − =&   < 
 
(b) If the pressure were doubled, we can see from the above relations that m p∝&   hence 
 
 om 2m=& &  
 
 D D,oRe 2Re ,=  
 
since  
 ( ) ( )4 / 5 4 /5

i i i,oh Re h / h 2 ,∝ → =  
 
 i i,oh 1.74h .=  
 
It follows that Tm,o = 195°C, so that the effect on temperature is slight.  However, the 
pressure drop increases by the factor 1.68 and the heat rate by the factor 1.88.  In summary:  
             
 Parameter  p = 200 kPa  p = 400 kPa  Increase, % 
       Part (a)     Part (b)      
 &m,  kg/s × 103       4.501      9.002  100 
 hi, W/m2

⋅K     43.4     75.6     74 
 Tmo - Tm,i°C     48     45      -6 
 Δp, N/m2     71.1   119      68 
 q, W    221   415      88  
COMMENTS:  (1) Note that mT  = (198 + 150)°C/2 = 447 K agrees well with the assumed 
value (450 K) used to evaluate the thermophysical properties. 
 



PROBLEM 8.53  
KNOWN:  Diameter, length and surface temperature of tubes used to heat ambient air.  Flow rate and 
inlet temperature of air.  
FIND:  (a) Air outlet temperature and heat rate per tube, (b) Effect of flow rate on outlet temperature.  
Design and operating conditions suitable for providing 1 kg/s of air at 75°C.  
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state, (2)Ideal gas with negligible viscous dissipation and pressure 
variation, (3) Negligible tube wall thermal resistance.  
PROPERTIES:  Table A.4, air (assume mT  = 330 K):  cp = 1008 J/kg⋅K, μ = 198.8 × 10-7 N⋅s/m2, k = 
0.0285 W/m⋅K, Pr = 0.703. 
 
ANALYSIS:  (a) For m&  = 0.01 kg/s, ReD = 4m Dπ μ&  = 0.04 kg/s/π(0.05 m)198.8 × 10-7 N⋅s/m2 = 
12,810.  Hence, the flow is turbulent.  If fully developed flow is assumed throughout the tube, the Dittus-
Boelter correlation may be used to obtain the average Nusselt number.  

 ( ) ( )0.8 0.44 / 5 0.4D D DNu Nu 0.023Re Pr 0.023 12,810 0.703 38.6≈ = = =  

Hence,  ( ) ( ) 2Dh Nu k D 38.6 0.0285 W m K 0.05m 22.0 W m K= = ⋅ = ⋅  
 
From Eq. 8.41b, 

 
2s m,o

s m,i p

T T DLh 0.05m 5m 22 W m Kexp exp 0.180
T T mc 0.01kg s 1008J kg K

π π⎛ ⎞⎛ ⎞− × × × ⋅⎜ ⎟= − = − =⎜ ⎟⎜ ⎟ ⎜ ⎟− × ⋅⎝ ⎠ ⎝ ⎠&
 

 ( ) ( )m,o s s m,iT T 0.180 T T 100 C 0.180 80 C 85.6 C= − − = − =o o o  < 

Hence, ( ) ( )p m,o m,iq mc T T 0.01kg s 1008J kg K 65.6 K 661W= − = ⋅ =&  < 
 
(b) The effect of flow rate on the outlet temperature was determined by using the IHT Correlations and 
Properties Toolpads. 
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PROBLEM 8.53 (Cont.) 

 
Although h  and hence the heat rate increase with increasing m& , the increase in q is not linearly 
proportional to the increase in m&  and Tm,o decreases with increasing m& . 
 
A flow rate of m&  = 0.05 kg/s is not large enough to provide the desired outlet temperature of 
75°C, and to achieve this value, a flow rate of 0.0678 kg/s would be needed.  At such a flow rate, 
N = 1 kg/s/0.0678 kg/s = 14.75 ≈ 15 tubes would be needed to satisfy the process air 
requirement.  Alternatively, a lower flow rate could be supplied to a larger number of tubes and 
the discharge mixed with ambient air to satisfy the desired conditions.  Requirements of this 
option are that 
 
 ambNm m 1kg / s+ =& &  
 
 ( ) ( ) ( )amb p m,o m,iNm m c T T 1kg s 1008J kg K 75 20 K 55, 400 W+ − = × ⋅ − =& &  
 
where m&  is the flow rate per tube.  Using a larger number of tubes with a smaller flow rate per 
tube would reduce flow pressure losses and hence provide for reduced operating costs. 
 
COMMENTS:  With L/D = 5 m/0.05 m = 100, the assumption of fully developed conditions 
throughout the tube is reasonable. 
 
 



PROBLEM 8.54 
 

 
KNOWN:  Length of a tube with constant surface temperature and a combined entrance length, L < 
xfd,t.  
FIND:  Expression for the ratio of the average heat transfer coefficient for N tubes each of length LN = 
L/N to the average coefficient for the single tube. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Combined entrance conditions, (2) Constant properties, (3) Negligible viscous 
dissipation. 
 
PROPERTIES: Given: Pr = 4.  
 
ANALYSIS:  The Nusselt number for the combined entrance problem with 0.1 < Pr < 5 is given by 
Equation 8.58 and is seen to be a function of the Graetz number, GzD = DReDPr/L, and the Prandtl 
number, Pr.  For multiple tubes, each of length LN = L/N with a flowrate of /Nm m N=& & , observe that 
ReD,N = ReD,1/N, resulting in  
 
  GzD,N  = DReD,NPr/LN = DReD,1Pr/L = GzD,1 
 
Since the Graetz number is unchanged, and Pr has been specified as constant, the Nusselt number is 
unchanged.  With h = NuDk/D, 
 
     , ,1/ 1D N Dh h =      < 
 
 
COMMENTS: (1) Breaking the tube into shorter lengths has no impact on the overall heat transfer 
rate. Shortening the tube will, in general, tend to increase the average heat transfer coefficient, but this 
effect is offset by reduction of the flow rate in each of the shorter tubes. The scheme would not result 
in any heat transfer enhancement. (2) The same result holds for the thermal entrance problem, since 
the Nusselt number is also a function only of GzD. 
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PROBLEM 8.55  
KNOWN:  Configuration of microchannel heat sink.  
FIND:  (a) Expressions for longitudinal distributions of fluid mean and surface temperatures, (b) Coolant 
and channel surface temperature distributions for prescribed conditions, (c) Effect of heat sink design and 
operating conditions on the chip heat flux for a prescribed maximum allowable surface temperature.  
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state, (2)Incompressible liquid with negligible viscous dissipation, (3) All 
of the chip power dissipation is transferred to the coolant, with a uniform surface heat flux, sq′′ , (4) 
Laminar, fully developed flow, (5) Constant properties.  
PROPERTIES:  Table A.6, Water (assume m m,iT T=  = 290 K):  cp = 4184 J/kg⋅K, μ = 1080 × 10-6 

N⋅s/m2, k = 0.598 W/m⋅K, Pr = 7.56.  
ANALYSIS:  (a) The number of channels passing through the heat sink is N = L/S = L/C1D, and 
conservation of energy dictates that 

 ( )2 2
c s s 1q L N DL q L q Cπ π′′ ′′ ′′= =  

which yields 

 1 c
s

C q
q

π

′′
′′ =  (1) 

With the mass flowrate per channel designated as 1m m N=& & , Eqs. 8.40 and 8.27 yield 

 ( ) s c
m m,i m,i

1 p p

q D Lq
T x T x T x

m c mc
π′′ ′′

= + = +
& &

 (2) < 

 ( ) ( ) ( )s 1 c
s m m

q C q
T x T x T x

h hπ

′′ ′′
= + = +  (3) < 

where, for laminar, fully developed flow with uniform sq′′ , Eq. 8.53 yields h = 4.36 k/D. 
 
(b) With L = 12 mm, D = 1 mm, C1 = 2 and m&  = 0.01 kg/s, it follows that S = 2 mm, N = 6 and ReD = 

μπDm14 &  = ( ) ( ) 3 24 0.01kg s 6 0.001m 1.08 10 N s mπ −× ⋅  = 1965.  Hence, the flow is laminar, as 

assumed, and h = 4.36(0.598 W/m⋅K/0.001 m) = 2607 W/m2⋅K.  From Eqs. (2) and (3) the outlet mean 
and surface temperatures are 

 
( )

( )

2 4 2

m,o
0.012 m 20 10 W m

T 290 K 290.7 K 17.7 C
0.01kg s 4184 J kg K

×
= + = =

⋅
o  

 
4 2

s,o m,o 2
2 20 10 W m

T T 339.5 K 66.5 C
2607 W m Kπ

×
= + × = =

⋅

o  

Continued... 



 
PROBLEM 8.55 (Cont.)  

The axial temperature distributions are as follows 
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The flowrate is sufficiently large (and the convection coefficient sufficiently low) to render the increase in 
Tm and Ts with increasing x extremely small.  
(c) The desired constraint of Ts,max ≤ 50°C is not met by the foregoing conditions.  An obvious and logical 
approach to achieving improved performance would involve increasing 1m&  such that turbulent flow is 
maintained in each channel.  A value of 1m&  > 0.002 kg/s would provide ReD > 2300 for D = 0.001.  
Using Eq. 8.60 with n = 0.4 to evaluate NuD and accessing the Correlations Toolpad of IHT to explore the 
effect of variations in 1m&  for different combinations of D and C1, the following results were obtained. 
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We first note that a significant increase in cq′′  may be obtained by operating the channels in turbulent 
flow.  In addition, there is an obvious advantage to reducing C1, thereby increasing the number of 
channels for a fixed channel diameter.  The biggest enhancement is associated with reducing the channel 
diameter, which significantly increases the convection coefficient, as well as the number of channels for 
fixed C1.  For 1m&  = 0.005 kg/s, h increases from 32,400 to 81,600 W/m2⋅K with decreasing D from 1.0 to 
0.6 mm.  However, for fixed 1m& , the mean velocity in a channel increases with decreasing D and care 
must be taken to maintain the flow pressure drop within acceptable limits.  
COMMENTS:  Although the distribution computed for Tm(x) in part (b) is correct, the distribution for 
Ts(x) represents an upper limit to actual conditions due to the assumption of fully developed flow 
throughout the channel. 



PROBLEM 8.56  
KNOWN:  Cold plate geometry and temperature.  Inlet temperature and flow rate of water.  Number 
of circuit boards and temperature and velocity of air in parallel flow over boards.  
FIND:  (a) Heat dissipation by cold plates, (b) Heat dissipation by air flow.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Isothermal cold plate, (2) All heated generated by circuit boards is dissipated 
by cold plates (Part (a)), (3) Circuit boards may be represented as isothermal at an average surface 
temperature, (4) Air flow over circuit boards approximates that over a flat plate in parallel flow, (5) 
Steady operation, (6) Constant properties, (7) Water is incompressible liquid with negligible viscous 
dissipation.  
PROPERTIES:  Table A-6, Water ( )mT 290K :≈  cp = 4184 J/kg⋅K, 6 21080 10 N s / m ,μ −= × ⋅  

k=0.598 W/m⋅K, Pr = 7.56.  Table A-4, Air (p = 1 atm, Tf = 300K):  6 215.89 10 m / s,ν −= ×  k = 0.0263 
W/m⋅K, Pr = 0.707.  
ANALYSIS:  (a) With 6 2

D 1Re 4 m / D 4 0.2 kg / s / 0.01m 1080 10 N s / m 23, 600,π μ π −= = × × × × ⋅ =&  the 
flow is turbulent, and from Eq. (8.60), 

( ) ( )4 / 5 0.4 24 / 5 0.4
D D

k k 0.023 0.598 W / m K
h Nu 0.023 Re Pr 23, 600 7.56 9, 730 W / m K

D D 0.01m

× ⋅
= = = = ⋅  

With H/D = 0.75/0.01 = 75, it is reasonable to assume fully developed flow throughout the tube.  
Hence, from Eqs. (8.41b) and (8.34) 

 
2s,cp m,o

s,cp m,i 1 p

T T DH 0.01m 0.75m 9730 W / m K
exp h exp 0.760

T T m c 0.2 kg / s 4184 J / kg K
π π− × × × ⋅

= − = − =
− × ⋅

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠&

 

 ( )m,o s,cp s,cp m,iT T 0.76 T T 13 C= − − = °  

 ( )1 1 p m,o m,iq m c T T 0.2 kg / s 4184 J / kg K 6 C 5021W= − = × ⋅ × ° =&  

With a total of 2N = 20 passages, the total heat dissipation is 

 1q 2Nq 20 5021W 100 kW= = × =        < 

(b) For the air flow, 6 2
DRe u L / 10 m / s 0.60m /15.89 10 m s 378, 000,ν −

∞= = × × =  and the flow is 
laminar.  From Eq. (7.30), 

( ) ( )L
1/ 2 1/ 3 21/ 2 1/ 3
L

k k 0.664 0.0263 W / m K
h Nu 0.664 Re Pr 378, 000 0.707 15.9 W / m K

L L 0.60m

× ⋅
= = = = ⋅  

Heat dissipation to the air from both sides of 10 circuit boards is then 

 ( )( ) 2 2
cb s,cbq 2N h WL T T 20 15.9 W / m K 0.21m 40 C 2,670 W∞= − = × ⋅ × × ° =  < 

COMMENTS:  The cooling capacity of the cold plates far exceeds that of the air flow.  However, the 
challenge would be one of efficiently transferring such a large amount of energy to the cold plates 
without incurring excessive temperatures on the circuit boards. 



PROBLEM 8.57  
KNOWN:  Flow rate and temperature of Refrigerant-134a passing through a Teflon tube of prescribed 
inner and outer diameter.  Velocity and temperature of air in cross flow over tube.  
FIND:  Heat transfer per unit tube length.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional radial conduction, (3) Constant 
properties, (4) Fully developed flow.  
PROPERTIES:  Table A-4, Air (T = 300 K, 1 atm):  ν = 15.89 × 10

-6
 m

2
/s, k = 0.0263 W/m⋅K, Pr = 

0.707; Table A-5, R-134a (T = 240 K):  μ = 4.202 × 10
-4

 N⋅s/m
2
,  k = 0.1073 W/m⋅K, Pr = 5.0; Table 

A-3, Teflon (T ≈ 300 K):  k = 0.35 W/m⋅K.  
ANALYSIS:  Considering the thermal circuit shown above, the heat rate is  

 
( ) ( ) ( )

m
o o o i i i

T Tq .
1/h  D n D / D / 2 k 1/ h  Dπ π π

∞ −′ =
⎡ ⎤+ +⎣ ⎦l

 

 
( )

D,i -4 2i

4 m 0.4 kg/sRe 12,120
 D 0.025m  4.202 10  N s/m

= = =
× ⋅

&

π μ π
 

 
and the flow is turbulent.  Hence, from the Dittus-Boelter correlation 
 

( ) ( )4 /5 0.44/5 0.4 2
i D,i

i

k 0.1073 W/m Kh 0.023 Re Pr 0.023 12,120 5 347 W/m K.
D 0.025 m

⋅
= = = ⋅  

With ( ) 4o
D,o -6 2

25 m/s 0.028 mVDRe 4.405 10
15.89 10  m / sν

= = = ×
×

 

 
it follows from Eq. 7.53 and Table 7.4 that  

( ) ( )
0.6 0.370.6 0.37 4 2

o D,o
k 0.0263 W/m K

h 0.26 Re  Pr 0.26 4.405 10 0.707 131 W/m K.
D 0.028 m

⋅
= = × = ⋅  

 
Hence 

( ) ( ) ( ) ( )
m

1 12 2

T T
q

131 W/m K 0.028 m n 28/25 / 2 0.350 W/m K 347 W/m K 0.025 m

∞
− −

−′ =

⋅ + ⋅ + ⋅lπ π π

 

 

 ( )
( )

300 240 K
q 343 W/m.

0.087 0.052 0.037  K m/W
−

′ = =
+ + ⋅

     < 

 
COMMENTS:  The three thermal resistances are comparable.  Note that Ts,o = T∞ - q′/hoπDo = 300K 

- 343 W/m/131 W/m
2
⋅K π 0.028 m = 270 K. 



PROBLEM 8.58  
KNOWN:  Oil flowing slowly through a long, thin-walled pipe suspended in a room.  
FIND:  Heat loss per unit length of the pipe, convq .′  
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Tube wall thermal resistance negligible, 
(3) Fully developed flow, (4) Radiation exchange between pipe and room negligible.  
PROPERTIES:  Table A-5, Unused engine oil (Tm = 150°C = 423K):  k = 0.133 W/m⋅K. 
 
ANALYSIS:  The rate equation, for a unit length of the pipe, can be written as 

( )m
conv

t

T T
q

R
∞−

′ =
′

 

 
where the thermal resistance is comprised of two elements,  

 t
i o i o

1 1 1 1 1R  .
h  D h  D  D h hπ π π

⎛ ⎞
′ = + = +⎜ ⎟

⎝ ⎠
 

 
The convection coefficient for internal flow, hi, must be estimated from an appropriate 
correlation.  From practical considerations, we recognize that the oil flow rate cannot be large 
enough to achieve turbulent flow conditions.  Hence, the flow is laminar, and if the pipe is 
very long, the flow will be fully developed.  The appropriate correlation is  

 i
D

h DNu 3.66
k

= =  
 

 2
i D

Wh Nu  k/D 3.66 0.133 / 0.030 m 16.2 W/m K.
m K

= = × = ⋅
⋅

 
 
The heat rate per unit length of the pipe is  

 ( )

( )

conv 2
150 20 C

q 80.3 W/m.
1 1 1 m K  

0.030m 16.2 11 Wπ

−
′ = =

⋅⎛ ⎞+⎜ ⎟
⎝ ⎠

o

    < 

 
COMMENTS:  This problem requires making a judgment that the oil flow will be laminar 
rather than turbulent.  Why is this a reasonable assumption?  Recognize that the correlation 
applies to a constant surface temperature condition. 



PROBLEM 8.59 
 
KNOWN:  Thin-walled, tall stack discharging exhaust gases from an oven into the environment. 
 
FIND:  (a) Outlet gas and stack surface temperatures, Tm,o and Ts,o, and (b) Effect of wind temperature 
and velocity on Tm,o.  
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Wall thermal resistance negligible, (3) Exhaust gas 
properties approximated as those of atmospheric air, (4) Radiative exchange with surroundings negligible, 
(5) Ideal gas with negligible viscous dissipation and pressure variation, (6) Fully developed flow, (7) 
Constant properties. 
 
PROPERTIES:  Table A.4, air (assume Tm,o = 773 K, mT  = 823 K, 1 atm):  cp = 1104 J/kg⋅K, μ = 376.4 
× 10-7 N⋅s/m2, k = 0.0584 W/m⋅K, Pr = 0.712;  Table A.4, air (assume Ts = 523 K, T∞  = 4°C = 277 K, Tf = 
400 K, 1 atm):  ν = 26.41 × 10-6 m2/s, k = 0.0338 W/m⋅K, Pr = 0.690. 
 
ANALYSIS:  (a) From Eq. 8.45a, 
 

 ( )m,o m,i
p

PLT T T T exp U
mc∞ ∞

⎡ ⎤
= − − −⎢ ⎥

⎢ ⎥⎣ ⎦&
              

i o

1 1U 1
h h

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (1,2) 

 
where hi and ho are average coefficients for internal and external flow, respectively. 
 
Internal flow:  With a Reynolds number of 

 iD 7 2
4m 4 0.5kg sRe 33,827
D 0.5m 376.4 10 N s mπ μ π −

×
= = =

× × × ⋅

&
 (3) 

the flow is turbulent.  Considering the flow to be fully developed throughout the stack (L/D = 12) and 
with Ts < Tm, the Dittus-Boelter correlation has the form 

 
i

4 /5 0.3i
D D

h DNu 0.023Re Pr
k

= =  (4) 

 ( ) ( )
3 4 /5 0.3 2

i
58.4 10 W m Kh 0.023 33,827 0.712 10.2 W m K

0.5m

−× ⋅
= × = ⋅ . 

 
External flow:  Working with the Churchill/Bernstein correlation, the Reynolds and Nusselt numbers are 
 

 oD 6 2
VD 5m s 0.5mRe 94,660

26.41 10 m sν −
×

= = =
×

 (5) 
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( )

4 / 51/ 2 1/ 3 5/8
DDD 1/ 42 /3

0.62Re Pr ReNu 0.3 1 205
282,000

1 0.4 Pr

⎡ ⎤⎛ ⎞⎢ ⎥= + + =⎜ ⎟⎢ ⎥⎝ ⎠⎡ ⎤ ⎣ ⎦+⎢ ⎥⎣ ⎦

 

Hence, 

 ( ) 2
oh 0.0338 W m K 0.5m 205 13.9 W m K= ⋅ × = ⋅  (6) 

 
The outlet gas temperature is then 

( ) 2
m,o

0.5 m 6 m 1
T 4 C 4 600 C exp W m K 543 C

0.5 kg s 1104 J kg K 1 10.2 1 13.9
π × ×

= − − − ⋅ =
× ⋅ +

⎡ ⎤⎛ ⎞
⎢ ⎜ ⎟⎥

⎝ ⎠⎣ ⎦
oo o  < 

 
The outlet stack surface temperature can be determined from a local surface energy balance of the form,  
hi(Tm,o - Ts,o) = ho(Ts,o - T∞), which yields 
 

 
( )

( )

2
i m,o o

s,o 2i o

h T h T 10.2 543 13.9 4 W m
T 232 C

h h 10.2 13.9 W m K
∞+ × + ×

= = =
+ + ⋅

o  < 

 
(b) Using the Correlations and Properties Toolpads of IHT, with a surface temperature of Ts = 523 K 
assumed solely for the purpose of evaluating properties associated with airflow over the cylinder, the 
following results were generated. 
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Freestream velocity, V(m/s)
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Tinf = 35 C
Tinf =  5 C
Tinf = -25C  

 
Due to the elevated temperatures of the gas, the variation in ambient temperature has only a small effect 
on the gas exit temperature.  However, the effect of the freestream velocity is more pronounced.  
Discharge temperatures of approximately 530 and 560°C would be representative of cold/windy and 
warm/still atmospheric conditions, respectively. 
 
COMMENTS:  If there are constituents in the discharge gas flow that condense or precipitate out at 
temperatures below Ts,o, this operating condition should be avoided. 
 



PROBLEM 8.60 
 
KNOWN:  Hot fluid passing through a thin-walled tube with coolant in cross flow over the tube.  Fluid 
flow rate and inlet and outlet temperatures.  
FIND:  Outlet temperature, Tm,o, if the flow rate is increased by a factor of 2 with all other conditions the 
same. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2)Hot fluid is incompressible with negligible viscous 
dissipation, (3) Constant properties, (4) Fully developed flow and thermal conditions, (5) Convection 
coefficients, o ih and h , independent of temperature, and (6) Negligible wall thermal resistance. 
 
PROPERTIES:  Hot fluid (Given): ρ = 1079 kg/m3,  cp  = 2637 J/kg⋅K, μ = 0.0034 N⋅s/m2, k = 0.261 
W/m⋅K. 
 
ANALYSIS:  For conditions prescribed in the Schematic, Eq 8.45a can be used to evaluate the overall 
convection coefficient with P = πD, 

 m,o

m,i o

T T PLexp U
T T m cp
∞

∞

− ⎛ ⎞
= −⎜ ⎟− ⎝ ⎠&

     (1) 

  

 
( )
( ) ( )
25 78 C 0.010m 1mexp U

18 / 3600 kg s 2637 J kg K25 85 C

π⎛ ⎞− × ×
= −⎜ ⎟⎜ ⎟× ⋅− ⎝ ⎠

o

o
 

 2U 52.1 W m K= ⋅  
The overall coefficient can be expressed in terms of the inside and outside coefficients, 

 ( ) 1
i oU 1 h 1 h

−
= +       (2) 

Characterize the internal flow with the Reynolds number, Eq. 8.6, 

 
( )o

D 2
4 18 / 3600 kg s4mRe 187

D 0.010m 0.0034 N s mπ μ π

×
= = =

× × ⋅

&
 

and since the flow is laminar, and assumed to be fully developed, ih  will not change when the flow rate 
is doubled.  That is, U = 52.1 W/m2⋅K when &m  = 2mo.  Using Eq. (1) again, but with Tm,o unknown, 

 
( )
( ) ( )

m,o 225 T C 0.010m 1mexp 52.1W m K
2 18 / 3600 kg s 2637 J kg K25 85 C

π− ⎛ ⎞× ×
= − × ⋅⎜ ⎟⎜ ⎟× ⋅− ⎝ ⎠

o

o
 

 m,oT 81.4 C= o      < 
COMMENTS:  Examine the assumptions and explain why they were necessary in order to affect the 
solution. 



PROBLEM 8.61 
 
KNOWN:  Thin walled tube of prescribed diameter and length.  Water inlet temperature and flow rate. 
 
FIND:  (a) Outlet temperature of the water when the tube surface is maintained at a uniform temperature 
Ts = 27°C assuming mT  = 300 K for evaluating water properties, (b) Outlet temperature of the water 
when the tube is heated by cross flow of air with V = 10 m/s and T∞  = 100°C assuming fT  = 350 K for 
evaluating air properties, and (c) Outlet temperature of the water for the conditions of part (b) using 
properly evaluated properties. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Incompressible liquid with negligible viscous 
dissipation and negligible axial conduction, (3) Fully developed flow and thermal conditions for internal 
flow, and (4) Negligible tube wall thermal resistance. 
 
PROPERTIES:  Table A.6, Water ( mT  = 300 K):  ρ = 997 kg/m3, cp = 4179 J/kg⋅K, μ = 855 × 10-6 
N⋅s/m2, k = 0.613 W/m⋅K, Pr = 5.83; Table A.4, Air ( fT  = 350 K, 1 atm):  ν = 20.92 × 10-6 m2/s, k = 
0.030 W/m⋅K, Pr = 0.700. 
 
ANALYSIS:  (a) For the constant wall temperature cooling process, Ts = 27°C, the water outlet 
temperature can be determined from Eq. 8.41b, with P = πD, 

 s m,o
i

s m,i p

T T PLexp h
T T mc

⎛ ⎞−
= −⎜ ⎟⎜ ⎟− ⎝ ⎠&

 (1) 

To estimate the convection coefficient, characterize the flow evaluating properties at mT  = 300 K 

 D 6 2
4m 4 0.2kg sRe 29,783
D 0.010m 855 10 N s mπ μ π −

×
= = =

× × × ⋅

&
 

Hence, the flow is turbulent and assuming fully developed (L/D = 200), and using the Dittus-Boelter 
correlation, Eq. 8.60, find ih , 

0.8 0.3i
D D

h D
Nu 0.023Re Pr

k
= =     ( ) ( )0.8 0.3 2

i
0.613W m K

h 0.023 29, 783 5.83 9080 W m K
0.010 m

⋅
= = ⋅ (2) 

Substituting this value for ih  into Eq. (1), find 

 
( )
( )

m,o 227 T 0.010m 2mexp 9080 W m K
0.2kg s 4179J kg K27 47 C

π− ⎛ ⎞× ×
= − × ⋅⎜ ⎟× ⋅⎝ ⎠− o

           Tm,o = 37.1°C < 

(b) For the air heating process, T∞  = 100°C, the water outlet temperature follows from Eq. 8.45a, 

 m,o

m,i p

T T DLexp U
T T mc

π∞

∞

⎛ ⎞−
= −⎜ ⎟⎜ ⎟− ⎝ ⎠&

 (3) 
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PROBLEM 8.61 (Cont.) 

 
where the overall coefficient is             ( )i oU 1 h 1 h= +  (4) 
 
To estimate oh , use the Churchill-Bernstein correlation, Eq. 7.54, for cross flow over a cylinder using 

properties evaluated at fT  = 350 K. 

 D 6 2
VD 10m s 0.010mRe 4780

20.92 10 m sν −
×

= = =
×

 (5) 

 

( )

4 / 51/ 2 1/ 3 5/8
DDD 1/ 42 / 3

0.62 Re Pr ReNu 0.3 1
282,000

1 0.4 Pr

⎡ ⎤⎛ ⎞⎢ ⎥= + + ⎜ ⎟⎢ ⎥⎝ ⎠⎡ ⎤ ⎣ ⎦+⎢ ⎥⎣ ⎦

 (6) 

 
( ) ( )

( )

4 / 51/ 2 1/ 3 5/8
D 1/ 42 / 3

0.62 4780 0.700 4780Nu 0.3 1
282,000

1 0.4 0.700

⎡ ⎤⎛ ⎞⎢ ⎥= + + ⎜ ⎟⎢ ⎥⎝ ⎠⎡ ⎤ ⎣ ⎦+⎢ ⎥⎣ ⎦

= 35 76.  

 D 2
o

Nu k 0.030 W m Kh 35.76 107 W m K
D 0.010m

⋅
= = × = ⋅  

The value of ih  can be recalculated for heating conditions: 

0.8 0.4i
D D

h D
Nu 0.023Re Pr

k
= =     ( ) ( )0.8 0.4 2

i
0.613W m K

h 0.023 29,783 5.83 10,800 W m K
0.010 m

⋅
= = ⋅  

Next, find U  then Tm,o, 

 ( ) 1 2 2U 1 10,800 1 107 W m K 106W m K−= + ⋅ = ⋅  
 

 
( )

m,o 2100 T 0.010m 2mexp 106 W m K
0.2kg s 4179J kg K100 47 C

π− ⎛ ⎞× ×
= − × ⋅⎜ ⎟× ⋅⎝ ⎠− o

       m,oT 47.4 C= o  < 

 
(c) Using the IHT Correlation Tools for Internal Flow (Turbulent Flow) and External Flow (over a 
Cylinder) the analyses of part (b) were performed considering the appropriate temperatures to evaluate the 
thermophysical properties.  For internal and external flow, respectively, 
 ( )m m,i m,oT T T 2= +                  ( )f sT T T 2∞= +  (7,8) 
 
where the average tube wall temperature is evaluated from the thermal circuit, 
 

 T T
h

T T
h

m s

i

s

o

−
=

− ∞

1 1
 (9) 

 
The results of the analyses are summarized in the table along with the results from parts (a) and (b), 
 
Condition mT  ih  fT  oh  U  Tm,o 

 (K) (W/m2⋅K) (K) (W/m2⋅K) (W/m2⋅K) (°C) 
Ts = 27°C 300 9080 --- --- --- 37.1°C 
T∞  = 100 °C, Tf = 350°C 300 10,800 350 107 106 47.4°C 
Exact solution 320 13,000 347 107.3 106.3 47.4°C 
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PROBLEM 8.61 (Cont.) 

 
Note that since oh  << ih , U  is controlled by the value of ho  which was evaluated near 350 K for both 

parts (b) and (c).  Hence, it follows that Tm,o is not very sensitive to ih  which, as seen above, is sensitive 
to the value of mT . 



PROBLEM 8.62 
 
KNOWN:  Diameter of tube through which water of prescribed flow rate and inlet and outlet 
temperatures flows.  Temperature of fluid in cross flow over the tube. 
 
FIND:  (a) Required tube length for air in cross flow at prescribed velocity, (b) Required tube length for 
water in cross flow at a prescribed velocity. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state, (2) Constant properties, (3) Negligible tube wall conduction 
resistance, (4)Water is incompressible liquid with negligible viscous dissipation. 
 
PROPERTIES:  Table A.6, water ( mT  = 50°C = 323 K):  cp = 4181 J/kg⋅K, μ = 548 × 10-6 N⋅s/m2, k = 
0.643 W/m⋅K, Pr = 3.56.  Table A.4, air (assume Tf = 300 K):  ν = 15.89 × 10-6 m2/s, k = 0.0263 W/m⋅K, 
Pr = 0.707.  Table A.6, water (assume Tf = 300 K):  ν = 0.858 × 10-6 m2/s, k = 0.613 W/m⋅K, Pr = 5.83. 
 
ANALYSIS:  The required heat rate may be determined from the overall energy balance, 
 
 ( ) ( )p m,i m,oq mc T T 0.215kg s 4181J kg K 40 C 35,960 W= − = ⋅ =o&  
 
and the required tube length may be determined from the rate equation, Eq. 8.46a, 
 

 
m

qL
U D Tπ

=
Δ l

 

where 

 
( ) ( )m,i m,o

m
m,i

m,o

T T T T
T 30.8 C

T T
n

T T

∞ ∞

∞

∞

− − −
Δ = =

⎛ ⎞−
⎜ ⎟⎜ ⎟−⎝ ⎠

o
l

l

         and          1/U = 1/hi + 1/ho. 

With 

 ( )i
6 2

DRe 4m D 0.860kg s 0.05m 548 10 N s m 9991π μ π −= = × ⋅ =&  

the flow is turbulent and, assuming fully developed flow throughout the tube, the inside convection 
coefficient is determined from Eq. 8.62 

 i
i

D
D 1/ 2 2 / 3 1/ 2 2 / 3

(f / 8)(Re 1000) Pr (0.0315 / 8)(9991 1000)3.56Nu 61.1
1 12.7(f / 8) (Pr 1) 1 12.7(0.0315 / 8) (3.56 1)

− −
= = =

+ − + −
 

where f = (0.79 lnReDi = 1.64)-2 = 0.0315 
 

 ( )i
2

i Dh Nu k D 61.1 0.643W m K 0.05m 786 W m K= = ⋅ = ⋅  
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(a) For air in cross flow at 20 m/s, oDRe  = VD/ν = 20 m/s(0.05 m)/15.89 × 10-6 m2/s = 62,933.  From 

the Churchill/Bernstein correlation, it follows that 
 

 

( )
o o

o

4 /51/ 2 1/ 3 5/8
D D

D 1/ 42 /3

0.62Re Pr Re
Nu 0.3 1 158.7

282,000
1 0.4 Pr

⎡ ⎤⎛ ⎞⎢ ⎥= + + =⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎡ ⎤ ⎢ ⎥+ ⎣ ⎦⎢ ⎥⎣ ⎦

 

 
 ( )o

2
o Dh Nu k D 158.7 0.0263W m K 0.05m 83.5W m K= = ⋅ = ⋅  

 

Hence, U = ( ) 1
i o1 h 1 h −+  = 75.5 W/m2⋅K and 

 

 
( ) ( )2

35,960 WL 98.5m
75.5W m K 0.05m 30.8 C

= =
⋅ oπ

 < 

 
(b) For water in cross flow at 2 m/s, oDRe  = 2 m/s(0.05 m)/0.858 × 10-6 m2/s = 116,550, and the 

correlation yields oDNu 527.3= .  Hence, 
 
 ( )o

2
o Dh Nu k D 527.3 0.613W m K 0.05m 6,465W m K= = ⋅ = ⋅  

 

 U = ( ) 1
i o1 h 1 h −+  = 701 W/m2⋅K 

 
Hence, 

 
( ) ( )2

35,960 WL 10.6 m
701W m K 0.05m 30.8 C

= =
⋅ oπ

 < 

 
COMMENTS:  The foregoing results clearly indicate the superiority of water (relative to air) as a heat 
transfer fluid.  Note the dominant contribution made by the smaller convection coefficient to the value of 
U in each of the two cases. 



PROBLEM 8.63 
 
KNOWN:  Length, diameter, insulation characteristics and burial depth of a pipe.  Ground surface 
temperature.  Inlet temperature, flow rate and properties of oil flowing through pipe. 
 
FIND:  (a) An expression for the oil outlet temperature, (b) Oil outlet temperature and pipe heat transfer 
rate for prescribed conditions, and (c) Design information for trade off between burial depth of pipe (z) 
and pipe insulation thickness (t) on the heat loss. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Two-dimensional conduction 
in soil, (4) Negligible pipe wall thermal resistance, (5) Total resistance to heat loss is independent of x, 
(6) Oil is incompressible liquid with negligible viscous dissipation. 
 
PROPERTIES:  Oil (given):  ρo = 900 kg/m3, cp,o = 2000 J/kg⋅K, νo = 8.5 × 10-4 m2/s, ko = 0.140 W/m⋅K, 
Pro = 104; Soil (given):  ks = 0.50 W/m⋅K; Insulation (given):  ki = 0.05 W/m⋅K. 
 
ANALYSIS:  (a) From Eq. 8.36 for a differential control volume in the oil and the rate equation 
 
 ( )conv o p,o m s m totdq m c dT dq T T R= = = −&  (1) 
 
where the total resistance is expressed as 

 ( ) ( )1 o i
tot conv cond,i cond,s

i s

ln D D 1R R R R h Ddx
2 k dx k S

π
π

−
= + + = + +  

 

 
( ) ( )1

o i o
tot tot

i i s

ln D D cosh 2z D1R / dx R dx
h D 2 k 2 kπ π π

−⎛ ⎞
⎜ ⎟ ′= + + =
⎜ ⎟
⎝ ⎠

 (2) 

 
where, from Table 4.1, 

 ( )1
oS 2 dx cosh 2z Dπ −=  (3) 

It follows that 

 
( )s m

o p,o m
tot

T T dx
m c dT

R
−

=
′

&                     m
s m o p,o tot

dT dx
T T m c R

=
′− &

 

 
Integrating between inlet and outlet conditions 

 m,o
m,i

T Lm
T 0m s o p,o tot

dT dx
T T m c R

= −
′−∫ ∫ &

. 

Assuming totR′  to be independent of x and integrating, 
 

 m,o s

m,i s o p,o tot

T T Lexp
T T m c R

⎛ ⎞−
= −⎜ ⎟⎜ ⎟′− ⎝ ⎠&

. (3) < 

Continued... 
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(b) To calculate Tm,o for the prescribed conditions, begin by evaluating h , where 

 
( )

o
D 3 4 2i o o

4m 4 500 kg sRe 694
D 1.2 m 900 kg m 8.5 10 m sπ ρ ν π −

×
= = =

× ×

&
 (4) 

Hence, the flow is laminar, and with Pro > 5, the Hausen correlation is appropriate, 

 D
2/3
D

D
0.0668GzNu 3.66

1 0.04Gz
= +

+
 (5) 

 ( ) ( ) 4
DD i D 5

1.2Gz D L Re Pr 694 10 83.3 Nu 6.82
10

⎛ ⎞
= = = =⎜ ⎟

⎝ ⎠
 

 2
i

k 0.14 W m Kh 6.82 6.82 0.80 W m K
D 1.2m

⋅
= = = ⋅  

From Eq. (2), the overall thermal resistance is 

 
( )

( )
( )

( )
( )

1
tot 2

ln 1.5 1.2 cosh 41R
2 0.05W m K 2 0.5W m K0.8 W m K 1.2 m π ππ

−
′ = + +

⋅ ⋅⋅
 

 
 ( )totR 0.33 0.71 0.66 K m W 1.70 K m W′ = + + ⋅ = ⋅  
and the oil outlet temperature can be calculated as 

 
5m,o s

m,i s

T T 10 mexp 0.943
T T 500 kg s 2000 J kg K 1.7 K m W

⎛ ⎞−
⎜ ⎟= − =
⎜ ⎟− × ⋅ × ⋅⎝ ⎠

 

 Tm,o = 110.9°C < 
The total rate of heat transfer from the pipeline is then 
 ( )o p,o m,i m,oq m c T T= −&  (6) 

 ( ) 6q 500kg s 2000J kg K 120 110.9 C 9.1 10 W.= × ⋅ − = ×o  < 
 
(c) Using the IHT Workspace with the foregoing equations, an analysis was performed to determine the 
heat loss, q, as a function of burial depth for the range, 1 ≤ z ≤ 6 m, for thicknesses of insulation which 
are -25%, +25%, +50% and 100% that of the base case, t = ro - r1 = 150 mm. 
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Burial depth, z (m)

6

8

10

12

14

H
ea

t l
os

s,
 q

 (M
W

)

Insulation thickness, t = 113 mm (-25%)
t = 150 mm (base case)
t = 188 mm (+25%)
t = 225 mm (+50%)
t = 300 mm (+100%)                  Continued... 

 



 
PROBLEM 8.63 (Cont.) 

 
From this information, the operations manager can compare the costs associated with burial depth and 
insulation thickness with respect to acceptable heat loss. 
 
COMMENTS:  (1) Since the thermal entry region is very long, xfd,t ≈ 0.05DReDPr = 4.16 × 105 m, hx will 
be changing with x throughout the pipe.  A more accurate solution would therefore be one in which Eq. 
(1) is integrated numerically, in a step-by-step fashion.  For example, the integration could involve a step 
width of Δx = 103 m, with h and tR′  evaluated at each step. 
 
(2) The three contributions to the total thermal resistance are comparable. 
 
(3) In IHT 3.0, the inverse hyperbolic cosine function is “invcosh,” so the shape factor can be found as: 
 

// Shape factor: 
S = 2 * pi / invcosh(arg) 
arg = 2*z/Do 
z = 3 
Do = 1.5 
 

Note that the argument of a function must be calculated separately in IHT. That is, we cannot 
use invcosh(2*z/Do). 

 



PROBLEM 8.64 
 
KNOWN:  Length, diameter, insulation characteristics and burial depth of pipe.  Ground surface 
temperature.  Inlet temperature, minimum allowable exit temperature, flow rate and properties of oil flow 
through pipe.  
FIND:  Effect of soil thermal conductivity and flowrate on heat rate and outlet temperature. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Two-dimensional conduction 
in soil, (4) Negligible pipe wall thermal resistance, (5) Total resistance to heat loss is independent of x, 
(6) Oil is incompressible liquid with negligible viscous dissipation.  
PROPERTIES:  Oil (given):  ρo = 900 kg/m3, cp,o = 2000 J/kg⋅K, νo = 8.5 × 10-4 m2/s, ko = 0.140 W/m⋅K, 
Pro = 104. 
 
ANALYSIS:  From the analysis of Problem 8.63, the outlet temperature may be computed from the 
expression 

 m,o s

m,i s p,o tot

T T L
exp

T T mc R

−
= −

′−

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠&

 

where 

 
( ) ( )1

o i o
tot

i i s

ln D D cosh 2z D1
R

h D 2 k 2 kπ π π

−
′ = + +  

and h  is determined from Eq. 8.57.  The heat rate may then be obtained from the overall energy balance 
 ( )p m,i m,oq mc T T= −&  
Using the Correlations Toolpad of IHT to perform the parametric calculations, the following results were 
obtained. 
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Due to a reduction in the thermal conduction resistance of the soil with increasing ks, there is a 
corresponding increase in the heat rate q from the pipe and a reduction in the oil outlet temperature.  The 
heat rate also increases with increasing m&  (due to an increase in h  and hence a decrease in the 
convection resistance), but the increase lags that of the flow rate, causing the outlet temperature to 
increase with increasing m& .  Conditions for which Tm,o ≥ 110°C cannot be achieved for m&  = 250 kg/s, 
but can be achieved for ks ≤ 0.33 W/m⋅K and ks ≤ 0.65 W/m⋅K for m&  = 375 kg/s and 500 kg/s, 
respectively.  The worst case condition corresponds to the smallest value of m&  and the largest value of ks. 
 
Measures to maintain Tm,o ≥ 110°C could include increasing the burial depth, increasing the insulation 
thickness, and/or using an insulation of lower thermal conductivity. 
 
COMMENTS:  The thermophysical properties of oil depend strongly on temperature, and a more 
accurate solution would account for the effect of variations in mT  on the properties. 



PROBLEM 8.65  
KNOWN:  Water flow rate and inlet temperature for a thin-walled tube of prescribed length 
and diameter.  
FIND:  Water outlet temperature for each of the following conditions:  (a) Tube surface 
maintained at 27°C, (b) Insulation applied and outer surface maintained at 27°C, (c) 
Insulation applied and outer surface exposed to ambient air at 27°C.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Fully developed flow throughout the tube, 
(3) Negligible tube wall conduction resistance, (4) Negligible contact resistance between tube 
wall and insulation, (5) Uniform outside convection coefficient.  
PROPERTIES:  Assume water cools to Tm,o = 27°C with no insulation but that cooling is 
negligible (Tm,o = 97°C) with insulation.  Table A-4, Water ( )mT 335K :=  cp = 4186 J/kg⋅K, 

μ = 453 × 10-6 N⋅s/m2, k =0.656 W/m⋅K, Pr = 2.88; Table A-4, Water (Tm,i = 370K):  cp = 
4214 J/kg⋅K, μ = 289 × 10-6 N⋅s/m2, k = 0.679 W/m⋅K, Pr = 1.80. 
 
ANALYSIS:  For each of the three cases, heat is transferred from the warm water to a surface 
(or the air) which is at a fixed temperature (27°C).  Accordingly, an expression of the form 
given by Eq. 8.41b may be used to determine the outlet temperature of the water, so long as 
the appropriate heat transfer coefficient is used.  In particular, each of the cases can be 
described by Eq. 8.45a. 

 o s
i p

T UA exp 
T m c

⎛ ⎞Δ
= −⎜ ⎟⎜ ⎟Δ ⎝ ⎠&

 

Referring to the thermal circuit associated with heat transfer from the water,  

  
and the UA product may be evaluated as 
 ( ) 1

tUA R .−= Σ  

(a) For the first case: s,i i m,i s,i i iT 27 C     T T T 70 C     UA h  D L.π= Δ = − = =o o  
 

 
( )

D 6 2i

4m 4 0.015 kg/sRe 14,053.
 D 0.003m 453 10 N s/mπ μ π −

×
= = =

× ⋅

&
 

          Continued … 



PROBLEM 8.65 (Cont.)  
From Eq. 8.60,  

( ) ( ) ( )4 / 5 0.34/5 0.30 2
i D

i

k 0.656 W/m K
h 0.023 Re Pr 0.023  14,053 2.88 14,373 W/m K.

D 0.003m
⋅

= = = ⋅  

 

 
2i i

o i
p

W14,373 0.003m 1m
h  D L m KT T exp 70 C exp 8.1 C

m c 0.015 kg/s 4186 J/kg K

π
π

⎛ ⎞× ×⎜ ⎟⎛ ⎞ ⋅⎜ ⎟Δ = Δ − = − =⎜ ⎟⎜ ⎟ × ⋅⎜ ⎟⎝ ⎠ ⎜ ⎟
⎝ ⎠

o o

&
 

 
 m,o o s,iT T T 8.1 C 27 C 35.1 C.= Δ + = + =o o o       < 
 
(b) For the second case: Ts,o = 27°C with 

 ( ) ( ) 1
i m,i s,o i i o iT T T 70 C      UA 1/h  D L n D / D / 2  kL .π π −⎡ ⎤Δ = − = = +⎣ ⎦

o l  
 

With 
( )

D 6 2i

4 m 4 0.015 kg/sRe 22,028
 D 0.003m 289 10 N s/mπ μ π −

×
= = =

× ⋅

&
 

 

( ) ( ) ( )4 / 5 0.34/5 0.3 2
i D

i

k 0.679 W/m K
h 0.023 Re Pr 0.023  22,028 1.80 18,511 W/m K.

D 0.003m
⋅

= = = ⋅  

 
It follows that 

( )
( )

1 13n 0.004/0.0031UA 5.73 10 0.916 1.085 W/K
18,511 0.003 2 0.05π π

− −−⎡ ⎤ ⎡ ⎤= + = × + =⎢ ⎥ ⎢ ⎥⎣ ⎦×⎢ ⎥⎣ ⎦

l
 

 
and the outlet temperature is 

 o
1.085 W/KT 70 C exp 68.8 C

0.015 kg/s 4214 J/kg K
⎛ ⎞

Δ = − =⎜ ⎟× ⋅⎝ ⎠
o o  

 
 m,o o s,oT T T 68.8 C 27 C 95.8 C.= Δ + = + =o o o      < 
 
(c) For the third case: T∞ = 27°C, ΔTi = Tm,i - T∞ = 70°C and 
 
 ( ) ( ) ( ) 1

i i o i o oUA 1/h  D L n D / D / 2  kL 1/h  D Lπ π π −⎡ ⎤= + +⎣ ⎦l  
 

( )

1 13 31
UA 5.73 10 0.916 5.73 10 0.916 15.92 0.0594 W/K

5 0.004π

− −− −= × + + = × + + =
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎣ ⎦⎣ ⎦

 

 

 o
0.0594 W/KT 70 C exp 69.9 C

0.015 kg/s 4214 J/kg K
⎛ ⎞

Δ = − =⎜ ⎟× ⋅⎝ ⎠
o o  

 
 m,o oT T T 69.9 C 27 C=96.9 C.∞= Δ + = +o o o      < 

COMMENTS:  Note that Rconv,o >> Rcond,insul >> Rconv,i, 



PROBLEM 8.66 
 
 
KNOWN:  Dimensions of circular tube, applied constant heat flux, inlet temperature, mass flow rate, 
and expression for nanofluid viscosity. 
 
FIND: Tube wall temperature at the tube exit for pure water and for a water-Al2O3 nanofluid. 
 
SCHEMATIC: 
 
 
 

 
 
 

 
ASSUMPTIONS:  (1) Constant properties. 
 
PROPERTIES:  Table A.4, water (300 K): μbf = 855 × 10-6 m2/s, kbf = 0.613 W/m⋅K, cp,bf = 4179 
J/kg⋅K, Prbf = 5.83. Example 2.2, nanofluid (300 K): μnf = 962 × 10-6 m2/s, knf = 0.705 W/m⋅K, cp,nf = 
3587 J/kg⋅K, Prnf  = μnf cp,nf/ knf = 4.91. 
 
ANALYSIS:  The Reynolds number for the pure water 
is [ ] ( )6 2

bf4 / 4 (0.1/1000 kg/s) / 0.0002 m 855 10  N s/m 745DRe m Dπ μ π −= = × × × × ⋅ =& and the flow is 

laminar. Similarly, the Reynolds number for the nanofluid is ReD,nf = 662.  The hydrodynamic entrance 
length for the pure water is xfd,h = 0.05ReDD = 0.05 × 745 × 0.2/1000 m = 7.45 × 10-3 m = 7.45 mm and 
the flow at the tube exit is hydrodynamically fully developed. Similarly, the hydrodynamic entrance 
length for the nanofluid is xfd,h,nf = 6.62 × 10-3 m = 6.62 mm and the flow at the tube exit is also 
hydrodynamically fully developed. For the pure water, the thermal entrance length is xfd,t = xfd,hPr bf= 
7.45 mm × 5.83 = 43.4 mm, while for the nanofluid xfd,t ,nf= xfd,h,nfPrnf= 6.62 mm × 4.91 = 32.5 mm and 
the flow is also thermally fully-developed at the tube exit for both fluids. 
 
For constant heat flux conditions, the local Nusselt number in the fully-developed region is NuD = 
4.36. Therefore, the local heat transfer coefficient at the tube exit is: 
 
 Pure fluid: hbf = NuDkbf/D = 4.36 × 0.613 W/m⋅K /(0.2/1000m) =  = 13,360 W/m2⋅K. 
 Nanofluid: hnf = NuDknf/D = 4.36 × 0.705 W/m⋅K /(0.2/1000m) =  = 15,370 W/m2⋅K. 
 
Applying Eq. (8.40) to the pure fluid yields 
 

( ) ( )
2

, ,
,bf

20,000 W/m (0.2 /1000 m)29 C 0.1 m =29 C 3.00 C=32.00 C
0.1 /1000 kg/s 4179 J/kg Km o m i

p

q DT T L
mc
π π′′

= + = ° + ° + ° °
× ⋅&

 

 
whereas applying Eq. (8.40) to the nanofluid results in 
 

( ) ( )
2

, ,nf ,
,nf

20,000 W/m (0.2 /1000 m)29 C 0.1 m =29 C 3.50 C=32.50 C
0.1 /1000 kg/s 3587 J/kg Km o m i

p

q DT T L
mc
π π′′

= + = ° + ° + ° °
× ⋅&

 

 
 

Continued… 
 
 

q″ = 20 kW/m2

D = 0.2 mm 

m = 0.1 g/s•
Tm,i = 29°C
H2O or H2O-Al2O3

m = 0.1 g/s•
Tm,i = 29°C

m = 0.1 g/s•
Tm,i = 29°C
H2O or H2O-Al2O3

L = 100 mm
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From Eq. (8.27) the wall temperature at the outlet of the tube carrying the pure water is, 
 

2 2
, bf( ) / 32.00 C 20,000W/m /13,360 W/m K= 32 C 1.50 C=33.50 Cs m oT x L T q h′′= = + = ° + ⋅ ° + ° °  < 

 
Similarly for the nanofluid, 
 

,nf , ,nf nf
2 2

( ) /

                  32.50 C 20,000W/m /15,370 W/m K= 32.50 C 1.30 C=33.80 C
s m oT x L T q h′′= = +

= ° + ⋅ ° + ° °
  < 

 
 
COMMENTS:  Although the nanofluid provides a larger thermal conductivity and, in turn, a larger 
convective heat transfer coefficient relative to the pure water, the wall temperature at the tube outlet 
with the nanofluid exceeds that of the wall temperature using pure water. This is due to the reduction 
of the specific heat upon addition of the nanoparticles to the pure water and the associated increase in 
the outlet mean temperature. Hence, careful consideration of the flow conditions must be made in 
order to determine whether wall temperatures will decrease or increase with use of the nanofluid.  



PROBLEM 8.67 
 
 
KNOWN:  Dimensions of circular tube, applied constant heat flux, inlet temperature, mass flow rate. 
 
FIND: Tube wall temperature at the tube exit for pure water and for a water-Al2O3 nanofluid. 
 
SCHEMATIC: 
 
 
 

 
 
 

 
ASSUMPTIONS:  (1) Constant properties. 
 
PROPERTIES:  Table A.4, water (300 K): μbf = 855 × 10-6 m2/s, kbf = 0.613 W/m⋅K, cp,bf = 4179 
J/kg⋅K, Prbf = 5.83. Example 2.2, nanofluid (300 K): μnf = 962 × 10-6 m2/s, knf = 0.705 W/m⋅K, cp,nf = 
3587 J/kg⋅K, Prnf  = 4.91. 
 
ANALYSIS:  The Reynolds number for the pure water 
is [ ] ( )6 2

bf4 / 4 (10 /1000 kg/s) / 0.002 m 855 10  N s/m 7450DRe m Dπ μ π −= = × × × × ⋅ =& and the flow is 

turbulent. Similarly, the Reynolds number for the nanofluid is ReD,nf = 6620.  Since L/D = 100/2 = 50, 
the flow is fully-developed at the tube exit for both fluids. 
 
The local Nusselt number is evaluated using the Gnielinski correlation. For pure water, Eq. (8.21) 
yields, fbf = (0.790ln(7450) – 1.64)-2 = 0.0342 while for the nanofluid, fnf = (0.790ln(6620) – 1.64)-2 = 
0.0355. The Gnielinski correlation yields, for the pure fluid 
 

 
( )( )

( ) ( ),bf 1/ 2 2 /3

0.0342 8 7450 1000 5.83
56.24

1 12.7 0.0342 8 5.83 1
DNu

−
= =

+ −
 

while for the nanofluid, 
  

 ( )( )
( ) ( ),nf 1/ 2 2 /3

0.0355 8 6620 1000 4.91
47.08

1 12.7 0.0355 8 4.91 1
DNu

−
= =

+ −
 

 
Hence, hbf = NuD,bfkbf/D = 56.24(0.613 W/m⋅K)/0.002 m = 17,240 W/m2⋅K and hnf = NuD,bfknf/D = 
47.08(0.705 W/m⋅K)/0.002 m = 16,600 W/m2⋅K.  
 
Applying Eq. (8.40) to the pure fluid yields 
 

( ) ( )
2

, ,
,bf

200,000 W/m (2 /1000 m)29 C 0.1 m =29 C 3.00 C=32.00 C
10 /1000 kg/s 4179 J/kg Km o m i

p

q DT T L
mc
π π′′

= + = ° + ° + ° °
× ⋅&

 

 
whereas applying Eq. (8.40) to the nanofluid results in 
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q″ = 200 kW/m2

D = 2 mm 

m = 10 g/s•
Tm,i = 29°C
H2O or H2O-Al2O3

m = 10 g/s•
Tm,i = 29°C

m = 10 g/s•
Tm,i = 29°C
H2O or H2O-Al2O3

L = 100 mm
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( ) ( )
2

, ,nf ,
,nf

200,000 W/m (2 /1000 m)29 C 0.1 m =29 C 3.50 C=32.50 C
10 /1000 kg/s 3587 J/kg Km o m i

p

q DT T L
mc
π π′′

= + = ° + ° + ° °
× ⋅&

 

 
From Eq. (8.27) the wall temperature at the outlet of the tube carrying the pure water is, 
 

, bf
2 2

( ) /

                = 32.00 C 200,000W/m /17,240 W/m K= 32.00 C+11.61 C=43.61 C
s m oT x L T q h′′= = +

° + ⋅ ° ° °
  < 

 
Similarly for the nanofluid, 
 

,nf , ,nf nf
2 2

( ) /

                  32.50 C 200,000W/m /16,600 W/m K= 32.50 C 12.05 C=44.55 C
s m oT x L T q h′′= = +

= ° + ⋅ ° + ° °
   < 

 
 
COMMENT:  The nanofluid provides a larger thermal conductivity but a smaller convective heat 
transfer coefficient relative to the pure water. If the objective is to minimize the wall temperature at 
the outlet of the tube, the nanofluid is not the appropriate selection. The wall temperature at the tube 
outlet may be greater than, less than, or equal to the wall temperature associated with use of pure 
water, depending on the tube geometry and flow rate.  
 
 



PROBLEM 8.68  
KNOWN:  Reaction vessel with process fluid at 75°C cooled by water at 27°C and 0.12 kg/s through 
15 mm tube.  High convection coefficient on outside of tube (3000 W/m

2
⋅K) created by vigorous 

stirring.  
FIND:  (a) Maximum heat transfer rate if outlet temperature of water cannot exceed Tm,o = 47°C, and 
(b) Required tube length.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2)Incompressible liquid with negligible viscous 
dissipation, (3) Negligible thermal resistance of tube wall.  
PROPERTIES:  Table A-6, Water ( )( )mT 47 27 C/2 310K := + =o   ρ = 1/vf = 993.1 kg/m

3
, cp = 

4178 J/kg⋅K, μ = 695 × 10
-6

 N⋅s/m
2
, k = 0.628 W/m⋅K, Pr = 4.62. 

 
ANALYSIS:  (a) From an overall energy balance on the tube with Tm,o = 47°C, 

 ( ) ( )max p m,o m,iq m c T T 0.12 kg/s 4178 J/kg K 47 27 C 10,027 W.= − = × ⋅ − =o&  < 
 
(b) For the constant surface temperature heating condition, from Eq. 8.45a, 

 m,o
o i

m,i p

T T PLexp U           where          1/U 1/h 1/ h .
T T m c
∞

∞

⎛ ⎞−
= − = +⎜ ⎟⎜ ⎟− ⎝ ⎠&

 

 
For internal flow in the tube, find  

 D -6 2
4m 4 0.12 kg/sRe 14,656
 D 0.015 m 695 10 N s/mπ μ π

×
= = =

× × × ⋅

&
 

 
and the flow is turbulent.  Assuming fully developed flow, use the Dittus-Boelter correlation with n = 
0.4 (heating),  
 4/5 0.4

D i DNu h D/k 0.023Re Pr= =  
 
 [ ] ( ) ( )4 / 5 0.4 2

ih 0.628 W/m K/0.015 m 0.023 14,656 4.62 3822 W/m K.= ⋅ × = ⋅  
 
Hence, 1/U = [1/3000 + 1/3822] m

2
⋅K/W    or    U = 1680 W/m

2
⋅K.  From the energy balance relation 

with P = πD, find  

 ( )
( )

( ) 275 47 C 0.015 m L 1680 W/m K
 exp       L 3.4 m.

0.12 kg/s 4178 J/kg K75 27 C

π⎛ ⎞− × ⋅⎜ ⎟= − =
⎜ ⎟× ⋅− ⎝ ⎠

o

o
  < 

 
COMMENTS:  Note that L/D = 227 and the fully developed flow assumption is appropriate. 



PROBLEM 8.69 
 
KNOWN:  Water flowing through a tube heated by cross flow of a hot gas.  Required to heat water from 
15 to 35°C with a flow rate of 0.2 kg/s. 
 
FIND:  Design graphs to demonstrate acceptable combinations of tube diameter (D = 20, 30 or 40 mm), 
tube length (L = 3, 4 or  6 m) and hot gas velocity (20 ≤ V ≤ 40 m/s) and temperature (T∞  = 250, 375 or 
500°C). 
 
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Steady-state conditions, (2)Water is incompressible liquid with negligible viscous 
dissipation, (3) Fully developed flow and thermal conditions for internal flow, (4) Properties of the hot 
gas are those of atmospheric air, and (5) Negligible tube wall thermal resistance. 
 

PROPERTIES:  Table A.6, Water ( ( )mT 15 35 C 2 298K= + =o ); Table A.4, Air ( ( )f sT T T 2,∞= +  

1 atm). 
 
ANALYSIS:  Method of Analysis: The tube having internal flow of water with cross flow of hot gas can 
be analyzed by the energy balance relation, Eq. 8.45a 
 

 
( )m,o

m,i p

T T DL
exp U

T T mc
∞

∞

⎛ ⎞−
= −⎜ ⎟

⎜ ⎟− ⎝ ⎠&

π
 (1) 

 
where the overall coefficient U  is 
 

 ( ) 1
i oU 1 h 1 h

−
= +  (2) 

 
Estimation of the internal flow coefficient, ih :  Evaluating water properties at the average mean fluid 
temperature 
 
 ( )m m,i m,oT T T 2= + ,  (3) 
 
characterize the flow with the Reynolds number, 

 
( )D,i

4mRe
Dπ μ

=
&

 (4) 

   
and assuming the flow to be both turbulent and fully developed (L/D > 3m/0.07m = 42), use the Dittus-
Boelter correlation, Eq. 8.60, to evaluate ih , 

Continued... 
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 0.8 0.4iD,i D,ii

h DNu 0.023Re Pr
k

= =  (5) 

Estimation of the external flow coefficient, oh :  Evaluating gas (air) properties at the average film 
temperature 
 ( )f sT T T 2∞= +  (6) 
 
where sT  is the average tube wall temperature (see Eq. (9)), characterize the flow 

 D,o
VDRe
ν

=  (7) 
 
and use the Churchill-Bernstein correlation, Eq. 7.54, for cross-flow over a cylinder, 
 

 

( )

4 /51/ 2 1/ 3 5/8
oD,o D,oo

D,o 1/ 4o 2 / 3
o

0.62Re Pr Reh DNu 0.3 1
k 282,000

1 0.4 Pr

⎡ ⎤⎛ ⎞⎢ ⎥= = + + ⎜ ⎟⎢ ⎥⎝ ⎠⎡ ⎤ ⎣ ⎦+⎢ ⎥⎣ ⎦

  (8)  

 
The average tube wall temperature, sT , follows from the thermal circuit 

 m s s
i o

T T T T
1 h 1 h

∞− −
=  (9) 

 
The IHT Workspace:  Using the Correlation Tools for Internal Flow (Turbulent flow), and External Flow 
(Flow over a Cylinder) and Properties for Air and Water, along with the appropriate energy balances and 
rate equations, the heater-tube system can be analyzed.  
The Design Strategy:  We have chosen to generate the design information in the following manner:  for a 
specified gas temperature, T∞ , plot the required length L (limiting the scale to 3 ≤ L ≤ 6m) as a function 
of gas velocity V (20  ≤ V ≤ 40 m/s) for tube diameters of D = 20, 30 and 40 mm.  Three design graphs 
corresponding to T∞ = 250, 375 and 500°C were generated and are shown on the next page. 
 
COMMENTS: (1) The collection of design graphs will allow the contractor to select appropriate 
combinations of tube D and L and gas stream parameters ( T∞  and V) to achieve the required water 
heating.  
(2) Note from the design graphs that with T∞  = 250°C, the required heating of the water can be achieved 
only with a 40-mm diameter by 6 m length tube with gas velocities greater than 32 m/s.  This 
configuration represents a worst case condition of largest tube parameters and highest gas velocity.  
(3) Which operating conditions, T∞  = 375 or 500°C, provides the contractor with more options in 
selecting combinations of tube parameters and gas velocities?  What are the trade-offs in operating at 375 
or 500°C?  Consider such features as tube life, tubing costs and fan requirements.  
(4) The Reynolds numbers for the internal flow are approximately 7,100, 9,460 and 14,200 for the tube 
diameters of 20, 30 and 40 mm.  For the larger tube sizes, the Reynolds numbers are below 10,000, the 
usual lower limit for turbulent flow. The Gnielinski correlation would be more accurate under these 
conditions. 
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PROBLEM 8.70  
KNOWN:  Exhaust gases at 200°C and mass rate 0.03 kg/s enter tube of diameter 6 mm and 
length 20 m.  Tube experiences cross-flow of autumn winds at 15°C and 5 m/s.  
FIND:  Average heat transfer coefficients for (a) exhaust gas inside tube and (b) air flowing 
across outside of tube, (c) Estimate overall coefficient and exhaust gas temperature at outlet 
of tube.  
SCHEMATIC:   

 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Ideal gas with negligible viscous 
dissipation and pressure variation, (3) Negligible tube wall resistance, (4) Exhaust gas 
properties are those of air, (5) Negligible radiation effects.  
PROPERTIES:  Table A-4, Air (assume Tm,o ≈ 15°C, hence Tm  = 380 K, 1 atm): cp = 1012 

J/kg⋅K, k = 0.0323 W/m⋅K, μ = 221.6 × 10-7 N⋅s/m2, Pr = 0.694; Air (T∞ = 15°C = 288 K, 1 
atm):  k = 0.0253 W/m⋅K, ν = 14.82 × 10-6 m2/s, Pr = 0.710; Air ( sT  ≈ 90°C = 363 K, 1 atm):  
Pr = 0.698.  
ANALYSIS:  (a) For the internal flow through the tube assuming a value for Tm,o = 15°C, find 

 4
D -7 2

4m 4 0.003 kg/sRe 2.873 10 .
 D 0.006 m 221.6 10  N s/mπ μ π

×
= = = ×

× × × ⋅

&
 

 
Hence the flow is turbulent and, since L/D >> 10, fully developed.  Using the Dittus-Doelter 
correlation with n = 0.3, 

 ( ) ( )
0.8 0.30.8 0.3 4

D DNu 0.023Re Pr 0.023 2.873 10 0.694 76.0= = × =  

 2
ih Nu k/D 76.0 0.0323 W/m K/0.006 m 409 W/m K.= ⋅ = × ⋅ = ⋅    < 

 
(b) For cross-flow over the circular tube, find using thermophysical properties at T∞, 

 D -6 2
VD 5 m/s 0.006 mRe 2024

14.82 10  m / sν
×

= = =
×

 

 
and using the Zukauskus correlation with C = 0.26, m = 0.6, and n = 0.37, 
 ( ) ( ) ( )1/ 4 0.6 0.25m n 0.37

D D sNu CRe Pr Pr/ Pr 0.26 2024 0.710 0.710 / 0.698 22.2= = =  
 
where Prs is evaluated at sT .   Hence, 

 2
o Dh Nu k/D 22.2 0.0253 W/m K/0.006 m 93.4 W/m K.= ⋅ = × ⋅ = ⋅    < 
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PROBLEM 8.70 (Cont.)  
(c) Assuming the thermal resistance of the tube wall is negligible,  

 2 2
o i

1 1 1 1 1 m K/W        U 76.1 W/m K.
U h h 93.4 409

⎛ ⎞= + = + ⋅ = ⋅⎜ ⎟
⎝ ⎠

   < 

 
The gas outlet temperature can be determined from the expression where P = πD.  

 
2m,o

m,i p

T T PUL 0.006 m 76.1 W/m K 20 mexp exp
T T m c 0.003 kg/s 1012 J/kg K
∞

∞

⎛ ⎞⎛ ⎞− × × ⋅ ×⎜ ⎟= − = −⎜ ⎟⎜ ⎟ ⎜ ⎟− × ⋅⎝ ⎠ ⎝ ⎠&

π  

 

 
( )

m,o 515 T
7.9 10

15 200 C
−−

= ×
− o

 

 
 m,oT 15 C.= o           < 
 
COMMENTS:  (1) With Tm,o = 15°C, find mT  = 380 K; hence thermophysical properties 
for the internal flow correlation were evaluated at a reasonable temperature.  Note that the gas 
is cooled from 200°C to the ambient air temperature, Tm,o = T∞, over the 20-m length! 
 
(2) The average wall surface temperature, sT ,  follows from an energy balance on the wall 
surface,  

 m s i
s inf o

T T h
T T h

−
=

−
 

 
and substituting numerical values, find sT 90 C 363 K,= ° =  the value we assumed for 
evaluating Prs.  Can you draw a thermal circuit to represent this energy balance relation? 
 
(3) When using the Zukauskus correlation, it is reasonable to evaluate Prs at the mT  for the 
first trial.  For gases the assumption is a safe one, but for liquids, especially oils, additional 
trials will be required since the Prandtl number may be strongly dependent upon temperature. 
 



PROBLEM 8.71 
 
KNOWN:  Superheated steam passing through thin-walled pipe covered with insulation and suspended in 
a quiescent air. 
 
FIND:  Point along pipe surface where steam will begin condensing (x1).  
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Steam is ideal gas with negligible viscous dissipation 
and pressure variation, (3) Steam properties may be approximated as those corresponding to saturated 
conditions. 
 
PROPERTIES:  Table A.6, Saturated steam ( mT  = (100 + 120)°C/2 = 110°C ≈ 385 K):  ρg = 0.876 
kg/m3, cp,g = 2080 J/kg⋅K, μg = 12.49 × 10-6 N⋅S/m2, kg = 0.0258 W/m⋅K, Prg = 1.004. 
 
ANALYSIS:  From Eq. 8.45a, where Tm,x is the mean temperature at any distance x, 

 m,x

m,i p

T T Pxexp U
T T mc
∞

∞

⎛ ⎞−
= −⎜ ⎟⎜ ⎟− ⎝ ⎠&

 (1) 

 
The mass flow rate, with Ac = πD2/4, is 

 ( )( )23
g c mm A u 0.876kg m 0.050m 4 10m s 0.0172kg sρ π= = × =&  

 
and for the internal flow, 

 
( )

D 6 2
4m 4 0.0172 kg sRe 35,068
D 0.050 m 12.49 10 N s mπ μ π −

×
= = =

× × ⋅

&
. 

 
Assuming the flow is fully developed, the Dittus-Boelter correlation yields 

 ( ) ( )4 / 5 0.3i
D

h DNu 0.023 35,068 1.004 99.58
k

= = =  
 

 2
i

0.0258W m Kh 99.58 51.4 W m K
0.050m

⋅
= × = ⋅  

 
Hence, from Eq. 3.36, the overall coefficient for the inner surface is 

 
( ) ( ) ( )1 1

2i o i i
i

i o o

D ln D D 0.050 ln 0.100 0.0501 D 1 1 0.050 1
U W m K

h 2k D h 51.4 2 0.085 0.100 10

− −
= + + = + + ⋅

×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 

 

 
12 1 2 2

iU 1.946 10 2.039 10 5.000 10 3.66 W m K
−− − −⎡ ⎤= × + × + × = ⋅⎢ ⎥⎣ ⎦

. 
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With condensation occurring when the surface temperature reaches 100°C, the corresponding value of Tm 
may be determined from the local (x = x1) requirement that ( ) ( )i i m 1U D T x Tπ ∞⎡ ⎤−⎣ ⎦  

= ( ) ( )i i m 1 sh D T x Tπ ⎡ ⎤−⎣ ⎦ .  Hence, 
 

 ( ) ( )
( )

( )
( )

i i s
m 1

i i

T h U T 20 51.4 3.66 100 C
T x 106 C

1 h U 1 51.4 3.66
∞ − −

= = =
− −

o
o  

 
The distance at which the mean steam temperature is 106°C can then be estimated from Eq. (1), where P 
= πDi and U = Ui,  

 
( )
( )

( ) ( )2
120 106 C 0.050m 3.66 W m K x

exp
0.0172kg s 2080J kg K20 120 C

⎛ ⎞− ⋅⎜ ⎟= −
⎜ ⎟× ⋅− ⎝ ⎠

o

o

π
 

 x1 = 9.3 m < 
 
COMMENTS:  Note that condensation first occurs at the location for which the surface, and not the 
mean, temperature reaches 100°C. 



PROBLEM 8.72  
KNOWN:  Length and diameter of air conditioning duct.  Inlet temperature of chilled air.  
Temperature and convection coefficient associated with outer air.  Chilled air flowrate. 
 
FIND:  Chilled air exit temperature and heat flow rate. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible tube wall conduction resistance, (3) 
Ideal gas with negligible viscous dissipation, pressure variation, and axial conduction. 
 
PROPERTIES:  Table A-4, Air (300 K, 1 atm):  cp = 1007 J/kg⋅K, μ = 184.6 × 10-7 kg/s⋅m, k = 
0.0263 W/m⋅K, Pr = 0.707. 
 
ANALYSIS:  The exit temperature may be obtained from Eq. 8.45a, where 
 

 ( ) 11 1
oiU h h

−− −= +  
 

With ( ) ( )
( )

D 7
4 0.05 kg/s

Re 4m/  D 11,495
0.3 m 184.6 10  kg/s m

π μ
π −

= = =
× ⋅

&  

 
the flow is turbulent and, assuming fully developed conditions over the entire length, the Dittus-
Boelter correlation yields 
 

 ( ) ( )4 / 5 0.44/5 0.4
D DNu 0.023Re Pr 0.023 11,495 0.707 35.5= = =  

 
 ( ) ( ) 2

i Dh Nu k/D 35.5 0.0263 W/m K/0.3 m 3.11 W/m K= = ⋅ = ⋅  
 

and ( ) ( )11 1 2 2U 3.11 2.0 W/m K 1.22 W/m K.
−− −= + ⋅ = ⋅  

 
Eq. 8.45a yields  ( ) ( )m,o m,i pT T T T exp  DL/m c Uπ∞ ∞ ⎡ ⎤= − − −⎣ ⎦&  

 
( ) ( )

( )

2

m,o
0.3 m 15 m 1.22 W/m K

T 37 C 30 C exp 15.7 C
0.05 kg/s 1007 J/kg K

π⎡ ⎤⋅⎢ ⎥= − − =⎢ ⎥⋅
⎢ ⎥⎣ ⎦

o o o   < 

 
and the heat rate is 
 

 ( ) ( )( )p m,o m,iq m c T T 0.05 kg/s 1007 J/kg K 8.7 C 438 W.= − = ⋅ =o&   < 
 
COMMENTS:  (1) The temperature rise of the chilled air is excessive, and the outer surface of the 
duct should be insulated to reduce U  and thereby Tm,o and q.  (2) The temperature selected for 
evaluating air properties was not very accurate.  Air properties should be evaluated at 

m m,o m,iT (T T ) / 2 285 K= + ≈ . 



PROBLEM 8.73  
KNOWN:  Flow conditions associated with water passing through a pipe and air flowing over the 
pipe.  
FIND:  (a) Differential equation which determines the variation of the mixed-mean temperature of the 
water, (b) Heat transfer per unit length of pipe at the inlet and outlet temperature of the water.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible temperature drop across the pipe wall, (2) Negligible radiation 
exchange between outer surface of insulation and surroundings, (3) Fully developed flow throughout 
pipe, (4) Water is incompressible liquid with negligible viscous dissipation.  
PROPERTIES:  Table A-6, Water (Tm,i = 200°C):  cp,w = 4500 J/kg⋅K, μw = 134 × 10

-6
 N⋅s/m

2
, kw 

= 0.665 W/m⋅K, Prw = 0.91; Table A-4, Air (T∞ = -10°C):  νa = 12.6 × 10
-6

 m
2
/s, ka = 0.023 W/m⋅K, 

Pra = 0.71, Prs ≈ 0.7. 
 
ANALYSIS:  (a) Following the development of Section 8.3.1 and applying Eq. 1.12e to a differential 
element in the water, we obtain  
   
  p,w mdq m c  dT= − &  
 
where  ( ) ( )i i m i mdq U dA T T U  D dx T T .π∞ ∞= − = −  
 
Substituting into the energy balance, it follows that  

 ( )m i
m

p

d T U  D T T .
dx m c

π
∞= − −

&
       (1)  < 

 
The overall heat transfer coefficient based on the inside surface area may be evaluated from Eq. 3.36 
which, for the present conditions, reduces to  

 i

i o

1U .
1 D D 2t D 1n  
h 2k D D 2t h

=
+⎛ ⎞+ +⎜ ⎟ +⎝ ⎠

l

      (2) 

 
For the inner water flow, Eq. 8.6 gives  

 
( )

D 6w

4 m 4 2 kg/sRe 19,004.
 D 1 m 134 10  kg/s mπ μ π −

×
= = =

× × ⋅

&
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PROBLEM 8.73 (Cont.)  
Hence, the flow is turbulent.  With the assumption of fully developed conditions, it follows from Eq. 
8.60 that 

 4/5 0.3w
i wD

kh 0.023 Re  Pr .
D

= ×        (3) 

For the external air flow  

 ( ) ( ) 5
D 6 2

V D+2t 4 m/s 1.3m
Re 4.13 10 .

12.6 10  m / sν −
= = = ×

×
 

 
Using Eq. 7.53 to obtain the outside convection coefficient,  

 
( ) ( )1/ 40.7 0.37a

o a a sD
kh 0.076 Re  Pr  Pr / Pr .

D 2t
= ×

+
     (4) 

 
(b) The heat transfer per unit length of pipe at the inlet is  
 ( )i m,iq  D U T T .π ∞′ = −         (5) 
 
From Eqs. (3 and 4),  

 ( ) ( )4 / 5 0.3 2
i

0.665 W/m Kh 0.023 19,004  0.91 39.4 W/m K
1 m

⋅
= × = ⋅  

 

 
( ) ( ) ( ) ( )

0.7 0.37 1/ 45 2
o

0.023 W/m Kh 0.076 4.13 10 0.71 1 10.1 W/m K.
1.3 m

⋅
= × × = ⋅  

 
Hence, from Eq. (2)  

1
2

i 2 2
1 1 m 1.3 1 1U n 0.37 W/m K

0.1 W/m K 1 1.339.4 W/m K 10.1 W/m K

−⎡ ⎤⎛ ⎞= + + × = ⋅⎢ ⎥⎜ ⎟⋅ ⎝ ⎠⋅ ⋅⎣ ⎦
l  

 
and from Eq. (5)  
 ( ) ( ) ( )2q 1 m  0.37 W/m K  200 10 C 244 W/m.π′ = ⋅ + =o     < 
 
Since Ui is a constant, independent of x, Eq. (1) may be integrated from x = 0 to x = L.  The result is 
Eq. 8.45a.  

 m,o 2
i

m,i p,w

T T  DL 1m 500mexp U exp 0.37 W/m K
T T m c 2 kg/s 4500 J/kg K

π π∞

∞

⎛ ⎞− ⎛ ⎞× ×
= − = − × ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟− × ⋅⎝ ⎠⎝ ⎠&

 

Hence  m,o

m,i

T T
0.937.

T T
∞

∞

−
=

−
 

 ( )m,o m,iT T 0.937 T T 187 C.∞ ∞= + − = o       < 
 
COMMENTS:  The largest contribution to the denominator on the right-hand side of Eq. (2) is made 
by the conduction term (the insulation provides 96% of the total resistance to heat transfer).  For this 
reason the assumption of fully developed conditions throughout the pipe has a negligible effect on the 
calculations.  Since the reduction in Tm is small (13°C), little error is incurred by evaluating all 

properties of water at Tm,i. 



PROBLEM 8.74  
KNOWN:  Inner and outer radii and thermal conductivity of a Teflon tube.  Flowrate and temperature 
of confined water.  Heat flux at outer surface and temperature and convection coefficient of ambient 
air.  
FIND:  Fraction of heat transfer to water 
and temperature of tube outer surface.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Fully-developed flow, (3) One-dimensional 
conduction, (4) Negligible tape contact and conduction resistances.  
PROPERTIES:  Table A-6, Water (Tm = 290K):  μ = 1080 × 10

-6
 kg/s⋅m, k = 0.598 W/m⋅K, Pr = 

7.56.  
ANALYSIS:  The outer surface temperature follows from a surface energy balance 

 ( )
( ) ( )( ) ( )

s,o s,o m
o 1 o i i io o

T T T T
2  r L q

ln r / r / 2  Lk 1/ 2  r Lhh 2  r L
π

π ππ

∞
−

− −
′′ = +

+
 

 ( ) ( ) ( ) ( )
s,o m

o s,o
o o i o i i

T T
q h T T .

r / k ln r / r r / r / h∞
−

′′ = − +
+

 

With ( ) ( ) ( ) 6
DRe 4 m/  D 4 0.2kg/s / 0.02 m 1080 10  kg/s m 11,789π μ π −⎡ ⎤= = × ⋅ =⎢ ⎥⎣ ⎦

&  
 
the flow is turbulent and Eq. 8.60 yields  

( ) ( )( )( ) ( )4 / 5 0.44/5 0.4 2
i i Dh k/D 0.023Re Pr 0.598 W/m K/0.02 m 0.023 11, 789 7.56 2792 W/m K.= = ⋅ = ⋅  

 
Hence 

( )
( ) ( ) ( ) ( )

s,o2 2
s,o 2

T 290 K
2000 W/m 25 W/m K T 300K

0.013 m/0.35 W/m K ln 1.3 1.3 / 2792 W/m K

−
= ⋅ − +

⋅ + ⋅
 

and solving for Ts,o,  Ts,o = 308.3 K.      < 
The heat flux to the air is

 ( ) ( )2 2
o o s,oq h T T 25 W/m K 308.3 300 K 207.5 W/m .∞′′ = − = ⋅ − =  

Hence,  ( ) 2 2
iq / q 2000 207.5 W/m /2000 W/m 0.90.′′ ′′ = − =     < 

 
COMMENTS:  The resistance to heat transfer by convection to the air substantially exceeds that due 
to conduction in the teflon and convection in the water.  Hence, most of the heat is transferred to the 
water. 

 



PROBLEM 8.75  
KNOWN:  Temperature recorded by a thermocouple inserted in a stack containing flue gases with a 
prescribed flow rate.  Diameters and emissivities of thermocouple tube and gas stack.  Conditions 
associated with stack surroundings.  
FIND:  Equations for predicting thermocouple error and error associated with prescribed conditions.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Flue gas has properties of air at Tg ≈ 327°C, (3) 
Stack forms a large enclosure about the thermocouple tube and surroundings form a large enclosure 
around the stack, (4) Stack surface energy balance is unaffected by heat loss to tube, (5) Gas flow is 
fully developed, (6) Negligible conduction along thermocouple tube, (7) Stack wall is thin.  
PROPERTIES:  Table A-4, Air (Tg ≈ 600K, pg = 1 atm):  ρ = 0.58 kg/m

3
, μ = 305.8 × 10

-7
 N⋅s/m

2
, 

ν = 52.7× 10
-6

 m
2
/s, k = 0.0469 W/m⋅K, Pr = 0.685. 

 
ANALYSIS:  Determination of the thermocouple error necessitates determining the gas temperature 
Tg and relating it to the thermocouple temperature Tt.  From an energy balance applied to a control 
surface about the thermocouple, 

 ( ) ( )4 4
conv rad t t g t t t t sq q           or          h A T T A T T .ε σ= − = −  

Hence  ( )4 4t
g t t s

t
T T T T .

h
ε σ

= + −       (1)    < 

 
However, Ts is unknown and must be determined from an energy balance on the stack wall. 
 conv,i conv,o radq q q= +  

 ( ) ( ) ( )4 4
i s g s o s s s s s surh A T T h A T T A T Tε σ∞− = − + −  

or ( ) ( )4 4o s
g s s s sur

i i

hT T T T T T .
h h

ε σ
∞= + − + −      (2)    < 

 
Tg and Ts may be determined by simultaneously solving Eqs. (1) and (2).  For the prescribed 
conditions 

( )
( )

2
g s t g tt

Dt 2 2-7 2
s

m / D / 4 D 4 m DVD 4 1 kg/s 0.01 mRe 1157.
D 305.8 10  N s/m  0.6 m

ρ ρπρ
μ μ πμ π

× ×
= = = = =

× × ⋅

& &
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PROBLEM 8.75 (Cont.)  
Assuming (Pr/Prs) = 1, it follows from the Zukauskus correlation  
 0.6 0.37D DtNu 0.26Re Pr=  
 
where C = 0.26 and m = 0.6 from Table 7.4.  Hence  

 ( ) ( )0.6 0.37 2
t

0.0469 W/m Kh 1157 0.685 0.26 73 W/m K.
0.01 m

⋅
= × = ⋅  

Hence, from Eq. (1) ( )
8 2 4

4 4 4
g s2

0.8 5.67 10  W/m KT 573 K 573 T K
73 W/m K

−× × ⋅
= + −

⋅
 

 
 10 4 10 4

g s sT 573 K 67 K 6.214 10 T 640 6.214 10 T .− −= + − × = − ×    (1a) 
 

Also, 
( )

g 4
Ds 7 2s

4 m 4 1 kg/sRe 6.94 10
 D 0.6 m 305.8 10  N s/mπ μ π −

×
= = = ×

× ⋅

&
 

 
and the gas flow is turbulent.  Hence from the Dittus-Boelter correlation,  

( ) ( )
4 / 5 0.34/5 0.3 4 2

i Ds
s

k 0.0469 W/m Kh 0.023Re Pr 0.023 6.94 10 0.685 12 W/m K.
D 0.6 m

⋅
= = × × × = ⋅  

 
Hence from Eq. (2) 

 ( )
8 2 4

4 4 4
g s s s2

25 0.8 5.67 10  W/m KT T T 300 K T 300 K
12 12 W/m K

−× × ⋅ ⎡ ⎤= + − + −⎢ ⎥⎣ ⎦⋅
 

 
9 4 9 4

g s s s s sT T 2.083T 625 K 3.78 10 T 30.6 K 655.6 K 3.083T 3.78 10 T .− −= + − + × − = − + + ×  (2a) 
 
Solve Eqs. (1a) and (2a) by trial-and-error.  Assume values for Ts and determine Tg from (1a) and 

(2a).  Continue until values of Tg agree.  
  Ts (K)  Tg (K) → (1a)  Tg (K) → (2a)  
    400   624   674 
    375   628   575 
    387   626   622 
    388   626   626  
Hence  s gT 388 K, T 626 K= =  

and the thermocouple error is  g tT T 626 K 573 K 53 C.− = − = o    < 
 
COMMENTS:  The thermocouple error results from radiation exchange between the thermocouple 

tube and the cooler stack wall.  Anything done to ↑ Ts would ↓ this error (e.g., ↓ ho or ↑ T∞ and 

Tsur).  The error also ↓ with ↑ ht.  The error could be reduced by installing a radiation shield around 
the tube. 



PROBLEM 8.76 
 
KNOWN:  Platen heated by hot ethylene glycol flowing through tubing arrangement with spacing S 
soldered to lower surface.  Top surface exposed to convection process. 
 
FIND:  Tube spacing S and heating fluid temperature Tm which will maintain the top surface at 45 ± 
0.25°C. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions; (2) Lower surface is insulated, all heat transfer from hot 
fluid is into platen; (3) Copper tube is thick-walled such that interface between solder and platen is 
isothermal; (4) Fully developed flow conditions in tube. 
 
PROPERTIES:  Table A.4, Ethylene glycol (Tm = 60°C):  μ = 0.00522 N⋅s/m2, k = 0.2603 W/m⋅K. 
 
ANALYSIS:  Begin the analysis by setting up a nodal mesh (9 ×6) to represent the platen experiencing 
convection on the top surface (T∞ , h) while the two side boundaries are symmetry adiabats.  On the lower 
surface, nodes 46 and 47 represent the isothermal platen-solder interface maintained at To by the hot fluid.  
The remaining nodes (49-54) are insulated on their lower boundary. 
 

 
The heat rate supplied by the tube to the platen can be expressed as 
 ( )( )cv o i m oq 0.5h D T Tπ′ = −  (1) 
From energy balances about nodes 46 and 47, the heat rate into the platen by conduction can be expressed 
as 
 cd a b cq q q q′ ′ ′ ′= + +  (2) 
 
 ( )( )a 46 37q k x 2 T T y′ = Δ − Δ  (3) 

Continued... 



 
PROBLEM 8.76 (Cont.) 

 
 ( )( )b 47 38q k x T T y′ = Δ − Δ  (4) 
  
 ( )( )c 47 48q k y 2 T T x′ = Δ − Δ  (5) 
 
and we require that 
 
 cd cvq q′ ′=  (6) 
 
The convection coefficient for internal flow can be estimated from a correlation assuming fully developed 
flow.  First, characterize the flow with 
 

 
( )

D 2i

4m 4 0.06 kg sRe 1829
D 0.008m 0.00522 N s mπ μ π

×
= = =

⋅

&
 

 
and since it is laminar, 
 

 o i
D

h DNu 3.66
k

= =  
 
 oh 3.66 0.2603W m K 0.008m 119.1W m K= × ⋅ = ⋅  
 
where properties are evaluated at Tm.  Using the IHT Finite-Difference Tool for Two-Dimensional Steady-
State Conditions and the Properties Tool for Ethylene Glycol, along with the foregoing rate equations and 
energy balances, Eqs. (1-6), a model was developed to solve for the temperature distribution in the platen.  
In the solution, we determined what hot fluid temperature was required to maintain T1 = 45°C.  Two trials 
were run.  In the first, the nodal arrangement was as shown above (9 × 6) for which S/2 = (9 - 1)Δx = 
42.67 mm with Δx = 2Di/3 = 5.33 mm and Δy = w/5 = 5 mm.  In the second trial, we repositioned the 
right-hand symmetry adiabat to pass vertically through the nodes 6-51 so that now the nodal mesh is (6 × 
6) and S/2 = (6 - 1)Δx = 26.65 mm with Δx and Δy remaining the same.  The results of the trials are 
tabulated below. 
 

Trial Mesh T1 (°C) T6 (°C) T9 (°C) Tm (°C) cvq′  (W/m) 
1 9 × 6 45.0 43.5 43.0 105 80.5 
2 6 × 6 45.0 44.5 --- 85 52.6 

 
From the trial 2 results, the surface temperature uniformity is (T1 - T6) = 0.5°C which satisfies the 
±0.25°C requirement.  So that suitable tube spacing and fluid temperature are 

 S = 53 mm                            Tm = 85°C < 
 
COMMENTS:  (1) Recognize that the grid spacing is quite coarse and good practice demands that we 
repeat the analysis decreasing the nodal spacing until no further changes are seen in Tm. 
 
(2) In the first trial, note that Tm = 105°C which of course, is not possible. 



PROBLEM 8.77 
 
KNOWN:  Features of tubing used in a ground source heat pump.  Temperature of surrounding soil.  
Fluid inlet temperature and flowrate. 
 
FIND:  (a) Effect of tube length on outlet temperature, (b) Recommended tube length and the effect of 
variations in the flowrate. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Negligible conduction 
resistance in soil, (4) Incompressible liquid with negligible viscous dissipation, (5) Fluid properties 
correspond to those of water. 
 
PROPERTIES:  Table A.6 (assume mT  = 277 K): cp = 4206 J/kg⋅K, μ = 1560 × 10-6 N⋅s/m2, k = 0.577 
W/m⋅K, Pr = 11.44. 
 
ANALYSIS:  (a) For the prescribed conditions, ReD = i4m Dπ μ&  = ( ) ( )4 0.03kg s 0.025m 1560π  
× ⋅−10 6 2N s m  = 980 and the flow is laminar.  With Pr > 5, Eq. 8.57 may be used to determine the 
average convection coefficient, with Eq. 8.56 defining the Graetz number: 
 

 
( )

( )
D

D 2/ 3
D

0.0668 D L Re Pr
Nu 3.66

1 0.04 D L Re Pr
= +

⎡ ⎤+ ⎣ ⎦

 

 
With Ts used in lieu of T∞ , Eq. 8.45b may be used to determine Tm,o, 
 

 s m,o

s m,i p tot

T T Lexp
T T mc R

⎛ ⎞−
= −⎜ ⎟⎜ ⎟′− ⎝ ⎠&

 

 
where totR′  accounts for the convection and tube wall conduction resistances, 
 
 ( ) ( )tot cnv cnd i o i tR R R 1 D h ln D D 2 kπ π′ ′ ′= + = +  

and 
 o iD D 2t 41mm= + = . 
 
Using the Correlations and Properties Toolpads of IHT, the following results were obtained for the effect 
of the tube length L on Tm,o. 
 
 

Continued... 



PROBLEM 8.77 (Cont.) 
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mdot = 0.015 kg/s
mdot = 0.030 kg/s
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The longer the tube the larger the rate of heat extraction from the soil, and for m&  = 0.030 kg/s, the 
temperature rise of ΔT = (Tm,o - Tm,i) ≈ 7°C is well below the maximum possible value of ΔTmax = 10°C. 
 
(b) The length should be at least 50 m long.  If the flowrate were reduced by 50% ( &m  = 0.015 kg/s), the 
corresponding temperature rise would be close to ΔTmax and L = 50 m would be close to optimal.  
However, for the nominal flowrate and a 50% increase from the nominal, the length should exceed 50 m 
to recover more heat and provide a heat pump inlet temperature which is closer to the maximum possible 
value. 
 
COMMENTS:  In practice, the tube surface temperature would be less than 10°C (if the temperature of 
the soil well removed from the tube were at 10°C), thereby reducing the heat extraction rate and Tm,o. 
 



PROBLEM 8.78  
KNOWN:  Effect of entry length on average Nusselt number for turbulent flow in a tube.  
FIND:  Ratio of average to fully developed Nusselt numbers for prescribed conditions.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Sharp edged inlet, (2) Combined entry region.  
ANALYSIS:  From Eq. 8.63,  

 
( )

D
mD,fd

Nu C1
Nu x/D

= +  

 
and with 0.23 6

DDC 24Re  and m 0.815 2.08 10 Re ,− −= = − ×  
 

 
( )( )6

D

0.23
D D

0.815 2.08 10 ReD,fd

24ReNu 1 .
Nu

x/D
−

−

− ×
= +  

 
It follows that  
  _______________________________________________________________  
   ( )D D,fdNu / Nu    ReD    x/D  

  _______________________________________________________________  
1.463      104     10 

 
    1.116      104     60 
 
    1.420      105     10 
 
    1.142      105     60 
 
COMMENTS:  The assumption D fdNu Nu  for x/D 10≈ =  would result in underprediction 

of DNu  by approximately 45%.  The underprediction is only approximately 10% for x/D = 
60. 
 



PROBLEM 8.79  
KNOWN:  Fluid enters a thin-walled tube of 5-mm diameter and 2-m length with a flow rate of 0.04 
kg/s and temperature of Tm,i = 85°C; tube surface temperature is maintained at Ts = 25°C; and, for this 
base operating condition, the outlet temperature is Tm,o = 31.1°C. 
 
FIND:  The outlet temperature if the flow rate is doubled?  
SCHEMATIC:   
 

 
 
 
 
 
 

 
ASSUMPTIONS:  (1) Flow is fully developed and turbulent, (2) Fluid properties are independent of 
temperature, (3) Constant surface temperature cooling conditions, (4) Applicability of Eq. 8.34. 
 
ANALYSIS:  For the base operating condition (b), the rate equation, Eq. 8.41b, with pC m c ,= &  the 

capacity rate, is 
 

 
)s m,o b b

s m,i b

T T PL hexp
T T C

− ⎛ ⎞
= −⎜ ⎟− ⎝ ⎠

       (1) 

 
Substituting numerical values, with P = πD, find the ratio, b bh / C ,  

 ( )b b
25 31.1 exp 0.005 m 2 m h / C
25 85
− ⎡ ⎤= − × ×⎣ ⎦−

π  
 
 2

b bh / C 72.77 m−=  
 
For the new operating condition (n), the flow rate is doubled, Cn = 2Cb, and the convection coefficient 
scales according to the Dittus-Boelter relation, Eq. 8.60, 

 0.8 0.8
Dh Re m&� �  

 
0.8

n bh 2 h=  and ( ) ( )( )0.8
n n b bh / C 2 / 2 h / C=      (2) 

 
Using the rate equation for the new operating condition, find 

 
)

( )s m,o nn
b b

s m,i n

T T PL hexp exp PL 0.871 h / C
T T C

− ⎛ ⎞ ⎡ ⎤= − = − ×⎜ ⎟ ⎣ ⎦− ⎝ ⎠
   (3) 

 

 
)m,o 2n

25 T
exp 0.005 m 2 m 0.871 72.77 m

25 85
π −−

⎡ ⎤= − × × × ×⎢ ⎥⎣ ⎦−
 

 
 )m,o n

T 33.2 C= °          < 

31.131.1



PROBLEM 8.80  
KNOWN:  Flow rate and inlet temperature of air passing through a rectangular duct of prescribed 
dimensions and surface heat flux.  
FIND:  Air and duct surface temperatures at outlet.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Uniform surface heat flux, (3) Constant properties, 
(4) Atmospheric pressure, (3) Fully developed conditions at duct exit, (6) Ideal gas with negligible 
viscous dissipation and pressure variation.  
PROPERTIES:  Table A-4, Air ( )mT 300K, 1 atm :≈   cp = 1007 J/kg⋅K, μ = 184.6 × 10

-7
 N⋅s/m

2
, 

k = 0.0263 W/m⋅K, Pr = 0.707.  
ANALYSIS:  For this uniform heat flux condition, the heat rate is 
 ( ) ( )s s sq q  A q 2 L W 2 L H′′ ′′ ⎡ ⎤= = × + ×⎣ ⎦  
 
 ( ) ( )2q 600 W/m 2 1m 0.016m 2 1m 0.004m 24 W.⎡ ⎤= × + × =⎣ ⎦  
From an overall energy balance 

 m,o m,i 4p

q 24 WT =T 300K 379 K.
m c 3 10  kg/s 1007 J/kg K−

+ = + =
× × ⋅&

  < 

 
The surface temperature at the outlet may be determined from Newton’s law of cooling, where  
 s,o m,oT T q /h.′′= +  
 
From Eqs. 8.66 and 8.1  

 ( )
( )

c
h

4 0.016m 0.004m4 AD 0.0064 m
P 2 0.016m 0.004m

×
= = =

+
 

 
( )

( )
4

m h h
D 6 2 7 2c

3 10 kg/s 0.0064m u  D m DRe 1625.
A 64 10 m 184.6 10  N s/m

ρ
μ μ

−

− −
×

= = = =
× × ⋅

&
 

Hence the flow is laminar, and from Table 8.1 

 2
h

k 0.0263 W/m Kh 5.33 5.33 22 W/m K
D 0.0064 m

⋅
= = = ⋅  

 
2

s,o 2
600 W/mT 379 K 406 K.

22 W/m K
= + =

⋅
      < 

COMMENTS:  The calculations should be repeated with properties evaluated at T  K.m = 340   The 

change in Tm,o would be negligible, and Ts,o would decrease slightly. 



PROBLEM 8.81  
KNOWN:  Inlet temperature and mass flow rate of air flow.  Geometry and dimensions of channels 
through a mold.  Mold temperature.    
FIND:  (a) Heat transferred to the air for case A, (b) Heat transferred to the air for case B, and (c) 
pressure drop for both cases.   
SCHEMATIC:   
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Flow is hydrodynamically and thermally fully developed, (2) Mold 
temperature is uniform.  (3) Narrow fins between channels in case B are at the mold temperature.  
 
PROPERTIES: Table A-4, Air (T ≈ 310 K assumed, 1atm): ρ = 1.128 kg/m3, cp = 1007 J/kg·K, μ = 
189.3 × 10-7 N·s/m2, k = 0.027 W/m·K. 
 
ANALYSIS:  
(a) The Reynolds number is 

-6

D -7 2
4 m 4 × 30 × 10  kg/sRe  =  =  = 202
π D μ π × 0.01 m × 189.3 × 10  N s/m⋅

&
 

 
Thus, the flow is laminar.  Since it has also been assumed that the flow is fully developed and the 
mold temperature is uniform, the Nusselt number is  
 NuD = 3.66 
 
Thus  h = NuDk/D = 3.66 × 0.027 W/m·K/0.01 m = 9.88 W/m2·K.  
The outlet temperature can be found from Equation 8.41b,  

 

m,o s m,i s
p

2

-6

P LT  = T  + (T  - T ) exp(  h)
m c

π × 0.01 m × 0.1 m × 9.88 W/m K         = 50°C + (25°C - 50°C) exp
30 × 10  kg/s × 1007 J/kg K

         = 41.0°C

−

⎛ ⎞⋅
−⎜ ⎟⎜ ⎟⋅⎝ ⎠

&

 

 
Thus 

 -6
p m,o m,iq = mc (T  - T ) = 30 × 10  kg/s × 1007 J/kg K × (41.0°C - 25°C) = 0.485 W⋅&  < 

 
(b)  We first determine the dimensions of the triangular channels from the requirement that the total 
area is the same as case A. 
 

Continued… 
 

 
 

Case A Case B   

a

D = 10 mm

Air, Tm = 25°C  

Mold, Ts = 50°C

= ×& -6m 30 10  kg/s = ×& -6m 30 10  kg/s
(in total in all
6 channels)

Case A Case B   

a

D = 10 mm

Air, Tm = 25°C  

Mold, Ts = 50°C

= ×& -6m 30 10  kg/s = ×& -6m 30 10  kg/s
(in total in all
6 channels)



PROBLEM 8.81 (Cont.) 
 

2 2

1/2 1/2

πD /4 = 6a /2
π π        a = ( ) D = ( )  × 10 mm = 5.1 mm

12 12

 

and the flowrate in one channel is 5 × 10-6 kg/s.   
The hydraulic diameter is Dh = 4Ac/P = 4(a2/2)/3a = 2a/3 = 3.4mm. 
The Reynolds number is  

 
-6

D -7 2
h

4 m 4 × 5 × 10  kg/sRe  =  =  = 98.6
π D  μ π × 0.0034 m × 189.3 × 10  N s/m⋅

&
 

 
so the flow is laminar.  From Table 8.1, the Nusselt number is NuD = 2.47, so 
 h = NuDk/Dh = 2.47 × 0.027 W/m·K/0.0034 m = 19.6 W/m2·K. 
 
The outlet temperature is  

 

m,o s m,i s
p

2

-6

P LT  = T  + (T  - T ) exp(  h)
m c

3 × 0.0051 m × 0.1 m × 19.0 W/m K         = 50°C + (25°C - 50°C) exp
5 × 10  kg/s × 1007 J/kg K

         = 49.9°C

−

⎛ ⎞⋅
−⎜ ⎟⎜ ⎟⋅⎝ ⎠

&

 

 
Then using the total flowrate to account for all six channels,  
 -6

p m,o m,iq = mc (T  - T ) = 30 × 10  kg/s × 1007 J/kg K × (49.9°C - 25°C) = 0.753 W⋅&     < 
 
(c) The friction factor for case A is f = 64/ReD = 64/202 = 0.317.  The pressure drop is, from Equation 
8.22a,  

2
mρuΔp = f L

2D
 

with um = -6 3 2
cm/ρA  = 30 × 10  kg/s/(1.128 kg/m  × π (0.01 m) /4) = 0.339 m/s.&   Thus 

 
3 21.128 kg/m  × (0.339 m/s)Δp = 0.317 ×  × 0.1 m  = 0.205 Pa

2 × 0.01 m
       < 

 
For Case B, from Table 8.1, f = 53/ReD = 53/98.6 = 0.538, and um = 0.339 m/s as in Case A.  Thus 

 
2 3 2
m

h

ρu 1.128 kg/m  × (0.339 m/s)Δp = f L= 0.538 ×  × 0.1 m  = 1.02 Pa
2D 2 × 0.0034 m

      < 
 
COMMENTS: (1) Segmenting the channel into six smaller sections increases the heat transfer by 
55%, but at the expense of almost a five-fold increase in the pressure drop.  (2) For the circular duct, 
the hydrodynamic entry length, is xfd,h = 0.05 ReD D = 0.1 m, so it is not fully developed as assumed.  
For the triangular duct, xfd,h = 0.05 ReD Dh = 0.02 m, so the assumption is more appropriate.  The 
thermal development length is shorter, since Pr = 0.7. 



PROBLEM 8.82 
 
KNOWN:  Dimensions, surface temperature and thermal conductivity of a cold plate.  Velocity, inlet 
temperature, and properties of coolant. 
 
FIND:  (a) Model for determining the heat rate q and outlet temperature, Tm,o, (b) Values of q and Tm,o for 
prescribed conditions. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Incompressible liquid with negligible viscous 
dissipation, (3) Constant properties, (4) Symmetry about the midplane (horizontal) of the cold plate and 
the midplane (vertical) of each cooling channel, (5) Negligible heat transfer at sidewalls of cold plate, (6) 
One-dimensional conduction from outer surface of cold plate to base surface of channel and within the 
channel side walls, which act as extended surfaces. 
 
PROPERTIES:  Water (prescribed):  ρ = 984 kg/m3, cp = 4184 J/kg⋅K, μ = 489 × 10-6 N⋅s/m2, k = 0.65 
W/m⋅K, Pr = 3.15. 
 
ANALYSIS:  (a) The outlet temperature, Tm,o, may be determined from the energy balance prescribed by 
Eq. 8.45b, 
 

 s m,o

s m,i 1 p tot

T T 1exp
T T m c R

⎛ ⎞−
= −⎜ ⎟⎜ ⎟− ⎝ ⎠&

 

 
where &m u Am c1 = ρ  is the flowrate for a single channel and Rtot is the total resistance to heat transfer 
between the cold plate surface and the coolant for a particular channel.  This resistance may be 
determined from the symmetrical section shown schematically, which represents one-half of the cell 
associated with a full channel.  With the number of channels (and cells) corresponding to N = W/S, there 
are 2N = 2(W/S) symmetrical sections, and the total resistance Rtot of a cell is one-half that of a 
symmetrical section.  Hence, Rtot = Rss/2, where the resistance of the symmetrical section includes the 
effect of conduction through the outer wall of the cold plate and convection from the inner surfaces.  
Hence, 
 

 
( )

( )ss
cp o t

H h 2 1R
k SW hAη

−
= +  

 
where At = Af + Ab = 2(h/2 × W) + (w × W), h  is the average convection coefficient for the channel flow, 
and ηo is the overall surface efficiency. 
 

 ( )f
o f

t

A1 1
A

η η= − −  
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PROBLEM 8.82 (Cont.) 

 
The efficiency ηf corresponds to that of a straight, rectangular fin with an adiabatic tip, Eq. 3.92, and Lc = 

w/2.  With 2
h cD 4A P 4w 4w w 0.006 m= = = = , 

hD m hRe u Dρ μ=  = 984 kg/m3 × 2 m/s × 0.006 

m/489 × 10-6 N⋅s/m2 = 24,150 and the channel flow is turbulent.  Assuming fully-developed flow 
throughout the channel, the Dittus-Boelter correlation, Eq. 8.60, may therefore be used to evaluate h , 
where 

 4 / 5 0.4D D,fd DNu Nu 0.023Re Pr≈ =  
The total heat rate for the cold plate may be expressed as 
 ( )1 1 p m,o m,iq Nq Nm c T T= = −&  

(b) For the prescribed conditions, 
 

 ( )( )23
1 m cm u A 984 kg m 2 m s 0.006 m 0.0708 kg sρ= = =&  

 ( ) ( )4 / 5 0.4
DNu 0.023 24,150 3.15 116.8= =  

 ( ) ( ) 2
hh 116.8 k D 116.8 0.65 W m K 0.006 m 12,650 W m K= = ⋅ = ⋅  

 ( ) ( ) 4 2
fA 2 h 2 W 2 0.003m 0.1m 6 10 m−= × = × = ×  

 ( )4 2 3 2
t f bA A A 6 10 m 0.006 m 0.1m 1.2 10 m− −= + = × + × = ×  

With m = ( ) ( ) ( )1/ 2 1/ 2
f cp cf cphP k A h 2 2W k Wδ δ= +⎡ ⎤⎣ ⎦  = [12,650 W/m2⋅K(0.008 + 0.200)m/400 

W/m⋅K(0.004 × 0.100)m2]1/2 = 128.2 m-1. 

 
( )

( )
( )

f
tanh m h 2 tanh 128.2 0.003 0.366

0.952
m h 2 128.2 0.003 0.385

η
×

= = = =
×

 

 ( )o 1 0.5 1 0.952 0.976η = − − =  

 
( )

( ) ( )ss 2 3 2
0.010 0.006 m 2 1

R
400 W m K 0.01m 0.1m 0.976 12650 W m K 1.2 10 m−

−
= +

⋅ × ⋅ ×
 

 ( )ssR 0.005 0.0675 K W 0.0725 K W= + =  
With Rtot = Rss/2 = 0.0362 K/W, 

 s m,o

s m,i

T T 1
exp 0.911

T T 0.0708 kg s 4184 J kg K 0.0362 K W

−
= − =

− × ⋅ ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 ( ) ( )m,o s s m,iT T 0.911 T T 360 K 0.911 360 300 K 305.3K= − − = − − =  < 

The total heat rate is 

 ( ) ( )1 p m,o m,iq Nm c T T 10 0.0708 kg s 4184 J kg K 305.3 300 K 15, 700 W= − = × × ⋅ − =&  < 

COMMENTS:  The prescribed properties correspond to a value of mT  which significantly exceeds that 
obtained from the foregoing solution ( mT  = 302.6 K).  Hence, the calculations should be repeated using 
more appropriate thermophysical properties (see next problem).  From Eq. 3.90, the effectiveness of the 
extended surface is  
 
 ( ) ( ) ( )1 1

t,b t,f f f f fR R h W hA A Wε δ η η δ− −= = =  = ( ) ( )4 26 10 m 0.954 0.004 m 0.10 m−× × ×  = 1.43. 
 
Hence, the ribs are only marginally effective in enhancing heat transfer to the coolant. 



PROBLEM 8.83 
 
KNOWN:  Geometry, surface temperature and thermal conductivity of a cold plate.  Velocity and inlet 
temperature of coolant. 
 
FIND:  Effect of channel width on total heat rate. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Incompressible liquid with negligible viscous 
dissipation, (3) Constant properties, (4) Symmetry about midplane (horizontal) of the cold plate and the 
midplane (vertical) of each channel, (5) Negligible heat transfer at sidewalls of cold plate, (6) One-
dimensional conduction from outer surface of cold plate to base surface of channel and within the channel 
side walls, which act as extended surfaces. 
 
PROPERTIES:  Water:  Evaluated at mT  using the Properties Toolpad of IHT. 
 
ANALYSIS:  The model developed for the preceding problem was entered into the workspace of IHT, 
with the Dittus-Boelter equation and exponential relation accessed from the Correlations Toolpad and 
modified to account for the hydraulic diameter and the total resistance to heat transfer.  Calculations were 
performed for 
 
 Case 1:  w = 96 mm, N = 1, S = W = 100 mm 
 Case 2:  w = 46 mm, N = 2, S = 50 mm 
 Case 3:  w = 21 mm, N = 4, S = 25 mm 
 Case 4:  w = 6 mm, N = 10, S = 10 mm 
 Case 5:  w = 1 mm, N = 20, S = 5 mm 
 
and the results are tabulated as follows. 
 

Case N Dh (m) ReD ( )2h W m K⋅

 

Tm,o (K) q (W) 

1 1 0.01129 26,920 8783 302.1 10,090 
2 2 0.01062 25,310 8892 302.3 10,370 
3 4 0.00933 22,340 9142 302.6 10,960 
4 10 0.00600 14,630 10,070 304.3 12,950 
5 20 0.00171 4760 13,740 317.2 17,160 

 
It is clearly beneficial to increase the number of channels, with the total heat rate increasing by 
approximately a factor of 5 as N increases from 1 to 20.  The heat rate may be increased further by 
increasing um, and hence the flowrate per channel, although an upper limit would be associated with the 
pressure drop, which would increase with decreasing Dh.  Could additional heat transfer enhancement be 
achieved by altering the thickness δ of the channel walls? 
 
COMMENTS:  (1) Note that results obtained for Case 4 differ from those of the preceding problem due 
to different fluid properties.  In this case the properties were evaluated at the actual value of mT  = 302.2 
K, rather than at an assumed (significantly larger) value. (2) Note that the Dittus-Boelter correlation is 
applied outside its intended range for the Reynolds number of case 5. The Gnielinski correlation would be 
preferable. 



PROBLEM 8.84  
KNOWN:  Temperature and velocity of gas flow between parallel plates of prescribed surface 
temperature and separation.  Thickness and location of plate insert.  
FIND:  Heat flux to the plates (a) without and (b) with the insert.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible radiation, (3) Gas has properties of 
atmospheric air, (4) Plates are of infinite width W, (5) Fully developed flow.  
PROPERTIES:  Table A-4, Air (1 atm, Tm = 1000 K):  ρ = 0.348 kg/m

3
, μ = 424.4 × 10

-7
 kg/s⋅m, k 

= 0.0667 W/m⋅K, Pr = 0.726.  
ANALYSIS:  (a) Based upon the hydraulic diameter Dh, the Reynolds number is 
 ( ) ( )h cD 4 A / P 4 H W / 2 H W 2H 80 mm= = ⋅ + = =  

 
( )

h

3
m h

D 7
0.348 kg/m 60 m/s 0.08 m u  DRe 39,360.

424.4 10  kg/s m

ρ
μ −

= = =
× ⋅

 

 
Since the flow is fully developed and turbulent, use the Dittus-Boelter correlation, 

 ( ) ( )4 /5 0.34/5 0.3
D DNu 0.023 Re Pr 0.023 39,360 0.726 99.1= = =  

 2
D

h

k 0.0667 W/m Kh Nu 99.1 82.6 W/m K
D 0.08 m

⋅
= = = ⋅  

 ( ) ( )2 2
m sq h T T 82.6 W/m K 1000 350 K 53,700 W/m .′′ = − = ⋅ − =    < 

 
(b) From continuity, 

( ) ( ) ) ) ( ) ( ) ( )m m m ma b b a a bm  u A  u A           u u A / A 60 m/s 40/20 120 m/s.ρ ρ ρ ρ= = = = =&  

For each of the resulting channels, Dh = 0.02 m and 

 
( )

h

3
m h

D 7
0.348 kg/m 120 m/s 0.02 m u  DRe 19,680.

424.4 10 kg/s m

ρ
μ −

= = =
× ⋅

 

Since the flow is still turbulent, 

( ) ( ) ( )4 /5 0.3 2
D

56.9 0.0667 W/m K
Nu 0.023 19,680 0.726 56.9        h 189.8 W/m K

0.02 m
⋅

= = = = ⋅  

 ( )2 2q 189.8 W/m K 1000 350 K 123,400 W/m .′′ = ⋅ − =     < 
 
COMMENTS:  From the Dittus-Boelter equation, 

 ( ) ( ) ( ) ( )0.8 0.2 0.8 0.2
b a m,b m,a h,a h,bh / h u / u D / D 2 4 1.74 1.32 2.30.= = = × =  

Hence, heat transfer enhancement due to the insert is primarily a result of the increase in um and 

secondarily a result of the decrease in Dh. 



PROBLEM 8.85  
KNOWN:  Temperature, pressure and flow rate of air entering a rectangular duct of prescribed 
dimensions and surface temperature.  
FIND:  Air outlet temperature and duct heat transfer rate.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Uniform surface 
temperature, (4) Fully developed flow throughout, (5) Ideal gas with negligible viscous dissipation and 
pressure variation.  
PROPERTIES:  Table A-4, Air (assume Tm ≈ 325K, 1 atm):  cp = 1008 J/kg⋅K, μ = 196.4 × 10

-7
 

N⋅s/m
2
, k = 0.0282 W/m⋅K, Pr = 0.707.  

ANALYSIS:  From Eqs. 8.66 and 8.1, 

 
( )
( )

2
c

h
4 0.15 0.075 m4 AD 0.10 m

P 2 0.15 0.075 m
× ×

= = =
+

 

 
( )

( )
m h h

D 7 2c

0.1 kg/s 0.1m u D  m DRe 45,260.
A 0.15m 0.075m 196.4 10 N s/m

ρ
μ μ −

= = = =
× × ⋅

&
 

 
Hence the flow is turbulent, and from Eq. 8.60  

( ) ( )4 /5 0.44/5 0.4 2
D

h

k 0.0282 W/m Kh 0.023 Re Pr 0.023 45,260 0.707 30 W/m K.
D 0.10 m

⋅
= = = ⋅  

 
From Eq. 8.41b, with P = 2(W + H), 

 ( )m,o s s m,i
p

PLT T T T exp h
m c

⎛ ⎞
= − − −⎜ ⎟⎜ ⎟

⎝ ⎠&
 

 ( )
( ) ( )2

m,o
2 0.15m 0.075m 2m 30W/m K

T 400 K 400 285 K exp
0.1 kg/s 1008 J/kg K

⎡ ⎤+ ⋅⎢ ⎥= − − −⎢ ⎥× ⋅
⎢ ⎥⎣ ⎦

 

 m,oT 312 K=           < 
 
and from Eq. 8.34 

 ( ) ( )p m,o m,iq m c T T 0.1 kg/s 1008 J/kg K 312 285 K 2724 W.= − = × ⋅ − =&   < 
 
COMMENTS:  (1) The calculations may be checked by determining q from Eqs. 8.43 and 8.44.  We 

obtain mT 101 CΔ = o
l  and q = 2724 W. 

 
(2) mT  has been over-estimated.  The calculations should be repeated with properties evaluated at 

mT  = 299 K. 



PROBLEM 8.86 
 
KNOWN:  Dimensions of semi-circular copper tubes in contact at plane surfaces.  Thermal contact 
resistance.  Tube flow conditions. 
 
FIND:  (a) Heat rate per unit tube length, and (b) The effect on the heat rate when the fluids are ethylene 
glycol, the exchanger tube is fabricated from an aluminum alloy, or the exchanger tube thickness is 
increased. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Adiabatic outer surface, (4) 
Fully developed flow, (5) Negligible heat loss to surroundings. 
 
PROPERTIES:  Table A.1, Copper (T ≈ 300 K):  k = 400 W/m⋅K; Water (given):  μ = 800 × 10-6 kg/s⋅m, 
k = 0.625 W/m⋅K, Pr = 5.35. 
 
ANALYSIS:  (a,b) Heat transfer from the hot to cold fluids is enhanced by conduction through the semi-
circular portions of the tube walls.  The walls may be approximated as straight fins with an insulated tip, 
and the thermal circuit is shown below. 

 
Note that, since each semi-circular surface is insulated on one side, surfaces may be combined to yield a 
single fin of thickness 2t with convection on both sides.  Also, due to the equivalent geometry and the 
assumption of constant properties, there is symmetry on opposite sides of the contact resistance.  From the 
thermal circuit, the heat rate is 

 h,m c,m

tot

T T
q

R
−

′ =
′

 (1) 

For flow through the semi-circular tube, 

 
( )

cm h h
D

c c i i

4mAu D mD 4m 4mRe
A A P P 2r r

ρ
μ μ μ μ π μ

= = = = =
+

&& & &
 (2) 

 
( )

D 6
4 0.2 kg sRe 9725

2 0.02 m 800 10 kg s mπ −
×

= =
+ × × ⋅

 

 
the flow is turbulent.  Using the Gnielinski correlation, since ReD < 10,000 

 D
D 1/ 2 2 / 3

(f / 8)(Re 1000) PrNu 69.9
1 12.7(f / 8) (Pr 1)

−
= =

+ −
 (3) 

 
Continued... 



 
PROBLEM 8.86 (Cont.) 

 
  
where f = (0.79ln(ReD)-1.64)-2 = 0.0317 

 
( )
( )

2
ic

h
i

4 r 24A 2D 0.02m 0.0244m
P 2 r 2

π π
π π

= = = =
+ +

 (4) 

 

 2
D

h

k 0.625h Nu 69.9 1790 W m K
D 0.0244

= = = ⋅ . (5) 

Find now values for the thermal resistance of the circuit. 

 
( )

conv 2i

1 1R 0.0140 m K W
2r h 0.04 m 1790 W m K

′ = = = ⋅
⋅

 (6) 

 

 
( ) ( )

b
fin 1/ 2f c c

1R
q hP kA tanh hP kA L

θ′ = =
′ ′ ′

 (7) 

 
 ( )iL r 2 0.01m 0.0314 mπ π= = =          2

cA 2t 1m 0.006m= ⋅ =           P ≈ 2.1 m (8,9,10) 
 

 ( ) ( )1/ 21/ 2 2 2
chP kA 1790 W m K 2m m 400 W m K 0.006m s 92.7 W K m′ ′ = ⋅ × × ⋅ × = ⋅  

 ( ) ( )1/ 21/ 2 2 2
chP kA L 1790 W m K 2m 400 W m K 0.006m 0.0314m 1.21= ⋅ × ⋅ × =  

 
( )fin

1R 0.0129 m K W
92.7 W m K 0.838

′ = = ⋅
⋅

 (11) 

 
( )( )

4
cond

i

t 0.003mR 1.875 10 m K W
2kr 2 400 W m K 0.02 m

−′ = = = × ⋅
⋅

 (12) 

 
( )
5 2t,c 4

t,c
i

R 10 m K WR 2.5 10 m K W
2r 2 0.02m

−
−′′ ⋅′ = = = × ⋅  (13) 

The equivalent resistance of the parallel circuit is 

 ( ) ( )
1 11 1 3

eq convfinR R R 77.6 W m K 71.5W m K 6.70 10 m K W
− −− − −′ ′ ′= + = ⋅ + ⋅ = × ⋅  (14) 

Hence 
 ( )tot eq cond t,cR 2 R R R′ ′ ′ ′= + +  (15) 
 

 ( )3 4 4
totR 2 6.70 10 1.875 10 2.50 10 m K W 0.0140m K W− − −⎡ ⎤′ = × + × + × ⋅ = ⋅⎢ ⎥⎣ ⎦

 
 

 
( )330 290 K

q 2850 W m
0.0140m K W

−
′ = =

⋅
. < 

 
(c) Using the IHT Workspace with the foregoing equations, analyses were performed and the results 
summarized in the table below.  The “Conditions” are described below; the “Change” is relative to the 
base case condition. 
  Continued … 
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Condition* 

convR ′ × 104 finR′ × 104 condR′ × 104 totR′ × 104 eqR′ × 104 q′  Change 

 (m⋅K/W) (m⋅K/W) (m⋅K/W) (m⋅K/W) (m⋅K/W) (W/m) (%) 
Base case 140 129 1.88 140 67.0 2850 -- 
Ethylene glycol 6550 4210 1.88 5130 2560 77.9 -97 
Aluminum alloy 140 171 4.24 165 76.9 2430 -15 
Thicker tube 140 120 2.50 136 64.4 2930 +2.8 
 
 
*Conditions:  change from base case 
 Base case - water, copper (k = 400 W/m⋅K), t = 3 mm 
 Ethylene glycol - ethylene glycol instead of water, ReD = 727, laminar, NuD = 3.66 estimated 
 Aluminum alloy - alloy (k = 177 W/m⋅K) instead of copper 
 Thicker tube - t = 4 mm instead of 3 mm 
 
As expected, using ethylene glycol as the working fluid would decrease the heat rate, especially because 
the flow becomes laminar.  Note that convR′  is the dominate resistance since the convection coefficient is 
considerably reduced compared to that with water.  Using aluminum alloy, rather than copper, as the tube 
material reduces the heat rate by 14%.  Conduction-convection (fin) in the tube wall is important as can 
be seen by examining the change in finR′  relative to the base condition.  Increasing the tube wall 
thickness for the copper tube exchanger from 3 to 4 mm had only a marginal positive effect on the heat 
rate. 
 
COMMENTS:  A more accurate calculation would account for the absence of symmetry about the 
contact plane.  Evaluation of water properties at Th,m = 330 K and Tc,m = 290 K yields hh = 1930 W/m2⋅K 
and hc = 1470 W/m2⋅K. 



PROBLEM 8.87 
 
KNOWN:  Rectangular channel with constant surface temperature.  Aspect ratio. 
 
FIND:  Which aspect ratio channel provides the largest heat transfer rate.  Whether this is greater than, 
equal to, or less than the heat transfer rate for a circular tube.  
 
SCHEMATIC: 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state, (2) Incompressible flow, (3) Laminar, (4) Fully-developed. 
 
ANALYSIS:   The heat transfer rate is given by , ,( ),s p m o m iq mc T T= −&  where from Eq. 8.41b with 
constant heat transfer coefficient,  
 

 , , ,( ) 1 expm o m i s m i
p

hPLT T T T
mc

⎡ ⎤⎛ ⎞
− = − − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦&

 

 
Thus, the heat transfer rate increases with increasing values of 
 

2

4p p h p c

hPL NukPL NukP L
mc mc D mc A

= =
& & &

 

 
For fixed mass flow rate and length, and assuming the same properties, the relevant parameter that 
determines the heat transfer rate is therefore 2 .cNuP A   For a rectangular channel, 2

cP A =  
2 24( ) 4(1 / ) ( / ) ,a b ab b a b a+ = + whereas for a circular tube, 2 4 .cP A π=   The table below 

compares values of 2
cNuP A  for the three different aspect ratio rectangular channels and a circular 

tube.   
 
 

b/a Nu P2/Ac NuP2/Ac 
1.0 2.98 16 47.7 

1.43 3.08 16.5 50.9 
2.0 3.39 18 61.0 

Circular tube 3.66 12.6 46.0 
 
The rectangular channel with b/a = 2.0 provides the largest heat transfer rate, which is larger than for a 

circular tube.           < 
 
COMMENTS:  The Nusselt numbers for the rectangular channel are all less than 3.66 for the circular 
tube, but their convective heat transfer rates are larger than that of the circular tube because their P2/Ac 
values are larger. 
 
 

b

a



PROBLEM 8.88  
KNOWN:  Heat exchanger to warm blood from a storage temperature 10°C to 37° at 200 ml/min.  
Tubing has rectangular cross-section 6.4 mm × 1.6 mm sandwiched between plates maintained at 
40°C.  
FIND:  (a) Length of tubing and (b) Assessment of assumptions to indicate whether analysis under- or 
over-estimates length.  
SCHEMATIC:   

 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Incompressible liquid with negligible viscous 
dissipation, (3) Blood flow is fully developed, (4) Blood has properties of water, and (5) Negligible 
tube wall and contact resistance. 
 
PROPERTIES:  Table A-6, Water ( mT  ≈ 300 K):  cp,f = 4179 J/kg⋅K, ρf = 1/vf = 997 kg/m

3
, νf = 

μfvf = 8.58 × 10
-7

 m
2
/s, k = 0.613 W/m⋅K, Pr = 5.83. 

 
ANALYSIS:  (a) From an overall energy balance and the rate equation, 
 
 ( )p m,o m,i s LMTDq m c T T hA T= − = Δ&       (1) 
 
where 
 

 
( )

( ) ( )
( )

1 2
LMTD

1 2

40 15 40 37T TT 11.7 C.
ln T / T ln 25 / 3

− − −Δ −Δ
Δ = = =

Δ Δ
o  

 
To estimate h,  find the Reynolds number for the rectangular tube, 
 

 m h
D 7 2

u D 0.326 m/s 0.00256 mRe 973
8.58 10 m / sν −

×
= = =

×
 

where 
 ( ) ( )h cD 4 A / P 4 6.4 mm 1.6 mm / 2 6.4 1.6 mm 2.56 mm= = × + =  
 
 ( ) 5 2

cA 6.4 mm 1.6 mm 1.024 10 m−= × = ×  
 

 ( )6 3 5 2
m c cu m/ A /A 200 m /60 s 10 m / m /1.024 10 m 0.326 m/s.ρ − −= = ∀ = × =&& l l  

 
Hence the flow is laminar, but assuming fully developed flow with an isothermal surface from Table 
8.1 with b/a = 6.4/1.6 = 4, 

 2h
D

hD 4.44 0.613 W/m KNu 4.44          h 1063 W/m K.
k 0.00256 m

× ⋅
= = = = ⋅  

 
          Continued … 
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PROBLEM 8.88 (Cont.) 
 
From Eq. (1) with 
 
 ( ) 3 2

sA PL 2 6.4 1.6 10 m L=1.6 10 L− −= = + × × ×  
 
 3 5 2 3

c mm A u 997 kg/m 1.024 10 m 0.326 m/s 3.328 10  kg/sρ − −= = × × × = ×&  
 
the length of the rectangular tubing can be found from Eq. (1) as 
 

( )3 2 -2 23.328 10  kg/s 4179 J/kg K 37 10 K 1063 W/m K 1.6 10 Lm 11.7 K−× × ⋅ − = ⋅ × × ×  
 
 L 1.9 m.=           < 
 
(b) Consider these comments with regard to whether the analysis under- or over-estimates the length, 
 

⇒ With xfd,h ≈ 0.05DhReD = 0.12 m and xfd,t = xfd,hPr = 0.73 m, the thermal development may 
not be negligible and would contribute to increasing heat transfer; the present analysis 
over predicts the length, 

⇒ negligible tube wall resistance - depends upon materials of construction; if plastic, 
analysis under predicts length, 

⇒ negligible thermal contact resistance between tube and heating plate - if present, analysis 
under predicts length. 

 



PROBLEM 8.89 
 
KNOWN:  Coolant flowing through a rectangular channel (gallery) within the body of a mold. 
 
FIND:  Convection coefficient when the coolant is process water or ethylene glycol. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) Gallery can be approximated as a rectangular channel with a uniform surface 
temperature, (2) Fully developed flow conditions. 
 
PROPERTIES:  Table A.6, Water ( mT  = (140 + 15)°C/2 = 350 K):  ρ = 974 kg/m3, μ = 365 × 10-6 
N⋅s/m2, ν = μ/ρ = 3.749 × 10-7 m2/s, k = 0.668 W/m⋅K, Pr = 2.29;  Table A.5, Ethylene glycol ( mT  = 350 
K):  ρ = 1079 kg/m3, ν = 3.17 × 10-6 m2/s, k = 0.261 W/m⋅K, Pr = 34.6. 
 
ANALYSIS:  The characteristic length of the channel, the hydraulic diameter, Eq. 8.66, is h cD 4A P=  
where Ac is the cross-sectional flow area and P is the wetted perimeter.  For our channel, 
 

 
( )
( ) ( )h

4 a b 4 0.090m 0.0095mD 0.0172m
2 a b 2 0.090 0.0095 m

× × ×
= = =

+ +
 

 
For the water coolant, from the continuity equation, find the Reynolds number to characterize the flow 

 
3 3

m
c

V 1.3 10 m su 1.52m s
A 0.090m 0.0095m

−×
= = =

×

&
 

 

 m h
Dh 7 2

u D 1.52m s 0.0172mRe 69,736
3.749 10 m sν −

×
= = =

×
 

 
Since the flow is turbulent, and assuming fully developed conditions, use the Dittus-Boelter correlation, 
Eq. 8.60, to estimate the convection coefficient, 

 0.8 0.4h
Dh Dh

hDNu 0.023Re Pr
k

= =  ( ) ( )0.8 0.40.023 69,736 2.29 240= =  
 

 2
w

0.668W m Kh 240 9326 W m K
0.0172m

⋅
= × = ⋅  < 

 
Repeating the calculations using properties for the ethylene glycol coolant, find 

 DhRe 8, 247=                DhNu 128=                2
egh 1957 W m K= ⋅  < 

 
Continued...
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COMMENTS:  (1) The convection coefficient for the water coolant is more than 4 times greater than 
that with the ethylene glycol coolant.  The corrosion protection afforded by the latter coolant greatly 
compromises the thermal performance of the gallery.  In such situations, it is useful to explore a 
compromise between corrosion protection and thermal performance by using an aqueous solution of 
ethylene glycol (50%-50%, for example). 
 
(2) Recognize that for the ethylene glycol coolant calculation the Reynolds number is slightly below the 
lower limit of applicability of the Dittus-Boelter correlation, and the Gnielinski correlation would be more 
accurate. 



PROBLEM 8.90  
KNOWN:  Heat sink with 20 passages for air flow removes power dissipation from circuit 
board.  
FIND:  Operating temperature of the board and pressure drop across the sink.  
SCHEMATIC:   

 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Ideal gas with negligible viscous 
dissipation and pressure variation, (3) Negligible thermal resistance between the circuit 
boards and air passages, (4) Sink surface and board are isothermal at Ts.  
PROPERTIES:  Table A-4, Air ( T  ≈ 310 K,1 atm):  ρ = 1.1281 kg/m3, cp = 1008 J/kg⋅K, ν 
= 16.89 × 10-6 m2/s, k = 0.0270 W/m⋅K, Pr = 0.706. 
 
ANALYSIS:  The air outlet temperature follows from Eq. 8.41b,  

 s m,o

s m,i p

T T PLhexp .
T T m c

⎛ ⎞−
= −⎜ ⎟⎜ ⎟− ⎝ ⎠&

 

 
The mass flow rate for both heat sinks is  
 3 3 2m 1.1281 kg/m 0.060 m / s 6.77 10  kg/sρ −= ∀ = × = ×&&  
 
and the Reynolds number for a rectangular passage is  

 m h
D

u DRe
ν

=  
 
where ( ) ( )h cD 4A / P 4 6 mm 25 mm / 2 6 25 mm 9.68 mm= = × + =  
 

 
( )

2
m 3 6 2c

m/20 6.77 10  kg/s/20u 20.0 m/s
A 1.1281 kg/m 6 25 10 mρ

−

−
×

= = =
× ×

&
 

 

giving 
3

D 6 2
20.0 m/s 9.68 10  mRe 11,460.

16.89 10  m / s

−

−
× ×

= =
×

 
 
Assume the flow is turbulent and fully developed and using the Dittus-Boelter correlation find  
 ( ) ( )4 /5 0.44/5 0.4

DNu 0.023Re Pr 0.023 11,460 0.706 35.4= = =  
 

 2
h

Nu k 35.4 0.027 W/m Kh 98.6 W/m K.
D 0.00968 m
⋅ × ⋅

= = = ⋅  

          Continued … 
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From an overall energy balance on the sink,  
 ( )p m,o m,i m,o m,i pq m c T T           T =T q/m c= − +& &  
 
 2

m,oT 27 C 50 W/6.77 10  kg/s 1008 J/kg K 27.73 C−= + × × ⋅ =o o  
 
Hence, the operating temperature of the circuit board for these conditions is  

 ( )
( )

3 2
s

2s

2 6 25 10  m 0.150m 98.6 W/m KT 27.73 exp
T 27 6.77 10  kg/s/20 1008 J/kg K

−

−

⎡ ⎤
+ × × × ⋅− ⎢ ⎥= −⎢ ⎥− × × ⋅⎢ ⎥⎣ ⎦

 

 
 sT 30.1 C.= o           < 
 
The pressure drop in the rectangular passage for the smooth surface condition follows from 
Eqs. 8.22 and 8.21  

 
2
m

h

 up f L
D
ρ

Δ =  

 
where  
 D

2f (0.790ln(Re ) 1.64) 0.032.−= − =  
  

 ( )23
21.1281 kg/m 20.0 m/s

p 0.0320 0.150 m 224 N/m .
0.00968 m

Δ = × =    < 
 
COMMENTS:  (1) The analysis has been simplified by assuming the channel is rectangular 
and all four sides experience heat transfer.  Since the insulated surface is a small portion of 
the total passage surface area, the effect can’t be very large. (2) The power required to move 
the air through the heat sink is Pelec = ∀& Δp = 0.060 m3/s × 224 N/m2 = 13.4 W. (3) The 
assumption T  ≈ 310 K for evaluating properties is an overestimate.  The calculation could be 
repeated for T  = 300 K for greater accuracy. 
 



PROBLEM 8.91 
 
KNOWN:  Channel formed between metallic blades dissipating heat by internal volumetric generation. 
 
FIND:  (a) The heat removal rate per blade for the prescribed thermal conditions and (b) Time required to 
slow a train of mass 106 kg from 120 km/h to 50 km/h. 
 
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state conditions for channel blades and air flow, (2)  The blades form a 
channel of rectangular (a × b) cross-section and length L, (3) Ideal gas with negligible viscous dissipation, 
pressure variation, and axial conduction, and (4) Fully developed flow conditions in the channel. 
 
PROPERTIES:  Table A.4, Air ( mT 350≈  K, 1 atm): ρ = 0.995 kg/m3, cp = 1009 J/kg ⋅K, ν = 20.92 × 
10-6 m2/s, k = 0.030 W/m⋅K, Pr = 0.700. 
 
ANALYSIS:  (a) The heat removal rate by the air from a single channel (one blade) follows from an 
overall energy balance, 
 ( )p m,o m,iq mc T T= −&  (1) 

where the outlet temperature can be determined from Eq. 8.41b, 

 s m,o

s m,i p

T T PLexp h
T T mc

⎛ ⎞−
= −⎜ ⎟⎜ ⎟− ⎝ ⎠&

 (2) 

The hydraulic diameter, Dh, follows from Eq. 8.66, 
 

 
( )
( )

( )
( )

2
c

h
4 a b 4 0.220 0.004 m4AD 0.0079 m

P 2 a b 2 0.220 0.004 m
× ×

= = = =
+ +

 (3) 

 
Assuming mT 350K= , the Reynolds number is 
 

 m h
Dh 6 2

u D 50m s 0.0079mRe 18,779
20.92 10 m sν −

×
= = =

×
 (4) 

 
Using the Dittus-Boelter correlation, Eq. 8.60, 
 

 ( ) ( )0.8 0.40.8 0.4h
Dh rDh

hDNu 0.023Re P 0.023 18,779 0.700 52.37
k

= = = =  (5) 

Continued... 



 
PROBLEM 8.91 (Cont.) 

 

 20.030 W m Kh 52.37 199 W m K
0.0079m

⋅
= × = ⋅  

 
Hence, the outlet temperature is 
 

 
( )

( )m,o 2600 T 2 0.220 0.004 m 0.070m
exp 199 W m K

0.0438kg s 1009J kg K600 25 C

− ⎛ ⎞+ ×
= − ⋅⎜ ⎟× ⋅⎝ ⎠− o

 

 
 m,oT 100.7 C= o  
 
where  
 
 m&  = ρAcum = 0.995 kg/m3 × (0.220 × 0.004) m2 × 50 m/s = 0.0438 kg/s  
 
and the rate of heat removal per blade, from Eq. (1), is 

 ( )q 0.0438kg s 1009J kg K 100.7 25 C 3.346kW= × ⋅ − =o  < 
 
(b) From an energy balance on the locomotive over an interval of time, Δt, the heat energy transferred to 
the air stream results in a change in kinetic energy of the train, 
 
 out f iE E KE KE− = Δ = −  (6) 
 

 ( ) ( )2 2
f i

1q N t M V V
2

− × ×Δ = −  

 ( ) 613346 W blade 2000blades t s 10 kg
2

− × ×Δ = ×
2 2

2 250,000 120,000 m s
3600 3600

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

 t 69sΔ =  < 
 
COMMENTS:  (1) For the channel, L/Dh = 0.070 m/0.0079 m = 8.9 < 10 so that the assumption of fully 
developed conditions may not be satisfied.  Recognize that the flow at the channel entrance may be highly 
turbulent because of the upstream fan swirl and ducting. 
 
(2) What benefits could be realized by increasing the heat transfer coefficient?  Aside from increasing 
velocity, what design changes would you make to increase h? 
 
(3) Our assumption for mT  = 350 K at which to evaluate properties is reasonable considering Tm = 
(100.7 + 25)°C/2 = 335 K. 



PROBLEM 8.92  
KNOWN:  Printed-circuit board (PCB) with uniform temperature Ts cooled by laminar, fully 
developed flow in a parallel-plate channel.  The air flow with an inlet temperature of Tm,i is driven by 
a pressure difference, Δp.  
FIND:  The average heat removal rate per unit area, ( )2

sq W / m ,′′  from the PCB. 
 
SCHEMATIC:   
 

 
 
 
 
 
 
ASSUMPTIONS:  (1) Laminar, fully developed flow, (2) Upper and lower walls of the channel are 
insulated and of infinite extent in the transverse direction, (3) PCB has uniform surface temperature, 
(4) Constant properties, (5) Ideal gas with negligible viscous dissipation. 
 
PROPERTIES:  Table A-4, Air (Tm = 293 K, 1 atm):  ρ = 1.192 kg/m3, cp = 1007 J/kg⋅K, ν = 1.531 
× 10-5 m2/s, k = 0.0258 W/m⋅K, Pr = 0.709. 
 
ANALYSIS:  The energy equations for determining the heat rate from one surface of the board are 
Eqs. 8.34 and 8.41b 
 
 ( )p m,o m,i s sq m c T T q A′′= − =&        (1) 
 

 s m,o h
s m,i p

T T P L hexp
T T m c

⎛ ⎞−
= −⎜ ⎟

⎜ ⎟− ⎝ ⎠&
        (2) 

 
where As = Lw and P = w, since heat transfer is only from one surface, where w is the width in the 
transverse direction.  For the fully developed flow condition, the velocity is estimated from the friction 
pressure drop relation, Eq. 8.22a, 
 

 ( )( )2
m hp f u / 2 L / DρΔ =         (3) 

 
where the hydraulic diameter for the channel cross section is 
 

 
( )
( )

c
h

4 w a4AD 2a a w
P 2 w a

= = = <<
+

 

 
The friction factor f from Table 8.1 for the cross section b/a = ∞ is 
 
 Dhf Re 96⋅ =           (4) 
 
where the Reynolds number is 
 
 Dh m hRe u D /ν=          (5) 

 
          Continued … 
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PROBLEM 8.92 (Cont.) 
 
and the flow rate through one channel is 
 
 ( )c m mm A u wa uρ ρ= =&         (6) 
 
For fully developed laminar flow from Table 8.1. 
 
 D hNu h D / k 4.86= =         (7) 
 
Substituting Eqs. (4) and (5) into Eq. (3) and solving for um yields 
 

2 2 2 5 2 3
m hu pD / 48 L 2N / m (0.01m) / 48 1.531 10 m / s 1.192kg / m 0.15m 1.52m / s−= Δ νρ = × × × × × =  

5 2
m hRe u D / 1.52m / s 0.01m /1.531 10 m / s 994−= ν = × × =  

 
Thus the flow is laminar, as assumed. From Eqs. (6), (7), and (2), m / w&  = ρuma = 1.192kg/m3× 1.52 
m/s × 0.005 m = 0.00907 kg/s·m. D hh Nu k / D= = 4.86 × 0.0258 W/m·K/0.01m = 12.5 W/m2·K. Tm,o 
= Ts - (Ts – Tm,i)exp(-L h /( m& /w)cp) = 65°C - 45°Cexp(-0.15m × 12.5W/m2·K/0.00907kg/s·m× 1007 
J/kg·K) = 28.4°C. 
 
From Eq. (1) 
 

p m,o m,i

2

mq ' c (T T ) 0.00907kg / m s 1007J / kg K (28.4 20) C 76.5W / m
w

q" q '/ L 510W / m

= − = ⋅ × ⋅ × − ° =

= =

&

  < 

 
COMMENTS:  (1) The thermophysical properties of the air are evaluated at the average mean 
temperature, T m = (Tm,i + Tm,o)/2. 
 
(2) The fully developed flow length, xfd,t, for the channel follows from Eq. 8.23, 
 
 fd,t h Dhx D 0.05Re Pr= ×  
 
 fd,tx 2 0.010 m 0.05 7954 0.709 5.6 m= × × × × =  
 
Since L << xfd,t, we conclude that the flow is not likely to be fully developed. 
 
 



PROBLEM 8.93  
KNOWN:  Surface thermal conditions and diameters associated with a concentric tube 
annulus.  Water flow rate and inlet temperature.  
FIND:  (a) Length required to achieve desired outlet temperature, (b) Heat flux from inner 
tube at outlet.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Fully developed conditions throughout, 
(3) Adiabatic outer surface, (4) Uniform temperature at inner surface, (5) Constant properties, 
(6) Water is incompressible liquid with negligible viscous dissipation.  
PROPERTIES:  Table A-6, Water ( )mT 320K :=   cp = 4180 J/kg⋅K, μ = 577 × 10-6 N⋅s/m2, 

k = 0.640 W/m⋅K, Pr = 3.77.  
ANALYSIS:  (a) From Eq. 8.41a, 

 p p s m,oo
i i s m,i

m c m c T TTL n n .
Ph T  D h T Tπ

−Δ
= − = −

Δ −

& &
l l  

 

With ( )
( ) ( ) ( )

o im h
D 2 2 o io i

m D D u D 4 mRe
D D/4  D D

ρ
μ π μπ μ

−
= = =

+−

& &
 

 

 
( )

D 6 2
4 0.02 kg/sRe 353

0.125m 577 10 N s/mπ −
×

= =
× ⋅

 

 
the flow is laminar.  Hence, from Eq. 8.69 and Table 8.2,  

 
( )

2
i i

h

k 0.64 W/m Kh h Nu 7.37 63 W/m K
D 0.100 0.025  m

⋅
= = = = ⋅

−
 

 

and 
( )

( )
( )
( )2

0.02 kg/s 4180 J/kg K 100 75 C
L n 19.7 m.

0.025m 63 W/m K 100 20 Cπ

⋅ −
= − =

⋅ −

o

o
l     < 

 
(b) From Eq. 8.67 

 ( ) ( ) ( ) 2
i i s,i m,o 2

Wq L h T T 63 100 75 C=1575 W/m .
m .K

′′ = − = − o    < 

COMMENTS:  The total heat rate to the water is 

( ) ( )p m,o m,iq m c  T T 0.02 kg/s 4180 J/kg K 55 C 4598 W.= − = × ⋅ =o&  



PROBLEM 8.94  
KNOWN:  Surface thermal conditions and diameters associated with a concentric tube 
annulus.  Water flow rate and inlet temperature.  
FIND:  Length required to achieve desired outlet temperature.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Fully developed conditions throughout, 
(3) Adiabatic outer surface, (4) Uniform temperature at inner surface, (5) Constant properties, 
(6) Incompressible liquid with negligible viscous dissipation.  
PROPERTIES:  Table A-6, Water ( )mT 320K :=   cp = 4180 J/kg⋅K, μ = 577 × 10-6 N⋅s/m2, 

k = 0.640 W/m⋅K, Pr = 3.77.  
ANALYSIS:  From Eq. 8.41a,  

 p p s m,oo
i i s m,i

m c m c T TTL n n .
P h T  D h T Tπ

−Δ
= − = −

Δ −

& &
l l  

With 

 ( )
( ) ( ) ( )

o im h
D 2 2 o io i

m D D u D 4 mRe
D D/4  D D

ρ
μ π μπ μ

−
= = =

+−

& &
 

 
( )

D 6 2
4 0.30 kg/sRe 5296

0.125m 577 10 N s/mπ −
×

= =
× ⋅

 

and the flow is turbulent.  Hence, from Eq. 8.60,  

 4/5 0.4
D D

h h

k kh Nu 0.023 Re Pr
D D

= =  

 

 ( ) ( )4 / 5 0.4 20.640 W/m Kh 0.023 5296 3.77 318 W/m K
0.075 m

⋅
= = ⋅  

and hence the required length is 

 
( )

( )
( )
( )2

0.30 kg/s 4180 J/kg K 100 75 C
L n 58.4 m.

0.025m  318 W/m K 100 20 Cπ

⋅ −
= − =

⋅ −

o

o
l    < 

 
COMMENTS:  (1) Increasing &m  by a factor of 15 increases ReD accordingly, and the flow 
is turbulent.  However, h  increases by a factor of only 5 from the result of Problem 8.93, in 
which case the tube length must be a factor of 3 larger than that of Problem 8.93. (2) The 
Gnielinski correlation would be more accurate than the Dittus-Boelter correlation for the low 
(but turbulent) conditions suggested by the value of the Reynolds number.  



PROBLEM 8.95  
KNOWN:  Inner and outer tube surface conditions for an annulus.  
FIND:  (a) Velocity profile, (b) Temperature profile and expression for inner surface Nusselt number.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Laminar, fully developed flow, (3) Uniform heat 
flux at inner surface, (4) Adiabatic outer surface, (5) Constant properties, (6) Applicability of Eq. 8.34.  
ANALYSIS:  (a) From Section 8.1.3, the general solution to Eq. 8.12, which also applies to annular 
flow as represented in Figure 8.11, is 

 ( )
2

1 2
1 dp ru r  C  n r C .

dx 4μ
⎛ ⎞= + +⎜ ⎟
⎝ ⎠

l  

Applying the boundary conditions,  

 ( )
2
i

i 1 i 2
r1 dpu r 0          0  C  nr C

dx 4μ
⎛ ⎞= = + +⎜ ⎟
⎝ ⎠

l  
 

 ( )
2
o

o 1 o 2
r1 dpu r 0          0  C  nr C .

dx 4μ
⎛ ⎞= = + +⎜ ⎟
⎝ ⎠

l  

Hence, 

 
( )

22
o i

22 2
o o oi

1 2
i o i o

rr1 dp  
dx 4 4 rr r n r1 dp 1 dpC    C     

n r / r dx 4 dx 4 4 n r / r

μ

μ μ

⎛ ⎞⎛ ⎞ ⎜ ⎟−⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎛ ⎞ ⎛ ⎞⎝ ⎠ ⎜ ⎟= = − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

l

l l
 

and the velocity distribution is 

 ( ) ( )

22 22
o o i

i o

rr r1 dp r 1 dp n ru r     
dx 4 4 dx 4 4 n r / rμ μ

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎜ ⎟⎜ ⎟= − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

l

l
 

     
( )

22
o oi

i o

rr n r1 dp   
dx 4 4 n r / rμ

⎛ ⎞⎛ ⎞ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

l

l
 

 ( ) ( ) ( )
( ) ( )

22 2 i oo
o o

i o

r / r 1r dpu r   1 r/r n r/r .
4 dx n r / rμ

⎡ ⎤−⎛ ⎞ ⎢ ⎥= − − +⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
l

l
        (1)  < 

 
(b) For fully developed conditions with uniform surface heat flux,  
 mv 0           T/  x dT / dx const.∂ ∂= = =  
          Continued … 



PROBLEM 8.95 (Cont.)  
Hence, from Eq. 8.48, which also applies for annular flow,  

 mdT1  T u  r  
r  r  r dx

⎛ ⎞ =⎜ ⎟
⎝ ⎠

∂ ∂
∂ ∂ α

 
 
Substituting the velocity distribution, with 

 
( )

( )

22
i oo

1 2
i o

r / r 1r dpC             C
4 dx n r / rμ

−⎛ ⎞= − =⎜ ⎟
⎝ ⎠ l

      (2) 

it follows that ( ) ( )21 m
o 2 o

1  T C dT  r  1 r/r C  n r/r .
r  r  r dx

∂ ∂
∂ ∂ α

⎛ ⎞ ⎡ ⎤= − +⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠
l  

 

 
3

1 m
2 32 oo

 T C dT r rr    r C r n  dr C
 r dx rr

∂
∂ α

⎡ ⎤
= ∫ − + +⎢ ⎥

⎢ ⎥⎣ ⎦
l  

 

 
3

31 m
22 oo

C T C dT r r r r r  C n  
 r dx 2 2 r 4 r4r

∂
∂ α

⎡ ⎤⎛ ⎞
= − + − +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
l  

 
and the temperature distribution is  

 ( )
2 4 2 2

1 m
2 3 42 oo

C dT r r r r rT r   C n  C  nr C .
dx 4 4 r 416 rα

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − + − + +

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
l l  (3)  < 

 
From the requirement that oq 0,′′ =  it follows that )

or
T/  r 0.∂ ∂ =   Hence, 

 

 o o o 31 m
2

o

r r r CC dT  C  0
dx 2 4 4 rα

⎡ ⎤⎛ ⎞− + − + =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

 

 ( )
2
o1 m

3 2
rC dTC    C 1 .

dx 4α
= −       (4)  < 

 
From the condition that T(ri) = Ts,i, it follows that 
 

 
2 4 2 2

1 m ii i i i
4 s,i 2 3 i2 oo

r r r rC dT rC T   C n  C  nr .
dx 4 4 r 416 rα

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − − + − +
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

l l  (5)  < 

 
From Eqs. 8.67 and 8.69, the inner surface Nusselt number is  

 
( )

i h i h
i

s,i m

h  D q  DNu
k k T T

′′
= =

−
 

 
where Dh = 2(ro - ri).  To obtain a workable form of Nui, the mean temperature Tm must be evaluated.  

This may be done by substituting Eqs. (1) and (3) into Eq. 8.26 and evaluating um by substituting Eq. 
(1) into Eq. 8.8.  Since the integrations are long and tedious, they are not provided.  
COMMENTS:  From an energy balance performed for a differential control volume in the annular 

region, ( )2 2
m i i p m o idT / dx 2r q /  c  u r r .ρ′′= −  



PROBLEM 8.96  
KNOWN:  Inlet temperature, pressure and flow rate of air.  Annulus length and tube diameters.  
Pressure of saturated steam.  
FIND:  Outlet temperature and pressure drop of air.  Mass rate of steam condensation.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state, (2) Outer surface of annulus is adiabatic, (3) Air is ideal gas with 
negligible viscous dissipation and pressure variation, (4) Fully developed flow throughout annulus, (5) 
Smooth annulus surfaces, (6) Constant properties.  
PROPERTIES:  Table A-4, air ( mT  ≈ 325 K, p = 5 atm):  ρ = 5 × ρ (1 atm) = 5.391 kg/m3, cp = 1008 
J/kg⋅K, μ = 196.4 × 10-7 N⋅s/m2, k = 0.0281 W/m⋅K, Pr = 0.703.  Table A-6, sat. steam (p = 2.455 
bars):  Ts = 400 K, hfg = 2183 kJ/kg.  
ANALYSIS:  With a uniform surface temperature, the air outlet temperature is 

 ( ) i
m,o s s m,i

p

D L
T T T T exp h

m c

π
= − − −

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠&

 

With ( )2 2 3 2
c o i h o iA D D / 4 1.355 10 m , D D D 0.015mπ −= − = × = − =  and D m hRe u D /ρ μ=  

h cmD / A μ= &  16, 900,=  the flow is turbulent and the Dittus-Boelter correlation yields 
 

( ) ( )4 / 5 0.4 24 / 5 0.4
fd D

h

k 0.0281W / m K
h h 0.023 Re Pr 0.023 16, 900 0.703 90.3 W / m K

D 0.015m

⋅
≈ = = = ⋅

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 ( )
2

m,o
0.05m 5m 90.3 W / m K

T 127 C 110 C exp 116.5 C
0.03 kg / s 1008 J / kg K

π × × × ⋅
= ° − ° − = °

× ⋅

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 < 

The pressure drop is ( )2
m hp f u / 2D L,ρΔ =  where, with m cu m / A 0.03 kg / s /ρ= =&  

( )3 3 25.391kg / m 1.355 10 m 4.11m / s,−× × =  and with DRe 16, 900,=  Eq. 8.21 yields f = [0.790ln(ReD) 

– 1.64]–2 = 0.027.  Hence, 

 
( )23 2 34.11m / s 5m

p 0.027 5.391kg / m 415 N / m 4.1 10 atm
2 0.015m

−Δ ≈ × = = ×
×

  < 

The rate of heat transfer to the air is 
 ( ) ( )p m,o m,iq m c T T 0.03 kg / s 1008 J / kg K 99.5 C 3009 W= − = × ⋅ ° =&  
and the rate of condensation is then 

 3
c 6fg

q 3009 W
m 1.38 10 kg / s

h 2.183 10 J / kg

−= = = ×
×

&      < 

COMMENTS:  (1) With ( )m m,i m,oT T T / 2 340 K,= + =  the initial estimate of 325 K is too low and 
an iterative solution should be obtained, (2) For a steam flow rate of 0.01 kg/s, approximately 14% of 
the outflow would be in the form of saturated liquid, (3) With L/Dh = 333, the assumption of fully 
developed flow throughout the tube is excellent. 



PROBLEM 8.97  
KNOWN:  Dimensions and surface thermal conditions for a concentric tube annulus.  Water flow rate 
and inlet temperature.  
FIND:  (a) Tube length required to achieve desired outlet temperature, (b) Inner tube surface 
temperature at outlet.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Uniform heat flux at inner surface, (3) Adiabatic 
outer surface, (4) Fully developed flow at exit, (5) Constant properties, (6) Incompressible liquid with 
negligible viscous dissipation.  
PROPERTIES:  Table A-6, Water ( )mT 328K :=   cp = 4183 J/kg⋅K; (Tm,o = 358K):   μ = 332 × 

10
-6 N⋅s/m

2, k = 0.673 W/m⋅K, Pr = 2.07. 
 
ANALYSIS:  (a) From the overall energy balance, Eq. 8.34, 
 ( )i p m,o m,iq q L m c  T T′= = −&  

 
( ) ( ) ( )p m,o m,i

i

m c  T T 0.04 kg/s 4183 J/kg K 85 25 C
L 2.51 m.

q 4000 W/m

− ⋅ −
= = =

′

o&
  < 

(b) From Eqs. 8.1 and 8.5, 

 ( )
( ) ( ) ( )

o im h h
D 2 2c o io i

m D D u D m D 4 mRe
A D D/4  D D

ρ
μ μ π μπ μ

−
= = = =

+−

&& &
 

 

 
( )

D 6
4 0.04 kg/sRe 2045.

0.075 m 332 10 kg/s mπ −
×

= =
× ⋅

 

 
Hence the flow is laminar, and with Di/Do = 0.5, it follows from Eq. 8.72 and Table 8.3 
 i iiNu Nu 6.24= =  
 

 2
i

h

k 0.673 W/m Kh 6.24 6.24 168 W/m K.
D 0.025 m

⋅
= = = ⋅  

From Eq. 8.67, 

 ( ) i i i
s,i m,o m,o

i i

q q / DT L T T
h h

π′′ ′
= + = +  

 

 ( )
( )

s,i 2
4000 W/mT L 85 C 388 C.

0.025m  168 W/m Kπ
= + =

⋅
o o     < 

COMMENTS:  Unless the water is pressurized, local boiling would occur at the tube surface, causing 
hi to be larger. 



PROBLEM 8.98  
KNOWN:  Heat rate per unit length at the inner surface of an annular recuperator of 
prescribed dimensions.  Flow rate and inlet temperature of air passing through annular region.  
FIND:  (a) Temperature of air leaving the recuperator, (b) Inner pipe temperature at inlet and 
outlet and outer pipe temperature at inlet.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Uniform heating 
of recuperator inner surface, (4) Adiabatic outer surface, (5)Air is ideal gas with negligible 
viscous dissipation and pressure variation, (6) Fully developed air flow throughout.  
PROPERTIES:  Table A-4, Air (given):  cp = 1030 J/kg⋅K, μ = 270 × 10-7 N⋅s/m2, k = 0.041 
W/m⋅K, Pr = 0.68.  
ANALYSIS:  (a) From an energy balance on the air 
 ( )i a p,a a,2 a,1q  L m  c T T′ = −&  
 

 
5

i
a,2 a,1

a p,a

q  L 1.25 10 W/m 7mT T 300 K 704.5 K.
m  c 2.1 kg/s 1030 J/kg K

′ × ×
= + = + =

× ⋅&
  < 

(b) The surface temperatures may be evaluated from Eqs. 8.67 and 8.68 with  
( )

( ) ( ) ( )
( )

( )
a o i am h

D 7 22 2 o io i

m  D D 4 2.1 kg/s4 m u DRe
D D 4.05m  270 10 N s/m/4  D D

ρ
μ π μ ππ μ −

−
= = = =

+ × ⋅−

& &
 

 DRe 24, 452=  
the flow is turbulent and from Eq. 8.60 

( ) ( )4 /5 0.44/5 0.4 2
i o D

h

k 0.041 W/m Kh h 0.023 Re Pr 0.023 24,452 0.68 52 W/m K.
D 0.05 m

⋅
≈ ≈ = = ⋅  

 
With 5 2

i i iq q /  D 1.25 10 W/m/ 2m 19,900 W/mπ π′′ ′= = × × =  
 
Eq. 8.67 gives 
 ( ) 2 2

s,i m i iT T q / h 19,900 W/m / 52 W/m K 383K′′− = = ⋅ =  

 s,i,1 s,i,2T 683K         T 1087K.= =        < 

From Eq. 8.68, with ( )o s,o mq 0,  T T 0.′′ = − =   Hence 

 s,o,1 a,1T T 300K.= =          < 



PROBLEM 8.99  
KNOWN:  A concentric tube arrangement for removing heat generated from a biochemical reaction in 
a settling tank.  Water is supplied to the annular region at rate of 0.2 kg/s.  
FIND:  (a) The inlet temperature of the supply water that will provide for an average tank surface 
temperature of 37°C; assume and then justify fully developed flow and thermal conditions; and (b) 
Sketch the water and surface temperatures along the flow direction for two cases:  the fully developed 
conditions of part (a), and when entrance effects are important.  Comment on the features of the 
temperature distributions, with particular attention to the longitudinal gradient on the tank surface.  
What change to the system or operating conditions would you make to reduce the gradient?  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Fully developed flow and thermal conditions, (2) Inner annulus surface has 
uniform heat flux, while outer surface is insulated, (3) Constant properties, (4) Incompressible liquid 
with negligible viscous dissipation. 
 
PROPERTIES:  Table A-6, Water (Tm = 304 K):  ρ = 995.6 kg/m3, cp = 4178 J/kg⋅K, ν = 7.987 × 10-

7 m2/s, k = 0.618 W/m⋅K, Pr = 5.39. 
 
ANALYSIS:  (a) The overall energy balance on the fluid passing through the concentric tube is 
 ( )p m,i m,oq m c T T= −&         (1) 

and from an energy balance on the reaction tank, 

 2 5 3 2
iq q( D / 4) / L 1 10 W / m ( (0.08m) / 4) 1m 503W.= = × × =& π π    (2) 

The convection rate equation applied to the inner surface As,i is 
 i s,i s m i i s mq h A (T T ) h D L(T T )= − = −π       (3) 
 
where sT  is the average inner surface temperature and 

 ( )m m,i m,oT T T / 2.= +         (4) 
 
To estimate h,  begin by characterizing the flow with 
 Dh m h h o i c mRe u D / D D D m A uν ρ= = − =&  

where ( )2 4
c o iA D D / 4.π= −   Substituting numerical values find 

 DhRe 1779=  
Assuming fully developed conditions for laminar flow through an annulus, it follows from Table 8.3 
and Eq. 8.72 with Di/Do = 0.8, 
 
 i

2
i h iNu h D / k 5.58 h 172 W / m K= = = ⋅  

          Continued … 



PROBLEM 8.99 (Cont.) 
 
Using Eq. (3) with ih ,  and sT 37 C,= °  and q from Eq. (2), find 
 
 mT 25.4 C= °  
 
From Eqs. (1) and (4), calculate 
 
 m,i m,oT 25.1 C T 25.7 C= ° = °       < 
 
For this annulus, the thermal entry length from Eq. 8.23 is 
 
 fd,t h Dhx D 0.05 Re Pr= ×  
 
 ( )fd,tx 0.100 0.080 m 0.05 1779 5.39 9.59 m= − × × × =  
 
Since L = 1 m, we conclude that entry length effects are significant, and the fully developed flow 
assumption is approximate. 
 
(b) Since the fluid is being heated by flow over a surface with uniform heat flux, the mean fluid 
temperature, Tm(x), will increase linearly with longitudinal distance x.  Assuming fully developed 
conditions, the surface temperature Ts(x) will likewise increase linearly with distance as shown in the 
schematic below.  Note that the longitudinal temperature difference is about 0.6°C, and that the inlet 
mean temperature is 25.1°C. 
 
Considering now entrance length effects, the convection coefficient is no longer uniform, and will be 
largest near the entrance, and larger than for the fully developed flow everywhere.  Hence, we expect 
the surface temperature near the entrance to be closer to the mean fluid temperature than elsewhere.  
We also expect the average mean temperature of the fluid will be higher so that the average surface 
temperature, sT ,  remains at 37°C.  However, the rise in temperature of the fluid (Tm,o – Tm,i) will 
remain the same, about 0.6°C, since the heat removal rate is the same.  Increasing the flow rate will 
tend to minimize the longitudinal gradient by reducing (Tm,o – Tm,i) and increasing h(x).  The graph 
below illustrates the distinctive features of the fully developed flow and entrance length effects. 
 

 
 
 
 
 
 
 
 
 
 
 
 
COMMENTS:  The thermophysical properties required in the convection correlation and the energy 
equations should be evaluated at Tm = (Tm,i + Tm,o)/2  ≈ 298 K. 

25 2525 25



PROBLEM 8.100  
KNOWN:  Dimensions and thermal conductivity of plastic pipe.  Volumetric flow rate and 
temperature of inlet air.  Enhancement of inner convection coefficient and friction factor associated 
with coiled spring.  Thermal resistance of coating on outer surface.  
FIND:  (a) Air outlet temperature and fan power requirement without coating and coiled spring, (b) 
Effect of coiled spring on air outlet temperature and fan power, (c) Effect of coating on outlet 
temperature.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state, (2) Negligible heat transfer from air in vertical pipe sections, (3) 
Air is ideal gas with negligible viscous dissipation and pressure variation, (4) Smooth interior surface 
without spring, (5) Negligible coating thickness, (6) Constant properties. 
 
PROPERTIES:  Table A-4, Air (Tm,i = 29°C):  ρi = 1.155 kg/m3.  Air ( mT  ≈ 25°C):  cp = 1007 

J/kg⋅K, μ = 183.6 × 10-7 N⋅s/m2, ka = 0.0261 W/m⋅K, Pr = 0.707. 
 
ANALYSIS:  (a) From Eq. (8.45a), 

 m,o s
m,i p

T T UAexp
T T m c
∞

∞

⎛ ⎞−
= −⎜ ⎟⎜ ⎟− ⎝ ⎠&

 

where, from Eqs. (3.36) and (3.37), 
 

 ( ) ( )1 o i
s tot

i i o o

ln D / D1 lUA R
h D L 2 L k h D Lπ π π

− = = + +  

 
With i im 0.0289 kg / sρ= ∀ =&&  and D iRe 4m / D 13, 350,π μ= =&  the pipe flow is turbulent.  With L/Di = 
100, we may assume fully developed flow throughout the pipe, and from Eq. (8.60), 
 

( ) ( )4 / 5 0.34 / 5 0.3 2
i D

i

ka 0.0261W / m K
h 0.023Re Pr 0.023 13,350 0.707 7.20 W / m K

D 0.15m
⋅

= = = ⋅  

 

Hence,  
( )

tot
ln 0.17 / 0.151 l KR

7.20 0.15 15 2 15 0.15 1500 0.17 15 Wπ π π
⎛ ⎞

= + +⎜ ⎟× × × × × × × ×⎝ ⎠
 

 
 ( )totR 0.0196 0.0089 0.0001 K / W 0.0286 K / W= + + =  
 
Hence, 1

s totUA R 35.0 W / K and−= =  
 

( ) ( )s
m,o m,i

p

UA 35.0 W / K
T T T T exp 17 C 12 C exp 20.6 C

m c 0.0289 kg / s 1007 J / kg K∞ ∞= + − − = ° + ° − = °
× ⋅

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠&

  < 

          Continued … 



PROBLEM 8.100 (Cont.) 
 
From Eq. (8.21), f = [0.790ln(ReD) – 1.64]– 2 = 0.0291.  Hence, from Eqs. (8.22a) and (8.22b), with 

m,iu  i c/ A 1.415 m / s,= ∀ =&  
 

( )
( )

2 23i m,i 3
i

i

u 1.155kg / m 1.415m / s
P f L 0.0291 15m 0.025m / s 0.084 W

2 D 2 0.15m

ρ
≈ ∀ = × =&  < 

 
(b) With hcp = 2hi = 14.4 W/m2⋅K, the inner convection resistance is reduced from 0.0196 K/W to 
0.0098 K/W and hence the total resistance from 0.0286 K/W to 0.0188 K/W.  It follows that 

sUA 53.2 W / K=  and 
 
 m,oT 18.9 C= °          < 
 
With fcp = 1.5f, 
 
 P 0.126W=           < 
 
(c) With the coating of organic matter, there is an additional thermal resistance of the form Rt,c = 

( ) ( ) ( )2
t,c oR / D L 0.05 m K / W / 0.17m 15m 0.0062 K / W.π π′′ = ⋅ × × =   The total resistance is then Rtot = 

0.0348 K/W and sUA 28.7 W / K.=   Hence, 
 
 m,oT 21.5 C= °          < 
 
COMMENTS:  (1) The fan power requirement is small, and the process is economical, with or 
without the coiled spring.  (2) Heat transfer enhancement associated with the coiled spring is 
manifested by a 34% reduction in the total thermal resistance and a 1.7°C reduction in the outlet 
temperature.  (3) Fouling of the outer surface increases the total resistance by 22% and the outlet 
temperature by 0.9°C.  The penalty is not severe but could be ameliorated by periodic cleaning of the 
surface. 
 



PROBLEM 8.101 
 

KNOWN: Inlet and desired outlet temperature of a pharmaceutical fluid flowing in a straight 
tube or coiled tube of known diameter. Inlet velocity and tube surface temperature. 
 
FIND: (a) Length of straight tube needed to achieve the desired outlet temperature, (b) Length of 
coiled tube to achieve the desired outlet temperature, (c) Pressure drops associated with the 
straight and coiled tubes, (d) Steam condensation rate. 
 
SCHEMATIC:  
 

Lcl

Tm,o = 75°Cum = 0.2 m/s
Tm,i = 25°C

S = 25 mm

C = 100 mm

D = 12.7 mm

(b)

(a)

um = 0.2 m/s
Tm,i = 25°C

Ls

D = 12.7 mm

Ts = 100°C

Tm,o = 75°C

ρ = 1000 kg/m3

cp = 4000 J/kg·K
μ = 2 x 10-5 kg/s·m
k = 0.8 W/m·K
Pr = 10

Fluid properties

Lcl

Tm,o = 75°Cum = 0.2 m/s
Tm,i = 25°C

S = 25 mm

C = 100 mm

D = 12.7 mm

(b)

(a)

um = 0.2 m/s
Tm,i = 25°C

Ls

D = 12.7 mm

Ts = 100°C

Tm,o = 75°C

ρ = 1000 kg/m3

cp = 4000 J/kg·K
μ = 2 x 10-5 kg/s·m
k = 0.8 W/m·K
Pr = 10

Fluid propertiesFluid properties

ρ = 1000 kg/m3

cp = 4000 J/kg·K
μ = 2 × 10-3 kg/s·m
k = 0.8 W/m·K
Pr = 10

. 
 
ASSUMPTIONS: (1) Constant properties, (2) Incompressible liquid and negligible viscous 
dissipation, (3) Steady-state conditions, (4) fully developed hydrodynamic conditions at the 
entrance. 
 
PROPERTIES: Steam (Table A.6): hfg (T = 100°C) = 2257 kJ/kg. Pharmaceutical (given): ρ = 
1000 kg/m3, cp = 4000 J/kg·K, μ = 2 × 10-3 kg/s·m, k = 0.80 W/m·K, Pr = 10. 
 
ANALYSIS: 
(a) From Problem 8.27, ReD = ρumD/μ = 1270 and the flow is laminar for both cases.  Hence, 
augmentation is expected to occur in the coiled tube.  For the straight tube case a, the Hausen 
correlation is written as 

( )
s D

D 2/3
s D

0.0668 × (D/L ) Re PrhDNu  =  = 3.66 +  
k 1 + 0.04 D/L  Re Pr⎡ ⎤⎣ ⎦

 

which may be rearranged to yield 
 

Continued… 



  
PROBLEM 8.101 (Cont.) 

 

( )
s D

2/3
s D

0.0668  (D/L ) Re Prkh = 3.66 +  
D 1 + 0.04 D/L  Re Pr

⎧ ⎫
⎪ ⎪
⎨ ⎬

⎡ ⎤⎪ ⎪⎣ ⎦⎩ ⎭

 

 
( )

-3
s

-3 2/3-3
s

0.0668(12.7 × 10  m L ) × 1270 × 100.80 W/mKh = 3.66 + 
12.7 × 10  m 1 + 0.04 12.7 × 10  m/L  × 1270 × 10

⎧ ⎫
⎪ ⎪
⎨ ⎬

⎡ ⎤⎪ ⎪
⎣ ⎦⎩ ⎭

       (1) 

  
From Problem 8.27 m& = 0.0253 kg/s and the tube perimeter is 

-3 -3P = πD = π × 12.7 × 10  m = 39.9 × 10  m  
 
Equation 8.41b may be written  

  
-3

s100°C - 75°C 39.9 × 10 m × L = exp  × h
100°C - 25°C  0.0253 kg/s × 4000 J/kg K

⎛ ⎞
−⎜ ⎟⎜ ⎟⋅⎝ ⎠

         (2) 

 
Equations (1) and (2) may be solved simultaneously to yield 
 

 Ls = 9.77 m, ( h  = 286 W/m2·K)                < 
 
(b) For the coiled tube, 

1/2 1/2
DRe (D/C)  = 1270 × (12.7/100) 452.6=  

 
Therefore, C/D = 100/12.7 = 7.87 > 3, Equation 8.77 yields 
 

 2 2
D

957(C/D) 957 × (100/12.7)a = 1 +  = 1 +  = 1.0005
Re Pr 1270  × 10

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 

 0.477 0.477b = 1 +  = 1 +  = 1.0477
Pr 10

 

Therefore Equation 8.76 becomes 
 

 

1/ 33/23 1/2

D
4.343 1270 × (12.7/100)Nu  = 3.66 + + 1.158 × = 22.18

1.0005 1.0477

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 

 
Therefore, 

 2
D -3

k 0.80 W/m Kh = Nu  = 22.18 ×  = 1397 W/m K
D 12.7 × 10  m

⋅
⋅  

Equation 8.41b may be written 
 
 

Continued… 



 
PROBLEM 8.101 (Cont.) 

 
-3

2c100°C - 75°C 3.99 × 10 m × L   = exp  × 1397 W/m K
100°C - 25°C  0.0253 kg/s × 4000 J/kg K

⎛ ⎞
− ⋅⎜ ⎟⎜ ⎟⋅⎝ ⎠

 

 
 
or Lc = 2.00 m 
 

The number of coil turns is c
-3

L 2.00 mN =  =  = 6.4
πC π × 100 × 10  m

 

 

The coil length is -3 -3
clL  = NS = 6.4 × 25 × 10  m = 159 × 10  m = 159 mm         < 

 
(c)  The flow is hydrodynamically fully-developed in the straight tube.  From Equations 8.19 and 
8.22a,  

2 3 2
2m

s s -3
D

ρu64 64 1000 kg/m  × (0.2 m/s)Δp  = L  =  ×  × 9.77 m = 775 N/m
Re 2D 1270 2 × 12.7 × 10  m

      < 

For the coiled tube, Equation 8.75b is 

 f = 0.25 0.25
0.5 0.5
D

7.2 7.2 12.7 (D/C) =  × ( ) = 0.121
100Re 1270

 

 
2 3 2

2m
c c -3

ρu 1000 kg/m  × (0.2 m/s)Δp  = f L  = 0.121 ×  × 2.00 m = 379 N/m
2D 2 × 12.7 × 10  m

      < 

 
(d) The steam condensation rate, stm& , is 
 

st fg p m,o m,i m p m,o m,im h  = mc (T  - T ) = u ρAc (T  - T )& &  
or 

 

3 -3 2

st 3
0.2 m/s × 1000 kg/m  × π × (12.7 × 10  m) × 4000 J/kg K × (75 25)°Cm  =  

4 × 2257 × 10  J/kg
       

⋅ −
&

 

 -3
stm  = 2.25 × 10  kg/s&                < 

 
COMMENTS: (1) For the straight tube, xfd,t = 0.05ReDPrD = 0.05 × 1270 × 10 × 12.7×10-3 m = 
8m. The value of the entrance length for the coiled tube will be 20 to 50 percent shorter than for 
the straight tube or between approximately 4 and 6 m. The flow in the coiled tube is not fully 
developed, and actual heat transfer rates will exceed those predicted using Equation 8.76. (2) The 
coiled tube requires (2/9.77) × 100 = 20 percent of the tube length relative to the straight tube 
case. (3) The coil length is (0.159/9.77) × 100 = 1.6 percent that of the straight tube. (4) The 
pressure drop in the coiled tube is (379/775) × 100 = 48 percent that of the straight tube. (5) The 
coiled tube will induce secondary flow in the pharmaceutical, thereby reducing radial temperature 
gradients in the liquid. 



PROBLEM 8.102 
 
KNOWN:  Laminar flow within a tube of diameter Do. Inner rod diameter, Di. Mean fluid 
temperature, Tm, and tube wall temperature, Ts,o.  
FIND:  Ratio of heat transfer from the fluid to the tube wall for Di/Do = 0, 0.10, 0.25 and 0.50. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Fully developed, laminar flow, (2) Constant properties, (3) Negligible 
conduction in the rod. 
 
ANALYSIS:  A control volume analysis about the inner rod reveals that there is no heat transfer to 
or from the rod. Hence, it acts as an insulated surface. Equation 8.68 may be written for the tube 
where, from Equation 8.70 ho = Nuok/Dh = Nuok/(Do – Di). Hence, 
 

   
( ),

(1 / )
o s o m

o
o i o

Nu k T T
q

D D D
−

′′ =
−

      (1) 

 
Without the rod, Di/Do = 0 and Nuo = 3.66, yielding 
 

   , ,
,wo

( ) 3.66 ( )o s o m s o m
o

o o

Nu k T T k T T
q

D D
− −

′′ = =    (2) 

 

Hence,    ,wo/
3.66(1 / )

o
o o

i o

Nuq q
D D

′′ ′′ =
−

 

 
From Table 8.2, 
 

   Di/Do  Nuo  ,wo/o oq q′′ ′′     < 
   0  3.66  1 
   0.10  4.11  1.25 
   0.25  4.23  1.54 
   0.50  4.43  2.42 
 
COMMENTS: (1) The proposed scheme enhances the heat transfer between the fluid and the tube 
wall, (2) The fluid temperature will change as the fluid flows in the axial direction. If the rod is of 
relatively high thermal conductivity compared to the fluid, the rod will be at a nearly uniform 
temperature. Hence, the rod could no longer be considered an insulated surface, since it would cool the 
fluid in upstream locations, and heat the fluid further downstream for the case where the fluid enters 
the annular region at a temperature higher than that of the tube wall.  

Do

Di

Tm,m•
Ts,o

Rod

Tube
Do

Di

Tm,m•
Ts,o

Rod

Tube



PROBLEM 8.103 
 
KNOWN: Tubing with ethylene glycol welded to transformer to remove dissipated power. 
Maximum allowable coolant temperature rise of 6°C. 
 
FIND: Required coolant flow rate, tube length and lateral spacing of turns. 
 
SCHEMATIC: 

H = 500 mm

Dt = 230 
mm

S

D = 20 mm

Transformer, 1000 W
Ethylene glycol, Tm,i = 24°C

Ts = 47°C

H = 500 mm

Dt = 230 
mm

S

D = 20 mm

Transformer, 1000 W
Ethylene glycol, Tm,i = 24°C

Ts = 47°C
 

 
ASSUMPTIONS: (1) Constant properties, (2) Incompressible liquid and negligible viscous 
dissipation, (3) Steady-state conditions, (4) Negligible tube wall thermal resistance, (5) Fully-
developed flow, (6) All heat dissipated by transformer is transferred to ethylene glycol. 
 
PROPERTIES: Table A.5, ethylene glycol: ( mT  = 300 K, assumed): k = 0.252 W/m⋅K, cp = 
2415 J/kg⋅K, μf = 1.57 × 10-2 N⋅s/m2, Pr = 1151.  
 
ANALYSIS:  From an overall energy balance, the required flow rate is 
 p m,o m,i p m,o m,iq = mc (T - T )  or  m = q/c (T - T )& &  

 ( )m = 1000 W/ 2415 J/kg K 6K⋅ ×&  

 -2m = 6.90 × 10  kg/s&                < 
 
From Equation 8.41a the length of tubing may be determined, 

 p s m,o

s m,i

mc T  - T
L ln  

Ph T  - T
⎛ ⎞

= − ⎜ ⎟⎜ ⎟
⎝ ⎠

&
 

where P = πD.  For the tube flow, find 

 
-2

D -2 2
4m 4 × 6.90 × 10  kg/sRe  =  =  = 279.8
πDμ π × 0.020 m × 1.57 × 10  N S/m⋅

&
 

 C/D = (Dt + D) = 250/20 = 12.5;  ReD(D/C)1/2 =  279.8 × (20/250)1/2= 79.1 
 
Equation 8.77 yields 
 

Continued… 
  



PROBLEM 8.103 (Cont.) 
 
 

2
957 × (250/20)a = 1 +  = 1.0001
(279.8) × 1151

0.477b = 1 +  = 1.0004
1151

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠  

 
Therefore, Equation 8.76 is  

 

1/33/23 1/2

D
4.343 279.8 × (20/250)Nu  = 3.66 + + 1.158

1.0001 1.0004

         = 10.99

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 

 

 -3 -3 2
D

kh = h = Nu  =10.99 × 252 × 10  W/m K/20 × 10 m = 138.5 W/m K
D

⋅ ⋅  

 
Equation 8.41a becomes 
 

 
-2

2
6.90 × 10 kg/s × 2415 J/kg K (47 - 30)°C L ln 5.79 m

(47 - 24)°Cπ × 0.02 m × 138.5 W/m K 
⎛ ⎞⋅

= − =⎜ ⎟⋅ ⎝ ⎠
           < 

 
The number of turns of the tubing, N, is N = L/πD = 5.79 m/ π(0.25 m) = 7.37 and hence the 
spacing, S, is 

 S = H/N = 500 mm/7.37 = 67.8 mm              < 
 
 
COMMENT: (1) Coiling the tube results in a convective heat transfer coefficient that is 
10.99/3.66 = 3 times larger than the fully-developed value for a straight tube. (2) For a straight 
tube, the thermal entrance length is xfd,t = 0.05ReDPrD = 0.05 × 279.8 × 1151 × 0.02 m = 322 m. 
The flow will not be fully-developed, and care must be taken when using the predictions.  
 



PROBLEM 8.104  
KNOWN:  Geometry and dimensions of a tube with straight and coiled sections.  Temperature and 
convection coefficient of coolant flowing outside the tube.  Inlet temperature, mass flow rate, and 
properties of pharmaceutical fluid in tube.  
FIND:  (a) Outlet temperature of pharmaceutical, (b) Outlet temperature with inner heat transfer 
coefficient doubled in straight sections, (c) Effect of left- or right-handed spiral.  
SCHEMATIC:   
 
 
 
 
 

 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Tube wall thermal resistance is negligible. (2) Flow is fully-developed in 
coiled section. (3) Flow in last straight section is unaffected by swirl introduced in coiled section. (4) 
Constant properties.   
 
PROPERTIES:  Pharmaceutical fluid (given): ρ = 1200 kg/m3, μ = 4 × 10-3 N·s/m2, cp = 2000 J/kg·K, 
k = 0.5 W/m·K, Pr = μcp/k = 16. 
 
ANALYSIS:   
(a) The Reynolds number is 

D -3 2
4 m 4 × 0.005 kg/sRe  =  =  = 159

π D μ π × 0.01 m × 4 × 10 N s/m⋅

&
 

 
Thus the flow is laminar.  
 
1st Straight Section.  The development length in the straight section is 
 fd,h Dx  = 0.05 Re  D = 0.05 × 159 × 0.01 m = 0.08 m  
 fd,t fd,hx  = x Pr  = 0.08 m  × 16 = 1.3 m⋅  
 
The flow is thermally developing. With Pr > 5, we can use Equation 8.57 with Equation 8.56, 
 

 
[ ]

D
D 2/3

D 

0.0668 (D/L) Re  PrNu  =  3.66 +  = 7.29
1 + 0.04 (D/L) Re Pr

 

 
Thus  hi = 2

DNu k/D = 7.29 × 0.5 W/m K/0.01 m = 365 W/m K⋅ ⋅ . 
Continued… 

 
 
 
 

L = 250 mm  

C = 75 mm  

Pharmaceutical  

Coolant

ho = 500 W/m2

To = 20°C

Tm,i = 90°C
Tm,o

D = 10 mm

.=&m 0 005 kg/s

L = 250 mm  

C = 75 mm  

Pharmaceutical  

Coolant

ho = 500 W/m2

To = 20°C

Tm,i = 90°C
Tm,o

D = 10 mm

.=&m 0 005 kg/s



PROBLEM 8.104 (Cont.) 
 
The mean temperature at the end of the first straight section can be found from Equation 8.45a, 
 

 s
m,o1 m,i

p

UAT  = T  + (T  - T ) exp
mc∞ ∞

⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠&

 

where [ ]
-1-1 2 2 2

i oU = 1/h  + 1/h  = 1/365 W/m K + 1/500 W/m K  = 211 W/m K⎡ ⎤⋅ ⋅ ⋅⎣ ⎦ .   

Thus 
2

m,o1
211 W/m K × π × 0.01 m × 0.25 mT  = 20°C + (90°C - 20°C) exp  = 79.3°C

0.005 kg/s × 2000 J/kg K
⎛ ⎞⋅
−⎜ ⎟⎜ ⎟⋅⎝ ⎠

 

 
Coiled Section.  The critical Reynolds number in the coiled section is given by Equation 8.74,  
 0.5

D,C,h D,CRe  = Re 1 + 12(D/C)⎡ ⎤
⎣ ⎦  

 
where ReD,C = 2300.  Since this must be greater than 2300, the flow in the coiled section, with ReD = 
159, is still laminar.  The length of the coiled section is 6.5 π C = 6.5 π (0.075 m) = 1.53 m.  Since 
development lengths are 20 to 50% shorter in coiled tubes than in straight tubes the flow can be 
approximated as fully developed.  The Nusselt number is given by Equation 8.76, with 

 2 2
D

957 (C/D) 957 (75 mm/10 mm)a = 1 +  = 1 +  = 1.018
Re  Pr (159)  × 16

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

 

 
and b = 1 + 0.477/Pr = 1+ 0.477/16 = 1.030.  Note that ReD (D/C)1/2 = 58, therefore the criteria for 
using Equations 8.76 and 8.77 are satisfied.  Thus assuming μs = μ, 

 

1/33/23 1/2
D

D 

1/33/23 1/2

4.343 Re  (D/C)Nu = 3.66 + + 1.158
a b

4.343 159 (10 mm/75 mm)        = 3.66 + + 1.158 = 9.96
1.018 1.030

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

 
and hi = NuDk/D = 498 W/m2·K.   

Then [ ]
-1-1 2 2 2

i oU = 1/h  + 1/h  = 1/498 W/m K + 1/500 W/m K  = 250 W/m K⎡ ⎤⋅ ⋅ ⋅⎣ ⎦ . 
The outlet temperature of the coiled section can be found from Equation 8.45a, with  
As = (π D)(6.5 π C) = 0.048 m2, and the inlet temperature is the outlet temperature of the straight 
section: 

 s
m,o2 m,o1

p

UAT  = T  + (T  - T ) exp
mc∞ ∞

⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠&

 

2 2

m,o2
250 W/m K ×  0.048 mT  = 20°C + (79.3°C - 20°C) exp  = 37.9°C
0.005 kg/s × 2000 J/kg K

⎛ ⎞⋅
−⎜ ⎟⎜ ⎟⋅⎝ ⎠

 

Continued… 
 
 
 
 
 
 



PROBLEM 8.104 (Cont.) 
 
2nd Straight Section.  The overall heat transfer coefficient would be the same as in the 1st straight 
section.  The outlet temperature can be calculated from Equation 8.45a with the inlet temperature 
equal to the outlet temperature of the coiled section.  

 s
m,o3 m,o2

p

UAT  = T  + (T  - T ) exp
mc∞ ∞

⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠&

 

2 2

m,o3
211 W/m K  ×  π × 0.01 m × 0.25 mT  = 20°C + (37.9°C - 20°C) exp  

0.005 kg/s × 2000 J/kg K
⎛ ⎞⋅
−⎜ ⎟⎜ ⎟⋅⎝ ⎠

  

 Tm,o3 = 35.1°C              < 
 

(b) Repeating the calculations with hi in the straight sections doubled, in the 1st straight section:  

 
-12 2 2U = 1/730 W/m K + 1/500 W/m K  = 297 W/m K⎡ ⎤⋅ ⋅ ⋅⎣ ⎦  

 Tm,o1 = 75.4°C 
 
In the coiled section, U  is unchanged, and  
 Tm,o2 = 36.7°C 
 
In the 2nd straight section, U = 297 W/m2·K and  
 Tm,o3 = 33.2°C 
 
(c) Yes, the orientation of the springs could have an effect, because they introduce swirl that interacts 
with the swirl introduced in the coiled section.  However, the effect is probably small. 
 
COMMENTS: The analysis is only approximate.  In particular, the flow in the last section would be 
affected by the swirl introduced in the coiled section, which would in turn affect the heat transfer.  
 
 



PROBLEM 8.105 
 

KNOWN: Pressurized water inlet temperature and total mass flow rate for mold cooling and 
heating. Water channel dimensions for conventional and conformally-cooled mold. Initial hot and 
cold mold temperatures, mold dimensions and mold properties. 
 
FIND: (a) Initial heating rate of a cold (100°C) mold, initial cooling rate of a hot (200°C) mold 
for straight water channels with D = 50 mm, (b) Initial heating rate of a cold (100°C) mold, initial 
cooling rate of a hot (200°C) mold for a conformally-cooled mold with water channels of 
diameter D = 50 mm, (c) Surface areas of cooling/heating channels for both molds and 
determination of which mold will enable production of more parts per day. 
 
SCHEMATIC: 

M = 5 passages

D = 5 mm

Heating water

&m = 0.01 kg/s
Tm,i = 275°C

(a)

(b)

20 mm

60 mm

Cooling water
= 0.01 kg/s

Tm,i = 25°C

&m

Conventional mold (top half is shown)

Conformally-cooled mold (bottom half is shown)

C = 50 mm

N = 2 turns

ρ = 7800 kg/m3     

c = 450 J/kg·K

20 mm

M = 5 passages

D = 5 mm

Heating water

&m = 0.01 kg/s
Tm,i = 275°C

(a)

(b)

20 mm

60 mm

Cooling water
= 0.01 kg/s

Tm,i = 25°C

&m

Conventional mold (top half is shown)

Conformally-cooled mold (bottom half is shown)

C = 50 mm

N = 2 turns

ρ = 7800 kg/m3     

c = 450 J/kg·K

20 mm

 
 
 
 
ASSUMPTIONS: (1) Constant properties, (2) Incompressible liquid and negligible viscous 
dissipation, (3) Fully developed hydrodynamic conditions at the entrance, (4) Negligible part 
mass, (5) Water sufficiently pressurized to prevent boiling, (6) Negligible heat transfer in short 
straight sections of the channel for the conformally-cooled case. 
 
PROPERTIES: Table A.6, water: ( mT  = 260°C, assumed): k = 0.6038 W/m⋅K, cp = 4989 

J/kg⋅K, μ = 103.1 × 10-6 N⋅s/m2, Pr = 0.853. ( mT  = 40°C, assumed): k = 0.6316 W/m⋅K, cp = 
4179 J/kg⋅K, μ = 656.6 × 10-6 N⋅s/m2, Pr = 4.344. (Ts = 200°C): μs = 133.9 × 10-6 N⋅s/m2. 
 

Continued… 
 



PROBLEM 8.105 (Cont.) 
 
ANALYSIS: (a) Heating, mT 260 C.= °  The Reynolds number is  
 

  
( )

D 3 6 2
4 0.01kg / s / 54mRe 4940

D 5 10 m 103.1 10 N s / m− −

×
= = =
π μ π× × × × ⋅

&
 

 
From the Gnielinski correlation, with f = (0.790lnReD – 1.64)-2 = (0.790ln4940 – 1.64)-2 = 38.8 × 
10-3, 
 

( )( )D
D 1/ 2 2 / 3

f /8 Re 1000 Pr
Nu

1 12.7(f /8) (Pr 1)
−

=
+ −

 = 
( ) ( )3

3 1/ 2 2 / 3

38.8 10 /8 4940 1000 0.853
17.89

1 12.7(38.8 10 /8) (0.853 1)

−

−

× × − ×
=

+ × −
 

 
Therefore, hD = NuDk/D = 17.89 × 0.6038 W/m·K/5 × 10-3m = 2161 W/m2·K. For P = πD = π × 5 
× 10-3 m = 15.7 × 10-3 m, L = 60 × 10-3 m, m& = 0.01 kg/s/5 = 0.002 kg/s, Equation 8.42 is written 
 

  
3 3 2

m,o100 T 15.7 10 m 60 10 m 2161W / m Kexp
100 275 0.002kg / s 4989J / kg K

− −⎛ ⎞− × × × × ⋅
= −⎜ ⎟⎜ ⎟− × ⋅⎝ ⎠

 

 
from which Tm,o = 243°C. Therefore, 

w p m,o m,iq mc (T T ) 0.002kg / s 4989J / kg K (243 C 275 C) 319W / channel= − = × ⋅ × ° − ° =& and, for 

the entire mold, qh = -qw × M × 2 = 319W × 5 × 2 = 3190 W             < 
 
Cooling, mT 40 C.= °  The Reynolds number is  
 

  
( )

D 3 6 2
4 0.01kg / s /54mRe 776

D 5 10 m 656.6 10 N s / m− −

×
= = =
π μ π× × × × ⋅

&
 

 
Using Equation 8.56, 
 

[ ]
D

D 2 / 3
D

0.0668(D / L)Re PrNu 3.66
1 0.04 (D / L)Re Pr

= +
+

= 
[ ]2 / 3

0.0668(5/ 60) 776 4.3443.66 10.57
1 0.04 (5 / 60) 776 4.344

× ×
+ =

+ × ×
 

 

Therefore, hD = NuDk/D = 10.57× 0.6316 W/m·K/5 × 10-3m = 1335 W/m2·K. Equation 8.42 yields 
 

  
3 3 2

m,o200 T 15.7 10 m 60 10 m 1335W / m Kexp
100 25 0.002kg / s 4179J / kg K

− −⎛ ⎞− × × × × ⋅
= −⎜ ⎟⎜ ⎟− × ⋅⎝ ⎠

 

 
from which Tm,o = 49.4°C. Therefore, 

w p m,o m,iq mc (T T ) 0.002kg / s 4179J / kg K (49.4 C 25 C) 203.9W / channel= − = × ⋅ × ° − ° =& and, for 

the entire mold, qc = -qw × M × 2 = -203.9W × 5 × 2 = -2039 W             < 
Continued… 



PROBLEM 8.105 (Cont.) 
 
(b) Heating, mT 260 C.= °  The critical Reynolds number is 
 
 0.5 0.5

D,c,h D,cRe Re 1 12(D / C) 2300 1 12(5/ 50) 11030⎡ ⎤ ⎡ ⎤= + = × + =⎣ ⎦ ⎣ ⎦ . The actual  

 

Reynolds number is D 3 6 2
4m 4 0.01kg / sRe 24700
D 5 10 m 103.1 10 N s / m− −

×
= = =
π μ π× × × × ⋅

&
and the flow is 

turbulent. Using the Gnielinski correlation, with f = (0.790lnReD – 1.64)-2 = (0.790 ln24700 – 
1.64)-2 = 24.8 × 10-3, 
 

( )( )D
D 1/ 2 2 / 3

f /8 Re 1000 Pr
Nu

1 12.7(f /8) (Pr 1)
−

=
+ −

 = 
( ) ( )3

3 1/ 2 2 / 3

24.8 10 /8 24700 1000 0.853
62.67

1 12.7(24.8 10 /8) (0.853 1)

−

−

× × − ×
=

+ × −
 

 
Therefore, hD = NuDk/D = 62.67 × 0.6038 W/m·K/5 × 10-3m = 7570 W/m2·K. For P = 15.7 × 10-3 

m, L = 2πC = 2 × π × 50 × 10-3 m = 0.314 m, and m& =0.01 kg/s, Equation 8.42 is written as 
 

3 2
m,o100 T 15.7 10 m 0.314m 7570W / m Kexp

100 275 0.01kg / s 4989J / kg K

−⎛ ⎞− × × × ⋅
= −⎜ ⎟⎜ ⎟− × ⋅⎝ ⎠

 

from which Tm,o = 182.8°C. Then, qh = 0.02 kg/s × 4989 J/kg·K × (182.8°C - 275°C) = 9197 W < 
 
Cooling, mT 40 C.= °  The Reynolds number is  
 

  
( )

D 3 6 2
4 0.01kg / s4mRe 3880

D 5 10 m 656.6 10 N s / m− −

×
= = =
π μ π× × × × ⋅

&
 

 
Since ReD < ReD,c,h, the flow is laminar and ReD(D/C)1/2 = 3880 ×(5/50)1/2 = 1227. The values of a 
and b for use in Equation 8.77 are 
 

3
2 2
D

1 957(C / D) 1 957 (50 / 5)a 146 10
Re Pr 3880 4.344

−⎛ ⎞+ + ×⎛ ⎞= = = ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ×⎝ ⎠⎝ ⎠
; 0.477 0.477b 1 1 1.11

Pr 4.344
= + = − + =  

 
Equation 8.76 is rearranged to yield 
 

1/ 33 3/ 2 0.14
2

D 3 3
0.6316W / m K 4.343 1227 656h 3.66 1.158 6794W / m K

1.11 133.95 10 m 146 10− −

⎡ ⎤⋅ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + × = ⋅⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟× × ⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦
 
Equation 8.42 is written 
 

Continued… 
 



PROBLEM 8.105 (Cont.) 
 
 

3 2
m,o200 T 15.7 10 m 0.314m 6794W / m Kexp

100 25 0.01kg / s 4179J / kg K

−⎛ ⎞− × × × ⋅
= −⎜ ⎟⎜ ⎟− × ⋅⎝ ⎠

 

from which Tm,o = 121.5°C. Therefore, 

c p m,o m,iq mc (T T ) 0.02kg / s 4179J / kg K (25 C 121.5 C) 8065W= − = × ⋅ × ° − ° = −&            < 
 
(c) For the conventional mold, 
 
Acp = 2MπDL = 2 × 5 × π × 5 × 10-3 m × 60 × 10-3 m = 9.42 × 10-3 m2. For the conformally-
cooled mold, Acc = 2NπCπD = 2 × 2 × π2 × 50 × 10-3 m × 5 × 10-3 m = 9.87 × 10-3 m2. 
 
The time rate of change of the mold temperature is 
 

3 2 3 3
dT q q q
dt V C 505.4W s / K(60 10 m) 40 10 m 7800kg / m 450J / kg K− −= = =

ρ ⋅× × × × × ⋅
 

 
The results are summarized in the following table. 
 
 Mold Type  q (W)  Flow Regime  dT/dt (K/s) 
 
 Conventional heating 3190  turbulent  6.51 
 Conventional cooling -2039  laminar   4.03 
 Conformal heating 9197  turbulent  18.20 
 Conformal cooling -8065  laminar enhanced 15.96 
 
The conformally-cooled mold will increase production by a factor of 3 to 4 times, using the same 
cooling area. 
 
 
COMMENTS: (1) The average mean temperature for heating is 258.8°C and 230°C for the 
conventional and conformally-cooled molds, respectively. The assumed average mean 
temperature (260°C) is very good for the conventional mold case. A more accurate solution 
would be obtained by re-calculating the answer for the conformally-cooled case based upon a 
better estimate of the average mean temperature. (2) The average mean temperature for cooling is 
37.2°C and 73.3°C for the conventional and conformally-cooled molds, respectively. The 
assumed average mean temperature for cooling (40°C) is very good for the conventional mold 
case. A more accurate solution would be obtained by re-calculating the answer for the 
conformally-cooled case based upon a better estimate of the average mean temperature. (3) The 
conformally-cooled mold offers enhanced performance due to higher mean velocity in the case of 
heating, and enhanced laminar flow due to curvature in the case of cooling. (4) Equation 8.76 has 
been extended slightly beyond its range of recommended application. Care should be taken in 
using the predictions.  



PROBLEM 8.106 
 

 
KNOWN: Inlet temperatures and flow rates of a pharmaceutical product and pressurized water, 
tube diameter, coil diameter and number of coils. 
 
FIND: (a) The outlet temperature of the pharmaceutical product, (b) The variation of the 
pharmaceutical outlet temperature with the pressurized water flow rate. 
 
SCHEMATIC: 

 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Constant properties and steady-state conditions, (2) Incompressible 
liquid and negligible viscous dissipation, (3) Fully developed flow, (4) Negligible tube wall 
thermal resistance, (5) Negligible heat loss to surroundings and ambient. 
 
PROPERTIES: Table A.6, water: ( mT  = 380 K): k = 0.683 W/m⋅K, cp = 4226 J/kg⋅K, μ = 260 
× 10-6 N⋅s/m2, Pr = 1.61, ρ = 953.3 kg/m3. Pharmaceutical (given): k = 0.80 W/m⋅K, cp = 4000 
J/kg⋅K, μ = 2 × 10-3 kg/s⋅m, Pr = 10, ρ = 1000 kg/m3.  
 
ANALYSIS: For the water,  
 

  
2 3 2

w
w

u D 953.3kg / m 0.12m / s (0.01m)m 0.00899kg / s
4 4

ρ π × ×π×
= = =&  

 

  w
D,w 6

4m 4 0.00899kg / sRe 4400
D 0.01m 260 10 kg / s m−

×
= = =
π μ π× × × ⋅

&
 

 
For the pharmaceutical, 
 

  
2 3 2

m
p

u D 1000kg / m 0.10m / s (0.01m)m 0.00785kg / s
4 4

ρ π × ×π×
= = =&  

Continued… 
   
 

Dr = 40 mm

C

D = 10 mm

Cold pharmaceutical

Tp,i = 25°C
um,p = 0.1 m/s

hp

Hot water

Tw,i = 127°C
um,w = 0.12 m/s

hw

Dr = 40 mm

C

D = 10 mm

Cold pharmaceutical

Tp,i = 25°C
um,p = 0.1 m/s

hp

Cold pharmaceutical

Tp,i = 25°C
um,p = 0.1 m/s

hp

Hot water

Tw,i = 127°C
um,w = 0.12 m/s

hw

Hot water

Tw,i = 127°C
um,w = 0.12 m/s

hw



 
PROBLEM 8.106 (Cont.) 

 
 

p
D,p 3

4m 4 0.00785kg / sRe 500
D 0.01m 2 10 kg / s m−

×
= = =
π μ π× × × ⋅

&
 

 
The flow of the pharmaceutical is laminar (ReD,p < 2300). For the coiled tube, C = Dr + 2(D/2) = 
40 mm + 2 ×5 mm = 50 mm. Using Equation 8.74, ReD,c,h,w = 2300[1 + 12 × (10/50)0.5] = 14,640. 
Therefore, the flow of the pressurized water is laminar (ReD,w = 4400 < 14,640).  
 
For the pharmaceutical product, ReD,p(D/C)1/2 = 500 × (10/50)1/2 = 223, while for the water 
ReD,w(D/C)1/2 = 4400 × (10/50)1/2 = 1967. For each tube, C/D = 50/10 = 5 > 3. 
 
For the pharmaceutical product and water, the overall energy balances are 
 
  p p,p p,o p,i w p,w w,i w,oq m c (T T )   ;    q m c (T T )= − = −& &    (1,2) 
 
For the pharmaceutical and water, Equation 8.42 is 
 

s p,o s w,o
p w

s p,i p p,p s w,i w p,w

T T T TDL DLexp h    ;   exp h
T T m c T T m c

⎛ ⎞ ⎛ ⎞− −π π
= − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠& &

  (3,4) 

 
Once we determine p wh  and h , we may solve Equations (1) through (4) simultaneously for four 
unknowns: q, Tp,o, Tw,o and Ts. We will use Equation 8.76, but be aware that we are using the 
correlation outside of its recommended range of applicability for the water.  For the 
pharmaceutical product, Equation 8.77 yields 
 

  2
957 (50 /10) 0.477a 1 =1.002   ;   b = 1 + 1.048

10(500) 10

⎛ ⎞×
= + =⎜ ⎟⎜ ⎟×⎝ ⎠

 

 
Therefore, Equation 8.76 becomes 
 

1/ 33 / 23 1/ 2

D,p
4.343 500(10 / 50)Nu 3.66 1.158 16.03
1.002 1.048

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥= + + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 

Therefore, 2
p D,p ph Nu k / D 16.03 0.80W / m K / 0.01m 1283W / m K= = × ⋅ = ⋅ . For the pressurized 

water, Equation 8.77 yields 
 
 

2
957 (50 /10) 0.477a 1 =1.00   ;   b = 1 + 1.296

1.61(4400) 1.61

⎛ ⎞×
= + =⎜ ⎟⎜ ⎟×⎝ ⎠

 

Continued… 
 



PROBLEM 8.106 (Cont.) 
 
Proceeding as before, we find 2

D,w wNu 41.01,h 2801W / m K= = ⋅ . The tube length is L = N × π 
× Dr = 20 ×π × 0.05 m = 3.14 m. Substituting values into Equations (1) through (4) and solving 
simultaneously yields 
 

q = 1736 W, Tp,o = 80.25°C, Tw,o = 81.28°C, Ts = 81.25°C           < 
   
 
(b) The dependence of the pharmaceutical outlet temperature on the water velocity is shown in 
the graph below. Note that the pharmaceutical product’s outlet temperature can be controlled 
accurately by modifying the water flow rate. 
 

Temperature vs Water Velocity
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Ts  

 
COMMENTS: (1) The pharmaceutical outlet temperature will be relatively uniform 
across the diameter of the tube due to mixing associated with secondary flow. (2) 
Although we have applied Equation 8.76 outside of its range of general applicability, the 
actual behavior is not expected to be significantly different than predicted. That is, we 
would still expect the pharmaceutical outlet temperature to be highly controllable by 
adjusting the water flow rate. Actual outlet temperatures could be easily measured and 
the water flow rate adjusted to provide the desired thermal response. (3) The average 
mean water temperature is mT = (Tw,i + Tw,o)/2 = (127°C + 81.3°C)/2 = 104°C = 377 K. 
The assumed mean temperature of 380 K is reasonable. 



PROBLEM 8.107  
KNOWN:  Chip and cooling channel dimensions.  Channel flowrate and inlet temperature.  Chip 
temperature.  
FIND:  Water outlet temperature and chip power.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Incompressible liquid with negligible viscous dissipation, (2) Uniform channel 
surface temperature, (3) mT  = 300 K, (4) Fully developed flow. 
 
PROPERTIES:  Table A-6, Water ( mT  = 300 K):  cp = 4179 J/kg⋅K, μ = 855 × 10

-6
 kg/s⋅m, k = 

0.613 W/m⋅K, Pr = 5.83.  
ANALYSIS:  Using the hydraulic diameter, find the Reynolds number, 

 ( )
( )

( ) 2
6 5

h
4 H W 2 50 200 m

D 10  m/ m 8 10  m
2 H W 250 m

μ
μ

μ
− −× ×

= = = ×
+

 

 
( )

( ) ( )
4 5

m h 1 h
D 12 2 6c

10  kg/s 8 10  m u D m DRe 936.
A 50 200 10  m 855 10  kg/s m

ρ
μ μ

− −

− −

×
= = = =

× × ⋅

&
 

Hence, the flow is laminar and, from Table 8.1, NuD = 4.44, so that 

 ( ) 2
D 5h

4.44 0.613 W/m Kkh Nu 34,022 W/m K.
D 8 10  m−

⋅
= = = ⋅

×
 

With P = 2(H + W) = 2(250 μm) 10
-6

 m/μm = 5 ×10
-4

 m, Eq. 8.41b yields 
 

6 2 2s m,o m,o
4s m,i 1 p

T T 350K T PL 5 10  m 34,022 W/m Kexp h exp
T T 60 K m  c 10  kg/s 4179 J/kg K

−

−

⎛ ⎞⎛ ⎞− − × × ⋅⎜ ⎟= = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟− × ⋅⎝ ⎠ ⎝ ⎠&
 

 
 ( )m,oT 350K 60 K exp 0.407 310 K.= − − =       < 
 
Hence, from Eq. 8.34,  

( ) ( ) ( )( )4
p m,o m,i 1 p m,o m,iq m c T T Nm c T T 50 10  kg/s 4179 J/kg K 20 K 418 W.−= − = − = × ⋅ =& &  < 

 
COMMENTS:  (1) The chip heat flux of 418 W/cm

2
 is extremely large and the method provides a 

very efficient means of heat removal from high power chips.  However, clogging of the microchannels 
is a potential problem which could seriously compromise reliability.  (2) L/Dh = 125 and 0.05 ReDPr = 
272.  Hence, fully developed conditions are not realized and h  > 34,022.  The actual power 
dissipation is therefore greater than 418 W. 



PROBLEM 8.108 
 
KNOWN:  Flow of an ideal gas through a small diameter tube. 
 
FIND:  Expression for the transition density, below which microscale effects become important. 
Value of the transition density for hydrogen, air and carbon dioxide. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Constant properties, (2) Ideal gas. 
 
PROPERTIES: Figure 2.8 and Table A.4 (p = 1 atm, T = 300 K) Air: M = 28.97 kmol/kg, d = 0.372 
nm, ρ = 1.161 kg/m3, H2: M = 2.016 kmol/kg, d = 0.274 nm, ρ = 0.0808 kg/m3, CO2: M = 44.01 
kmol/kg, d = 0.464 nm, ρ = 1.773 kg/m3. 
 
ANALYSIS:  From Eq. 2.11 the mean free path is 
 

     mfp 22
Bk T
d p

λ
π

=  

 
and from the ideal gas equation of state, p = ρRT/M. Microscale effects become important at λmfp/D ≈ 
0.01. Therefore,  
 

mfp
2 2

1000.01    or   =
2 2

B B
c

c

k k
D d D d D
λ

ρ
π ρ π

= =
M M

R R
    

 < 
For air,  

     
( )

23

,Air 2 2-9 -6

100 100 1.381 10 J/K 28.97 kmol/kg=
2 2 0.372 10 m 8315 J/kmol K 10 10  m

B
c

k
d D

ρ
π π

−× × ×
=

× × × ⋅ × ×

M
R

= 0.783 kg/m3 < 

 
Repeating the calculation for hydrogen and CO2 yields 
 
  ρc,H2 = 0.100 kg/m3; ρc,CO2 = 0.764 kg/m3.      < 
 
The ratios of the transition to molecular density at p = 1 atm, T = 300 K, for the three gases are:  
 
 Gas________________Ratio______ 
 Air  0.783/1.161 = 0.674 
 H2  0.100/0.0808 = 1.24 
 CO2  0.764/1.773 = 0.431 
 
COMMENT: Microscale effects could be important, especially for hydrogen at atmospheric pressure 
and T = 300 K.  

D = 10 μm

Air, Hydrogen,
or Carbon
Dioxide



PROBLEM 8.109  
KNOWN:  Chip and cooling channel dimensions.  Channel flow rate and inlet temperature.  
Temperature of chip at base of channel.  
FIND:  (a) Water outlet temperature and chip power, (b) Effect of channel width and pitch on power 
dissipation.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Incompressible liquid with negligible viscous dissipation, (2) Flow may be 
approximated as fully developed and channel walls as isothermal for purposes of estimating the 
convection coefficient, (3) One-dimensional conduction along channel side walls, (4) Adiabatic 
condition at end of side walls, (5) Heat dissipation is exclusively through fluid flow in channels, (6) 
Constant properties. 
 
PROPERTIES:  Table A-6, Water ( mT  = 300K): cp = 4179 J/kg⋅K, μ = 855 × 10-6 kg/s⋅m, k = 0.613 
W/m⋅K, Pr = 5.83.  
ANALYSIS:  (a) The channel sidewalls act as fins, and a unit channel/sidewall combination is shown 
in schematic (a), where the total number of unit cells corresponds to N = L/S.  With N = 50 and L = 10 
mm, S = 200 μm and δ = S – W = 150 μm.  Alternatively, the unit cell may be represented in terms of 
a single fin of thickness δ, as shown in schematic (b).  The thermal resistance of the unit cell may be 
obtained from the expression for a fin array, Eq. (3.108), Rt,o = (ηohAt)

-1, where At = Af + Ab = L (2 
H + W) = 0.01m (4 × 10-4 + 0.5 × 10-4) m = 4.5 × 10-6 m2.  With Dh = 4 (H × W)/2 (H + W) = 4 (2 × 
10-4m × 0.5 × 10-4m)/2 (2.5 × 10-4m) = 8 × 10-5m, the Reynolds number is ReD = ρum Dh/μ = 1m&  

Dh/Acμ = 10-4 kg/s × 8 × 10-5m/(2 × 10-4m × 0.5 × 10-4m) 855 × 10-6 kg/s⋅m = 936.  Hence, the flow 
is laminar, and assuming fully developed conditions throughout a channel with uniform surface 
temperature, Table 8.1 yields NuD = 4.44.  Hence, 
 

 2
D 5h

k 0.613W / m K 4.44h Nu 34,022 W / m K
D 8 10 m−

⋅ ×
= = = ⋅

×
 

 
With m = (2h/kchδ)1/2 = (68,044 W/m2⋅K/140 W/m⋅K × 1.5 × 10-4m)1/2 = 1800 m-1 and mH = 0.36, 
the fin efficiency is 

 f
tanh mH 0.345 0.958

mH 0.36
η = = =  

and the overall surface efficiency is 

 ( ) ( )
6

f
o f 6t

A 4.0 10l l l l 0.958 0.963
A 4.5 10

η η
−

−
×

= − − = − − =
×

 

 
The thermal resistance of the unit cell is then 
          Continued … 



PROBLEM 8.109 (Cont.) 
 

 ( ) ( ) 11 2 6 2
t,o o tR h A 0.963 34,022 W / m K 4.5 10 m 6.78K / Wη

−− −= = × ⋅ × × =  
 
The outlet temperature follows from Eq. (8.45b), 
 

( ) ( )
1 p t,o

lexp 350K 60Km,o s s m,i m c R
T T T T

⎛ ⎞
− = − ×⎜ ⎟
⎜ ⎟
⎝ ⎠

= − −
&

 

4
1exp 307.8K

10 kg / s 4179 J / kg K 6.78K / W−

⎛ ⎞
⎜ ⎟− =
⎜ ⎟× ⋅ ×⎝ ⎠

   < 

 
The heat rate per channel is then 
 
 ( ) ( )4

1 1 p m,o m,iq m c T T 10 kg / s 4179J / kg K 17.8K 7.46 W−= − = × ⋅ =&  
 
and the chip power dissipation is 
 
 lq Nq 50 7.46 W 373W= = × =        < 
 
(b) The foregoing result indicates significant heat transfer from the channel side walls due to the large 
value of ηf.  If the pitch is reduced by a factor of 2 (S = 100 μm), we obtain 
 
 1S 100 m, W 50 m, 50 m, N 100 : q 7.04 W, q 704 Wμ μ δ μ= = = = = =   < 
 
Hence, although there is a reduction in ηf due to the reduction in δ (ηf = 0.89) and therefore a slight 
reduction in the value of ql, the effect is more than compensated by the increase in the number of 
channels.  Additional benefit may be derived by further reducing the pitch to whatever minimum value 
of δ is imposed by manufacturing or structural limitations.  There would also be an advantage to 
increasing the channel hydraulic diameter and or flowrate, such that turbulent flow is achieved with a 
correspondingly larger value of h. 
 
COMMENTS:  (1) Because electronic devices fail by contact with a polar fluid such as water, great 
care would have to be taken to hermetically seal the devices from the coolant channels.  In lieu of 
water, a dielectric fluid could be used, thereby permitting contact between the fluid and the 
electronics.  However, all such fluids, such as air, are less effective as coolants.  (2) With L/Dh = 125 
and L/Dh)fd ≈ 0.05 ReD Pr = 273, fully developed flow is not achieved and the value of h = hfd 
underestimates the actual value of h  in the channel.  The coefficient is also underestimated by using a 
Nusselt number that presumes heat transfer from all four (rather than three) surfaces of a channel. 
 



PROBLEM  8.110 
 
 
KNOWN:  Temperature and pressure of a gas flowing in a circular tube.  
 
 
FIND:  The critical tube diameter, Dc, below which incompressible turbulent flow cannot exist for (a) 
air (b) CO2, and (c) He.  
 
SCHEMATIC: 
 

 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Ideal gas behavior. (2) Fully-developed flow. 
  
 
PROPERTIES: Table A.4 (T = 300 K): Air; cp = 1007 J/kg⋅K, μ = 184.6 × 10-7 N⋅s/m2. CO2; cp =  
851 J/kg⋅K, μ = 149 × 10-7 N⋅s/m2.  He; cp = 5193 J/kg⋅K, μ = 199 × 10-7 N⋅s/m2 . Figure 2.8: Air; M = 
28.97 kg/kmol. CO2; M = 44.01 kg/kmol He; M = 4.003 kg/kmol. 
 
ANALYSIS: The relationship ReD,c  = umD/ν ≈ 2300 may be plotted on a log-log scale, as shown in 
the figure below. Laminar flow occurs to the left of the sloped line, while turbulent flow occurs to the 
right of the line. The critical Mach number Mac = um/a ≈ 0.3 is drawn as the horizontal line that 
separates regions of incompressible flow (below the line) and compressible flow (above the line). It is 
evident that below a critical diameter, Dc, turbulent incompressible flow and heat transfer cannot exist. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) From the ideal gas equation of state, 

    ρ = p/RT      (1) 

and from Section 6.4.2 the speed of sound is  

    a RTγ=                   (2) 

Continued… 
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PROBLEM 8.110 (Cont.) 
 
 

where γ  ≡ cp/cv is the ratio of specific heats. The mean velocity may be related to the Mach number, 

Ma, and is 

    mu Ma a= ⋅       (3) 

Combining the preceding equations yields 

    
Ma pRe D

RT
γ

μ
⋅

=      (4) 

Specifying Re = Rec and Ma = Mac leads to the following expression for the critical tube diameter 

    c
c

c

Re RTD
Ma p

μ
γ

=      (5) 

For air, the ideal gas constant, specific heat at constant volume, and ratio of specific heats are 
 

 

8.315 kJ/kmol K kJ0.287 ;   
28.97 kg/kmol kg K

kJ kJ kJ 1.0071.007 0.287 0.720 ;   1.399
kg K kg K kg K 0.720

p
v p

v

R

c
c c R

c
γ

⋅
= = =

⋅

= − = − = = = =
⋅ ⋅ ⋅

R
M

 

 
Therefore,  
 

7 2
6

5 2
2300 287 J/kg K 300 K 184.6 10  N s/m 346 10 m 0.346 mm
0.3 1.399 1.0133 10  N/mcD

−
−⋅ × × ⋅

= × = × =
×

          < 

 
(b,c) The calculations may be repeated for CO2 and He, yielding the following results. 
 
  Gas R (kJ/kg⋅K) cv (kJ/kg⋅K) γ  Dc (mm) 
   
  CO2 0.189  0.662  1.285  0.237   < 
  He 2.077  3.116  1.667  0.920   < 
 
 
COMMENTS:  (1) Below the critical diameter, Dc, the effects of compressibility must always be 
accounted for if the flow is turbulent, and are often important if the flow is laminar. Because the 
correlations of Chapter 8 do not account for the effects of compressibility, they may not be applied to 
situations where turbulence exists and the tube diameter is less than Dc. The correlations must be used 
with caution if the flow is laminar and D < Dc since compressibility effects might be important. (2) 
The critical diameter is moderately dependent on the specific gas of interest, for the three gases 
considered here. 
 



PROBLEM 8.111  
KNOWN:  Chip and cooling channel dimensions.  Channel flow rate and inlet temperature.  
Temperature of chip at base of channel.  
FIND:  (a) Outlet temperature and chip power dissipation for dielectric liquid, (b) Outlet temperature 
and chip power dissipation for air.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1)Applicability of Eq. 8.34, (2) Flow may be approximated as fully developed 
and channel walls as isothermal for purposes of estimating the convection coefficient, (3) One-
dimensional conduction along the channel side walls, (4) Adiabatic condition at end of side walls, (5) 
Heat dissipation is exclusively through fluid flow in channels, (6) Constant properties. 
 
PROPERTIES:  Prescribed.  Dielectric liquid:  cp = 1050 J/kg⋅K, k = 0.065 W/m⋅K, μ = 0.0012 
N⋅s/m2, Pr = 15.  Air:  cp = 1007 J/kg⋅K, k = 0.0263 W/m⋅K, μ = 185 × 10-7 N⋅s/m2, Pr = 0.707. 
 
ANALYSIS:  (a) The channel side walls act as fins, and a unit channel/sidewall combination is shown 
in schematic (a), where δ = S – W = 150 μm.  Alternatively, the unit cell may be represented in terms 
of a single fin of thickness δ, as shown in schematic (b).  The thermal resistance of the unit cell may be 
obtained from the expression for a fin array, Eq. (3.108), Rt,o = (ηo h At)

-1, where At = Af + Ab = L (2 
H + W) = 4.5 × 10-6 m2.  With Ac = H × W = 10-8 m2 and Dh = 4 Ac/2(H + W) = 8 × 10-5m, the 
Reynolds number is ReD = ρumDh/μ = 1m&  Dh/Acμ = 667.  Hence, the flow is laminar, and assuming 
fully developed conditions throughout a channel with uniform surface temperature, Table 8.1 yields 

NuD = 4.44.  Hence, 2
D 5h

k 0.065W / m K 4.44h Nu 3608W / m K
D 8 10 m−

⋅ ×
= = = ⋅

×
 

With m = (2 h/kch δ)1/2 = 586 m-1 and mH = 0.117, the fin efficiency is 

 f
tanh mH 0.1167 0.995

mH 0.117
η = = =  

and the overall surface efficiency is 

 ( ) ( )
6

f
o f 6t

A 4.0 10l 1 l l 0.995 0.996.
A 4.5 10

η η
−

−
×

= − − = − − =
×

 

The thermal resistance of the unit cell is then 

 ( ) ( ) 11 2 6 2
t,o o tR h A 0.996 3608W / m K 4.5 10 m 61.9K / Wη

−− −= = × ⋅ × × =  

The outlet temperature follows from Eq. (8.45b), 

( )m,o s s m,i
1 p t,o

lT T T T exp 350K
m c R

⎛ ⎞
= − − − =⎜ ⎟⎜ ⎟

⎝ ⎠&
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  ( ) 4
160K exp 298.6K

10 kg / s 1050 J / kg K 61.9 K / W−

⎛ ⎞
⎜ ⎟− − =
⎜ ⎟× ⋅ ×⎝ ⎠

  < 

 
The heat rate per channel is then 
 
 ( ) 4

1 1 p m,o m,iq m c T T 10 kg / s 1050J / kg K 8.6K 0.899 W−= − = × ⋅ × =&  
 
and the chip power dissipation is 
 
 1q Nq 50 0.899 W 45.0 W= = × =        < 
 
(b) With 6

1m 10 kg / s,−=&  D l h cRe m D / A 432μ= =&  and the flow is laminar.  Hence, with NuD = 4.44, 
 

 2
D 5h

k 0.0263W / m K 4.44h Nu 1460 W / m K
D 8 10 m−

⋅ ×
= = = ⋅

×
 

 
With m = (2 h/kchδ)1/2 = 373 m-1 and mH = 0.0746, the fin efficiency is 
 

 f
tanh mH 0.0744 0.998

mH 0.0746
η = = =  

 
and the overall surface efficiency is 
 

 ( ) ( )
6

f
o f 6t

A 4.0 10l 1 l l 0.998 0.998
A 4.5 10

η η
−

−
×

= − − = − − =
×

 

 

Hence,  ( ) ( ) 11 2 6 2
t,o o tR h A 0.998 1460 W / m K 4.5 10 m 153K / Wη

−− −= = × ⋅ × × =  
 
The outlet temperature is then 
 

( )m,o s s m,i
1 p t,o

lT T T T exp 350K
m c R

⎛ ⎞
= − − − =⎜ ⎟⎜ ⎟

⎝ ⎠&
 

 

  ( ) 6
160K exp 349.9 K

10 kg / s 1007 J / kg K 153K / W−

⎛ ⎞
⎜ ⎟− − =
⎜ ⎟× ⋅ ×⎝ ⎠

  < 

 
 ( ) 6

1 1 p m,o m,iq m c T T 10 kg / s 1007 J / kg K 59.9K 0.060 W−= − = × ⋅ × =&  
 
 1q Nq 3.02 W= =          < 
 
COMMENTS:  (1) For laminar flow in the channels, there is a clear advantage to using the dielectric 
liquid instead of air.  (2) The prescribed channel geometry is by no means optimized, and the number 
of fins should be increased by reducing S.  Also, channel dimensions and/or flow rates could be 
increased to achieve turbulent flow and hence much larger values of h.  (3) With L/Dh = 125 and 
L/Dh)fd ≈ 0.05 ReD Pr = 500 for the dielectric liquid, fully developed flow is not achieved and its 
assumption yields a conservative (under) estimate of the convection coefficient.  The coefficient is 
also underestimated by using a Nusselt number that presumes heat transfer from all four (rather than 
three) surfaces of a channel. 



PROBLEM  8.112 
 
 
KNOWN:  Temperature and pressure of air flowing in a circular tube of known diameter. Thermal 
and momentum accommodation coefficients.  Fully developed laminar flow with constant heat flux. 
 
 
FIND:  Graph of the Nusselt number versus tube diameter for 1 μm ≤ D ≤ 1 mm and (a) αt = 1, αp = 
1, (b) αt = 0.1, αp = 0.1, (c) αt = 1, αp = 0.1 and (d) αt = 0.1, αp = 1. 
 
 
SCHEMATIC: 
 

 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Ideal gas behavior. (2) Fully-developed laminar flow. 
  
 
PROPERTIES: Table A.4 (T = 300 K): Air; cp = 1007 J/kg⋅K, Pr = 0.707.  Figure 2.8: Air; M = 
28.97 kg/kmol, d = 0.372 × 10-9 m. 
 
ANALYSIS: The ideal gas constant, specific heat at constant volume, and ratio of specific heats are: 
 

 

8.315 kJ/kmol K kJ0.287 ;   
28.97 kg/kmol kg K

kJ kJ kJ 1.0071.007 0.287 0.720 ;   1.399
kg K kg K kg K 0.720

p
v p

v

R

c
c c R

c
γ

⋅
= = =

⋅

= − = − = = = =
⋅ ⋅ ⋅

R
M

 

 
From Equation 2.11 the mean free path of air is 
 
    

( ) ( )
23

9
mfp 22 -9 5 2

1.381 10  J/K 300 K 66.5 10  m 66.5 nm
2 2 0.372 × 10  m 1.0133 10  N/m

Bk T
d p

λ
π π

−
−× ×

= = = × =
×

 

 
From Equation 8.78, the Nusselt number may be expressed as 
 

   2
48

11 6 48D
t

hDNu
k ζ ζ

= =
− + + Γ

    (1) 

where 

   mfp2 2
1

t
t

t PrD
λα γ

α γ
⎡ ⎤−

Γ = ⎢ ⎥+ ⎣ ⎦

         (2) 
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mfp2 p
p

p D
α λ

α
− ⎡ ⎤

Γ = ⎢ ⎥
⎣ ⎦       (3) 

 

   ( )
8

1 8
p

p
ζ

Γ
=

+ Γ
       (4) 

 
 
Equations 1 through 4 may be combined to yield the following graph that shows the variation of the 
Nusselt number over the tube diameter range 1 μm ≤ D ≤ 1000 μm. 
 
  
 
 
 
 
 
            < 
 
 
 
 
 
The accommodation coefficients begin to influence the Nusselt number (and hence the convection heat 
transfer coefficient) at diameters less than approximately 400 μm.    < 
 
The Nusselt number is least sensitive to changes in the tube diameter for αt = αp = 1.   < 
 
The Nusselt number can exceed 4.36 when the momentum accommodation coefficient is small and the 
thermal accommodation coefficient is large.       < 
 
Small values of the thermal accommodation coefficient in conjunction with large values of the 
momentum accommodation coefficient result in the most significant reductions in the Nusselt number.
            < 
 
The Nusselt number can increase or decrease relative to the value associated with conventional flows, 
and the change in the Nusselt number can be quite large. Hence prediction of convection heat transfer 
coefficients in nano- and some microscale devices involving gas flow is typically subject to a high 
degree of uncertainty.          < 
 
Comment: Thermal accommodation coefficients can be of very small value, as discussed in Chapter 
3.  
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PROBLEM 8.113  
KNOWN:  Arrangement of chips and cooling channels for a substrate.  Contact and conduction 
resistances.  Coolant velocity and inlet temperature.  
FIND:  (a) Coolant temperature rise, (b) Chip and substrate temperatures.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Constant properties, (2) Fully-developed flow, (3) Incompressible liquid with 
negligible viscous dissipation, (4) Heat transfer exclusively to water, (5) Steady-state conditions. 
 
PROPERTIES:  Water (given):  ρ = 1000 kg/m

3
, cp = 4180 J/kg⋅K, k = 0.610 W/m⋅K, Pr = 5.8, μ = 

855 × 10
-6

 kg/s⋅m. 
 
ANALYSIS:  (a) For a single flow channel, the overall energy balance yields 

( )( )
L

m,o m,i 3 2p m c p

q N P 10 5 W
T T 0.48 C.

m c  u A c 1000 kg/m 1 m/s 0.005 m 4180 J/kg Kρ

×
− = = = =

⋅

o

&
 < 

From the thermal circuit, 

( ) ( )24 2o m
t,c t,c s

t,c cond conv

T T
q      R R / A 0.5 10  m K/W /10 0.005 m 0.2 K/W.

R R R
−− ′′= = = × ⋅ =

+ +
 

With Dh = 4Ac/P = 4(0.005 m)
2
/4(0.005 m) = 0.005 m, 

 
( )3

m h
D 6

1000 kg/m 1 m/s 0.005 m u D
Re 5848.

855 10  kg/s m

ρ
μ −

= = =
× ⋅

 

With turbulent flow, the Gnielinski correlation yields 
k 2Dh 1/ 2 2 / 3 1/ 2 2 / 3D

(f / 8)(Re 1000) Pr 0.61W / m K (0.0368 / 8)(5848 1000)5.8 5406W / m K
0.005m1 12.7(f / 8) (Pr 1) 1 12.7(0.0368 / 8) (5.8 1)

=
− ⋅ −

= = ⋅
+ − + −

where f = (0.79lnReD-1.64)-2 = 0.0368. 

 ( ) ( ) 11 2
conv sR hA 5406 W/m K 4 0.005 m 0.2 m 0.046 K/W.

−−= = ⋅ × × × =  

Approximating Tm as (Tm,i + Tm,o)/2 = 25.24°C, 
 

( ) ( )c m t,c cond convT T q R R R 25.24 C 50 W 0.2 0.12 0.046 K/W 43.6 C.= + + + = + + + =o o  < 
 
Similarly, from the thermal circuits, 
 
 s m convT T q R 25.24 C 50W 0.046K/W 27.6 C= + × = + × =o o     < 
 
COMMENTS:  (1) Since the coolant temperature rise is less than 0.5°C, all chip temperatures will be 
within 0.5°C of each other.  (2) The channel surface temperature may also be obtained from Eq. 8.41b, 
yielding the same result. 



PROBLEM 8.114 
 
 
KNOWN:  Temperature and pressure of a gas flowing in a circular tube of known diameter with 
constant surface heat flux. Thermal and momentum accommodation coefficients. Fully developed 
laminar flow. 
 
 
FIND:  Graph of the Nusselt number for tube diameters of 1 μm ≤ D ≤ 1 mm. 
 
SCHEMATIC: 
 

 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Ideal gas behavior. (2) Fully-developed laminar flow. 
  
 
PROPERTIES: Table A.4 (T = 350 K): Air; cp = 1009 J/kg⋅K, k = 0.030 W/m·K, Pr = 0.70.  Figure 
2.8: Air; M = 28.97 kg/kmol, d = 0.372 × 10-9 m. 
 
ANALYSIS: The ideal gas constant, specific heat at constant volume, and ratio of specific heats are: 
 

 

8.315 kJ/kmol K kJ0.287 ;   
28.97 kg/kmol kg K

kJ kJ kJ 1.0091.009 0.287 0.722 ;   1.398
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From Equation 2.11 the mean free path of air is 
 
    

( ) ( )
23
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mfp 22 -9 5 2
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From Equation 8.78 the Nusselt number may be expressed as 
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 9 9
mfp2 2 2 0.92 2 1.398 77.6 10  m 152 10  m

1 0.92 1.398 1 0.700
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α γ
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0.87
p

p
p D D D
α λ

α

− −⎡ ⎤− ⎡ ⎤ − × ×
Γ = = ⋅ =⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦    (3) 

 

 ( )
8

1 8
p

p
ζ

Γ
=

+ Γ
         (4) 

 
Equations 1 through 4 may be combined to yield the following graph that shows the variation of the 
Nusselt number over the tube diameter range 1 μm ≤ D ≤ 1000 μm. 
 
 
  
 
 
 
 
 
            < 
 
 
 
 
 
 
 
COMMENTS:  (1) The Nusselt number begins to be affected by the tube dimension at a tube 
diameter of D ≈ 100 μm.  (2) Equation 8.78 is associated with constant heat flux conditions. We would 
expect a similar reduction in Nusselt numbers for constant temperature wall conditions. 
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PROBLEM 8.115 
 

 
KNOWN: Inner diameter of microscale tube, wall thickness of tube, temperature of water inside 
the tube, and temperature of water in cross flow over the tube. 
 
FIND: (a) Required tube length at ReD = 2000, (b) Water outlet temperature, (c) Pressure drop 
associated with the flow of water inside the tube, (d) Height of water column needed to supply the 
required inlet pressure and time needed to collect 0.1 liter of water. Discuss measurement of 
outlet water temperature. 
 
SCHEMATIC: 

Hg
L

Water
Tm,i = 300 K

Water
V = 2 m/s
T8 = 350 K

d = 50 μm t = 1 mm

Water

Water

m
.

Hg
L

Water
Tm,i = 300 K

Water
V = 2 m/s
T8 = 350 K

d = 50 μm t = 1 mm

Water

d = 50 μm t = 1 mm

Water

Water

m
.

Water

m
.

 
 
ASSUMPTIONS: (1) Constant properties and steady-state conditions, (2) Incompressible 
liquid and negligible viscous dissipation, (3) Negligible microscale or nanoscale effects. 
 
PROPERTIES: Table A.6, water: ( mT  = 305 K): k = 0.620 W/m⋅K, cp = 4178 J/kg⋅K, μ = 769 

× 10-6 N⋅s/m2, Pr = 5.2, ρ = 995 kg/m3: ( T  = 330 K): k = 0.650 W/m⋅K, cp = 4194 J/kg⋅K, μ = 
489 × 10-6 N⋅s/m2, Pr = 3.15, ρ = 984 kg/m3. Table A.3 glass: k = 1.4 W/m⋅K. 
 
ANALYSIS: (a) At ReD = 2000, Equation 8.3 yields xfd,h = 0.05ReDPrD = 0.05 × 2000 × 5.2 × 

50 × 10-6 m = 26 × 10-3 m. Therefore, L = 2xfd,h = 2 × 26 × 10-3 m = 52 × 10-6 m = 52 mm.         < 
 
(b) Equation 8.45a is 
 

 m,o s

m,i p

T T UA
exp

T T mc
∞

∞

⎛ ⎞−
= −⎜ ⎟⎜ ⎟− ⎝ ⎠&

              (1) 

 
where we will use i s s,iU U ,  A  = A= . Note that DRe 4m /( D )= π μ&  so that Dm Re D / 4= π μ&  
= 2000 × π × 50 × 10-6 m × 769 × 10-6 N·s/m2/4 = 60.4 × 10-6 kg/s. Therefore, um = m& /(ρAc) = 
60.4 × 10-6 kg/s × 4/ (995 kg/m3× π × (50 × 10-6 m)2) = 31 m/s. From Equation 3.36,  

Continued… 
   



PROBLEM 8.115 (Cont.) 
 

i

i g o

1U
1 d / 2 (d / 2 t) d / 2 1ln
h k d / 2 (d / 2 t) h

=
+⎡ ⎤+ +⎢ ⎥ +⎣ ⎦

             (2) 

 
As,i = πdL = π × 50 × 10-6 m × 52 × 10-3 m = 8.17 × 10-6 m2. From Equation 8.56,  
 
 

6 3
D 2 / 36 3

0.0668(50 10 / 53 10 ) 2000 5.3Nu 3.66 4.371
1 0.04 (50 10 / 53 10 ) 2000 5.3

− −

− −

× × × ×
= + =

⎡ ⎤+ × × × ×⎣ ⎦

 

 

and 6 3 2
D Di

kh h Nu 4.371 0.620W / m K / 50 10 m 54.2 10 W / m K
D

−= = = × ⋅ × = × ⋅ . 

 
For the cross flow of water over the tube, ReD = VDρ/μ = 2 m/s × (50 × 10-6 m + 2 × 1 × 10-3 
m)(984 kg/m3)/489 × 10-6 N·s/m2 = 8253. From Equation 7.54, 
 

  
4 / 55 /81/ 2 1/ 3

D 1/ 42 / 3

0.62(8253) (3.15) 8253Nu 0.3 1 85.14
282,0001 (0.4 /3.15)

⎡ ⎤⎛ ⎞⎢ ⎥= + + =⎜ ⎟
⎢ ⎥⎝ ⎠⎡ ⎤+ ⎣ ⎦⎣ ⎦

 

and 
 
 

6 3 3 2
D Doh h Nu k /(d 2t) 85.14 0.65W / m K /(50 10 m 2 1 10 m) 27.0 10 W / m K− −= = + = × ⋅ × + × × = × ⋅

 
Therefore, 
 

3 2
i

6 6 3

3 6

6

6 3 3 2

1U 11.7 10 W / m K
1 50 10 m / 2 (50 10 m / 2 1 10 m)ln

1.4W / m K54.2 10 W / m K 50 10 m / 2

50 10 m / 2 1
(50 10 m / 2 1 10 m) 27.0 10 W / m K

− − −

−

−

− −

= = × ⋅
⎡ ⎤⎡ ⎤× × + ×

+⎢ ⎥⎢ ⎥⋅× ⋅ ×⎢ ⎥⎢ ⎥⎣ ⎦
⎢ ⎥

×⎢ ⎥+ ×⎢ ⎥× + × × ⋅⎣ ⎦
 
 
Equation (1) becomes 
 

 
3 2 6 2

m,o
6

350K T 11.7 10 W / m K 8.17 10 mexp
350K 300K 60.4 10 kg / s 4194J / kg K

−

−

⎛ ⎞− × ⋅ × ×
= −⎜ ⎟⎜ ⎟− × ⋅ ⋅⎝ ⎠

 

 

or, Tm,o = 316 K                   < 
Continued… 

 



 
PROBLEM 8.115 (Cont.) 

 
 
(c) For laminar flow, Equation 8.19 yields f = 64/ReD = 64/2000 = 32 × 10-3. Equation 8.22a 
yields 
 

 
2 3 3 2 3

6m
6

u 32 10 995kg / m (31m /s) 52 10 mp f L 15.9 10 Pa
2D 2(50 10 m)

− −

−
ρ × × × × ×

Δ = = = ×
×

              < 

 
(d) The pressure generated by the water column must offset the pressure drop in the tube. 
Therefore, 
 

     6 2 3 2gH p   or   H p / g 15.9 10 N / m /(995kg / m 9.8m /s ) 1630m 1.63kmρ = Δ = Δ ρ = × × = =     < 
 
The time required for a particular volume of water to flow through the system is 
 

 

3
3

6

1m0.1 995kg / mV 1000mlt 1650s
m 60.4 10 kg / s−

× ×ρ
= = =

×
             < 

 
 

 
COMMENTS: (1) Microscale experimentation is often very difficult to perform. In addition to 
the difficulty in measuring the water outlet temperature, establishing a constant flow rate with 
such a large inlet pressure would be very difficult. (2) Turbulent conditions in microscale systems 
are rare in nature, and are difficult to achieve experimentally. (3) The glass tube wall is relatively 
thick. Therefore, conduction in the axial direction is likely to be significant. (4) The average mean 
water temperature inside the tube is mT = (Tm,i + Tm,o)/2 = (300 K + 316 K)/2 = 308 K. The 
assumed mean temperature of 305 K is good. 
 



PROBLEM 8.116 
 
 
KNOWN:  Temperature and pressure of air flowing in a circular tube or between parallel plates. 
Thermal and momentum accommodation coefficients. 
 
 
FIND:  Tube diameter D and plate spacing a that correspond to a 10 percent reduction in the Nusselt 
number. 
 
SCHEMATIC: 
 

 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Ideal gas behavior. (2) Fully-developed laminar flow. 
  
 
PROPERTIES: Table A.4 (T = 350 K): Air; cp = 1009 J/kg⋅K, Pr = 0.70.  Figure 2.8: Air; M = 28.97 
kg/kmol, d = 0.372 × 10-9 m. 
 
ANALYSIS: The ideal gas constant, specific heat at constant volume, and ratio of specific heats are: 
 

 

8.315 kJ/kmol K kJ0.287 ;   
28.97 kg/kmol kg K

kJ kJ kJ 1.0091.009 0.287 0.722 ;   1.398
kg K kg K kg K 0.722

p
v p

v

R

c
c c R

c
γ

⋅
= = =

⋅

= − = − = = = =
⋅ ⋅ ⋅

R
M

 

 
From Equation 2.11 the mean free path of air is 
 
    

( ) ( )
23

9
mfp 22 -9 5 2

1.381 10  J/K 350 K 77.6 10  m 77.6 nm
2 2 0.372 × 10  m 1.0133 10  N/m

Bk T
d p

λ
π π

−
−× ×

= = = × =
×

 

 
From Equation 8.78 the Nusselt number for the tube may be expressed as 
 

   2
48 0.9 4.36 3.92

11 6 48D
t

Nu
ζ ζ

= = × =
− + + Γ

    (1) 

 
where 

9 9
mfp2 2 2 0.92 2 1.398 77.6 10  m 152 10  m

1 0.92 1.398 1 0.700
t

t
t PrD D D

λα γ
α γ

− −⎡ ⎤⎡ ⎤− − × × ×
Γ = = ⋅ =⎢ ⎥⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

      (2) 

Continued… 
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PROBLEM 8.116 (Cont.) 
 
 

9 9
mfp2 2 0.87 77.6 10  m 101 10  m

0.87
p

p
p D D D
α λ

α

− −⎡ ⎤− ⎡ ⎤ − × ×
Γ = = ⋅ =⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦     (3) 

 

 ( )
8

1 8
p

p
ζ

Γ
=

+ Γ
          (4) 

 
Equations 1 through 4 may be solved by trial-and-error to yield D = 2.94 × 10-6 m = 2.94 μm. < 
 
From Equation 8.79 the Nusselt number for the parallel plate configuration may be expressed as 
 

   2
140 0.9 8.23 7.41

17 6 (2 / 3) 70D
t

Nu
ζ ζ

= = × =
− + + Γ

   (5) 

 
where 
 

 9 9
mfp2 2 2 0.92 2 1.398 77.6 10  m 152 10  m

1 0.92 1.398 1 0.700
t

t
t h h hPrD D D

λα γ
α γ

− −⎡ ⎤⎡ ⎤− − × × ×
Γ = = ⋅ =⎢ ⎥⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

     (6) 

 
 
 

9 9
mfp2 2 0.87 77.6 10  m 101 10  m

0.87
p

p
p h h hD D D
α λ

α

− −⎡ ⎤− ⎡ ⎤ − × ×
Γ = = ⋅ =⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦     (7) 

 

 ( )
6

1 6
p

p
ζ

Γ
=

+ Γ
          (8) 

 
Equations 5 through 8 may be solved by trial-and-error to yield Dh = 3.97 × 10-6 m = 3.97 μm. The 
plate spacing a = Dh/2 = 3.97 μm/2 = 1.99 μm.       < 
  
 
COMMENTS:  The tube diameter and plate spacing required to reduce the Nusselt number by 10 
percent are quite small. In situations involving characteristic dimensions that are not extremely small, 
the effect of the molecule-wall interaction can typically be neglected. 
 



PROBLEM 8.117 
 

KNOWN: Diameters and length of three microchannels machined in a copper block. Inlet 
temperature of water flowing through the channels, copper block temperature, pressure difference 
from inlet to outlet of the channels. 
 
FIND: (a) Mass flow rate and outlet temperature in each channel, (b) Average flow rate through 
each channel and average, mixed temperature of water collected from all three channels, (c) 
Comparison between average flow rates and average heat transfer rates based upon experiment to 
that calculated based upon a single microchannel diameter of 50 μm. 
 
SCHEMATIC: 

D3 = 55 μmD2 = 50 μm

D1 = 45 μm

m1 m2 m3

. . .

Water
Tm,i = 300 K

L = 20 mm
Δp = 2.5x106 Pa

Tcu = 310 K

Copper block

D3 = 55 μmD2 = 50 μm

D1 = 45 μm

m1 m2 m3

. . .

Water
Tm,i = 300 K

L = 20 mm
Δp = 2.5x106 Pa

Tcu = 310 K

Copper block

 
 
ASSUMPTIONS: (1) Constant properties and steady-state conditions, (2) Incompressible 
liquid and negligible viscous dissipation, (3) Negligible microscale or nanoscale effects, (4) 
Negligible entrance or exit losses in the microchannels, (5) Fully developed flow for purposes of 
calculating the mass flow rate in each channel, (6) Isothermal copper block. 
 
PROPERTIES: Table A.6, water: ( mT  = 305 K): k = 0.620 W/m⋅K, cp = 4178 J/kg⋅K, μ = 769 
× 10-6 N⋅s/m2, ν = 7.728 × 10-7 m2/s, Pr = 5.2, ρ = 995 kg/m3. 
 
ANALYSIS: (a) For the D = 50 μm channel, from Equation 8.22a,  
 
  2 3 2 3 6

m mp f u L / 2D f 995kg / m u 20 10 m /(2 50 10 m)− −Δ = ρ = × × × × × ×  (1) 
 
where the friction factor may be evaluated using the Petukhov expression,  
 

f = (0.790lnReD-1.64)-2        (2) 
 
The Reynolds number may be expressed as 
 

  
6

m m
D 7 2

u D u 50 10 mRe
7.728 10 m / s

−

−
× ×

= =
ν ×

     (3) 

Continued… 
 



PROBLEM 8.117 (Cont.) 
 

 
Simultaneous solution of Equations (1) through (3) yields, for the D = 50 μm channel, ReD = 845, 
um = 13.06 m/s. The mass flow rate is 

2 3 6 2 5
mm u D / 4 995kg / m 13.06m / s (50 10 m) / 4 2.55 10 kg / s− −= ρ π = × ×π× × = ×&           < 

 
The thermal entrance length is xfd,t = 0.05ReDPrD = 0.05 × 845 × 5.2 × 50 × 10-6 m = 11.0× 10-3 m 
= 11.0 mm. From the Hausen correlation,  
 

 
6 3

D 2 / 36 3

0.0668 (50 10 m / 20 10 m) 845 5.2Nu 3.66 4.27
1 0.04 (50 10 m / 20 10 m) 845 5.2

− −

− −

× × × × ×
= + =

⎡ ⎤+ × × × × ×⎣ ⎦

 

Hence,  
 

 D 4 2
6

Nu k 4.27 0.62W / m Kh 5.29 10 W / m K
D 50 10 m−

× ⋅
= = = × ⋅

×
 

 
From Equation 8.42,
 

[ ]

m s s m,i
p

6
4 2

5

m,o

PLT (x L) T T T exp h
mc

50 10 m                 310K 310K 300K exp 5.29 10 W / m K
2.55 10 kg / s 4178J / kg K

                 307.9K 34.9 C T

−

−

⎛ ⎞
⎡ ⎤= = − − −⎜ ⎟⎣ ⎦ ⎜ ⎟

⎝ ⎠
⎛ ⎞π× ×

= − − − × × ⋅⎜ ⎟⎜ ⎟× × ⋅⎝ ⎠
= = ° =

&

                   < 

Results for the three different channels are shown in the table below.         < 
 
   D = 45 μm (case 1) D = 50 μm (case 2) D = 55 μm (case 3) 
 
 ReD  690   845   1012 
 
 um (m/s) 11.85   13.06   14.23 
 
 m& (kg/s) 1.88 × 10-5  2.55 × 10-5  3.36 × 10-5 

 

 xfd,t (mm) 8.1   11.0   14.5 
 
 DNu   4.12   4.27   4.44 
 
 2h(W / m K)⋅  5.68 × 104  5.29 × 104  5.01 × 104 

 

 Tm,o (K)  308.7   307.9   307.1 
Continued… 
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(b) The average mass flow rate is
 

5 5 5 5
1 2 3m (m m m ) / 3 (1.88 10 2.55 10 3.36 10 )kg / s / 3 2.60 10 kg / s− − − −⎡ ⎤= + + = × + × + × = ×⎣ ⎦& & & &      < 

 
(c) The average, mixed outlet temperature is 
 

m,o 1 m,o,1 2 m,o,2 3 m,o,3 1 2 3
5 5 5

5 5 5

T (m T m T m T ) /(m m m )

(1.88 10 kg / s 308.7K 2.55 10 kg / s 307.9K 3.36 10 kg / s 307.1K)       307.7K
(1.88 10 2.55 10 3.36 10 )kg / s

− − −

− − −

= + + + +

× × + × × + × ×
= =

× + × + ×

& & & & & &

 
(d) Equation 8.42 may be re-arranged to 
 
 

5
p s m,o 2

6 3
s m,L

mc T T 2.60 10 kg / s 4178J / kg K 310 307.7h ln ln 50,800W / m K
PL T T 310 30050 10 m 20 10 m

−

− −

⎛ ⎞− × × ⋅ −⎛ ⎞= − = − = ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟− −π× × × × ⎝ ⎠⎝ ⎠

&

 
Thus, the inferred value of the mass flow rate is 2% greater than the predicted value for a 50 μm 
diameter channel. The inferred value of the convection coefficient (50,800 W/m2·K) is 4% less 
than the predicted value for a 50 μm diameter channel. The experimenter must carefully assess 
his or her claims since the differences are small and might be attributed to variations in the 
channel dimensions that occur during their manufacture. 
 
 
COMMENTS: (1) Experimentation at the microscale is challenging. Misinterpretation of the 
experimental results might occur unless the experimental system is designed very carefully. For 
example, the diameters of the channels might need to be measured after their manufacture. (2) 
When boring holes, the hole diameter is always greater than the diameter of the tool. If the 
experimentalist assumes that the actual hole size is the same as the tool size, what (inappropriate) 
conclusions might he or she make regarding possible microscale fluid flow and heat transfer 
effects when analyzing the measured results? 



PROBLEM 8.118  
KNOWN:  Air flow through a plastic tube in which evaporation occurs.  
FIND:  Convection mass transfer coefficient, hm. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Heat-mass 
transfer analogy applicable, (4) Fully-developed flow and mass transfer conditions.  
PROPERTIES:  Plastic-air (given, 400K):  Sc = ν/DAB = 2.0; Table A-4, Air (400K, 1 atm):  
ν = 26.41 × 10-6 m2/s. 
 
ANALYSIS:  For fully-developed flow and thermal conditions with laminar flow and a 
uniform surface temperature,  

 D
h DNu 3.66
k

= =  
 
This situation is analogous to the evaporation of plastic vapor into the air stream with the 
inner surface remaining at a constant concentration of plastic vapor, CA,s, along the length of 
the tube.  Invoking the heat-mass transfer analogy,  

 m
D

AB

h DSh 3.66.
D

= =  

 
Recognizing that Sc = ν/DAB, 
 

 
6 2

2
m 3

1 26.4 10 m / s 1h 3.66  3.66 2.42 10 m/s.
Sc D 2.0 2 10 m

ν −
−

−
×⎛ ⎞= = × × = ×⎜ ⎟

⎝ ⎠ ×
 < 

 
COMMENTS:  (1) The heat-mass transfer analogy requires that the vapor (A) have a 
negligible effect on the flow.  Hence, the flow is that of air (B) and ν = νB. 
 
(2) Only the mixture property DAB is required to characterize the plastic vapor for this 
evaporation process. 
 



PROBLEM 8.119 
 
KNOWN:  Air passing upward through a tube having a thin water film on its inside surface. 
 
FIND:  Convection mass transfer coefficient. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1)  Steady-state conditions, (2)  Constant properties, (3)  Heat-mass analogy 
applicable, and (4)  Fully developed flow and thermal conditions. 
 
PROPERTIES:  Table A.4, Air (300 K, 1 atm): μ = 184.6 × 10-7 N⋅s/m2, k = 0.0263 W/m⋅K;  Table A.8, 
Water vapor-air (300 K, 1atm): DAB = 0.26 × 10-4 m2/s. 
 
ANALYSIS:  Begin by characterizing the air flow with the Reynolds number, 
 

 
( )

D 7 2
4 3 3600 kg s4mRe 1916

D 0.030m 184.6 10 N s mπ μ π −
×

= = =
× × × ⋅

&
 

 
Since the flow is laminar, and assuming fully developed flow and thermal conditions, Eq. 8.55 is 
appropriate for the uniform Ts wall condition, 
 

 D
hDNu 3.66
k

= =                    20.0263W m Kh 3.66 3.21W m K
0.030m

⋅
= × = ⋅  

 
Invoking the heat-mass analogy, for laminar flow conditions, 
 

 m
D D

AB

h DSh Nu
D

= =  

 

 
4 2

AB
m D

D 0.26 10 m sh Nu 3.66
D 0.030m

−×
= = ×  = 0 0032. m s <  

 
COMMENTS:  (1) The heat-mass analogy requires that the water vapor (A) have negligible effect on the 
velocity boundary layer.  It is important to recognize that the vapor is species (A) and the air species (B).  
Hence the flow is that of air (B) and hence μ = μB.  
 
(2) Note only the mixture property DAB is required to characterize the water vapor for this evaporation 
process.  



PROBLEM 8.120  
KNOWN:  Temperature and flow rate of air in a tube with a naphthalene coated inner 
surface.  
FIND:  Convection mass transfer coefficient under fully developed conditions and velocity 
and concentration entry lengths.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Heat and mass transfer analogy is applicable, (2) Uniform vapor 
concentration along inner surface.  
PROPERTIES:  Table A-4, Air (300 K, 1 atm):  μ = 184.6 × 10-7 N⋅s/m2, ν = 15.89 × 10-6 
m2/s; Table A-8, Naphthalene-air (300K, 1 atm):  DAB = 6.2 × 10-6 m2/s, Sc = μ/DAB = 2.56. 
 
ANALYSIS:  For air flow through the tube,  

 
( )

D 7 2
4 m 4 0.04 kg/sRe 55,178.
 D 0.05m  184.6 10 N s/mπ μ π −

×
= = =

× ⋅

&
 

 
Hence the flow is turbulent and from Eq. 8.88,  
 ( ) ( )4/5 0.44/5 0.4

D DSh 0.023 Re  Sc 0.023 55,178 2.56 208= = =  
 

 
6 2

AB
m D

D 6.2 10 m / sh Sh 208 0.026 m/s.
D 0.05 m

−×
= = =     < 

 
From Eq. 8.4, it follows that  
 fd,h fd,c10D x x 60D≤ ≈ ≤  
or 
 fd,h fd,c0.5 m x x 3 m.≤ ≈ ≤         < 
 
An entry length of 0.5 m is assumed.  
COMMENTS:  Note that the flow properties are taken to be those of the air, with the 
contribution of the naphthalene vapor assumed to be negligible. 
 



PROBLEM 8.121  
KNOWN:  Air flow over roughened section of tube constructed from naphthalene.  
FIND:  Mass and heat transfer convection coefficients associated with the roughened section; contrast 
these results with those for a smooth section.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Heat-mass transfer analogy applicable, (3) 
Negligible naphthalene vapor in airstream, ρA,m = 0, (4) Constant properties, (5) Naphthalene vapor 
behaves as perfect gas. 
 
PROPERTIES:  Table A-4, Air (300K, 1 atm):  ν = 15.89 × 10

-6
 m

2
/s, k = 0.0263 W/m⋅K, Pr = 

0.707; Table A-8, Naphthalene-air mixture (300K, 1 atm):  DAB = 0.62 × 10
-5

 m
2
/s, Sc= νB/DAB = 

2.563; Naphthalene (given, 300K):  psat,A = 1.31 × 10
-4

 bar, MA = 128.16 kg/kmol. 
 
ANALYSIS:  Using the rate equation with the experimentally observed sublimination rate of 
naphthalene vapor, the average mass transfer coefficient for the section is 
 ( ) ( )m A A,s A,mh m /  DL  π ρ ρ= −&  

 ( )A,m A,s A,sat A Psat,A0          300K M / Tρ ρ ρ= = = ℜ  

4
4 3

A,s 2 3
1.31 10 bar128.16 kg/kmol 6.731 10  kg/m

8.314 10 m bar/kmol K 300K
ρ

−
−

−
×

= × = ×
× ⋅ ⋅ ×

 

 

( ) ( )4 3 2
m

0.010 kgh / 0.075m 0.150m  6.731 10 0  kg/m 3.89 10 m/s.
3 3600 s

π − −= × × × − = ×
×

 < 
 
Invoking the heat-mass transfer analogy, the associated heat transfer coefficient is 
 

1/ 3 1/ 3
2 2

m 5 2AB

k Pr 0.0263 W/m K 0.707h h 3.89 10 m/s 107 W/m K.
D Sc 2.5630.62 10 m / s

−
−

⋅⎛ ⎞ ⎛ ⎞= = × = ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠×

 < 

 
The corresponding convection coefficients for a smooth section can be estimated using the Dittus-
Boelter relation (the heating condition, n = 0.4, has been selected), 
 

( ) ( ) ( )4/5 0.44/5 0.4
D

k 2h 0.023 Re Pr 0.0263 W/m K/0.075 m 0.023 35,000 0.707
D

30 W/m K= = ⋅ × = ⋅  < 
 
Using the analogous mass transfer relation, Eq. 8.88, 
 

( ) ( ) ( ) ( )4/5 0.44/5 0.4 5 2
m AB Dh D 0.023 Re Sc 0.62 10 m / s/0.075 m 0.023 35,000 2.563/ D −= = × ×  

 
 hm = 1.20 × 10

-2
 m/s         < 

 
COMMENTS:  The effect of roughening is to increase the convection coefficients over the 
corresponding value for the smooth condition; in this case, by a factor of approximately 3.5. 



PROBLEM 8.122 
 
KNOWN:  Dry air with prescribed velocity and temperature flowing over a thin-walled tube with a 
water-saturated fibrous coating.  Water passes at a prescribed rate through the tube to maintain an 
approximately uniform surface temperature Ts = 27°C. 
 
FIND:  (a) Heat rate from the external surface of the tube considering heat and mass transfer processes 
and (b) For a flow rate of m&  = 0.025 kg/s, the inlet temperature, Tm,i, of the water that must be supplied 
to the tube. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Heat-mass analogy 
applicable, and (4) Water in tube flow is incompressible with negligible viscous dissipation. 
 
PROPERTIES:  Table A.4, Air ( fT  = (Ts + T∞)/2 = 304 K):  ρ = 1.148 kg/m3, cp = 1007 J/kg⋅K, ν = 
16.29 × 10-6 m2/s, k = 0.0266 W/m⋅K, α = 23.09 × 10-6 m2/s, Pr = 0.706;  Table A.6, Water (Ts = 300 K):  
ρA,s = 1/vg = 0.02556 kg/m3, hfg = 2438 kJ/kg, μ = 855 × 10-6 N⋅s/m2;  Table A.6, Water ( mT  = 305 K):  ρ 
= 995 kg/m3, cp = 4178 J/kg⋅K, μ = 769 × 10-6 N⋅s/m2, k = 0.620 W/m⋅K, Pr = 5.20;  Table A.8, Water 
vapor-air (Ts = 300 K):  DAB = 0.26 × 10-4 m2/s. 
 
ANALYSIS:  (a) On the Schematic above, the surface energy balance yields 
 out conv evapq q q= +  (1) 

and substituting the rate equations, 
 ( )conv o s sq h A T T∞= −                      ( )evap A fg m s A,s A, fgq n h h A hρ ρ ∞= = −  (2,3) 
 
where oh  can be estimated from an appropriate correlation and hm  from the heat-mass analogy using ho . 
 
Estimation of the heat transfer coefficient, oh :  The Reynolds number, evaluated with properties at fT  = 
(Ts + T∞)/2 = 304 K, is 

 oD 5 2
VD 10m s 0.020mRe 12,277

1.629 10 m sν −
×

= = =
×

 (4) 

 
Using the Churchill-Bernstein correlation, Eq. 7.54, for cross flow over a cylinder, find oh  

 

( )

4 /51/ 2 1/ 3 5/8
oD,o D,o

D,o 1/ 42 /3
o

0.62Re Pr Re
Nu 0.3 1

282,000
1 0.4 Pr

⎡ ⎤⎛ ⎞⎢ ⎥= + + ⎜ ⎟⎢ ⎥⎝ ⎠⎡ ⎤ ⎣ ⎦+⎢ ⎥⎣ ⎦

 (5) 

Continued... 



 
PROBLEM 8.122 (Cont.) 

 

 
( ) ( )

( )

4 / 51/ 2 1/ 3 5/8
D,o 1/ 42 / 3

0.62 12, 277 0.706 12, 277Nu 0.3 1
282,000

1 0.4 0.706

⎡ ⎤⎛ ⎞⎢ ⎥= + + ⎜ ⎟⎢ ⎥⎝ ⎠⎡ ⎤ ⎣ ⎦+⎢ ⎥⎣ ⎦

 

 

 2
o D,o

k 0.0266 W m Kh Nu 60.1 80.0 W m K
D 0.020m

⋅
= = × = ⋅  

 
The Heat-Mass Analogy:  From Eq. 6.60, with n = 1/3, 

 
2 / 3

2 / 3o
p p

m AB

h c Le c
h D

αρ ρ
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

 (6) 

 

 ( )2 / 32 3 6 2 4 2
mh 80.0 W m K 1.148 kg m 1007 J kg K 23.09 10 m s 0.26 10 m s 0.0749 m s− −= ⋅ × ⋅ × × =

⎡ ⎤
⎢ ⎥⎣ ⎦

 

Hence, the heat rate leaving the tube surface from Eq. (1) is, 

( ) ( ) ( )2 3 3
outq 80 W m K 27 35 C 0.0749 m s 0.02556 0 kg m 2438 10 J kg 0.020 m 0.200 mπ= ⋅ − + − × × × ×⎡ ⎤

⎣ ⎦
o  

 outq 8.04 W 58.65 50.6 W= − + =  < 
(b) For tube flow analysis, the heat rate and rate equations are 

 ( )p m,o m,iq mc T T= −&                          s m,o
i

s m,i p

T T DLexp h
T T mc

π⎛ ⎞−
= −⎜ ⎟⎜ ⎟− ⎝ ⎠&

 (7,8) 

 
where Ts = 27°C, the uniform temperature of the tube surface, and q = -50.6 W according to the analysis 
of part (a).  To estimate ih , first characterize the flow, 

 D,i 6 2i

4m 4 0.025kg sRe 2070
D 0.020m 769 10 N s mπ μ π −

×
= = =

× × × ⋅

&
 (9) 

 
using properties evaluated at an assumed mean temperature, mT  = 305 K (slightly above Ts).  The flow is 
laminar, and with Pr > 5, the Hausen correlation, Eq. 8.57 applies, with GzD = (D/L)ReDPr = (0.02 m/0.2 
m) × 2070 × 5.2 = 1076.  Thus, 
 

 i DD,i 2/3 2/3
D

h D 0.0668 Gz 0.0668 1076Nu  =  = 3.66 + 3.66 17.5
k 1 + 0.04Gz 1 + 0.04(1076)

×
= + =  

  
 

 2i D,ii
k 0.620W m Kh Nu 17.5 542 W m K
D 0.020m

⋅
= = × = ⋅  

Referring to Eqs. (7) and (8), recognize that there are two unknowns, Tm,i and Tm,o, as we have evaluated 
both q and hi .  Using the IHT solver, 

Tm,i = 307.7 K,     Tm,o = 307.2 K < 
 
 

Continued... 
 
 



 
PROBLEM 8.122 (Cont.) 

 
COMMENTS:  Using the IHT Rate Equation Tool, Rate Equation for a Tube, Constant Surface 
Temperature, and the Correlation, Internal Flow, Laminar, Thermal Entry Length, a model to perform 
the analysis for part (b) was developed and is copied below. 
 

// Rate Equation Tool - Tube, Constant Surface Temperature: 
/* For flow through a tube with a uniform wall temperature, Fig 8.7b, the  
overall energy balance and heat rate equations  are */ 
q = mdot*cp*(Tmo - Tmi)      // Heat rate, W; Eq 8.34 
q =  - 50.64   // Heat rate, W; required to sustain heat loss on outer surface 
(Ts - Tmo) / (Ts - Tmi) = exp ( - P * L * h / (mdot * cp))  // Eq 8.41b 
// where the fluid and constant tube wall temperatures are 
Ts = 27 + 273   // Tube wall temperature, K 
// The tube parameters are 
P = pi * D   // Perimeter, m 
D =  0.020   // Tube diameter, m 
L =   0.20   // Tube length, m 
// The tube mass flow rate and fluid thermophysical properties are 
mdot = 0.025 
 
// Properties Tool - Water 
// Water property functions :T dependence, From Table A.6 
// Units: T(K), p(bars);  
x = 0    // Quality (0=sat liquid or 1=sat vapor) 
cp = cp_Tx("Water",Tm,x)  // Specific heat, J/kg·K 
mu = mu_Tx("Water",Tm,x)  // Viscosity, N·s/m^2 
k = k_Tx("Water",Tm,x)  // Thermal conductivity, W/m·K 
Pr = Pr_Tx("Water",Tm,x)  // Prandtl number 
Tm = Tfluid_avg(Tmo, Tmi)  // Average mean temperature, K 
 
// Correlations Tool - Internal Flow, Laminar, combined entry length 
NuDbar = NuD_bar_IF_L_TEL_CWT(ReD,Pr,D,L)     // Eq 8.57 
NuDbar = h * D / k 
ReD = 4*mdot/(P*mu) 
 
/* Data Browser results: 
 cp h k mu NuDbar P Pr ReD Tm Tmi
 Tmo D L mdot q Ts x 
  4178 543.8 0.6239 0.000733 17.43 0.06283 4.918 2171 307.4 307.7
 307.2 0.02 0.2 0.025 -50.64 300 0 

   */ 
 
 



PROBLEM 8.123  
KNOWN:  Density and flow rate of gas through a tube with evaporation or sublimation at the tube 
surface.  
FIND:  (a) Longitudinal distribution of mean vapor density, (b) Total rate of vapor transfer.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady, incompressible flow, (2) Flow rate is independent of x, (3) Negligible 
chemical reactions, (4) Uniform perimeter P.  
ANALYSIS:  (a) Applying conservation of species to a differential control volume 

 A,m
A,m m c A A,m m c

d
 u  A dn dx  u  A

dx
ρ

ρ ρ
⎛ ⎞

+ = +⎜ ⎟
⎝ ⎠

 

or, with  m cu A m/ρ= &  and ( )A m A,s A,mdn h P dx ,ρ ρ= −  

 ( )A,m
m A,s A,m

d m  dx h P dx .
dx
ρ

ρ ρ
ρ

= −
&

 

 
Separating variables and integrating, 

 
x xA,m

A,mi 0 0
A,m m

m
A,s A,m

d  h  P  P  dx  h  dx
m m

ρ

ρ
ρ ρ ρ

ρ ρ
∫ = ∫ = ∫

− & &
 

 

 
( )A,s A,m A,s A,mm

m
A,s A,m,i A,s A,m,i

x Pxh  P x
n   or  exp h .

m m

ρ ρ ρ ρρ ρ
ρ ρ ρ ρ

− −
= − = −

− −
⎛ ⎞
⎜ ⎟
⎝ ⎠

l
& &

 (1) < 

 
(b) With A A,s A,m,ρ ρ ρΔ ≡ −  

 ( ) ( ) ( ) ( )A A,m,o A,m,i A,o A,in m/  m/  ρ ρ ρ ρ ρ ρ= − = − Δ −Δ& &  
 
and from Eq. (1) with 

 A,o
m

A,i

m P L h / n 
ρ

ρ ρ
Δ

− =
Δ

&
l  

 
it follows that 

 
( )

A,o A,i
A m

A,o A,i
n h  P L .

n /

ρ ρ

ρ ρ

Δ −Δ
=

Δ Δl
       < 

COMMENTS:  Due to the addition of vapor, m&  will actually increase with x.  However, if the 
specific humidity of the saturated gas-vapor mixture is small (as is usually the case), the change in &m  
will be small. 



PROBLEM 8.124  
KNOWN:  Flow rate and temperature of air.  Tube diameter and length.  Presence of water film on 
tube inner surface.  
FIND:  (a) Vapor density at tube outlet, (b) Evaporation rate.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady, incompressible flow, (2) Constant flow rate, (3) Isothermal system 
(water film maintained at 25°C). 
 
PROPERTIES:  Table A-4, Air (1 atm, 298 K):  ρ = 1.1707 kg/m

3
, μ = 183.6 × 10

-7
 N⋅s/m

2
, ν  = 

15.71 × 10
-6

 m
2
/s; Table A-6, Water vapor (298 K):  ρA,sat = 1/vg = (1/44.25 m

3
/kg) = 0.0226 kg/m

3
; 

Table A-8, Air-vapor (298 K):  DAB = 26 × 10
-6

 m
2
/s; Sc = ν/DAB = 0.60. 

 
ANALYSIS:  (a) We begin by determining the whether the flow is laminar or turbulent. 

 
( )

4
D 7 2

4 m 4 3 10 kg/sRe 2080.
 D 0.01 m 183.6 10 N s/mπ μ π

−

−
× ×

= = =
× ⋅

&
 

Flow is laminar and from Eq. 8.3 and the mass transfer analogy to Eq. 8.23, 
 
xfd,h = 0.05ReDD = 0.05×2080×0.01 m = 1.04 m, xfd,c = xfd,hSc = 1.04 m × 0.60 = 0.62 m 
 
Thus this is a combined entry length situation and the mass transfer analogy to the Baehr and Stephan 
correlation, Eq. 8.58, is appropriate.  By analogy to Eq. 8.57, Gzm,D = (D/L)ReDSc = (0.01 m/1 m) 
×2080×0.60 = 12.5, and 

1
m,D m,D1/3 2/3

m,D m,D
1/6 1/6

m,D

mD
AB

3.66 0.0499Gz tanh(Gz )
tanh[2.264Gz 1.7Gz ]h DSh

D tanh(2.432Sc Gz )

−
− −

−

+
+

= =  

1
1/3 2/3

1/6 1/6

3.66 0.0499 12.5tanh(12.5 )
tanh[2.264 12.5 1.7 12.5 ] 4.79

tanh(2.432 0.60 12.5 )

−
− −

−

+ ×
× + ×= =

× ×
 

 
 

 
6 2D AB

m
Sh  D 4.79 26 10 m / sh 0.0125 m/s

D 0.01 m

−× ×
= = =  

 
From Equation 8.86, 

 ( )A,m,o A,s A,s A,m,i m
 DLexp h
m

πρ ρ ρ ρ ρ⎛ ⎞= − − −⎜ ⎟
⎝ ⎠&

 

where ρA,s = ρA,sat = 0.0226 kg/m3.  Thus, 
Continued … 
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( )
3

A,m,o
3 3

4
3

0.0226 kg/m
 0.01 m 1 m0.0226 kg/m 0 exp 1.1707 kg/m 0.0125 m/s

3 10  kg/s
0.0177 kg/m

ρ
π

−

=
⎛ ⎞×

− − − × ×⎜ ⎟⎜ ⎟×⎝ ⎠
=

 < 

 
(b) The evaporation rate is 

( ) ( )
4

6
A m c A,m,o A,m,i A,m,o 3 3

m 3 10  kg/s kg
n u A 0.0177 4.54 10  kg/s.

1.1707 kg/m m
ρ ρ ρ

ρ

−
−×

= − = = = ×
&

 < 

 
 



PROBLEM 8.125  
KNOWN:  Flow rate and temperature of air in circular tube of prescribed diameter.  Inner 
tube surface is wetted.  Flow is fully developed and inlet air is dry.  
FIND:  Tube length required to reach 99% of saturation.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady, incompressible flow, (2) Constant flow rate, (3) Water film is 
also at 25°C.  
PROPERTIES:  Table A-4, Air (298 K, 1 atm):  ρ = 1.17 kg/m3, μ = 183.6 × 10-7 N⋅s/m2, ν 
= 15.71 × 10-6 m2/s; Table A-6, Water vapor (298 K):  ρA,sat = 1/vg = (1/44.25 m3/kg) = 
0.0226 kg/m3; Table A-8, Air-vapor (298 K):  DAB = 26 × 10-6 m2/s, Sc = ν/DAB = 0.60. 
 
ANALYSIS:  If ρA,m,o = 0.99 ρA,s, it follows from Equation 8.86 that 

 A,s A,s
m

A,s

0.99  DL0.01 exp h .
m

ρ ρ π ρ
ρ
− ⎛ ⎞= = −⎜ ⎟

⎝ ⎠&
 

With 

 
( )

3
D 7 2

4 m 4 10 kg/sRe 6935
 D 0.01 m  183.6 10 N s/mπ μ π

−

−
×

= = =
× ⋅

&
 

 
the flow is turbulent and from Eq. 8.88  
 ( ) ( )4/5 0.44/5 0.4

D DSh 0.023 Re  Sc 0.023 6935 0.60 22.2= = =  
 

 
6 2

D AB
m

Sh  D 22.2 26 10 m / sh 0.0576 m/s.
D 0.01 m

−× ×
= = =  

Hence 

 
3

3
0.01 m L 1.17 kg/m0.01 exp 0.0576 m/s

10  kg/s
π

−

⎛ ⎞× × ×
= −⎜ ⎟

⎜ ⎟
⎝ ⎠

 

 
 ( )0.01 exp 2.12 L= −  
 
 L 2.2 m.=           < 
 
COMMENT: With ReD < 10,000, the mass transfer analog of the Gnielinski correlation would be 
preferable. 



PROBLEM 8.126  
KNOWN:  Flow rate and temperature of atmospheric air in circular tube of prescribed diameter.  Flow 
is fully developed, and air is dry.  Inner tube surface is wetted.  
FIND:  (a) Tube length required to reach 99% saturation, (b) Heat rate needed to maintain tube 
surface at air temperature.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady, incompressible flow, (2) Constant flow rate.  
PROPERTIES:  Table A-4, Air (298 K, 1 atm):  ρ = 1.17 kg/m

3
, μ = 183.6 × 10

-7
 N⋅s/m

2
, ν = 15.71 

× 10
-6

 m
2
/s; Table A-6, Water vapor (298 K):  vg = 44.25 m

3
/kg, ρA,sat = 1/vg = 0.0226 kg/m

3
, hfg = 

2443 kJ/kg; Table A-8, Air-vapor (298 K): DAB = 26 ×10
-6

 m
2
/s, Sc = ν/DAB = 0.60.  

ANALYSIS:  (a) If ρA,m,o = 0.99 ρA,s, it follows from Eq. 8.86 that 

 A,s A,s
m

A,s

0.99  DL0.01 exp h .
m

ρ ρ π ρ
ρ
− ⎛ ⎞= = −⎜ ⎟

⎝ ⎠&
 

 

With 
( )

3
D 7 2

4 m 4 10  kg/sRe 3467,
 D 0.02m  183.6 10 N s/mπ μ π

−

−
×

= = =
× ⋅

&
 

 
The flow is turbulent (weakly) and Eq. 888 yields 

 ( ) ( )4/5 0.44/5 0.4
D DSh 0.023 Re  Sc 0.023 3467 0.60 12.7= = =  

 
6 2

D AB
m

Sh  D 12.7 26 10 m / sh 0.0166 m/s.
D 0.02 m

−× ×
= = =  

Hence, 

 ( ) ( )
( ) ( )

3

3m

10 kg/s n 0.01mL n 0.01 3.78 m.
 D h 0.02m 1.17 kg/m 0.0166 m/sπ ρ π

− ×
= − = − =

l&
l  < 

(b) The required heat rate is 

 
( )

A,o A,i
A fg A m

A,o A,i
q n  h           n h  DL

n /

ρ ρ
π

ρ ρ

Δ −Δ
= =

Δ Δl
 with ρA,s = ρA,sat 

 ( ) ( )
A,s A,s

A
0.01 

n 0.0166 m/s 0.02m 3.78 m
n 0.01
ρ ρ

π
−

= ×
l

 

 ( )4 3 3 5
An 8.55 10 m / s 0.99 0.0226 kg/m 1.91 10 kg/s− −= − × − × = ×  

 5 6
A fgq n  h 1.91 10 kg/s 2.443 10  J/kg 46.7 W.−= = × × × =    < 

COMMENTS:  (1) The evaporation rate is low; hence the heat requirement is small. (2) The 
evaporation rate can also be calculated from 

5
A A,o A,i A,sn m( / / ) m / (0.99 ) 1.91 10 kg / s−= ρ ρ −ρ ρ − ρ ρ = ×& &  which agrees with the preceding result. 



PROBLEM 8.127  
KNOWN:  Tube length, diameter and temperature.  Air temperature and velocity.  Saturation pressure 
of thin liquid film and properties of vapor.  
FIND:  (a) Partial pressure and mass fraction of vapor at tube exit, (b) Mass rate at which liquid is 
removed from the tube.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) System is isothermal at 300K, (2) Steady, incompressible flow, (3) Perfect gas 
behavior, (4) Mass flow rate is independent of x.  
PROPERTIES:  Table A-4, Air (300 K, 1 atm):  ρ = 1.16 kg/m3, ν = 15.9 × 10-6 m2/s.  Prescribed, 
Vapor (300K): pA,sat = 15 mm Hg, AM  = 70 kg/kmol, DAB = 10-5 m2/s. 
 
ANALYSIS:  (a) With the vapor assumed to behave as an ideal gas, pA = CAℜ T = ρA ( )/ A T,ℜ M  
and isothermal conditions, the vapor pressure at the outlet may be obtained from the expression 

 A,sat A,o A,s A,m,o m
A,sat A,i A,s A,m,i

p p D L hexp
p p m

ρ ρ ρπ
ρ ρ

− − ⎛ ⎞
= = −⎜ ⎟− − ⎝ ⎠&

 

where ( )3 32
m cm u A 1.16 kg / m 0.5 m / s 0.05m / 4 1.14 10 kg / s.ρ π −= = × × = ×&   With ReD = um D/ν = 

0.5 m/s × 0.05m/15.9 × 10-6 m2/s = 1570, the flow is laminar. From Eq. 8.3 and the mass transfer 
analogy to Eq. 8.23, with Sc = ν/DAB = 1.59, 
 
xfd,h = 0.05ReDD = 0.05×1570×0.05 m = 3.93 m, xfd,c = xfd,hSc = 3.93 m × 1.59 = 6.24 m 
 
Thus this is a combined entry length situation and the mass transfer analogy to the Baehr and Stephan 
correlation, Eq. 8.58, is appropriate.  By analogy to Eq. 8.57, Gzm,D = (D/L)ReDSc = (0.05 m/5 m) 
×1570×1.59 = 25.0, and 

1
m,D m,D1/3 2/3

m,D m,D
1/6 1/6

m,D

mD
AB

3.66 0.0499Gz tanh(Gz )
tanh[2.264Gz 1.7Gz ]h DSh

D tanh(2.432Sc Gz )

−
− −

−

+
+

= =  

1
1/3 2/3

1/6 1/6

3.66 0.0499 25.0 tanh(25.0 )
tanh[2.264 25.0 1.7 25.0 ] 5.41

tanh(2.432 1.59 25.0 )

−
− −

−

+ ×
× + ×= =

× ×
 

D AB
5 2D 3

m
Sh 10 m / s

h 5.41 1.08 10 m / s
D 0.05m

−
−= = × = ×  

 
Hence, with pA,i = 0 

Continued … 
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 [m
A,o A,sat

DL hp p l exp 15mm Hg 1
m

ρπ⎡ ⎤⎛ ⎞
= − − = −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦&
 

  
3 3

3
1.16kg / m 0.05m 5m 1.08 10 m / sexp 8.7 mm Hg

1.14 10 kg / s
π −

−

⎤⎛ ⎞× × × × × ⎥− =⎜ ⎟
⎜ ⎟⎥×⎝ ⎠⎦

 < 

The corresponding mass density of the vapor is 

( )( )
AA,o 3

A,m,o 3

p 8.7 mm Hg 70 kg / kmol
0.0326 kg / m

T 760 mm Hg / atm 0.082 m atm / kmol K 300K
ρ

×
= = =

ℜ ⋅ ⋅

M
 < 

(b) The evaporation rate is 

( ) 3 2 3 5
A m c A,m,o A,m,in u A 0.5m / s 1.96 10 m 0.0326 kg / m 3.20 10 kg / sρ ρ − −= − = × × × = ×  < 

COMMENTS:  (1) Since the evaporation rate (nA = 3.2 × 10-5 kg/s) is much less than the air flow 
rate ( m&  = 1.14 × 10-3 kg/s), the assumption of a fixed flow rate is reasonable.  (2) The evaporation 
rate is also given by nA = mh  π D L Δ ρA,lm = - mh  π D L ρA,m,o/ln [(pA,sat – pA,o)/pA,sat] = 3.22 × 

10-5 kg/s, which agrees with the calculation of part (b). 



PROBLEM 8.128  
KNOWN:  Air flow rate through trachea of diameter D and length L.  
FIND:  (a) Average mass transfer convection coefficient, mh ,  and (b) Rate of water loss per day 
(liter/day).  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Trachea can be approximated as a smooth tube with uniform surface 
temperature, (2) Laminar, fully developed flow, (3) Trachea inner surface is saturated with water at 
body temperature, Ts = 37°C, (4) Negligible water vapor in air at 310 K during inhalation, and (5) 
Heat-mass analogy is applicable. 
 
PROPERTIES:  Table A-4, Air (310 K, 1 atm):  ρB = 1.128 kg/m3, μ = 1.893 × 10-5 N⋅s/m2; Table 
A-6, Water (Ts = 37°C = 310 K):  ρA,f = 993 kg/m3, ρA,g = 0.04361 kg/m3; Table A-8, Water-vapor air 
(310 K, 1 atm):  DAB = 0.26 × 10-4 (310/298)3/2 = 2.76 × 10-5 m2/s. 
 
ANALYSIS:  (a) Begin by characterizing the air (B) flow in the trachea modeled as a smooth tube, 

 B
D

4 m 4
Re

D D
ρ

π μ π μ
∀

= =
&&

 

 
3 3 3

D 5 2
4 10 liter / min 10 m / liter 1min/ 60s 1.128 kg / m

Re 632
0.020 m 1.893 10 N s / mπ

−

−
× × × ×

= =
× × × ⋅

 

Hence, the flow is laminar, and for fully developed conditions and invoking the heat-mass analogy 
 D D m ABNu Sh 3.66 Sh h D / D= = =  

 5 2
m ABh 3.66 D / D 3.66 2.76 10 m / s / 0.020 m 0.0050 m / s−= = × × =    < 

(b) The species (A) transfer rate equation, Eq. 8.83, has the form 
 A m s A, mn h A ρ= Δ l  

 
( ) ( )
( ) ( )
A,s A,m,o A,s A,m,i

A, m
A,s A,m,o A,s A,m,im /

ρ ρ ρ ρ
ρ

ρ ρ ρ ρ

− − −
Δ =

− −⎡⎣
l

l
 

where the mean outlet species density, ρA,m,o, can be determined from Eq. 8.86 

 A,s A,m,o m

A,s A,m,i

h PL
exp

m

−
= −

−
⎛ ⎞
⎜ ⎟
⎝ ⎠&

ρ ρ ρ
ρ ρ

 

where m c Bm / u A .ρ = = ∀&   Substituting numerical values with P = πD, find 

 6
A,m,o A0.009233 n 1.54 10 kg / sρ −= = ×  

The volumetric rate of water loss on a daily basis, assuming a 12 hour inhalation period, is 

 ( ) ( )6 3 3 3
AV 1.54 10 kg / s / 993 kg / m 10 liter / m 3600s / h 24 h / day−= × × × ×&  

 AV 0.134 liter / day=&  



PROBLEM 8.129 
 
KNOWN:  Air (species B) is in fully developed, laminar flow as it enters a circular tube wetted with 
liquid A (water).  Tube length and diameter.  Flow rate of air and system temperature. 
 
FIND:  (a) Governing differential equation for species transfer, (b) Heat transfer analog and an 
expression for ShD, (c) General expression for ρA,m,o, (d) Value of ρA,m,o for prescribed conditions. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady, incompressible flow, (2) Flow rate is independent of x, (3) Laminar, fully 
developed flow (hydrodynamically), (4) Isothermal conditions, (5) Dry air at inlet. 
 
PROPERTIES:  Table A.4, Air (298 K, 1 atm):  ρ = 1.1707 kg/m3, μ = 183.6 × 10-7 N⋅s/m2, ν = 15.71 × 
10-6 m2/s;  Table A.6, Water vapor (298 K): ρA,sat = 1/vg = 0.0266 kg/m3;  Table A.8, Air-vapor (298 K):  
DAB = 26 × 10-6 m2/s, Sc = ν/DAB = 0.60. 
 
ANALYSIS:  (a) The governing differential equation may be inferred by analogy to Eq. 8.48.  In this 
case, the dependent variable is the vapor mass density, ρA (x,r), and the diffusivity is DAB.  It follows that 

 A AB ADu r
x r r r

∂ρ ∂ ∂ρ
∂ ∂ ∂

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 < 

The entrance condition is 

 ( )A 0, r 0ρ =  < 
 
and the boundary conditions are 

 ( )A o A,sr , xρ ρ=                        A r 0   is   finite=ρ  < 
 
(b) The foregoing conditions are analogous to those of the thermal entry length condition associated with 
Eq. 8.57.  Invoking this analogy the average Sherwood number for laminar, fully developed flow is 
 

 
( )
( )

DD 2/3
D

0.0668 D L Re Sc
Sh 3.66

1 0.04 D L Re Sc
= +

+ ⎡ ⎤⎣ ⎦
 < 

where the mass transfer analogy to Eq. 8.56 was used for the Graetz number. 
 
(c) Applying conservation of species to the differential control volume, 

 A,m
A,m m c A A,m m c

d
u A dn dx u A

dx
ρ

ρ ρ
⎛ ⎞

+ = +⎜ ⎟
⎝ ⎠

 

or, with umAc = m ρ&  and ( )A m A,s A,mdn h Ddxπ ρ ρ= −  

 ( )A,m
m A,s A,m

dm dx h Ddx
dx
ρ

π ρ ρ
ρ

= −
&

 

Continued... 



 
PROBLEM 8.129 (Cont.) 

 

 A,m
A,m,i

xA,m m
oA,s A,m

d Dh dx
m

ρ
ρ

ρ ρπ
ρ ρ

=
−∫ ∫ &

 

or 

 A,s A,m m
A,s A,m,i

(x) Dxh (x)exp
m

ρ ρ ρπ
ρ ρ

− ⎛ ⎞
= −⎜ ⎟− ⎝ ⎠&

 

 
at x = L, 
 

 A,s A,m,o m
A,s A,m,i

DLhexp
m

ρ ρ ρπ
ρ ρ

− ⎛ ⎞
= −⎜ ⎟− ⎝ ⎠&

 < 

 
(d) For the prescribed conditions, ReD = 4m Dπ μ&  = 4 2 5 10 0 01 183 6 104 7 2. . .× × ⋅− −kg s m N s mc h a fπ  = 
1734 and (D/L)ReDSc = (0.01 m/1 m)1734(0.6) = 10.4.  Hence, 
 

 
( )

( )
D 2/ 3

0.0668 10.4
Sh 3.66 4.24

1 0.04 10.4
= + =

+
 

 

 ( ) ( )6 2Dm ABh Sh D D 4.24 26 10 m s 0.01m 0.011m s−= = × =  

Hence, 

 
3A,s A,m,o

4A,s A,m,i

1.1707 kg m 0.01m 1m 0.011m sexp 0.198
2.5 10 kg s

ρ ρ π
ρ ρ −

⎛ ⎞− × × × ×⎜ ⎟= − =
⎜ ⎟− ×⎝ ⎠

 

 ( ) ( )3 3
A,m,o A,s A,s A,m,i0.198 0.0226kg m 1 0.198 0.0181kg mρ ρ ρ ρ= − − = − =  < 

 
COMMENTS:  Due to evaporation, m&  actually increases with increasing x.  However, the increase is 
small, and the assumption of fixed m&  is good. 



PROBLEM 9.1 
 
KNOWN:  Thickness and thermal conductivity of plane wall. Fluid temperatures. 
 
FIND:  Expected minimum and maximum steady-state heat fluxes through the wall for (a) free 
convection in gases, (b) free convection in liquids, (c) forced convection in gases, (d) forced 
convection in liquids, and (e) convection with phase change. 
 
 
SCHEMATIC: 
 
 

 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Constant properties. (2) Steady state conditions. (3) Negligible radiation. 
 
ANALYSIS:  The thermal resistance network is 
 

 
 
 
 
 
From Table 1.1 for free convection in gases, the minimum convective heat transfer coefficient is h = 2 
W/m2⋅K. Therefore, the corresponding heat flux is 
 

  ,1 ,2" 2
3

2 21 2

200 C 100 C 98.5 W/m1 1 1 75 10  m 1
5 W/m K2 W/m K 2 W/m K  

x
T T

q L
h k h

∞ ∞
−

− ° − °
= = =

×+ + + +
⋅⋅ ⋅

    

 
Proceeding in the same manner, we find the following results 
 
 Process    hmin (W/m2⋅K) hmax (W/m2⋅K) "

,minxq  "
,maxxq " "

,max ,min/x xq q  

(a)  Free convection, gas  2  25  98.5 1053   10.7 < 
(b)  Free convection, liquid  50  1000  1818 5882   3.23 < 
(c) Forced convection, gas  25  250  1053 4348   4.12 < 
(d) Forced convection, liquid 100  20,000  2857 6623   2.32 < 
(e) Phase change   2500  100,000  6329 6658   1.05 < 
 
COMMENTS: For either gases or liquids, the dependence of the heat flux on the range of convection 
coefficients associated with each type of convective heat transfer process, as quantified by the ratio 

" "
,max ,min/x xq q , is strongest for free convection, and weakest for convection involving phase change. The 

temptation to attach less significance to free convection because the convection coefficients are small 
is to be resisted. Free convection poses large thermal resistance, and therefore can be the dominant 
factor in thermal engineering processes and design. 

qx″ T∞,1 T∞,2 Ts,1 Ts,2 

h1 h1k
L1 1

qx
"

x

L = 75 mm

Cold fluid
T∞,2 = 100°C, h2

Hot fluid
T∞,1 = 200°C, h1 k = 5 W/m·K



PROBLEM 9.2  
KNOWN:  Tabulated values of density for water and definition of the volumetric thermal 
expansion coefficient, β.  
FIND:  Value of the volumetric expansion coefficient at 300K; compare with tabulated 
values.  
PROPERTIES:  Table A-6, Water (300K):  ρ = 1/vf = 1/1.003 × 10-3 m3/kg = 997.0 kg/m3, 
β = 276.1 × 10-6 K-1; (295K):  ρ = 1/vf = 1/1.002 × 10-3 m3/kg = 998.0 kg/m3; (305K):  ρ = 
1/vf = 1/1.005 × 10-3 m3/kg = 995.0 kg/m3. 
 
ANALYSIS:  The volumetric expansion coefficient is defined by Eq. 9.4 as  

 
p

1  .
 T
ρβ

ρ
∂⎛ ⎞= − ⎜ ⎟∂⎝ ⎠

 

The density change with temperature at constant pressure can be estimated as  

 1 2
1 2p p T T T

ρ ρ ρ⎛ ⎞∂ −⎛ ⎞ ≈ ⎜ ⎟⎜ ⎟∂ −⎝ ⎠ ⎝ ⎠
 

 
where the subscripts (1,2) denote the property values just above and below, respectively, the 
condition for T = 300K denoted by the subscript (o).  That is,  

 1 2
o

o 1 2 p

1 .
T T
ρ ρβ

ρ
⎛ ⎞−

≈ − ⎜ ⎟−⎝ ⎠
 

 
Substituting numerical values, find  

 
( )

( )

3
6 1

o 3
995.0 998.0  kg/m1  300.9 10  K .

305 295 K997.0 kg/m
β − −−−

≈ = ×
−

   < 

 
Compare this value with the tabulation, β = 276.1 × 10

-6
 K

-1
, to find our estimate is 8.7% 

high.              
COMMENTS:  (1) The poor agreement between our estimate and the tabulated value is due 
to the poor precision with which the density change with temperature is estimated.  The 
tabulated values of β were determined from accurate equation of state data.  
(2) Note that β is negative for T < 275K.  Why?  What is the implication for free convection? 
 



PROBLEM 9.3  
KNOWN:  Relation for the Rayleigh number.  
FIND:  Rayleigh number for four fluids for prescribed conditions.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Perfect gas behavior for specified gases.  
PROPERTIES:  Table A-4, Air (400K, 1 atm):  ν = 26.41 × 10

-6 m2/s, α = 38.3 × 10
-6 m2/s, β = 1/T 

= 1/400K = 2.50 × 10
-3 K-1; Table A-4, Helium (400K, 1 atm):  ν = 199 × 10

-6 m2/s, α = 295 × 10
-6 

m
2/s, β = 1/T = 2.50 × 10

-3 K-1; Table A-5, Glycerin (12°C = 285K): ν = 2830 × 10
-6 m2/s, α = 

0.964 × 10
-7 m2/s, β = 0.475 × 10

-3 K-1; Table A-6, Water (37°C = 310K, sat. liq.):  ν = μf vf = 695× 

10
-6 N⋅s/m

2 × 1.007 × 10
-3 m3/kg = 0.700 × 10

-6 m2/s, α = kf vf/cp,f = 0.628 W/m⋅K × 1.007 × 10
-3 

m
3/kg/4178 J/kg⋅K = 0.151 × 10

-6 m2/s, βf = 361.9 × 10
-6 K-1. 

 
ANALYSIS:  The Rayleigh number, a dimensionless parameter used in free convection analysis, is 
defined as the product of the Grashof and Prandtl numbers. 

 
( )3 3 3c cg TL g TL g TLp pRa Gr Pr  L 2 2k k

μ νρβ β β
ναν ν

Δ Δ Δ
≡ ⋅ = = ⋅ =  

 
where α = k/ρcp and ν = μ/ρ.  The numerical values for the four fluids follow: 
 
Air (400K, 1 atm) 

( ) ( )32 6 2 6 2Ra 9.8m/s  1/400K  30K 0.01m / 26.41 10  m / s 38.3 10  m / s 727L
− −= × × × =  < 

 
Helium (400K, 1 atm) 

( ) ( )32 6 2 6 2Ra 9.8m/s 1/ 400K  30K 0.01m /199 10 m / s 295 10 m / s 12.5L
− −= × × × =  < 

 
Glycerin (285K) 

( ) ( )2 3 1 6 2 7 23Ra 9.8m/s 0.475 10 K  30K 0.01m / 2830 10 m / s 0.964 10 m / s 512L
− − − −= × × × × =  < 

 
Water (310K) 

( ) ( )2 3 1 6 2 6 2 63Ra 9.8m/s 0.362 10 K  30K 0.01m / 0.700 10 m / s 0.151 10 m / s 1.01 10 .L
− − − −= × × × × = ×  < 

 
COMMENTS:  (1) Note the wide variation in values of Ra for the four fluids.  A large value of Ra 
implies enhanced free convection, however, other properties affect the value of the heat transfer 
coefficient. 



PROBLEM 9.4  
KNOWN:  Form of the Nusselt number correlation for natural convection and fluid properties.  
FIND:  Expression for figure of merit FN and values for air, water and a dielectric liquid. 
 
PROPERTIES:  Prescribed.  Air: k = 0.026 W/m⋅K, β = 0.0035 K-1, ν = 1.5 × 10-5 m2/s, Pr = 0.70.  
Water:  k = 0.600 W/m⋅K, β = 2.7 × 10-4 K-1, ν = 10-6 m2/s, Pr = 5.0.  Dielectric liquid:  k = 0.064 
W/m⋅K, β = 0.0014 K-1, ν = 10-6 m2/s, Pr = 25 
 
ANALYSIS:  With n

LNu ~ R a ,  the convection coefficient may be expressed as 
 

 
( )n3n3 n

n n

g TLk g TL kh ~ ~
L L

β β
αν α ν

Δ⎛ ⎞ ⎛ ⎞Δ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
The figure of merit is therefore 
 

 
n

N n n
kF β

α ν
=           < 

 
and for the three fluids, with n = 0.33 and / Prα ν= , 
 

 ( )2 /3 7 / 3 4 /3
N

Air Water DielectricF W s / m K
5.8 663 209

⋅ ⋅    < 

 
Water is clearly the superior heat transfer fluid, while air is the least effective.  
COMMENTS:  The figure of merit indicates that heat transfer is enhanced by fluids of large k, large 
β  and small values of α and ν. 
 



PROBLEM 9.5  
 

 
KNOWN: Temperature and pressure of air in a free convection application. 
 
FIND: Figure of merit for T = 27°C and P = 1, 10 and 100 bar. 
 
ASSUMPTIONS: (1) Ideal gas, (2) Thermal conductivity, dynamic viscosity and specific heat 
are independent of pressure. 
 
PROPERTIES: Table A.4, air: (Tf = 300 K, p = 1 atm): k = 0.0263 W/m⋅K, cp = 1007 J/kg⋅K, 
ν = 15.89 × 10-6 m2/s, α = 22.5 × 10-6 m2/s. 
 
ANALYSIS: With n

LNu Ra≈ , the convection coefficient may be expressed as 

   
( )n33 n

n n

g Lk g TL kh
L L

β β
αν α ν

ΔΤ⎛ ⎞ ⎛ ⎞Δ
≈ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 

and the figure of merit is 
n

N n n
kF = β
α ν

. 

 
For an ideal gas, β = 1/T. The thermal diffusivity is α = k/ρcp. Since k and cp are independent of 
pressure, and the density is proportional to pressure for an ideal gas, α ∝ 1/p. The kinematic 
viscosity is ν = μ/ρ. Therefore, for an ideal gas, ν ∝ 1/p. Thus, the properties and the figure of 
merit, using n = 0.33, at the three pressures are 
 
p = 1 bar = 1 × 105 N/m2 p = 10 bar   p = 100 bar 
 
β = 1/300 K-1   β = 1/300 K-1   β = 1/300 K-1 
k = 0.0263 W/m⋅K  k = 0.0263 W/m⋅K  k = 0.0263 W/m⋅K 
 

-6 2 1.0133 = 22.5 10  m /s
1

α ⎛ ⎞× ×⎜ ⎟
⎝ ⎠

 -6 2 1.0133 = 22.5 10  m /s
10

α ⎛ ⎞× ×⎜ ⎟
⎝ ⎠

 -6 2 1.0133 = 22.5 10  m /s
100

α ⎛ ⎞× ×⎜ ⎟
⎝ ⎠

 

    = 2.28 × 10-5 m2/s      = 2.28 × 10-6 m2/s      = 2.28 × 10-7 m2/s 
-5 2 1.0133 = 1.589 10  m /s

1
ν ⎛ ⎞× ×⎜ ⎟

⎝ ⎠
-5 2 1.0133 = 1.589 10  m /s

10
ν ⎛ ⎞× ×⎜ ⎟

⎝ ⎠
-5 2 1.0133 = 1.589 10  m /s

100
ν ⎛ ⎞× ×⎜ ⎟

⎝ ⎠
 

    = 1.610 × 10-5 m2/s       = 1.610 × 10-6 m2/s         = 1.610 × 10-7 m2/s 
 

Therefore, for P = 1 bar, 
0.33

N 5 2 0.33 -5 2 0.33
0.0263 W/m K (1/300K)F  = 

(2.28 10 m /s) (1.61 10 m /s)−
⋅ ×

× × ×
 = 5.20. Similarly, for 

P = 10 bar, FN = 23.78 while for P = 100 bar, FN = 108.7.     < 
 
COMMENT: The efficacy of natural convection cooling within sealed enclosures can be 
increased significantly by increasing the pressure of the gas. 
 



PROBLEM 9.6  
KNOWN:  Heat transfer rate by convection from a vertical surface, 1m high by 0.6m wide, to 
quiescent air that is 20K cooler.  
FIND:  Ratio of the heat transfer rate for the above case to that for a vertical surface that is 0.6m high 
by 1m wide with quiescent air that is 20K warmer.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Thermophysical properties independent of temperature; evaluate at 300K; (2) 
Negligible radiation exchange with surroundings, (3) Quiescent ambient air.  
PROPERTIES:  Table A-4, Air (300K, 1 atm):  ν = 15.89 × 10

-6 m2/s, α = 22.5 × 10
-6 m2/s. 

 
ANALYSIS:  The rate equation for convection between the plates and quiescent air is 
 q h  A TL s= Δ           (1) 

where ΔT is either (Ts - T∞) or (T∞ - Ts); for both cases, As = Lw.  The desired heat transfer ratio is 
then 

 q h1 L1 .
q h2 L2

=           (2) 

To determine the dependence of hL  on geometry, first calculate the Rayleigh number, 

 3Ra g  TL /L β να= Δ         (3) 
and substituting property values at 300K, find,  
Case 1:  RaL1 = 9.8 m/s

2 (1/300K) 20K (1m)
3/15.89 × 10

-6 m2/s × 22.5 × 10
-6 m2/s = 1.82 × 10

9 
 
Case 2:  RaL2 = RaL1 (L2/L1)

3
 = 1.82 ×10

4
 (0.6m/1.0m)

3
 = 3.94 × 10

8
. 

 
Hence, Case 1 is turbulent and Case 2 is laminar.  Using the correlation of Eq. 9.24,  

 ( )h L kn nLNu C Ra           h C RaL LL Lk L
= = =      (4) 

 
where for Case 1:  C1 = 0.10, n1 = 1/3 and for Case 2:  C2 = 0.59, n2 = 1/4.  Substituting Eq. (4) into 
the ratio of Eq. (2) with numerical values, find  

 
( )

( )

( )( )
( )( )

1/ 3n 91 0.10 /1m 1.82 10C / L Raq 1 11 L1 0.881n 1/ 4q 22 8C / L Ra 0.59 / 0.6m 3.94 102 2 L2

×
= = =

×

   < 

 
COMMENTS:  Is this result to be expected?  How do you explain this effect of plate orientation on 
the heat rates? 



PROBLEM 9.7  
KNOWN:  Large vertical plate with uniform surface temperature of 130°C suspended in quiescent air 
at 25°C and atmospheric pressure.  
FIND:  (a) Boundary layer thickness at 0.25 m from lower edge, (b) Maximum velocity in boundary 
layer at this location and position of maximum, (c) Heat transfer coefficient at this location, (d) 
Location where boundary layer becomes turbulent.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Isothermal, vertical surface in an extensive, quiescent medium, (2) Boundary 
layer assumptions valid.  
PROPERTIES:  Table A-4, Air ( )( )T T T / 2 350K, 1 atm :f s= + =∞   ν = 20.92 × 10

-6 m2/s, k = 

0.030 W/m⋅K, Pr = 0.700.  
ANALYSIS:  (a) From the similarity solution results, Fig. 9.4 (see above right), the boundary layer 
thickness corresponds to a value of η ≈ 5.  From Eqs. 9.13 and 9.12, 

 ( ) 1/ 4y x Gr / 4xη −=          (1) 

( ) ( ) ( )2m 13 2 3 6 2 9 3Gr g T T x / 9.8 130 25 K x / 20.92 10 m / s 6.718 10  xx s 2 350Ks
β ν −= − = × − × = ×∞  (2) 

 ( ) ( )
1/ 439 2y 5 0.25m  6.718 10 0.25 / 4 1.746 10 m 17.5 mm.
− −⎛ ⎞≈ × = × =⎜ ⎟

⎝ ⎠
       (3) < 

(b) From the similarity solution shown above, the maximum velocity occurs at η ≈ 1 with 
( )f 0.275.η′ =   From Eq. 9.15, find 

( ) ( )
6 2 1/ 22 2 20.92 10 m / s 31/2 9u Gr  f 6.718 10 0.25 0.275 0.47 m/s.xx 0.25m

ν η
−× × ⎛ ⎞′= = × × =⎜ ⎟

⎝ ⎠
   < 

The maximum velocity occurs at a value of η = 1; using Eq. (3), it follows that this corresponds to a 
position in the boundary layer given as 

 ( )y 1/ 5 17.5 mm 3.5 mm.max = =        < 
(c) From Eq. 9.19, the local heat transfer coefficient at x = 0.25 m is 

 ( ) ( ) ( )
1/ 41/ 4 39Nu h x/k Gr / 4  g Pr 6.718 10 0.25 / 4 0.50 35.7x x x

⎛ ⎞= = = × =⎜ ⎟
⎝ ⎠

 

 2h Nu k/x 35.7 0.030 W/m K/0.25 m 4.3 W/m K.x x= = × ⋅ = ⋅    < 
The value for g(Pr) is determined from Eq. 9.20 with Pr = 0.700.  
(d) According to Eq. 9.23, the boundary layer becomes turbulent at xc given as 

 ( )
1/ 39 9 9Ra Gr Pr 10           x 10 / 6.718 10 0.700 0.60 m.x,c x,c c ⎡ ⎤= ≈ ≈ × =⎢ ⎥⎣ ⎦

 < 

COMMENTS:  Note that β = 1/Tf is a suitable approximation for air. 



PROBLEM 9.8 
 
 
KNOWN:  Laminar free convection on a vertical plate. 
 
FIND:  Exact values of C from the similarity solution for Pr = 0.01, 1, 10 and 100. 
 
ASSUMPTIONS:  (1) Constant properties. (2) Steady state conditions. (3) Parameter n = ¼. 
 
ANALYSIS:  The similarity solution for the average Nusselt number is 
 

  
( )

1/ 4 1/ 2

1/ 41/ 2

4 0.75
3 4 0.609 1.221 1.238

LL
Gr PrNu

Pr Pr

⎡ ⎤
⎛ ⎞ ⎢ ⎥= ⎜ ⎟ ⎢ ⎥⎝ ⎠ + +⎢ ⎥⎣ ⎦

    (1) 

 
while the correlation for the average Nusselt number is expressed as 
   
 

( ) ( )1/ 4nn
L L L LNu CRa C Gr Pr C Gr Pr= = ⋅ = ⋅      (2) 

 
Equating the preceding two expressions yields 
 

  
( )

1/ 4 1/ 4

1/ 41/ 2

4 1 0.75
3 4 0.609 1.221 1.238

PrC
Pr Pr

⎡ ⎤
⎛ ⎞ ⎢ ⎥= ⎜ ⎟ ⎢ ⎥⎝ ⎠ + +⎢ ⎥⎣ ⎦

    (3) 

 
Values of C may be determined by substituting Pr = 0.01, 1, 10 and 100 into Equation 3. 
 
   
     Pr  C 
     0.01  0.241 
     1  0.534 
     10  0.621 
     100  0.654 
 
 
 
COMMENTS: (1) The correlation should not be used for liquid metals (i.e. low Pr fluids). (2) The 
average value of C for Pr = 1, 10 and 100 is 0.60 ≈ 0.59. Use of the correlation for Pr ≥ 0.7 results in 
an error of approximately 10% as compared to the similarity solution. (3) There are few if any fluids 
characterized by Pr ≈ 0.1. Hence, this range of the Prandtl numbers is not included in the comparison, 
and is omitted from Figure 9.4. 



PROBLEM 9.9  
KNOWN:  Dimensions of vertical rectangular fins.  Temperature of fins and quiescent air.  
FIND:  (a) Optimum fin spacing, (b) Rate of heat transfer from an array of fins at the optimal spacing.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Fins are isothermal, (2) Radiation effects are negligible, (3) Air is quiescent.  
PROPERTIES:  Table A-4, Air (Tf = 325K, 1 atm):  ν = 18.41 × 10

-6 m2/s, k = 0.0282 W/m⋅K, Pr = 
0.703.  
ANALYSIS:  (a) If fins are too close, boundary layers on adjoining surfaces will coalesce and heat 
transfer will decrease.  If fins are too far apart, the surface area becomes too small and heat transfer 
decreases.  Sop ≈ δx=H.  From Fig. 9.4, the edge of boundary layer corresponds to 

 ( ) ( )1/ 4/ H  Gr / 4 5.Hη δ= ≈  

Hence, 
( ) ( ) ( )

( )
33 2g T T H 9.8 m/s 1/ 325K  50K 0.15ms 7Gr 1.5 10H 2 26 218.41 10 m / s

− ∞= = = ×
−×

β

ν
 

 ( ) ( ) ( )1/ 47H 5 0.15m / 1.5 10 / 4 0.017m 17mm S 34mm.opδ = × = = ≈   < 
 
(b) The number of fins N can be found as 
 
 ( )N W/ S t 355 / 35.5 10op= + = =  
 
and the rate is ( ) ( )q 2 N h H L  T T .s= ⋅ − ∞  
 
For laminar flow conditions 

 ( )
4 / 99 /161/4Nu 0.68 0.67 Ra / 1 0.492 / PrH L

⎡ ⎤= + +⎢ ⎥⎣ ⎦
 

 

 ( ) ( )
4 / 91/ 4 9 /167Nu 0.68 0.67 1.5 10 0.703 / 1 0.492 / 0.703 30H

⎡ ⎤= + × × + =⎢ ⎥⎣ ⎦
 

 

 ( ) 2h k Nu / H 0.0282 W/m K 30 / 0.15 m 5.6 W/m KH= = ⋅ = ⋅  
 

 ( ) ( ) ( )2q 2 10 5.6 W/m K 0.15m 0.02m  350 300 K 16.8 W.= ⋅ × − =    < 
 
COMMENTS:  Part (a) result is a conservative estimate of the optimum spacing.  The increase in area 
resulting from a further reduction in S would more than compensate for the effect of fluid entrapment 
due to boundary layer merger.  From a more rigorous treatment (see Section 9.7.1), Sop ≈ 10 mm is 
obtained for the prescribed conditions. 



PROBLEM 9.10  
KNOWN:  Thin, vertical plates of length 0.15m at 54°C being cooled in a water bath at 20°C.  
FIND:  Minimum spacing between plates such that no interference will occur between free-convection 
boundary layers.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (a) Water in bath is quiescent, (b) Plates are at uniform temperature.  
PROPERTIES:  Table A-6, Water (Tf = (Ts + T∞)/2 = (54 + 20)°C/2 = 310K): ρ = 1/vf = 993.05 

kg/m
3, μ = 695 ×10

-6 N⋅s/m
2, ν = μ/ρ = 6.998 × 10

-7 m2/s, Pr = 4.62, β = 361.9 × 10
-6 K-1. 

 
ANALYSIS:  The minimum separation distance will be twice the thickness of the boundary layer at 
the trailing edge where x = 0.15m.  Assuming laminar, free convection boundary layer conditions, the 
similarity parameter, η, given by Eq. 9.13, is 

 ( )y 1/ 4Gr / 4xx
η =  

where y is measured normal to the plate (see 
Fig. 9.3).  According to Fig. 9.4, the boundary 
layer thickness occurs at a value η ≈ 5. 
It follows then that,  
 ( ) 1/ 4y  x Gr / 4bl xη −=  
 

where ( ) 3g  T T xsGrx 2
β

ν

− ∞=  

 

( ) ( ) ( )232 6 1 7 2 8Gr 9.8 m/s 361.9 10  K 54 20 K 0.15m / 6.998 10  m / s 8.310 10 .x
− − −= × × − × × = ×   < 

 

Hence, ( ) 1/ 48 3y 5 0.15m 8.310 10 / 4 6.247 10 m 6.3 mmbl
− −= × × = × =  

 
and the minimum separation is  
 d 2 y 2 6.3 mm 12.6 mm.bl= = × =        < 
 
COMMENTS:  According to Eq. 9.23, the critical Grashof number for the onset of turbulent 
conditions in the boundary layer is Grx,c Pr ≈ 109.  For the conditions above, Grx Pr = 8.31 × 
108 × 4.62 = 3.8 × 109.  We conclude that the boundary layer is indeed turbulent at x = 0.15m 
and our calculation is only an estimate which is likely to be low.  Therefore, the plate 
separation should be greater than 12.6 mm. 

 



PROBLEM 9.11  
KNOWN:  Vertical plate experiencing free convection with quiescent air at atmospheric 
pressure and film temperature 400 K.  
FIND:  Form of correlation for average heat transfer coefficient in terms of ΔT and 
characteristic length.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Air is extensive, quiescent medium, (2) Perfect gas behavior.  
PROPERTIES:  Table A-6, Air (Tf = 400K, 1 atm):  ν = 26.41 × 10-6 m2/s, k = 0.0338 
W/m⋅K, α = 38.3 × 10-6 m2/s. 
 
ANALYSIS:  Consider the correlation having the form of Eq. 9.24 with RaL defined by Eq. 
9.25. 
 nNu h L/k CRaLL L= =         (1) 
where  

( ) ( )3 2 3g T T L 9.8 m/s 1/ 400 K T Ls 7 3Ra 2.422 10 T L .L 6 2 6 226.41 10 m / s 38.3 10 m / s

β
να
− Δ ⋅∞= = = × Δ ⋅

− −× × ×
 (2) 

 
Combining Eqs. (1) and (2),  

 ( ) ( )n0.0338 W/m Kn 7 3h k/L CRa C 2.422 10 TL .L L L
⋅

= = × Δ    (3) 
 
From Fig. 9.6, note that for laminar boundary layer conditions, 104 < RaL < 109, C = 0.59 and 
n = 1/4.  Using Eq. (3), 

 ( )
1/ 41/ 4 T1 3h 1.40 L T L 1.40

L
⎡ ⎤ Δ⎛ ⎞−= Δ ⋅ =⎢ ⎥ ⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
     < 

 
For turbulent conditions in the range 109 < RaL < 1013, C = 0.10 and n = 1/3.  Using Eq. (3), 

 ( )1/ 31 3 1/3h 0.98 L T L 0.98 T .L
⎡ ⎤−= Δ ⋅ = Δ⎢ ⎥
⎢ ⎥⎣ ⎦

     < 

 
COMMENTS:  Note the dependence of the average heat transfer coefficient on ΔT and L for 
laminar and turbulent conditions.  The characteristic length L does not influence hL  for 
turbulent conditions. 



PROBLEM 9.12 
 
KNOWN:  Temperature dependence of free convection coefficient, 1/ 4h C T ,= Δ  for a solid suddenly 
submerged in a quiescent fluid. 
 
FIND:  (a) Expression for cooling time, tf, (b) Considering a plate of prescribed geometry and thermal 
conditions, the time required to reach 80°C using the appropriate correlation from Problem 9.11 and (c) 
Plot the temperature-time history obtained from part (b) and compare with results using a constant oh  

from an appropriate correlation based upon an average surface temperature ( )i fT T T 2= + . 
 
SCHEMATIC: 

               
ASSUMPTIONS:  (1)  Lumped capacitance approximation is valid,  (2)  Negligible radiation, (3)  
Constant properties. 
 
PROPERTIES:  Table A.1, Aluminum alloy 2024 ( )( )i fT T T 2 400K= + ≈ : ρ = 2770 kg/m3, cp = 

925 J/kg⋅K, k = 186 W/m⋅K; Table A.4, Air ( filmT = 362 K):  ν = 2.221 × 10-5 m2/s, k = 0.03069 W/m⋅K, 
α = 3.187 × 10-5 m2/s, Pr = 0.6976, β = 1/ filmT .  
 
ANALYSIS:  (a) From Eq. 5.28,  
 

 
-1/nn

s i

i

θ nCA θ= t+1
θ ρVc

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (1) 

 
where θ = T – T∞ and n = 1/4.  Solving for tf, the time at which T = Tf,  

   
( )

1/4
i

f 1/4 fs i

4 Vc T Tt 1
T TCA T T

ρ ∞
∞∞

⎡ ⎤⎛ ⎞−⎢ ⎥= −⎜ ⎟−⎢ ⎥⎝ ⎠− ⎣ ⎦
    (2) < 

(b) Considering the aluminum plate, initially at T(0) = 225°C, and suddenly exposed to ambient air 

at T 25 C∞ = o , from Problem 9.11 the convection coefficient has the form 

 
1/ 4

i
th 1.40

L
Δ⎛ ⎞= ⎜ ⎟

⎝ ⎠
                1/ 4

ih C T= Δ  

where C = 1.40/L1/4 = 1.40/(0.150)1/4 = 2. 2496
3/ 42W m K⋅ .  Using Eq. (2), find 

Continued... 
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PROBLEM 9.12 (Cont.) 

 

 
( )

( ) ( )

3 2 3 1/ 4
f 3 / 4 2 1/ 42 1/ 4

4 2770 kg m 0.150 0.005 m 925 J kg K 225 25
t 1

80 25
2.2496 W m K 2 0.150m 225 25 K

× × × ⋅ −
= −

−
⋅ × × −

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 1154s=  

 
(c) For the vertical plate, Eq. 9.27 is an appropriate correlation.  Evaluating properties at  
 ( ) ( )( )film s i fT T T 2 T T 2 T 2 362 K∞ ∞= + = + + =  

where sT 426K= , the average plate temperature, find 

 
( ) ( )( ) ( )3 32

s
L 5 2 5 2

g T T L 9.8m s 1 362K 426 298 K 0.150m
Ra

2.221 10 m s 3.187 10 m s

β
να

∞
− −

− −
= =

× × ×
71.652 10= ×  

 

 

( )

1/ 4
LL 4 /99 16

0.670RaNu 0.68
1 0.492 Pr

= +
⎡ ⎤+⎢ ⎥⎣ ⎦

 
( )

( )

1/ 47

4 /99 /16

0.670 1.652 10
0.68 33.4

1 0.492 0.6976

×
= + =

⎡ ⎤+⎢ ⎥⎣ ⎦

 

 

 2Lo
k 0.03069 W m Kh Nu 33.4 6.83W m K
L 0.150m

⋅
= = × = ⋅  

 
From Eq. 5.6, the temperature-time history with a constant convection coefficient is 
 ( ) ( ) ( )i o sT t T T T exp h A Vc tρ∞ ∞ ⎡ ⎤= + − −⎣ ⎦  (3) 

where ( )2 1
sA V 2L L L w 2 w 400m−= × × = = .  The temperature-time histories for the h = CΔT1/4 

and oh analyses are shown in plot below. 
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Constant coefficient, ho = 6.83 W/m^2.K
Variable coefficient, h = 2.25(Ts - Tinf)^0.25   

COMMENTS:  (1)  The times to reach T(to) = 80°C were 1154 and 1212s for the variable and constant 
coefficient analysis, respectively, a difference of 5%.  For convenience, it is reasonable to evaluate the 
convection coefficient as described in part (b). 
 
(2) Note that RaL < 109 so indeed the expression selected from Problem 9.11 was the appropriate one. 
 
(3) Recognize that if the emissivity of the plate were unity, the average linearized radiation coefficient 

using Eq. (1.9) is 2
radh 11.0 W m K= ⋅  and radiative exchange becomes an important process. 



PROBLEM 9.13  
KNOWN:  Square aluminum plate at 15°C suspended in quiescent air at 40°C.  
FIND:  Average heat transfer coefficient by two methods – using results of boundary layer similarity 
and results from an empirical correlation.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Uniform plate surface temperature, (2) Quiescent room air, (3) Surface 
radiation exchange with surroundings negligible, (4) Perfect gas behavior for air, β = 1/Tf.  
PROPERTIES:  Table A-4, Air (Tf = (Ts + T∞)/2 = (40 +15)°C/2 = 300K, 1 atm):  ν = 15.89 × 10

-6 
m

2
/s, k = 0.0263 W/m⋅K, α = 22.5 × 10

-6 m2
/s, Pr = 0.707.  

ANALYSIS:  Calculate the Rayleigh number to determine the boundary layer flow conditions, 

 3Ra g  T L /  L β ν α= Δ  

( ) ( ) ( ) ( ) ( )2 6 2 6 2 73Ra 9.8 m/s 1/ 300K  40 15 C 0.2m / 15.89 10 m / s  22.5 10 m / s 1.827 10L
− −= − ° × × = ×  

where β = 1/Tf and ΔT = T∞ - Ts.  Since RaL < 109, the flow is laminar and the similarity solution of 
Section 9.4 is applicable.  From Eqs. 9.21 and 9.20, 

 ( ) ( )h  L 4 1/ 4LNu Gr / 4  g PrLL k 3
= =  where ( )

1/20.75 Pr
g Pr

1/ 41/20.609 1.221 Pr 1.238 Pr

=

+ +⎡ ⎤
⎢ ⎥⎣ ⎦

 

and substituting numerical values with GrL = RaL/Pr, find 

 ( ) ( ) ( )
1/ 41/ 2 1/ 2g Pr 0.75 0.707 / 0.609 1.22 0.707 1.238 0.707 0.501= + + × =⎡ ⎤

⎢ ⎥⎣ ⎦
 

 
1/ 470.0263 W/m K 4 1.827 10 / 0.707 2h 0.501 4.42 W/m K.L 0.20m 3 4

⋅ ×
= × × = ⋅

⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 < 

The appropriate empirical correlation for estimating hL  is given by Eq. 9.27, 

 
( )

1/40.670 Rah  LL LNu 0.68L 4 / 9k 9 /161 0.492 / Pr

= = +

+⎡ ⎤
⎢ ⎥⎣ ⎦

 

( ) ( ) ( )
4 / 91/ 4 9 /167h 0.0263 W/m K/0.20m  0.68 0.670 1.827 10 / 1 0.492 / 0.707L = ⋅ + × +

⎡ ⎤⎡ ⎤⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦
 

 2h 4.51 W/m KL = ⋅          < 
COMMENTS:  The agreement of hL  calculated by these two methods is excellent.  Using the 
Churchill-Chu correlation, Eq. 9.26, find h 4.87 W/m K.L = ⋅   This relation is not the most accurate 
for the laminar regime, but is suitable for both laminar and turbulent regions. 



PROBLEM 9.14 
 
KNOWN:  Aluminum plate (alloy 2024) at an initial uniform temperature of 227°C is suspended in a 
room where the ambient air and surroundings are at 27°C. 
 
FIND:  (a) Expression for time rate of change of the plate, (b) Initial rate of cooling (K/s) when plate 
temperature is 227°C, (c) Validity of assuming a uniform plate temperature, (d) Decay of plate 
temperature and the convection and radiation rates during cooldown. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Plate temperature is uniform, (2) Ambient air is quiescent and extensive, (3) 
Surroundings are large compared to plate. 
 
PROPERTIES:  Table A.1, Aluminum alloy 2024 (T = 500 K):  ρ = 2770 kg/m3, k = 186 W/m⋅K, c = 
983 J/kg⋅K;  Table A.4, Air (Tf = 400 K, 1 atm):  ν = 26.41 × 10-6 m2/s, k = 0.0388 W/m⋅K, α = 38.3 ×  
10-6 m2/s, Pr = 0.690. 
 
ANALYSIS:  (a) From an energy balance on the plate with free convection and radiation exchange, 

out stE E− =& & , we obtain 

 ( ) ( ) ( ) ( )4 4 4 4
L s s s s sur s L s s sur

dT dT 2
h 2A T T 2A T T A tc or h T T T T

dt dt tc
ε σ ρ εσ

ρ∞ ∞
−

− − − − = = − + −⎡ ⎤
⎣ ⎦< 

 
where Ts, the plate temperature, is assumed to be uniform at any time. 
 
(b) To evaluate (dT/dt), estimate Lh .  First, find the Rayleigh number, 
 

 ( ) ( )( ) ( )32
3 8

L s 6 2 6 2
9.8m s 1 400 K 227 27 K 0.3m

Ra g T T L 1.308 10
26.41 10 m s 38.3 10 m s

β να∞ − −
− ×

= − = = ×
× × ×

. 

 
Eq. 9.27 is appropriate; substituting numerical values, find 
 

 

( )

( )
( )

1/ 481/ 4
LL 4 /9 4 / 99 /16 9 /16

0.670 1.308 100.670Ra
Nu 0.68 0.68 55.5

1 0.492 Pr 1 0.492 0.690

×
= + = + =

⎡ ⎤ ⎡ ⎤+ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
 2LLh Nu k L 55.5 0.0338W m K 0.3m 6.25W m K= = × ⋅ = ⋅  
 

Continued... 



 
PROBLEM 9.14 (Cont.) 

 

 3
dT 2
dt 2770kg m 0.015m 983J kg K

−
= ×

× × ⋅
 

( ) ( )( )2 8 2 4 4 4 46.25 W m K 227 27 K 0.25 5.67 10 W m K 500 300 K 0.099 K s−⋅ − + × ⋅ − = −⎡ ⎤
⎢ ⎥⎣ ⎦

. < 
 
(c) The uniform temperature assumption is justified if the Biot number criterion is satisfied.  With Lc ≡ 
(V/2As) = (As⋅t/2As) = (t/2) and tot conv radh h h= + , Bi = ( )toth t 2 k  ≤ 0.1.  Using the linearized 
radiation coefficient relation, find 
 

( )( ) ( )( )( )2 2 8 2 4 2 2 3 2
rad s sur s surh T T T T 0.25 5.67 10 W m K 500 300 500 300 K 3.86 W m Kεσ −= + + = × ⋅ + + = ⋅  

 
Hence, Bi = (6.25 + 3.86) W/m2⋅K(0.015 m/2)/186 W/m⋅K = 4.07 × 10-4.  Since Bi << 0.1, the assumption 
is appropriate. 
 
(d) The temperature history of the plate was computed by combining the Lumped Capacitance Model of 
IHT with the appropriate Correlations and Properties Toolpads. 
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Due to the small values of Lh  and radh , the plate cools slowly and does not reach 30°C until t ≈ 14000s 
= 3.89h. The convection and radiation rates decrease rapidly with increasing t (decreasing T), thereby 
decelerating the cooling process. 
 
COMMENTS:  The reduction in the convection rate with increasing time is due to a reduction in the 
thermal conductivity of air, as well as the values of Lh  and T. 



PROBLEM 9.15  
KNOWN:  Instantaneous temperature and time rate of temperature change of a vertical plate cooling 
in a room. 
 
FIND:  Average free convection coefficient for the prescribed conditions; compare with standard 
empirical correlation.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Uniform plate temperature, (2) Quiescent room air, (3) Large surroundings.  
PROPERTIES:  Table A-1, Aluminum alloy 2024 (Ts = 127°C = 400K):  ρ = 2770 kg/m3, cp = 925 
J/kg⋅K; Table A-4, Air (Tf = (Ts + T∞)/2 = 350K, 1 atm):  ν = 20.92 × 10-6 m2/s, k = 0.030 W/m⋅K, α = 
29.9 × 10-6 m2/s, Pr = 0.700.  
ANALYSIS:  From an energy balance on the plate 
considering free convection and radiation exchange, 
 E E Ein out st− =& & &  

 ( )( ) ( ) ( ) dT4 4h 2A T T 2A T T A c .L s s s s sur s p dt
ε σ ρ− − − − =∞ l  

Noting that the plate area is 2As, solving for h ,L  and substituting numerical values, find 

( ) ( )dT 4 4h c 2 T T / 2 T TL p s sur sdt
ρ εσ⎡ ⎤= − − − − ∞⎢ ⎥⎣ ⎦
l  

( ) ( )
( ) ( )

3 2 4 4 4 4h 2770kg / m 0.015m 925J / kg K 0.0465K / s 2 0.25 5.67 10 W / m K 400 300 KL
2/ 2 127 27 C 8.936 2.455 W / m K

8= − × × ⋅ − − × × × ⋅ −

− = − ⋅

−⎡ ⎤
⎢ ⎥⎣ ⎦

o

 

 2h 6.5W / m K.L = ⋅          < 
To select an appropriate empirical correlation, first evaluate the Rayleigh number, 

 3Ra g TL /L β να= Δ  

( )( ) ( ) ( )( )2 6 2 6 2 83Ra 9.8m / s 1/ 350K 127 27 K 0.3m / 20.92 10 m / s 29.9 10 m / s 1.21 10 .L
− −= − × × = ×  

Since RaL < 109, the flow is laminar and Eq. 9.27 is applicable, 

 

( )

1/ 40.670Rah LL LNu 0.68L 4 / 9k 9 /161 0.492 / Pr

= = +
⎡ ⎤+⎢ ⎥⎣ ⎦

 

( ) ( )
1/ 4 4 / 90.030W / m K 8 29 /16h 0.68 0.670 1.21 10 / 1 0.492 / 0.700 5.5 W / m K.L 0.3m

⋅
= + × + = ⋅

⎧ ⎫⎛ ⎞ ⎡ ⎤⎨ ⎬⎜ ⎟ ⎣ ⎦⎝ ⎠ ⎩ ⎭
  < 

COMMENTS:  (1) The correlation estimate is 15% lower than the experimental result.  (2) This 
transient method, useful for obtaining an average free convection coefficient for spacewise isothermal 
objects, requires Bi ≤ 0.1. 



PROBLEM 9.16  
KNOWN:  Interior air and wall temperatures; wall height. 

FIND:  (a) Average heat transfer coefficient when T∞ = 20°C and Ts = 10°C, (b) Average heat 

transfer coefficient when T∞ = 27°C and Ts = 37°C.  
SCHEMATIC:   

 
ASSUMPTIONS:  (a) Wall is at a uniform temperature, (b) Room air is quiescent.  
PROPERTIES:  Table A-4, Air (Tf = 288K, 1 atm):  β = 1/Tf = 3.472 × 10

-3 K-1, ν = 14.82 × 10
-6 

m
2/s, k = 0.0253 W/m⋅K, α = 20.9 × 10

-6 m2/s, Pr = 0.710; (Tf = 305K, 1 atm):  β = 1/Tf = 3.279 × 

10
-3 K-1, ν = 16.39 × 10

-6 m2/s, k = 0.0267 W/m⋅K, α = 23.2 × 10
-6 m2/s, Pr = 0.706.  

ANALYSIS:  The appropriate correlation for the average heat transfer coefficient for free convection 
on a vertical wall is Eq. 9.26. 

 
( )

2
0.1667hL 0.387 RaLNu 0.825L 0.296k 0.5631 0.492 / Pr

= = +

+

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪⎡ ⎤
⎩ ⎣ ⎦ ⎭

 

where RaL = g β ΔT L
3/να, Eq. 9.25, with ΔT = Ts - T∞ or T∞ - Ts.  

(a) Substituting numerical values typical of winter conditions gives 

( ) ( )2 3 1 39.8 m/s 3.472 10  K 20 10  K 2.5m 10Ra 1.711 10L 6 2 -6 214.82 10 m / s 20.96 10 m / s

− −× × −
= = ×

−× × ×
 

 
( )

( )

20.1667100.387 1.711 10
Nu 0.825 299.6.L 0.2960.5631 0.492 / 0.710

×
= + =

+

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪⎡ ⎤
⎪ ⎪⎣ ⎦⎩ ⎭

 

Hence, ( ) 2h Nu  k/L 299.6 0.0253 W/m K / 2.5m 3.03 W/m K.L= = ⋅ = ⋅    < 
 
(b) Substituting numerical values typical of summer conditions gives 

 ( ) ( )2 3 1 39.8 m/s 3.279 10  K 37 27  K 2.5 m 10Ra 1.320 10L 6 2 6 223.2 10 m / s 16.39 10 m / s

− −× × −
= = ×

− −× × ×
 

 
( )

( )

20.1667100.387 1.320 10
Nu 0.825 275.8.L 0.2960.5631 0.492 / 0.706

×
= + =

+

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪⎡ ⎤

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

Hence,  2h Nu  k/L 275.8 0.0267 W/m K/2.5m 2.94 W/m K.L= = × ⋅ = ⋅    < 
 
COMMENTS:  There is a small influence due to Tf on h  for these conditions.  We should expect 
radiation effects to be important with such low values of h.  



PROBLEM 9.17 
 
KNOWN:  Dimensions of vertical plate. Plate and ambient temperatures. 
 
FIND:  Preferred orientation to minimize convective heat transfer and convective heat transfer rate for 
that orientation. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Ideal gas, (4) Quiescent 
environment. 
 
PROPERTIES:  Table A.4, air ( 60 CT = ° = 333 K): v = 19.21×10-6 m2/s, α = 27.4×10-6 m2/s, Pr = 
0.702, k = 0.0287 W/m⋅K. 
 
ANALYSIS:  Note that the maximum value of the Rayleigh number is associated with Orientation B.  
 

 
3 2 3

6
max 6 2 6 2

( ) 9.81m/s (1/ 333K) (100 20) C (0.5m) 560 10
19.21 10 m /s 27.4 10 m /s

sg T T LRa β
ν α

∞
− −

− × × − ° ×
= = = ×

⋅ × × ×
 

 
Since the maximum Rayleigh number is less than Rax,c = 109, flow conditions are laminar for both 
orientations. Hence, to minimize heat transfer from the plate, we wish to maximize the thickness of the 
boundary layer and therefore maximize the plate length in the vertical direction. Therefore, Orientation 
B is preferred.           < 
 
Selecting Eq. 9.27,  
 

1/ 4

4 /99 /16

6 1/ 4

4 /9 29 /16

0.670.68
1 (0.492 / )

0.0287 W/(m K) 0.67 (560 10 ) W    = 0.68 4.57
0.5m m K1 (0.492 / 0.702)

Lk Rah
L Pr

⎧ ⎫
⎪ ⎪= +⎨ ⎬

⎡ ⎤⎪ ⎪+⎣ ⎦⎩ ⎭
⎧ ⎫

⋅ × ×⎪ ⎪+ =⎨ ⎬
⋅⎡ ⎤⎪ ⎪+⎣ ⎦⎩ ⎭

 

and 
 

2( ) 4.57W / m K (0.25m 0.50m) (100 20) 45.7 Wsq hA T T C∞= − = ⋅ × × × − ° =   < 
 
COMMENTS: 1. For Orientation A, Ra = 7× 107, 5.48h = W/m2⋅K and q = 54.8 W. Although the 
Rayleigh and Nusselt numbers are smaller for Orientation A, the length scale in the Nusselt number is 
half that of Orientation B, leading to an overall increase in the convection coefficient and heat transfer 
rate. 2. Radiation heat transfer will be significant. 

g Orientation A

Orientation B

Ts

Ts = 100°C

T∞ = 20°C

0.5 m

0.25 m



PROBLEM 9.18  
KNOWN:  During a winter day, the window of a patio door with a height of 1.8 m and width of 1.0 m 
shows a frost line near its base.  
FIND:  (a) Explain why the window would show a frost layer at the base of the window, rather than at 
the top, and (b) Estimate the heat loss through the window due to free convection and radiation.  If the 
room has electric baseboard heating, estimate the daily cost of the window heat loss for this condition 
based upon the utility rate of 0.18 $/kW⋅h.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Window has a uniform temperature, (3) Ambient 
air is quiescent, and (4) Room walls are isothermal and large compared to the window. 
 
PROPERTIES:  Table A-4, Air (Tf = (Ts + T∞)/2 = 280 K, 1 atm):  ν = 14.11 × 10-6 m2/s, k = 0.0247 
W/m⋅K, α = 1.986 × 10-5 m2/s, Pr = 0.710. 
 
ANALYSIS:  (a) For these winter conditions, a frost line could appear and it would be at the bottom 
of the window.  The boundary layer is thinnest at the top of the window, and hence the heat flux from 
the warmer room is greater than compared to that at the bottom portion of the window where the 
boundary layer is thicker.  Also, the air in the room may be stratified and cooler near the floor 
compared to near the ceiling. 
 
(b) The heat loss from the room to the window having a uniform temperature Ts = 0°C by convection 
and radiation is 
 
 loss cv radq q q= +          (1) 
 

 ( ) ( )4 4
loss s L s sur sq A h T T T Tεσ∞

⎡ ⎤= − + −⎢ ⎥⎣ ⎦
      (2) 

 
The average convection coefficient is estimated from the Churchill-Chu correlation, Eq. 9.26, using 
properties evaluated at Tf = (Ts + T∞)/2. 
 

 

( )
L

2
1/ 6

L L
8/ 279 /16

0.387 Rah LNu 0.825
k

1 0.492 / Pr

⎧ ⎫
⎪ ⎪⎪ ⎪= = +⎨ ⎬
⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

    (3) 

 
 ( ) 3

L sRa g T T T L /β να∞= −         (4) 
 
Substituting numerical values in the correlation expressions, find 
 
 L

10 2
L LRa 1.084 10 Nu 258.9 h 3.6 W / m K= × = = ⋅  

 
          Continued … 



PROBLEM 9.18 (Cont.) 
 
Using Eq. (2), the heat loss with σ = 5.67 × 10-8 W/m2⋅K4 is 
 

 ( ) ( ) ( )2 2 4 4 4
lossq 1 1.8 m 3.6 W / m K 15 K 0.940 288 273 Kσ⎡ ⎤= × ⋅ + −⎢ ⎥⎣ ⎦

 
 
 ( )lossq 96.1 127.1 W 223 W= + =  
 
The daily cost of the window heat loss for the given utility rate is 
 
 cost = qloss × (utility rate) × 24 hours 
 
 cost = 223 W × (10-3 kW/W) × 0.18 $/kW·h × 24 h 
 
 cost = 0.96 $/day         < 
 
COMMENTS:  Note that the heat loss by radiation is 30% larger than by free convection. 



PROBLEM 9.19 
 
KNOWN:  Room and ambient air conditions for window glass. 
 
FIND:  Temperature of the glass and rate of heat loss. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible temperature gradients in the glass, (3) 
Inner and outer surfaces exposed to large surroundings. 
 
PROPERTIES:  Table A.4, air (Tf,i and Tf,o):  Obtained from the IHT Properties Tool Pad. 
 
ANALYSIS:  Performing an energy balance on the window pane, it follows that in outE E=& & , or 
 

 ( ) ( ) ( ) ( )4 4 4 4
i ,i sur,o o ,osur,iT T h T T T T h T T∞ ∞− + − = − + −εσ εσ  

 
where ih  and oh  may be evaluated from Eq. 9.26. 
 

 

( )

2
1/ 6
LL 8/ 279 /16

0.387Ra
Nu 0.825

1 0.492 Pr

⎧ ⎫
⎪ ⎪⎪ ⎪= +⎨ ⎬
⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 
Using the First Law Model for an Isothermal Plane Wall and the Correlations and Properties Tool Pads 
of IHT, the energy balance equation was formulated and solved to obtain 

 T = 273.8 K < 
 
The heat rate is then qi = qo, or 

 ( ) ( )2 4 4
i i ,isur,iq L T T h T T 174.8W∞

⎡ ⎤= − + − =⎢ ⎥⎣ ⎦
εσ  < 

 
COMMENTS:  The radiative and convective contributions to heat transfer at the inner and outer surfaces 
are qrad,i = 99.04 W, qconv,i = 75.73 W, qrad,o = 86.54 W, and qconv,o = 88.23 W, with corresponding 
convection coefficients of ih  = 3.95 W/m2⋅K and oh  = 4.23 W/m2⋅K.  The heat loss could be reduced 
significantly by installing a double pane window. 



PROBLEM 9.20 
 
KNOWN:  Room and ambient air conditions for window glass.  Thickness and thermal conductivity of 
glass. 
 
FIND:  Inner and outer surface temperatures and heat loss. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in the glass, (3) Inner 
and outer surfaces exposed to large surroundings. 
 
PROPERTIES:  Table A.4, air (Tf,i and Tf,o):  Obtained from the IHT Properties Tool Pad. 
 
ANALYSIS:  Performing energy balances at the inner and outer surfaces, we obtain, respectively, 
 

 ( ) ( ) ( )( )4 4
i ,i s,i s,i s,osur,i s,iT T h T T kg tg T Tεσ ∞− + − = −  (1) 

 

 ( )( ) ( ) ( )4 4
s,i s,o s,o sur,o o s,o ,okg tg T T T T h T Tεσ ∞− = − + −  (2) 

 
where Eq. 9.26 may be used to evaluate ih  and oh  
 

 

( )

2
1/ 6
LL 8/ 279 /16

0.387Ra
Nu 0.825

1 0.492 Pr

⎧ ⎫
⎪ ⎪⎪ ⎪= +⎨ ⎬
⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 
Using the First Law Model for One-dimensional Conduction in a Plane Wall and the Correlations and 
Properties Tool Pads of IHT, the energy balance equations were formulated and solved to obtain 

 Ts,i = 274.4 K                   Ts,o = 273.2 K < 
 
from which the heat loss is 

 ( )
2

g
s,i s,o

g

k L
q T T 168.8W

t
= − =  < 

COMMENTS:  By accounting for the thermal resistance of the glass, the heat loss is smaller (168.8 W) 
than that determined in the preceding problem (174.8 W) by assuming an isothermal pane. 



PROBLEM 9.21  
KNOWN:  Oven door with average surface temperature of 32°C in a room with ambient air at 22°C.  
FIND:  Heat loss to the room.  Also, find effect on heat loss if emissivity of door is unity and the 
surroundings are at 22°C.  
SCHEMATIC:   

 
 
 
ASSUMPTIONS:  (1) Ambient air is quiescent, (2) Surface radiation effects are negligible.  
PROPERTIES:  Table A-4, Air (Tf = 300K, 1 atm):  ν = 15.89 × 10

-6 m2/s, k = 0.0263 W/m⋅K, α = 

22.5 × 10
-6 m2/s, Pr = 0.707, β = 1/Tf = 3.33 × 10

-3 K-1. 
 
ANALYSIS:  The heat rate from the oven door surface by convection to the ambient air is 
 ( )q h A T Ts s= − ∞          (1) 

where h  can be estimated from the free-convection correlation for a vertical plate, Eq. 9.26, 

 
( )

2
1/ 60.387 Rah L LNu 0.825 .L 8 / 27k 9 /161 0.492 / Pr

= = +

+

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪⎡ ⎤

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

    (2) 

The Rayleigh number, Eq. 9.25, is 

 ( ) ( )( )3 2 3 3g T T L 9.8 m / s 1/ 300K 32 22 K 0.5 m 8sRa 1.142 10 .L 6 2 6 215.89 10 m / s 22.5 10 m / s

β
να
− − ×∞= = = ×

− −× × ×
 

Substituting numerical values into Eq. (2), find 

 
( )

( )

21/ 680.387 1.142 10
Nu 0.825 63.5L 8 / 279 /161 0.492 / 0.707

×
= + =

+

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪⎡ ⎤

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

 k 0.0263 W / m K 2h Nu 63.5 3.34 W / m K.L LL 0.5m
⋅

= = × = ⋅  

The heat rate using Eq. (1) is 

 ( ) ( )2 2q 3.34 W / m K 0.5 0.7 m 32 22 K 11.7 W.= ⋅ × × − =     < 
Heat loss by radiation, assuming ε = 1, is 

 ( )4 4q A T Ts s surrad ε σ= −  

( ) ( ) ( )4 42 8 2 4 45.67 10 W / m K 273 32 273 22 K 21.4 W.q 1 0.5 0.7 mrad
−× × ⋅ + − + =⎡ ⎤= × ⎢ ⎥⎣ ⎦

  < 

Note that heat loss by radiation is nearly double that by free convection.  Using Eq. (1.9), the radiation 
heat transfer coefficient is hrad = 6.4 W/m2⋅K, which is twice the coefficient for the free convection 
process. 



PROBLEM 9.22  
KNOWN:  Dimensions of window pane with frost formation on inner surface.  Temperature of room 
air and walls.  
FIND:  Heat loss through window.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state, (2) Surface of frost is isothermal with Ts ≈ 0°C, (3) Radiation 
exchange is between a small surface (window) and a large enclosure (walls of room), (4) Room air is 
quiescent.  
PROPERTIES:  Table A-4, air (Tf = 9°C = 282 K):  k = 0.0249 W/m⋅K, ν = 14.3 × 10-6 m2/s, α = 
20.1 × 10-6 m2/s, Pr = 0.712, β = 3.55 × 10-3 K-1. 
 
ANALYSIS:  Under steady-state conditions, the heat loss through the window corresponds to the rate 
of heat transfer to the frost by convection and radiation. 
 

 ( ) ( )4 4
conv rad s sur sq q q W L h T T T Tεσ∞

⎡ ⎤= + = × − + −⎢ ⎥⎣ ⎦
 

 
With ( ) ( ) ( )3 2 1 12 4 23

L sRa g T T L / 9.8 m / s 0.00355 K 18 K 1m / 14.3 20.1 10 m / sβ αν − −
∞= − = × × × ×  

92.18 10 ,= ×  Eq. (9.26) yields 
 

 

( )
L

2
1/ 6
L

8/ 279 /16

0.387 Ra
Nu 0.825 156.5

1 0.492 / Pr

⎧ ⎫
⎪ ⎪⎪ ⎪= + =⎨ ⎬
⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 

 2
L

k 0.0249 W / m Kh Nu 156.5 3.9 W / m K
L 1m

⋅⎛ ⎞= = = ⋅⎜ ⎟
⎝ ⎠

 

 

( ) ( )2 2 8 2 4 4 4q 1m 3.9 W / m K 18K 0.90 5.67 10 W / m K 291 273−⎡ ⎤= ⋅ + × × ⋅ −⎢ ⎥⎣ ⎦
 

70.2 W 82.5W 152.7 W= + =       < 
 
COMMENTS:  (1) The thickness of the frost layer does not affect the heat loss, since the inner 
surface of the layer remains at Ts ≈ 0°C.  However, the temperature of the glass/frost interface 
decreases with increasing thickness, from a value of 0°C for negligible thickness.  (2) Since the 
thermal boundary layer thickness is zero at the top of the window and has its maximum value at the 
bottom, the temperature of the glass will actually be largest and smallest at the top and bottom, 
respectively.  Hence, frost will first begin to form at the bottom. 
 



PROBLEM 9.23 
 
 
KNOWN:  Length of isothermal vertical plate, L. 
 
FIND:  Expression for the ratio of the average heat transfer coefficients for N plates each of length LN 
= L/N to the average coefficient for the single plate. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Constant properties. 
 
 
ANALYSIS:  Equation 9.21 yields, for the single plate,  
 

  
1/ 44 ( )

3 4
LL

hL GrNu g Pr
k

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

   or   
1/4

,1
4 ( )
3 4

LL
k Grh g Pr
L
⎛ ⎞= ⎜ ⎟
⎝ ⎠

  (1) 

For multiple plates, 
 

 
1/ 4

, ,
,

4 ( )
3 4

L N L NNL N
Grh LNu g Pr

k

⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
   where   LN = L/N and ,L NGr = GrL/(N 3) (2a, b, c) 

 
Combining Equations 2a, 2b and 2c yields 
 

  
1/ 4

, 3
4 ( )
3 4

LL N
Nk Grh g Pr
L N

⎛ ⎞= ⎜ ⎟
⎝ ⎠

      (3) 

 
Dividing Equation 3 by Equation 1 yields 
 
 

  
1/ 4

1/ 4
, ,1 3

1/L N Lh h N N
N

⎛ ⎞= =⎜ ⎟
⎝ ⎠

      < 

 
 
COMMENTS: (1) By breaking the single plate into shorter segments, the average boundary layer 
thickness is reduced, resulting in a modest increase in the average heat transfer coefficient and, in turn, 
the convective heat transfer from the plate. (2) The relationship for laminar forced convection for an 
isothermal plate in parallel flow is 1/2

, ,1/L N Lh h N= , illustrating that, in general, enhancement of free 
convection heat transfer is more challenging than enhancement of forced convection. See Problem 
7.11.  

L LN = L/N
(N = 3 is shown)

Quiescent 
fluid,T∞

Quiescent 
fluid,T∞

g



PROBLEM 9.24  
KNOWN:  Plate dimensions, initial temperature, and final temperature.  Air temperature.  
FIND:  (a) Initial cooling rate, (b) Time to reach prescribed final temperature.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Plate is spacewise isothermal as it cools (lumped capacitance approximation), 
(2) Negligible heat transfer from minor sides of plate, (3) Thermal boundary layer development 
corresponds to that for an isolated plate (negligible interference between adjoining boundary layers). 
(4) Negligible radiation. (5) Constant properties. 
 
PROPERTIES:  Table A-1, AISI 1010 steel ( )T 473 K :=   ρ = 7832 kg/m3, c = 513 J/kg⋅K.  Table A-

4, air (Tf,i = 433 K):  ν = 30.4 × 10-6 m2/s, k = 0.0361 W/m⋅K, α = 44.2 × 10-6 m2/s, Pr = 0.687, β = 
0.0023 K-1. 
 
ANALYSIS:  (a) The initial rate of heat transfer is ( )i s iq h A T T ,∞= −  where 2 2

sA 2 L 2 m .≈ =   

With RaL,i = gβ (Ti - T∞)L3/αν = 9.8 m/s2 × 0.0021 (280)1m3/44.2 × 10-6 m2/s × 30.4 × 10-6 m2/s = 
4.72 × 109, Eq. 9.26 yields 
 

 
( )

( )

2
1/ 69

2
8/ 279 /16

0.387 4.72 100.0361W / m Kh 0.825 7.16 W / m K
1m

1 0.492 / 0.687

⎧ ⎫
×⎪ ⎪⋅ ⎪ ⎪= + = ⋅⎨ ⎬

⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 

Hence,   2 2
iq 7.16 W / m K 2m 280 C 4010 W= ⋅ × × ° =     < 

 
(b) From an energy balance at an instant of time for a control surface about the plate, stq E− = &  

2L c dT / dt,ρ δ=  the rate of change of the plate temperature is 
 

 
( ) ( )

2

2
h 2L T TdT 2h T T

dt cL c ρδρ δ
∞

∞
−

= − = − −  

 
where the Rayleigh number, and hence h ,  changes with time due to the change in the temperature of 
the plate.  Integrating the foregoing equation with the DER function of IHT, the following results are 
obtained for the temperature history of the plate. 
 
          Continued … 



PROBLEM 9.24 (Cont.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The time for the plate to cool to 100°C is 
 

 t 2365s≈           < 
 
COMMENTS:  (1) Although the plate temperature is comparatively large and radiation emission is 
significant relative to convection, much of the radiation leaving one plate is intercepted by the 
adjoining plate if the spacing between plates is small relative to their width.  The net effect of radiation 
on the plate temperature would then be small.  (2) Because of the increase in β and reductions in ν and 
α with increasing t, the Rayleigh number decreases only slightly as the plate cools from 300°C to 
100°C (from 4.72 × 109 to 4.48 × 109), despite the significant reduction in (T - T∞).  The reduction in 
h  from 7.2 to 5.6 W/m2⋅K is principally due to a reduction in the thermal conductivity. 
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PROBLEM 9.25 
 
KNOWN:  Thin-walled container with hot process fluid at 50°C placed in a quiescent, cold water bath at 
10°C.  
FIND:  (a) Overall heat transfer coefficient, U, between the hot and cold fluids, and (b) Compute and plot 
U as a function of the hot process fluid temperature for the range 20 ≤ T h∞,  ≤ 50°C. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Heat transfer at the surfaces approximated by free 
convection from a vertical plate, (3) Fluids are extensive and quiescent, (4) Hot process fluid 
thermophysical properties approximated as those of water, and (5) Negligible container wall thermal 
resistance.  
PROPERTIES: Table A.6, Water (assume Tf,h = 310 K):  ρh = 1/1.007 × 10-3 = 993 kg/m3, cp,h = 4178 
J/kg⋅K,  νh =  μh/ρh = 695 × 10-6 N⋅s/m2/993 kg/m3 = 6.999 × 10-7 m2/s, kh = 0.628 W/m⋅K, Prh = 4.62, αh = 
kh/ρhcp,h = 1.514 × 10-7 m2/s, βh = 361.9 × 10-6 K-1 ; Table A.6, Water (assume Tf,c = 295 K):  ρc = 1/1.002 
× 10-3 = 998 kg/m3, cp,c = 4181 J/kg⋅K, νc = μc/ρc = 959 × 10-6 N⋅s/m2/998 kg/m3 = 9.609 × 10-7 m2/s, kc = 
0.606 W/m⋅K, Prc = 6.62, αc = kc/ρccp,c = 1.452× 10-7 m2/s,  βc = 227.5 × 10-6 K-1. 
 
ANALYSIS:  (a) The overall heat transfer coefficient between the hot process fluid, ,hT∞ , and the cold 

water bath fluid, ,cT∞ , is 

 ( ) 1
h cU 1 h 1 h

−
= +  (1) 

where the average free convection coeffieicnts can be estimated from the vertical plate correlation Eq. 
9.26, with the Rayleigh number, Eq. 9.25, 

 

( )

2
1/ 6
LL 8 / 279 /16

0.387Ra
Nu 0.825

1 0.492 Pr
= +

+

⎧ ⎫
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⎨ ⎬
⎪ ⎪⎡ ⎤

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

                 
3

L
g TL

Ra
β
να
Δ

=  (2,3) 

To affect a solution, assume ( )s ,h ,cT T T 2 30 C 303K∞ ∞= + = =o , so that the hot and cold fluid film 

temperatures are Tf,h = 313 K ≈ 310 K and Tf,c = 293 K ≈ 295 K.  From an energy balance across the 
container walls, 
 ( ) ( )h ,h s c s ,ch T T h T T∞ ∞− = −  (4) 

the surface temperature Ts can be determined.  Evaluating the correlation parameters, find: 
 
Hot process fluid: 

 
( ) ( )32 6 1

9
L,h 7 2 7 2

9.8 m s 361.9 10 K 50 30 K 0.200m
Ra 5.357 10

6.999 10 m s 1.514 10 m s

− −

− −
× × −

= = ×
× × ×

 

Continued... 



 
PROBLEM 9.25 (Cont.) 

 

 
( )

( )

21/ 69

L,h 8 / 279 /16

0.387 5.357 10
Nu 0.825 251.5

1 0.492 4.62

×
= + =

+

⎧ ⎫
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⎨ ⎬
⎪ ⎪⎡ ⎤

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

 

 2 2hL,hh
h

h Nu 251.5 0.628 W m K 0.200m 790 W m K
L

= = × ⋅ = ⋅  

Cold water bath: 

 
( ) ( )32 6 1

9
L,c 7 2 7 2

9.8m s 227.5 10 K 30 10 K 0.200m
Ra 2.557 10

9.609 10 m s 1.452 10 m s

− −

− −
× × −

= = ×
× × ×

&
 

 
( )

( )

21 69

L,c 8 / 279 16

0.387 2.557 10
Nu 0.825 203.9

1 0.492 6.62

×
= + =

+

⎧ ⎫
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⎨ ⎬
⎪ ⎪⎡ ⎤

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

 2
ch 203.9 0.606 W m K 0.200 m 618 W m K= × ⋅ = ⋅  

From Eq. (1) find 

 ( ) 1 2 2U 1 790 1 618 W m K 347 W m K−= + ⋅ = ⋅  < 
Using Eq.(4), find the resulting surface temperature 

 ( ) ( )2 2
s s790 W m K 50 T K 618 W m K T 10 K⋅ − = ⋅ −                 sT 32.4 C= o  

Which compares favorably with our assumed value of 30°C. 
 
(b) Using the IHT Correlations Tool, Free Convection, Vertical  Plate and following the foregoing 
approach, the overall coefficient was computed as a function of the hot fluid temperature and is plotted 
below.  Note that U increases almost linearly with ,hT∞ . 
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COMMENTS:  For the conditions of part (a), using the IHT model of part (b) with thermophysical 
properties evaluated at the proper film temperatures, find U = 352 W/m⋅K with Ts = 32.4°C. Our 
approximate solution was a good one. 
 
(2) Because the set of equations for part (b) is quite stiff, when using the IHT model you should follow 
the suggestions in the IHT Example 9.2 including use of the intrinsic function Tfluid_avg (T1,T2).  



PROBLEM 9.26  
 

 
KNOWN: Size and emissivity of a vertical heated plate. Temperature of the ambient and 
surroundings. 
 
FIND: (a) Electrical power to be supplied to the plate in order to achieve a plate temperature of 
Ts = 35°C for ε = 0.95. Fraction of the plate exposed to turbulent conditions, (b) Steady-state 
plate temperature for ε = 0.05 and fraction of the plate exposed to turbulent conditions. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Constant properties and steady-state conditions, (2) Large surroundings, 
(3) Isothermal plate, (4) Critical Rayleigh number of Rax,c = 109. 
 
PROPERTIES: Table A.4, air: (Tf = 303 K): k = 0.02652 W/m⋅K, ν = 1.619 × 10-5 m2/s, α = 
2.294 × 10-5 m2/s, Pr = 0.7066. 
 
ANALYSIS: (a) The Rayleigh number is 
 

  
3 2 3

8
L 5 2 5 2

g TL 9.8m /s (1/ 303K) 10 C (1m)Ra 8.71 10
1.619 10 m /s 2.294 10 m /s

β
να − −
Δ × × ° ×

= = = ×
× × ×

 (1) 

 
Since Ra < Rax,c, the boundary layer is completely laminar. The electric power required is 
 
  4 4

g conv rad s s surP E q q hA(T T ) A (T T )ε σ∞= = + = − + −&    (2) 
 
The convection coefficient may be found from the Churchill and Chu correlation 
 

  
( )

( )

2
1/68

L 8/ 279 /16

0.387 8.71 10
Nu 0.825 117.6

1 0.492 / 0.7066

⎧ ⎫
× ×⎪ ⎪

= + =⎨ ⎬
⎡ ⎤⎪ ⎪+⎢ ⎥⎣ ⎦⎩ ⎭

   (3) 

 
Thus, the convection coefficient is 

Continued… 
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 PROBLEM 9.26 (Cont.) 
 
 

2
Lh Nu k / L 117.6 0.02652W / m K /1m 3.12W / m K= = × ⋅ = ⋅  

 
Hence, Equation 2 is written  
 

2

8 2 4 4 4 4

P 2 (1m 2m) 3.12W / m K (35 25) C

   0.95 5.67 10 W / m K (308 298 )K
    124.8W 239.8W 364.2W

−

= × × × ⋅ × − °

+ × × ⋅ × −
= + =

    < 

 
(b) Equations 1, 2 and 3 may be solved simultaneously with the constraint that P = 364.6 W. 
Property variations may be taken into account by using IHT. A simultaneous solution of 
Equations 1 through 3 yields 
 

 9 2
LL sRa 1.71 10 , Nu 144.9,h 3.906W / m K,T 319.5K 46.5 C= × = = ⋅ = = °  < 

 
The length of the plate that is subjected to laminar conditions may be found from the definition of 
the Rayleigh number, RaL = gβΔTL3/να and the knowledge that Tf = (319.5 K = 298 K)/2 = 
308.8 K.  
 

 
1/31/3 9 5 2 5 2

x,cRa 10 1.677 10 m /s 2.379 10 m /sL
g T 9.8m /s (1/ 308.8K) (319.5K 298K

να
β

− −⎛ ⎞⎛ ⎞ × × × ×
= = ⎜ ⎟⎜ ⎟ ⎜ ⎟Δ × × −⎝ ⎠ ⎝ ⎠

= 0.836 m < 

 
Therefore, 1m – 0.836m = 0.164m or 16.4% of the plate is exposed to turbulent conditions. 
 
COMMENTS: (1) In part (b), the convection and radiation heat rates are 335.9 W and 28.74 
W, respectively. Convection dominates in part (b) while in part (a) radiation losses are 
significantly larger than convection losses. (2) Radiation exchange can fundamentally alter the 
nature of the flow in free convection systems. (3) The polished plate would slowly oxidize over 
time, causing drift in the experimentalist’s measurements of the transition to turbulent flow. (4) 
The properties used in part (b) are evaluated at the film temperature of Tf = 308.8 K and are k = 
0.02695 W/m⋅K, ν = 1.677 × 10-5 m2/s, α = 2.397 × 10-5 m2/s, Pr = 0.7058. 
 
 



PROBLEM 9.27 
 
KNOWN:  Boundary conditions associated with a rear window experiencing uniform volumetric heating. 
 
FIND:  (a) Volumetric heating rate &q  needed to maintain inner surface temperature at Ts,i = 15°C, (b) 
Effects of T o∞, , u∞ , and T i∞,  on q&  and Ts,o. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state, one-dimensional conditions, (2) Constant properties, (3) Uniform 
volumetric heating in window, (4) Convection heat transfer from interior surface of window to interior air 
may be approximated as free convection from a vertical plate, (5) Heat transfer from outer surface is due 
to forced convection over a flat plate in parallel flow. 
 
PROPERTIES:  Table A.3, Glass (300 K):  k = 1.4 W/m⋅K:  Table A.4, Air (Tf,i = 12.5°C, 1 atm):  ν = 
14.6 × 10-6 m2/s, k = 0.0251 W/m⋅K, α = 20.59 × 10-6 m2/s, β = (1/285.5) = 3.503 × 10-3 K-1, Pr = 0.711; 
(Tf,o ≈ 0°C):  ν = 13.49 × 10-6 m2/s, k = 0.0241 W/m⋅K, Pr = 0.714. 
 
ANALYSIS:  (a) The temperature distribution in the glass is governed by the appropriate form of the heat 
equation, Eq. 3.44, whose general solution is given by Eq. 3.45. 

 ( ) ( ) 2
1 2T x q 2k x C x C= − + +& . 

The constants of integration may be evaluated by applying appropriate boundary conditions at x = 0.  In 
particular, with T(0) = Ts,i, C2 = Ts,i.  Applying an energy balance to the inner surface, cond conv,iq q′′ ′′=  

 ( )i ,i s,i
x 0

dTk h T T
dx ∞

=
− = −                  ( )1 i ,i s,i

x 0

qk x C h T T
k ∞

=

⎛ ⎞− − + = −⎜ ⎟
⎝ ⎠

&
 

 ( )( )1 i ,i s,iC h k T T∞= − −  

 ( ) ( )
( )i ,i s,i2

s,i
h T T

T x q 2k x x T
k

∞ −
= − − +&  (1) 

The required generation may then be obtained by formulating an energy balance at the outer surface, 
where cond conv,oq q′′ ′′= .  Using Eq. (1), 
 

 ( )o s,o ,o
x L

dTk h T T
dx ∞

=
− = −  (2) 

Continued... 



PROBLEM 9.27 (Cont.) 
 

 ( ) ( )i ,i s,i i ,i s,i
x L

dT qLk k h T T qL h T T
dx k ∞ ∞

=

⎛ ⎞− = − − + − = + −⎜ ⎟
⎝ ⎠

&
&  (3) 

Substituting Eq. (3) into Eq. (2), the energy balance becomes 
 
 ( ) ( )o s,o ,o i s,i ,iqL h T T h T T∞ ∞= − + −&  (4) 
 
where Ts,o may be evaluated by applying Eq. (1) at x = L. 

 
( )2 i ,i s,i

s,o s,i
h T TqLT L T

2k k
∞ −

= − − +
&

. (5) 

The inside convection coefficient may be obtained from Eq. 9.26.  With 
 

 
( ) ( )( ) ( )32 3 13

s,i ,i 7
H 6 2 6 2

9.8 m s 3.503 10 K 15 10 K 0.5 mg T T H
Ra 7.137 10

14.60 10 m s 20.59 10 m s

β

να

− −
∞

− −

× −−
= = = ×

× × ×
, 

 

( )

( )
( )

2 21/ 671/ 6
HH 8/ 27 8 / 279 /16 9 /16

0.387 7.137 100.387Ra
Nu 0.825 0.825 55.2

1 0.492 Pr 1 0.492 0.711

×
= + = + =

+ +

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
 

 

 2Hi
k 55.2 0.0251W m Kh Nu 2.77 W m K
H 0.5m

× ⋅
= = = ⋅  

The outside convection coefficient may be obtained by first evaluating the Reynolds number.  With 

 5
H 6 2

u H 20m s 0.5mRe 7.413 10
13.49 10 m sν

∞
−
×

= = = ×
×

 

and with Rex,c = 5 × 105, mixed boundary layer conditions exist.  Hence, 

 ( ) ( ) ( )
4 /5 1/ 34 /5 1/ 3 5H HNu 0.037 Re 871 Pr 0.037 7.413 10 871 0.714 864

⎡ ⎤
= − = × − =⎢ ⎥

⎣ ⎦
 

 ( ) ( ) 2Hoh Nu k H 864 0.0241W m K 0.5m 41.6 W m K= = × ⋅ = ⋅ . 
Eq. (5) may now be expressed as 

( )
( )

( )2 2
5

s,o
q 0.008 m 2.77 W m K 10 15 K

T 0.008 m 288 K 2.286 10 q 288.1K
2 1.4 W m K 1.4 W m K

−⋅ −
= − − × + = − × +

⋅ ⋅

&
&  

or, solving for q& ,              ( )s,oq 43,745 T 288.1= − −&  (6) 
 
and substituting into Eq. (4), 

( )( ) ( ) ( )2 2
s,o s,o43, 745 T 288.1 0.008 m 41.6 W m K T 263K 2.77 W m K 288 K 283K− − = ⋅ − + ⋅ − . 

It follows that Ts,o = 285.4 K in which case, from Eq. (6) 

 3q 118kW m=& . < 
(b) The parametric calculations were performed using the One-Dimensional, Steady-state Conduction 
Model of IHT with the appropriate Correlations and Properties Tool Pads, and the results are as follows. 

 
Continued... 
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For fixed Ts,i and ,iT∞ , Ts,o and q&  are strongly influenced by ,oT∞  and u∞ , increasing and decreasing, 

respectively, with increasing ,oT∞  and decreasing and increasing, respectively with increasing u∞ .  For 

fixed Ts,i and u∞ , Ts,o and q&  are independent of ,iT∞ , but increase and decrease, respectively, with 

increasing ,oT∞ . 
 
COMMENTS:  In lieu of performing a surface energy balance at x = L, Eq. (4) may also be obtained by 
applying an energy balance to a control volume about the entire window. 



PROBLEM 9.28  
KNOWN:  Vertical panel with uniform heat flux exposed to ambient air.  
FIND:  Allowable heat flux if maximum temperature is not to exceed a specified value, Tmax. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Constant properties, (2) Radiative exchange with surroundings negligible. 

PROPERTIES:  Table A-4, Air (Tf = (TL/2 + T∞)/2 = (35.4 + 25)°C/2 = 30.2°C = 303K, 1 atm):  ν = 

16.19 × 10
-6 m2/s, k = 26.5 × 10

-3 W/m⋅K, α = 22.9 × 10
-6 m2/s, Pr = 0.707. 

ANALYSIS:  Following the treatment of Section 9.6.1 for a vertical plate with uniform heat flux 
(constant sq′′ ), the heat flux can be evaluated as 

 ( )s L / 2 L / 2 sq h T where T T L / 2 T∞′′ = Δ Δ = −           (1,2) 
and h  is evaluated using an appropriate correlation for a constant temperature vertical plate.  From 
Eq. 9.28, 

 ( )1/ 5
x x L / 2T T T 1.15 x / L T∞Δ ≡ − = Δ       (3) 

and recognizing that the maximum temperature will occur at the top edge, x = L, use Eq. (3) to find 

 ( ) ( )1/ 5
L / 2 L / 2T 37 25 C /1.15 1/1 10.4 C or T 35.4 C.Δ = − = =o o o  

Calculate now the Rayleigh number based upon ΔTL/2, with Tf = (TL/2 + T∞)/2 = 303K, 

 
3

L L / 2
g TLRa where T Tβ
να
Δ

= Δ = Δ      (4) 

( ) ( )32 6 2 6 2 8
LRa 9.8m / s 1/ 303K 10.4K 1m /16.19 10 m / s 22.9 10 m / s 9.07 10 .− −= × × × × = ×  

 
Since RaL < 10

9, the boundary layer flow is laminar; hence the correlation of Eq. 9.27 is appropriate, 

 
( )

L

1/ 4
L

4 / 99 /16

0.670RahLNu 0.68
k

1 0.492 / Pr
= = +

⎡ ⎤+⎢ ⎥⎣ ⎦

     (5) 

( ) ( )
1/ 4 4 / 98 29 /160.0265 W / m K

h 0.68 0.670 9.07 10 / 1 0.492 / 0.707 2.38 W / m K.
1m

⋅
= + × + = ⋅

⎧ ⎫⎡ ⎤ ⎡ ⎤⎨ ⎬⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎩ ⎭
 

From Eqs. (1) and (2) with numerical values for h  and ΔTL/2, find 

 2 2
sq 2.38W / m K 10.4 C 24.8W / m .′′ = ⋅ × =o      < 

 
COMMENTS:  Recognize that radiation exchange with the environment will be significant.  

Assuming s L / 2 surT T , T T∞= =  and ε = 1, find ( )4 4 2
rad s surq T T 66 W / m .σ −′′ = − =  



PROBLEM 9.29  
KNOWN:  Vertical circuit board dissipating 5W to ambient air.  
FIND:  (a) Maximum temperature of the board assuming uniform surface heat flux and (b) 
Temperature of the board for an isothermal surface condition.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Either uniform sq′′  or  Ts on the board, (2) Quiescent room air. 
 
PROPERTIES:  Table A-4, Air (Tf =(TL/2 + T∞)/2 or (Ts + T∞)/2, 1 atm), values used in 
iterations:  
   Iteration Tf(K)     ν⋅106(m2/s)  k⋅103(W/m⋅K)  α⋅106(m2/s)        Pr 
 
     1  312         17.10       27.2       24.3     0.705 
     2  324         18.30       28.1       26.1     0.704 
     3  319         17.80       27.7       25.3     0.704 
     4  320         17.90       27.8       25.4     0.704  
ANALYSIS:  (a) For the uniform heat flux case (see Section 9.6.1), the heat flux is 
 s L / 2 L / 2 L / 2q h T where T T T∞′′ = Δ Δ = −           (1,2) 
 
and ( )2 2

s sq q / A 5W / 0.150m 222 W / m .′′ = = =  
 
The maximum temperature on the board will occur at x = L and from Eq. 9.28 is 
 ( )1/5

x L / 2T 1.15 x / L TΔ = Δ         (3) 
 
 L max L / 2T T T 1.15 T .∞= = + Δ  
 
The average heat transfer coefficient h  is estimated from a vertical (uniform Ts) plate 
correlation based upon the temperature difference ΔTL/2.  Recognize that an iterative 
procedure is required:  (i) assume a value of TL/2, use Eq. (2) to find ΔTL/2; (ii) evaluate the 
Rayleigh number  
 3

L L / 2Ra g T L /β να= Δ         (4) 
 
and select the appropriate correlation (either Eq. 9.26 or 9.27) to estimate h;  (iii) use Eq. (1) 

with values of h  and ΔTL/2 to find the calculated value of sq ;′′  and (iv) repeat this procedure 

until the calculated value for sq′′  is close to sq′′  = 222 W/m2, the required heat flux. 
 
          Continued … 



PROBLEM 9.29 (Cont.)  
To evaluate properties for the correlation, use the film temperature, 
 ( )f L / 2T T T / 2.∞= +          (5) 

Iteration #1:  Assume TL/2 = 50°C and from Eqs. (2) and (5) find 

 ( ) ( )L f/ 2T 50 27 C 23 C T 50 27 C / 2 312K.Δ = − = = + =o oo  

From Eq. (4), with β = 1/Tf, the Rayleigh number is 

( ) ( ) ( ) ( )2 6 2 6 2 63
LRa 9.8m / s 1/ 312K 23 C 0.150m / 17.10 10 m / s 24.3 10 m / s 5.868 10 .− −= × × × × = ×o  

Since 9
LRa 10 ,<  the flow is laminar and Eq. 9.27 is appropriate 

 
( )

L

1/ 4
L

4 / 99 /16

0.670RahLNu 0.68
k

1 0.492 / Pr
= = +

⎡ ⎤+⎢ ⎥⎣ ⎦

 

( ) ( )
1/ 4 4 / 96 29 /16

L
0.0272 W / m K

h 0.68 0.670 5.868 10 / 1 0.492 / 0.705 4.71W / m K.
0.150m

⋅
= + × + = ⋅

⎧ ⎫⎡ ⎤⎨ ⎬⎣ ⎦⎩ ⎭
 

Using Eq. (1), the calculated heat flux is 
 2 2

sq 4.71W / m K 23 C 108W / m .′′ = ⋅ × =o  

Since sq′′  < 222 W/m2, the required value, another iteration with an increased estimate for 

TL/2 is warranted.  Further iteration results are tabulated. 
 

Iteration    TL/2(°C) ΔTL/2(°C) Tf(K)        RaL        ( )2h W / m K⋅     ( )2
sq W / m′′  

 
   2       75    48  324   1.026×107    5.57   268 
   3       65    38  319   8.749×106    5.29   201 
   4       68    41  320   9.321×106    5.39   221 
 
After Iteration 4, close agreement between the calculated and required sq′′  is achieved with 

TL/2 = 68°C.  From Eq. (3), the maximum board temperature is 
 
 ( )L maxT T 27 C 1.15 41 C 74 C.= = + =oo o       < 
 
(b) For the uniform temperature case, the procedure for estimation of the average heat transfer 
coefficient is the same.  Hence, 
 ss L / 2 qT T 68 C.′′= = o         < 

COMMENTS:  In both cases, q = 5W and 
2h 5.38W / m .=   However, the temperature 

distributions for the two cases are quite 
different as shown on the sketch.  For sq′′  = 

constant, ΔTx ~ x1/5 according to Eq. 9.28. 
 



PROBLEM 9.30  
KNOWN:  Coolant flow rate and inlet and outlet temperatures.  Dimensions and emissivity of channel 
side walls.  Temperature of surroundings.  Power dissipation.  
FIND:  (a) Temperature of sidewalls for εs = 0.15, (b) Temperature of sidewalls for εs = 0.90, (c) 
Sidewall temperatures with loss of coolant for εs = 0.15 and εs = 0.90. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state, (2) Negligible heat transfer from top and bottom surfaces of duct, 
(3) Isothermal side walls, (4) Large surroundings, (5) Coolant is incompressible liquid with negligible 
viscous dissipation, (6) Constant properties. 
 
PROPERTIES:  Table A-4, air ( )mT 298 K :=  cp = 1007 J/kg⋅K.  Air properties required for the free 

convection calculations depend on Ts and were evaluated as part of the iterative solution obtained 
using the IHT software.  
ANALYSIS:  (a) The heat dissipated by the components is transferred by forced convection to the 
coolant (qc), as well as by natural convection (qconv) and radiation (qrad) to the ambient air and the 
surroundings.  Hence, 
 c conv radq q q q 200 W= + + =        (1) 
 
 ( )c p m,o m,iq mc T T 0.015kg / s 1007 J / kg K 10 C 151W= − = × ⋅ × ° =&   (2) 
 
 ( )conv s sq 2h A T T∞= −         (3) 

where 2
sA H L 0.32 m= × =  and h  is obtained from Eq. 9.26, with ( ) 3

H sRa g T T H / .β αν∞= −  

 

( )

2
1/ 6
H

8/ 279 /16

0.387 Rakh 0.825
H

1 0.492 / Pr

⎧ ⎫
⎪ ⎪⎪ ⎪= +⎨ ⎬
⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

     (3a) 

 

 ( )4 4
rad s s s surq 2A T Tε σ= −         (4) 

 
Substituting Eqs. (2) – (4) into (1) and solving using the IHT software with εs = 0.15, we obtain 
 
 sT 308.8K 35.8 C= = °         < 
 
The corresponding heat rates are qconv = 39.6 W and qrad = 9.4 W. 
 
(b) For εs = 0.90 and qc = 151 W, the solution to Eqs. (1) – (4) yields 
          Continued … 



PROBLEM 9.30 (Cont.)  
 sT 301.8K 28.8 C= = °         < 
 
with qconv = 18.7 W and qrad = 30.3 W.  Hence, enhanced emission from the surface yields a lower 
operating temperature and heat transfer by radiation now exceeds that due to conduction. 
 
(c) With loss of coolant flow, we can expect all of the heat to be dissipated from the sidewalls (qc = 0).  
Solving Eqs. (1), (3) and (4), we obtain 
 
 s s0.15 : T 341.8K 68.8 Cε = = = °      < 
 
    conv radq 165.9 W, q 34.1W= =  
 
 s s0.90 : T 322.5K 49.5 Cε = = = °      < 
 
    conv radq 87.6 W, q 112.4 W= =  
 
Since the temperature of the electronic components exceeds that of the sidewalls, the value of Ts = 
68.8°C corresponding to εs = 0.15 may be unacceptable, in which case the high emissivity coating 
should be applied to the walls.  
COMMENTS:  For the foregoing cases the convection coefficient is in the range 3.31 ≤ h  ≤ 5.31 
W/m2⋅K, with the smallest value corresponding to (qc = 151 W, εs = 0.90) and the largest value to (qc 
= 0, εs = 0.15).  The radiation coefficient is in the range 0.93 ≤ hrad ≤ 5.96 W/m2⋅K, with the smallest 
value corresponding to (qc = 151 W, εs = 0.15) and the largest value to (qc = 0, εs = 0.90). 
 



PROBLEM 9.31 
 
KNOWN:  Dimensions, interior surface temperature, and exterior surface emissivity of a refrigerator 
door.  Temperature of ambient air and surroundings. 
 
FIND:  (a) Heat gain with no insulation, (b) Heat gain as a function of thickness for polystyrene 
insulation. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible thermal resistance of steel and 
polypropylene sheets, (3) Negligible contact resistance between sheets and insulation, (4) One-
dimensional conduction in insulation, (5) Quiescent air. 
 
PROPERTIES:  Table A.4, air (Tf = 288 K):  ν = 14.82 × 10-6 m2/s, α = 20.92 × 10-6 m2/s, k = 0.0253 
W/m⋅K, Pr = 0.71, β = 0.00347 K-1. 
 
ANALYSIS:  (a) Without insulation, Ts,o = Ts,i = 278 K and the heat gain is 

 ( ) ( )4 4
wo s s,i s sur s,iq hA T T A T Tεσ∞= − + −  

where As = HW = 0.65 m2.  With a Rayleigh number of RaH = ( ) 3
s,ig T T Hβ αν∞ −  = 9.8 m/s2(0.00347  

K-1)(20 K)(1)3/(20.92 × 10-6 m2/s)(14.82 × 10-6 m2/s) = 2.19 × 109, Eq. 9.26 yields 

 
( )

( )

2
1/ 69

H 8/ 279 /16

0.387 2.19 10
Nu 0.825 156.6

1 0.492 0.71

⎧ ⎫
×⎪ ⎪⎪ ⎪= + =⎨ ⎬

⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 
 ( ) ( ) 2Hh Nu k H 156.6 0.0253W m K 1m 4.0 W m K= = ⋅ = ⋅  
 

( )( ) ( )( )( )2 2 8 2 4 2 4 4 4
woq 4.0 W m K 0.65 m 20 K 0.6 5.67 10 W m K 0.65 m 298 278 K−= ⋅ + × ⋅ −  

 ( )woq 52.00 42.3 W 94.3W= + =  < 
(b) With the insulation, Ts,o may be determined by performing an energy balance at the outer surface, 
where conv rad condq q q′′ ′′ ′′+ = , or 

 ( ) ( ) ( )4 4 i
s,o sur s,o s,o s,i

kh T T T T T T
L

εσ∞ − + − = −  

Using the IHT First Law Model for a Nonisothermal Plane Wall with the appropriate Correlations and 
Properties Tool Pads and evaluating the heat gain from 

Continued... 
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 ( )i s
w s,o s,i

k Aq T T
L

= −  
 
the following results are obtained for the effect of L on Ts,o and qw. 
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The outer surface temperature increases with increasing L, causing a reduction in the rate of heat transfer 
to the refrigerator compartment.  For L = 0.025 m, h  = 2.29 W/m2⋅K, hrad = 3.54 W/m2⋅K, qconv = 5.16 W, 
qrad = 7.99 W, qw = 13.15 W, and Ts,o = 21.5°C. 
 
COMMENTS:  The insulation is very effective in reducing the heat load, and there would be little value 
to increasing L beyond 25 mm. 



PROBLEM 9.32 
 
KNOWN:  Air receiving tank of height 2.5 m and diameter 0.75 m; inside air is at 3 atm and 100°C while 
outside ambient air is 25°C. 
 
FIND:  (a) Receiver wall temperature and heat transfer to the ambient air;  assume receiver wall is Ts = 
60°C to facilitate use of the free convection correlations; (b) Whether film temperatures Tf,i and Tf,o  were 
reasonable; if not, use an iteration procedure to find consistent values; and (c) Receiver wall temperatures, 
Ts,i and Ts,o, considering radiation exchange from the exterior surface (εs,o = 0.85) and thermal resistance 
of the wall  (20 mm thick, k = 0.25W/m⋅K); represent the system by a thermal circuit. 
 
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Surface radiation effects are negligible, parts (a,b), (2) Losses from top and 
bottom of receiver are negligible, (3) Thermal resistance of receiver wall is negligible compared to free 
convection resistance, parts (a,b), (4) Interior and exterior air is quiescent and extensive. 
 
PROPERTIES:  Table A-4, Air (assume Tf,o = 315 K, 1 atm):  ν = 1.74 × 10-5 m2/s, k = 0.02741 W/m⋅K, 
α = 2.472 × 10-5 m2/s, Pr =0.7049;  Table A-4,  Air (assume Tf,i = 350 K, 3 atm): ν =2.092 × 10-5 m2/s/3= 
6.973 × 10-6 m2/s,  k = 0.030 W/m⋅K, α = 2.990 × 10-5 m2/s/3 = 9.967 × 10-6 m2/s, Pr = 0.700.  Note that 
the pressure effect is present for ν and α since ρ(1 atm) = 1/3ρ(3 atm); other properties (cp, k, μ) are 
assumed independent of pressure. 
 
ANALYSIS:  The heat transfer rate from the 
receiver follows from the thermal circuit,  
 

( ),i ,o s ,i ,o

t o s i s o i

T T A T TT
q s

R 1 h A 1 h A 1 h 1 h
∞ ∞ ∞ ∞− −Δ

= = =
+ +

(1) 

 

 

 
where oh  and ih  must be estimated from free convection correlations.  We must assume a value of Ts in 
order to obtain first estimates for ΔTo = Ts - ,oT∞  and  ΔTi = ,oT∞ - Ts as well as Tf,o and Tf,i.  Assume 

that Ts = 60°C, then ΔTo = 60 - 25 = 35°C, Tf,o
  = 315 K and  ΔTi = 100 - 60 = 40°C, and Tf,i = 350 K. 

 
( ) ( )323

10
L,o 5 2 5 2

9.8m s 1/315K 35K 2.5mg TLRa 3.952 10
1.74 10 m s 2.472 10 m s

β
να − −

×Δ
= = = ×

× × ×
 

 

 
( ) ( )32

11
L,i 6 2 6 2

9.8m s 1/350 K 40 K 2.5m
Ra 2.518 10

6.973 10 m s 9.967 10 m s− −
×

= = ×
× × ×

 

 
Approximating the receiver wall as a vertical plate, Eq. 9.26 yields 
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( )

( )
( )

2 21/ 6101/ 6
L,o

L,o 8 / 27 8 / 279 /16 9 /16

0.387 3.952 100.387Ra
Nu 0.825 0.825 390.0

1 0.492 Pr 1 0.492 0.7049

×
= + = + =

+ +

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 

 

 
( )

( )

21/ 611
L,i

L,i 8 / 279 /16

0.387 2.518 10h L
Nu 0.825 706.4

k
1 0.492 0.700

×
= = + =

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤

⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

 

 

           2 2
L,o L,i

0.02741W m K 0.030 W m K
h 390.0 4.27 W m K h 706.4 8.48 W m K

2.5m 2.5m

⋅ ⋅
= × = ⋅ = × = ⋅  

 
From Eq. (1), 

 ( ) 21 1q 0.75m 2.5m 100 25 K m K W 1225W
4.27 8.48

π ⎡ ⎤= × × − + ⋅ =⎢ ⎥⎣ ⎦
 < 

Also, 

 ( )2
s ,i i sT T q h A 100 C 1255W 8.48W m K 0.75m 2.5m 74.9 Cπ∞= − = − ⋅ × × × =o o < 

 
(b) From the above result for Ts, the computed film temperatures are 
 
 f ,o f ,iT 323K T 360K= =  
 
as compared to assumed values of 315 and 350 K, respectively.  Using IHT Correlation Tools for the 
Free Convection, Vertical Plate, and the thermal circuit representing Eq. (1) to find Ts, rather than using 
as assumed value, 
 

 ,o s s ,o

o o

T T T T
1 h 1 h
∞ ∞− −

=  

 
we found  

 q = 1262 W                             Ts = 71.4°C < 
 
with Tf,o = 321K and 359 K.  The iteration only influenced the heat rate slightly. 
 
(c)  Considering effects due to thermal resistance of the tank wall and radiation exchange, the thermal 
resistance network representing the system is shown below. 
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PROBLEM 9.32 (Cont.) 

 
Using the IHT Model, Thermal Network, with the Correlation Tool for Free Convection, Vertical Plate, 
and Properties Tool for Air, a model was developed which incorporates all the foregoing equations of 
parts (a,b), but includes the thermal resistance of the wall, Table 3.3, 
 

 
( )i o

wall o i
n D D

R D D 2 t
2 Lkπ

= = + ×
l

 

 
The results of the analyses are tabulated below showing for comparison those from parts (a) and (b): 
 

 
Part 

Rcv,i 
(K/W) 

Rw 
(K/W) 

Rcv,o 
(K/W) 

Rrad 
(K/W) 

Ts,i 

(°C) 
Ts,o 

(°C) 
q 
W 

(a) 0.0200 0 0.0398 ∞  74.9* 74.9* 1255 
(b) 0.0227 0 0.0367 ∞  71.4 71.4 1262 
(c) 0.0219 0.0132 0.0419 0.0280 68.4 49.3 1445 

 
*Recall we assumed Ts = 60°C in order to simplify the correlation calculation with fixed values of ΔTi, 
ΔTo as well as Tf,o, Tf,i. 
 
COMMENTS:  (1) In the table note the slight difference between results using assumed values for Tf and 
ΔT in the correlations (part (a)) and the exact solution (part (b)). 
 
(2) In the part (c) results, considering thermal resistance of the wall and the radiation exchange process, 
the net effect was to reduce the overall thermal resistance of the system and, hence, the heat rate 
increased. 
 
(3) In the part (c) analysis, the IHT  Thermal Resistance Network model was used to create the thermal 
circuit and generate the required energy balances.  The convection resistances were determined from 
appropriate Convection Correlation Tools.  The code was developed in two steps: (1) Solve the energy 
balance relations from the Network with assigned values for hi and ho to demonstrate that the energy 
relations were correct and then (2) Call in the Convection Correlations and  solve with variable 
coefficients.   Because this equation set is very stiff, we used the intrinsic heat transfer function 
Tfluid_avg and followed these steps in the solution: Step (1):  Assign constant values to the film 
temperatures, Tfi and Tfo, and to the temperature differences in the convection correlations, ΔTi and ΔTo; 
and in the Initial Guesses table, restrain all thermal resistances to be positive (minimum value = 1e-20); 
Solve;  Step (2): Allow the film temperatures to be unknowns but keep assigned variables for the 
temperature differences; use the Load option and Solve.  Step (3): Repeat the previous step but allowing 
the temperature differences to be unknowns.  Even though you get a "successful solve" message, repeat 
the Load-Solve sequence until you see no changes in key variables so that you are assured that the Solver 
has fully converged on the solution. 
 
 
 



PROBLEM 9.33  
KNOWN:  Dimensions and emissivity of cylindrical solar receiver.  Incident solar flux.  Temperature 
of ambient air.  
FIND:  (a) Heat loss and collection efficiency for a prescribed receiver temperature, (b) Effect of 
receiver temperature on heat losses and collector efficiency.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state, (2) Ambient air is quiescent, (3) Incident solar flux is uniformly 
distributed over receiver surface, (4) All of the incident solar flux is absorbed by the receiver, (5) 
Negligible irradiation from the surroundings, (6) Uniform receiver surface temperature, (7) Curvature 
of cylinder has a negligible effect on boundary layer development, (8) Constant properties. 
 
PROPERTIES:  Table A-4, air (Tf = 550 K):  k = 0.0439 W/m⋅K, ν = 45.6 × 10-6 m2/s, α = 66.7 × 
10-6 m2/s, Pr = 0.683, β = 1.82 × 10-3 K-1. 
 
ANALYSIS:  (a) The total heat loss is 
 
 ( )4

rad conv s s s sq q q A T hA T Tεσ ∞= + = + −  
 
With RaL = gβ (Ts - T∞)L3/να = 9.8 m/s2 (1.82 × 10-3 K-1) 500K (12m)3/(45.6 × 66.7 × 10-12 m4/s2) 
= 5.07 × 1012, Eq. 9.26 yields 
 

( )
{ }

2
1/ 6

2 2L
8 / 279 /16

k 0.387 Ra 0.0439 W / m K
h 0.825 0.825 42.4 6.83 W / m K

L 12m
1 0.492 / Pr

⋅
= + = + = ⋅

+

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪⎡ ⎤

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

 
Hence, with As = πDL = 264 m2 
 

 ( ) ( )42 8 2 4 2 2q 264m 0.2 5.67 10 W / m K 800K 264m 6.83W / m K 500K−= × × × ⋅ + × ⋅  
 
 6 5 6

rad convq q q 1.23 10 W 9.01 10 W 2.13 10 W= + = × + × = ×    < 
 
With 7

s sA q 2.64 10 W,′′ = ×  the collector efficiency is 
 

 
( )

( )
7 6

s s
7s s

2.64 10 2.13 10 WA q q 100 100 91.9%
A q 2.64 10 W

η
× − ×⎛ ⎞′′ −

= = =⎜ ⎟′′ ×⎝ ⎠
   < 

 
          Continued … 



PROBLEM 9.33 (Cont.) 
 
(b) As shown below, because of its dependence on temperature to the fourth power, qrad increases 
more significantly with increasing Ts than does qconv, and the effect on the efficiency is pronounced. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
COMMENTS:  The collector efficiency is also reduced by the inability to have a perfectly absorbing 
receiver.  Partial reflection of the incident solar flux will reduce the efficiency by at least several 
percent. 
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PROBLEM 9.34  
KNOWN:  Transformer which dissipates 1000 W whose surface is to be maintained at 47°C in 
quiescent air and surroundings at 27°C.  
FIND:  Power removal (a) by free convection and radiation from lateral and upper horizontal surfaces 
and (b) with 30 vertical fins attached to lateral surface.  
SCHEMATIC:   

 
 
 
 
 
 
ASSUMPTIONS:  (1) Fins are isothermal at lateral surface temperature, Ts, (2) Vertical fins and 
lateral surface behave as vertical plate, (3) Transformer has isothermal surfaces and loses heat only on 
top and side.  
PROPERTIES:  Table A-4, Air (Tf = (27+47)°C/2=310K, 1 atm):  ν = 16.90 × 10

-6
 m

2
/s, k = 27.0 × 

10
-3

 W/m⋅K, α = 23.98 × 10
-6

 m
2
/s, Pr = 0.706, β = 1/Tf.  

ANALYSIS:  (a) For the vertical lateral (lat) and top horizontal (top) surfaces, the heat loss by 
radiation and convection is 

 ( ) ( ) ( )( )( )2
lat top lat r s top r sq q q h h DL T T h h D / 4 T Tπ π∞ ∞= + = + − + + −  

where, from Eq. 1.9, the linearized radiation coefficient is 

 ( )( )2 2
r s sh T T T Tεσ ∞ ∞= + +  

 ( ) ( )8 2 4 2 2 2 2
rh 0.8 5.67 10 W / m K 320 300 K 320 300 K 5.41W / m K.−= × × ⋅ + + = ⋅  

The free convection coefficient for the lateral and top surfaces is:  
Lateral-vertical plate:  Using Eq. 9.26 with 

 ( ) ( )( ) ( )33 2
s 8

L 6 2 6 2
g T T H 9.8m / s 1/ 310 K 47 27 K 0.5m

Ra 1.950 10
16.90 10 m / s 23.98 10 m / s

β
να

∞
− −

− −
= = = ×

× × ×
 

 
( )

L

2
1/ 6
L

8/ 279 /16

0.387Ra
Nu 0.825

1 0.492 / Pr

⎧ ⎫
⎪ ⎪⎪ ⎪= +⎨ ⎬
⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 
( )

( )
L

2
1/ 68

8/ 279 /16

0.387 1.950 10
Nu 0.825 74.5

1 0.492 / 0.706

⎧ ⎫
×⎪ ⎪⎪ ⎪= + =⎨ ⎬

⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 L
2

lath Nu k / H 74.5 0.027 W / m K / 0.5m 4.02 W / m K.= ⋅ = × ⋅ = ⋅  
          Continued … 
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PROBLEM 9.34 (Cont.)  
Top-horizontal plate:  Using Eq. 9.30 with  

 
2

c s
D / 4L A / P D / 4 0.0575m

D
= = = =

π
π

 
 

 ( ) ( )( ) ( )33 2
s c 5

L 6 2 6 2
g T T L 9.8m / s 1/ 310 K 47 27 K 0.0575m

Ra 2.97 10
16.90 10 m / s 23.98 10 m / s

∞
− −

− −
= = = ×

× × ×

β
να

 

 

 ( )L
1/ 41/ 4 5

LNu 0.54Ra 0.54 2.97 10 12.6= = × =  

 L
2

top ch Nu k / L 12.6 0.027 W / m K / 0.0575m 5.92 W / m K.= ⋅ = × ⋅ = ⋅  
 
Hence, the heat loss by convection and radiation is  

 
( ) ( )( )

( ) ( )( )

2

2 2 2
q 4.02 5.41 W / m K 0.23m 0.50m 47 27 K

5.92 5.41 W / m K 0.23 m / 4 47 27 K
= + ⋅ × × −

+ + ⋅ × −

π
π

 

 
 ( )q 68.2 4.50 W 72.7 W.= + =        < 
 
(b) The effect of adding the vertical fins is to increase the area of the lateral surface to  
 ( ) ( )wfA DH 30 t H 30 2 w Hπ⎡ ⎤= − ⋅ + × ⋅⎣ ⎦  
 
 ( ) ( )2 2

wfA 0.23m 0.50m 30 0.005 0.500 m 30 2 0.075 0.500 m⎡ ⎤= × − × + × ×⎢ ⎥⎣ ⎦
π  

 
 [ ] 2 2 2

wfA 0.361 0.075 m 2.25m 2.536 m .= − + =  
 
where t and w are the thickness and width of the fins, respectively.  Hence, the heat loss is now  
 ( ) ( )lat top lat r wf s topq q q h h A T T q∞= + = + − +  
 

 ( ) 2 2q 4.02 5.41 W / m 2.536 m 20 K 4.50 W 483W.= + × × + =    < 
 
Adding the fins to the lateral surface increases the heat loss by a factor of more than six.  
COMMENTS:  Since the fins are not likely to have 100% efficiency, our estimate is optimistic.  
Further, since the fins see one another, as well as the lateral surface, the radiative heat loss is over 
predicted. 
 



PROBLEM 9.35  
KNOWN:  Surface temperature of a long duct and ambient air temperature.  
FIND:  Heat gain to the duct per unit length of the duct.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Surface radiation effects are negligible, (2) Ambient air is quiescent.  
PROPERTIES:  Table A-4, Air (Tf = (T∞ + Ts)/2 ≈ 300K, 1 atm):  ν = 15.89 × 10

-6 m2/s, k = 

0.0263 W/m⋅K, α = 22.5 × 10
-6 m2/s, Pr = 0.707, β = 1/Tf.  

ANALYSIS:  The heat gain to the duct can be expressed as 
 ( )( )s t b s t b sq 2q q q 2 h H h W h W T T .∞′ ′ ′ ′= + + = ⋅ + ⋅ + ⋅ −     (1) 

Consider now correlations to estimate s t bh , h , and h .   From Eq. 9.25, for the sides with L ≡ H, 

 ( ) ( )( ) ( )33 2
s 7

L 6 2 6 2
g T T L 9.8m / s 1/ 300K 35 10 K 0.2m

Ra 1.827 10 .
15.89 10 m / s 22.5 10 m / s

β
να
∞

− −
− − ×

= = = ×
× × ×

 (2) 

Eq. 9.27 is appropriate to estimate sh ,  

 
( )

( )
( )

L

1/ 471/ 4
L

4 / 9 4 /99 /16 9 /16

0.670 1.827 100.670Ra
Nu 0.68 0.68 34.29

1 0.492 / Pr 1 0.492 / 0.707

×
= + = + =

⎡ ⎤ ⎡ ⎤+ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 L
2

sh Nu k / L 34.29 0.0263W / m K / 0.2m 4.51W / m K.= ⋅ = × ⋅ = ⋅    (3) 

For the top and bottom portions of the duct, L ≡ As/P ≈ W/2, (see Eq. 9.29), find the Rayleigh number 

from Eq. (2) with L = 0.1 m, RaL = 2.284 × 10
6.  From the correlations, Eqs. 9.30 and 9.32 for the top 

and bottom surfaces, respectively, find 

( ) ( )1/ 41/ 4 6 2
t L

k 0.0263W / m Kh 0.54 Ra 0.54 2.284 10 5.52 W / m K.
W / 2 0.1m

⋅
= × = × × = ⋅  (4) 

( ) ( )1/51/5 6 2
b L

k 0.0263W / m Kh 0.52Ra 0.52 2.284 10 2.56W / m K.
W / 2 0.1m

⋅
= × = × × = ⋅  (5) 

The heat rate, Eq. (1), can now be evaluated using the heat transfer coefficients estimated from Eqs. 
(3), (4), and (5). 

( ) ( )2 2 2q 2 4.51W / m K 0.2m 5.52 W / m K 0.2m 2.56W / m K 0.2m 35 10 K′ = × ⋅ × + ⋅ × + ⋅ × −  

 q 85.5W / m.′ =          < 
 
COMMENTS:  Radiation surface effects will be significant in this situation.  With knowledge of the 
duct emissivity and surroundings temperature, the radiation heat exchange could be estimated. 



PROBLEM 9.36 
 
KNOWN:  Inner surface temperature and dimensions of rectangular duct. Thermal conductivity, 
thickness and emissivity of insulation. 
 
FIND:  (a) Outer surface temperatures and heat losses from the walls, (b) Effect of insulation thickness 
on outer surface temperatures and heat losses. 
 
SCHEMATIC:  

 
ASSUMPTIONS:  (1) Ambient air is quiescent, (2) One-dimensional conduction, (3) Steady-state. 
 
PROPERTIES:  Table A.4, air (obtained from Properties Tool Pad of IHT). 
 
ANALYSIS:  (a) The analysis follows that of Example 9.3, except the surface energy balance must now 
include the effect of radiation.  Hence, cond conv radq q q′′ ′′ ′′= + , in which case 
 
 ( )( ) ( ) ( )i s,1 s,2 s,2 r s,2 surk t T T h T T h T T∞− = − + −  

 

where ( )( )2 2
r s,2 sur surs,2h T T T Tεσ= + + .  Applying this expression to each of the top, bottom and 

side walls, with the appropriate correlation obtained from the Correlations Tool Pad of IHT, the 
following results are determined for t = 25 mm. 
 
Sides: Ts,2 = 19.3°C, h  = 2.82 W/m2⋅K, hrad = 5.54 W/m2⋅K 

Top:  Ts,2 = 19.3°C, h  = 2.94 W/m2⋅K, hrad = 5.54 W/m2⋅K < 
 
Bottom:  Ts,2 = 20.1°C, h  = 1.34 W/m2⋅K, hrad = 5.56 W/m2⋅K 
 
With condq q′′ ′′= , the surface heat losses may also be evaluated, and we obtain 

Sides:  q′  = 2H q′′  = 21.6 W/m;    Top: q′  = w q′′  = 27.0 W/m;   Bottom: q′  = w q′′  = 26.2 W/m < 
 
(b) For the top surface, the following results are obtained from the parametric calculations 
 

Continued... 



PROBLEM 9.36 (Cont.) 
 

0 0.01 0.02 0.03 0.04 0.05

Insulation thickness, t(m)

15

25

35

45

S
ur

fa
ce

 te
m

pe
ra

tu
re

, T
s2

(C
)

      

0 0.01 0.02 0.03 0.04 0.05

Insulation thickness, t(m)

0

100

200

300

H
ea

t l
os

s,
 q

'(W
/m

)

 
COMMENTS:  Contrasting the heat rates of part (a) with those predicted in Comment 1 of Example 9.3, 
it is evident that radiation is significant and increases the total heat loss from 57.6 W/m to 74.8 W/m.  As 
shown in part (b), reductions in Ts,o and ′q  may be effected by increasing the insulation thickness above 
0.025 W/m⋅K, although attendant benefits diminish with increasing t. 
 



PROBLEM 9.37  
KNOWN:  Electric heater at bottom of tank of 400mm diameter maintains surface at 70°C 
with engine oil at 5°C.  
FIND:  Power required to maintain 70°C surface temperature.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Oil is quiescent, (2) Quasi-steady state conditions exist.  
PROPERTIES:  Table A-5, Engine Oil (Tf = (T∞ + Ts)/2 = 310K):  ν = 288 × 10-6 m2/s, k = 
0.145 W/m⋅K, α = 0.847 × 10-7 m2/s, β = 0.70 × 10-3 K-1. 
 
ANALYSIS:  The heat rate from the bottom heater surface to the oil is 
 ( )s sq hA T T∞= −  

where h  is estimated from the appropriate correlation depending upon the Rayleigh number 
RaL, from Eq. 9.25, using the characteristic length, L, from Eq. 9.29, 

 
2A D / 4 D 0.4msL 0.1m.

P D 4 4
π
π

= = = = =  
 
The Rayleigh number is 

 ( ) 3g T T LsRaL
β

να
− ∞=  

 

 ( )2 3 1 3 39.8m / s 0.70 10 K 70 5 K 0.1 m 7Ra 1.828 10 .L 6 2 7 2288 10 m / s 0.847 10 m / s

− −× × − ×
= = ×

− −× × ×
 

 
The appropriate correlation is Eq. 9.31 giving 

 ( )1/ 3hL 1/ 3 7Nu 0.15Ra 0.15 1.828 10 39.5L Lk
= = = × =  

 

 k 0.145W / m K 2h Nu 39.5 57.3W / m K.LL 0.1m
⋅

= = × = ⋅  
 
The heat rate is then  
 ( )( ) ( )22q 57.3W / m K / 4 0.4m 70 5 K 468 W.π= ⋅ − =     < 
 
COMMENTS:  Note that the characteristic length is D/4 and not D; however, As is based 
upon D.  Recognize that if the oil is being continuously heated by the plate, T∞ could change.  
Hence, here we have analyzed a quasi-steady state condition. 



PROBLEM 9.38 
 
KNOWN:  Horizontal, straight fin fabricated from plain carbon steel with thickness 6 mm and length 100 
mm; base temperature is 150°C and air temperature is 25°C.  
FIND:  (a) Fin heat rate per unit width, fq′ , assuming an average fin surface temperature sT 125 C= o  for 
estimating free convection and linearized radiation coefficient; how sensitive is fq′  to the assumed value 
for sT ?;  (b) Compute and plot the heat rate, fq′  as a function of emissivity 0.05 ≤ ε ≤ 0.95; show also 
the fraction of the total heat rate due to radiation exchange. 
 
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Air is quiescent medium, (2) Surface radiation effects are negligible, (3) One 
dimensional conduction in fin, (4) Characteristic length, ( )c sL A P L 2 2L L 2= = + ≈l l . 
 

PROPERTIES:  Plain carbon steel, Given ( )finT 125 C 400 K≈ ≈o : k 57 W m K, 0.5ε= ⋅ = ; Table A-

4, Air ( ( ) ( )f finT T T / 2 125 25 C / 2∞= + = + ≈o  350 K, 1 atm):  ν = 20.92 × 10-6 m2/s, α = 29.9 × 10-6 
m2/s, k = 0.030 W/m⋅K, Pr = 0.70, β = 1/Tf.  
ANALYSIS:  (a) We estimate h  as the average of the values for a heated plate facing upward and a 
heated plate facing downward.  See Table 9.2, Case 3(a) and (b).  Begin by evaluating the Rayleigh 
number, using Eq. 9.29 for Lc. 

 
( ) ( )( ) ( )3 32

fin c 5
L 6 2 6 2

g T T L 9.8 m s 1 350K 125 25 K 0.1m 2
Ra 5.595 10

20.92 10 m s 29.9 10 m s

β

να
∞

− −

− − ×
= = = ×

× × ×
 

An average fin temperature of finT 125 C≈ o  has been assumed in evaluating properties and RaL.  
According to Table 9.2, Eqs. 9.30 and 9.32 are appropriate.  For the upper fin surface, Eq. 9.30, 

 ( )1/ 41/ 4 5
L c LNu h L k 0.54Ra 0.54 5.595 10 14.77= = = × =  

 2
Lupper ch Nu k L 14.77 0.030 W m K 0.05 m 8.86 W m K.= = × ⋅ = ⋅  

For the lower fin surface, Eq. 9.32, 

 ( )1/51/5 5
L LNu h L k 0.52Ra 0.52 5.595 10 7.34= = = × =  

 2
Llowerh Nu k L 7.34 0.030 W m K 0.05m 4.40 W m K.= = × ⋅ = ⋅  

The linearized radiation coefficient follows from Eq. 1.9 

 ( )( )2 2
r fin sur fin surh T T T Tεσ= + +  

 ( )( )8 2 4 2 2 3 2
rh 0.5 5.67 10 W m K 398 298 398 298 K 4.88 W m K−= × × ⋅ + + = ⋅  

  Continued … 



PROBLEM 9.38 (Cont.) 
Hence, the average heat transfer coefficient for the fin is 

 ( ) ( )[ ] 2 2
upper lower rh h h 2 h 8.86 4.40 2 4.88 W m K 11.51W m K= + + = + + ⋅ = ⋅  

Assuming the fin tip is adiabatic, from Eq. 3.81, 
 ( )fq M tanh mL=  

             ( ) ( )( ) ( )
1/22 31/2

c bM hPkA 11.51W m K 2 57 W m K 6 10 m 150 25 K 350.7 Wθ −= = ⋅ × × ⋅ × × − =l l  

 ( ) ( )( )1/21/2 2 3 1
cm h P k A 11.51W m K 2 57 W m K 6 10 m 8.20 m− −= = ⋅ × ⋅ × × =l l  

 1mL 8.20 m 0.1m 0.820−= × =  

 ( )f fq q 350.7 W m tanh 0.820 237 W m′ = = × =l . < 

To determine how sensitive the estimate for h  is to the choice of the average fin surface temperature, the 
foregoing calculations were repeated using the IHT Correlations Tool and Extended Surface Model and 
the results are tabulated below; coefficients have units W m K2⋅ , 
 

( )finT Co  125 135 145 

lowerh  4.40 4.49 4.56 

up pe rh  8.87 9.05 9.21 
rh  4.88 5.11 5.35 

h  11.5 11.9 12.2 
( )q W / m′  237 243 249 
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The temperature distribution for the finT 125 C= o  case is shown above.  With finT 145 C= o , the tip 

temperature is about 2 Co  higher.  It appears that finT 125 C= o  was a reasonable choice.  Note finT  

is the value at the mid length. 
 
(b) Using the IHT code developed for part (a), the fin heat rate, qf, was plotted as a function of the 
emissivity.  In this analysis, the convection and radiation coefficients were evaluated for an average fin 
temperature finT   evaluated at L/2.  On the same plot we have also shown rad (%) = ( )rh h 100× , which 
is the portion of the total heat rate due to radiation exchange. 
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PROBLEM 9.39  
KNOWN:  Width and thickness of sample material.  Rate of heat dissipation at bottom surface of 
sample and temperatures of top and bottom surfaces.  Temperature of quiescent air and surroundings.  
FIND:  Thermal conductivity and emissivity of the sample.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state, (2) One-dimensional conduction in sample, (3) Quiescent air, (4) 
Sample is small relative to surroundings, (5) All of the heater power dissipation is transferred through 
the sample, (6) Constant properties. 
 
PROPERTIES:  Table A-4, air (Tf = 335.5K): ν = 19.5 × 10-6 m2/s, k = 0.0289 W/m⋅K, α = 27.8 × 
10-6 m2/s, Pr = 0.703, β = 0.00298 K-1. 
 
ANALYSIS:  The thermal conductivity is readily obtained by applying Fourier’s law to the sample.  
Hence, with q = Pelec, 

 
( )

( )22
elec
1 2

70 W / 0.250mP / Wk 0.560 W / m K
T T / L 50 C / 0.025m

= = = ⋅
− °

    < 

The surface emissivity may be obtained by applying an energy balance to a control surface about the 
sample, in which case 

 ( ) ( )4 4 2
elec conv rad 2 sur2P q q h T T T T Wεσ∞

⎡ ⎤= + = − + −⎢ ⎥⎣ ⎦
 

 

 
( ) ( )

( )
2

elec 2
4 4

sur2

P / W h T T

T T
ε

σ

∞− −
=

−
 

With L = As/P = W2/4W = W/4 = 0.0625m, RaL = gβ(T2 - T∞) L3/να = 9.86 × 105 and Eq. 9.30 yields 
 

( )L 1/ 41/ 4 5 2
L

Nu k k 0.0289 W / m Kh 0.54 Ra 0.54 9.86 10 7.87 W / m K
L L 0.0625m

⋅
= = = × = ⋅  < 

 
Hence, 
 

 
( ) ( )

( )
2 2

8 2 4 4 4 4
70 W / 0.250m 7.87 W / m K 75 C

0.815
5.67 10 W / m K 373 298 K

ε
−

− ⋅ °
= =

× ⋅ −
    < 

 
COMMENTS:  The uncertainty in the determination of ε is strongly influenced by uncertainties 
associated with using Eq. 9.30.  If, for example, h  is overestimated by 10%, the actual value of ε 
would be 0.905. 
 



PROBLEM 9.40  
KNOWN:  Diameter, power dissipation, emissivity and temperature of gage(s).  Air temperature 
(Cases A and B) and temperature of surroundings (Case A).  
FIND:  (a) Convection heat transfer coefficient (Case A), (b) Convection coefficient and temperature 
of surroundings (Case B).  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state, (2) Quiescent air, (3) Net radiation exchange from surface of 
gage approximates that of a small surface in large surroundings, (4) All of the electrical power is 
dissipated by convection and radiation heat transfer from the surface(s) of the gage, (5) Negligible 
thickness of strip separating semi-circular disks of Part B, (6) Constant properties.  
PROPERTIES:  Table A-4, air (Tf = 320K): ν = 17.9 × 10-6 m2/s, α = 25.5 × 10-6 m2/s, k = 0.0278 
W/m⋅K, Pr = 0.704, β = 0.00313 K-1.  
ANALYSIS:  (a) With q = qconv + qrad = Pelec and As = πD2/4 = 0.0201 m2, 

( )
( )

( )
( )

4 4 8 2 4 2 4 4 4
elec s sur 2

meas 2
s

P A T T 10.8 W 0.8 5.67 10 W / m K 0.0201m 340 300 K
h 7.46 W / m K

A T T 0.0201 m 40 K

εσ
−

∞

− − − × × ⋅ × −
= = = ⋅

−
 < 

With L = As/P=D/4=0.04 m and RaL = gβ (T - T∞)L3/να = 1.72 × 105, Eq. 9.30 yields 

 
( )1/ 45

1/ 4 2
L

0.0278 W / m K 0.54 1.72 10k
h 0.54 Ra 7.64 W / m K

L 0.04m

⋅ × ×
= = = ⋅    < 

Agreement between the two values of h  is well within the uncertainty of the measurements.  
(b) Since the semi-circular disks have the same temperature, each is characterized by the same 
convection coefficient and qconv,1 = qconv,2.  Hence, with 

 ( )( )4 4
elec,1 conv,1 1 s surP q A / 2 T Tε σ= + −       (1) 

 ( )( )4 4
elec,2 conv,2 2 s surP q A / 2 T Tε σ= + −       (2) 

( ) ( )
( )

1/ 41/ 4
elec,1 elec,24 4

sur 8 2 4 21 2 s

P P 4.03 W
T T 350

A / 2 0.7 5.67 10 W / m K 0.01mε ε σ −

−
= − = −

− × × ⋅ ×

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥⎣ ⎦
 

 surT 264 K=           < 
From Eq. (1), the convection coefficient is then 

( )( )
( )( ) ( )

4 4
elec,1 1 s sur 2

meas 2s

P A / 2 T T 9.70 W 4.60 W
h 8.49 W / m K

A / 2 T T 0.01 60 m K

ε σ

∞

− − −
= = = ⋅

− × ⋅
  < 

With RaL = 2.58 × 105, Eq. 9.30 yields 

 ( )1/ 41/ 4 5 2
L

k 0.0278 W / m K
h 0.54 Ra 0.54 2.58 10 8.46 W / m K

L 0.04m

⋅
= = × = ⋅    < 

Again, agreement between the two values of h  is well within the experimental uncertainty of the 
measurements.  
COMMENTS:  Because the semi-circular disks are at the same temperature, the characteristic length 
corresponds to that of the circular disk, L = D/4. 

7 



PROBLEM 9.41  
KNOWN:  Horizontal, circular grill of 0.2m diameter with emissivity 0.9 is maintained at a uniform 
surface temperature of 130°C when ambient air and surroundings are at 24°C.  
FIND:  Electrical power required to maintain grill at prescribed surface temperature.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Room air is quiescent, (2) Surroundings are large compared to grill surface.  
PROPERTIES:  Table A-4, Air (Tf = (T∞ + Ts)/2 = (24 + 130)°C/2 = 350K, 1 atm):    
ν = 20.92 ×10-6 m2/s, k = 0.030 W/m⋅K, α = 29.9 × 10-6 m2/s, β = 1/Tf.  
ANALYSIS:  The heat loss from the grill is due to free convection with the ambient air and to 
radiation exchange with the surroundings. 

 ( ) ( )4 4q A h T T T T .s s s surεσ⎡ ⎤= − + −∞⎢ ⎥⎣ ⎦
      (1) 

 
Calculate RaL from Eq. 9.25, 

 ( ) 3Ra g T T L /L s cβ να= − ∞  
 
where for a horizontal disc from Eq. 9.29, Lc = As/P = (πD2/4)/πD = D/4.  Substituting numerical 
values, find 

 
( )( ) ( )329.8m / s 1/ 350K 130 24 K 0.25m / 4 6Ra 1.158 10 .L 6 2 6 220.92 10 m / s 29.9 10 m / s

−
= = ×

− −× × ×
 

 
Since the grill has a hot upper surface, Eq. 9.30 is the appropriate correlation, 

 ( )1/ 41/ 4 6Nu h L / k 0.54 Ra 0.54 1.158 10 17.72L cL L= = = × =  
 

 ( ) 2h Nu k / L 17.72 0.030 W / m K / 0.25m / 4 8.50 W / m K.L cL= = × ⋅ = ⋅   (2) 
 
Substituting from Eq. (2) for h  into Eq. (1), the heat loss or required electrical power, qelec, is 
 

( ) ( ) ( ) ( )( )W W8 42 4 4q 0.25m 8.50 130 24 K 0.9 5.67 10 130 273 24 273 K
2 2 44 m K m K

π −= − + × × + − +
⋅ ⋅

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
 q 44.2 W 46.0 W 90.2 W.= + =        < 
 
COMMENTS:  Note that for this situation, free convection and radiation modes are of equal 
importance.  If the grill were highly polished such that ε ≈ 0.1, the required power would be reduced 
by nearly 50%. 



PROBLEM 9.42  
 

 
KNOWN: Power dissipation by a laptop computer CPU. Dimensions and emissivity of the 
laptop screen assembly. Thickness and thermal conductivity of plastic casing as well as thermal 
contact resistance between heat spreader and plastic casing. Temperature of the surroundings and 
of the ambient. 
 
FIND: Temperature of the heat spreader and magnitudes of convection, radiation, conduction 
and contact resistances. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Constant properties and steady-state conditions, (2) Large surroundings, 
(3) Isothermal heat spreader, (4) Laptop screen can be treated as a suspended plate. 
 
PROPERTIES: Table A.4, air: (Tf = 310 K assumed): k = 0.02704 W/m⋅K, ν = 1.690 × 10-5 
m2/s, α = 2.398 × 10-5 m2/s, Pr = 0.7056. 
 
ANALYSIS: An energy balance on the control surface shown in the schematic yields 
 
 ( ) ( )4 4

conv rad s s surP q q Lw h T T T Tεσ∞
⎡ ⎤= + = − + −⎣ ⎦  

 or 
 

( ) ( )8 2 4 4 4 4
s s15W 0.275m 0.175m h T 298K 0.85 5.67 10 W / m K ) T (298 )K−⎡ ⎤= × − + × × ⋅ −⎣ ⎦  (1) 

The convection coefficient can be found by using the Churchill and Chu correlation with g 
replaced by gcosθ. Hence, 
 

 ( ) 3
s

L
g cos (T T )L

Ra
θ β

ν α
∞−

=
⋅

 

 
 Continued… 
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PROBLEM 9.42 (Cont.) 
 

 
2 3

s
L 5 2 5 2

9.8m /s cos30 (1/ 310K) (T 298K) (0.175m)Ra
1.690 10 m /s 2.398 10 m /s− −
× °× × − ×

=
× × ×

   (2) 

 
and 
 

2
1/6
L

8/ 279 /16

0.02704W / m K 0.387 Rah 0.825
0.175m 1 (0.492 / 0.7056)

⎧ ⎫
⋅ ×⎪ ⎪= × +⎨ ⎬

⎡ ⎤⎪ ⎪+⎣ ⎦⎩ ⎭

   (3) 

 
Simultaneous solution of Equations 1 through 3 yields 
 

7 2
LL sRa 1.048 10 , Nu 31.6,h 4.89W / m K,T 325.2K 52.2 C= × = = ⋅ = = °  

 
The temperature of the heat spreader is 
 

"
hs s t,c

PT T R t / k
Lw

⎡ ⎤= + +⎣ ⎦  or 

2 3
4

hs
15W m K 3 10 mT 52.2 C 2 10 56.7 C

0.175m 0.275m W 0.21W / m K

−
−⎡ ⎤⋅ ×

= ° + × + = °⎢ ⎥× ⋅⎣ ⎦
 < 

 
Knowing A = Lw = 0.275 m× 0.175 m = 4.81×10-3 m2, the convection resistance is 
 

 t,conv 2 3 2
1 1R 4.30K / W

hA 4.89W / m K 4.81 10 m−= = =
⋅ × ×

   < 

 
The radiation resistance, using  
 

2 2
r s sur s sur

8 2 4 2 2 2 2

h (T T )(T T )

   0.85 5.67 10 (W / m K ) (325.2K 298K) (325.2 298 )K 5.84W / m K

εσ
−

= + +

= × × ⋅ × + × + = ⋅
 
is 
 

 t,rad 2 3 2
r

1 1R 3.56K / W
h A 5.84W / m K 4.81 10 m−= = =

⋅ × ×
   < 

 
The conduction resistance is 
 

 
3

t,cond 3 2
t 3 10 mR 0.30K / W

kA 0.21W / m K 4.81 10 m

−

−
×

= = =
⋅ × ×

   < 

 
Continued… 



 
PROBLEM 9.42 (Cont.) 

 
 
The contact resistance is 
 

 
" 4 2
t,c 3

t,c 3 2
R 2 10 m K / WR 4.2 10 K / W
A 4.81 10 m

−
−

−
× ⋅

= = = ×
×

    < 

  
 
 
 
 
COMMENTS: (1) The actual film temperature is Tf = (23°C + 52.2°C)/2 = 37.6°C = 310.6 K. 
The assumed value of the film temperature is excellent. (2) The convection and radiation 
resistances are large. The radiation resistance cannot be reduced significantly since the emissivity 
of the plastic is high. The convection resistance would vary as the laptop screen angle is changed. 
 
 



PROBLEM 9.43  
KNOWN:  Material properties, inner surface temperature and dimensions of roof of refrigerated truck 
compartment.  Solar irradiation and ambient temperature.  
FIND:  Outer surface temperature of roof and rate of heat transfer to compartment.  
SCHEMATIC:   

  

  
ASSUMPTIONS:  (1) Negligible irradiation from the sky, (2) Ts,o > T∞ (hot surface facing upward) 
and RaL > 107, (3) Constant properties.  
PROPERTIES:  Table A-4, air (p = 1 atm, Tf ≈ 310K):  ν = 16.9 × 10-6 m2/s, k = 0.0270 W/m⋅K, Pr 
= 0.706, α = ν/Pr = 23.9 × 10-6 m2/s, β = 0.00323 K-1.  
ANALYSIS:  From an energy balance for the outer surface, 

 s,o s,i
S S conv cond

tot

T T
G q E q

R
α

−
′′ ′′− − = =

′′
 

 ( ) s,o s,i4
S S s,o s,o

p i

T T
G h T T T

2R R
α εσ∞

−
− − − =

′′ ′′+
 

where ( ) ( )5 2 2
p 1 p i 2 iR t / k 2.78 10 m K / W and R t / k 1.923 m K / W.−′′ ′′= = × ⋅ = = ⋅   For a hot surface 

facing upward and ( ) 3 7
L s,oRa g T T L / 10 , hβ αν∞= − >  is obtained from Eq. 9.31.  Hence, with 

cancellation of L, 

( )
1/ 32 1

1/ 31/ 3
L s,o12 4 2

k 9.8 m / s 0.00323 K
h 0.15 Ra 0.15 0.0270 W / m K T T

L 16.9 23.9 10 m / s

−

∞−

×
= = × ⋅ −

× ×

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

  ( )1/ 32 4 / 3
s,o1.73 W / m K T 305 K= ⋅ −  

Hence, 

( ) ( )
( )

s,o2 2 4 / 3 8 2 4 44 / 3
s,o s,o 5 2

T 263K
0.5 750 W / m K 1.73 W / m K T 305 0.5 5.67 10 W / m K T

5.56 10 1.923 m K / W

−

−

−
⋅ − ⋅ − − × × ⋅ =

× + ⋅

 

Solving, we obtain  s,oT 318.3K 45.3 C= = °      < 

Hence, the heat load is ( ) ( ) ( )
t cond 2

45.3 10 C
q W L q 3.5m 10m 1007 W

1.923m K / W

+ °
′′= ⋅ = × =

⋅
 < 

COMMENTS:  (1) The thermal resistance of the aluminum panels is negligible compared to that of 

the insulation.  (2) The value of the convection coefficient is ( )1/ 3 2
s,oh 1.73 T T 4.10 W / m K.∞= − = ⋅  



PROBLEM 9.44 
 
KNOWN:  Inner surface temperature and composition of a furnace roof.  Emissivity of outer surface and 
temperature of surroundings. 
 
FIND:  (a) Heat loss through roof with no insulation, (b) Heat loss with insulation and inner surface 
temperature of insulation, and (c) Thickness of fire clay brick which would reduce the insulation 
temperature, Tins,i, to 1350 K. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction through the composite 
wall, (3) Negligible contact resistance, (4) Constant properties. 
 
PROPERTIES:  Table A-4, Air (Tf  ≈ 400 K, 1 atm): k = 0.0338 W/m⋅K, ν = 26.4 × 10-6  m2/s, α = 38.3 
× 10-6 m2/s, Pr = 0.69, β  = (400 K)-1 = 0.0025 K-1;  Table A-1, Steel 1010 (600 K):  k = 48.8 W/m⋅K;  
Table A-3 Alumina-Silica blanket (64 kg/m3, 750 K): k = 0.125 W/m⋅K;  Table A-3, Fire clay brick (1478 
K):  k = 1.8 W/m⋅K. 
 
ANALYSIS: (a) Without the insulation, the thermal circuit is 

  
Performing an energy balance at the outer surface, it follows that 

 cond conv radq q q= +         ( ) ( )s,i s,o 4 4
s,o s,o sur

1 1 3 3

T T
hA T T A T T

L k A L k A
εσ∞

−
= − + −

+
 (1,2) 

where the radiation term is evaluated from Eq. 1.7.  The characteristic length associated with free 

convection from the roof is, from Eq. 9.29 2
sL A P 16m 16m 1m= = = .  From Eq. 9.25, with an 

assumed value for the film temperature, Tf = 400 K, 

 
( ) ( )( )( )

( )
3123 s,os,o 7

L s,o6 2 6 2

9.8 m s 0.0025 K T T l mg T T L
Ra 2.42 10 T T

26.4 10 m s 38.3 10 m s

β

να

−
∞∞

∞− −

−−
= = = × −

× × ×
 

Hence, from Eq. 9.31 

( ) ( )
1/ 3 1/ 31/ 3 7

L s,o
k 0.0338 W m K

h 0.15Ra 0.15 2.42 10 T T
L 1 m ∞

⋅
= = × − = − ⋅∞1

1 3 2.47 ,
/

T T W m Ks oc h .(3) 
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PROBLEM 9.44 (Cont.) 
 
The energy balance can now be written 

 
( )

( ) ( )4 / 3s,o
s,o

1700 T K
1.47 T 298K

0.08m 1.8 W m K 0.005m 48.8 W m K

−
= −

⋅ + ⋅
 

                                                          ( )
4 48 2 4

s,o0.3 5.67 10 W m K T 298K− ⎡ ⎤+ × × ⋅ −⎢ ⎥⎣ ⎦
 

and from iteration, find Ts,o ≈ 895 K.  Hence, 

 ( ) ( ) ( ){ }4 / 3 4 42 2 8 2 4q 16m 1.47 895 298 W m 0.3 5.67 10 W m K 895 K 298 K−= − + × × ⋅ −⎡ ⎤
⎢ ⎥⎣ ⎦

 

 { }2 2 5q 16m 7,389 10, 780 W m 2.91 10 W= + = × . < 
(b) With the insulation, an additional conduction resistance is provided and the energy balance at the 
outer surface becomes 

 ( ) ( )s,i s,o 4 4
s,o s,o sur

1 1 2 2 3 3

T T
hA T T A T T

L k A L k A L k A
εσ∞

−
= − + −

+ +
 (4) 

 

 
( )

( )
( )4 / 3s,o

s,o2

1700 T K
1.47 T 298K

0.08m 1.8 0.02 0.125 0.005 48.8 m K W

−
= −

+ + ⋅
 

 

                                                               ( )48 2 4 4
s,o0.3 5.67 10 W m K T 298 K−+ × × ⋅ −⎡ ⎤

⎢ ⎥⎣ ⎦
. 

From an iterative solution, it follows that Ts,o  ≈ 610 K.  Hence, 

 ( ) ( ) ( ){ }4 / 3 4 42 2 8 2 4q 16m 1.47 610 298 W m 0.3 5.67 10 W m K 610 K 298 K−= − + × × ⋅ −⎡ ⎤
⎢ ⎥⎣ ⎦

 

 { }2 2 4q 16m 3111 2221 W m 8.53 10 W= + = × . < 
The insulation inner surface temperature is given by 

 s,i ins,i

1 1

T T
q

L k A

−
= . 

Hence 

 41
ins,i s,i 21

L 0.08 m
T q T 8.53 10 W 1700 K 1463K

k A 1.8 W m K 16m
= − + = − × + =

⋅ ×
. < 

(c) To determine the required thickness L1 of the fire clay brick to reduce Tins,i = 1350 K, we keyed Eq. 
(4) into the IHT Workspace and found  

 L1 = 0.13 m. < 
 
COMMENTS:  (1) The accuracy of the calculations could be improved by re-evaluating thermophysical 
properties at more appropriate temperatures. 
 
(2) Convection and radiation heat losses from the roof are comparable.  The relative contribution of 
radiation increases with increasing Ts,o, and hence decreases with the addition of insulation.   
 
(3)  Note that with the insulation, Tins,i = 1463 K exceeds the melting point of aluminum (933 K).  Hence, 
molten aluminum, which can seep through the refractory, would penetrate, and thereby degrade the 
insulation, under the specified conditions. 



PROBLEM 9.45  
KNOWN:  Diameter, thickness, emissivity and initial temperature of silicon wafer.  Temperature of 
air and surrounding.  
FIND:  (a) Initial cooling rate, (b) Time required to achieve prescribed final temperature.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Negligible heat transfer from side of wafer, (2) Large surroundings, (3) Wafer 
may be treated as a lumped capacitance, (4) Constant properties, (5) Quiescent air. 
 
PROPERTIES:  Table A-1, Silicon ( T  = 187°C = 460K):  ρ = 2330 kg/m3, cp = 813 J/kg⋅K, k = 87.8 
W/m⋅K.  Table A-4, Air (Tf,i = 175°C = 448K):  ν = 32.15 × 10-6 m2/s, k = 0.0372 W/m⋅K, α = 46.8 × 
10-6 m2/s, Pr = 0.686, β = 0.00223 K-1. 
 
SOLUTION:  (a) Heat transfer is by natural convection and net radiation exchange from top and 
bottom surfaces.  Hence, with As = πD2/4 = 0.0177 m2, 
 

 ( )( ) ( )4 4
s t b i suriq A h h T T 2 T Tεσ∞
⎡ ⎤= + − + −⎢ ⎥⎣ ⎦

 
 
where the radiation flux is obtained from Eq. 1.7, and with L = As/P = 0.0375m and RaL = gβ (Ti - 
T∞) L3/αν = 2.30 × 105, the convection coefficients are obtained from Eqs. 9.30 and 9.32.  Hence, 
 

 ( )1/ 4 2
t L

k 0.0372 W / m K 11.8h 0.54Ra 11.7 W / m K
L 0.0375m

⋅ ×
= = = ⋅  

 

 ( )1/5 2
b L

k 0.0372 W / m K 6.14h 0.52 Ra 6.1W / m K
L 0.0375m

⋅ ×
= = = ⋅  

 
( ) ( ) ( )2 2 8 2 4 4 4 4q 0.0177 m 11.7 6.1 W / m K 300K 2 0.65 5.67 10 W / m K 598 298 K−= + ⋅ + × × × ⋅ −⎡ ⎤
⎣ ⎦  

 

 ( )2 2q 0.0177 m 5350 8845 W / m 251W⎡ ⎤= + =⎢ ⎥⎣ ⎦
     < 

 
(b) From the generalized lumped capacitance model, Eq. 5.15, 
 

 ( )( ) ( )4 4
s t b sur s

dTcA h h T T 2 T T A
dt

ρ δ εσ∞
⎡ ⎤= − + − + −⎢ ⎥⎣ ⎦

 
 

 
( )( ) ( )4 4

t b surT t
Ti 0

h h T T 2 T T
dT dt

c

εσ

ρ δ

∞
⎡ ⎤+ − + −⎢ ⎥= − ⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫  
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PROBLEM 9.45 (Cont.)  
Using the DER function of IHT to perform the integration, thereby accounting for variations in th  and 

bh  with T, the time tf to reach a wafer temperature of 50°C is found to be 
 

 ( )ft T 323 K 179 s= =         < 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
As shown above, the rate at which the wafer temperature decays with increasing time decreases due to 
reductions in the convection and radiation heat fluxes.  Initially, the surface radiative flux (top or 
bottom) exceeds the heat flux due to natural convection from the top surface, which is twice the flux 
due to natural convection from the bottom surface.  However, because radq′′  and cnvq′′  decay 

approximately as T4 and T5/4, respectively, the reduction in radq′′  with decreasing T is more 
pronounced, and at t = 181s, radq′′  is well below cnv,tq′′  and only slightly larger than cnv,bq′′ . 
 
COMMENTS:  With ( )( )2 2 2

r,i i sur i surh T T T T 14.7 W / m K,εσ= + + = ⋅  the largest cumulative 

coefficient of 2
tot r,i t,ih h h 26.4 W / m K= + = ⋅  corresponds to the top surface.  If this coefficient is 

used to estimate a Biot number, it follows that ( ) 4
totBi h / 2 / k 1.5 10 1δ −= = ×  and the lumped 

capacitance approximation is excellent. 
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PROBLEM 9.46 
 
KNOWN:  Pyrex tile, initially at a uniform temperature Ti   = 140°C, experiences cooling by convection 
with ambient air and radiation exchange with surroundings. 
 
FIND:  (a) Time required for tile to reach the safe-to-touch temperature of Tf  =  40°C  with free 
convection and radiation exchange;  use ( )i fT T T 2= +  to estimate the average free convection and 
linearized radiation coefficients;  comment on how sensitive result is to this estimate, and (b) Time-to-
cool if ambient air is blown in parallel flow over the tile with a velocity of 10 m/s. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1)  Tile behaves as spacewise isothermal object,  (2)  Backside of tile is perfectly 
insulated, (3)  Surroundings are large compared to the tile, (4)  For forced convection situation, part (b), 
assume flow is fully turbulent. 
 
PROPERTIES: Table A.3, Pyrex (300 K):  ρ = 2225 kg/m3, cp = 835 J/kg⋅K, k = 1.4 W/m⋅K, ε = 0.80 
(given); Table A.4, Air ( )( )f sT T T 2 330.5 K, 1 atm∞= + = : ν = 18.96 × 10-6 m2/s, k = 0.0286 W/m⋅K, α = 
27.01 × 10-6 m2/s, Pr = 0.7027, β = 1/Tf.  
ANALYSIS: (a) For the lumped capacitance system with a constant coefficient, from Eq. 5.6, 

 
( )s s

i

T t T hA
exp t

T T Vcρ
∞

∞

−
= −

−

⎡ ⎤⎛ ⎞
⎢ ⎜ ⎟ ⎥
⎝ ⎠⎣ ⎦

 (1) 

where h  is the combined coefficient for the convection and radiation processes, 
 cv radh h h= +  (2) 

and 2 2
sA L V L d= =  (3,4) 

 
The linearized radiation coefficient based upon the average temperature, sT , is 

 ( ) ( )s i fT T T 2 140 40 C 2 90 C 363K= + = + = =o o  (5) 

 ( )( )2 2
rad s sur s surh T T T Tεσ= + +  (6) 

 ( )( )8 2 4 2 2 3 2
radh 0.8 5.67 10 W m K 363 298 363 298 K 6.61 W m K−= × × ⋅ + + = ⋅  

The free convection coefficient can be estimated from the correlation for the flat plate, Eq. 9.30, with 

 
3

2
L s

g TL
Ra L A P L 4L 0.25L

β
να
Δ

= = = =  (7,8) 

Continued... 



 
PROBLEM 9.46 (Cont.) 

 

 
( )( ) ( )32

5
L 6 2 6 2

9.8 m s 1 330 K 363 298 K 0.25 0.200 m
Ra 4.712 10

18.96 10 m s 27.01 10 m s− −

− ×
= = ×

× × ×
 

 ( )1 41 4 5
L LNu 0.54Ra 0.54 4.712 10 14.18= = × =  

 2
Lcvh Nu k L 14.18 0.0286 W m K 0.25 0.200 m 8.09 W m K= = × ⋅ × = ⋅  

From Eq. (2), it follows 

 ( ) 2 2h 6.61 8.09 W m K 14.7 W m K= + ⋅ = ⋅  
From Eq. (1), with As/V = 1/d, where d is the tile thickness, the time-to-cool is found as 

 
2

f
3

40 25 14.7 W m K t
exp

140 25 2225 kg m 0.010 m 835 J kg K

− ⋅ ×
= −

− × × ⋅

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 ft 2574s 42.9 min= =  < 
Using the IHT Lumped Capacitance Model with the Correlations Tool, Free Convection, Flat Plate, we 
can perform the analysis where both hcv and hrad are evaluated as a function of the tile temperature.  The 
time-to-cool is 

 ft 2860s 47.7 min= =  < 
which is 10% higher than the approximate value.   
 
(b) Considering parallel flow with a velocity, u 10 m s∞ =  over the tile, the Reynolds number is 

 5
L 6 2

u L 10 m s 0.200m
Re 1.055 10

18.96 10 m sν
∞

−

×
= = = ×

×
 

but, assuming the flow is turbulent at the upstream edge, use Eq. 7.38 with A = 0 to estimate cvh , 

 ( ) ( )
4 54 5 1 3 5 1 3

L LNu 0.037 Re Pr 0.037 1.055 10 0.7027 343.3= = × =  

 2
Lcvh Nu k L 343.3 0.0286 W m K 0.200m 49.1W m K= = × ⋅ = ⋅  

Hence, using Eqs. (2) and (1), find 

 2
fh 57.2 W m K t 661s 11.0 min= ⋅ = =  < 

 
COMMENTS:  (1) For the conditions of part (a), 
Bi = hd/k= 14.7 W/m2 ⋅K × 0.01m / 1.4 W/m⋅K = 
0.105. We conclude that the lumped capacitance 
analysis is marginally applicable.  For the 
condition of part (b), Bi = 0.4 and, hence, we need 
to consider spatial effects as explained in Section 
5.4.  If we considered spatial effects, would our 
estimates for the time-to-cool be greater or less 
than those from the foregoing analysis?  
 
(2) For the conditions of part (a), the convection 
and radiation coefficients are shown in the plot 
below as a function of cooling time.  Can you use 
this information to explain the relative magnitudes 
of the tf estimates? 
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PROBLEM 9.47  
KNOWN:  Stacked IC boards within a duct dissipating 500 W with prescribed air flow inlet 
temperature, flow rate, and internal convection coefficient.  Outer surface has emissivity of 0.5 and is 
exposed to ambient air and large surroundings at 25°C.  
FIND:  Develop a model to estimate outlet temperature of the air, Tm,o, and the average surface 
temperature of the duct, sT ,  following these steps: (a) Estimate the average free convection for the 
outer surface, oh ,  assuming an average surface temperature of 37°C; (b) Estimate the average 
(linearized) radiation coefficient for the outer surface, radh ,  assuming an average surface temperature 
of 37°C; (c) Perform an overall energy balance on the duct considering (i) advection of the air flow, 
(ii) dissipation of electrical power in the ICs, and (iii) heat transfer from the fluid to the ambient air 
and surroundings.  Express the last process in terms of thermal resistances between the mean fluid 
temperature, mT ,  and the outer temperatures T∞ and Tsur; (d) Substituting numerical values into the 

expression of part (c), calculate Tm,o and T ;s  comment on your results and the assumptions required 
to develop your model.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Air in duct is ideal gas with negligible viscous 
dissipation and pressure variation, (3) Constant properties, (4) Power dissipated in IC boards nearly 
uniform in longitudinal direction, (5) Ambient air is quiescent, and (5) Surroundings are isothermal 
and large relative to the duct. 
 
PROPERTIES:  Table A-4, Air (Tf = ( sT  + T∞)/2 = 304 K):   ν = 1.629 × 10-5 m2/s, α = 2.309 × 

10-5 m2/s, k = 0.0266 W/m⋅K, β = 0.003289 K-1, Pr = 0.706, ρ = 1.148 kg/m3, cp = 1007 J/kg·K.  
  
ANALYSIS:  (a) Average, free-convection coefficient over the duct.  Heat loss by free convection 
occurs on the vertical sides and horizontal top and bottom.  The methodology for estimating the 
average coefficient assuming the average duct surface temperature sT  = 37°C follows that of Example 
9.3.  For the vertical sides, from Eq. 9.25 with L = H, find 

 
( ) 3

s
L

g T T H
Ra

β
να

∞−
=  

 

 
( ) ( )32 1

6
L 5 2 5 2

9.8 m / s 0.003289 K 37 25 K 0.150 m
Ra 3.47 10

1.629 10 m / s 2.309 10 m / s

−

− −
× − ×

= = ×
× × ×

 

 
The free convection is laminar, and from Eq. 9.27, 

     

( )
L

1/ 4
L

4 /99 /16

0.670 Ra
Nu 0.68

1 0.492 / Pr
= +

⎡ ⎤+⎢ ⎥⎣ ⎦

       

     Continued….. 



PROBLEM 9.47 (Cont.) 
 

 
( )

( )
L

1/ 46
v

4 / 99 /16

0.670 3.47 10h HNu 0.68 22.9
k

1 0.492 / 0.706

× ×
= = + =

⎡ ⎤+⎢ ⎥⎣ ⎦

 

 
 2

vh 4.05 W / m K= ⋅  
 
For the top and bottom surfaces, Lc = (As/P) = (w × L)/(2w + 2L) = 0.0577 m, hence, RaL = 1.974 × 
105 and with Eqs. 9.30 and 9.32, respectively, 
 

Top surface:  L
1/ 4 2t c

tL
h LNu 0.54 Ra ; h 5.25 W / m K

k
= = = ⋅  

Bottom surface:  L
1/5 2b c
L b

h LNu 0.52 Ra ; h 2.75 W / m K
k

= = = ⋅  
 
The average coefficient for the entire duct is 

( ) ( ) 2 2
cv,o v t bh 2h h h / 4 2 4.05 5.25 2.75 W / m K / 4 4.03 W / m K= + + = × + + ⋅ = ⋅  < 

 
(b) Average (linearized) radiation coefficient over the duct.  Heat loss by radiation exchange between 
the duct outer surface and the surroundings on the vertical sides and horizontal top and bottom.  With 

sT  = 37°C, from Eq. 1.9, 

 ( )( )2 2
rad s sur s surh T T T Tεσ= + +  

 ( )( )8 2 4 2 2 3 2
radh 0.5 5.67 10 W / m K 310 298 310 298 K 3.2 W / m K−= × × ⋅ + + = ⋅  < 

 
(c) Overall energy balance on the fluid in the duct.  The control volume is shown in the schematic 
below and the energy balance is 
 
 in out genE E E 0− + =& & &  

 adv elec outq P q 0− + − =         (1) 

The advection term has the form, with m ,ρ= ∀&&  

 ( )adv p m,o m,iq m c T T= −&         (2) 

and the heat rate qout is represented by the thermal circuit shown below and has the form, with Tsur = 
T∞, 

 
( )

m
out 1

cv,i cv,o rad

T Tq
R 1/ R 1/ R

∞
−

−
=

+ +
      (3) 

where mT  is the average mean temperature of the fluid, (Tm,i + Tm,o)/2.  The thermal resistances are 

evaluated with As = 2(w + H) L = 0.3 m2 as 
 cv,i i sR 1/ h A=          (4) 

 cv,o cv,o sR 1/ h A=          (5) 

 rad rad sR 1/ h A=          (6) 
          Continued … 



PROBLEM 9.47 (Cont.) 
 
Using this energy balance, the outlet temperature of the air can be calculated.  From the thermal 
circuit, the average surface temperature can be calculated from the relation 
 
 ( )out m s cv,iq T T / R= −         (7) 

 

 
 
(d) Calculating Tm,o and sT .   Substituting numerical values into the expressions of Part (c), find 
 
 m,o sT 45.7 C T 34.0 C= ° = °        < 
 
The heat rates and thermal resistance results are 
 
 adv outq 480.5 W q 19.5 W= =  
 
 cv,i cv,o radR 0.0667 K / W R 0.827 K / W R 1.05 K / W= = =  
 
COMMENTS:  (1) We assumed sT  = 37°C for estimating cv,oh  and radh ,  whereas from the energy 

balance we found the value was 34.0°C.  Performing an interative solution, with different assumed sT  
we would find that the results are not sensitive to the sT  value, and that the foregoing results are 
satisfactory. 
 
(2) From the results of Part (d) for the heat rates, note that about 4% of the electrical power is 
transferred from the duct outer surface.  The present arrangement does not provide a practical means to 
cool the IC boards. 
 
(3) Note that Tm,i < Ts < Tm,o.  As such, we can’t utilize the usual log-mean temperature (LMTD) 
expression, Eq. 8.44, in the rate equation for the internal flow analysis.  It is for this reason we used 
the overall coefficient approach representing the heat transfer by the thermal circuit.  The average 
surface temperature of the duct, s,T  is only used for the purposes of estimating cv,oh  and radh .   We 
represented the effective temperature difference between the fluid and the ambient/surroundings as 

mT T .∞−   Because the fluid temperature rise is not very large, this assumption is a reasonable one. 
 



PROBLEM 9.48 
 
KNOWN:  Parallel flow of air over a highly polished aluminum plate flat plate maintained at a uniform 
temperature Ts  =  47°C by a series of segmented heaters. 
 
FIND: (a) Electrical power required to maintain the heater segment covering the section between x1 = 0.2 
m and x2 = 0.3m and (b) Temperature that the surface would reach if the air blower malfunctions and heat 
transfer occurs by free, rather than forced, convection. 
 
SCHEMATIC: 

 
ASSUMPTIONS :  (l) Steady-state conditions, (2) Backside of plate is perfectly insulated, (3) Flow is 
turbulent over the entire length of plate, part (a),  (4) Ambient air is extensive, quiescent at 23°C for part 
(b). 
 
PROPERTIES:  Table A.4,  Air  (Tf = (Ts + T∞)/2 = 308K):  υ = 16.69 × 10-6 m2/s,  k = 0.02689 W/m⋅K,  
α = 23.68 × 10-6 m2/s,  Pr = 0.7059,  β = 1/Tf ;   Table A.12,  Aluminum, highly polished:  ε = 0.03. 
 
ANALYSIS:  (a) The power required to maintain the segmented heater  (x1 - x2) is 
 ( ) ( )e x1 x2 2 1 sP h x x w T T− ∞= − −  (1) 

where x1 x2h −  is the average coefficient for the section between x1 and x2, and can be approximated as 
the average of the local values at x1 and x2, 
 ( ) ( )( )x1 x2 1 2h h x h x / 2− = +  (2) 

Using Eq. 7.36 appropriate for fully turbulent flow, with Rex = u∞x /k, 

 4 /5 1/3
x1 xNu 0.0296Re Pr=  

 ( )
4 /5

1/ 3
x1 6 2

10m s 0.2mNu 0.0296 0.7059 304.6
16.69 10 m s−

⎛ ⎞×
⎜ ⎟= =
⎜ ⎟×⎝ ⎠

 

 
 2

x1 x1 1h Nu k x 304.6 0.02689 W m K 0.2m 40.9 W m K= = × ⋅ = ⋅  
 
 2

x2 x2Nu 421.3 h 37.8W m K= = ⋅  
Hence, from Eq (2) to obtain x1 x2h −  and Eq.  (1) to obtain  Pe, 

 ( ) 2 2
x1 x2h 40.9 37.8 W m K 2 39.4 W m K− = + ⋅ = ⋅    

 ( ) ( )2
eP 39.4 W m K 0.3 0.2 m 0.2m 47 23 C 18.9 W= ⋅ − × − =o  < 

Continued... 



 
PROBLEM 9.48 (Cont.) 

 
(b) Without the airstream flow, the heater segment experiences free convection and radiation exchange 
with the surroundings, 
 

 ( ) ( ) ( )4 4
e cv s s sur 2 1P h T T T T x x wεσ∞

⎡ ⎤= − + − −⎢ ⎥⎣ ⎦
 (3) 

 
We will assume that the free convection coefficient, cvh , for the segment is the same as that for the 
entire plate.  Using the correlation for a flat plate, Eq. 9.30, with 
 

 
( )

3 2
c s

L c
g TL A 0.2 0.5mRa L 0.0714m

P 2 0.2 0.5 m
β
να
Δ ×

= = = =
+

  

 
and evaluating properties at Tf  = 308 K, 
 

 
( )( )( )32

5
L 6 2 6 2

9.8m s 1 308K 47 23 0.0714m
Ra 7.033 10

16.69 10 m s 23.68 10 m s− −
−

= = ×
× × ×

 

 

 ( )1 41/ 4 5L LNu 0.54Ra 0.54 7.033 10 15.64= = × =  
 
 2Lcv ch Nu k L 15.64 0.02689 W m K 0.0714m 5.89 W m K= = × ⋅ = ⋅    
 
Substituting numerical values into Eq. (3), 
 
 ( ) ( ) ( )2 8 2 4 4 4

s s18.9W 5.89 W m K T 296 0.03 5.67 10 W m K T 296 0.3 0.2 m 0.2m−= ⋅ − + × × ⋅ − − ×⎡ ⎤
⎣ ⎦  

 sT 447 K 174 C= = o  < 
 
COMMENTS: Recognize that in part (b), the assumed value for Tf = 308 K is a poor approximation.  
Using the above relations in the IHT work space with the Properties Tool, find that Ts = 406 K = 133 °C 
using the properly evaluated film temperature (Tf) and temperature difference (ΔT) in the correlation. 

From this analysis, 2
cvh 8.29 W m K= ⋅  and hrad = 0.3 W/m2⋅K.  Because of the low emissivity of the 

plate, the radiation exchange process is not significant. 
 



PROBLEM 9.49  
KNOWN:  Correlation for estimating the average free convection coefficient for the exterior surface 
of a long horizontal rectangular cylinder (duct) exposed to a quiescent fluid.  Consider a horizontal 
0.15 m-square duct with a surface temperature of 35°C passing through ambient air at 15°C.  
FIND:  (a) Calculate the average convection coefficient and the heat rate per unit length using the H-D 
correlation, (b) Calculate the average convection coefficient and the heat rate per unit length 
considering the duct as formed by vertical plates (sides) and horizontal plates (top and bottom), and (c) 
Using an appropriate correlation, calculate the average convection coefficient and the heat rate per unit 
length for a duct of circular cross-section having a diameter equal to the wetted perimeter of the 
rectangular duct of part (a).  Do you expect the estimates for parts (b) and (c) to be lower or higher 
than those obtained with the H-D correlation?  Explain the differences, if any.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Ambient air is quiescent, (3) Duct surface has 
uniform temperature. 
 
PROPERTIES:  Table A-4, air (Tf = (Ts + T∞)/2 = 298 K, 1 atm):  ν = 1.571 × 10-5 m2/s, k = 0.0261 
W/m⋅K, α = 2.22 × 10-5 m2/s, Pr = 0.708. 
 
ANALYSIS:  (a) The Hahn-Didion (H-D) correlation [ASHRAE Proceedings, Part 1, pp 262-67, 
1972] has the form 
 

 p

1/8
1/ 4 7
p p

HNu 0.55Ra Ra 10
p

⎛ ⎞
= ≤⎜ ⎟

⎝ ⎠
 

 
where the characteristic length is the half-perimeter, p = (w + H), and w and H are the horizontal width 
and vertical height, respectively, of the duct.  The thermophysical properties are evaluated at the film 
temperature.  Using IHT, with the correlation and thermophysical properties, the following results 
were obtained. 
 

Rap pNu  ( )2
ph W / m K⋅  ( )pq W / m′   

5.08 × 107 42.6 3.71 44.5 <
 
where the heat rate per unit length of the duct is 
 ( )( )p p sq h 2 H w T T .∞′ = + −  

(b) Treating the duct as a combination of horizontal (top: hot-side up and bottom: hot-side down) and 
two vertical plates (v) as considered in Example 9.3, the following results were obtained 
 

th  bh  vh  hvh  hvq′   

(W/m2⋅K) (W/m2⋅K) (W/m2⋅K) (W/m2⋅K) (W/m)  
5.62 2.81 4.78 4.50 54.0                    < 

 
          Continued...       



PROBLEM 9.49 (Cont.) 
 
where the average coefficient and heat rate per unit length for the horizontal-vertical plate duct are 
 
 ( )hv t b vh h h 2 h / 4= + +  
 
 ( )( )hv hv sq h 2 H w T T .∞′ = + −  
 
(c) Consider a circular duct having a wetted perimeter equal to that of the rectangular duct, for which 
the diameter is 
 
 ( )D 2 H w D 0.191 mπ = + =  
 
Using the Churchill-Chu correlation, Eq. 9.34, the following results are obtained. 
 

      RaD  DNu   ( )2
Dh W / m K⋅   ( )Dq W / m′  

 1.31 × 107 30.6            4.19         50.3  < 
 
where the heat rate per unit length for the circular duct is 
 
 ( )D D sq D h T T .π ∞′ = −  
 
COMMENTS:  (1) The H-D correlation, based upon experimental measurements, provided the lowest 
estimate for h and q .′   The circular duct analysis results are in closer agreement than are those for the 
horizontal-vertical plate duct. 
 
(2) An explanation for the relative difference in h and q′  values can be drawn from consideration of 
the boundary layers and induced flows around the surfaces.  Viewing the cross-section of the square 
duct, recognize that flow induced by the bottom surface flows around the vertical sides, joining the 
vertical plume formed on the top surface.  The flow over the vertical sides is quite different than would 
occur if the vertical surface were modeled as an isolated vertical surface.  Also, flow from the top 
surface is likewise modified by flow rising from the sides, and doesn’t behave as an isolated 
horizontal surface.  It follows that treating the duct as a combination of horizontal-vertical plates (hv 
results), each considered as isolated, would over estimate the average coefficient and heat rate. 
 
(3) It follows that flow over the horizontal cylinder more closely approximates the situation of the 
square duct.  However, the flow is more streamlined; thinnest along the bottom, and of increasing 
thickness as the flow rises and eventually breaks away from the upper surface.  The edges of the duct 
disrupt the rising flow, lowering the convection coefficient.  As such, we expect the horizontal 
cylinder results to be systematically higher than for the H-D correlation that accounts for the edges. 



PROBLEM 9.50 
 
KNOWN:  Dimensions, emissivity and operating temperatures of a wood burning stove.  Temperature of 
ambient air and surroundings. 
 
FIND:  Rate of heat transfer. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state, (2) Quiescent air, (3) Negligible heat transfer from pipe elbow, (4) 
Free convection from pipe corresponds to that from a vertical plate. 
 
PROPERTIES:  Table A.4, air (Tf = 400 K):  ν = 26.41 × 10-6 m2/s, k = 0.0338 W/m⋅K, α = 38.3 × 10-6 
m2/s, β = 0.0025 K-1, Pr = 0.69.  Table A.4, air (Tf = 350 K):  ν = 20.92 × 10-6 m2/s, k = 0.030 W/m⋅K, α = 
29.9 × 10-6 m2/s, Pr = 0.70, β = 0.00286 K-1. 
 
ANALYSIS:  Three distinct contributions to the heat rate are made by the 4 side walls, the top surface, 
and the pipe surface.  Hence qt = 4qs + qt + qp, where each contribution includes transport due to 
convection and radiation. 

 ( ) ( )2 2
s s s s,s rad,s s s,s surq h L T T h L T T∞= − + −  

 ( ) ( )2 2
t t s s,s rad,s s s,s surq h L T T h L T T∞= − + −  

 ( )( ) ( )( )p p p p s,p rad,p p p s,p surq h D L T T h D L T Tπ π∞= − + −  

The radiation coefficients are 

 ( )( )2 2 2
rad,s s,s sur s,s surh T T T T 12.3W m Kεσ= + + = ⋅  

 ( )( )2 2 2
rad,p s,p sur s,p surh T T T T 7.9 W m Kεσ= + + = ⋅  

For the stove side walls, RaL,s = ( ) 3
s,s sg T T Lβ αν∞−  = 4.84 × 109.  Similarly, with (As/P) = L Ls s

2 4  = 

0.25 m, RaL,t = 7.57 × 107 for the top surface, and with Lp = 2 m, RaL,p = 3.59 × 1010 for the stove pipe. 
 
For the side walls and the pipe, the average convection coefficient may be determined from Eq. 9.26, 

 

( )

2
1/ 6
LL 8/ 279 /16

0.387Ra
Nu 0.825

1 0.492 Pr

⎧ ⎫
⎪ ⎪⎪ ⎪= +⎨ ⎬
⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭
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which yields L,sNu  = 199.9 and L,pNu  = 377.6.  For the top surface, the average coefficient may be 
obtained from Eq. 9.31, 
 
 1/ 3L LNu 0.15Ra=  
 
which yields L,tNu  = 63.5.  With ( )h Nu k L= , the convection coefficients are 
 
 2

sh 6.8W m K= ⋅ ,     2
th 8.6 W m K= ⋅ ,     2

ph 5.7 W m K= ⋅  

Hence, 

 ( ) ( ) ( )( )2 2 2
s s rad,s s s,sq h h L T 300K 19.1W m K 1m 200K 3820 W= + − = ⋅ =  

 

 ( ) ( ) ( )( )2 2 2
t t rad,s s s,sq h h L T 300K 20.9 W m K 1m 200K 4180 W= + − = ⋅ =  

 
 ( )( )( ) ( )( )2

p p rad,p p p s,pq h h D L T 300 K 13.6 W m K 0.25 m 2 m 100 K 2140 Wπ π= + − = ⋅ × × =  
 
and the total heat rate is 

 tot s t pq 4q q q 21,600 W= + + =  < 

 
COMMENTS:  The amount of heat transfer is significant, and the stove would be capable of maintaining 
comfortable conditions in a large, living space under harsh (cold) environmental conditions. 



PROBLEM 9.51  
KNOWN:  Plate, 1m × 1m, inclined at 45° from the vertical is exposed to a net radiation heat flux of 
300 W/m

2; backside of plate is insulated and ambient air is at 0°C.  
FIND:  Temperature plate reaches for the prescribed conditions.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Net radiation heat flux (300 W/m

2
) includes exchange with surroundings, (2) 

Ambient air is quiescent, (3) No heat losses from backside of plate, (4) Steady-state conditions.  
PROPERTIES:  Table A-4, Air (assuming Ts = 84°C, Tf = (Ts + T∞)/2 = (84 + 0)°C/2 = 315K, 1 

atm):  ν = 17.40 × 10
-6 m2/s, k = 0.0274 W/m⋅K, α = 24.7 × 10

-6 m2/s, Pr = 0.705, β = 1/Tf.  
ANALYSIS:  From an energy balance on the plate, it follows that q q .rad conv′′ ′′=   That is, the net 
radiation heat flux into the plate is equal to the free convection heat flux to the ambient air.  The 
temperature of the surface can be expressed as 
 T T q / hs rad L′′= +∞          (1) 
where hL  must be evaluated from an appropriate correlation.  Since this is the bottom surface of a 
heated inclined plate, “g” may be replaced by “g cos θ”; hence using Eq. 9.25, find 

( ) ( )( ) ( )33 2g cos T T L 9.8m / s cos 45 1/ 315K 84 0 K 1ms 9Ra 4.30 10 .L 6 2 6 217.40 10 m / s 24.7 10 m / s

θβ
να

− × ° −∞= = = ×
− −× × ×

 

Since RaL > 10
9, conditions are turbulent and Eq. 9.26 is appropriate for estimating Nu L  

 

( )

2
1/ 60.387 RaLNu 0.825L 8 / 279 /161 0.492 / Pr

⎧ ⎫
⎪ ⎪
⎪ ⎪= +⎨ ⎬
⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

     (2) 

 
( )

( )

21/ 690.387 4.30 10
Nu 0.825 193.2L 8 / 279 /161 0.492 / 0.705

⎧ ⎫
⎪ ⎪×⎪ ⎪= + =⎨ ⎬
⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 2h Nu k / L 193.2 0.0274 W / m K /1m 5.29 W / m K.L L= = × ⋅ = ⋅    (3) 

Substituting hL  from Eq. (3) into Eq. (1), the plate temperature is 

 2 2T 0 C 300 W / m / 5.29 W / m K 57 C.s = ° + ⋅ = °      < 
COMMENTS:  Note that the resulting value of Ts ≈ 57°C is substantially lower than the assumed 
value of 84°C.  The calculation should be repeated with a new estimate of Ts, say, 60°C.  An alternate 
approach is to write Eq. (2) in terms of Ts, the unknown surface temperature and then combine with 
Eq. (1) to obtain an expression which can be solved, by trial-and-error, for Ts. 



PROBLEM 9.52  
KNOWN:  Horizontal rod immersed in water maintained at a prescribed temperature.  
FIND:  Free convection heat transfer rate per unit length of the rod, qconv′  
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Water is extensive, quiescent medium.  
PROPERTIES:  Table A-6, Water (Tf = (Ts + T∞)/2 = 310K):  ρ = 1/vf = 993.0 kg/m3, ν = μ/ρ = 695 
× 10-6 N⋅s/m2/993.0 kg/m3 = 6.999 × 10-7 m2/s, α = k/ρc = 0.628 W/m⋅K/993.0 kg/m3 × 4178 J/kg⋅K 
= 1.514 × 10-7 m2/s, Pr = 4.62, β = 361.9 × 10-6 K-1.  
ANALYSIS:  The heat rate per unit length by free convection is given as 
 ( )q h D T T .conv D sπ′ = ⋅ − ∞         (1) 

To estimate hD , first find the Rayleigh number, Eq. 9.25, 

( ) ( )( ) ( )32 6 13 9.8m / s 361.9 10 K 56 18 K 0.005mg T T Ds 5Ra 1.587 10D 7 2 7 26.999 10 m / s 1.514 10 m / s

β
να

− −× −− ∞= = = ×
− −× × ×

 

and use Eq. 9.34 for a horizontal cylinder, 

 

( )

2
1/ 60.387 RaDNu 0.60D 8 / 279 /161 0.599 / Pr

⎧ ⎫
⎪ ⎪
⎪ ⎪= +⎨ ⎬
⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 
( )

( )

21/ 650.387 1.587 10
Nu 0.60 10.40D 8 / 279 /161 0.599 / 4.62

⎧ ⎫
⎪ ⎪×⎪ ⎪= + =⎨ ⎬
⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 2h Nu k / D 10.40 0.628W / m K / 0.005m 1306 W / m K.D D= = × ⋅ = ⋅   (2) 

Substituting for hD  from Eq. (2) into Eq. (1), 

 ( )( )2q 1306W / m K 0.005m 56 18 K 780 W / m.conv π′ = ⋅ × − =    < 

COMMENTS:  (1) Note the relatively large value of hD ; if the rod were immersed in air, the heat transfer 

coefficient would be close to 5 W/m2
⋅K.  

(2) Eq. 9.33 with appropriate values of C and n from Table 9.1 could also be used to estimate hD .  Find 

 ( )0.25n 5Nu C Ra 0.48 1.587 10 9.58D D= = × =  

 2h Nu k / D 9.58 0.628W / m K / 0.005m 1203W / m K.D D= = × ⋅ = ⋅  
By comparison with the result of Eq. (2), the disparity of the estimates is ~8%. 



PROBLEM 9.53  
KNOWN:  Horizontal, uninsulated steam pipe passing through a room.  
FIND:  Heat loss per unit length from the pipe.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Pipe surface is at uniform temperature, (2) Air is quiescent medium, (3) 
Surroundings are large compared to pipe.  
PROPERTIES:  Table A-4, Air (Tf = (Ts + T∞)/2 = 350K, 1 atm):  ν = 20.92 × 10

-6 m2/s, k = 0.030 

W/m⋅K, α = 29.9 × 10-6 m2/s, Pr = 0.700, β = 1/Tf = 2.857 × 10
-3 K-1.  

ANALYSIS:  Recognizing that the heat loss from the pipe will be by free convection to the air and by 
radiation exchange with the surroundings, we can write 

 ( ) ( )4 4q q q D h T T T T .conv rad D s s surπ εσ⎡ ⎤′ ′ ′= + = − + −∞⎢ ⎥⎣ ⎦
    (1) 

To estimate hD , first find RaL, Eq. 9.25, and then use the correlation for a horizontal cylinder, Eq. 9.34, 

 
( ) ( )( ) ( )33 2g T T D 9.8m / s 1/ 350K 400 300 K 0.150m 7sRa 1.511 10L 6 2 6 220.92 10 m / s 29.9 10 m / s

β
να
− −∞= = = ×

− −× × ×
 

 

( )

2
1/ 60.387 RaLNu 0.60D 8 / 279 /161 0.559 / Pr

= +

+

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪⎡ ⎤

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

 
( )

( )

21/ 670.387 1.511 10
Nu 0.60 31.88D 8 / 279 /161 0.559 / 0.700

×
= + =

+

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪⎡ ⎤

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

 2h Nu k / D 31.88 0.030 W / m K / 0.15m 6.38W / m K.D D= ⋅ = × ⋅ = ⋅   (2) 

Substituting for hD  from Eq. (2) into Eq. (1), find 

( ) ( ) ( )2 8 2 4 4 4 4q 0.150m 6.38 W / m K 400 300 K 0.85 5.67 10 W / m K 400 300 Kπ −′ = ⋅ − + × × ⋅ −⎡ ⎤
⎢ ⎥⎣ ⎦

 

 q 301W / m 397 W / m 698W / m.′ = + =       < 
 
COMMENTS:  (1) Note that for this situation, heat transfer by radiation and free convection are of 
equal importance. 
(2) Using Eq. 9.33 with constants C,n from Table 9.1, the estimate for hD  is 

 ( )0.333n 7Nu CRa 0.125 1.511 10 30.73LD = = × =  

 2h Nu k / D 30.73 0.030 W / m K / 0.150m 6.15 W / m K.D D= = × ⋅ = ⋅  
The agreement is within 4% of the Eq. 9.34 result. 



PROBLEM 9.54 
 
KNOWN:  Diameter and emissivity of horizontal glass cylinder.  Temperature of air and 
surroundings. 
 
FIND:  Temperature at which lumped capacitance approximation may be applied.  
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) The quasi-steady approximation holds: the heat transfer coefficient can be 
evaluated based on steady-state conditions, (2) Air properties can be evaluated at 350 K, (3) Radiation 
is to large surroundings. 
 
PROPERTIES:  Table A-3, Glass (T = 300 K): kg = 1.4 W/m⋅K; Table A-4, Air (T = 350 K): ν = 
20.92 ×10-6 m2/s, α = 29.9 ×10-6 m2/s, k = 30 ×10-3 W/m⋅K, Pr = 0.700, β = 1/Ts = 1/(350 K) = 
0.00286 K-1. 
 
ANALYSIS:   The largest heat transfer coefficient for which the lumped capacitance approximation is 
valid can be found from Bi = 0.1, where the characteristic length is the cylinder radius, ro.  In this case, 
the heat transfer coefficient should be the effective value that includes both convection and radiation,  
 
 eff rh h h= +     (1) 
 
Therefore, with Bi = heffD/kg, 
 

 2
eff

1.4 W/m K0.2 0.2 18.67 W/m K
0.015 m

gk
h

D
⋅

= = = ⋅  (2) 

 
The radiation heat transfer coefficient is given by 
 
 2 2

sur sur( )( )r s sh T T T Tεσ= + +  (3) 
 
The free convection heat transfer coefficient can be found from the Churchill-Chu correlation, 
 

 

2
1//6

8/279/16

0.3870.60
1 (0.559 / )

D
D

hD RaNu
k Pr

⎧ ⎫⎪ ⎪= = +⎨ ⎬
⎡ ⎤+⎪ ⎪⎣ ⎦⎩ ⎭

 (4) 

Continued... 

Tsur = 27°C

D = 15 mm

ε = 0.94

Air, T∞ = 27°C



PROBLEM 9.54 (Cont.) 
 
where the Rayleigh number is: 

 

 
3( )s

D
g T T DRa β

να
∞−

=  (5) 

 
Equations (1)-(5) can be solved for the unknowns, including the surface temperature.  This can easily 
be done using IHT, but it can also be solved by hand as follows.  We begin by taking Ts = 400 K for 
the purpose of estimating the radiation heat transfer coefficient of Eq. (3): 
 

2 2
sur sur

8 2 4 2 2 2 2

( )( )

0.94 5.67 10  W/m K (400 300)K (400 300 )K 9.33 W/m K
r s sh T T T Tεσ

−

= + +

= × × ⋅ × + × + = ⋅
 

 
From Eqs. (1) and (2), 2 2

eff (18.67 9.33) W/m K 9.34 W/m Krh h h= − = − ⋅ = ⋅  and 
 

2

3

9.34 W/m K 0.015 m 4.67
30 10  W/m K

D
hDNu
k −

⋅ ×
= = =

× ⋅
 

 
Then Eq. (4) can be solved for RaD, 
 

( )
( )

6
8 / 279 /16

6
8 / 279 /16

1 0.60 1 (0.559 / )
0.387

1 4.67 0.60 1 (0.559 / 0.707) 13,200
0.387

DDRa Nu Pr⎧ ⎫⎡ ⎤= − +⎨ ⎬⎣ ⎦⎩ ⎭

⎧ ⎫⎡ ⎤= − + =⎨ ⎬⎣ ⎦⎩ ⎭

 

 
Eq. (5) can now be solved for Ts: 
 

6 2 6 2

3 2 1 3

20.92 10  m /s 29.9 10  m /s300 K 13,200 388 K
9.8 m/s 0.00286 K (0.015 m)s DT T Ra

g D
να
β

− −

∞ −

× × ×
= + = + × =

× ×
  

 
This is reasonably close to the initial assumption of Ts = 400 K.  Greater accuracy could be obtained 
by repeating the calculations with the new estimate of Ts and evaluating air properties at the film 
temperature.  Repeated iterations converge on Ts = 395 K, thus the lumped capacitance approximation 

is valid for Ts < 395 K.          < 
 
COMMENTS:  (1) Because of the relatively small thermal conductivity of glass, the effective heat 
transfer coefficient must be fairly small, 18.67 W/m2 ⋅ K, for the lumped capacitance approximation to 
be valid. (2) The conclusion that lumped capacitance is valid for Ts < 395 K requires further 
evaluation.  If the rod is initially hotter than 395 K, it would be subject to large spatial temperature 
gradients in the initial stages of cooling.  When the temperature meets the Biot criterion, there would 
still be residual temperature gradients in the rod from the preceding cooling period, so the lumped 
capacitance method might never be applicable. 
 



PROBLEM 9.55  
KNOWN:  Dimensions and temperature of beer can in refrigerator compartment.  
FIND:  Orientation which maximizes cooling rate.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) End effects are negligible, (2) Compartment air is quiescent, (3) Constant 
properties.  
PROPERTIES:  Table A-4, Air (Tf = 288.5K, 1 atm):  ν = 14.87 × 10

-6
 m

2
/s, k =0.0254 W/m⋅K, α = 

21.0 × 10
-6

 m
2
/s, Pr = 0.71, β = 1/Tf = 3.47 × 10

-3
 K

-1
. 

 
ANALYSIS:  The ratio of cooling rates may be expressed as 

 ( )
( )

sv v v
h h s h

T Tq h hDL .
q h DL T T h

π
π

∞

∞

−
= =

−
 

For the vertical surface, find 

 ( ) ( )

( )( )
2 3 1

s 3 3 9 3
L 6 2 6 2

g T T 9.8m / s 3.47 10 K 23 C
Ra L L 2.5 10 L

14.87 10 m / s 21 10 m / s

β
να

− −
∞

− −
− × × °

= = = ×
× ×

 

 ( )39 6
LRa 2.5 10 0.15 8.44 10 ,= × = ×  

and using the correlation of Eq. 9.26, 
( )

( )
L

21/ 66

8 / 279 /16

0.387 8.44 10
Nu 0.825 29.7.

1 0.492 / 0.71

×
= + =

+

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪⎡ ⎤

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

Hence  L
2

L v
k 0.0254 W / m Kh h Nu 29.7 5.03W / m K.
L 0.15m

⋅
= = = = ⋅  

For the horizontal surface, find ( ) ( )3s 3 9 5
D

g T T
Ra D 2.5 10 0.06 5.4 10

β
να

∞−
= = × = ×  

and using the correlation of Eq. 9.34, 
( )

( )
D

21/ 65

8 / 279 /16

0.387 5.4 10
Nu 0.60 12.24

1 0.559 / 0.71

×
= + =

+

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪⎡ ⎤

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

 D
2

D h
k 0.0254 W / m Kh h Nu 12.24 5.18W / m K.
D 0.06m

⋅
= = = = ⋅  

Hence  v
h

q 5.03 0.97.
q 5.18

= =         < 

 
COMMENTS:  In view of the uncertainties associated with Eqs. 9.26 and 9.34 and the neglect of end 
effects, the above result is inconclusive.  The cooling rates are approximately the same. 



PROBLEM 9.56  
KNOWN:  A long uninsulated steam line with a diameter of 89 mm and surface emissivity of 0.8 
transports steam at 200°C and is exposed to atmospheric air and large surroundings at an equivalent 
temperature of 20°C.  
FIND:  (a) The heat loss per unit length for a calm day when the ambient air temperature is 20°C; (b) 
The heat loss on a breezy day when the wind speed is 8 m/s; and (c) For the conditions of part (a), 
calculate the heat loss with 20-mm thickness of insulation (k = 0.08 W/m⋅K).  Would the heat loss 
change significantly with an appreciable wind speed?  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Calm day corresponds to quiescent ambient 
conditions, (3) Breeze is in crossflow over the steam line, (4) Atmospheric air and large surroundings 
are at the same temperature; and (5) Emissivity of the insulation surface is 0.8. 
 
PROPERTIES:  Table A-4, Air (Tf = (Ts + T∞)/2 = 383 K, 1 atm):  ν = 2.454 × 10-5 m2/s, k = 
0.03251 W/m⋅K, α = 3.544 × 10-5 m2/s, Pr = 0.693. 
 
ANALYSIS:  (a) The heat loss per unit length from the pipe by convection and radiation exchange 
with the surroundings is 
 
 b cv radq q q′ ′ ′= +  
 

 ( ) ( )4 4
b D b s,b b b bs,bq h P T T P T T P Dε σ π∞ ∞′ = − + − =    (1,2) 

 
where Db is the diameter of the bare pipe.  Using the Churchill-Chu correlation, Eq. 9.34, for free 
convection from a horizontal cylinder, estimate Dh  
 

 

( )
D

2
1/ 6

b D
8/ 279 /16

0.387 Rah DNu 0.60
k

1 0.559 / Pr

⎧ ⎫
⎪ ⎪⎪ ⎪= = +⎨ ⎬
⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

    (3) 

 
where properties are evaluated at the film temperature, Tf = (Ts + T∞)/2 and 

 
( ) 3

s b
D

g T T D
Ra

β
να

∞−
=         (4) 

Substituting numerical values, find for the bare steam line 
 

DRa  
DNu  Dh (W/m2⋅K) ( )cvq W / m′  ( )radq W / m′  ( )bq W / m′   

3.73 × 106 21.1 7.71 388 541 929 <
 
          Continued … 



PROBLEM 9.56 (Cont.) 
 
(b) For forced convection conditions with V = 8 m/s, use the Churchill-Bernstein correlation, Eq. 7.54, 
 

 

( )
D

4/ 51/ 2 1/ 3 5/8
D b DD

1/ 42 / 3

0.62 Re Prh D ReNu 0.3 1
k 282,000

1 0.4 / Pr

⎡ ⎤⎛ ⎞⎢ ⎥= = + + ⎜ ⎟⎢ ⎥⎝ ⎠⎡ ⎤ ⎣ ⎦+⎢ ⎥⎣ ⎦

 

where ReD = VD/ν.  Substituting numerical values, find 
 

DRe  
DNu  D,bh (W/m2⋅K) ( )cvq W / m′  ( )radq W / m′  ( )bq W / m′   

2.90×104 97.7 35.7 1800 541 2340 <
 
(c) With 20-mm thickness insulation, and for the calm-day condition, the heat loss per unit length is 
 
 ( )ins s,o totq T T / R∞′ ′= −         (1) 

 [ ] 1
t ins cv radR R 1/ R 1/ R −′ ′ ′ ′= + +        (2) 

 
where the thermal resistance of the insulation from Eq. 3.33 is 
 
 ( ) [ ]ins o bR n D / D / 2 kπ′ = l         (3) 
 
and the convection and radiation thermal resistances are 
 
 ( )cv D,o oR 1/ h Dπ′ =          (4) 

 ( ) ( )( )2 2
rad rad o rad,o s,o s,oR 1/ h D h T T T Tπ εσ ∞ ∞′ = = + +    (5,6) 

 
The outer surface temperature of the insulation, Ts,o, can be determined by an energy balance on the 
surface node of the thermal circuit. 

 
 

 
[ ]

s,b s,o s,o
1ins cv rad

T T T T
R 1/ R 1/ R

∞
−

− −
=

′ ′ ′+
 

 
Substituting numerical values with Db,o = 129 mm, find the following results. 

 2
ins D,oR 0.7384 m K / W h 5.30 W / m K′ = ⋅ = ⋅  

 2
cv radR 0.4655 K / W h 5.65 W / m K′ = = ⋅  

 rad insR 0.4371 K / W q 187 W / m′ ′= =    < 
 s,oT 62.1 C= °  
 
          Continued … 



PROBLEM 9.56 (Cont.) 
 
COMMENTS:  (1) For the calm-day conditions, the heat loss by radiation exchange is 58% of the 
total loss.  Using a reflective shield (say, ε = 0.1) on the outer surface could reduce the heat loss by 
50%. 
 
(2) The effect of a 8-m/s breeze over the steam line is to increase the heat loss by more than a factor of 
two above that for a calm day.  The heat loss by radiation exchange is approximately 25% of the total 
loss. 
 
(3) The effect of the 20-mm thickness insulation is to reduce the heat loss to 20% the rate by free 
convection or to 9% the rate on the breezy day.  From the results of part (c), note that the insulation 
resistance is nearly 3 times that due to the combination of the convection and radiation process thermal 
resistances.  The effect of increased wind speed is to reduce cvR ,′  but since insR′  is the dominant 
resistance, the effect will not be very significant. 
 
(4) The convection correlation models in IHT are especially useful for applications such as the present 
one to eliminate the tediousness of evaluating properties and performing the calculations.  However, it 
is essential that you have experiences in hand calculations with the correlations before using the 
software. 
 



PROBLEM 9.57  
KNOWN:  Length and diameter of tube submerged in paraffin of prescribed dimensions.  Properties 
of paraffin.  Inlet temperature, flow rate and properties of water in the tube.  
FIND:  (a) Water outlet temperature, (b) Heat rate, (c) Time for complete melting.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Water is incompressible liquid with negligible viscous dissipation, (2) 
Constant properties for water and paraffin, (3) Negligible tube wall conduction resistance, (4) Free 
convection at outer surface associated with horizontal cylinder in an infinite quiescent medium, (5) 
Negligible heat loss to surroundings, (6) Fully developed flow in tube.  
PROPERTIES:  Water (given):  cp = 4185 J/kg⋅K, k = 0.653 W/m⋅K, μ = 467 × 10

-6
 kg/s⋅m, Pr = 

2.99; Paraffin (given):  Tmp = 27.4°C, hsf = 244 kJ/kg, k = 0.15 W/m⋅K, β = 8 × 10
-4

 K
-1

, ρ = 770 

kg/m
3
, ν = 5 × 10

-6
 m

2
/s, α = 8.85 × 10

-8
 m

2
/s. 

 
ANALYSIS:  (a) The overall heat transfer coefficient is 

 
i o

1 1 1 .
U h h
= +  

To estimate ih ,  find D 6
4m 4 0.1kg / sRe 10,906
D 0.025m 467 10 kg / s mπ μ π −

×
= = =

× × × ⋅

&
 

and noting the flow is turbulent, use the Dittus-Boelter correlation 

 ( ) ( )4 / 5 0.34 /5 0.3
D DNu 0.023Re Pr 0.023 10,906 2.99 54.3= = =  

 

 2D
i

Nu k 54.3 0.653W / m Kh 1418W / m K.
D 0.025m

× ⋅
= = = ⋅  

To estimate oh ,  find 

 ( ) ( ) ( ) ( )32 4 13
s

D 6 2 8 2

9.8m / s 8 10 K 55 27.4 K 0.025mg T T D
Ra

5 10 m / s 8.85 10 m / s

β
να

− −
∞

− −

× −−
= =

× × ×
 

 
 6

DRa 7.64 10= ×  

and using the correlation of Eq. 9.34, 
( )

D

2
1/ 6
D

8 / 279 /16

0.387 Ra
Nu 0.60 35.0

1 0.559 / Pr
= + =

+

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪⎡ ⎤

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

 

 D
2

o
k 0.15W / m Kh Nu 35.0 210 W / m K.
D 0.025m

⋅
= = = ⋅  

Alternatively, using the correlation of Eq. 9.33, 
          Continued … 



PROBLEM 9.57 (Cont.)  
n

D DDNu CRa with C 0.48, n 0.25 Nu 25.2= = = =  

 2
o

0.15W / m Kh 25.2 151W / m K.
0.025m

⋅
= = ⋅  

 
The significant difference in ho values for the two correlations may be due to difficulties associated 
with high Pr applications of one or both correlations.  Continuing with the result from Eq. 9.34, 

 3 2
i o

1 1 1 1 1 5.467 10 m K / W
U h h 1418 210

−= + = + = × ⋅  

 
 2U 183W / m K.= ⋅  
 
Using Eq. 8.45a, find 

 m,o
2m,i p

T T DL 0.025m 3m Wexp U exp 183
T T m c 0.1kg / s 4185J / kg K m K

π π∞

∞

⎛ ⎞− ⎛ ⎞× ×
= − = −⎜ ⎟ ⎜ ⎟⎜ ⎟− × ⋅ ⋅⎝ ⎠⎝ ⎠&

 

 
 ( ) ( )m,o m,iT T T T 0.902 27.4 27.4 60 0.902 C∞ ∞ ⎡ ⎤= − − = − − °⎣ ⎦  
 
 m,oT 56.8 C.= °          < 
 
(b) From an energy balance, the heat rate is 

 ( ) ( )p m,i m,oq m c T T 0.1kg / s 4185J / kg K 60 56.8 K 1335 W= − = × ⋅ − =&   < 
 
or using the rate equation,  

 ( ) ( ) ( )2
m

60 27.4 K 56.8 27.4 K
q U A T 183W / m K 0.025m 3m 60 27.4n

56.8 27.4

π
− − −

= Δ = ⋅
−
−

l
l

 

 
 q 1335W.=  
 
(c) Applying an energy balance to a control volume about the paraffin, 
 in stE E= Δ  

 2
sf sfq t V h L WH D / 4 hρ ρ π⎡ ⎤⋅ = = −⎢ ⎥⎣ ⎦

 

 ( ) ( )
3 2 2 5770kg / m 3mt 0.25m 0.025m 2.44 10 J / kg

1335W 4
π× ⎡ ⎤= − ×⎢ ⎥⎣ ⎦

 

 4t 2.618 10 s 7.27 h.= × =         < 
 
COMMENTS:  (1) The value of oh  is overestimated by assuming an infinite quiescent medium.  The 
fact that the paraffin is enclosed will increase the resistance due to free convection and hence decrease 
q and increase t.  
(2) Using 2

oh 151W / m K= ⋅  results in 2
m,oU 136 W / m K,T 57.6 C,= ⋅ = °  q = 1009 W and t = 

9.62 h. 



PROBLEM 9.58  
KNOWN:  Horizontal tube, 12.5mm diameter, with surface temperature 240°C located in room with 
an air temperature 20°C.  
FIND:  Heat transfer rate per unit length of tube due to convection.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Ambient air is quiescent, (2) Surface radiation effects are not considered. 
 
PROPERTIES:  Table A-4, Air (Tf = 400K, 1 atm):  ν = 26.41 × 10-6 m2/s, k= 0.0338 W/m⋅K, α = 
38.3 × 10-6 m2/s, Pr = 0.690, β = 1/Tf = 2.5 × 10-3 K-1. 
 
ANALYSIS:  The heat rate from the tube, per unit length of the tube, is 
 ( )sq h D T Tπ ∞′ = −  

where h  can be estimated from the correlation, Eq. 9.34, 

 

( )
D

2
1/ 6
D

8/ 279 /16

0.387 Ra
Nu 0.60 .

1 0.559 / Pr

⎧ ⎫
⎪ ⎪⎪ ⎪= +⎨ ⎬
⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

From Eq. 9.25, 

( ) ( ) ( )32 3 1 33
s

D 6 2 6 2

9.8m / s 2.5 10 K 240 20 K 12.5 10 mg T T D
Ra 10, 410.

26.41 10 m / s 38.3 10 m / s

β
να

− − −
∞

− −

× × − × ×−
= = =

× × ×
 

 

Hence,  
( )

( )
D

2
1/ 6

8/ 279 /16

0.387 10, 410
Nu 0.60 4.40

1 0.559 / 0.690

⎧ ⎫
⎪ ⎪⎪ ⎪= + =⎨ ⎬
⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 D
2

3
k 0.0338W / m Kh Nu 4.40 11.9 W / m K.
D 12.5 10 m−

⋅
= = × = ⋅

×
 

The heat rate is 

 ( )( )2 3q 11.9 W / m K 12.5 10 m 240 20 K 103W / m.π −′ = ⋅ × × − =    < 

 
COMMENTS:  Heat loss rate by radiation, assuming  an emissivity of 1.0 for the surface, is 
 

( ) ( ) ( ) ( )4 44 4 3 8 4
rad s 2 4

W
q P T T 1 12.5 10 m 5.67 10 240 273 20 273 K

m K
ε σ π − −

∞′ = − = × × × × + − +
⋅

⎡ ⎤
⎢ ⎥⎣ ⎦

 

 radq 138W / m.′ =  
 
Note that P = π D.  Note also this estimate assumes the surroundings are at ambient air temperature.  In 
this instance, rad convq q .′ ′>  



PROBLEM 9.59 
 
KNOWN:  Insulated steam tube exposed to atmospheric air and surroundings at 25°C. 
 
FIND:  (a) Heat transfer rate by free convection to the room, per unit length of the tube; effect on quality, 
x, at outlet of 30 m length of tube; (b) Effect of radiation on heat transfer and quality of outlet flow; (c) 
Effect of emissivity and insulation thickness on heat rate. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Ambient air is quiescent, (2) Negligible surface radiation (part a), (3) Tube wall 
resistance negligible. 
 
PROPERTIES:  Steam tables, steam (sat., 4 bar):  if = 566 kJ/kg, Tsat = 416 K, ig = 2727 kJ/kg, ifg = hfg 
2160 kJ/kg, vg = 0.476 m3/kg;  Table A.3, magnesia, 85% (310 K):  km = 0.051 W/m⋅K; Table A.4, air 
(assume Ts = 60°C, Tf = (60 + 25)°C/2 = 315 K, 1 atm):  ν = 17.4 × 10-6 m2/s, k = 0.0274 W/m⋅K, α = 
24.7 × 10-6 m2/s, Pr = 0.705, Tf = 1/315 K = 3.17 × 10-3 K-1. 
 
ANALYSIS:  (a) The heat rate per unit length of the tube (see sketch) is given as, 

 i
t

T Tq
R

∞−′ =
′

          where          
1

3
t o 3 m 2 i 1

D1 1 1 1ln
R h D 2 k D h Dπ π π

−⎡ ⎤
= + +⎢ ⎥′ ⎣ ⎦

 (1,2) 

To estimate oh , we have assumed Ts ≈ 60°C in order to calculate RaL from Eq. 9.25, 

 
( ) ( ) ( )33 2 3 1

6s 3
D 6 2 6 2

g T T D 9.8 m s 3.17 10 K 60 25 K 0.115 m
Ra 3.85 10

17.4 10 m s 24.7 10 m s

β
να

− −
∞

− −
− × × −

= = = ×
× × ×

. 

 
The appropriate correlation is Eq. 9.34; find 

 
( )

( )

( )
( )

2 21/ 661/ 6
D

D 8/ 27 8 / 279 /16 9 /16

0.387 3.85 100.387 Ra
Nu 0.60 0.60 21.4

1 0.559 Pr 1 0.559 0.705

×
= + = + =

+ +

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

 

 

 2Do
3

k 0.0274 W m Kh Nu 21.4 5.09 W m K
D 0.115m

⋅
= = × = ⋅ . 

 
Substituting numerical values into Eq. (2), find 
 

1

2 2t

1 1 1 115 1
ln 0.430 W m K

R 2 0.051W m K 655.09 W m K 0.115 m 11, 000 W m K 0.055 mππ π

−

= + + = ⋅
′ × ⋅⋅ × ⋅ ×

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

and from Eq. (1),        ( )q 0.430 W m K 416 298 K 50.8 W m′ = ⋅ − =  < 
 

Continued... 



 
PROBLEM 9.59 (Cont.) 

 
We need to verify that the assumption of Ts = 60°C is reasonable.  From the thermal circuit, 
 

 ( )2
s o 3T T q h D 25 C 50.8W m 5.09 W m K 0.115m 53 Cπ π∞ ′= + = + ⋅ × × =o o . 

 
Another calculation using Ts = 53°C would be appropriate for a more precise result. 
 
Assuming q′  is constant, the enthalpy of the steam at the outlet (L = 30 m), i2, is 
 
 2 1i i q L m 2727 kJ kg 50.8W m 30m 0.015kg s 2625kJ kg′= − ⋅ = − × =&  
 

where g c mm A uρ=&  with g g1 vρ =  and Ac = 2
1D 4π .  For negligible pressure drop, 

 ( ) ( ) ( )2 f fgx i i i 2625 566 kJ kg 2160kJ kg 0.953.= − = − =  < 

 
(b) With radiation, we first determine Ts by performing an energy balance at the outer surface, where 
 
 i conv,o radq q q′ ′ ′= +  
 

 ( ) ( )4 4i s
o 3 s 3 s sur

i

T T h D T T D T T
R

π π εσ∞
−

= − + −
′

 

and 

 3
i

i 1 m 2

D1 1R ln
h D 2 k Dπ π

′ = +  

 
From knowledge of Ts, ( )i i s iq T T R′ ′= −  may then be determined.  Using the Correlations and 
Properties Tool Pads of IHT to determine ho  and the properties of air evaluated at Tf = (Ts + T∞)/2, the 
following results are obtained. 

 
 
COMMENTS:  Clearly, a significant reduction in heat loss may be realized by increasing the insulation 
thickness.  Although Ts, and hence conv,oq′ , increases with decreasing ε, the reduction in radq′  is more 
than sufficient to reduce the heat loss. 

 Condition Ts (°C) iq′  (W/m) x  
 ε = 0.8, D3 = 115 mm 41.8 56.9 0.948 < 

(c) ε = 0.8, D3 = 165 mm 33.7 37.6 0.966 < 
 ε = 0.2, D3 = 115 mm 49.4 52.6 0.952 < 
 ε = 0.2, D3 = 165 mm 38.7 35.9 0.967 < 



PROBLEM 9.60  
KNOWN:  Dissipation rate of an electrical cable suspended in air.  
FIND:  Surface temperature of the cable, Ts.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Quiescent air, (2) Cable in horizontal position, (3) Negligible radiation exchange.  
PROPERTIES:  Table A-4, Air (Tf = (Ts + T∞)/2 = 325K, based upon initial estimate for Ts, 1 atm):  
ν = 18.41 × 10-6 m2/s, k = 0.0282 W/m⋅K, α = 26.2 × 10-6 m2/s, Pr = 0.704. 
 
ANALYSIS:  From the rate equation on a unit length basis, the surface temperature is 
 sT T q / Dhπ∞ ′= +  

where h  is estimated by an appropriate correlation.  Since such a calculation requires knowledge of 
Ts, an iteration procedure is required.  Begin by assuming Ts = 77°C and calculated RaD, 

 ( )3
D s f sRa g T D / where T T T and T T T / 2β να ∞ ∞= Δ Δ = − = +        (1,2,3) 

For air, β = 1/Tf, and substituting numerical values, 

( )( ) ( )
2 2

3 6 6 4
D 2

m m m
Ra 9.8 1/ 325K 77 27 K 0.025m /18.41 10 26.2 10 4.884 10 .

s ss
− −= − × × × = ×  

Using the Churchill-Chu relation, find h. 

 

( )
D

2
1/ 6
D

8/ 279 /16

0.387 RahDNu 0.60
k

1 0.559 / Pr

⎧ ⎫
⎪ ⎪⎪ ⎪= = +⎨ ⎬
⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

    (4) 

 

 
( )

( )

21/ 64
2

8 / 279 /16

0.387 4.884 100.0282 W / m K
h 0.60 7.28 W / m K.

0.025m
1 0.559 / 0.704

×⋅
= + = ⋅

+

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪⎡ ⎤

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

Substituting numerical values into Eq. (1), the calculated value for Ts is 

 ( ) 2
sT 27 C 30 W / m / 0.025m 7.28 W / m K 79.5 C.π= ° + × × ⋅ = °  

This value is very close to the assumed value (77°C), but an iteration with a new value of 79°C is 
warranted.  Using the same property values, find for this iteration: 

 4 2
D sRa 5.08 10 h 7.35W / m K T 79 C.= × = ⋅ = °    < 

We conclude that Ts = 79°C is a good estimate for the surface temperature. 
 
COMMENTS:  Recognize that radiative exchange is likely to be significant and would have the 
effect of reducing the estimate for Ts. 



PROBLEM 9.61  
KNOWN:  Dissipation rate of an immersion heater in a large tank of water.  
FIND:  Surface temperature in water and, if accidentally operated, in air.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Quiescent ambient fluid, (2) Negligible radiative exchange.  
PROPERTIES:  Table A-6, Water and Table A-4, Air: 
 

 T(K) k⋅103(W/m⋅K)    ν⋅107(μ/ρ,m2/s) α⋅107(k/ρcp,m2/s)   Pr β⋅106(K-1) 
Water   315  634  6.25   1.531  4.16     400.4 
Air 1500  100        2400         3500  0685     666.7  
ANALYSIS:  From the rate equation, the surface temperature, Ts, is  
 ( )sT T q / D L hπ∞= +         (1) 
 
where h  is estimated by an appropriate correlation.  Since such a calculation requires knowledge of 
Ts, an iteration procedure is required.  Begin by assuming for water that Ts = 64°C such that Tf = 
315K.  Calculate the Rayleigh number,  

( ) ( )32 6 13
6

D 7 2 7 2
9.8m / s 400.4 10 K 64 20 K 0.010mg TDRa 1.804 10 .

6.25 10 m / s 1.531 10 m / s

β
να

− −

− −
× × −Δ

= = = ×
× × ×

 (2) 
 
Using the Churchill-Chu relation, find  

 
( )

D

2
1/ 6
D

8/ 279 /16

0.387 RahDNu 0.60
k

1 0.559 / Pr

⎧ ⎫
⎪ ⎪⎪ ⎪= = +⎨ ⎬
⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

     (3) 

 

 
( )

( )

2
1/ 66

2
8/ 279 /16

0.387 1.804 100.634 W / m Kh 0.60 1301W / m K.
0.01m

1 0.559 / 4.16

⎧ ⎫
×⎪ ⎪⋅ ⎪ ⎪= + = ⋅⎨ ⎬

⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 
Substituting numerical values into Eq. (1), the calculated value for Ts in water is  
 2

sT 20 C 550 W / 0.010m 0.30m 1301W / m K 64.8 C.π= ° + × × × ⋅ = °   < 
 
          Continued … 



PROBLEM 9.61 (Cont.) 
 
Our initial assumption of Ts = 64°C is in excellent agreement with the calculated value.  
With accidental operation in air, the heat transfer coefficient will be nearly a factor of 100 less.  

Suppose 2h 25W / m K,≈ ⋅  then from Eq. (1), Ts ≈ 2360°C.  Very likely the heater will burn out.  

Using air properties at Tf ≈ 1500K and Eq. (2), find RaD = 1.815 × 102.  Using Eq. 9.33, 
n

D DNu C Ra=  with C= 0.85 and n = 0.188 from Table 9.1, find 2h 22.6 W / m K.= ⋅   Hence, our 
first estimate for the surface temperature in air was reasonable,  
 sT 2300 C.≈ °           < 
 
However, radiation exchange will be the dominant mode, and would reduce the estimate for Ts.  
Generally such heaters could not withstand operating temperatures above 1000°C and safe operation 
in air is not possible. 



PROBLEM 9.62 
 
KNOWN:  Motor shaft of 20-mm diameter operating in ambient air at T∞  = 27°C with surface 
temperature Ts ≤ 87°C. 
 
FIND: Convection coefficients and/or heat removal rates for different heat transfer processes: (a)  For a 
rotating horizontal cylinder as a function of rotational speed 5000 to 15,000 rpm using the recommended 
correlation, (b)  For free convection from a horizontal stationary shaft;  investigate whether mixed free 
and forced convection effects for the range of rotational speeds in part (a) are significant using the 
recommended criterion; (c)  For radiation exchange between the shaft having an emissivity of  0.8 and 
the surroundings also at ambient temperature, Tsur = T∞ ;  and (d) For cross flow of ambient air over the 
stationary shaft, required air velocities to remove the heat rates determined in part (a). 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Shaft is horizontal with isothermal surface. 
 
PROPERTIES:  Table A.4, Air (Tf  = (Ts + T∞ )/2 = 330 K, 1 atm):  ν = 18.91 × 10-6 m2/s , k = 0.02852  
W/m⋅K,  α = 26.94 × 10-6 m2/s,  Pr = 0.7028,  β = 1/Tf .  
ANALYSIS:  (a) The recommended correlation for a horizontal rotating shaft is  

 2 /3 1/ 3 5D DDNu 0.133Re Pr Re 4.3 10 0.7 Pr 670= < × < <  
 
where the Reynolds number is  

 2
DRe D ν= Ω  

 
and Ω ( )rad s  is the rotational velocity.  Evaluating properties at Tf  = (Ts + T∞ )/2,  find for ω = 5000 
rpm, 

 ( )( )2 6 2
DRe 5000rpm 2 rad rev / 60s min 0.020m 18.91 10 m s 11,076π −= × × =  

 

 ( ) ( )2 3 1/ 3
DNu 0.133 11,076 0.7028 58.75= =  

 2DD,roth Nu k D 58.75 0.02852 W m K 0.020m 83.8 W m K= = × ⋅ = ⋅  < 
 
The heat rate per unit shaft length is  

 ( )( ) ( )( )2
rot D,rot sq h D T T 83.8W m K 0.020m 87 27 C 316 W mπ π∞′ = − = ⋅ × − =o  < 

 
The convection coefficient and heat rate as a function of rotational speed are shown in a plot below. 
 
(b) For the stationary shaft condition, the free convection coefficient can be estimated from the 
Churchill-Chu correlation, Eq. (9.34)  with 

Continued... 



 
PROBLEM 9.62 (Cont.) 

 

 
3

D
g TDRa β
να
Δ

=  
 

 
( )( ) ( )32

D 6 2 6 2
9.8 m s 1 330K 87 27 K 0.020m

Ra 27,981
18.91 10 m s 26.94 10 m s− −

−
= =

× × ×
 

 

 

( )

2
1/ 6
DD 8 / 279 /16

0.387Ra
Nu 0.60

1 0.559 Pr
= +

+

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪⎡ ⎤

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

 

 
( )

( )

2
1/ 6

D 8 / 279 /16

0.387 27,981
Nu 0.60 5.61

1 0.559 0.7028
= + =

+

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪⎡ ⎤

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

 
 2DD,fch Nu k D 5.61 0.02852 W m K 0.020m 8.00 W m K= = × ⋅ = ⋅  

 ( )( )2
fcq 8.00 W m K 0.020m 87 27 C 30.2 W mπ′ = ⋅ × − =o  < 

Mixed free and forced convection effects may be significant if 

 ( )0.1373
D DRe 4.7 Gr Pr<  

where GrD = RaD/Pr, find using results from above and in part (a) for ω = 5000 rpm, 

 ( )
0.137311,076 ? ? 4.7 27,981 0.7028 0.7018 383⎡ ⎤< =⎢ ⎥⎣ ⎦

 

We conclude that free convection effects are not significant for rotational speeds above 5000 rpm.   
 
(c) Considering radiation exchange between the shaft and the surroundings, 

 ( )( )2 4
rad s sur s surh T T T Tεσ= + +  

 ( )( )8 2 2 2 3 2
radh 0.8 5.67 10 W m K 360 300 360 300 K 6.57 W m K−= × × ⋅ + + = ⋅  < 

and the heat rate by radiation exchange is 
 ( )( )rad rad s surq h D T Tπ′ = −  

 ( )( )2
radq 6.57 W m K 0.020m 87 27 K 24.8 W mπ′ = ⋅ × − =  < 

(d) For cross flow of ambient air at a velocity V over the shaft, the convection coefficient can be 
estimated using the Churchill-Bernstein correlation, Eq. 7.54, with 
 

 Re ,D cf
VD

=
ν

 

 Nu h D kD cf D cf
D cf D cf
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PROBLEM 9.62 (Cont.) 

 
From the plot below (left) for the rotating shaft condition of part (a), D,roth  vs. rpm, note that the 
convection coefficient varies from approximately 75 to 175 W/m2 ⋅ K.  Using the IHT Correlations Tool, 
Forced Convection, Cylinder, which is based upon the above relations, the range of air velocities V 
required to achieve D,cfh in the range 75 to 175 W/m2 ⋅ K was computed and is plotted below (right). 
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Note that the air cross-flow velocities are quite substantial in order to remove similar heat rates for the 
rotating shaft condition. 
 
COMMENTS:  We conclude for the rotational speed and surface temperature conditions, free 
convection effects are not significant.  Further, radiation exchange, part (c) result, is less than 10% of the 
convection heat loss for the lowest rotational speed condition. 

 



PROBLEM 9.63 
 
KNOWN:  Horizontal pin fin of 6-mm diameter and 60-mm length fabricated from plain carbon steel (k 
= 57 W/m⋅K, ε = 0.5).  Fin base maintained at Tb = 150°C.  Ambient air and surroundings at 25°C. 
 
FIND:  Fin heat rate, qf, by two methods: (a) Analytical solution using average fin surface temperature of 

sT 125 C= o  to estimate the free convection and linearized radiation coefficients; comment on sensitivity 

of fin heat rate to choice of sT ; and, (b) Finite-difference method when coefficients are based upon local 
temperatures, rather than an average fin surface temperature; compare result of the two solution methods. 
 
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in the pin fin, (3) 
Ambient air is quiescent and extensive, (4) Surroundings are large compared to the pin fin, and (5) Fin tip 
is adiabatic. 
 
PROPERTIES: Table A.4, Air (Tf = ( )sT T 2∞+  = 348 K): ν = 20.72 × 10-6 m2/s, k = 0.02985 W/m⋅K, 

α = 29.60 × 10-6 m2/s, Pr = 0.7003, β = 1/Tf.  
ANALYSIS:  (a) The heat rate for the pin fin with an adiabatic tip condition is, Eq. 3.81, 
 
 ( )fq M tanh mL=  (1) 

 ( ) ( )1/ 2 1/ 2
tot c b cM h PkA m hP kAθ= =  (2,3) 

 2
c b bP D A D 4 T Tπ π θ ∞= = = −  (4-6) 

 
and the average coefficient is the sum of the convection and linearized radiation processes, respectively, 
 
 tot fc radh h h= +  (7) 
 

evaluated at sT 125 C= o  with ( )f sT T T 2 75 C 348K∞= + = =o .   
 
Estimating fch : For the horizontal cylinder, Eq. 9.34, with 
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PROBLEM 9.63 (Cont.) 
 

 
( )( )( )32

D 6 2 6 2
9.8 m s 1 348K 125 25 0.006m

Ra 991.79
20.72 10 m s 29.60 10 m s− −

−
= =

× × ×
 

 

( )

2
1/ 6
DD 8/ 279 /16

0.387 Ra
Nu 0.60

1 0.559 Pr

⎧ ⎫
⎪ ⎪⎪ ⎪= +⎨ ⎬
⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 
( )

( )

2
1/ 6

D 8/ 279 /16

0.387 991.79
Nu 0.60 2.603

1 0.559 0.7003

⎧ ⎫
⎪ ⎪⎪ ⎪= + =⎨ ⎬
⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 
 2Dfch Nu k D 2.603 0.02985W m K 0.006m 12.95W m K= = × ⋅ = ⋅  
 
Calculating radh : The linearized radiation coefficient is  
 

 ( )( )2 2
rad s sur s surh T T T Tεσ= + +  (8) 

 ( )( )8 2 4 2 2 3 2
radh 0.5 5.67 10 W m K 398 298 398 298 K 4.88W m K−= × × ⋅ + + = ⋅  

 
Substituting numerical values into Eqs. (1-7) , find 

 finq 2.04W=  < 

with 5 2 1
b c125K, A 2.827 10 m , P 0.01885m, m 14.44m ,− −= = × = =θ M 2.909 W,=  and 

2
toth 17.83W m K= ⋅ . 

 
Using the IHT Model, Extended  Surfaces, Rectangular Pin Fin, with the Correlations Tool for Free 
Convection and the Properties Tool for Air,  the above analysis was repeated to obtain the following 
results. 
 

( )sT Co  115 120 125 130 135 

( )fq W  1.989 2.012 2.035 2.057 2.079 

( )f f ,o foq q q−  (%) -2.3 -1.1 0 +1.1 +2.2 
 
The fin heat rate is not very sensitive to the choice of  sT  for the range Ts  =  125  ± 10 °C.  For the base 

case condition, the fin tip temperature is T(L) = 114 °C  so that sT  ≈ (T(L) + Tb ) /2  =  132°C  would be 
consistent assumed value. 
 
  Continued … 



PROBLEM 9.63 (Cont.) 
 
(b) Using the IHT Tool, Finite-Difference Equation, Steady- State, Extended Surfaces, the temperature 
distribution was determined for a 15-node system from which the fin heat rate was determined.  The local 
free convection and linearized radiation coefficients tot fc rad,h h h= +  were evaluated at local 
temperatures, Tm ,  using  IHT with the Correlations Tool, Free Convection, Horizontal Cylinder, and the 
Properties Tool for Air, and Eq. (8).  The local coefficient htot  vs. Ts is nearly a linear function for the 
range 114 ≤ Ts ≤ 150°C  so that it was reasonable to represent htot (Ts) as a Lookup Table Function.  The 
fin heat rate follows from an energy balance on the base node, (see schematic next page) 

 ( )f a bq q q 0.08949 1.879 W 1.97 W= + = + =  < 

 ( )( )a b bq h P x 2 T T∞= Δ −  
 
 ( )b c b 1q kA T T x= − Δ  
 
where Tb = 150°C,  T1  = 418.3 K = 145.3°C, and hb = htot (Tb) = l8.99 W m K2 ⋅ . 
 

 
 
Considering variable coefficients, the fin heat rate is -3.3% lower than for the analytical solution with the 
assumed sT  = 125°C. 
 
COMMENTS:  (1) To validate the FDE model for part (b), we compared the temperature distribution 
and fin heat rate using a constant htot with the analytical solution ( sT  = 125°C).  The results were 
identical indicating that the 15-node mesh is sufficiently fine. 
 
(2) The fin temperature distribution (K) for the IHT finite-difference model of part (b) is 
 

Tb T01 T02 T03 T04 T05 T06 T07 
423 418.3` 414.1 410.3 406.8 403.7 401 398.6 

        
T08 T09 T10 T11 T12 T13 T14 T15 

396.6 394.9 393.5 392.4 391.7 391.2 391 390.9 
 



PROBLEM 9.64  
KNOWN:  Diameter, thickness, emissivity and thermal conductivity of steel pipe.  Temperature of 
water flow in pipe.  Cost of producing hot water.  
FIND:  Cost of daily heat loss from an uninsulated pipe.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state, (2) Negligible convection resistance for water flow, (3) 
Negligible radiation from pipe surroundings, (4) Quiescent air, (5) Constant properties.  
PROPERTIES:  Table A-4, air (p = 1 atm, Tf ≈ 295K):  ka = 0.0259 W/m⋅K. ν = 15.45 × 10-6 m2/s, α 
= 21.8 × 10-6 m2/s, Pr = 0.708, β = 3.39 × 10-3 K-1. 
ANALYSIS:  Performing an energy balance for a control surface about the outer surface, condq′ =  

conv radq q ,′ ′+  it follows that 

 ( )s,o 4
o s,o p o s,o

cond

T T
h D T T D T

R
π ε π σ∞

−
= − +

′
     (1) 

where ( ) ( ) ( ) 4
cond o i pR n D / D / 2 k n 100 / 84 / 2 60 W / m K 4.62 10 m K / W.π π −′ = = ⋅ = × ⋅l l   The 

convection coefficient may be obtained from the Churchill and Chu correlation.  Hence, with RaD = 

gβ (Ts,o - T∞) ( ) ( )3 2 3 1 3
o s,oD / 9.8 m / s 3.39 10 K 0.1m T 268K /αν − −= × × −  ( )12 4 221.8 15.45 10 m / s−× ×  

98, 637=  ( )s,oT 268 ,−  

 
( )

( ){ }D

2
1/ 6 21/ 6D

s,o8 / 279 /16

0.387 Ra
Nu 0.60 0.60 2.182 T 268

1 0.559 / Pr

= + = + −

+

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪⎡ ⎤
⎩ ⎣ ⎦ ⎭

 

( ){ }D

21/ 62a
s,o

o

k
h Nu 0.259 W / m K 0.60 2.182 T 268

D
= = ⋅ + −  

Substituting the foregoing expression for h , as well as values of cond o pR , D , andε σ′  into Eq. (1), an 

iterative solution yields  s,oT 322.9K 49.9 C= = °  

It follows that 2h 6.10 W / m K,= ⋅  and the heat loss per unit length of pipe is 

( ) ( ) ( )2 8 2 4 4
conv radq q q 6.10 W / m K 0.1m 54.9K 0.6 0.1m 5.67 10 W / m K 322.9Kπ π −′ ′ ′= + = ⋅ × + × × ⋅  

  ( )105.2 116.2 W / m 221.4 W / m= + =  
The corresponding daily energy loss is Q 0.221kW / m 24h / d 5.3kW h / m d′ = × = ⋅ ⋅  

and the associated cost is ( )( )C 5.3kW h / m d $0.10 / kW h $0.53/ m d′ = ⋅ ⋅ ⋅ = ⋅  < 
COMMENTS:  (1) The heat loss is significant, and the pipe should be insulated.  (2) The conduction 
resistance of the pipe wall is negligible relative to the combined convection and radiation resistance at 
the outer surface.  Hence, the temperature of the outer surface is only slightly less than that of the 
water. 



PROBLEM 9.65  
KNOWN:  Insulated, horizontal pipe with aluminum foil having emissivity which varies 
from 0.12 to 0.36 during service.  Pipe diameter is 300 mm and its surface temperature is 
90°C.  
FIND:  Effect of emissivity degradation on heat loss with ambient air at 25°C and (a) 
quiescent conditions and (b) cross-wind velocity of 10 m/s.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Surroundings are large compared to pipe, 
(3) Pipe has uniform temperature.  
PROPERTIES:  Table A-4, Air (Tf = (90 + 25)°C/2 = 330K, 1 atm):  ν = 18.9 × 10-6 m2/s, k 
= 28.5 × 10-3 W/m⋅K, α = 26.9 × 10-6 m2/s, Pr = 0.703. 
 
ANALYSIS:  The heat loss per unit length from the pipe is 

 ( ) ( )4 4
s s surq hP T T P T Tεσ∞′ = − + −  

where P = πD and h  needs to be evaluated for the two ambient air conditions.  
(a) Quiescent air.  Treating the pipe as a horizontal cylinder, find 

 ( ) ( )( ) ( )33 2
s 8

D 6 2 6 2
g T T D 9.8m / s 1/ 330K 90 25 K 0.30 m

Ra 1.025 10
18.9 10 m / s 26.9 10 m / s

β
να

∞
− −

− −
= = = ×

× × ×
 

and using the Churchill-Chu correlation for 10-5 < RaD < 1012. 

 
( )

D

2
1/ 6
D

8/ 279 /16

0.387Ra
Nu 0.60

1 0.559 / Pr

⎧ ⎫
⎪ ⎪⎪ ⎪= +⎨ ⎬
⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 

 
( )

( )
D

2
1/ 68

8/ 279 /16

0.387 1.025 10
Nu 0.60 56.93

1 0.559 / 0.703

⎧ ⎫
×⎪ ⎪⎪ ⎪= + =⎨ ⎬

⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 
 D

2
Dh Nu k / D 56.93 0.0285 W / m K / 0.300m 5.4 W / m K.= = × ⋅ = ⋅  
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PROBLEM 9.65 (Cont.)  
Hence, the heat loss is  

( )( ) ( )( )2 8 2 4 4 4q 5.4 W / m K 0.30m 90 25 K 5.67 10 W / m K 0.300m 363 298 Kπ ε π−′ = ⋅ − + × × ⋅ −  

( )
( )

0.12 q 331 61 392 W / mq 331 506 0.36 q 331 182 513W / m
εε ε

′⎧ = → = + =′ = + ⎨ ′= → = + =⎩

<
<  

 
The radiation effect accounts for 16 and 35%, respectively, of the heat rate.  
(b) Cross-wind condition.  With a cross-wind, find  

 5
D 6 2

VD 10m / s 0.30mRe 1.587 10
18.9 10 m / sν −

×
= = = ×

×
 

 
and using the Hilpert correlation where C = 0.027 and m = 0.805 from Table 7.2,  

 ( ) ( )D
0.805 1/ 3m 1/ 3 5

DNu C Re Pr 0.027 1.587 10 0.703 368.9= = × =  
 
 2

D Dh Nu k / D 368.9 0.0285W / m K / 0.300m 35W / m K.= ⋅ = × ⋅ = ⋅  
 
Recognizing that combined free and forced convection conditions may exist, from Eq. 9.64 
with n = 4,  

 ( )1/ 44 4 4 4 4 2
m F N mNu Nu Nu h 5.4 35 35W / m K= + = + = ⋅  

 
we find forced convection dominates.  Hence, the heat loss is  

( )( ) ( )( )2 8 2 4 4 4q 35 W / m K 0.300m 90 25 K 5.67 10 W / m K 0.300m 393 298 Kπ ε π−′ = ⋅ − + × × ⋅ −  
 
 { 0.12 q 2144 102 2246 W / mq 2144 853 0.36 q 2144 307 2451W / m

εε ε
′= → = + =′ = + ′= → = + =

<
<  

 
The radiation effect accounts for 5 and 13%, respectively, of the heat rate.  
COMMENTS:  (1) For high velocity wind conditions, radiation losses are quite low and the 
degradation of the foil is not important.  However, for low velocity and quiescent air 
conditions, radiation effects are significant and the degradation of the foil can account for a 
nearly 25% change in heat loss.  
(2) The radiation coefficient is in the range 0.83 to 2.48 W/m2

⋅K for ε = 0.12 and 0.36, 
respectively.  Compare these values with those for convection. 
 



PROBLEM 9.66 
 
KNOWN:   Diameter, emissivity, and power dissipation of cylindrical heater.  Temperature of ambient 
air and surroundings. 
 
FIND:  Steady-state temperature of heater and time required to come within 10°C of this temperature. 
 
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Air is quiescent, (2) Duct wall forms large surroundings about heater, (3) Heater 
may be approximated as a lumped capacitance. 
 
PROPERTIES:  Table A.4, air (Obtained from Properties Tool Pad of IHT). 
 
ANALYSIS:  Performing an energy balance on the heater, the final (steady-state) temperature may be 
obtained from the requirement that conv radq q q′ ′ ′= + , or 
 
 ( )( ) ( )( )r surq h D T T h D T Tπ π∞′ = − + −  
 

where h  is obtained from Eq. 9.34 and hr = ( )( )2 2
sur surT T T Tεσ + + .  Using the Correlations Tool 

Pad of IHT to evaluate h , this expression may be solved to obtain 

 T = 854 K = 581°C < 
 
Under transient conditions, the energy balance is of the form, st conv radE q q q′ ′ ′ ′= − −& , or 
 

 ( ) ( )( ) ( )( )2
p r surc D 4 dT dt q h D T T h D T Tρ π π π∞′= − − − −  

 
Using the IHT Lumped Capacitance model with the Correlations Tool Pad, the above expression is 
integrated from t = 0, for which Ti = 562.4 K, to the time for which T = 844 K.  The integration yields 

 t = 183s < 
 
The value of Ti = 562.4 K corresponds to the steady-state temperature for which the power dissipation is 
balanced by forced convection and radiation (see solution to Problem 7.50). 
 
COMMENTS:  The forced convection coefficient (Problems 7.49 and 7.50) of 105 W/m2⋅K is much 
larger than that associated with free convection for the steady-state conditions of this problem (14.6 
W/m2⋅K).  However, because of the correspondingly larger heater temperature, the radiation coefficient 
with free convection (42.9 W/m2⋅K) is much larger than that associated with forced convection (15.9 
W/m2⋅K). 



PROBLEM 9.67  
KNOWN:  Cylindrical sensor of 12.5 mm diameter positioned horizontally in quiescent air at 27°C.  
FIND:  An expression for the free convection coefficient as a function of only ΔT = Ts - T∞ where Ts 
is the sensor temperature.  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Uniform temperature over cylindrically shaped 
sensor, (3) Ambient air extensive and quiescent. 
 
PROPERTIES:  Table A-4, Air (Tf, 1 atm):  β = 1/Tf and 
 
 Ts (°C)      Tf (K) ν × 106 m2/s      α × 106 m2/s  k × 103 W/m⋅K            Pr 
 
   30       302     16.09   22.8       26.5           0.707 
   55       314     17.30   24.6       27.3           0.705 
   80       327     18.61   26.5       28.3           0.703  
ANALYSIS:  For the cylindrical sensor, using Eqs. 9.25 and 9.34, 
 

 

( )
D

2
1/ 63

D D
D 8/ 279 /16

0.387Rah Dg TDRa Nu 0.60
k

1 0.559 / Pr

⎧ ⎫
⎪ ⎪Δ ⎪ ⎪= = = +⎨ ⎬
⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

β
να

  (1,2) 

 
where properties are evaluated at Tf = (Ts + T∞)/2.  With 30 ≤ Ts ≤ 80°C and T∞ = 27°C, 302 ≤ Tf ≤ 
326 K.  Using properties evaluated at the mid-range of Tf, fT 314 K,=  find 
 

 
( ) ( )32

D 6 2 6 2
9.8m / s 1/ 314K T 0.0125m

Ra 143.2 T
17.30 10 m / s 24.6 10 m / s− −

Δ
= = Δ

× × ×
 

 

 
( )

( )

2
1/ 6

D 8/ 279 /16

0.387 143 T0.0273W / m Kh 0.60
0.0125m

1 0.559 / 0.705

⎧ ⎫
⎪ ⎪Δ⋅ ⎪ ⎪= +⎨ ⎬
⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 

 { }21/ 6
Dh 2.184 0.60 0.734 T .= + Δ              (3)   < 

 
COMMENTS:  (1) The effect of using a fixed film temperature, fT 314 K 41 C,= = °  for the full 

range 30 ≤ Ts ≤ 80°C can be seen by comparing results from the approximate Eq. (3) and the 
correlation, Eq. (2), with the proper film temperature.  The results are summarized in the table. 
 
      Correlation    Eq. (3) 
     _____________________________ 

Ts (°C)  ΔT = Ts - T∞ (°C) RaD DNu     ( )2
Dh W / m K⋅      ( )2

Dh W / m K⋅  

   30     3    518 2.281  4.83   4.80 
   55   28  4011 3.534  7.72   7.71 
 
The approximate expression for Dh  is in excellent agreement with the correlation. 
 
(2) In calculating heat rates it may be important to consider radiation exchange with the surroundings. 



PROBLEM 9.68 
 
KNOWN:  Thin-walled tube mounted horizontally in quiescent air and wrapped with an electrical tape 
passing hot fluid in an experimental loop. 
 
FIND:  (a) Heat flux eq′′  from the heating tape required to prevent heat loss from the hot fluid when (a) 
neglecting and (b) including radiation exchange with the surroundings, (c) Effect of insulation on eq′′  and 
convection/radiation rates. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Ambient air is quiescent and extensive, (3) 
Surroundings are large compared to the tube. 
 
PROPERTIES:  Table A.4, Air (Tf = (Ts + T∞ )/2 = (45 + 15)°C/2 = 303 K, 1 atm):  ν = 16.19 × 10-6 
m2/s, α = 22.9 × 10-6 m2/s, k = 26.5 × 10-3 W/m⋅K, Pr = 0.707, β = 1/Tf.  
ANALYSIS:  (a,b) To prevent heat losses from the hot fluid, the heating tape temperature must be 
maintained at Tm; hence Ts,i = Tm.  From a surface energy balance, 

 ( )( )ie conv rad D r s,iq q q h h T T∞′′ ′′ ′′= + = + −  

where the linearized radiation coefficient, Eq. 1.9, is ( )( )2 2
r s,i s,ih T T T Tεσ ∞ ∞= + + , or 

 ( )( )8 2 4 2 2 3 2
rh 0.95 5.67 10 W m K 318 288 318 288 K 6.01W m K−= × × ⋅ + + = ⋅ . 

Neglecting radiation:  For the horizontal cylinder, Eq. 9.34 yields 

 
( ) ( )( ) ( )3 32

s,i i
D 6 2 6 2

g T T D 9.8 m s 1 303K 45 15 K 0.020 m
Ra 20,900

16.19 10 m s 22.9 10 m s

β

να
∞

− −

− −
= = =

× × ×
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PROBLEM 9.68 (Cont.) 
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1 0.559 0.707

⋅
= + = ⋅

+
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Hence, neglecting radiation, the required heat flux is 

 ( )2 2
eq 6.90 W m K 45 15 K 207 W m K′′ = ⋅ − = ⋅  < 

 
Considering radiation:  The required heat flux considering radiation is 

 ( ) ( )2 2
eq 6.90 6.01 W m K 45 15 K 387 W m K′′ = + ⋅ − = ⋅  < 

 
(c) With insulation, the surface energy balance must be modified to account for an increase in the outer 
diameter from Di to Do = Di + 2t and for the attendant thermal resistance associated with conduction 
across the insulation.  From an energy balance at the inner surface of the insulation, 
 

 ( ) ( )
( )

i m s,o
e i cond

o i

2 k T T
q D q

ln D D

π
π

−
′′ ′= =  

 
and from an energy balance at the outer surface, 
 
 ( )( )ocond conv rad o D r s,oq q q D h h T Tπ ∞′ ′ ′= + = + −  
 
The foregoing expressions may be used to determine Ts,o and eq′′  as a function of t, with the IHT 

Correlations and Properties Tool Pads used to evaluate oDh .  The desired results are plotted as follows. 
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By adding 20 mm of insulation, the required power dissipation is reduced by a factor of approximately 3.  
Convection and radiation heat rates at the outer surface are comparable. 
 
COMMENTS:  Over the range of insulation thickness, Ts,o decreases from 45°C to 20°C, while oDh  

and hr decrease from 6.9 to 3.5 W/m2⋅K and from 3.8 to 3.3 W/m2⋅K, respectively. 



PROBLEM 9.69  
KNOWN:  A billet of stainless steel AISI 316 with a diameter of 150 mm and length 500 mm 
emerges from a heat treatment process at 200°C and is placed into an unstirred oil bath maintained at 
20°C.  
FIND:  (a) Determine whether it is advisable to position the billet in the bath with its centerline 
horizontal or vertical in order to decrease to the cooling time, and (b) Estimate the time for the billet to 
cool to 30°C for the better positioning arrangement.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions for part (a), (2) Oil bath approximates a quiescent 
fluid, (3) Consider only convection from the lateral surface of the cylindrical billet; and (4) For part 
(b), the billet has a uniform initial temperature. 
 
PROPERTIES:  Table A-5, Engine oil (Tf = (Ts + T∞)/2):  see Comment 1.  Table A-1, AISI 316 
(400 K):  ρ = 8238 kg/m3, cp = 468 J/kg⋅K, k = 15 W/m⋅K. 
 
ANALYSIS:  (a) For the purpose of determining whether the horizontal or vertical position is 
preferred for faster cooling, consider only free convection from the lateral surface.  The heat loss from 
the lateral surface follows from the rate equation 
 ( )s sq h A T T∞= −  
Vertical position.  The lateral surface of the cylindrical billet can be considered as a vertical surface of 
height L, width P = πD, and area As = PL.  The Churchill-Chu correlation, Eq. 9.26, is appropriate to 
estimate Lh ,  

 

( )
L

2
1/ 6

L L
8/ 279 /16

0.387 Rah LNu 0.825
k

1 0.492 / Pr

⎧ ⎫
⎪ ⎪⎪ ⎪= = +⎨ ⎬
⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 

 
( ) 3

s
L

g T T L
Ra

β
να

∞−
=  

with properties evaluated at Tf = (Ts + T∞)/2. 
 
Horizontal position.  In this position, the billet is considered as a long horizontal cylinder of diameter 
D for which the Churchill-Chu correlation of Eq. 9.34 is appropriate to estimate Dh ,  

 

( )
L

2
1/ 6

D D
8/ 279 /16

0.387 Rah DNu 0.60
k

1 0.559 / Pr

⎧ ⎫
⎪ ⎪⎪ ⎪= = +⎨ ⎬
⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭
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( ) 3

s
D

g T T D
Ra

β
να

∞−
=  

with properties evaluated at Tf.  The heat transfer area is also As = PL. 
 
Using the foregoing relations in IHT with the thermophysical properties library as shown in Comment 
1, the analysis results are tabulated below. 
 

L
11 2

L LRa 1.36 10 Nu 801 h 218 W / m K (vertical)= × = = ⋅  

D
9 2

D DRa 3.67 10 Nu 245 h 221 W / m K (horizontal)= × = = ⋅
 
 
Recognize that the orientation has a small effect on the convection coefficient for these conditions, but 
we’ll select the horizontal orientation as the preferred one. 
 
(b) Evaluate first the Biot number to determine if the lumped capacitance method is valid. 
 

 
( ) ( )2

D oh D / 2 221 W / m K 0.150 m / 2
Bi 1.1

k 15 W / m K
⋅

= = =
⋅

 

 
Since Bi >> 0.1, the spatial effects are important and we should use the one-term series approximation 
for the infinite cylinder, Eq. 5.52.  Since Dh  will decrease as the billet cools, we need to estimate an 
average value for the cooling process from 200°C to 30°C.  Based upon the analysis summarized in 

Comment 1,  use 2
Dh 119 W / m K.= ⋅   Using the transient model for the infinite cylinder in IHT, 

(see Comment 2) find for T(ro, to) = 30°C, 

 ot 3845 s 1.1 h= =          < 
 
COMMENTS:  (1) The IHT code using the convection correlation functions to estimate the 
coefficients is shown below.  This same code was used to calculate Dh  for the range 30 ≤ Ts ≤ 200°C 

and determine that an average value for the cooling period of part (b) is 119 W/m2⋅K. 
 

/* Results - convection coefficients, Ts = 200 C 
hDbar hLbar D L Tinf_C Ts_C 
221.4 217.5 0.15 0.5 20 200          */ 
 
/* Results - correlation parameters, Ts = 200 C 
NuDbar NuLbar Pr RaD RaL 
244.7  801.3 219.2 3.665E9 1.357E11 */ 
 
/* Results - properties, Ts = 200 C; Tf = 383 K 
Pr alpha beta deltaT k nu Tf 
219.2 7.188E-8 0.0007 180 0.1357 1.582E-5 383 
 
/*  Correlation description: Free convection (FC), long horizontal cylinder (HC),  
10^-5<=RaD<=10^12, Churchill-Chu correlation, Eqs 9.25 and 9.34 . See Table 9.2 .  */ 
NuDbar = NuD_bar_FC_HC(RaD,Pr)      // Eq 9.34 
NuDbar = hDbar * D / k 
RaD = g * beta * deltaT * D^3 / (nu * alpha)       //Eq 9.25 
deltaT = abs(Ts - Tinf) 
g = 9.8     // gravitational constant, m/s^2 
// Evaluate properties at the film temperature, Tf.  
Tf = Tfluid_avg(Tinf,Ts) 
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/*  Correlation description: Free convection (FC) for a vertical plate (VP),  Eqs 9.25 and 9.26 . See 
Table 9.2 .  */ 
NuLbar = NuL_bar_FC_VP(RaL,Pr)   // Eq 9.26 
NuLbar = hLbar * L / k 
RaL = g * beta * deltaT * L^3 / (nu * alpha) //Eq 9.25 
 
// Input variables 
D = 0.15 
L = 0.5 
Tinf_C = 20 
Ts_C = 200   
 
// Engine Oil property functions : From Table A.5 
// Units: T(K) 
nu = nu_T("Engine Oil",Tf)  // Kinematic viscosity, m^2/s 
k = k_T("Engine Oil",Tf)  // Thermal conductivity, W/m·K 
alpha = alpha_T("Engine Oil",Tf)  // Thermal diffusivity, m^2/s 
Pr = Pr_T("Engine Oil",Tf)  // Prandtl number 
beta = beta_T("Engine Oil",Tf)  // Volumetric coefficient of expansion, K^(-1) 
 
// Conversions 
Tinf_C = Tinf - 273 
Ts_C = Ts - 273 

 
(2) The portion of the IHT code used for the transient analysis is shown below.  Recognize that we 
have not considered heat losses from the billet end surfaces, also, we should consider the billet as a 
three-dimensional object rather than as a long cylinder. 

 
/* Results - time to cool to 30 C, center and surface temperatures 
D T_xt_C Ti_C Tinf_C r h t 
0.15 30.01 200 20 0.075 119 3845     */ 
0.15 33.19 200 20 0 119 3845 
 
// Transient conduction model, cylinder (series solution) 
// The temperature distribution T(r,t) is 
T_xt = T_xt_trans("Cylinder",rstar,Fo,Bi,Ti,Tinf)    // Eq 5.52 
// The dimensionless parameters are 
rstar = r / ro 
Bi = h * ro / k 
Fo= alpha * t / ro^2 
alpha = k/ (rho * cp) 

 



PROBLEM 9.70 
 
KNOWN:  Diameter, initial temperature and emissivity of long steel rod.  Temperature of air and 
surroundings. 
 
FIND:  (a) Average surface convection coefficient, (b) Effective radiation coefficient, (c,d) Maximum 
allowable conveyor time. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Negligible effect of forced convection, (2) Constant properties, (3) Large 
surroundings, (4) Quiescent air. 
 
PROPERTIES:  Stainless steel (given):  k = 25 W/m⋅K, α = 5.2 × 10-6 m2/s; Table A.4, Air (Tf = 650 K, 
1 atm):  ν = 6.02 × 10-5 m2/s, α = 8.73 × 10-5 m2/s, k = 0.0497 W/m⋅K, Pr = 0.69. 
 
ANALYSIS:  (a) For free convection from a horizontal cylinder, 

 
( ) ( ) ( )33 2

s 5
D 10 4 2

g T T D 9.8m s 1 650 K (1000 300)K 0.05m
Ra 2.51 10

6.02 8.73 10 m s
∞

−
− −

= = = ×
× ×

β
αν

 

The Churchill and Chu correlation yields 

 

( )

( )
( )

2 21/ 651/ 6
DD 8/ 27 8 / 279 /16 9 /16

0.387 2.51 100.387Ra
Nu 0.60 0.60 9.9

1 0.559 Pr 1 0.559 0.69

×
= + = + =

+ +

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

 

 ( ) 2Dh Nu k D 9.9 0.0497 W m K 0.05m 9.84 W m K= = ⋅ = ⋅  < 
 
(b) The radiation heat transfer coefficient is 

 ( )( ) (2 2 8 2 4
r s sur s surh T T T T 0.4 5.67 10 W m K 1000εσ −= + + = × × ⋅  

                   ) ( ) ( )2 2 2 2300 K 1000 300 K 32.1W m K⎡ ⎤+ + = ⋅⎢ ⎥⎣ ⎦
 < 

(c) For the long stainless steel rod and the initial values of h  and hr, 

 ( )( ) 2
r oBi h h r 2 k 42.0 W m K 0.0125m 25W m K 0.021= + = ⋅ × ⋅ = . 

Hence, the lumped capacitance method can be used. 

 ( ) ( )
i

T T 600K exp Bi Fo exp 0.021Fo
T T 700K

∞

∞

−
= = − ⋅ = −

−
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 ( )2oFo 7.34 t r 2 0.0333tα= = =  

 t = 221 s. < 
 
(d) Using the IHT Lumped Capacitance Model with the Correlations and Properties Tool Pads, a more 
accurate estimate of the maximum allowable transit time may be obtained by evaluating the numerical 
integration, 
 

 
( )( )

900K
t p
o r1000K

c D dTdt
4 h h T T

ρ

∞
= −

+ −∫ ∫  

 
where 6 3

pc k 4.81 10 J K mρ α= = × ⋅ .  The integration yields 

 t = 245 s < 
 
At this time, the convection and radiation coefficients are h  = 9.75 and hr = 24.5 W/m2⋅K, respectively. 
 
COMMENTS:  Since h  and hr decrease with increasing time, the maximum allowable conveyor time is 
underestimated by the result of part (c). 



PROBLEM 9.71 
 
KNOWN:  Velocity and temperature of air flowing through a duct of prescribed diameter.  Temperature 
of duct surroundings.  Thickness, thermal conductivity and emissivity of applied insulation. 
 
FIND:  (a) Duct surface temperature and heat loss per unit length with no insulation, (b) Surface 
temperatures and heat loss with insulation. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Fully-developed internal flow, (3) Negligible duct 
wall resistance, (4) Duct outer surface is diffuse-gray, (5) Outside air is quiescent, (6) Pressure of inside 
and outside air is atmospheric. 
 
PROPERTIES:  Table A.4, Air (Tm = 70°C):  ν = 20.22 × 10-6 m2/s, Pr = 0.70, k = 0.0295 W/m⋅K; Table 
A.4, Air (Tf ≈ 27°C):  ν = 15.89 × 10-6 m2/s, Pr = 0.707, k = 0.0263 W/m⋅K, α = 22.5 × 10-6 m2/s, β = 
0.00333 K-1. 
 
ANALYSIS:  (a) Performing an energy balance on the duct wall with no insulation (Ts,i = Ts,o),  

conv,i conv,o rad,oq q q′ ′ ′= +     ( )( ) ( )( ) ( )( )4 4
i i m s,i o i s,i i i s,i surh D T T h D T T D T Tπ π ε σ π∞− = − + −  

 
with ReD,i = umDi/ν = 3 m/s × 0.15 m/(20.22 × 10-6 m2/s) = 2.23 × 104, the internal flow is turbulent, and 
from the Dittus-Boelter correlation, 

 ( ) ( )
4 / 5 0.34 / 5 0.3 4 2

i D,i
i

k 0.0295 W m K
h 0.023Re Pr 0.023 2.23 10 0.7 12.2 W m K

D 0.15 m
⋅

= = × = ⋅ . 

 
For free convection, the Rayleigh number is 

 Ra
g T T D m s T m

m s m s
T TD i

s i i s i
s i,

, ,
,

. . .
. .

.=
−

=
−

× × ×
= × −∞

− − ∞

β

να
c h a fc ha f c h

3 2 3 3

6 2 6 2
59 8 0 0033 273 0 15

15 89 10 22 5 10
3 08 10  

and from Eq. 9.34, 
 

 
( )

( )

( )

22 1/ 651/ 6 s,iD,i
o 8 / 27 8 / 279 /16 9 /16i

0.387 3.08 10 T T0.387Rak 0.0263
h 0.60 0.60

D 0.15
1 0.559 Pr 1 0.559 0.707

∞× −
= + = +

+ +

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥⎢ ⎥

⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥
⎣ ⎣ ⎦ ⎦ ⎣ ⎦⎣ ⎦
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 ( )
21/ 6

o s,ih 0.175 0.60 2.64 T T∞
⎡ ⎤= + −⎢ ⎥⎣ ⎦

 

Hence 

 ( ) ( ){ } ( ) ( )
21/ 6 8 4 4

s,i s,i s,i s,i12.2 343 T 0.175 0.60 2.64 T 273 T 273 0.5 5.67 10 T 273−− = + − − + × × −⎡ ⎤
⎣ ⎦  

A trial-and-error solution gives            s,iT 314.7 K 41.7 C≈ ≈ o  < 
 
The heat loss per unit length is then 

 ( )( )conv,iq q 12.2 0.15 70 42 163W mπ′ ′= ≈ × − ≈ . < 
 
(b) Performing energy balances at the inner and outer surfaces, we obtain, respectively, 
 
 conv,i condq q′ ′=  
or, 

 ( )( ) ( )
( )

s s,i s,o
i i m s,i

o i

2 k T T
h D T T

ln D D

π
π

−
− =  

and, 
 cond conv,o rad,oq q q′ ′ ′= +  
or, 

 
( )
( ) ( )( ) ( )( )s s,i s,o 4 4

o o s o o s,o sur
o i

2 k T T
h D T T D T T

ln D D

π
π ε σ π∞

−
= − + −  

 
Using the IHT workspace with the Correlations and Properties Tool Pads to solve the energy balances 
for the unknown surface temperatures, we obtain 

 s,iT 60.8 C= o                           Ts,o  = 12.5°C < 
 
With the heat loss per unit length again evaluated from the inside convection process, we obtain 

 conv,iq q 52.8W m′ ′= =  < 
 
COMMENTS:  For part (a), the outside convection coefficient is oh  = 5.4 W/m2⋅K < hi.  The outside 

heat transfer rates are conv,oq′  ≈ 106 W/m and rad,oq′  ≈ 57 W/m.  For part (b), oh  = 3.74 W/m2⋅K, 

conv,oq′  = 29.4 W/m, and rad,oq′  = 23.3 W/m.  Although Ts,i increases with addition of the insulation, 
there is a substantial reduction in Ts,o and hence the heat loss. 
 



PROBLEM 9.72 
 
KNOWN:  Biological fluid with prescribed flow rate and inlet temperature flowing through a coiled, 
thin-walled, 5-mm diameter tube submerged in a large water bath maintained at 50°C. 
 
FIND:  (a) Length of tube and number of coils required to provide an exit temperature of Tm,o = 38°C, 
and (b) Variations expected in Tm,o for a ±10 % change in the mass flow rate for the tube length 
determined in part (a) .  
 
SCHEMATIC: 

 
ASSUMPTIONS: (1) Steady-state conditions, (2) Coiled tube approximates a horizontal tube 
experiencing free convection in a quiescent, extensive medium (water bath), (3) Biological fluid has 
thermophysical properties of water, (4) Negligible tube wall thermal resistance, (5) Biological fluid flow 
is incompressible with negligible viscous dissipation, and (6) Flow in tube is fully developed.  
 
PROPERTIES:  Table A.4  Water - cold side (Tm,c = (Tm,i  + Tm,o) / 2 = 304.5 K) :  cp,c = 4178 J/kg⋅K, μc  
= 7.776 × 10-4 N⋅s/m2 , kc = 0.6193 W m K⋅ ,  Prc = 5.263 ;   Table A.4, Water - hot side 
( ( )f sT T T∞= + /2 = 315.7 K, see comment 1): kh = 0.635 W m K⋅ ,  Prh = 4.11,  νh = 6.294 × 10-7 m2 /s , 
αh = 1.533 × 10-7 m2/s, βh = 4.054 × 10-4 K-1; Water (Ts = 308.4 K): µs = 7.28 × 10-4 N⋅s/m2. 
 
ANALYSIS:  (a) Following the treatment of Section 8.3.3, the coil experiences internal flow of the cold 
biological fluid (c) and free convection with the external hot fluid (h).  From Eq. 8.45a, we can solve for 

sUA , 

m,o
s p,c

m,i

T T 50 38UA mc ln 0.02 kg/s 4178 J / kg K ln 61.3 W/K
T T 50 25
∞

∞

⎛ ⎞− −⎛ ⎞= − = − × ⋅ × =⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠
&                   

with As = πDL and for the overall coefficient 1
c hU (1/ h 1/ h )−= + , ch  and hh  are the average 

convection coefficients for internal flow and external free convection, respectively.   
 
Internal flow, ch :  To characterize the flow, calculate the Reynolds number, 

 D,c 6 2c

4m 4 0.02 kg s
Re 6550

D 0.005m 777.6 10 N s mπ μ π −
×

= = =
× × × ⋅

&
  

evaluating properties at ( ) ( )m m,i m,oT T T 2 25 38 C 2 31.5 C 304.5K.= + = + = =
o o   Note that transition 

to turbulence occurs at a higher Reynolds number in a coiled tube flow, as given by Eq. 8.74, 
 

 D,c,cr D,cr
0.5 0.5Re Re c1 12(D / D ) 2300 1 12(0.005 m / 0.2 m) 6664= ⎡ ⎤ ⎡ ⎤+ = × + =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

Therefore the flow is laminar and the Nusselt number is given by Eq. 8.76 with Eqs. 8.77. 
 

Continued... 
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 D,c

1/31.5 0.140.53
D,c c c

s

Re (D/D )4.343Nu 3.66+ +1.158
a b

μ
μ

=

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥⎛ ⎞ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

 

where 
 

 
( )c
2 cD,c c

957 D / D 0.477a 1              b 1
PrRe Pr

⎛ ⎞
⎜ ⎟= + = +
⎜ ⎟
⎝ ⎠

 

Substituting numerical values yields D,cNu = 32.8, therefore 

 2
c D,ch Nu 32.8 0.6193W m K 0.005m 4065W m Kck / D= × ⋅ = ⋅=   

External free convection , hh  :  For the horizontal tube, Eq. 9.34, 

 

2
1/ 4

h DD,h 8/ 279 /16h

h D 0.387RaNu 0.60
k

1 (0.559 / Pr)

⎧ ⎫
⎪ ⎪⎪ ⎪= = +⎨ ⎬
⎪ ⎪⎡ ⎤+⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 (1) 

with 
 

 
3

h s
D,h

h h

g (T T )DRa β
ν α

∞−
=                  (2) 

where sT  is the average tube wall temperature determined from the thermal circuit for which  
 
 ( ) ( )c m s h sh T T h T T∞− = −  (3) 

 
and the average film temperature at which to evaluate properties is   
 
 ( )f sT T T / 2∞= +  (4) 

 
We need to guess a value for sT  and iterate the solution of the system of equations (1-4) and property 
evaluation until all the equations are satisfied.  See Comments 1 and 2. 
 
Results of the analysis:  Using the foregoing relations in IHT (see Comment 2) the following results were 
obtained 
 

sT 308.4 K= ,  fT 315.7 K= ,  4
DRa 7.53 10= × ,  2

hh 1078W m K= ⋅  
 
Then 
 1 2 2 1 2

c hU (1/ h 1/ h ) (1/ 4065 W / m K 1/1078 W / m K) 852 W / m K− −= + = ⋅ + ⋅ = ⋅  

 2
sL UA / U D 61.3 W/K 852 W/m K 0.005 m 4.58 mπ π= = ⋅ × × =   < 

Continued... 
  
 
 



PROBLEM 9.72(Cont.) 
From knowledge of the tube length with the diameter of the coil  Dc = 200 mm,  the number of coils 
required is 

  
c

L 4.58 mN 7.3 7
D 0.200mπ π

= = = ≈
×

 < 

 
(b) With the length fixed at L = 4.58 m, we can backsolve the foregoing IHT workspace model to find 
what effect a ±10% change in the mass flow rate has on the outlet temperature, Tm,o.  The results of the 
analysis are tabulated below. 
 

( )m kg s&  0.018 0.02 0.022 

( )m,oT Co  38.8 38.0 37.3 

 
That is, a ±10 % change in the flow rate causes less than a ±1°C change in the outlet temperature.  While 
this change seems quite small, the effect on biological processes can be significant. 
 
COMMENTS:  (1) For the hot fluid, the Properties section shows the relevant thermophysical properties 
evaluated at the proper average (rather than a guess value for the film temperature).  (2) For the tube L/D 
= 4.58 m/0.005 m = 916 which is substantially greater than the entrance length criterion, 0.05ReD = 0.05× 
6550 = 328.  Hence, the assumption of fully developed internal flow is justified, especially since the 
entrance length is shorter in a coiled tube.  (3) We are slightly outside of the range for Eq. 8.76, since 

D,c
1/ 2Re (D / C) 1036 1000= > , but it should give a reasonable estimate.  (4) The IHT model for the 

system can be constructed beginning with the Rate Equation Tools, Tube Flow, Constant Surface 
Temperature along with the Correlation Tools for Free Convection, Horizontal Cylinder and the 
Properties Tool for the hot and cold fluids (water).  The correlation for the internal flow in a coiled tube 
must be keyed in by hand.  The full set of equations is extensive and very stiff.  Review of the IHT 
Example 8.6 would be helpful in understanding how to organize the complete model. 
 



PROBLEM 9.73  
KNOWN:  Volume, thermophysical properties, and initial and final temperatures of a pharmaceutical.  
Diameter and length of submerged tubing.  Pressure of saturated steam flowing through the tubing.  
FIND:  (a) Initial rate of heat transfer to the pharmaceutical, (b) Time required to heat the 
pharmaceutical to 70°C and the amount of steam condensed during the process.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Pharmaceutical may be approximated as an infinite, quiescent fluid of uniform, 
but time-varying temperature, (2) Free convection heat transfer from the coil may be approximated as 
that from a heated, horizontal cylinder, (3) Negligible thermal resistance of condensing steam and tube 
wall, (4) Negligible heat transfer from tank to surroundings, (5) Constant properties. 
 
PROPERTIES:  Table A-4, Saturated water (2.455 bars): Tsat = 400K = 127°C, hfg = 2.183 × 106 
J/kg.  Pharmaceutical:  See schematic.  
ANALYSIS:  (a) The initial rate of heat transfer is ( )s s iq hA T T ,= −  where As = πDL = 0.707 m2 

and h  is obtained from Eq. 9.34.  With α = ν/Pr = 4.0 × 10-7 m2/s and RaD = gβ (Ts – Ti) D
3/αν = 9.8 

m/s2 (0.002 K-1) (102K) (0.015m)3/16 × 10-13 m4/s2 = 4.22 × 106, 

( )

( )
( )

D

2 2
1/ 661/ 6

D
8/ 27 8/ 279 /16 9 /16

0.387 4.22 100.387 Ra
Nu 0.60 0.60 27.7

1 0.559 / Pr 1 0.559 /10

⎧ ⎫ ⎧ ⎫
×⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪= + = + =⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪⎡ ⎤ ⎡ ⎤+ +⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

 

Hence,  2
Dh Nu k / D 27.7 0.250 W / m K / 0.015m 462 W / m K= = × ⋅ = ⋅  

 
and  ( ) ( )2 2

s s iq hA T T 462 W / m K 0.707 m 102 C 33,300 W= − = ⋅ × ° =   < 
 
(b) Performing an energy balance at an instant of time for a control surface about the liquid, 
 

 
( ) ( ) ( ) ( )( )s s

d cT
q t h t A T T t

dt
ρ∀

= = −  

 
where the Rayleigh number, and hence h ,  changes with time due to the change in the temperature of 
the liquid.  Integrating the foregoing equation using the DER function of IHT, the following results are 
obtained for the variation of T and h  with t. 
 
          Continued … 
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The time at which the liquid reaches 70°C is 
 

 ft 855s≈           < 
 
The temperature increases at a decreasing rate due to the corresponding reduction in (Ts – T), and 
hence reductions in DRa , h and q.   The Rayleigh number decreases from 4.22 × 106 to 2.16 × 106, 
while the heat rate decreases from 33,300 to 14,000 W.  The convection coefficient decreases 
approximately as (Ts – T)1/3, while q ~ (Ts – T)4/3.  The latent energy released by the condensed steam 
corresponds to the increase in thermal energy of the pharmaceutical.  Hence, c fgm h = ( )f ic T T ,ρ∀ −  
and 
 

 ( ) 3 3f i
c 6fg

c T T 1100kg / m 0.2m 2000J / kg K 45 Cm 9.07 kg
h 2.183 10 J / kg

ρ∀ − × × ⋅ × °
= = =

×
 < 

 
COMMENTS:  (1) Over such a large temperature range, the fluid properties are likely to vary 
significantly, particularly ν and Pr.  A more accurate solution could therefore be performed if the 
temperature dependence of the properties were known.  (2) Condensation of the steam is a significant 
process expense, which is linked to the equipment (capital) and energy (operating) costs associated 
with steam production. 
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PROBLEM 9.74 
 
KNOWN:  Fin of uniform cross section subjected to prescribed conditions. 
 
FIND:  Tip temperature and fin effectiveness based upon (a) average values for free convection and 
radiation coefficients and (b) local values using a numerical method of solution. 
 
SCHEMATIC: 

 
ASSUMPTIONS: (1) Steady-state conditions, (2) Surroundings are isothermal and large compared to the 
fin, (3) One-dimensional conduction in fin, (4) Constant fin properties, (5) Tip of fin is insulated, (6) Fin 
surface is diffuse-gray. 
 
PROPERTIES:  Table A-4, Air (Tf = 325 K, 1 atm): ν = 18.41 × 10-6 m2/s,  k = 0.0282 W/m⋅K, α = 26.2 
× 10-6 m2/s, Pr = 0.704, β = 1/Tf = 3.077 × 10-3 K-1 ;  Table A-1, Steel AISI 316  ( )sT 350K :=  k = 14.3 

W/m⋅K. 
 
ANALYSIS:  (a) Average value ch  and  rh :  From Table 3.4 for a fin of constant cross section with an 
insulated tip and constant heat transfer coefficient h,  the tip temperature (x = L) is given by Eq. 3.80, 

 
( ) ( )L b b

cosh m L x
cosh mL

cosh mL
θ θ θ

−
= =                  ( )1/ 2

cm hP kA=  (1,2) 

where θ L = TL - T∞  and θb  = Tb − T∞ .  For this situation, the average heat transfer coefficient is  
 c rh h h= +  (3) 
and is evaluated at the average temperature of the fin.  The fin effectiveness εf  follows from Eqs. 3.81 and 
3.86 

 ( ) ( )1/ 2
f f c,b b f c bq hA , q M tanh mL , M hPkA .ε θ θ≡ = ⋅ =  (4,5,6) 

To estimate the coefficients, assume a value of sT ; the lowest sT   occurs when the tip reaches T∞ . That 
is, 

 ( ) ( )s bT T T 2 27 125 C 2 76 C 350 K∞= + = + = ≈o o                   

( )f sT T T 2 325 K.∞= + =  
 
The free convection coefficient can be estimated from Eq. 9.33, 

 ncD D
h DNu CRa

k
= =  (7) 

 

 
3

D
g TDRa β
να
Δ

=  
( ) ( )32 3 1

6 2 6 2
9.8m s 3.077 10 K 350 300 K 0.006 m

675
18.41 10 m s 26.2 10 m s

− −

− −
× × −

= =
× × ×

 

 
and from Table 9.1 with 102 < RaL < 104 , C = 0.850 and n = 0.188.  Hence 
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 ( )0.188 2
c

0.0282 W m Kh 0.850 675 13.6 W m K.
0.006m

⋅
= × = ⋅  (8) 

 
The radiation coefficient is estimated from Eq. 1.9, 

 ( )( )2 2
r s sur s surh T T T Tεσ= + +  

 ( )( )8 2 4 2 2 3 2
rh 0.6 5.67 10 W m K 350 300 350 300 K 4.7 W m K−= × × ⋅ + + = ⋅  (9) 

Hence, the average coefficient, Eq. (3), is 

 ( ) 2 2h 13.6 4.7 W m K 18.3W m K.= + ⋅ = ⋅  
Evaluate the fin parameters, Eq. (2) and (6)  with 

 ( )22 2 5 2
cP D 0.006m 1.885 10 m A D 4 0.006m 4 2.827 10 mπ π π π− −= = × = × = = = ×  

 ( )1 22 2 5 1m 18.3W m K 1.885 10 m 14.3W m K 2.827 10 29.21m− −= ⋅ × × ⋅ × × =  

 ( ) ( )
1 22 2 5 2M 18.3 W m K 1.885 10 m 14 3 W m K 2.827 10 m 125 27 K 1.157 W.− −= ⋅ × × × ⋅ ⋅ × × − =  

From Eq. (1), the tip temperature is 

 ( ) ( )1
L L bT T 125 27 K cosh 29.21m 0.050m 43.2Kθ −= − = − × =       LT 70.2 C 343K= =o . < 

Note this value of TL provides for sT  ≈ 370 K; so we underestimated sT .  For best results, an iteration is 
warranted.  The fin effectiveness, Eqs. (4) and (5), is 

 ( )1
fq 1.157 W tanh 29.21m 0.050m 1.039 W−= × =  

 ( )2 5 2
f 1.039 W 18.3 / W m K 2.827 10 m 125 27 K 20.5ε −= ⋅ × × − = . < 

(b) Local values hc  and hr:  Consider the nodal arrangement for using a numerical method to find the tip 
temperature TL, the heat rate qf, and the fin effectiveness ε. 
 

 
From an energy balance on a control volume about node m, the finite-difference equation is of the form 

 ( )( ) ( )( )2 2
m m 1 m 1 c r r cT T T h h 4 x kD T 2 h h 4 x kD+ − ∞

⎡ ⎤ ⎡ ⎤= + + + Δ + + Δ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
. (10) 

The local coefficient hc follows from Eq. (3), with Eq. 9.33, yielding 

 n
c D

kh CRa
D

=   

 ( )( ) ( )0.188 0.188
c m

0.0282 W m Kh 0.850 675 T 350 300 6.517 T 300
0.006m

⋅
⎡ ⎤= × Δ − = −⎣ ⎦ .(11)  

The local coefficient hr follows from Eq. (9), 
 
 h W m K T Tr m m= × × ⋅ + +−0 6 567 10 300 3008 2 4 2 2. . b gd i                                            Continued... 
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 ( )( )8 2 2
r m mh 3.402 10 T 300 T 300−= × + + . (12) 

 
The 20-node system of finite-difference equations based upon Eq. (10) with the variable coefficients hc 
and hr prescribed Eqs. (11) and (12), respectively, can be solved simultaneously using IHT or another 
approach.  The temperature distribution is 
 

Node Tm(K) Node Tm(K) Node Tm(K) Node Tm(K) 
        

1 391.70 6 367.61 11 353.02 16 345.49 
2 385.95 7 364.03 12 351.00 17 344.70 
3 380.70 8 360.81 13 349.25 18 344.15 
4 375.92 9 357.91 14 347.75 19 343.82 
5 371.56 10 355.32 15 346.50 20 343.71 

 
From these results the tip temperature is 

 L fdT T 343.7 K 70.7 C= = = o . < 
 
The fin heat rate follows from an energy balance for the control surface about node b. 
 
 f conv condq q q= +  
 

 ( ) b 1
f b b c

T Tx
q h P T T kA

2 x∞
−Δ

= − +
Δ

 
 

where hb follows from Eqs. (11) and (12), with Tb = 125°C = 398 K, 
 

 ( ) ( )( )0.188 8 2 2 2
bh 6.517 398 300 3.402 10 398 300 398 300 21.33W m K−= − + × + + = ⋅  

 
 ( )( )2 2

fq 21.33W m K 1.855 10 m 0.0025m 2 398 300 K−= ⋅ × × −  
 

            
( )5 2 398 391.70 K

14.3W m K 2.827 10 m
0.0025m

− −
+ ⋅ × ×   ( )0.049 1.018 W 1.067 W= + = . 

 
The effectiveness follows from Eq. (4) 
 
 ( )2 5 2

f 1.067 W 21.33W m K 2.827 10 m 125 27 K 18.1ε −= ⋅ × × − =  
 
COMMENTS:  (1) The results by the two methods of solution compare as follows: 
 

Coefficients T(L),K qf(W) εf 
average 343.1 1.039 20.5 

local 343.7 1.067 18.1 
 

The temperature predictions are in excellent agreement and the heat rates very close, within 4%.   
 
(2) To obtain the finite-different equation for node n = 20, use Eq. (10) but consider the adiabatic surface 
as a symmetry plane. 



PROBLEM 9.75  
KNOWN:  Horizontal tubes of different shapes each of the same cross-sectional area transporting a 
hot fluid in quiescent air.  Lienhard correlation for immersed bodies.  
FIND:  Tube shape which has the minimum heat loss to the ambient air by free convection.  
SCHEMATIC:   

 
 
 
 
 
ASSUMPTIONS:  (1) Ambient air is quiescent, (2) Negligible heat loss by radiation, (3) All shapes 
have the same cross-sectional area and uniform surface temperature. 
 
PROPERTIES:  Table A-4, Air (Tf ≈ 300K, 1 atm):  ν = 15.89 × 10-6 m2/s, α = 22.5 × 10-6 m2/s, k = 
0.0263 W/m⋅K, Pr = 0.707, β = 1/Tf.  
ANALYSIS:  The Lienhard correlation approximates the laminar convection coefficient for an 
immersed body on which the boundary layer does not separate from the surface by 

( ) 1/ 4Nu h / k 0.52Ra ,= =l ll  where the characteristic length, ,l  is the length of travel of the fluid in 
the boundary layer across the shape surface.  The heat loss per unit length from any shape is 

( )sq hP T T .∞′ = −   For the shapes, 
 

 
( )( )2 3 33

8 3
6 2 6 2

9.8 m / s 1/ 300 K 35 25 K mg T
Ra 9.137 10

15.89 10 m / s 22.5 10 m / s

β
να − −

−Δ
= = = ×

× × ×
l

ll
l  

 

 ( ) ( )1/ 48 3 1/ 4h 0.0263W / m K / 0.52 9.137 10 2.378 .−= ⋅ × =l l l l  
 
For the shapes, l  is half the total wetted perimeter P.  Evaluating h and q ,′l  find 
 

 Shape  P (mm)  ( )mml  ( )2h W / m K⋅l  ( )q W / m′  
 
   1 2 × 40 + 2 × 10 = 100    50   5.03     5.03 
   2  4 × 20 = 80    40   5.32     4.26 
   3  4 × 20 = 80    40   5.32     4.26 
   4   π × 22.56 = 70.9   35.4   5.48     3.89 
 

Hence, it follows that shape 4 has the minimum heat loss.     < 
 
COMMENTS:  Using the Lienhard correlation for a sphere of D = 22.56 mm, find 35.4 mm,=l  the 

same as for a cylinder, namely, h4 = 5.48 W/m2⋅K.  Using the Churchill correlation, Eq. 9.35, find 
2h 7.69 W / m K.= ⋅   Hence, the approximation for the sphere is 29% low.  For a cylinder, using Eq. 

9.34, find 2h 5.15 W / m K.= ⋅   The approximation for the cylinder is 6% high. 
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PROBLEM 9.76 
 
KNOWN:  Sphere of 2-mm diameter immersed in a fluid at 300 K. 
 
FIND:  (a) The conduction limit of heat transfer from the sphere to the quiescent, extensive fluid, NuD,cond 
= 2;  (b) Considering free convection, surface temperature at which the Nusselt number is twice that of 
the conduction limit for the fluids air and water; and (c) Considering forced convection, fluid velocity at 
which the Nusselt number is twice that of the conduction limit for the fluids air and water. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Sphere is isothermal, (2) For part (a), fluid is stationary, and (3) For part (b), fluid 
is quiescient, extensive. 
 
ANALYSIS: (a)  Following the hint provided in the problem statement, the thermal resistance of a 
hollow sphere, Eq. 3.40 of inner and outer radii, r1 and r2 , respectively, and thermal conductivity k, is 

 t,cond
1 2

1 1 1R
4 k r rπ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (1) 

and as r2 → ∞, that is the medium is extensive 

 t,cond
1

1 1R
4 kr 2 kD

= =
π π

 (2) 

The Nusselt number can be expressed as  
 

 
hDNu
k

=  (3) 
 
and the conduction resistance in terms of a convection coefficient is  

 t,cond 2s

1 1R
hA h Dπ

= =  (4) 

 
Combining Eqs. (3) and (4) 

 
( ) ( )( )22

t,cond
D,cond

1 1 2 kD D D1 R D D
Nu 2

k k

π ππ ⎡ ⎤
⎢ ⎥⎣ ⎦= = =  < 

 
(b) For free convection, the recommended correlation, Eq. 9.35, is  
 

 

( )

1/ 4
DD 4/99 /16

0.589Ra
Nu 2

1 0.469 Pr
= +

⎡ ⎤+⎢ ⎥⎣ ⎦
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3

D s
g TDRa T T Tβ
να ∞
Δ

= Δ = −  
 
where properties are evaluated at Tf = (Ts + T∞) / 2.  What value of Ts is required for DNu 4=  for the 
fluids air and water?  Using the IHT Correlations Tool, Free Convection, Sphere  and the Properties Tool  
for Air and Water, find 

 Air:  sNu 3.1 for all T 300≤ >  < 

 Water:  Ts = 301.1K < 
 
(c) For forced convection, the recommended correlation, Eq. 7.56, is 
 

 ( ) ( )1/ 41/ 2 2 / 3 0.4D sD DNu 2 0.4Re 0.06Re Pr μ μ= + +  
 
 DRe VD ν=  
 
where properties are evaluated at T∞ ,  except for μs evaluated at Ts .What value of V is required for 

DNu 4=  if the fluids are air and water?  Using the IHT Correlations Tool, Forced Convection, Sphere 
and the Properties Tool  for Air and Water, find (evaluating all properties at 300 K) 

 Air:  V = 0.17 m/s        Water:  V = 0.00185  m/s < 
 
COMMENTS:  (1) For water, D D,condNu 2 Nu= ×  can be achieved by ΔT ≈ 1 for free convection 
and with very low velocity, V< 0.002 m/s, for forced convection. 
 
(2) For air, D D,condNu 2 Nu= ×  can be achieved in forced convection with low velocities, V< 0.2 m/s.  

In free convection,  NuD increases with increasing Ts and reaches a maximum, D,maxNu 3.1,=  around 
450 K.  Why is this so?  Hint:  Plot RaD  as a function of Ts and examine the role of  β and ΔT as a 
function of Ts . 



PROBLEM 9.77  
KNOWN:  Sphere with embedded electrical heater is maintained at a uniform surface temperature 
when suspended in various media.  
FIND:  Required electrical power for these media:  (a) atmospheric air, (b) water, (c) ethylene glycol.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible surface radiation effects, (2) Extensive and quiescent media. 
 
PROPERTIES:  Evaluated at Tf = (Ts + T∞)/2 = 330K: 
 
 ν⋅106, m2/s k⋅103, W/m⋅K α⋅106, m2/s Pr β⋅103, K-1 
Table A-4, Air (1 atm) 
Table A-6, Water 
Table A-5, Ethylene glycol 

18.91  
0.497 
5.15 

28.5 
650 
260 

26.9 
0.158 

  0.0936 
 

0.711 
3.15 
55.0 

  3.03 
0.504 
0.65 

 
ANALYSIS:  The electrical power (Pe) required to offset convection heat transfer is 
 
 ( ) ( )2

conv s s sq h A T T h D T T .π∞ ∞= − = −       (1) 
 
The free convection heat transfer coefficient for the sphere can be estimated from Eq. 9.35 using Eq. 
9.25 to evaluate RaD. 

 

( )
D

1/ 4 3
D

D4/99 /16 11
D

Pr 0.7
0.589Ra g T DNu 2 Ra .

1 0.469 / Pr Ra 10

β
να

≥⎧
⎪ Δ⎪= + =⎨
⎪⎡ ⎤+ ≤⎪⎢ ⎥ ⎩⎣ ⎦

  (2,3) 

 
(a) For air 

 
( )( ) ( )32 3 1

4
D 6 2 6 2

9.8m / s 3.03 10 K 94 20 K 0.025m
Ra 6.750 10

18.91 10 m / s 26.9 10 m / s

− −

− −

× −
= = ×

× × ×
 

 

( )
( )

D

1/ 44
2

D 4/ 99 /16

0.589 6.750 10k 0.0285W / m Kh Nu 2 10.6 W / m K
D 0.025m

1 0.469 / 0.711

⎧ ⎫
×⎪ ⎪⋅ ⎪ ⎪= = + = ⋅⎨ ⎬

⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 

 ( ) ( )22
convq 10.6 W / m K 0.025m 94 20 K 1.55W.π= × ⋅ − =  

 
 
          Continued … 
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(b,c) Summary of the calculations above and for water and ethylene glycol: 
 
 

 Fluid   RaD  ( )2
Dh W / m K⋅   q(W) 

 
Air       6.750 × 104       10.6       1.55  < 
Water       7.273 × 107   1299   187  < 

Ethylene glycol     15.82 × 106     393     57.0  < 
 
COMMENTS:  Note large differences in the coefficients and heat rates for the fluids. 



PROBLEM 9.78 
 
KNOWN:  Temperatures and spacing of vertical, isothermal plates. 
 
FIND:  (a) Shape of velocity distribution, (b) Forms of mass, momentum and energy equations for 
laminar flow, (c) Expression for the temperature distribution, (d) Vertical pressure gradient, (e) 
Expression for the velocity distribution. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Laminar, incompressible, fully-developed flow, (2) Constant properties, (3) 
Negligible viscous dissipation, (4) Boussinesq approximation. 
 
ANALYSIS:  (a) For the prescribed conditions, there must be buoyancy driven ascending and descending 
flows along the surfaces corresponding to Ts,1 and Ts,2, respectively (see schematic).  However, 
conservation of mass dictates equivalent rates of upflow and downflow and, assuming constant properties, 
inverse symmetry of the velocity distribution about the midplane. 
 
(b) For fully-developed flow, which is achieved for long plates, vx = 0 and the continuity equation yields 

 zv z 0∂ ∂ =  < 
 
With both surface temperatures independent of z, the fully-developed temperature distribution will also 
have T / z 0∂ ∂ = .  Hence, there is no net transfer of momentum or energy by advection, and the 
corresponding equations are, respectively, 

 ( ) ( ) ( )2 2
z c0 dp dz d v dx g gμ ρ= − + −  < 

 0 = (dT2/dx2) < 
(c) Integrating the energy equation twice, we obtain 
 T = C1x + C2  
and applying the boundary conditions, T(-L) = Ts,1 and T(L) = Ts,2, it follows that C1 = -(Ts,1 - Ts,2)/2L and 
C2 = (Ts,1 + Ts,2)/2 ≡ Tm, in which case, 
 

 m
s,1 s,2

T T x
T T 2L

−
= −

−
 < 
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(d) From hydrostatic considerations and the assumption of a constant density ρm, the balance between the 
gravitational and net pressure forces may be expressed as dp/dz = -ρm(g/gc).  The momentum equation is 
then of the form 
 

 ( ) ( )( )2 2
z m c0 d v dx g gμ ρ ρ= − −  

 
or, invoking the Boussinesq approximation, ( )m m mT Tρ ρ βρ− ≈ − − , 
 
 ( )( )( )2 2

z m c md v dx g g T Tβρ μ= − −  
 
or, from the known temperature distribution, 

 ( )( )( )( )2 2
z m c s,1 s,2d v dx 2 g g T T x Lβρ μ= −  < 

 
(e) Integrating the foregiong expression, we obtain 
 

 ( )( )( )( )2
z m c s,1 s,2 1dv dx 4 g g T T x L Cβρ μ= − +  

 

 ( )( )( )( )3
z m c s,1 s,2 1 2v 12 g g T T x L C x Cβρ μ= − + +  

 
Applying the boundary conditions vz(-L) = vz(L) = 0, it follows that C1 = 
( )( )( )m c s,1 s,212 g g T T Lβρ μ− −  and C2 = 0.  Hence, 

 ( )( )( ) ( ) ( )2 3 3
z m c s,1 s,2v L 12 g g T T x L x Lβρ μ ⎡ ⎤= − −⎢ ⎥⎣ ⎦

 < 

 
COMMENTS:  The validity of assuming fully-developed conditions improves with increasing plate 
length and would be satisfied precisely for infinite plates. 



PROBLEM 9.79  
KNOWN:  Dimensions of vertical rectangular fins.  Temperature of fins and quiescent air.  
FIND:  Optimum fin spacing and corresponding fin heat transfer rate.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Isothermal fins, (2) Negligible radiation, (3) Quiescent air, (4) Negligible heat 
transfer from fin tips, (5) Negligible radiation.  
PROPERTIES:  Table A-4, Air (Tf = 325K, 1 atm):  ν = 18.41 × 10

-6 m2/s, k = 0.0282 W/m⋅K, α = 

26.1 × 10
-6 m2/s, Pr = 0.703. 

 
ANALYSIS:  From Table 9.3 

 ( ) ( ) 1/ 41/ 4 s3
opt S

g T T
S 2.71 Ra / S H 2.71

H
β
αν

−− ∞⎡ ⎤−
= = ⎢ ⎥

⎣ ⎦
 

 ( ) ( )
1/ 412

opt 6 2 6 2
9.8m / s 325K 50K

S 2.71 7.12mm
26.1 10 m / s 18.4 10 m / s 0.15m

−−

− −

⎡ ⎤
⎢ ⎥= =
⎢ ⎥× × × ×⎣ ⎦

 < 

From Eq. 9.45 and Table 9.3 

 
( ) ( )s

1/ 2

2 1/ 2
S S

576 2.87Nu
Ra S/ L Ra S/ L

−⎡ ⎤
⎢ ⎥= +
⎢ ⎥
⎣ ⎦

 

 ( ) ( ) ( ) ( )( )412 34
s

S 6 2 6 2

9.8m / s 325K 50 K 7.12 10 mg T T S
Ra S/ L

H 25.4 10 m / s 18.4 10 m / s 0.15m

β
αν

− −
∞

− −

×−
= =

× × × ×
 

 ( )SRa S/ L 53.2=  

 
( ) ( )

[ ]S

1/ 2
1/ 2

2 1/ 2
576 2.87Nu 0.204 0.393 1.29

53.2 53.2

−
−

⎡ ⎤
⎢ ⎥= + = + =
⎢ ⎥
⎣ ⎦

 

 ( )S
2h Nu k / S 1.29 0.0282 W / m K / 0.00712 m 5.13W / m K.= = ⋅ = ⋅  

With N = W/(t + S) = (355 mm)/(8.62 × 10-3 m) = 41.2 ≈ 41, 

 ( )( ) ( )( )2
sq 2Nh L H T T 82 5.13W / m K 0.02m 0.15m 50K∞= × − = ⋅ ×  

 q 63.1W.=           < 
 
COMMENTS:  Sopt = 7.12 mm is considerably less than the value of 34 mm predicted from previous 
considerations.  Hence, the corresponding value of q = 63.1 W is considerably larger than that of the 
previous prediction. 



PROBLEM 9.80  
KNOWN:  Length, width and spacing of vertical circuit boards.  Maximum allowable board 
temperature.  
FIND:  Maximum allowable power dissipation per board.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Circuit boards are flat with uniform heat flux at each surface, (2) Negligible 
radiation. 
 
PROPERTIES:  Table A-4, Air ( )T 320K, 1 atm :=   ν = 17.9 × 10-6 m2/s, k = 0.0278 W/m⋅K, α = 

25.5 × 10-6 m2/s. 
 
ANALYSIS:  From Eqs. 9.41 and 9.46 and Table 9.3, 

 

( )

1/ 2

s
* 2 / 5*s,L S S

q S 48 2.51
T T k Ra S/ L Ra S/ L

−

∞

⎡ ⎤
⎢ ⎥′′

= +⎢ ⎥
− ⎢ ⎥

⎢ ⎥⎣ ⎦

 

 

where 
( ) ( )

( )( )
1 525

s* s
S 6 2 6 2

9.8m / s 320 K 0.025m qg q SSRa
L k L 0.0278 W / m K 25.5 10 m / s 17.9 10 m / s 0.4 m

β
αν

−

− −

′′′′
= =

⋅ × ×
 

 

 *
S s

SRa 58.9q
L

′′=  
 

and 
( )

s s
s

s,L

q 0.025 m qS 0.015q .
T T k 60 K 0.0278W / m K∞

′′ ′′⋅ ′′= =
− ⋅

 

 

Hence,  
( )

1/ 2

s 0.4s s

0.815 0.4920.015q .
q q

−⎡ ⎤
⎢ ⎥′′ = +

′′⎢ ⎥′′⎣ ⎦
 

 
A trial-and-error solution yields 

 2
sq 287 W / m .′′ =  

Hence,  ( ) ( )2 2
s sq 2A q 2 0.4m 287 W / m 91.8 W.′′= = =     < 

 
COMMENTS:  Larger heat rates may be achieved by using a fan to superimpose a forced flow on the 
buoyancy driven flow. 
 



PROBLEM 9.81  
KNOWN:  Dimensions of window and gap between window and insulation.  Temperature of window 
and surrounding air.  
FIND:  (a) Heat loss through the window and associated weekly cost, (b) Heat loss through window as 
a function of gap spacing.   
SCHEMATIC:   
 
 
 
 
 

 
 
 
 
 
 
ASSUMPTIONS:  (1) Negligible radiation heat loss. (2) Insulation creates adiabatic condition.    

 
PROPERTIES: Table A-4, Air (assumed T = 7°C = 280 K): ν = 14.11 × 10-6 m2/s, k = 0.0247 
W/m·K, α = 19.9 × 10-6 m2/s, β  = 1/ T  = 0.0036 K-1. 
 
ANALYSIS:   
(a)  This is a case of free convection in a vertical parallel plate channel.  The window can be 
approximated as isothermal and the insulation can be modeled as adiabatic.  Therefore we can use 
Equation 9.45 to find the average Nusselt number, with C1 = 144, C2 = 2.87 in Table 9.3. We begin by 
calculating the Rayleigh number from Equation 9.38: 

3
s

S
g β T  - T S

Ra  = 
α ν

∞                                                                                                         (1) 

 
2 -1 3

S -6 2 -6 2
9.8 m/s  × 0.0036 K  × 0°C - 15°C  × (0.005 m)

Ra  =  = 234
19.9 × 10  m /s × 14.11 × 10  m /s

 

Then   
-1/2

1 2
S 2 1/2

S S

C CNu  =  + 
(Ra S/L) (Ra  S/L)

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

        (2) 

-1/2

S 2 1/2
144 2.87Nu  =  +  = 0.0538

(234 × 0.005 m/1.8 m) (234 × 0.005 m/1.8 m)

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
From Equation 9.37 (noting that heat transfer is in the direction from the air to the surface) 
 S Sq = Nu  k A (T  - T )/S     ∞                       (3) 

    2= 0.0538 × 0.0247 W/m K × 1.8 m (15°C - 0°C)/0.005 m ⋅  

    = 7.2 W             < 
Then the weekly cost is  
 Cost = 7.2 W × 0.18 × 10-3 $/W·h × 24 h/day × 7 days 

 Cost = $0.22            < 
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PROBLEM 9.81 (Cont.) 
 

(b) Solving Equations (1), (2), and (3) for 1 mm ≤ S ≤ 20 mm, the following graph can be generated. 
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COMMENTS: (1) Despite the poor workmanship there is a significant cost savings.  (2) With  
RaSS/L = 0.65 < 10 in part (a), we could have used the fully developed results, Equation 9.40.  
However this equation is not valid for RaSS >

%
 10, which corresponds to S >

%
 10 mm.  



PROBLEM 9.82  
KNOWN:  Vertical air vent in front door of dishwasher with prescribed width and height.  Spacing 
between isothermal and insulated surface of 20 mm.  
FIND:  (a) Heat loss from the tub surface and (b) Effect on heat rate of changing spacing by ± 10 mm.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Vent forms vertical parallel isothermal/adiabatic 
plates, (3) Ambient air is quiescent. 
 
PROPERTIES:  Table A-4, (Tf = (Ts + T∞)/2 = 312.5K, 1 atm):  ν = 17.15 × 10-6 m2/s, α = 24.4 × 
10-6 m2/s, k = 27.2 × 10-3 W/m⋅K, β = 1/Tf.  
ANALYSIS:  The vent arrangement forms two vertical plates, one is isothermal, Ts, and the other is 
adiabatic ( )q 0 .′′ =   The heat loss can be estimated from Eq. 9.37 with the correlation of Eq. 9.45 

using C1 = 144 and C2 = 2.87 from Table 9.3: 

 
( ) ( )( ) ( )33 2

s
S 6 2 6 2

g T T S 9.8m / s 1/ 312.5 K 52 27 K 0.020 m
Ra 14,988

17.15 10 m / s 24.4 10 m / s

β
να

∞
− −

− −
= = =

× × ×
 

 ( )
( ) ( )

( )
1/ 2

21 2
s s 2 1/ 2

S S

k C Cq A T T 0.500 0.580 m
S Ra S/ L Ra S/ L

−

∞
⎡ ⎤
⎢ ⎥= − + = × ×
⎢ ⎥
⎣ ⎦

 

 ( )
( ) ( )

1/ 2
1 2

2 1/ 2
S S

0.0272 W / m K C C52 27 K 28.8W.
0.020m Ra S/ L Ra S/ L

−⎡ ⎤⋅ ⎢ ⎥− + =
⎢ ⎥
⎣ ⎦

  < 

(b) To determine the effect of the spacing at S = 30 and 10 mm, we need only repeat the above 
calculations with these results 
   S (mm)  RaS  q (W) 

     10     1874  26.1     < 

     30  50,585  28.8     < 
 
Since it would be desirable to minimize heat losses from the tub, based upon these calculations, you 
would recommend a decrease in the spacing.  
COMMENTS:  For this situation, according to Table 9.3, the spacing corresponding to the maximum 
heat transfer rate is Smax = (Smax/Sopt) × 2.15(RaS/S3L)-1/4 = 14.5 mm.  Find qmax = 28.5 W.  Note 
that the heat rate is not very sensitive to spacing for these conditions. 



PROBLEM 9.83  
KNOWN:  Dimensions, spacing and temperature of plates in a vertical array.  Ambient air 
temperature.  Total width of the array.  
FIND:  Optimal plate spacing for maximum heat transfer from the array and corresponding number of 
plates and heat transfer.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state, (2) Negligible plate thickness, (3) Constant properties. 
 
PROPERTIES:  Table A-4, air ( )p 1atm, T 320K := =  ν = 17.9 × 10-6 m2/s, k = 0.0278 W/m⋅K, α = 

25.5 × 10-6 m2/s, Pr = 0.704, β = 0.00313 K-1. 
 
ANALYSIS:  With RaS/S3L = gβ (Ts - T∞)/ανL = (9.8 m/s2 × 0.00313 K-1 × 55°C)/(25.5 × 17.9 × 10-

12 m4/s2 × 0.3m) = 1.232 × 1010 m4, from Table 9.3, the spacing which maximizes heat transfer for the 
array is 

 

( ) ( )
3

opt 1/ 4 1/ 43 10 4
S

2.71 2.71S 8.13 10 m 8.13mm
Ra / S L 1.232 10 m

−

−
= = = × =

×
  < 

With the requirement that (N – 1) Sopt ≤ War, it follows that N ≤ 1 + 150 mm/8.13 mm = 19.4, in 
which case 

 N 19=           < 
 
The corresponding heat rate is ( ) ( )sq N 2WL h T T ,∞= −  where, from Eq. 9.45 and Table 9.3, 
 

 
( ) ( )S

1/ 2

2 1/ 2
S S

k k 576 2.87h Nu
S S Ra S/ L Ra S/ L

⎡ ⎤
⎢ ⎥= = +
⎢ ⎥
⎣ ⎦

 

 
With RaS S/L = (RaS/S3L)S4 = 1.232 × 1010 m-4 × (0.00813m)4 = 53.7, 
 

 
( ) ( )

( ) 2
2 1/ 2

0.0278W / m K 576 2.87h 3.42 0.200 0.392 2.02 W / m K
0.00813m 53.7 53.7

⎡ ⎤⋅ ⎢ ⎥= + = + = ⋅
⎢ ⎥
⎣ ⎦

 

 
 ( ) 2q 19 2 0.3m 0.3m 2.02 W / m K 55 C 380 W= × × ⋅ × ° =     < 
 
COMMENTS:  It would be difficult to fabricate heater plates of thickness optS .δ <<   Hence, subject 

to the constraint imposed on War, N would be reduced, where N ≤ 1 + War/(Sopt + δ). 
 



PROBLEM 9.84  
KNOWN:  A bank of drying ovens is mounted on a rack in a room with an ambient temperature of 
27°C; the cubical ovens are 500 mm to a side and the spacing between the ovens is 15 mm.  
FIND:  (a) Estimate the heat loss from the facing side of an oven when its surface temperature is 
47°C, and (b) Explore the effect of the spacing dimension on the heat loss.  At what spacing is the heat 
loss a maximum?  Describe the boundary layer behavior for this condition.  Can this condition be 
analyzed by treating the oven side-surface as an isolated vertical plate?  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Adjacent oven sides form a vertical channel with 
symmetrically heated plates, (3) Room air is quiescent, and channel sides are open to the room air, and 
(4) Constant properties. 
 
PROPERTIES:  Table A-4, Air (Tf = (Ts + T∞)/2 = 310 K, 1 atm):  ν = 1.69 × 10-5 m2/s, k = 0.0270 
W/m⋅K, α = 2.40 × 10-5 m2/s, Pr = 0.706, β = 1/Tf.  
ANALYSIS:  (a) For the isothermal plate channel, Eq. 9.45 with Eqs. 9.37 and 9.38, allow for 
calculation of the heat transfer from a plate to the ambient air. 

 
( )S

1/ 2
1 2

1/ 2
S S

C C
Nu 2(Ra S / L) Ra S / L

−

= +
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

      (1) 

 S
s

q / A S
Nu

T T k∞
=

−
         (2) 

 

 
( ) 3

s
S

g T T S
Ra

β
αν

∞−
=          (3) 

where, from Table 9.3, for the symmetrical isothermal plates, C1 = 576 and C2 = 2.87.  Properties are 
evaluated at the film temperature Tf.  Substituting numerical values, evaluate the correlation 
parameters and the heat rate. 

 
( )( ) ( )32

S 5 2 5 2
9.8 m / s 1/ 310 K 47 27 K 0.015 m

Ra 5267
2.40 10 m / s 1.69 10 m / s− −

−
= =

× × ×
 

 

 
( )S

1/ 2

1/ 2
576 2.87

Nu 1.9942(5267 0.015 m / 0.50 m) 5267 0.015 m / 0.050 m

−

= + =
× ×

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

 
( )
( )

2q / 0.50 0.50 m 0.015 m
1.994 q 18.0 W

47 27 K 0.0270 W / m K
×

= =
− ⋅

  < 

 
          Continued … 



PROBLEM 9.84 (Cont.) 
 
(b) Using the foregoing relations in IHT, the heat rate is calculated for a range of spacing S. 
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Note that the heat rate increases with increasing spacing up to about S = 20 mm.  This implies that for 
S > 20 mm, the side wall of the oven behaves as an isolated vertical plate.  From the treatment of the 
vertical channel, Section 9.7.1, the spacing to provide maximum heat rate from a plate occurs at Smax 
which, from Table 9.3, is evaluated by 
 
 max optS 1.71 S 0.01964 m 19.6 mm= = =  

 

 ( ) 1/ 43
opt SS 2.71 Ra / S L 0.01147 m

−
= =  

 
For the condition S = Smax, the spacing is sufficient that the boundary layers on the plates do not 
overlap.  
COMMENTS:  Using the Churchill-Chu correlation, Eq. 9.26, for the isolated vertical plate, where 
the characteristic dimension is the height L, find q = 20.2 W (RaL = 1.951 × 108 and Lh  = 4.03 

W/m2⋅K).  This value is slightly larger than that from the channel correlation when S > Smax, but a 
good approximation. 
 



PROBLEM 9.85  
KNOWN:  Inclination angle of parallel plate solar collector.  Plate spacing.  Absorber plate 
and inlet temperature.  
FIND:  Rate of heat transfer to collector fluid.  
SCHEMATIC:   
 
 
 
ASSUMPTIONS:  (1) Flow in 
collector corresponds to buoyancy 
driven flow between parallel plates 
with quiescent fluids at the inlet and 
outlet, (2) Constant properties. 
 
PROPERTIES:  Table A-6, Water ( )T 320K :=   ρ = 989 kg/m3, cp = 4180 J/kg⋅K, μ = 577 × 

10-6 kg/s⋅m, k = 0.640 W/m⋅K, β = 436.7 × 10-6 K-1. 
 
ANALYSIS:  With  

 
( )

7 2
3p

k 0.640 W / m K 1.55 10 m / s
c 989 kg / m 4180 J / kg K

α
ρ

−⋅
= = = ×

⋅
 

 
 ( ) ( )6 3 7 2/ 577 10 kg / s m / 989kg / m 5.83 10 m / sν μ ρ − −= = × ⋅ = ×  
 
find  

 ( ) ( )( )( )

( )( )
42 6 14

s
S 7 2 7 2

9.8m / s 436.7 10 K 40K 0.015mg T T SSRa
L L 1.55 10 m / s 5.83 10 m / s 1.5m

β
αν

− −
∞

− −

×−
= =

× ×
 

 

 4
S

SRa 6.39 10 .
L
= ×  

 
Since RaS(S/L) > 200, Eq. 9.47 may be used, 
 

 ( ) ( )S
1/ 41/ 4 4

SNu 0.645 Ra S/ L 0.645 6.39 10 10.3⎡ ⎤= = × =⎣ ⎦  
 

 ( )S
2kh Nu 10.3 0.64 W / m K / 0.015m 438W / m K.

S
= = ⋅ = ⋅  

 
Hence the heat rate is  
 ( ) ( )( )2

sq hA T T 438 W / m K 1.5m 67 27 K 26,300 W / m.∞= − = ⋅ − =   < 
 
COMMENTS:  Such a large heat rate would necessitate use of a concentrating solar 
collector for which the normal solar flux would be significantly amplified. 
 

 



PROBLEM 9.86  
KNOWN:  Critical Rayleigh number for onset of convection in vertical cavity filled with atmospheric 
air.  Temperatures of opposing surfaces.  
FIND:  Maximum allowable spacing for heat transfer by conduction across the air.  Effect of surface 
temperature and air pressure.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Critical Rayleigh number is RaL,c = 2000, (2) Constant properties. 
 
PROPERTIES:  Table A-4, air [T = (T1 + T2)/2 = 1°C = 274K]:  ν = 13.6 × 10-6 m2/s, k = 0.0242 
W/m⋅K, α = 19.1 × 10-6 m2/s, β = 0.00365 K-1. 
 
ANALYSIS:  With RaL,c = g β (T1 – T2) 3

cL / ,αν  
 

( )

1/ 31/ 3 12 4 2L,c
c 2 11 2

Ra 19.1 13.6 10 m / s 2000L 0.007m 7 mm
g T T 9.8m / s 0.00365K 42 C

αν
β

−

−

⎡ ⎤⎡ ⎤ × × ×
= = = =⎢ ⎥⎢ ⎥

−⎢ ⎥ ⎢ ⎥× × °⎣ ⎦ ⎣ ⎦
 < 

 
The critical value of the spacing, and hence the corresponding thermal resistance of the air space, 
increases with a decreasing temperature difference, T1 – T2, and decreasing air pressure.  With ν = μ/ρ 
and α ≡ k/ρcp, both quantities increase with decreasing p, since ρ decreases while μ, k and cp are 
approximately unchanged.  
COMMENTS:  (1) For the prescribed conditions and Lc = 7 mm, the conduction heat flux across the 

air space is ( ) 2
1 2 cq k T T / L 0.0242 W / m K 42 C / 0.007m 145 W / m ,′′ = − = ⋅ × ° =  (2) With triple pane 

construction, the conduction heat loss could be reduced by a factor of approximately two, (3) Heat loss 
is also associated with radiation exchange between the panes. 
 



PROBLEM 9.87  
KNOWN:  Temperatures and dimensions of a window-storm window combination.  
FIND:  Rate of heat loss by free convection.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Both glass plates are of uniform temperature with insulated 
interconnecting walls and (2) Negligible radiation exchange.  
PROPERTIES:  Table A-4, Air (278K, 1 atm):  ν = 13.93 × 10-6 m2/s, k = 0.0245 W/m⋅K, α 
= 19.6 × 10-6 m2/s, Pr = 0.71, β = 0.00360 K-1. 
 
ANALYSIS:  For the vertical cavity,  

 ( ) ( )( )( )32 13
1 2

L 6 2 6 2

9.8m / s 0.00360K 30 C 0.06mg T T L
Ra

19.6 10 m / s 13.93 10 m / s

β
αν

−

− −

°−
= =

× × ×
 

 
 5

LRa 8.37 10 .= ×  
 
With (H/L) = 20, Eq. 9.52 may be used as a first approximation for Pr = 0.71,  

 ( ) ( ) ( ) ( )L
1/ 40.3 0.012 0.31/ 4 0.012 5

LNu 0.42Ra Pr H / L 0.42 8.37 10 0.71 20− −= = ×  
 
 LNu 5.2=  
 

 L
2k 0.0245W / m Kh Nu 5.2 2.1W / m K.

L 0.06m
⋅

= = = ⋅  
 
The heat loss by free convection is then  
 ( )1 2q h A T T= −  
 
 ( )( )2q 2.1W / m K 1.2m 0.8m 30 C 61W.= ⋅ × ° =      < 
 
COMMENTS:  In such an application, radiation losses should also be considered, and 
infiltration effects could render heat loss by free convection significant. 
 



PROBLEM 9.88 
 
KNOWN:  Dimensions of horizontal rectangular duct and radiation shield.  Temperatures of duct and 
shield walls. 
 
FIND:  Convection heat loss per unit length. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state, (2) Uniform duct and shield wall temperatures, (3) Constant 
properties, (4) Convection occurs in four distinct rectangular regions, (4) Convection is two-
dimensional. 
 
PROPERTIES:  Table A-4, Air (T = 303 K):  ν = 16.19 × 10-6 m2/s, α = 22.94 × 10-6 m2/s, k = 26.5 × 
10-3 W/m ⋅ K, Pr = 0.707, β = 1/T = 0.0033 K-1. 
 
ANALYSIS:   Within the vertical portions of the enclosure, motion will occur in the vertical direction 
and will likely extend from the bottom to the top of the shield wall.  Thus, the aspect ratio for the 
vertical regions is (H + 2t)/t = 0.42/0.06 = 7.  The Rayleigh number based on the enclosure width, t, is 
 

 ( )32 13
51 2

6 2 6 2

9.8 m/s 0.0033 K (40 20) C 0.06 m( ) 3.76 10
16.19 10  m /s 22.94 10  m /st

g T T tRa β
να

−

− −

× × − ° ×−
= = = ×

× × ×
 

 
Therefore, Eq. 9.50 holds, and yields 
 

( )
0.28 1/4 0.28

1/452 0.7070.22 0.22 3.76 10 7 4.59
0.2 0.2 0.707

t t
Pr H tNu Ra

Pr t

−
−+⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = × =⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
and 
 
 3 2

vert / 4.59 26.5 10  W/m K / 0.06 m 2.03 W/m Kth Nu k t −= = × × ⋅ = ⋅  
 
The two horizontal regions differ from one another.  The bottom region is heated from above.  There is 
therefore no air motion and 1tNu = , which yields 
 

3 2
,botbot / 1 26.5 10  W/m K / 0.06 m 0.442 W/m Kth Nu k t −= = × × ⋅ = ⋅  

 
The top region is heated from below and the Rayleigh number exceeds the critical value for 
convection to occur, Rat,crit = 1708.  From Eq. 9.49, 
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PROBLEM 9.88 (Cont.) 

 
 
 

1/3 0.074
,top 0.069 4.85t tNu Ra Pr= =  

 
and 
 

3 2
,toptop / 4.85 26.5 10  W/m K / 0.06 m 2.15 W/m Kth Nu k t −= = × × ⋅ = ⋅  

 
Finally, the convection heat loss per unit length is 
 

conv vert bot top 1 22 ( 2 ) ( ) ( )q h H t h h W T T′ ⎡ ⎤= + + + −⎣ ⎦  

    2 22 2.03 W/m K(0.42 m) (0.442 2.15) W/m K 0.8 m (40 20) C 75.5 W/m⎡ ⎤= × ⋅ + + ⋅ × − ° =⎣ ⎦  < 

 
COMMENTS:  (1) The identified rectangular regions do not satisfy the adiabatic end condition. (2) 
Presumably the shield would have a small emissivity to reduce radiation.  However, if both surfaces 
have an emissivity of one, radiation across the enclosure is given by [ ] 4 4

rad 1 22 2 ( )q W H T Tσ′ = + −  

[ ]8 2 4 4 4 45.67 10  W/m K 2 0.8 m 2 0.3 m (313 293 ) K−= × ⋅ × × + × × − = 278 W/m.  Radiation can be 
more significant than free convection. 
 
 



PROBLEM 9.89  
KNOWN:  Absorber plate and cover plate temperatures and geometry for a flat plate solar 
collector.  
FIND:  Heat flux due to free convection.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Aspect ratio, H/L, is greater than 12.  
PROPERTIES:  Table A-4, Air (325K, 1 atm):  ν = 18.4 × 10-6 m2/s, k = 0.028 W/m⋅K, α = 
26.2 × 10-6 m2/s, Pr = 0.703, β = 3.08 × 10-3 K-1. 
 
ANALYSIS:  For the inclined enclosure,  

 ( ) ( )( ) ( )

( )( )
32 3 13

1 2
L 6 2 6 2

9.8m / s 3.08 10 K 70 35 C 0.05mg T T L
Ra

26.2 10 m / s 18.4 10 m / s

β
αν

− −

− −

× − °−
= =

× ×
 

 
 5

LRa 2.74 10 .= ×  
 
With 70 ,τ τ∗< = °  Table 9.4, 
 

 

( )
L

1.6

L L

1/ 3
L

1708 sin1.81708Nu 1 1.44 1 1
Ra cos Ra cos

Ra cos 1
5830

τ
τ τ

τ

•

•

⎡ ⎤⎡ ⎤ ⎢ ⎥= + − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤⎛ ⎞⎢ ⎥+ −⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

 
 ( )( )LNu 1 1.44 0.99 0.99 1.86 4.28= + + =  
 

 L
2k 0.028W / m Kh Nu 4.28 2.4 W / m K.

L 0.05m
⋅

= = = ⋅  
 
Hence, the heat flux is  
 ( ) ( )2

1 2q h T T 2.4W / m K 70 35 C′′ = − = ⋅ − °  
 
 2q 84 W / m .′′ =          < 
 
COMMENTS:  Radiation exchange between the absorber and cover plates will also 
contribute to heat loss from the collector. 
 



PROBLEM 9.90  
KNOWN: Dimensions and properties of paraffin slab, initial liquid layer thickness. 
Temperature of the hot surface. 
 
FIND: (a) Amount of paraffin melted over a period of 5 hours in response to bottom heating, (b) 
Amount of energy used to melt the paraffin and amount of energy needed to raise the average 
temperature of the liquid paraffin, (c) Amount of paraffin melted over a period of 5 hours with 
top heating. 
 
SCHEMATIC: 
 

 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Constant properties, (2) Neglect change of sensible energy of the liquid, 
(3) One-dimensional heat transfer. 
 
PROPERTIES: Given, see schematic. 
 
ANALYSIS:  (a) Neglecting the change in the sensible energy, the mass melted is 
 

"
sf sf s mp sfM E / h q At / h hA(T T )t / h= = = −  

 
Using the Globe and Dropkin correlation, 
 

 
1/3 0.074

s mph 0.069k g (T T ) / Prβ να⎡ ⎤= −⎣ ⎦  

 
Combining the equations gives 
 

( )

1/3 0.0742 4 1 6 2

6 2 8 2 8 2

2

3

9.8m /s 8 10 K (50 27.4) C 5 10 m /sM 0.15W / m K 0.069
5 10 m /s 8.85 10 m /s 8.85 10 m /s

2.5m 50 27.4 C 5h 3600s / h
    

244 10 J / kg

− − −

− − −

⎡ ⎤ ⎡ ⎤× × × − ° ×
= ⋅ × × ×⎢ ⎥ ⎢ ⎥

× × × ×⎣ ⎦ ⎣ ⎦

× − ° × ×
×

×

 

      = 429 kg          < 
 
(b) The energy consumed to melt the paraffin is  
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PROBLEM 9.90 (Cont.) 
 

3 6
m sfE Mh 429kg 244 10 J / kg 105 10 J= = × × = ×     < 

The energy associated with raising the temperature to T (50 C 27.4 C) / 2 38.7 C= ° + ° = °  is 
 

 
( )

s p mp mp

6
3 8 2

E Mc (T T ) M(k / )(T T )

0.15W / m K     429kg 38.7 27.4 C 10.7 10 J
770kg / m 8.85 10 m /s

ρα

−

= − = −

⎛ ⎞⋅
= × × − ° = ×⎜ ⎟

⋅ ×⎝ ⎠

 

 
The ratio of the change of sensible energy to energy absorbed in the phase change is 
 

 Es/Em = 10.7× 106 J/105×106 J = 0.102      < 
 
(c) The liquid layer is heated from above. Heat transfer in the liquid phase is by conduction. The 
temperature distribution in the liquid is linear if the change in sensible energy of the liquid is 
neglected. Hence, an energy balance on the control surface shown in the schematic yields 
 

 
( )s mp"

sf
T T dsq k h

s dt
ρ

−
= =  

 
Separating variables and integrating 
 

 
i

t s(t)s mp
t 0 ssf

k(T T )
dt sds

hρ =

−
=∫ ∫   or  s mp 2

i
sf

2k(T T )t
s(t) s

hρ
−

= +  

 
Therefore, 
 

 ( ) 2
3 3

2 0.15W / m K 50 27.4 C 5h 3600s / h
s(t 5h) (0.01m)

770kg / m 244 10 J / kg
× ⋅ × − ° × ×

= = +
× ×

 

 
 = 27 × 10-3 m = 27 mm 
 

 [ ] 2 3 3 3
iM A s(t 5h) s 2.5m 770kg / m (27 10 m 10 10 m) 33.4kgρ − −= = − = × × × − × =   < 

 
COMMENTS: (1) For the bottom heated case at t = 5 h, the solid-liquid interface is located at 
M/ρA + si = 429 kg/(770 kg/m3 × 2.5 m2) + 0.01 m = 0.233 m. The Rayleigh numbers associated 
with the bottom heating case range from Ras = gβ(Ts - Tmp)si

3/να = 9.8m/s2 × 8 × 10-4 K-1 × (50 – 
27.4)°C × (0.01m)3/(5 × 10-6 m2/s × 8.85 × 10-8 m2/s) = 4 × 105 to 5 × 109 at t = 5 h. Hence, use of 
the Globe and Dropkin correlation is justified. (2) The ratio of the change in sensible energy to the 
absorption of latent energy is referred to as the liquid phase Stefan number. Since the liquid phase 
Stefan number is much less than unity, it is reasonable to neglect the change of sensible energy of 
the liquid phase when calculating the melting rate or solid-liquid interface location.  



PROBLEM 9.91  
KNOWN:  Rectangular cavity of two parallel, 0.5m square plates with insulated inter-connecting 
sides and with prescribed separation distance and surface temperatures.  
FIND:  Heat flux between surfaces for three orientations of the cavity:  (a) Vertical τ = 90°C, (b) 
Horizontal with τ = 0°, and (c) Horizontal with τ = 180°.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Radiation exchange is negligible, (2) Air is at atmospheric pressure.  
PROPERTIES:  Table A-4, Air (Tf = (T1 + T2)/2 = 300K, 1 atm):  ν = 15.89 × 10

-6 m2/s, k = 0.0263 

W/m⋅K, α = 22.5 × 10
-6 m2/s, Pr = 0.707, β = 1/Tf = 3.333 × 10

-3 K-1. 
 
ANALYSIS:  The convective heat flux between the two cavity plates is 
 ( )conv 1 2q h T T′′ = −  

where h  is estimated from the appropriate enclosure correlation which will depend upon the Rayleigh 
number.  From Eq. 9.25, find 

( ) ( ) ( )33 2 3 1
1 2 5

L 6 2 6 2
g T T L 9.8m / s 3.333 10 K 325 275 K 0.05m

Ra 5.710 10 .
15.89 10 m / s 22.5 10 m / s

β
να

− −

− −
− × × −

= = = ×
× × ×

 

Note that H/L = 0.5/0.05 = 10, a factor which is important in selecting correlations.  
(a) With τ = 90°, for a vertical cavity, Eq. 9.50, is appropriate, 

( )L

0.28 1/ 4 0.28
5 1/ 4

L
Pr H 0.707

Nu 0.22 Ra 0.22 5.71 10 10 4.72
0.2 Pr L 0.2 0.707

−
−= = × × =

+ +
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 L
2

L
k 0.0263W / m Kh Nu 4.72 2.48W / m K
L 0.05m

⋅
= = × = ⋅  

 ( )2 2
convq 2.48 W / m K 325 275 K 124 W / m .′′ = ⋅ − =     < 

 
(b) With τ = 0° for a horizontal cavity heated from below, Eq. 9.49 is appropriate. 

( ) ( )L
1/ 3 0.0741/ 3 0.074 5

L
k k 0.0263W / m Kh Nu 0.069 Ra Pr 0.069 5.710 10 0.707
L L 0.05m

⋅
= = = ×  

 2h 2.92 W / m K= ⋅  

 ( )2 2
convq 2.92 W / m K 325 275 K 146 W / m .′′ = ⋅ − =     < 

(c) For τ = 180° corresponding to the horizontal orientation with the heated plate on the top, heat 
transfer will be by conduction.  That is, 

( )L L
2

L
kNu 1 or h Nu 1 0.0263W / m K / 0.05m 0.526 W / m K.
L

= = ⋅ = × ⋅ = ⋅  

 ( )2 2
convq 0.526 W / m K 325 275 K 26.3W / m .′′ = ⋅ − =     < 

COMMENTS:  Compare the heat fluxes for the various orientations and explain physically their 
relative magnitudes. 



PROBLEM 9.92  
KNOWN:  Horizontal flat roof and vertical wall sections of same dimensions exposed to identical 
temperature differences.  
FIND:  (a) Ratio of convection heat rate for horizontal section to that of the vertical section and (b) 
Effect of inserting a baffle at the mid-height of the vertical wall section on the convection heat rate.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Ends of sections and baffle adiabatic, (2) Steady-state conditions. 
 
PROPERTIES:  Table A-4, Air ( )( )1 2T T T / 2 277K, 1atm := + =   ν = 13.84 × 10-6 m2/s, k = 

0.0245 W/m⋅K, α = 19.5 × 10-6 m2/s, Pr = 0.713. 
 
ANALYSIS:  (a) The ratio of the convection heat rates is 

 hor hor s hor
vert vert s vert

q h A T h .
q h A T h

Δ
= =

Δ
        (1) 

To estimate coefficients, recognizing both sections have the same characteristics length, L = 0.1m, 
with RaL = gβΔTL3/να find 
 

 
( ) ( )( ) ( )32

6
L 6 2 6 2

9.8m / s 1/ 277K 18 10 K 0.1m
Ra 3.67 10 .

13.84 10 m / s 19.5 10 m / s− −
× − −

= = ×
× × ×

 

 
The appropriate correlations for the sections are Eqs. 9.49 and 9.52 (with H/L = 30), 

 ( )L L
0.31/ 3 0.074 1/ 4 0.012

hor L vert LNu 0.069 Ra Pr Nu 0.42 Ra Pr H / L .−= =  (3,4) 

Using Eqs. (3) and (4), the ratio of Eq. (1) becomes, 
 

( )

( ) ( )

( ) ( ) ( )

1/ 3 0.07461/ 3 0.074
hor L

0.3 1/ 41/ 4 0.012 0.012 0.36vert L

0.069 3.67 10 0.713q 0.069 Ra Pr
1.57.

q 0.42 Ra Pr H / L 0.42 3.67 10 0.713 30
− −

×
= = =

×

 < 

 
(b) The effect of the baffle in the vertical wall section is to reduce H/L from 30 to 15.  Using Eq. 9.52, 
it follows, 

 
( )
( )

0.3 0.3
baf baf baf

0.3
H / Lq h 15 1.23.

q h 30H / L

− −

−
⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

     < 

That is, the effect of the baffle is to increase the convection heat rate.  
COMMENTS:  (1) Note that the heat rate for the horizontal section is 57% larger than that for the 
vertical section for the same (T1 – T2).  This indicates the importance of heat losses from the ceiling or 
roofs in house construction.  (2) Recognize that for Eq. 9.52, the Pr > 1 requirement is not completely 
satisfied.  (3) What is the physical explanation for the result of part (b)? 



PROBLEM 9.93  
 

 
KNOWN: Dimensions of horizontal air space separating plates of known temperature.  
 
FIND: (a) Convective heat flux for a 50 mm gap, hot and cold plate temperatures of Th = 200°C 
and Tc = 50°C, respectively, (b) Minimum number of thin aluminum sheets needed to suppress 
convection, (c) Conduction heat flux with the sheets in place. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Constant properties, (2) Steady-state conditions, (3) Foil sheets have 
negligible conduction resistance and negligible thickness. 
 
PROPERTIES: Table A.4, air: (Tf = (200°C + 50°C)/2 = 125°C): k = 0.03365 W/m⋅K, ν = 
2.619 × 10-5 m2/s, α = 3.796 × 10-5 m2/s, Pr = 0.6904. 
 
ANALYSIS: (a) The Rayleigh number is  
 

( )

3
h c

2 3 5 2 5 2

5

Ra g (T T )L /
1     9.8m /s 200 50 C (0.05m) /(2.619 10 m /s 3.796 10 m /s)

(125 273)K

     4.64 10

β ν α

− −

= − ⋅

= × × − ° × × × ×
+

= ×

 

 
Using the Globe and Dropkin correlation, 
 
 

1/3 0.074 3 5 1/3 0.074
Lh 0.069(k / L)Ra Pr 0.069 (0.03365W / m K /5 10 m) (4.64 10 ) (0.6904)−= = × ⋅ × × × ×

 
       = 3.50 W/m2⋅K          
 

Therefore, " 2 2
convq 3.50W / m K (200 50) C 525W / m= ⋅ × − ° =     < 

 
(b) For RaLg < 1708, there will be no convection in an air layer. The number of gaps is Ng = N + 
1. The gap width is Lg = L/(N + 1) and, as a first estimate, the temperature difference across each 
gap is ΔTg = (Th – Tc)/(N + 1). We require 1708 > RaLg, or 
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PROBLEM 9.93 (Cont.) 
 

 

  
( )( ) [ ]3

h cg T T N 1 L /(N 1)
1708

β
ν α

⎡ ⎤− + +⎣ ⎦ <
⋅

 

 
or 
 

[ ] ( ) [ ]32 1

5 2 5 2

9.8m /s 1/(273 125) K 200 50 C /(N 1) 0.05m /(N 1)
1708

2.619 10 m /s 3.796 10 m /s

−

− −

⎡ ⎤× + × − ° + × +⎣ ⎦ <
× × ×

 

 

from which we may determine N > 3.06.  Therefore, we specify N = 4.   < 
 
(c) Neglecting the thickness and thermal resistance of the foil sheets, 
 

 " 2
cond h cq k(T T ) / L 0.03365W / m K (200 50) C / 0.05m 101W / m= − = ⋅ × − ° =  <  

 
COMMENTS: (1) Installation of the foils results in a 100 – 101/525 = 81 % reduction in heat 
transfer across the large gap. (2) Because of the temperature dependence of the thermophysical 
properties, we should check to make sure the Rayleigh numbers associated with the top and 
bottom gaps do not exceed 1708.  Assuming ΔTg = (Th – Tc)/(N + 1) = 150°C/(5) = 30°C and 
evaluating properties at the average gap temperatures of 65°C and 185°C, respectively, we find 
RaLg = 1569 for the top gap and 394 for the bottom gap. We therefore conclude that convection is 
in fact suppressed in all the gaps. (3) A more accurate handling of the thermophysical property 
variation would account for the temperature variation of the thermal conductivity in each gap and, 
in turn, the variation in the temperatures of the individual foil sheets. Equating the conduction 
heat transfer through each gap and evaluating the thermal conductivity for each gap at the average 
air temperature in the gap, one finds (using an iterative procedure or IHT) foil temperatures of 
(top to bottom): T1 = 84.3°C, T2 = 116.1°C, T3 = 145.7°C and T4 = 173.6°C. Values of RaLg are 
1742 and 340 for the top and bottom gaps, respectively. Hence, with 4 foils, the top gap will 
experience very weak convection and a conservative specification would call for installation of N 
= 5 foils. (4) As will become evident in Chapter 13, the foils will also reduce radiation heat 
transfer across the gap. 
 



PROBLEM 9.94  
KNOWN:  Double-glazed window of variable spacing L between panes filled with either air or 
carbon dioxide.  
FIND:  Heat transfer across window for variable spacing when filled with either gas.  Consider these 
conditions (outside, T1; inside, T2):  winter (-10, 20°C) and summer (35°C, 25°C). 
 
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Radiation exchange is negligible, (3) Gases are at 
atmospheric pressure, (4) Perfect gas behavior.  
PROPERTIES:  Table A-4:  Winter, ( )T 10 20 C / 2 288 K,= − + ° =  Summer, ( )T 35 25 C / 2 303 K := + ° =  
 
     Gas  T   α  ν    k × 103 
  (1 atm)  (K)     (m2/s × 106)     (m2/s × 106)  (W/m⋅K) 
 
  Air  288  20.5  14.82    24.9 
  Air  303  22.9  16.19    26.5 
  CO2  288  10.2    7.78    15.74 
  CO2  303  11.2    8.55    16.78 
 
ANALYSIS:  The heat flux by convection across the window is 
 ( )1 2q h T T′′ = −  
where the convection coefficient is estimated from the correlation of Eq. 9.53 for large aspect ratios  
10< H/L < 40, for which h  is independent of L, 

 L
1/ 3
LNu hL / k 0.046Ra .= =  

Substituting numerical values for winter (w) and summer (s) conditions, 

 
( ) ( )( )2 3

9 3
L,w,air 6 2 6 2

9.8 m / s 1/ 288 K 20 10 KL
Ra 3.360 10 L

20.5 10 m / s 14.82 10 m / s− −

− −
= = ×

× × ×
 

 
2 2

8 3 10 3 9 3
L,s,air L,w,CO L,s,CORa 8.724 10 L Ra 1.286 10 L Ra 3.378 10 L= × = × = ×  

the heat transfer coefficients are 

 ( ) ( )1/ 39 3 2
w,airh 0.0249 W / m K / L 0.046 3.360 10 L 1.72W / m K= ⋅ × × = ⋅  

 2 2
2 2 2

s,air w,CO s,COh =1.16W/m K h =1.70W / m K h 1.16 W / m K.⋅ ⋅ = ⋅  

Thus,  

2 2
2 2 2 2

w,air s,air w,CO s,COq 51.5 W / m q 11.6 W / m q 50.9 W / m q 11.6 W / m .′′ ′′ ′′ ′′= = = =  

COMMENTS: (1) The correlation is valid for 106 < RaL < 109.  As an example, for a spacing L = 10 
mm, the Rayleigh number would be less than 106 in all four cases, and Eq. 9.52 should be used 
instead.  However, note that H/L = 150, which is out of the range of validity of both correlations.  (2) 
For this particular case, the smaller k for CO2 is almost exactly offset by the smaller α and νwhich 
lead to larger RaL, and there is very little difference between the results for air and CO2.  



PROBLEM 9.95  
KNOWN:  Dimensions of double pane window.  Thickness of air gap.  Temperatures of room and 
ambient air.  
FIND:  (a) Temperatures of glass panes and heat rate through window, (b) Resistance of glass pane 
relative to smallest convection resistance.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state, (2) Negligible glass pane thermal resistance, (3) Constant 
properties. 
 
PROPERTIES:  Table A-3, Plate glass:  kp = 1.4 W/m⋅K.  Table A-4, Air (p = 1 atm).  Tf,i = 287.6K: 
νi = 14.8 × 10-6 m2/s, ki = 0.0253 W/m⋅K, αi = 20.9 × 10-6 m2/s, Pri = 0.710, βi = 0.00348 K-1.  T  = 
(Ts,i + Ts,o)/2 = 272.8K:  ν = 13.49 × 10-6 m2/s, k = 0.0241 W/m⋅K, α = 18.9 × 10-6 m2/s, Pr = 0.714, 
β = 0.00367 K-1.  Tf,o = 258.2K:  νo = 12.2 × 10-6 m2/s, ko = 0.0230W/m⋅K, α = 17.0 × 10-6 m2/s, Pr 
= 0.718, βo = 0.00387 K-1. 
 
ANALYSIS:  (a) The heat rate may be expressed as 

 ( )2
o o s,o ,oq q h H T T∞= = −         (1) 

 
 ( )2

g g s,i s,oq q h H T T= = −         (2) 
 
 ( )2

i i ,i s,iq q h H T T∞= = −         (3) 

where oh  and ih  may be obtained from Eq. (9.26), 

 

( )
H

2
1/ 6
H

8/ 279 /16

0.387 Ra
Nu 0.825

1 0.492 / Pr

⎧ ⎫
⎪ ⎪⎪ ⎪= +⎨ ⎬
⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 
with ( ) 3

H o s,o ,o o oRa g T T H /β α ν∞= −  and ( ) 3
H i ,i s,i i iRa g T T H / ,β α ν∞= −  respectively.  Assuming 

4 7
L g10 Ra 10 , h< <  is obtained from 

 

 ( )L
0.31/ 4 0.012

LNu 0.42 Ra Pr H / L −=  
 
where ( ) 3

L s,i s,oRa g T T L / .β αν= −   A simultaneous solution to Eqs. (1) – (3) for the three unknowns 
yields 
 
          Continued … 



PROBLEM 9.95 (Cont.) 
 

 s,i s,oT 9.1 C, T 9.6 C, q 35.7 W= ° = − ° =       < 
 
where 2 2

i oh 3.29 W / m K, h 3.45 W / m K= ⋅ = ⋅  and 2
gh 1.90 W / m K.= ⋅  

 
(b) The unit conduction resistance of a glass pane is 2

cond p pR L / k 0.00429 m K / W,′′ = = ⋅  and the 

smallest convection resistance is ( )conv,o oR 1/ h 0.290 m .2 K / W′′ = = ⋅   Hence, 
 
 cond conv,minR R′′ ′′<<          < 
 
and it is reasonable to neglect the thermal resistance of the glass.  
COMMENTS:  (1) Assuming a heat flux of 35.7 W/m2 through a glass pane, the corresponding 
temperature difference across the pane is ( )p pT q L / k 0.15 C.′′Δ = = °   Hence, the assumption of an 
isothermal pane is good.  (2) Equations (1) – (3) were solved using the IHT workspace and the 
temperature-dependent air properties provided by the software.  The property values provided in the 
PROPERTIES section of this solution were obtained from the software. 
 



 
PROBLEM 9.96 

 
KNOWN:  Top surface of an oven maintained at 60°C. 
 
FIND:  (a) Reduction in heat transfer from the surface by installation of a cover plate with specified air 
gap; temperature of the cover plate, (b) Effect of cover plate spacing. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Oven surface at T1 = Ts for both cases, (3) Negligible 
radiative exchange with surroundings and across air gap. 
 
PROPERTIES:  Table A.4, Air (Tf = (Ts + T∞)/2 = 315 K, 1 atm):  ν = 17.40 × 10-6 m2/s, k = 0.0274 
W/m⋅K, α = 24.7 × 10-6 m2/s;  Table A.4, Air ( T  = (T1 + T2)/2 and Tf2 = (T2 + T∞)/2):  Properties 
obtained form Correlations Toolpad of IHT. 
 
ANALYSIS:  (a) The convective heat loss from the exposed top surface of the oven is qs = h As(Ts - T∞).  
With L = As/P = (0.5 m)2/(4 × 0.5 m) = 0.125 m, 
 

 
( )( ) ( )323

6
L 6 2 6 2

9.8m s 1 315K 60 23 C 0.125mg TLRa 5.231 10
17.40 10 m s 24.7 10 m s

β
να − −

−Δ
= = = ×

× × ×

o

. 

 
The appropriate correlation for a heated plate facing upwards, Eq. 9.30, is 
 

 1/ 4L L
hLNu 0.54Ra
k

= =    104 ≤ RaL ≤ 107 
 

 ( )1/ 46 20.0274 W m Kh 0.54 5.231 10 5.66 W m K
0.125m

⎛ ⎞⋅
= × × = ⋅⎜ ⎟
⎝ ⎠

 

 
Hence, the heat rate for the exposed surface is 

 ( ) ( )22
sq 5.66 W m K 0.5m 60 23 C 52.4 W= ⋅ − =o . < 

 
 With the cover plate, the surface temperature (Ts = T2) is unknown and must be obtained by 
performing an energy balance at the top surface. 

 
  Continued… 



 
PROBLEM 9.96 (Cont.) 

 
Equating heat flow across the gap to that from the top surface, qg = qcp.  Hence, for a unit surface area, 
 ( ) ( )g 1 2 cp 2h T T h T T∞− = −  

where cph  is obtained from Eq. 9.30 and gh  is evaluated from Eq. 9.49. 

 g 1/ 3 0.074L L
h L

Nu 0.069Ra Pr
k

= =  
 
Entering this expression from the keyboard and Eq. 9.30 from the Correlations Toolpad, with the 
Properties Toolpad used to evaluate air properties at T  and Tfs, IHT was used with L = 0.05 m to obtain 

 T2 = 35.4°C                            qcp = 13.5 W < 
 
where 2

gh 2.2 W m K= ⋅  and cph  = 4.4 W/m2⋅K.  Hence, the effect of installing the cover plate 

creating the enclosure is to reduce the heat loss by 
 

 s cp

s

q q 52.4 13.5100 100 74%
q 52.4
− −

× = × = . < 

 
Note, however, that for L = 0.05 m, RaL = 2.05 × 105 is slightly less than the lower limit of applicability 
for Eq. 9.49. 
 
(b) If we use the foregoing model to evaluate T2 and qcp for 0.005 ≤ L ≤ 0.05 m, we find that there is no 

effect.  This seemingly unusual result is a consequence of the fact that, in Eq. 9.49, LNu  ∝ 1/ 3
LRa , in 

which case gh  is independent of L.  However, RaL and NuL do decrease with decreasing L, eventually 

approaching conditions for which transport across the airspace is determined by conduction and not 
convection.  If transport is by conduction, the heat rate must be determined from Fourier’s law, for which 

gq′′  = (k/L)(T1 - T2) and the equivalent, pseudo, Nusselt number is LNu hL k 1= = .  If  this expression 

is used to determine gh  in the energy balance, qcp increases with decreasing L.  The results would only 

apply if there is negligible advection in the airspace and hence for Rayleigh numbers less than 1708, 
which corresponds to L ≈ 10.5 mm.  For this value of L, qcp = 15.4 W exceeds that previously determined 
for L = 50 mm.  Hence, there is little variation in qcp over the range 10.5 < L < 50 mm.  However, qcp 
increases with decreasing L below 10.5 mm, achieving a value of 24.2 W for L = 5 mm.  Hence, a value 
of L slightly larger than 10.5 mm could be considered an optimum. 
 
COMMENTS:  Radiation exchange across the cavity and with the surroundings is likely to be significant 
and should be considered in a more detailed analysis. 



PROBLEM 9.97  
 

 
KNOWN: Dimensions of air space between windows, dimensions of individual blinds. 
Temperatures of windows. 
 
FIND: Convection heat transfer rates between windows when the blinds are in the open and 
closed positions, respectively. Explanation of the small effect of the closed blinds on the 
convective heat transfer rate. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Constant properties, (2) Steady-state conditions, (3) Isothermal windows, 
(4) Blinds are adiabatic, (5) Neglect presence of the blind when in the closed position. 
 
PROPERTIES: Table A.4, air: (Tf = 273 K): k = 0.02414 W/m⋅K, ν = 1.349 × 10-5 m2/s, α = 
1.894 × 10-5 m2/s, Pr = 0.714. 
 
ANALYSIS:    
Case A, Open Position The aspect ratio of a typical cell is Ho/L = 25/25 = 1. The Rayleigh 
number is 
 

3 3
s,o s,i 2 1 3

5 2 5 2
(T T )L (20 ( 20)) C (0.025m)Ra g 9.8m /s (1/ 273)K 87.81 10

1.349 10 m /s 1.894 10 m /s
β

να
−

− −

− − − ° ×
= = × × = ×

× × ×
 
and (RaPr)/(0.2 + Pr) = (87.81 ×103 × 0.714)/(0.2 + 0.714) = 68,600. Therefore, Equation 9.51 
may be used, resulting in 
 

 
0.29

3
L

0.714Nu 0.18 87.81 10 4.55
(0.2 0.714)

⎡ ⎤
= × × =⎢ ⎥+⎣ ⎦

  and 

 
 2

L Lh Nu k / L 4.55 0.02414W / m K / 0.025m 4.39W / m K= = × ⋅ = ⋅  
 
The same value of the convection heat transfer coefficient exists for each cell. Hence, 
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PROBLEM 9.97 (Cont.) 
 

 
2

convq 4.39W / m K 0.5m 0.5m (20 C ( 20 C)) 43.9W= ⋅ × × × ° − − ° =   < 
 
Case B, Closed Position  The aspect ratio of the cavity is Hc/L = 0.5 m/0.025 m = 20. The 
Rayleigh number is 87.81 × 103, as before. Therefore, select Equation 9.52, resulting in 
 
 3 1/ 4 0.012 3

LNu 0.42 (87.81 10 ) (0.714) (20) 2.931−= × × × × =  
 
 2

L Lh Nu k / L 2.931 0.02414W / m K / 0.025m 2.83W / m K= = × ⋅ = ⋅   Hence, 
 

2
convq 2.83W / m K 0.5m 0.5m (20 C ( 20 C)) 28.3W= ⋅ × × × ° − − ° =   < 

 

The closed blinds may be neglected if the core of the air layer is nearly stagnant.   < 
 
COMMENTS: (1) Equation 9.52 has been extrapolated slightly outside of its range of 
application with respect to the suggested Prandtl number limits. (2) In the open blind case, 
recirculating flow will exist in each small square sub-enclosure, yielding larger values of the 
convection coefficient relative to the closed blind case. (3) The blind material will have a higher 
thermal conductivity than air, and the open blinds will serve as extended surfaces, further 
increasing heat loss through the window. Since the blinds will participate in the heat transfer 
when in the open position, treating the top and bottom surfaces of the small square sub-enclosures 
is an aggressive assumption. (4) Net radiation transfer between the two window surfaces will be 
greater for the open blind case.  
 
 



PROBLEM 9.98 
 
KNOWN:  Dimensions and surface temperatures of a flat-plate solar collector. 
 
FIND:  (a) Heat loss across collector cavity, (b) Effect of plate spacing on the heat loss. 
 
SCHEMATIC:   

 
ASSUMPTIONS:  Negligible radiation. 
PROPERTIES:  Table A.4, Air ( T  = (T1 + T2)/2 = 323 K):  ν = 18.2 × 10-6 m2/s, k = 0.028 W/m⋅K, α = 
25.9 × 10-6 m2/s, β = 0.0031 K-1. 
ANALYSIS:  (a) Since H/L = 2 m/0.03 m = 66.7 > 12, τ < τ* and Eq. 9.54 may be used to evaluate the 
convection coefficient associated with the air space.  Hence, q = h As(T1 - T2), where h  = (k/L) LNu  and  

 
( )1.6 1/ 3

L
L

L L

1708 sin1.81708 Ra cos
Nu 1 1.44 1 1 1

Ra cos Ra cos 5830

τ τ

τ τ

••

= + − − + −
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎛ ⎞⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

 

For L = 30 mm, the Rayleigh number is 

 
( ) ( )( )( )2 1 33

41 2
L 6 2 6 2

9.8 m s 0.0031K 40 C 0.03 mg T T L
Ra 6.96 10

25.9 10 m s 18.2 10 m s

β

αν

−

− −

−
= = = ×

× × ×

o

 

and RaL cosτ = 3.48 × 104.  It follows that LNu  = 3.12 and h  = (0.028 W/m⋅K/0.03 m)3.12 = 2.91 
W/m2⋅K.  Hence, 

 ( )( )2 2q 2.91W m K 4 m 40 C 466 W= ⋅ =o  < 

(b) The foregoing model was entered into the workspace of IHT, and results of the calculations are plotted 
as follows. 
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The plots are influenced by the fact that the third and second terms on the right-hand side of the 
correlation are set to zero at L ≈ 0.017 m and L ≈ 0.011 m, respectively.  For the range of conditions, 
minima in the heat loss of q ≈ 410 W and q = 397 W are achieved at L ≈ 0.012 m and L = 0.05 m, 
respectively.  Operation at L ≈ 0.02 m corresponds to a maximum and is clearly undesirable, as is 
operation at L < 0.011 m, for which conditions are conduction dominated. 
 
COMMENTS:  Because the convection coefficient is low, radiation effects would be significant. 
 



PROBLEM 9.99  
KNOWN:  Cylindrical 120-mm diameter radiation shield of Example 9.5 installed concentric with a 
100-mm diameter tube carrying steam; spacing provides for an air gap of L = 10 mm.  
FIND:  (a) Heat loss per unit length of the tube by convection when a second shield of diameter 140 m 
is installed; compare the result to that for the single shield calculation of the example; and (b) The heat 
loss per unit length if the gap dimension is made L = 15 mm (rather than 10 mm).  Do you expect the 
heat loss to increase or decrease?  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, and (b) Constant properties. 
 
PROPERTIES:  Table A-4, Air (Tf = (Ts + T∞)/2 = 350 K, 1 atm):  ν = 20.92 × 10-6 m2/s, k = 0.030 
W/m⋅K, Pr = 0.700.  
ANALYSIS:  (a) The thermal circuit representing the tube with two concentric cylindrical radiation 
shields having gap spacings L = 10 mm is shown above.  The heat loss per unit length by convection is 
 

 i 2 i 1
g1 g2 g1

T T T Tq
R R R

− −′ = =
′ ′ ′+

        

 (1) 
 
where the gR′  represents the thermal resistance of the annular gap (spacing).  From Eqs. 9.58, 59 and 

60, find 
 

 
( )o i

g
eff

n D / D
R

2 kπ
′ =

l
         (2) 

 ( )
1/ 4 1/ 4eff

c
k Pr0.386 Ra

k 0.861 Pr
⎛ ⎞= ⎜ ⎟+⎝ ⎠

      (3) 

         

 ( ) 3
c o i cRa g T T L /= −β αν         (4) 

where  Lc = 
[ ]4 / 3

o i
3 / 5 3 / 5 5 / 3

i o

2 ln(r / r )

(r r )− −+
 

 
where the properties are evaluated at the average temperature of the bounding surfaces, Tf = (Ti + 
To)/2.  Recognize that the above system of equations needs to be solved iteratively by initial guess 
values of T1, or solved simultaneously using equation-solving software with a properties library.  The 
results are tabulated below. 
          Continued … 
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(b) Using the foregoing relations, the analyses can be repeated with L = 15 mm, so that Di = 130 mm 
and D2 = 160 mm.  The results are tabulated below along with those from Example 9.5 for the single-
shield configuration. 
 

Shields L(mm) g1R′ (m⋅K/W) g2R′ (m⋅K/W) totR′ (m⋅K/W) T1(°C) q′ (W/m) 

1 10 0.7658 --- 0.76 --- 100 
2 10 1.008 0.8855 1.89 74.8 44.9 
2 15 0.9751 0.8224 1.80 73.9 47.3 

 
COMMENTS:  (1) The effect of adding the second shield is to more than double the thermal 
resistance of the shields to convection heat transfer. 
 
(2) The effect of gap increase from 10 to 15 mm for the two-shield configuration is slight.  Increasing 
L allows for greater circulation in the annular space, thereby reducing the thermal resistance. 
 
(3) Note the difference in thermal resistances for the annular spaces g1R′  of the one-and two-shield 

configurations with L = 10 mm.  Why are they so different (0.7658 vs. 1.008 m⋅K/W, respectively)? 
 
(4) See Example 9.5 for details on how to evaluate the properties for use with the correlation. 
 



PROBLEM 9.100 
 
 
KNOWN:  Concentric cylinders or concentric spheres of uniform inner and outer surface 
temperatures. 
 
FIND:  Expressions for the critical Rayleigh numbers, Rac,crit and Ras,crit below which keff is 
minimized. Evaluate Rac,crit and Ras,crit for air, water, and glycerin at a mean temperature of 300 K. 
Comment on the convection heat transfer rate associated with Rac,crit and Ras,crit. 
 
 
SCHEMATIC: 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Constant properties. 
 
PROPERTIES:  Table A.4, air (300 K): Pr = 0.707. Table A.6 water (300 K): Pr = 5.83. Table A.5 
glycerin (300 K): Pr = 6780. 
 
ANALYSIS:  When heat transfer across the gap is conduction-dominated, keff = k. When convection 
becomes significant, keff/k > 1. Hence, the minimum heat transfer rate occurs when keff/k = 1. 
 
Concentric Cylinders: (Equation 9.59) 
 

   
1/ 4

1/ 4eff
,crit1 0.386

0.861 c
k Pr Ra
k Pr

⎛ ⎞= = ⎜ ⎟+⎝ ⎠
   or   

41/ 4

,crit
1 0.861 0.86145.0

0.386c
Pr PrRa

Pr Pr

⎡ ⎤+ +⎛ ⎞ ⎛ ⎞= =⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 < 

 
Concentric Spheres:  (Equation 9.62) 
 

    
1/ 4

1/ 4eff
,crit1 0.74

0.861 s
k Pr Ra
k Pr

⎛ ⎞= = ⎜ ⎟+⎝ ⎠
  or  

41/ 4

,crit
1 0.861 0.8613.33

0.74s
Pr PrRa

Pr Pr

⎡ ⎤+ +⎛ ⎞ ⎛ ⎞= =⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

    < 

 
For the three fluids of interest the critical Rayleigh numbers, Rac,crit and Ras,crit are: 
 
   Concentric Cylinders, Rac,crit Concentric Spheres, Ras,crit    < 
Air   100    7.39 
Water   51.6    3.82 
Glycerin  45.0    3.33 
 
For specified inner and outer surface temperatures and inner surface radius, the heat transfer rates vary 
with the outer surface radius as shown in the figure on the following page. For Rayleigh numbers 
exceeding Rac,crit or Ras,crit the heat transfer rate increases as free convection becomes more vigorous. 
For Rayleigh numbers less than Rac,crit or Ras,crit conduction occurs within the fluid and the conduction 
heat transfer rate increases as the gap between the surfaces becomes small. Hence conditions 
associated with Rac,crit or Ras,crit correspond to the minimum heat transfer rate. 
 

Continued... 
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            < 
 
 
 
 
 
 
COMMENTS: (1) For glycerin, both correlations have been extrapolated slightly beyond the 
recommended upper limit of the Prandtl number. (2) The critical Rayleigh numbers for the cylinder 
are substantially larger than those for the sphere. This reflects the fact that, for a given ro/ri ratio, the 
concentric sphere arrangement has a lower surface area to gas volume ratio than the concentric 
cylinder arrangement. Hence, the fluid is less constrained by the no-slip boundary conditions of the 
solid surfaces in the concentric sphere geometry.  
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PROBLEM 9.101  
KNOWN:  Operating conditions of a concentric tube solar collector.  
FIND:  Convection heat transfer per unit length across air space between tubes.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Long tubes.  
PROPERTIES:  Table A-4, Air (T = 50°C, 1 atm):  ν = 18.2 × 10-6 m2/s, k = 0.028 W/m⋅K, 
α = 25.9 × 10-6 m2/s, Pr = 0.71, β = 0.0031 K-1. 
 
ANALYSIS:  The length scale in Rac is given by Eq. 9.60,  
  

[ ] [ ]4/3 4/3
o i

c -3/5 -3/5 5/3 5/3-3/5 -3/5i o

2 ln (r /r ) 2 ln (0.075/0.05)
L  =  =  = 0.0114 m

(r +r ) (0.075 m) + (0.05 m)⎡ ⎤
⎣ ⎦

 

Then 

 Rac

3 2 -1 3
s c

-6 2 -6 2
gβ(T  - T )L 9.8 m/s × 0.0031 K (70 - 30)°C (0.0114 m)=  =  = 3860

να 18.2 × 10  m /s × 25.9 × 10  m /s
∞  

 
Next, Eq. 9.59 may be used, in which case  

 ( )
1/ 4 1/ 4

eff c
Prk 0.386k Ra

0.861 Pr
⎛ ⎞= ⎜ ⎟+⎝ ⎠

 
 

 ( ) ( )
1/ 4

1/ 4
eff

0.71k 0.386 0.028W / m K 3860 0.07 W / m K.
0.861 0.71

⎛ ⎞= ⋅ = ⋅⎜ ⎟+⎝ ⎠
 

 
From Eq. 9.58, it then follows that  

 
( ) ( ) ( )

( ) ( )eff
i o

o i

2 0.07 W / m K2 kq T T 70 30 C 43.4 W / m.
ln r / r ln 0.15 / 0.10

⋅
′ = − = − ° =

ππ   < 

 
COMMENTS:  An additional heat loss is related to thermal radiation exchange between the 
inner and outer surfaces. 
 



PROBLEM 9.102 
 
 
KNOWN:  Concentric cylinders. Radius of inner cylinder. Temperature of inner cylinder and ambient 
temperature.  
 
FIND:  Outer diameter for minimizing heat loss. Comparison of the heat loss to the situation with no 
outer cylinder. 
 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Constant properties, (2) Negligible radiation heat transfer, (3) Steady state, (4) 
Isothermal and thin outer cylinder, (5) Quiescent environment. 
 
PROPERTIES:  Table A.4, air (50°C = 323 K): k = 0.028 W/m⋅K, α = 2.59 × 10-5 m2/s, ν = 1.82 × 
10-5 m2/s, β = 0.003096 K-1, Pr = 0.704.  
 
ANALYSIS:  Neither the radius of the outer cylinder nor the temperature of the outer cylinder is 
specified. Therefore, an iterative process must be used in order to solve for the optimal radius of the 
outer cylinder and its temperature. Furthermore, it is not known whether the fluid motion in the 
annulus is vigorous enough to produce an effective thermal conductivity that is greater than unity. 
Hence, the analysis will be carried out based upon the assumption of either conduction or convection 
occurring in the gap; the actual situation corresponds to the larger heat transfer rate per unit length. 
 
For the exterior of the outer cylinder, ( ) ( )' 2 2 30 Co o o o o o oq h r T T h r Tπ π∞= − = − °    (1) 
and the Churchill and Chu correlation may be used to evaluate ho, 
 

  
( )

2

1/6

8/ 279 /16

0.028 W/m K 0.3870.60
2 1 0.559 / 0.704

D
o

o

Rah
r

⎧ ⎫
⎪ ⎪⋅

= +⎨ ⎬
⎡ ⎤⎪ ⎪+⎢ ⎥⎣ ⎦⎩ ⎭

   (2) 

 

where   
3 2 1 3

5 2 5 2
( )(2 ) 9.81 m/s 0.003096 K ( 30 C)(2 )

1.82 10 m /s 2.59 10 m /s
o o o o

D
g T T r T rRa β

να

−
∞

− −
− − °

= =
× × ×

  (3) 

 
 
For the annular region between the cylinders,  
 

' eff eff2 ( ) 2 (70 C )
ln( / ) ln( / 0.020 m)

i o o
i

o i o

k T T k Tq
r r r

π π− ° −
= =     (4) 

 
where the Raithby and Hollands formulation may be used to determine the value of keff, 
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1/ 4
1/ 4 1/ 4

eff
0.7040.386 0.386 0.028 W/m K

0.861 0.861 0.704c c
Prk k Ra Ra

Pr
⎛ ⎞ ⎛ ⎞= = × ⋅⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 (5) 

 
 
The characteristic length in the Rayleigh number is 
 

  [ ]
( )

[ ]
( )( )

4 /3 4 /3

5/3 5/33/5 3/5 3/5 3/5

2 ln( / ) 2 ln( / 0.020 m)

0.020 m

o i o
c

i o o

r r r
L

r r r− − − −
= =

+ +
    (6) 

 
and     Rac = gβ(Ti - To)Lc

3/να.       (7) 
 
From the surface energy balance shown in the schematic, 
 

  i oq q′ ′=         (8) 
Equations 1 through 8 include 9 unknowns, iq′ , oq′ , Lc, ro, To, keff, RaD, Rac, and ho.  IHT was used to 
solve these equations simultaneously over a range of ro, and the results are plotted below. 
 
For small gap widths, it is expected that augmentation of heat transfer rates due to free convection in 
the annulus will be small. For these cases, 
 
  keff = k = 0.028 W/m⋅K        (8) 
 
Equations 1 through 4, 7 and 8 may be solved simultaneously for iq′ , oq′ , ro, To and ho. IHT was used 
to solve the equations, and to plot the results shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Heat losses are calculated based upon the two assumptions of (i) convection in the annulus and (ii) 
conduction in the annulus. The actual heat loss sensitivity to the outer cylinder radius follows the 
conduction curve until the optimum point is reached, then follows the convection curve after the 
optimal outer radius. From IHT it is determined that the optimal outer radius is  
 ro,opt = 0.0289 m = 28.9 mm, yielding a heat transfer rate of q′ = 11.99 W/m.  < 
 

Continued… 
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Without the outer cylinder, the heat loss is determined by the Raithby and Hollands formula with 
 

     
3 2 1 3

5 2 5 2
( )(2 ) 9.81 m/s 0.003096 K (70 C 30 C)(0.040m)

1.82 10 m /s 2.59 10 m /s
i i

D
g T T rRa β

να

−
∞

− −
− ° − °

= =
× × ×

= 165 × 103 

 

Hence,  
 

 
( )

( )

2
1/63

8/ 279 /16

0.387 165 100.028 W/m K 0.060
0.040 m 1 0.559 / 0.707

h

⎧ ⎫
×⎪ ⎪⋅

= + =⎨ ⎬
⎡ ⎤⎪ ⎪+⎢ ⎥⎣ ⎦⎩ ⎭

4.16 W/m2⋅K 

 
and 22 ( ) 2 0.02 m  4.16W/m K (70 C 30 C) 20.9 W/mi iq rh T Tπ π∞′ = − = × × ⋅ × ° − ° = .  < 
 
The scheme reduces the convective heat transfer loss by [(20.9 – 12)/20.9] × 100 = 43 %. The scheme 
is somewhat effective. 
 
 
COMMENTS: (1) For the outer cylinder of optimal radius, the surface temperature is To = 44.9°C. 
The Rayleigh number for the outer cylinder is 1.9 × 105. (2) The IHT code is shown below. 

 
// Air property functions : From Table A.4 
// Units: T(K); 1 atm pressure 
rho = rho_T("Air",T) // Density, kg/m^3 
cp = cp_T("Air",T) // Specific heat, J/kg·K 
mu = mu_T("Air",T) // Viscosity,  N·s/m^2 
nu = nu_T("Air",T) // Kinematic viscosity, m^2/s 
k = k_T("Air",T) // Thermal conductivity, W/m·K 
alpha = alpha_T("Air",T) // Thermal diffusivity, m^2/s 
Pr = Pr_T("Air",T) // Prandtl number 
beta = 1/T  // Volumetric coefficient of expansion, K^(-1); ideal gas 
 
g = 9.8   //gravitational acceleration, m/s^2 
 
//Thermal Conditions and Geometry 
 
Ti = 70 + 273 //Inner cylinder temperature, K 
Tinf = 30 + 273 //Ambient temperature, K 
T = (Ti + Tinf)/2 //Average temperature, K 
ri = 20/1000  //Inner cylinder radius, m 
ro = 30/1000  //Outer cylinder radius, m 
 
//Convection in Annular Region 
Lc = num/den 
num = 2*(ln(ro/ri))^(4/3) 
den = (ri^-0.6 + ro^-0.6)^(5/3) 
Rac = g*beta*(Ti - Tocv)*Lc^3/nu/alpha 
keff = k*0.386*((Pr/(0.861 + Pr))^0.25)*Rac^0.25 
qcv = 2*pi*keff*(Ti - Tocv)/ln(ro/ri) 
//Tocv is the outer cylinder temperature with convection in the annulus, K 
//qcv is the convection heat transfer per unit cylinder length inside the annulus. W/m 
 
//Conduction in Annular Region 
qcd = 2*pi*k*(Ti - Tocd)/ln(ro/ri) 
//Tocd is the outer cylinder temperature with conduction in the annulus 
//qcd is the conduction heat transfer per unit cylinder length inside the annulus, W/m 
 

Continued… 
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//Exterior Free Convection 
 
D = 2*ro  //Cylinder diameter, m 
RaDcv = g*beta*(Tocv - Tinf)*D^3/nu/alpha //External Rayleigh number for convection in annulus 
RaDcd = g*beta*(Tocd - Tinf)*D^3/nu/alpha //External Rayleigh number for conduction in annulus 
NuDcv = NuD_bar_FC_HC(RaDcv,Pr)     // Eq 9.34, Exterior Nusselt number with convection in annulus 
NuDcd = NuD_bar_FC_HC(RaDcd,Pr)     // Eq 9.34 Exterior Nusselt number with conduction in annulus 
hDcv = NuDcv*k/D //External convection coefficient coinciding with convection in the annulus 
hDcd = NuDcd*k/D //External convection coefficient coinciding with conduction in the annulus 
 
qcv = hDcv*pi*D*(Tocv - Tinf)   //External convection heat transfer per unit length (with convection in annulus), W/m 
qcd = hDcd*pi*D*(Tocd - Tinf) //External convection heat transfer per unit length (with conduction in annulus), W/m 



PROBLEM 9.103 
 

 
KNOWN: Dimensions and heat generation rate associated with horizontally-oriented lithium 
ion battery. Size of annulus filled with liquid paraffin. Properties and fusion temperature of the 
paraffin. 
 
FIND: (a) Battery surface temperature when ro = 19 mm, (b) Rate at which ro is increasing with 
time, (c) Plot of battery surface temperature versus ro for 15 mm ≤ ro ≤ 30 mm and explanation of 
relative insensitivity of battery temperature to size of the annulus. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Constant properties and steady-state conditions, (2) Solid paraffin at 
melting point temperature. 
 
PROPERTIES: Given, see schematic. 
 
ANALYSIS: (a) The length scale used in the Rayleigh number is given by Equation 9.60. 
 

 [ ]
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[ ]

( ) ( )

4/3 4 /3
o i 3

c 5/3 5/33/5 3/5 3/5 3/53 3i o
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The Rayleigh number is 
 

 
( ) ( )3 2 4 1 3 3

s mp c s
c 6 2 8 2

1
s

g T T L 9.8m /s 8 10 K T 27.4 C (5.36 10 m)
Ra
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      2728K (T 27.4 C)

β

ν α

− − −

− −

−

− × × × − ° × ×
= =

⋅ × × ×
= × − °

    (1) 

 
The Prandtl number is Pr = ν/α = 5 × 10-6 m2/s/8.85 × 10-8 m2/s = 56.5, and the effective thermal 
conductivity is given by Equation 9.59, 
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1/ 4

eff ck 0.0577Ra=         (2) 
 
The effective thermal conductivity may also be expressed in terms of Equation 9.58, 
 

 g o i
eff 3

s mp ss

E ln(r / r ) 1W ln(19 / 9) 1.829W / mk
2 L(T T ) (T 27.4 C)2 65 10 m (T 27.4 C)π π −

×
= = =

− − °× × × − °

&
  (3) 

Equations 1, 2 and 3 may be solved simultaneously to yield  
 

Rac = 8901, keff = 0.5603 W/m⋅K, Ts = 30.7°C.     < 
 
(b) An energy balance on the control surface shown in the schematic yields  
 

conv g sf oq E A h dr / dtρ= =&  
or 

 
go

3 3 3 3
o sf

9

Edr 1W
dt 2 r L h 2 19 10 m 65 10 m 770kg / m 244 10 J / kg

     685 10 m /s 0.685 m /s

π ρ π

μ

− −

−

= =
× × × × × × × ×

= × =

&

   < 

 
(c) Equations 1 through 3 may be re-solved for various outer radii of the annular region. As 
evident, the battery surface temperature is very insensitive to the size of the annular region. If 
heat transfer in the annulus were conduction-dominated, one would expect the battery surface 
temperature to increase as the annulus becomes larger. The opposite trend is evident here. 
 

Battery Temperature vs. Liquid Annulus Radius

15 20 25 30

Annulus Radius (mm)

30

30.2

30.4

30.6

30.8

31

B
at

te
ry

 T
em

pe
ra

tu
re

 (C
)

 
Continued… 



PROBLEM 9.103 (Cont.) 
 

 
As the annulus becomes larger, fluid velocities associated with free convection increase and the 
effective thermal conductivity is expected to increase as well. The ratio of the effective thermal 
conductivity to the bulk thermal conductivity of the paraffin and its sensitivity to the size of the 
annulus is shown in the plot below. The enhanced fluid motion associated with the larger 
enclosures increases the effective thermal conductivity of the fluid significantly. Hence, both the 
numerator and denominator of Equation 9.58 increase with increasing size of the annular region, 
yielding relatively constant battery surface temperatures. 
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PROBLEM 9.104 
 
KNOWN:  Temperatures of concentric spheres and diameter of inner sphere.  
 
FIND:  Outer sphere diameter required so that convection heat transfer is same as for inner sphere in a 
large, quiescent environment at 20°C. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state, (2) Uniform sphere surface temperatures, (3) Constant properties. 
 
PROPERTIES:  Table A-4, Air (T = 308 K):  ν = 16.69 × 10-6 m2/s, α = 23.68 × 10-6 m2/s, k = 26.9 × 
10-3 W/m ⋅ K, Pr = 0.706, β = 1/T = 0.00325 K-1. 
 
ANALYSIS:   For the single inner sphere in a large quiescent enclosure, the Rayleigh number based 
on inner diameter is 

 
3 2 1 3

5
6 2 6 2

( ) 9.8 m/s 0.00325 K (50 20) C (0.05 m) 3.02 10
16.69 10  m /s 23.68 10  m /s

i i
D

g T T DRa β
να

−
∞

− −

− × × − ° ×
= = = ×

× × ×
 

 
Eq. 9.35 holds, and yields 
 

1/4

4/99/16

0.5892 12.7
1 (0.469 / )

D
D

RaNu
Pr

= + =
⎡ ⎤+⎣ ⎦

 

 
and 
 
 

2 3
1 ( ) ( ) 12.7 26.9 10  W/m K 0.05 m (50 20) C 1.60 WDi i i iq h D T T Nu k D T Tπ π π−

∞ ∞= − = − = × × ⋅ × × × − ° =
 
 
For the concentric spheres, the Rayleigh number is based on the length scale given by Eq. 9.63, 
 

( )4

7/5 7/5 5

1 / 1 /( )
2( )

i oi o
s

i o

r rg T TRa
r r

β
να − −

−−
=

+
    (1) 

 
Substituting this into Eq. 9.62 and substituting Eq. 9.62 in Eq. 9.61 yields 
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1/4 1/4

2 1/4 7/5 7/5 5/4

( ) 14 ( )0.74
0.861 2 ( )

i o
i o

i o

Pr g T Tq k T T
Pr r r

βπ
να − −

−⎛ ⎞ ⎛ ⎞= − ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
   (2) 

 

     

1/4
3

1/42 1

6 2 6 2 1/4 7/5 7/5 5/4

7/4
7/5 7/5 5/4

0.7064 26.9 10  W/m K (50 20) C 0.74
0.861 0.706

9.8 m/s 0.00325 K (50 20) C 1  
16.69 10  m /s 23.68 10  m /s 2 ( )

11146 W/m
( )

i o

i o

r r

r r

π −

−

− − − −

− −

⎛ ⎞= × × ⋅ × − ° × × ⎜ ⎟+⎝ ⎠

⎛ ⎞× × − °
× ⎜ ⎟× × × +⎝ ⎠

=
+

 

 
Setting q2 = q1 = 1.60 W, and solving for ro yields 
 

5/7 5/74/5 4/57/4 7/4
7/5 7/51146 W/m 1146 W/m (0.025 m) 0.130 m

1.60 W 1.60 Wo ir r
− −

− −
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞

= − = − =⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 

 
Thus the required diameter of the outer cylinder is 
 

Do = 260 mm      < 
 
From Eq. (1), Ras = 5000, so the correlation for concentric spheres is within its range of applicability. 
 
COMMENTS:  It is of interest whether the concentric sphere correlation approaches the single sphere 
limit as ro → ∞.  From Eq. (2) above, it can be seen that q2 reaches an asymptote.  This can be 
rephrased in terms of a heat transfer coefficient for concentric spheres, h2, defined such that 

2
2 2 ( ).i i oq h D T Tπ= −  The corresponding Nusselt number, 2 /D iNu h D k= , is then 

 

 
1/4

1/4

0.74
(1 0.861/ )

D
D

RaNu
Pr

=
+

 

 
This has the same asymptotic Rayleigh number dependence as Eq. 9.35 (as long as the leading 2 is 
negligible), but not the same Prandtl number dependence.  When researchers fit experimental data to a 
correlating equation, they must make a judgment as to whether it is appropriate, based on the range of 
their experimental data, to impose the correct limiting behavior. 



PROBLEM 9.105  
KNOWN:  Annulus formed by two concentric, horizontal tubes with prescribed diameters and surface 
temperatures is filled with nitrogen at 5 atm.  
FIND:  Convective heat transfer rate per unit length of the tubes.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Thermophysical properties k, μ, and Pr, are independent of pressure, (2) 
Density is proportional to pressure, (3) Perfect gas behavior.  
PROPERTIES:  Table A-4, Nitrogen ( )( )i oT T T / 2 350K, 5 atm := + =   k = 0.0293 W/m⋅K, μ = 

200 × 10-7 N⋅s/m2, ρ(5 atm) = 5 ρ (1 atm) = 5 × 0.9625 kg/m3 = 4.813 kg/m3, Pr = 0.711, ν = μ/ρ = 
4.155 × 10-6 m2/s, α = k/ρc = 0.0293 W/m⋅K/(4.813 kg/m3 × 1042 J/kg⋅K) = 5.842 × 10-6 m2/s. 
 
ANALYSIS:  The length scale in Rac is given by Eq. 9.60, 

[ ] [ ]4/3 4/3
o i

c -3/5 -3/5 5/3 5/3-3/5 -3/5i o

2 ln (r /r ) 2 ln (125/100)
L  =  =  = 0.0095 m

(r + r ) (0.1 m) + (0.125 m)⎡ ⎤
⎣ ⎦

 

Then 

 Rac

3 2 3
s c

-6 2 -6 2
gβ(T  - T )L 9.8 m/s × (1/350 K) (400 - 300)K (0.0095 m)=  =  = 98,800

να 4.155 × 10  m /s × 5.842 × 10  m /s
∞  

 
The effective thermal conductivity is found from Eq. 9.59, 

 
1/ 4

1/ 4eff
c

k Pr0.386 Ra
k 0.861 Pr

⎛ ⎞= ⎜ ⎟+⎝ ⎠
 

  

( )
1/ 4

1/ 4effk 0.711
0.386 98,800 5.61.

k 0.861 0.711
= =

+
⎛ ⎞
⎜ ⎟
⎝ ⎠

 
 
Hence, the heat rate, Eq. (1), becomes 
 

 
( ) ( )2 5.61 0.0293W / m Kq 400 300 K 463W / m.

n 125 /100
× × ⋅′ = − =

l

π
   < 

COMMENTS:  Note that the heat loss by convection is nearly six times that for conduction.  
Radiation transfer is likely to be important for this situation.  The effect of nitrogen pressure is to 
decrease ν which in turn increases RaL; that is, free convection heat transfer will increase with 
increase in pressure. 



PROBLEM 9.106 
 
KNOWN:  Diameter of cylindrical enclosure housing solid PCM.  Diameter and temperature of 
heated inner concentric cylinder.  Initial PCM temperature. 
 
FIND:  Time to melt half of PCM. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) The quasi-steady approximation holds: the heat transfer coefficient can be 
evaluated based on steady-state conditions, (2) Constant properties, (3) The sensible energy associated 
with the portion of PCM above its melting temperature is negligible. 
 
PROPERTIES:  From Problems 8.47 and 9.57, PCM: Tm = 27.4°C, hsf = 244 kJ/kg, ρ = 770 kg/m3, k 
= 0.15 W/m ⋅ K, β = 8 × 10-4 K-1, ν  = 5 × 10-6 m2/s, α = 8.85 × 10-8 m2/s, Pr = ν /α = 56.5, cp = k/ρα = 
2200 J/kg ⋅ K. 
 
ANALYSIS:  The molten PCM occupies the region between the heater radius, ri, and the solid-liquid 
interface, ro.  The latter radius is a function of time.  According to the quasi-steady approximation, the 
convection heat transfer rate can be found from Eqs. 9.58, 9.59, and 9.60 using the instantaneous value 
of ro.  Combining these equations yields the convection heat transfer rate per unit length: 
 

1/4 1/4 3/4

3/5 3/5 5/4 3/5 3/5 5/4

( ) 22 ( )0.386
0.861 ( ) ( )

i o
i o

i o i o

Pr g T T Aq k T T
Pr r r r r

βπ
να − − − −

−⎛ ⎞ ⎛ ⎞′ = − =⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠
 (1) 

 
where To = Tm = 27.4°C and Ti = Th = 50°C.  The constant A is defined by the above equation and has 
the value A = 1.10 × 104 W/m7/4.  The rate at which heat reaches the solid-liquid interface is equal to 
the rate of change of mass of molten PCM (kg/s) multiplied by the latent heat of fusion, thus 
 

( )2 2( ) 2 o
sf o i sf o sf

dm d drq h r r h r h
dt dt dt

ρπ π ρ
′

′ = = − =     (2) 

 
 
Combining Eqs. (1) and (2) yields a differential equation for ro(t): 
 

3/5 3/5 5/4

/ 2
( )

sfo

o i o

A hdr
dt r r r

πρ
− −=

+
 

 
The criterion that half the PCM has been melted is satisfied when 2 2 2 21

2,final( ) ( )o i e ir r r rπ π− = − , 

where 1
2 0.1 me er D= = .  Thus, 

1/22 21
2,final ( ) 0.0715 mo e ir r r⎡ ⎤= + =⎣ ⎦ .  The above differential equation 

is most easily solved numerically.  It has been solved using IHT to generate the following graph. 
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The final radius criterion, ro = 0.0715 m, is satisfied at t = 2.88 h.    < 
 
COMMENTS:  (1) The solid-liquid interface moves slowly, traveling around 70 mm in 2.88 h.  It is 
likely that the free convection motion can adjust to the instantaneous conditions relatively quickly 
compared with the rate at which the interface is moving.  That is, the quasi-steady approximation is 
probably accurate. (2) The sensible energy associated with the portion of PCM above its melting 
temperature was neglected. The temperature of the molten PCM varies from the melting temperature 
to the heater temperature.  We can estimate the average PCM temperature as (27.4+50)°C/2 = 38.7°C.  
The ratio of the sensible energy to the latent energy is mcp(T – Tm)/mhsf = cp(T – Tm)/hsf .  This ratio is a 
dimensionless parameter known as the Stefan number, Ste.  Here Ste = 0.10.  Thus, the error 
associated with neglecting the sensible energy is on the order of 10%. 
 



PROBLEM 9.107  
KNOWN:  Diameters and temperatures of concentric spheres.  
FIND:  Rate at which stored nitrogen is vented.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible radiation. 
 
PROPERTIES:  Liquid nitrogen (given):  hfg = 2 × 105 J/kg; Table A-4, Helium ( T  = (Ti + To)/2 = 
180K, 1 atm):  ν = 51.3 × 10-6 m2/s, k = 0.107 W/m⋅K, α = 76.2 × 10-6 m2/s, Pr = 0.673, β = 0.00556 
K-1. 
 
ANALYSIS:  Performing an energy balance for a control surface about the liquid nitrogen, it follows 
that 
 conv fgq q mh .= = &  

From the Raithby and Hollands expressions for free convection between concentric spheres, 

 
( )eff i o

conv
i o

4 k T T
q

(1/ r ) (1/ r )
π −

=
−

 

 ( ) ( )1/ 41/ 4
eff sk 0.74k Pr/ 0.861 Pr Ra⎡ ⎤= +⎣ ⎦  

 

where 
4/3

-3i o
s 1/3 -7/5 -7/5 5/3

oi

(1/r  - 1/r )L =  = 5.69 × 10  m
2 (r  + r )

 

 

 
( ) ( )( )( )

( )( )

32 1 33
o i s

s 6 2 6 2

9.8m / s 0.00556K 206 K 5.69 10 mg T T L
Ra 528

51.3 10 m / s 76.2 10 m / s

− −

− −

×−
= = =

× ×

β
να

 

 

 ( ) ( ) ( )1/ 4 1/ 4
effk 0.74 0.107 W / m K 0.673/ 0.861 0.673 528 0.309 W / m K.⎡ ⎤= ⋅ + = ⋅⎣ ⎦  

Hence, conv
(0.309 W/m K) × 4π (206 K)q  =  = 4399 W

(1/0.5 m) - (1/0.55 m)
⋅

 

 
The rate at which nitrogen is lost from the system is therefore 

 5
conv fgm q / h 4399 W / 2 10 J / kg 0.022 kg / s.= = × =&     < 

 
COMMENTS:  The heat gain and mass loss are large.  Helium should be replaced by a 
noncondensing gas of smaller k, or the cavity should be evacuated. 



PROBLEM 9.108 
 
KNOWN: Dimensions of enclosure, surface temperatures, and properties of aqueous humor. 
 
FIND: The ratio of the effective to the bulk thermal conductivity of the aqueous humor. 
 
SCHEMATIC: 
 

 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Constant properties, (2) Steady-state conditions, (3) Person is standing or 
sitting vertically. 
 
PROPERTIES: Given, see schematic. 
 
ANALYSIS: The kinematic viscosity is ν = μ/ρ = 7.1 × 10-4 N⋅s/m2/990 kg/m3 = 7.17 × 10-9 
m2/s. The thermal diffusivity is α = k/ρc = 0.58 W/m⋅K/(990 kg/m3× 4.2 × 103 J/kg⋅K) = 139.5 × 
10-4 m2/s, while the Prandtl number is Pr = ν/α = (7.17 × 10-9 m2/s)/(139.5 × 10-4 m2/s) = 5.14. 
The characteristic length for use in Equation 9.61 is 
 

 
( ) ( )

4 /3 4 /3

3 3i o 6
s 5/3 5/31/3 7 /5 7 /5 1/3 3 7 /5 3 7 /5

i o

1 1 1 1
r r 7 10 m 10 10 mL 506 10 m

2 r r 2 (7 10 m) (10 10 m)

− −
−

− − − − − −

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟× ×⎝ ⎠ ⎝ ⎠= = = ×
+ × + ×

 

 
The Rayleigh number is 

 ( ) ( )2 4 1 6 33
s o s

s 9 2 4 2
9.8m /s 3.2 10 K 37 34 C (506 10 m)g T T L

Ra 12.2
7.17 10 m /s 139.5 10 m /s

β
ν α

− − −

− −

× × × − ° × ×−
= = =

⋅ × × ×
 

 
The ratio of the effective thermal conductivity to bulk thermal conductivity is 

 
1/ 4 1/ 4

1/ 4 1/ 4eff
s

k Pr 5.140.74 Ra 0.74 (12.2) 1.33
k 0.861 Pr 0.861 5.14

⎛ ⎞ ⎛ ⎞= = × × =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
 < 

 
Since keff/k > 1, we conclude that free convection does occur in the aqueous humor.  
 

 
Comments: (1). The velocity of the aqueous humor could be estimated by performing a detailed 
simulation using a CFD (computational fluid dynamics) tool. (2) Fluid motion is upward near the 
iris and downward adjacent to the cornea when the person is standing or sitting vertically.  
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PROBLEM 9.109 
 
KNOWN:  Diameter and temperature of cylinder.  Velocity and temperature of fluid in cross flow.  
Four different fluids. 
 
FIND:  Whether heat transfer by free convection is significant.  
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady state, (2) Constant properties, (3) Air can be modeled as an ideal gas. 
 
PROPERTIES:  Air (300K, 1 atm): β = 1/Tf

 
 = 3.333 × 10-3 K-1; Table A-6, Water (Tf = (T∞

 
+ Ts)/2 = 

300K): β = 276.1 × 10-6 K-1; Table A-5, Engine oil (Tf = (T∞
 
+ Ts)/2 = 300K): β = 0.7 × 10-3 K-1; Table 

A-5, Mercury (Tf = (T∞
 
+ Ts)/2 = 300K): β = 0.181 × 10-3 K-1. 

 
ANALYSIS:  Following the discussion of Section 9.9, the general criterion for delineating the relative 
significance of free and forced convection depends upon the value of Gr/Re2. Free convection is 
insignificant if Gr/Re2 << 1, where Gr = gβ(Ts – T∞)D3/ν2 and Re = VD/ν.  Thus, 
 
 2 2/ ( ) /sGr Re g T T D Vβ ∞= −  
 
The only material property that impacts the determination of the significance of free convection is the 
thermal expansion coefficient, β.  Furthermore with all other parameters held fixed, it is useful to 
express Gr/Re2 = Gβ, where 
 

G = g(Ts – T∞)D/V2 = 9.8 m/s2 × (35 – 20)°C × 0.025 m/(0.05 m/s)2 = 1470 K 
 

Thus, for air, 
 

Gr/Re2 = Gβ = 1470 K × 3.333 × 10-3 K-1 = 4.90 
 

Since Gr/Re2 > 1, free convection is significant.       < 
 
For water, 
 

Gr/Re2 = Gβ = 1470 K × 276.1 × 10-6 K-1 = 0.406 
 
Since Gr/Re2 is not small compared to 1, free convection is likely to be important.  < 

 
 

Continued… 

g

Ts = 35°C

V = 0.05 m/s
T∞ = 20°C

Fluid
V = 0.05 m/s
T∞ = 20°C

Fluid

D = 25 mm
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For engine oil,  
 

Gr/Re2 = Gβ = 1470 K × 0.7 × 10-3 K-1 = 1.03 
 

Since Gr/Re2 is of order 1, free and forced convection are likely to be equally important.  < 
 
For mercury, 
 

Gr/Re2 = Gβ = 1470 K × 0.181 × 10-3 K-1 = 0.266 
 
Since Gr/Re2 is somewhat small compared to 1, free convection might be negligible, depending on the 
desired accuracy of the solution.         < 
 
COMMENTS:  (1) None of the situations considered here correspond to conditions where heat 
transfer is clearly dominated by either natural or forced convection. In such situations, it may be 
necessary to determine the convection heat transfer rates experimentally, or by solving the three-
dimensional, unsteady forms of the convection transfer equations computationally. (2)  Gr/Re2 is 
sometimes referred to as the Richardson number, Ri.   
 
 



PROBLEM 9.110  
KNOWN:  Parallel air flow over a uniform temperature, heated vertical plate; the effect of free 

convection on the heat transfer coefficient will be 5% when 2
L LGr / Re 0.08.=  

 
FIND:  Minimum vertical velocity required of air flow such that free convection effects will be less 
than 5% of the heat rate.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Criterion for combined free-forced convection 
determined from experimental results. 
 
PROPERTIES:  Table A-4, Air (Tf = (Ts + T∞)/2 = 315K, 1 atm):  ν = 17.40 × 10-6 m2/s, β = 1/Tf.  
ANALYSIS:  To delineate flow regimes, according to Section 9.9, the general criterion for 
predominately forced convection is that 

 2
L LGr / Re 1.<<          (1) 

From experimental results, when 2
L LGr / Re 0.08,≈  free convection will be equal to 5% of the total 

heat rate. 
 
For the vertical plate using Eq. 9.12, 
 

( ) ( ) ( )

( )
33 2

1 2 7
L 2 26 2

g T T L 9.8m / s 1/ 315K 60 25 K 0.3m
Gr 9.711 10 .

17.40 10 m / s

β

ν −

− × × − ×
= = = ×

×
  (2) 

 
For the vertical plate with forced convection, 

 
( ) 4

L 6 2
u 0.3mu LRe 1.724 10 u .

17.4 10 m / sν
∞∞

∞−
= = = ×

×
     (3) 

 
By combining Eqs. (2) and (3), 

 
7

L
2 24L

Gr 9.711 10 0.08
Re 1.724 10 u∞

×
= =
⎡ ⎤×⎢ ⎥⎣ ⎦

 

find that 

 u 2.02 m / s.∞ =          < 
 
That is, when u∞ ≥ 2.02 m/s, free convection effects will not exceed 5% of the total heat rate. 



PROBLEM 9.111  
KNOWN:  Vertical array of circuit boards 0.15m high with maximum allowable uniform surface 
temperature for prescribed ambient air temperature.  
FIND:  Allowable electrical power dissipation per board, [ ]q W / m ,′  for these cooling arrangements:  
(a) Free convection only, (b) Air flow downward at 0.6 m/s, (c) Air flow upward at 0.3 m/s, and (d) 
Air flow upward or downward at 5 m/s.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Uniform surface temperature, (2) Board horizontal spacing sufficient that 
boundary layers don’t interfere, (3) Ambient air behaves as quiescent medium, (4) Perfect gas 
behavior. 
 
PROPERTIES:  Table A-4, Air (Tf = (Ts + T∞)/2 ≈ 315K, 1 atm):  ν = 17.40 × 10-6 m2/s, k = 0.0274 
W/m⋅K, α = 24.7 × 10-6 m2/s, Pr = 0.705, β = 1/Tf.  
ANALYSIS:  (a) For free convection only, the allowable electrical power dissipation rate is 
 ( )( )L sq h 2L T T∞′ = −         (1) 

where Lh  is estimated using the appropriate correlation for free convection from a vertical plate.  Find 
the Rayleigh number, 

 
( )( ) ( )323

6
L 6 2 6 2

9.8m / s 1/ 315K 60 25 K 0.150mg T LRa 8.551 10 .
17.4 10 m / s 24.7 10 m / s

β
να − −

−Δ
= = = ×

× × ×
 (2) 

Since 9
LRa 10 ,<  the flow is laminar.  With Eq. 9.27 find 

( ) ( )
L

1/ 46
1/ 4
L

4 / 9 4 / 99 /16 9 /16

0.670 8.551 10
hL 0.670 Ra

Nu 0.68 0.68 28.47
k

1 0.492 / Pr 1 0.492 / 0.705

×

= = + = + =

+ +

⎛ ⎞⎡ ⎤⎜ ⎟⎣ ⎦⎝ ⎠

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (3) 

 ( ) 2
Lh 0.0274 W / m K / 0.150m 28.47 5.20 W / m K.= ⋅ × = ⋅  

 
Hence, the allowable electrical power dissipation rate is, 

( )( )2q 5.20 W / m K 2 0.150m 60 25 C 54.6 W / m.′ = ⋅ × − ° =     < 
(b) With downward velocity V = 0.6 m/s, the possibility of mixed forced-free convection must be 
considered.  With ReL = VL/ν, find 

 ( )2 2L
L L L

RaGr / Re / Re
Pr

⎛ ⎞= ⎜ ⎟
⎝ ⎠

        (4) 

 ( ) ( ) ( )22 6 6 2
L LGr / Re 8.551 10 / 0.705 / 0.6m / s 0.150m /17.40 10 m / s 0.453.−= × × × =  

          Continued … 



PROBLEM 9.111 (Cont.)  
Since ( )2

L LGr / Re ~ 1,  flow is mixed and the average heat transfer coefficient may be found from a 

correlating equation of the form 

 
n n n

F NNu Nu Nu= ±          (5) 

where n = 3 for the vertical plate geometry and the minus sign is appropriate since the natural 
convection (N) flow opposes the forced convection (F) flow.  For the forced convection flow, ReL = 
5172 and the flow is laminar; using Eq. 7.30, 

 ( ) ( )F
1/ 2 1/ 31/ 2 1/ 3

LNu 0.664 Re Pr 0.664 5172 0.705 42.50.= = =    (6) 

Using NNu 28.47=  from Eq. (3), Eq. (5) now becomes 

 ( ) ( )
3

3 3 3hLNu 42.50 28.47 Nu 37.72
k

⎛ ⎞
= = − =⎜ ⎟
⎝ ⎠

 

 20.0274 W / m Kh 37.72 6.89 W / m K.
0.150m

⋅⎛ ⎞= × = ⋅⎜ ⎟
⎝ ⎠

 

Substituting for h  into the rate equation, Eq. (1), the allowable power dissipation with a downward 
velocity of 0.6 m/s is 

 ( ) ( )2q 6.89 W / m K 2 0.150m 60 25 C 72.3 W / m.′ = ⋅ × − ° =    < 
(c) With an upward velocity V = 0.3 m/s, the positive sign of Eq. (5) applies since the N-flow is 
assisting the F-flow.  For forced convection, find 

 ( )6 2
LRe VL / 0.3m / s 0.150m / 17.40 10 m / s 2586.ν −= = × × =  

The flow is again laminar, hence Eq. (6) is appropriate. 

 ( ) ( )F
1/ 2 1/ 3Nu 0.664 2586 0.705 30.05.= =  

From Eq. (5), with the positive sign, and NNu  from Eq. (4), 

 ( ) ( )3 3 3 2Nu 30.05 28.47 or Nu 36.88 and h 6.74 W / m K.= + = = ⋅  
From Eq. (1), the allowable power dissipation with an upward velocity of 0.3 m/s is 

 ( ) ( )2q 6.74 W / m K 2 0.150m 60 25 C 70.7 W / m.′ = ⋅ × − ° =     < 
(d) With a forced convection velocity V = 5 m/s, very likely forced convection will dominate.  Check 

by evaluating whether ( )2
L LGr Re 1/ <<  where ReL = VL/ν = 5 m/s × 0.150m/(17.40 × 10-6 m2/s) = 

43,103.  Hence, 

 ( ) ( )2 2 6 2L
L L L

RaGr / Re / Re 8.551 10 / 0.705 / 43,103 0.007.
Pr

⎛ ⎞= = × =⎜ ⎟
⎝ ⎠

 

The flow is not mixed, but pure forced convection.  Using Eq. (6), find 

 ( ) ( ) ( )1/ 2 1/ 3 2h 0.0274 W / m K / 0.150m 0.664 43,103 0.705 22.4 W / m K= ⋅ = ⋅  
and the allowable dissipation rate is 

 ( ) ( )2q 22.4 W / m K 2 0.150m 60 25 C 235 W / m.′ = ⋅ × − ° =     < 
 
COMMENTS:  Be sure to compare dissipation rates to see relative importance of mixed flow 
conditions. 



PROBLEM 9.112 
 
 
KNOWN:  Dimensions of horizontal tube in wind tunnel. Air velocity and temperature, surroundings 
temperature, emissivity of tube surface, power dissipation. 
 
FIND:  (a) Tube surface temperature for T∞ = 25°C, V = 0.1 m/s, (b) Plot of the tube surface 
temperature versus the cross flow velocity for 0.05 m/s ≤ V ≤ 1 m/s. 
 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Constant properties, (2) Large surroundings, (3) Steady-state conditions, (4) 
Ideal gas. 
 
PROPERTIES: Table A.4, air (Tf ≈ 300 K): ν = 15.89 × 10-6 m2/s, k = 0.0263 W/m⋅K, α = 22.5 × 10-6 
m2/s, Pr = 0.707, β = 1/Tf = 0.0033 K-1. 
 
ANALYSIS:  (a) An energy balance on the cylinder yields 
 

( ) ( )

( ) ( )

4 4
conv rad sur

8 2 4 4 4

1.5

   0.008m 0.10m (25 273)K 0.95 5.67 10 W/m K (25 273 K)

s s

s s

P W q q DL h T T T T

h T T

π εσ

π

∞

−

⎡ ⎤= = + = − + −⎣ ⎦

⎡ ⎤= × − + + × × ⋅ − +⎣ ⎦

(1) 

 
From Equation 9.64 for mixed convection from a cylinder in transverse flows,  
 

4 4 4
, ,D D F D NNu Nu Nu= +        (2) 

where the forced convection Nusselt number, ,D FNu , is provided by the Churchill and Bernstein 
correlation of Chapter 7, and 6 2/ (0.1 m/s 0.008 m) /15.89 10 m /s = 50.35DRe VD ν −= = × × . 
 

4 /55/81/ 2 1/3
, 1/ 42 /3

4 /55/81/ 2 1/3

1/ 42 /3

0.620.3 1
282,0001 (0.4 / )

0.62 50.35 0.707 50.350.3 1 3.75
282,0001 (0.4 / 0.707)

D DD F
Re Pr ReNu

Pr

⎡ ⎤⎛ ⎞= + +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎡ ⎤+ ⎣ ⎦⎣ ⎦

⎡ ⎤× × ⎛ ⎞= + + =⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎡ ⎤+ ⎣ ⎦⎣ ⎦

   (3) 

 
The natural (free) convection Nusselt number, ,D NNu , is found from the Churchill and Chu 
correlation,  

Continued… 
 

V = 0.1 m/s

T∞ = 25°C

D = 8 mm 

ε = 0.95 

Tsur = 25°C

L = 100 mm 



PROBLEM 9.112 (Cont.) 
 

 

( )

2

1/6
, 8/ 279 /16

0.3870.60
1 0.559 /

DD N
RaNu
Pr

⎧ ⎫
⎪ ⎪

= +⎨ ⎬
⎡ ⎤⎪ ⎪+⎢ ⎥⎣ ⎦⎩ ⎭

    (4a) 

 
where the Rayleigh number is, 
 

( ) ( ) ( )2 1 33

2 12 2

9.8 m/s 0.0033K (25 273)K (0.008 m)

15.89m /s 22.5 10  m /s
ss

D

Tg T T D
Ra

β
να

−
∞

−

× × − + ×−
= =

× ×
 (4b) 

 
Finally, /Dh Nu k D=           (5) 
 
Simultaneous solution of Equations (1) through (5) yields Ts = 328.1 K = 55.1°C  < 
 
(b) The dependence of the surface temperature on the air velocity is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
COMMENTS: (1) In part (a), the convective and radiative heat rates are qconv = 1W and qrad = 0.5 W, 
respectively. Therefore, it is important to include radiative losses in the analysis, (2) If free convection 
is ignored in part (a), the predicted surface temperature is Ts = 329.4 K. Alternatively, if the forced 
convection component is ignored, Ts = 334.3 K,  (3) The surface temperature is strongly dependent on 
the air velocity, as evident in the solution to part (b). Using modern infrared detectors, the resolution 
of the surface temperature measurement could be as small as ΔT = 0.05 K. Hence, the measured 
surface temperature could be used to determine the air velocity. 
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PROBLEM 9.113  
KNOWN:  Horizontal pipe passing hot oil used to heat water.  
FIND:  Effect of water flow direction on the heat rate.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Uniform pipe surface temperature, (2) Constant properties. 
 
PROPERTIES:  Table A-6, Water (Tf = (Ts + T∞)/2 ≈ 335K):  ν = μf vf = 4.625 × 10-7 m2/s, k = 
0.656 W/m⋅K, α = k vf/cp = 1.595 × 10-7 m2/s, Pr = 2.88, β = 535.5 × 10-6 K-1; Table A-6, Water (T∞ 
= 310K):  ν = μf νf = 6.999 × 10-7 m2/s, k = 0.028 W/m⋅K, Pr = 4.62; Table A-6, Water (Ts = 358K):  
Pr = 2.07  
ANALYSIS:  The rate equation for the flow situations is of the form 
 ( ) ( )sq h D T T .π ∞′ = −  

To determine whether mixed flow conditions are present, evaluate ( )2
D DGr / Re .  

 
( ) ( )

( )
32 6 13

9
D 2 27 2

9.8 m / s 535.5 10 K 85 37 K 0.100mg T D
Gr 1.178 10

4.625 10 m / s

β

ν

− −

−

× × −Δ
= = = ×

×

 

 7 2 4
DRe VD / 0.5 m / s 0.100m / 6.999 10 m / s 7.144 10 .ν −= = × × = ×  

It follows that ( )2
D DGr / Re 0.231;=  since this ratio is of order unity, the flow condition is mixed.  Using 

Eq. 9.64, 
n n n

F NNu Nu Nu= ±  and for the three flow arrangements, 
 
 (a) Transverse flow:  (b) Opposing flow:  (c) Assisting flow: 

 
4 4 4

F NNu Nu Nu= +   
3 3 3

F NNu Nu Nu= −   
3 3 3

F NNu Nu Nu= +  
 
For natural convection from the cylinder, use Eq. 9.34 with Ra = Gr⋅Pr. 

( )

( )
( )

N

22 1/ 691/ 6
D

8 / 27 8 / 279 /16 9 /16

0.387 1.178 10 2.880.387 Ra
Nu 0.60 0.60 201.2

1 0.559 / Pr 1 0.559 / 2.88

× ×
= + = + =

+ +

⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪

⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎡ ⎤ ⎡ ⎤
⎩ ⎣ ⎦ ⎭ ⎣ ⎦⎩ ⎭

 

For forced convection in cross flow over the cylinder, from Table 7-4 use 

 ( )F
1/ 4m n

D sNu C Re Pr Pr/ Pr=  

 ( ) ( ) ( )F

0.6 0.37 1/ 44Nu 0.26 7.144 10 4.62 4.62 / 2.07 457.5= × =  

 
          Continued … 



PROBLEM 9.113 (Cont.) 
 
where n = 0.37 since Pr ≤ 10.  The results of the calculations are tabulated. 

 

   Flow  Nu   ( )2h W / m K⋅   ( )4q 10 W / m−′×  

 
  (a) Transverse  461.7        3029        4.57 
  (b) Opposing  444.1        2913        4.39 
  (c) Assisting  470.1        3083        4.65  
 
COMMENTS:  Note that the flow direction has a minor effect (<6%) for these conditions. 



PROBLEM 9.114 
 

 
KNOWN: Plate dimensions and initial temperature. Velocity and temperature of air in parallel 
flow over plates. 
 
FIND: Initial rate of heat transfer from plate. Initial rate of change of plate temperature. Graph 
of the free, forced and mixed convection heat transfer coefficients over the range 2 ≤ u∞ ≤ 10 m/s. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Negligible radiation, (2) Negligible effect of conveyor velocity on 
boundary layer development, (3) Lumped capacitance behavior, (4) Negligible heat transfer from 
sides of plate. 
 
PROPERTIES: Table A.1, AISI 1010 steel (T = 573 K): kp = 49.2 W/m⋅K, c = 549 J/kg⋅K, ρ = 
7832 kg/m3. Table A.4, air: (p = 1 atm, Tf = 433 K): k = 0.0361 W/m⋅K, ν = 30.4 × 10-6 m2/s, α = 
4.417 × 10-5 m2/s, Pr = 0.688. 
 
ANALYSIS: The initial rate of heat transfer from the plate is 
 
 i s i iq 2hA (T T ) 2hL(T T )∞ ∞= − = =  
 
With ReL = u∞L/ν = 10m/s × 1m/30.4 × 10-6m2/s = 3.29 × 105, the forced convection is laminar. 
Therefore, 1/ 2 1/3 5 1/ 2 1/3

L F LNu Nu 0.664 Re Pr 0.664 (3.29 10 ) (0.688) 336= = = × × × = . With RaL 
= gβ(Ti - T∞)L3/να = 9.8m/s2 × (1/433 K) × (300 – 20)°C × (1 m)3/(30.4 × 10-6 m2/s × 4.417 × 10-5 
m2/s) = 4.72 × 109, The Churchill and Chu correlation yields 
 

2 2
1/6 9 1/6

L N 8/ 27 8/ 279/16 9/16

0.387Ra 0.387(4.72 10 )Nu Nu 0.825 0.825 198
1 (0.492 / Pr) 1 (0.492 / 0.688)

⎧ ⎫ ⎧ ⎫
×⎪ ⎪ ⎪ ⎪= = + = + =⎨ ⎬ ⎨ ⎬

⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎪ ⎪+ +⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭
 

 
Continued… 

 

L = 1 mδ = 6 mm

L = 1 mTi = 300°C

qq

T∞ = 20°C
u∞ = 10 m/s

T∞ = 20°C
u∞ = 10 m/s

L = 1 mδ = 6 mm

L = 1 mTi = 300°C

qq

T∞ = 20°C
u∞ = 10 m/s

T∞ = 20°C
u∞ = 10 m/s



PROBLEM 9.114 (Cont.) 
 
Since the forced and free convection induced flows are transverse, ( )1/33 3

F NNu Nu Nu= + = 

(3363+1983) = 357. Hence, 2h Nuk / L 357 0.0361W / m K /1m 12.9W / m K= = × ⋅ = ⋅  and 
 

qi = 2 × 12.9 W/m2⋅K × (1m)2 × (300 – 20)°C = 7224 W    < 
 
Performing an energy balance at an instant in time for the plate, out stE E− =& & , we obtain 
  

2 2
i

i

dTL c h2L (T T )
dt ∞ρδ = − −  

or 
 

 
2

3
i

dT 2 12.9W / m K (300 20) C 0.28 C/s
dt 7832kg / m 0.006m 549J / kg K

× ⋅ × − °
= = − °

× × ⋅
   < 

 
The heat transfer coefficient may be evaluated over the velocity range 2 ≤ u∞ ≤ 10 /ms, yielding 
 

Convection Coefficient vs. Air Velociy
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COMMENTS: (1) The Grashof number is GrL = RaL/Pr = 4.72 × 109/0.688 = 6.86 × 109. For 
the u∞ = 10 m/s case, GrL/ 2

LRe = 6.86 × 109/(3.29 × 105)2 = 0.063 <<1. We therefore expect free 
convection effects to be minor. (2) At u∞ ≈ 3.5 m/s the value of the free convection coefficient 
exceeds that of the forced convection coefficient. Free convection effects dominate at lower air 
forced velocities. (3) The Reynolds number, ReL, is smaller than the transition Reynolds number 
(Rex,c = 5 × 105) while the Rayleigh number, RaL, exceeds the value associated with transition to 
turbulent flow (Rax,c ≈ 109). This implies that flow conditions are very complex and the estimates 
of heat transfer rates are, at best, approximate. (4) At very low air forced velocities the plate 
motion will likely affect the boundary layer development. (5) The Biot number is Bi = h δ/kp = 
12.9 W/m2⋅K × 0.006 m/49.2 W/m⋅K = 0.0016 and the lumped capacitance approximation is 
valid.  



PROBLEM 9.115 
 
KNOWN:  Very small sphere. 
 
FIND:  Minimum value of the convection heat transfer coefficient expressed in terms of the sphere 
diameter and the thermal conductivity of air. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  Steady-state conditions. 
  
ANALYSIS:  According to Eq. 9.64, the Nusselt number for opposing flow is given by 
 
 

n n n
F NNu Nu Nu= −  

 
The Nusselt number for pure forced convection past a sphere is given by Eq. 7.56.  In the limit as D → 
0,  ReD → 0, and 
 

2FNu =  
 

For pure free convection past a sphere, the Nusselt number is given by Eq. 9.35, and in the limit as D 
→ 0,  RaD → 0, and 
 

2NNu =  
 
Therefore, according to Eq. 9.64, 
 

0,       0n n n
F NNu Nu Nu Nu= − = =  

 
Thus, Eq. 9.64 implies that convection heat losses could be entirely eliminated by incorporating the 
assistant’s suggestion.  However, this conclusion is flawed.  The limiting values of Nusselt numbers 
for both the pure forced and pure free convection cases correspond to the conduction limit, that is, the 
limit of zero velocity everywhere.  The best one could possibly achieve by superimposing a forced 
flow in opposition to free convection would be to eliminate the fluid motion.  This condition would 
then correspond to heat loss from the sphere by pure conduction, yielding  
 
    Nu = 2 and h = Nu(k/D) = 2k/D     < 

 
COMMENTS:  (1) It is not possible to completely eliminate heat losses, since heat transfer by 
conduction cannot be eliminated (except in a vacuum). (2) This exercise illustrates the approximate 
nature of Eq. 9.64, which is not correct in the limit of pure conduction.  (3) In reality, it is not possible 
to completely eliminate motion at all points in the flow by superimposing a uniform downward flow 
on free convection.  

g

V, T∞

Ts > T∞



PROBLEM 9.116  
KNOWN:  Horizontal square panel removed from an oven and cooled in quiescent or moving air.  
FIND:  Initial convection heat rates for both methods of cooling.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Quasi-steady state conditions, (2) Backside of plates insulated, (3) Air flow is 
in the length-wise (not diagonal) direction, (4) Constant properties, (5) Radiative exchange negligible.  
PROPERTIES:  Table A-4, Air (Tf = (T∞ + Ts)/2 = 350K, 1 atm):  ν = 20.92 × 10-6 m2/s, k = 0.030 
W/m⋅K, α = 29.9 × 10-6 m2/s, Pr = 0.700, β = 1/Tf.  
ANALYSIS:  The initial heat transfer rate from the plates by convection is given by the rate equation 

( )s sq h A T T .∞= −   Test for the existence of combined free-forced convection by calculation of the 

ratio 2
L LGr / Re .   Use the same characteristic length in both parameters, L = 250mm, the side length. 

 
( )( ) ( )

( )
323

7
L 2 26 2

9.8m / s 1/ 350K 125 29 K 0.250mg T LGr 9.597 10
20.92 10 m / s

β

ν −

−Δ
= = = ×

×
 

 

 ( )6 2 3
LRe u L / 0.5m / s 0.250m / 20.92 10 m / s 5.975 10 .ν −

∞= = × × = ×  
 
Since 2

L LGr / Re 2.69=  flow is mixed.  For the stationary plate, RaL = GrL ⋅ Pr = 6.718 × 107 and Eq. 
9.31 is the appropriate correlation, 

 ( )N
1/ 31/ 3 7

L
hLNu 0.15Ra 0.15 6.718 10 60.9
k

= = = × =  
 
 ( ) 2h 0.030 W / m K / 0.250m 60.9 7.31W / m K.= ⋅ × = ⋅  
 

 ( ) ( )22q 7.31W / m K 0.250m 125 29 K 43.9 W.= ⋅ × − =     < 
 
For the plate with moving air, ReL = 5.975 × 103 and the flow is laminar. 
 

 ( ) ( )F
1/ 2 1/ 31/ 2 1/ 3 3

LNu 0.664 Re Pr 0.664 5.975 10 0.700 45.6.= = × =  
 
For combined free-forced convection, use the correlating equation with n = 7/2. 

 ( ) ( )7 / 2 7 / 2 7 / 2 7 / 2 7 / 2
F NNu Nu Nu 45.6 60.9 Nu 66.5.= + = + =  

 
 ( ) 2h Nu k / L 66.5 0.030 W / m K / 0.25m 7.99 W / m K= = ⋅ = ⋅  
 

 ( ) ( )22q 7.99 W / m K 0.250m 125 29 K 47.9 W.= ⋅ − =     < 
 
COMMENTS:  (1) The conveyor method provides only slight enhancement of heat transfer. 



PROBLEM 9.117  
KNOWN:  Wet garment at 25°C hanging in a room with still, dry air at 40°C.  
FIND:  Drying rate per unit width of garment.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Analogy between heat and mass transfer applies, (2) Water vapor at garment 
surface is saturated at Ts, (3) Perfect gas behavior of vapor and air.  
PROPERTIES:  Table A-4, Air (Tf ≈ (Ts + T∞)/2 = 305K, 1 atm):  ν = 16.39 × 10-6 m2/s; Table A-6, 
Water vapor (Ts = 298K, 1 atm):  pA,s = 0.0317 bar,   ρA,s = 1/vf = 0.02660 kg/m3; Table A-8, Air-
water vapor (305 K):  DAB = 0.27 × 10-4 m2/s, Sc = ν/DAB = 0.607.  
ANALYSIS:  The drying rate per unit width of the garment is 
 ( )A m A,s A,m h L ρ ρ ∞′ = ⋅ −&  

where mh  is the mass transfer coefficient associated with a vertical surface that models the garment.  
From the heat and mass transfer analogy, Eq. 9.24 with C and n from Section 9.6.1 yields 

 ( )L
1/ 4

LSh 0.59 Gr Sc=  

where GrL = gΔρL3/ρν2 and Δρ = ρs - ρ∞.  Since the still air is dry, ρ∞ = ρB,∞ = pB,∞/RB T∞, where 
RB = ℜ B/ M  = 8.314 × 10-2 m3⋅bar/kmol⋅K/29 kg/kmol = 0.00287 m3⋅bar/kg⋅K.  With pB,∞ = 1 atm = 
1.0133 bar, 

 3
3
1.0133 bar 1.1280 kg / m

0.00287 m bar / kg K 313 K
ρ∞ = =

⋅ ⋅ ×
 

The density of the air/vapor mixture at the surface is ρs = ρA,s +ρB,s.  With pB,s = 1 atm – pA,s = 
1.0133 bar – 0.0317 bar = 0.9816 bar, 

( )
B,s 3

B,s 3B s

p 0.9816 bar 1.1477 kg / m
R T 0.00287 m bar / kg K 298 K

ρ = = =
⋅ ⋅ ×

 

Hence, ρs = (0.0266 + 1.1477) kg/m3 = 1.1743 kg/m3 and ρ = (ρs + ρ∞)/2 = 1.1512 kg/m3.  The 
Grashof number is then 

 
( ) ( )

( )
32 3

9
L 23 6 2

9.8 m / s 1.1743 1.1280 kg / m 1 m
Gr 1.467 10

1.1512 kg / m 16.39 10 m / s−

× −
= = ×

× ×
 

and (GrL Sc) = 8.905 × 108.  The convection coefficient is then 

 ( )L

4 2 1/ 48AB
m

D 0.27 10 m / sh Sh 0.59 8.905 10 0.00275 m / s
L 1 m

−×
= = × × =  

The drying rate is then 

 ( )3 3 5
Am 2.750 10 m / s 1.0m 0.0226 0 kg / m 6.21 10 kg / s m.− −′ = × × − = × ⋅&   < 

COMMENTS:  Since ρs > ρ∞, the buoyancy driven flow descends along the garment. 



PROBLEM 9.118  
KNOWN:  A water bath maintained at a uniform temperature of 37°C with top surface exposed to 
draft-free air and uniform temperature walls in a laboratory.  
FIND:  (a) The heat loss from the surface of the bath by radiation exchange with the surroundings; (b) 
Calculate the Grashof number using Eq. 9.65 with a characteristic length L that is appropriate for the 
exposed surface of the water bath; (c) Estimate the free convection heat transfer coefficient using the 
result for GrL obtained in part (b); (d) Invoke the heat-mass analogy and use an appropriate correlation 
to estimate the mass transfer coefficient using GrL; calculate the water evaporation rate on a daily 
basis and the heat loss by evaporation; and (e) Calculate the total heat loss from the surface and 
compare relative contributions of the sensible, latent and radiative effects.  Review assumptions made 
in your analysis, especially those relating to the heat-mass analogy.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Laboratory air is quiescent, (3) Laboratory walls 
are isothermal and large compared to water bath exposed surface, (4) Emissivity of the water surface is 
0.96, (5) Heat-mass analogy is applicable, and (6) Constant properties.  
PROPERTIES:  Table A-6, Water vapor (T∞ = 293 K):  ρA,∞,sat = 0.01693 kg/m3; (Ts = 310 K):  
ρA,s = 0.04361 kg/m3, hfg = 2.414 × 106 J/kg; Table A-4, Air (T∞ = 293 K, 1 atm): ρB,∞ = 1.194 
kg/m3; (Ts = 310 K, 1 atm): ρB,s = 1.128 kg/m3; (Tf = (Ts + T∞)/2 = 302 K, 1 atm): νB = 1.604 × 10-5 
m2/s, k = 0.0270 W/m⋅K, Pr = 0.706; Table A-8, Water vapor-air (Tf = 302 K, 1 atm):  DAB = 0.24 × 
10-4 m2/s (302/298)3/2 = 2.45 × 10-5 m2/s. 
 
ANALYSIS:  (a) Using the linearized form of the radiation exchange rate equation, the heat rate and 
radiation coefficient can be estimated. 

 ( )( )2 2
rad s sur s surh T T T Tεσ= + +        (1) 

 ( )( )2 2 3 2
radh 0.96 310 298 310 298 K 6.12 W / m Kσ= + + = ⋅    < 

 ( )rad rad s s surq h A T T= −         (2) 

 ( ) ( )2 2
radq 6.12 W / m K 0.25 0.50 m 37 25 K 9.18 W= ⋅ × × × − =  

(b) The general form of the Grashof number, Eq. 9.65, applied to natural convection flows driven by 
concentration gradients 
 ( ) 3 2

L sGr g L /ρ ρ ρν∞= −         (3) 

where L is the characteristic length defined in Eq. 9.29 as L = As/P, where As and P are the exposed 
surface area and perimeter, respectively; ρs and ρ∞ are the density of the mixture at the surface and in 
the quiescent fluid, respectively; and, ρ is the mean boundary layer density, (ρ∞ + ρs)/2, and ν is the 
kinematic viscosity of fluid B, evaluated at the film temperature Tf = (Ts + T∞)/2.  Using the property 
values from above, 
          Continued … 
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 ( ) 3 3

s A,s B,s 0.04361 1.128 kg / m 1.1716 kg / mρ ρ ρ= + = + =  
 
 A, B, A, ,sat B,ρ ρ ρ φ ρ ρ∞ ∞ ∞ ∞ ∞ ∞= + = +  
 
 ( ) 3 30.6 0.01693 1.194 kg / m 1.2042 kg / mρ∞ = × + =  
 
 ( ) 3

s / 2 1.188 kg / m∞= + =ρ ρ ρ  
 
Substituting numerical values in Eq. (3), find the Grashof number. 
 

 
( ) ( )

( )
32 3

L 23 5 2

9.8 m / s 1.2042 1.1716 kg / m 0.0833 m
Gr

1.188 kg / m 1.604 10 m / s−

− ×
=

×
 

 
 5

LGr 6.040 10= ×          < 
 
where the characteristic length is defined by Eq. 9.29, 
 
 ( ) ( )2

sL A / P 0.25 0.5 m / 2 0.25 0.50 m 0.0833 m= = × + =  
 
(c) The free convection heat transfer coefficient for the horizontal surface, Eq. 9.30, for upper surface 
of heated plate, is estimated as follows: 
 
 5 5

L L LRa Gr Pr 6.040 10 0.706 4.264 10= = × × = ×  
 

 L
1/ 4
L

hLNu 0.54 Ra 13.80
k

= = =  
 
 2h 13.80 0.0270 W / m K / 0.0833 m 4.47 W / m K= × ⋅ = ⋅     < 
 
(d) Invoking the heat-mass analogy, the mass transfer coefficient is estimated as follows, 
 
 5 5

L,m LRa Gr Sc 6.040 10 0.655 3.954 10= = × × = ×  
 
where the Schmidt number is given as 
 
 5 2 5 2

ABSc / D 1.604 10 m / s / 2.45 10 m / s 0.655− −= = × × =ν  
 
The correlation has the form 
 

 L
1/ 4m
L,m

AB

h LSh 0.54 Ra 13.54
D

= = =  

 
 5 2

mh 13.54 2.45 10 m / s / 0.0833 m 0.00398 m / s−= × × =     < 
 
The water evaporation rate on a daily basis is 
 ( )A m s A,sat A,n h A ρ ρ ∞= −  

 ( ) ( )2 3
An 0.00398 m / s 0.25 0.50 m 0.04361 0.6 0.01693 kg / m= × − ×  

 
          Continued … 
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 5

An 1.66 10 kg / s 1.44 kg / day−= × =       < 
 
and the heat loss by evaporation is 
 
 5 6

evap A fgq n h 1.66 10 kg / s 2.414 10 J / kg 40.2 W−= = × × × =    < 
 
(e) The convective heat loss is that of free convection, 
 
 ( )cv s sq hA T T∞= −  
 
 ( ) ( )2 2

cvq 4.47 W / m 0.25 0.50 m 37 20 K 9.50 W= × × − =     < 
 
In summary, the total heat loss from the surface of the bath, which must be supplied as electrical 
power to the bath heaters, is 
 
 tot rad cv evapq q q q= + +  
 
 ( )totq 9.18 9.50 40.2 W 59 W= + + =       < 
 
The sensible heat losses are by convection (qrad + qcv), which represent 31% of the total; the balance 
is the latent loss by evaporation, 68%. 



PROBLEM 9.119  
KNOWN:  Diameter and surface temperature of lake.  Temperature and relative humidity of air.  
Surroundings temperature.   
FIND:  Heat loss from lake by radiation, free convection, and evaporation.  Justify use of heat transfer 
correlation outside of RaL range.    
SCHEMATIC:   
 
 
 
 
 

 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions. (2) Negligible breeze.  (3) Heat-mass transfer analogy 
is applicable.  (4) Heat transfer correlation can be used outside of RaL range.     
 
PROPERTIES:  Table A-6, Water vapor (T∞ = 296 K):  ρA,∞,sat = 0.02025 kg/m3; (Ts = 303 K):  ρA,s = 
0.02985 kg/m3, hfg = 2.431 × 106 J/kg; Table A-4, Air (T∞ = 296 K, 1 atm): ρB,∞ = 1.180 kg/m3; (Ts = 
303 K, 1 atm): ρB,s = 1.151 kg/m3; (Tf = (Ts + T∞)/2 ≈ 300 K, 1 atm): νB = 1.589 × 10-5 m2/s, k = 
0.0263 W/m⋅K, Pr = 0.707; Table A-8, Water vapor-air (Tf ≈ 300 K, 1 atm):  DAB = 0.26 × 10-4 m2/s 
(300/298)3/2 = 2.63 × 10-5 m2/s; Table A-11, Water (Ts ≈ 300 K): ε = 0.96. 
 
ANALYSIS:  The radiation heat transfer can be calculated from 

 ( )4 4
rad s s surq A T T= εσ −                        (1)

 ( )
2

8 2 4 4 4 4(4000 m)0.96 5.67 10  W/m K 303 285 K 1253 MW
4

π−= × × ⋅ × × − =         < 

 
The natural convection above the lake surface is driven by the combination of temperature and 
concentration gradient.  The general form of the Grashof number, Equation 9.65, is 

 ( ) 3 2
L sGr g L /∞= ρ −ρ ρν                       (2) 

 
where L is the characteristic length defined in Eq. 9.29 as L = As/P, where As and P are the exposed 
surface area and perimeter, respectively; ρs and ρ∞ are the density of the mixture at the surface and in 
the quiescent fluid, respectively; ρ is the mean boundary layer density, (ρ∞ + ρs)/2; and ν is the 
kinematic viscosity of the mixture (approximated here as the value for pure air), evaluated at the film 
temperature Tf = (Ts + T∞)/2.  Using the property values from above, 

 ( ) 3 3
s A,s B,s 0.02985 1.151 kg / m 1.181 kg / mρ = ρ +ρ = + =  

 A, B, A, ,sat B,∞ ∞ ∞ ∞ ∞ ∞ρ = ρ +ρ = φ ρ +ρ  

 ( ) 3 30.8 0.02025 1.180 kg / m 1.196 kg / m∞ρ = × + =  

 ( ) 3
s / 2 1.189 kg / m∞ρ = ρ +ρ =  

2
2

s
(4000)L A / P m / (4000) m 1000 m

4

⎛ ⎞π
= = π =⎜ ⎟

⎜ ⎟
⎝ ⎠

                 

Substituting numerical values in Equation (2) for the Grashof number, 
Continued… 
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( ) ( )

( )
32 3

17
L 23 5 2

9.8 m / s 1.196 1.181 kg / m 1000 m
Gr 5.01 10

1.189 kg / m 1.589 10 m / s−

− ×
= = ×

×
 

Then 17 17
L LRa Gr Pr 5.01 10 0.707 3.54 10= = × × = ×         < 

 
The free convection heat transfer coefficient for the upper surface of a hot plate is given by Equation 
9.31, but the Rayleigh number is larger than the upper limit specified for this correlation.  However, 
since RaL is raised to the 1/3 power, this correlation yields a heat transfer coefficient which is 
independent of L.  Therefore it is reasonable to expect that the heat transfer coefficient calculated by 
this correlation is valid even though RaL is outside the range.  Proceeding, 

 L
1/ 3 5
L

hLNu 0.15 Ra 1.06 10
k

= = = ×  

 5 2h 1.06 10 0.0263 W / m K /1000 m 2.79 W / m K= × × ⋅ = ⋅  

( )cv s sq hA T T∞= −  

 ( )
2

2 2
cv

(4000)q 2.79 W / m m 30 23 K 246 MW
4

⎛ ⎞π
= × − =⎜ ⎟

⎜ ⎟
⎝ ⎠

      < 

Invoking the heat-mass analogy, the mass transfer coefficient is estimated as follows, 

 17 17
L,m LRa Gr Sc 5.01 10 0.604 3.03 10= = × × = ×  

 
where the Schmidt number is given as 

 5 2 5 2
ABSc / D 1.589 10 m / s / 2.63 10 m / s 0.604− −= ν = × × =  

The correlation has the form 

 L
1/ 3 5m
L,m

AB

h LSh 0.15 Ra 1.01 10
D

= = = ×  

 5 5 2 3
mh 1.01 10 2.63 10 m / s /1000 m 2.65 10 m / s− −= × × × = ×  

 
The water evaporation rate on a daily basis is 
 ( )A m s A,sat A,n h A ∞= ρ −ρ  

 ( ) ( )3 2 2 3
An 2.65 10 m / s 4000 / 4 m 0.02985 0.8 0.02025 kg / m−= × ×π − ×  

 2 7
An 4.54 10 kg / s 3.93 10 kg / day= × = ×  

 
and the heat loss by evaporation is 

 2 6
evap A fgq n h 4.54 10 kg / s 2.431 10 J / kg 1105 MW= = × × × =      < 

 
In summary, the total heat loss from the surface of the lake, which determines the rate at which the 
lake can be used to cool the condenser, is 

tot rad cv evapq q q q  = 1253 MW + 246 MW + 1105 MW = 2604 MW= + +    < 
 
COMMENTS:  The sensible heat losses are by convection (qrad + qcv), which represent 58% of the 
total; the balance is the latent loss by evaporation, 42%. 



PROBLEM 9.120  
 

 
KNOWN: Fuel cell cathode dimensions, oxygen mass fraction in the ambient and adjacent to 
the cathode, orientation of cathode, relationship between oxygen transfer rate and electrical 
current. 
 
FIND: Maximum possible electrical current produced by the fuel cell. 
 
SCHEMATIC: 
 

 
 
 
 
 
 
 

 
 
 
ASSUMPTIONS: (1) Ideal gas behavior, (2) Isothermal conditions, (3) Thermophysical 
properties of species B are those of air, except for the mass density. 
 
PROPERTIES: Table A.4, air: (p = 1 atm, Tf = 298 K): ν = 1.571 × 10-5 m2/s, Table A.8, 
oxygen in air: DAB = 0.21 × 10-4 m2/s. 
 
ANALYSIS:  The molecular weights of oxygen (A) and nitrogen (B) are MA = 32 kg/kmol and 
MB = 28 kg/kmol, respectively. The mole fraction of A in the ambient is xA,∞ = (mA,∞/MA)/[mA,∞/ 
MA + (1 – mA,∞)/ MB] = (0.233/32 kg/kmol/[0.233/32 kg/kmol + (1 – 0.233)/28 kg/kmol] = 0.210. 
Therefore, xB,∞ = 1 – 0.210 = 0.790. The molecular weight of the ambient gas is M∞ =  xA,∞ 
MA+(1-xA,∞)MB = 0.210 × 32 kg/kmol + (1 – 0.210) × 28 kg/kmol = 28.84 kg/mol. The gas 
constant of the ambient is R∞ = R/M∞ = 8.315 kJ/kmol⋅K/28.84 kg/kmol = 288.3 × 10-3 kJ/kg⋅K.  
 
The mole fraction of A at the surface is xA,s = (mA,s/MA)/[mA,s/MA + (1 – mA,s)/MB] = (0.10/32 
kg/kmol)/[0.1/32 kg/kmol + (1-0.1)/28kg/kmol] = 0.089. Therefore, xB,s = 1 – 0.089 = 0.911. The 
molecular weight of the gas at the surface is Ms = xA,sMA + (1 - xA,s)MB = 0.089 × 32 kg/kmol + (1 
– 0.089) × 28 kg/kmol = 28.36 kg/kmol. The gas constant of the fluid at the surface is Rs = R/Ms 
= 8.315 kJ/kmol⋅K/28.36 kg/kmol = 293.2 × 10-3 kJ/kg⋅K. 
 
The ambient gas density is 
 

 
5 2

3
3

p 1.0133 10 N / m 0.001kJ / J 1.1794kg / m
R T 288.3 10 kJ / kg K (25 273)K∞ −
∞

×
ρ = = × =

× ⋅ × +
 

 
The surface gas density is 
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5 2

3
s 3

s

p 1.0133 10 N / m 0.001kJ / J 1.1597kg / m
R T 293.2 10 kJ / kg K (25 273)K−

×
ρ = = × =

× ⋅ × +
 

 
The average gas density is ρ = (1.1794 kg/m3 + 1.1597 kg/m3)/2 = 1.1696 kg/m3. 
 
Case a: Vertical Cathode.  The Rayleigh number is 
 

 

( ) 3 2
L L s AB

2 3 3
3

3 5 2 4 2

Ra Gr Sc g L / [ / D ]

9.8m /s (1.1597 1.1794)kg / m (0.12m)                    865 10
1.1696kg / m 1.571 10 m /s 0.21 10 m /s

        

∞

− −

⎡ ⎤= = ρ −ρ ρν × ν⎣ ⎦

× − ×
= = ×

× × × ×
 

and the Schmidt number is Sc = ν/DAB = 1.571 × 10-5 m2/s/0.21 × 10-4 m2/s = 0.748. The heat and 
mass transfer analogy may be applied to the Churchill and Chu correlation to yield 
 

 

2
1/6

AB Lm,L 8/ 279 /16

2
4 2 3 1/6

8/ 279 /16

D 0.387Rah 0.825
L 1 (0.492 /Sc)

0.21 10 m /s 0.387 (865 10 )        0.825 0.0028m /s
0.12m 1 (0.492 / 0.748)

−

⎧ ⎫
⎪ ⎪= +⎨ ⎬

⎡ ⎤⎪ ⎪+⎣ ⎦⎩ ⎭

⎧ ⎫
× × ×⎪ ⎪= × + =⎨ ⎬

⎡ ⎤⎪ ⎪+⎣ ⎦⎩ ⎭

 

 
The mass transfer rate is 
 
 

2 3 3
m,LA s A,s A,

6

n h A ( ) 0.0028m /s (0.12m) (1.1597kg / m 0.1 1.1794kg / m 0.233)

     6.4 10 kg / s
∞

−

= ρ −ρ = × × × − ×

= − ×
 

 
The negative sign implies oxygen transfer to the cathode. The electric current is 
 

 I = 4nAF/MA

64 6.4 10 kg / s 96489coulombs / mol 1000mol / kmol 77A
32kg / kmol

−× × × ×
= =   < 

 
Case b: Horizontal, Upward Facing Cathode. Since ρs < ρ∞, the analogous situation is the upper 
surface of a hot plate. The characteristic length is L = As/P = L2/4L = L/4 = 0.12 m/4 = 0.03 m. 
The Rayleigh number is 
 

2 3 3

L 3 5 2 4 2
9.8m /s (1.1597 1.1794)kg / m (0.03m)Ra 13500

1.1696kg / m 1.571 10 m /s 0.21 10 m /s
        

− −
× − ×

= =
× × × ×  

Continued… 
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From Equation 9.30, 
 

1/ 4
LSh 0.54 (13500) 5.82= × =  and  4 2

L L ABh Sh D / L 5.82 0.21 10 m /s / 0.03m 0.0041m /s−= = × × =  
 
Hence, the mass transfer rate is 
 

2 3 3 6
An 0.0041m /s (0.12m) (1.1597kg / m 0.1 1.1794kg / m 0.233) 9.38 10 kg / s−= × × × − × = − ×  

 
and the electric current is 
 

I
64 9.38 10 kg /s 96489coulombs / mol 1000mol / kmol 102A

32kg / kmol

−× × × ×
= =   < 

 
 
COMMENTS: Although the analysis is approximate because of the assumption of isothermal 
conditions, the fuel cell performance is clearly dependent upon its orientation. 
 
 



PROBLEM 10.1  
KNOWN:  Water at 1 atm with Ts – Tsat = 10°C. 
 
FIND:  Show that the Jakob number is much less than unity; what is the physical significance of the 
result; does result apply to other fluids?  
ASSUMPTIONS:  (1) Boiling situation, Ts > Tsat.  
PROPERTIES:  Table A-5 and Table A-6, (1 atm): 
 

 

      hfg (kJ/kg) cp,A (J/kg⋅K) Tsat(K) 

 
   Water      2257      4217    373 
   Ethylene glycol      812      2742*   470 
   Mercury      301       135.5*   630 
   R-134a       217      1281    247 
 
* Estimated based upon value at highest temperature cited in Table A-5.  
ANALYSIS:  The Jakob number is the ratio of the maximum sensible energy absorbed by the vapor 
or liquid to the latent energy absorbed during boiling or condensation.  That is, 
 
 p fgJa c T / h= Δ  
 
The Jakob number can be based on the liquid or vapor specific heat depending on the circumstances.  
Since they are the same order of magnitude and we have liquid specific heats available for all the 
fluids listed above, we will use cp,A . 

For water with an excess temperature ΔTs = Te - T∞ = 10°C, find 
 
 ( ) 3Ja 4217 J / kg K 10K / 2257 10 J / kg= ⋅ × ×  
 
 Ja 0.019.=  
 
Since Ja << 1, the implication is that the sensible energy absorbed by the vapor is much less than the 
latent energy absorbed during the boiling phase change.  Using the appropriate thermophysical 
properties for three other fluids, the Jakob numbers are: 
 

Ethylene glycol:  ( ) 3Ja 2742 J / kg K 10K / 812 10 J / kg 0.0338= ⋅ × × =  < 
 
Mercury:  ( ) 3Ja 135.5J / kg K 10K / 301 10 J / kg 0.0045= ⋅ × × =  < 
 
Refrigerant, R-12: ( ) 3Ja 1281J / kg K 10K / 217 10 J / kg 0.059= ⋅ × × =   < 
 
For ethylene glycol and R-12, the Jakob number is larger than the value for water, but still much less 
than unity.  Based upon these example fluids, we conclude that generally we’d expect Ja to be much 
less than unity.  
COMMENTS:  We would expect the same low value of Ja for the condensation process since cp,g 
and cp,f are of the same order of magnitude. 
 



PROBLEM 10.2 
 
 
KNOWN:  Diameter and temperature of horizontal cylinder or wire. 
 
FIND:  Heat flux due to natural convection and comparison with values shown in Figure 10.4 
SCHEMATIC: 

D = 7 mm, 7μm

ΔTe = 5°C

Water, 1 atm

 
 
ASSUMPTIONS:  (1) Constant properties, (2) No bubble nucleation. 
 
PROPERTIES: Table A-6, Water (Saturated liquid, Tf = (Tsat + Ts)/2 = 102.5°C = 375.5 K): k = 0.681 
W/m·K, ν = 2.85 × 10-7 m2/s, ρ = 956.6 kg/m3, cp = 4221 J/kg·K, Pr = 1.69, β = 765 × 10-6 K-1. 
 
ANALYSIS:  The thermal diffusivity is α = k/ρcp = 0.681 W/m·K/(956.6 kg/m3 × 4221 J/kg·K) = 
1.68 × 10-7 m2/s. For the D = 7 mm cylinder, the Rayleigh number is 
 

  
3 2 6 -1 3

5
7 2 7 2

9.81 m/s 765 10 K 5 K (7 /1000 m) 2.77 10
2.85 10  m /s  1.68 10  m /s

e
D

g T DRa β
να

−

− −
Δ × × × ×= = = ×

× × ×
 

 
Using the Churchill-Chu correlation, 

 
( )

( )
( )

2 2
1/651/6

8/ 27 8/ 279 /16 9 /16

0.387 2.77 100.3870.60 0.60 11.12
1 0.559 / 1 0.559 /1.69

DD
hD RaNu
k

Pr

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬

⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎪ ⎪
⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

× ×
= = + = + =

+ +
 

 
from which 2/ 11.12 0.681 W/m K /(7 /1000 m) 1083 W/m KDh Nu k D= = × ⋅ = ⋅ . 
 
Hence, 2 2" ( ) 1083 W/m K × 5 K = 5413 W/meq h T= Δ = ⋅ .     < 
 
The preceding calculations may be repeated for the D = 7 μm wire, yielding 
 
     RaD = 0.00027, DNu = 0.471, h = 4.586 × 104 W/m2·K, q″ = 2.29 × 105 W/m2.   < 
 
From Figure 10.4, the heat flux corresponding to ΔTe = 5°C is approximately 8,000 W/m2. The heat 
flux for the D = 7 mm diameter cylinder is approximately 67% of this value. However, for the D = 7 
μm wire, the heat flux is nearly 29 times greater than shown in Figure 10.4 and corresponds to values 
associated with vigorous nucleate boiling. Hence, Figure 10.4 is not generally applicable to all 
situations involving boiling of water at 1 atmosphere pressure and should be used, with caution, only 
in the absence of more detailed information.        < 
 
Comments. (1) Use of Equation 9.33 to calculate the heat flux for the wire yields 

6 0.058 4 2(0.681 W/m K / 7 10  m) 0.675 0.00027 4.076 10  W/m Kh −= ⋅ × × × = × ⋅ and q″ = 2.04 × 105 
W/m2. This is in good agreement with the value calculated from the Churchill-Chu relation. (2) We 
would expect the boiling heat flux from the small wire to far exceed the values shown in Figure 10.4.  



PROBLEM 10.3  
KNOWN:  Spherical bubble of pure saturated vapor in mechanical and thermal equilibrium with its 
liquid.  
FIND:  (a) Expression for the bubble radius, (b) Bubble vapor and liquid states on a p-v diagram; how 
changes in these conditions cause bubble to collapse or grow, and (c) Bubble size for specified 
conditions.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Liquid-vapor medium, (2) Thermal and mechanical equilibrium. 
 
PROPERTIES:  Table A-6, Water (Tsat = 101°C = 374.15K):  psat = 1.0502 bar; (Tsat = 100°C = 
373.15K):  psat = 1.0133 bar, σ = 58.9 × 10-3 N/m. 
 
ANALYSIS:  (a) For mechanical equilibrium, the difference in pressure between the vapor inside the 
bubble and the liquid outside the bubble will be offset by the surface tension of the liquid-vapor 
interface.  The force balance follows from the free-body diagram shown above (right), 
 

 ( ) ( )( )2 2
st i ob bF r p p p rπ π= Δ = −  

 

 ( ) ( )( )2
b i ob2 r r p pπ σ π= −  

 
 ( )b i or 2 / p pσ= −          (1) 
 
Thermal equilibrium requires that the temperatures of the vapor and liquid be equal.  Since the vapor 
inside the bubble is saturated, pi = psat,v (T).  Since po < pi, it follows that the liquid outside the bubble 
must be superheated; hence, po = pl  (T), the pressure of superheated liquid at T.  Hence, we can 
write, 
 

 ( )b sat,vr 2 / p pσ= − l            (2)   < 

 
(b) The vapor [1] and liquid [2] states are represented on the following p-v diagram.  Thermal 
equilibrium requires both the vapor and liquid to be at the same temperature [3].  But mechanical 
equilibrium requires that the outside liquid pressure be less than the inside vapor pressure [4].  Hence 
the liquid must be in a superheated state.  That is, its saturation temperature, Tsat(po) [5] is less than 
Tsat(pi); Tl  = Tsat(po) and po = p .l  
 
          Continued … 
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 < 
 
The equilibrium condition for the bubble is unstable.  Consider situations for which the pressure of the 
surrounding liquid is greater or less than the equilibrium value.  These situations are presented on 
portions of the p-v diagram 
 
       When o o sat,vp p , T T′ ′< <l  and 
       heat must be transferred out of 
       the bubble and vapor condenses. 
       Hence, the bubble collapses. 
 
A similar argument for the condition o op p′ >  leads to sat,vT T′ >l  and heat is transferred into the 
bubble causing evaporation with the formation of vapor.  Hence, the bubble begins to grow. 
 
(c) Consider the specific conditions 
 
 ( )sat,v sat oT 101 C and T T p 100 C= ° = = °l  
 
and calculate the radius of the bubble using the appropriate properties in Eq. (2). 
 

 ( )3 5
b 2

N Nr 2 58.9 10 / 1.0502 1.0133 bar 10 / bar
m m

− ⎛ ⎞
= × × − ×⎜ ⎟

⎝ ⎠
 

 
 br 0.032mm.=          < 
 
Note the small bubble size.  This implies that nucleation sites of the same magnitude formed by pits 
and crevices are important in promoting the boiling process. 



PROBLEM 10.4  
 
KNOWN:  Boiling curve of Figure 10.4.  
 
FIND:  Heat transfer coefficient associated with Points A, B, C, D, and E. Which points are associated 
with the largest and smallest values of h. Thickness of vapor blanket at the Leidenfrost point. 
  
 
SCHEMATIC: 
 

 
 
ASSUMPTIONS:  (1) Neglect radiation during film boiling, (2) Surface is flat, (3) Vapor thermal 
conductivity can be evaluated at the film temperature. 
 
PROPERTIES:  Table A-6, Water vapor (T = 433 K) = 0.0308 W/m ⋅ K. 
 
ANALYSIS:   Since h = sq′′ /ΔTe, the values of h can be found by reading sq′′  and ΔTe from the graph.   
 

Point sq′′ (W/m2) ΔTe (°C) h (W/m2 ⋅ K) 

A 6700 5 1300 

B 105 10 10,000 

C 1.4×106 30 47,000 

D 2.5×104 120 210 

E 1.4×106 1200 1200 
 
Among these points, the largest heat transfer coefficient occurs at point C, corresponding to the critical 

heat flux.  The smallest heat transfer coefficient occurs at point D, the Leidenfrost point.  < 
 

Continued… 
 
 



PROBLEM 10.4 (Cont.) 
 
 

At the Leidenfrost point, if radiation is neglected, heat transfer is due solely to conduction through the 
vapor film.  The surface temperature is Ts = ΔTe + Tsat = 120°C + 100°C = 220°C, so the film 
temperature is Tf = (220 + 100)°C/2 = 160°C = 433 K.  Evaluating the vapor thermal conductivity at 
the film temperature, the film thickness is given by  

 4 2 4/ 0.0308 W/m K 120 C / 2.5 10  W/m 1.5 10  m 0.15 mmv ek T q −′′= Δ = ⋅ × ° × = × =l  < 
 
COMMENTS:  (1) Section 10.4.4 describes how to account for radiation heat transfer in film 
boiling.  From Eq. 10.11, assuming ε = 1 to maximize the effect of radiation, and using Ts = 220°C 
corresponding to the Leidenfrost point, we find radh = 19 W/m2 ⋅ K.  This is considerably smaller than 
the overall heat transfer coefficient of h = 210 W/m2 ⋅ K.  Figure 10.4 is based on experimental data, 
and therefore includes the effect of radiation, which becomes more significant as ΔTe increases. (2) 
Leidenfrost boiling can be observed by sprinkling water drops on a very hot flat pan surface. The 
vapor blanket beneath the droplets provides a means for the droplets to meander about the surface, and 
the droplets remain suspended for a relatively long time, indicative of relatively low heat transfer rates. 
 



PROBLEM 10.5  
KNOWN:  Long wire, 1 mm diameter, reaches a surface temperature of 126°C in water at 1 atm while 
dissipating 3150 W/m.  
FIND:  (a) Boiling heat transfer coefficient and (b) Correlation coefficient,  Cs,f, if nucleate boiling 
occurs.  
SCHEMATIC:   

  
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Nucleate boiling. 
 
PROPERTIES:  Table A-6, Water (saturated, 1 atm):  Ts = 100°C, ρl  = 1/vf = 957.9 kg/m3, ρf = 

1/vg = 0.5955 kg/m3, p,c l  = 4217 J/kg⋅K, μl  = 279 × 10-6 N⋅s/m2, Prl  = 1.76, hfg = 2257 kJ/kg, σ = 

58.9× 10-3 N/m. 
 
ANALYSIS:  (a) For the boiling process, the rate equation can be rewritten as 

 ( ) ( )s
s s sat s sat

qh q / T T / T T
Dπ
′

′′= − = −  
 

 ( ) 6 2
2

3150 W / m Wh / 126 100 C 1.00 10 / 26 C 38,600 W / m K.
0.001m mπ

= − ° = × ° = ⋅
×

 < 

Note the heat flux is very close to maxq ,′′  and nucleate boiling does exist. 
 
(b) For nucleate boiling, the Rohsenow correlation may be solved for Cs,f to give 

 
( )1/ 3 1/ 6

fg p, ev
s,f ns fg

h c Tg
C .

q h Pr

μ ρ ρ
σ

⎛ ⎞Δ⎧ ⎫ ⎡ ⎤−⎪ ⎪ ⎜ ⎟= ⎨ ⎬ ⎢ ⎥′′ ⎜ ⎟⎪ ⎪ ⎣ ⎦⎩ ⎭ ⎝ ⎠

l ll

l

 

Assuming the liquid-surface combination is such that n = 1 and substituting numerical values with ΔTe 
= Ts –Tsat, find 

 

( )
1/ 6

1/ 36 2 3 2 3
s,f 6 2 3

3

m kg9.8 957.9 0.5955
279 10 N s / m 2257 10 J / kg s mC

1.00 10 W / m 58.9 10 N / m

4217 J / kg K 26K

2257 10 J / kg 1.76

−

−

⎡ ⎤−⎢ ⎥⎧ ⎫× ⋅ × ×⎪ ⎪ ⎢ ⎥= ×⎨ ⎬
⎢ ⎥× ×⎪ ⎪⎩ ⎭ ⎢ ⎥⎣ ⎦

⎛ ⎞⋅ ×
⎜ ⎟
⎜ ⎟× ×⎝ ⎠

 

 
 s,fC 0.017.=           < 
 
COMMENTS:  By comparison with the values of Cs,f for other water-surface combinations of Table 
10.1, the Cs,f value for the wire is large, suggesting that its surface must be highly polished.  Note that 
the value of the boiling heat transfer coefficient is much larger than values common to single-phase 
convection. 



PROBLEM 10.6  
KNOWN:  Nucleate pool boiling on a 10 mm-diameter tube maintained at ΔTe = 10°C in water at 1 
atm; tube is platinum-plated.  
FIND:  Heat transfer coefficient.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Nucleate pool boiling. 
 
PROPERTIES:  Table A-6, Water (saturated, 1 atm):  Ts = 100°C, ρl  = 1/vf = 957.9 kg/m3, ρv = 

1/vg = 0.5955 kg/m3, p,c l  = 4217 J/kg⋅K, μl  = 279 × 10-6 N⋅s/m2, Prl  = 1.76, hfg = 2257 kJ/kg, σ = 

58.9 × 10-3 N/m. 
 
ANALYSIS:  The heat transfer coefficient can be estimated using the Rohsenow nucleate-boiling 
correlation and the rate equation 
 

 
( )

31/ 2
fg p, evs

ne e s,f fg

h c Tgqh .
T T C h Pr

μ ρ ρ
σ

⎛ ⎞Δ⎡ ⎤−′′ ⎜ ⎟= = ⎢ ⎥ ⎜ ⎟Δ Δ ⎣ ⎦ ⎝ ⎠

l ll

l

 

 
From Table 10.1, find Cs,f = 0.013 and n = 1 for the water-platinum surface combination.  Substituting 
numerical values, 
 

 

( )
1/ 22 36 2 3

3

3

3

9.8m / s 957.9 0.5955 kg / m279 10 N s / m 2257 10 J / kgh
10K 58.9 10 N / m

4217 J / kg K 10K

0.013 2257 10 J / kg 1.76

−

−

⎡ ⎤−× ⋅ × × ⎢ ⎥= ×
⎢ ⎥×⎣ ⎦

⎛ ⎞⋅ ×
⎜ ⎟
⎜ ⎟× × ×⎝ ⎠

 

 
 2h 13,690 W / m K.= ⋅         < 
 
COMMENTS:  For this liquid-surface combination, 2

sq 0.137 MW / m ,′′ =  which is in general 
agreement with the typical boiling curve of Fig. 10.4.  To a first approximation, the effect of the tube 
diameter is negligible. 



PROBLEM 10.7 
 
KNOWN:  Saturated water at 1 atm boiling on large, horizontal, polished copper plate.   
FIND:  Nucleate boiling heat flux over excess temperature range 5ºC ≤ ΔTe ≤ 30ºC.  Compare with 
Figure 10.4.  Find excess temperature corresponding to critical heat flux.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions. (2) Nucleate pool boiling. 
 
PROPERTIES:  Table A-6, Saturated water (1 atm):  Tsat = 100°C, ρl  = 957.9 kg/m3, ρv = 0.596 

kg/m3, p,c l  = 4217 J/kg⋅K, μl  = 279 × 10-6 N⋅s/m2, Prl  = 1.76, σ = 58.9 × 10-3 N/m, hfg = 2257 

kJ/kg. 
 
ANALYSIS:  The nucleate pool boiling heat flux can be estimated using the Rohsenow correlation. 
 

 
( )

31/ 2
p, ev

s fg n
s,f fg

c Tg
q h .

C h Pr

⎛ ⎞Δ⎡ ⎤ρ −ρ ⎜ ⎟′′ = μ ⎢ ⎥σ ⎜ ⎟⎣ ⎦ ⎝ ⎠

ll
l

l

 

 
From Table 10.1, find for this liquid-surface combination, Cs,f = 0.0128 and n = 1, and substituting 
numerical values, 
 

 

( )
1/ 22 3

6 2 3
s 3

3
e

3

9.8 m / s 957.9 0.596 kg / m
q 279 10 N s / m 2257 10 J / kg

58.9 10 N / m

4217 J / kg K T
0.0128 2257 10 J / kg 1.76

−
−

⎡ ⎤−
′′ ⎢ ⎥= × ⋅ × × ×

⎢ ⎥×⎣ ⎦
⎛ ⎞⋅ × Δ
⎜ ⎟⎜ ⎟× × ×⎝ ⎠

 

 
 3 2

s eq 143( T ) W / m .′′ = Δ           < 
 
 
This is plotted below. 
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PROBLEM 10.7 (Cont.) 
 
 

Excess temperature, Ts - Tsat (K)
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Compared with Figure 10.4, we see that this curve is a straight line on a log-log plot.  The heat flux is 
higher than in Figure 10.4, especially for the higher values of excess temperature. 
 
To find the excess temperature corresponding to the critical heat flux, we equate Eqs. (10.5) and (10.6) 
and solve for ΔTe. 
 

( ) ( )

( ) ( )

3 1/ 41/ 2
p, ev v

fg fg vn 2
s,f fg v

1/ 31/ 4 1/ 2n
s,f fg v v

e fg v fg2p, v

c Tg g
h Ch

C h Pr

C h Pr g g
T Ch h

c

⎛ ⎞ ⎡ ⎤Δ⎡ ⎤ρ −ρ σ ρ −ρ⎜ ⎟μ = ρ ⎢ ⎥⎢ ⎥σ ⎜ ⎟ ρ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠
⎧ ⎫⎛ ⎞⎡ ⎤ ⎡ ⎤σ ρ −ρ ρ −ρ⎪ ⎪⎜ ⎟Δ = ρ μ⎢ ⎥⎨ ⎬⎢ ⎥⎜ ⎟σρ⎢ ⎥ ⎣ ⎦⎪ ⎪⎣ ⎦ ⎝ ⎠⎩ ⎭

ll l
l

l

l l l
l

l

 

where C = 0.149 for a large horizontal plate.  Substituting numbers we find 

ΔTe = 20.6°C        < 
 
COMMENTS:  (1) The correlation and Figure 10.4 do not agree extremely well.  The error is worst 
near ONB (70% error at ΔTe = 5ºC) and CHF (170% error at ΔTe = 30ºC).  Since the correlation is a 
straight line on a log-log plot, it doesn’t reproduce the curvature at the two ends of the curve.  Since 
the correlation isn’t accurate near CHF, it does not do an excellent job of predicting ΔTe, which 
appears to be around 30°C from Figure 10.4.  (2) Figure 10.4 is a typical boiling curve. The boiling 
curve will shift as different boiling surfaces and geometries (and, in turn, different values of Cs,f) are 
considered.  



PROBLEM 10.8  
KNOWN:  Simple expression to account for the effect of pressure on the nucleate boiling convection 
coefficient in water.  
FIND:  Compare predictions of this expression with the Rohsenow correlation for specified Δ Te and 
pressures (2 and 5 bar) applied to a horizontal plate.  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Nucleate pool boiling, (3) Cs,f = 0.013, n = 1. 
 
PROPERTIES:  Table A-6, Saturated water (2 bar):  ρl  = 942.7 kg/m3, p,c l  = 4244.3 J/kg⋅K, μl  = 

230.7 × 10-6 N⋅s/m2, Prl  = 1.43, hfg = 2203 kJ/kg, σ = 54.97 × 10-3 N/m, ρv = 1.1082 kg/m3; 

Saturated water (5 bar):  ρl  = 914.7 kg/m3, p,c l  = 4316 J/kg⋅K, μl  = 179 × 10-6 N⋅s/m2, Prl  = 1.13, 

hfg = 2107.8 kJ/kg, σ = 48.4 × 10-3 N/m, ρv = 2.629 kg/m3. 
 
ANALYSIS:  The simple expression by Jakob accounting for pressure effects is 

 ( ) ( )n 0.4
e ah C T p / p= Δ         (1) 

where p and pa are the system and standard atmospheric pressures.  For a horizontal plate, C = 5.56 

and n = 3 for the range 2
s15 q 235 k W / m .′′< <   For ΔTe = 10°C, 

 

p = 2 bar ( ) ( )3 0.4 2 2
sh 5.56 10 2 bar /1.0133bar 7, 298 W / m K, q 73kW / m′′= = ⋅ =  < 

p = 5 bar ( ) ( )3 0.4 2 2
sh 5.56 10 5 bar /1.0133bar 10,529 W / m K, q 105 kW / m′′= = ⋅ =  < 

 
where s eq h T .′′ = Δ   The Rohsenow correlation, Eq. 10.5, with Cs,f = 0.013 and n = 1, is of the form 

 
( )

31/ 2
p, ev

s fg n
s,f fg

c Tg
q h .

C h Pr

ρ ρ
μ

σ

⎡ ⎤Δ⎡ ⎤− ⎢ ⎥′′ = ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

ll
l

l

     (2) 

p = 2 bar:    
( )

1 / 2 3

2 3
6 3

s 2 3 3 1

m kg
9.8 942.7 1.1082

N s J 4244.3 J / kg K 10Ks mq 230.7 10 2203 10
Jkgm 54.97 10 N / m 0.013 2203 10 1.43

kg

−

−

−
⋅ ⋅ ×

′′ = × × × ×
× × × ×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

 

  2
sq 232 kW / m′′ =         < 

p = 5 bar: 2
sq 439 kW / m .′′ =         < 

 
COMMENTS:  For ease of comparison, the results with pa = 1.0133 bar are: 
 

      ( )2
sq kW / m′′  

   Correlation/p (bar)   1 2 4 
    Simple   56      73        105 
    Rohsenow 135   232        439 
 
Note that the range of sq′′  is within the limits of the Simple correlation.  The comparison is poor and 
therefore the correlation is not to be recommended.  By manipulation of the Rohsenow results, find 
that the (p/po)m dependence provides m ≈ 0.75, compared to the exponent of 0.4 in the Simple 
correlation. 



PROBLEM 10.9  
KNOWN:  Diameter of copper pan.  Initial temperature of water and saturation temperature of boiling 
water.  Range of heat rates (1 ≤ q ≤ 100 kW).  
FIND:  (a) Variation of pan temperature with heat rate for boiling water, (b) Pan temperature shortly 
after start of heating with q = 8 kW.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Conditions of part (a) correspond to steady nucleate boiling, (2) Surface of pan 
corresponds to polished copper, (3) Conditions of part (b) correspond to natural convection from a 
heated plate to an infinite quiescent medium, (4) Negligible heat loss to surroundings. 
 
PROPERTIES:  Table A-6, saturated water (Tsat = 100°C):  3957.9 kg / m ,ρ =l  30.60 kg / m ,νρ =  

p,c 4217 J / kg K,= ⋅l  6 2279 10 N s / m , Pr 1.76,μ −= × ⋅ =l l  6
fgh 2.257 10 J / kg, 0.0589 N / M.σ= × =   

Table A-6, saturated water (assume Ts = 100°C, Tf = 60°C = 333 K):  ρ = 983 kg/m3, μ = 467 × 10-6 
N⋅s/m2, k = 0.654 W/m⋅K, Pr = 2.99, β = 523 × 10-6 K-1.  Hence, ν = 0.475 × 10-6 m2/s, α = 0.159 × 
10-6 m2/s. 
 
ANALYSIS:  (a) From Eq. (10.5), 

 
( )

1/ 3
n

s,f fg s fg s
e s sat 1/ 2p,

C h Pr q / h A
T T T

c g /ν

μ

ρ ρ σ

⎧ ⎫
⎪ ⎪Δ = − = ×⎨ ⎬
⎪ ⎪⎡ ⎤−⎣ ⎦⎩ ⎭

ll

l l

 

For n = 1.0, Cs,f = 0.0128 and As = πD2/4 = 0.0707 m2, the following variation of Ts with qs is 
obtained. 
 
 
 
 
 

            < 
 
 
 
 
As indicated by the correlation, the surface temperature increases as the cube root of the heat rate, 
permitting large increases in q for modest changes in Ts.  For q = 1 kW, Ts = 104.7°C, which is barely 
sufficient to sustain boiling. 
 
(b) Assuming 107 < RaL < 1011, the convection coefficient may be obtained from Eq. (9.31).  Hence, 
with L = As/P = D/4 = 0.075m, 
          Continued … 
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PROBLEM 10.9 (Cont.) 
 

( )( )
1/ 332 6 1

1/ 3 s i
L 12 4 2

9.8 m / s 523 10 K T T 0.075mk 0.654 W / m K
h 0.15 Ra 0.15

L 0.075m 0.475 0.159 10 m / s

− −

−
× × −⋅

= =
× ×

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎣ ⎦

 

  ( ) ( ) ( )
1/ 3 1/ 3 1/ 37

s i s i1.308 2.86 10 T T 400 T T= × − = −  

 
With As = πD2/4 = 0.0707 m2, the heat rate is then 
 

 ( ) ( ) ( )4 / 32 4 / 3 2
s s i s iq hA T T 400 W / m K 0.0707 m T T= − = ⋅ −  

 
With q = 8000 W, 
 

 s iT T 69 C 89 C= + ° = °         < 
 
COMMENTS:  (1) With (Ts – Ti) = 69°C, RaL = 1.97 × 109, which is within the assumed Rayleigh 
number range.  (2) The surface temperature increases as the temperature of the water increases, and 
bubbles may nucleate when it exceeds 100°C.  However, while the water temperature remains below 
the saturation temperature, the bubbles will collapse in the subcooled liquid. 
 



PROBLEM 10.10  
KNOWN:  Fluids at 1 atm:  mercury, ethanol, R-134a.  
FIND:  Critical heat flux; compare with value for water also at 1 atm.  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Nucleate pool boiling. 
 
PROPERTIES:  Table A-5 and Table A-6 at 1 atm, 
 
 hfg 

(kJ/kg) 
ρv 

(kg/m3) 
ρl  

(kg/m3) 
σ × 103 

(N/m) 
Tsat 
(K) 

Mercury   
Ethanol     
R-134a    
Water   

301 
846 
217 

2257 

3.90 
1.44 
5.26 

0.596 

12,740 
757 

1,377 
957.9 

417 
17.7 
15.4 
58.9 

630 
351 
247 
373 

   
ANALYSIS:  The critical heat flux can be estimated by Eq. 10.6 with C = 0.149, 
 

 
( )

1/ 4
v

max fg v 2
v

g
q 0.149 h .

σ ρ ρ
ρ

ρ

⎡ ⎤−
′′ = ⎢ ⎥

⎢ ⎥⎣ ⎦

l  

 
To illustrate the calculation procedure, consider numerical values for mercury. 
 

 ( )

( )

3 3
max

1/ 4
3 2 3

23

q 0.149 301 10 J / kg 3.90kg / m

417 10 N / m 9.8m / s 12,740 3.90 kg / m

3.90 kg / m

−

′′ = × × × ×

⎡ ⎤
⎢ ⎥× × −
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
 2

maxq 1.34 MW / m .′′ =  
 
For the other fluids, the results are tabulated along with the ratio of the critical heat fluxes to that for 
water. 
 

 

   Flluid  ( )2
maxq MW / m′′  max max,waterq / q′′ ′′  

 
   Mercury  1.34   1.06 
   Ethanol   0.512   0.41 

   R-134a   0.281   0.22   < 
   Water   1.26   1.00  
COMMENTS:  Note that, despite the large difference between mercury and water properties, their 
critical heat fluxes are similar. 



PROBLEM 10.11 
 
KNOWN:  Water at atmospheric pressure boiling on horizontal copper tube.  Heat flux is 90% of 
critical value. 
 
FIND:  Tube surface temperature under scored conditions and conditions similar to a polished surface.  
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state, (2) Uniform tube wall temperature, (3) Nucleate boiling at outer 
surface of tube, (4) Constant properties. 
 
PROPERTIES:  Table A-6, Water (T = 373 K):  ρl = 957.9 kg/m3, ρv = 0.596 kg/m3, hfg = 2257 kJ/kg, 
cp,l = 4.217 kJ/kg⋅K, µl = 279 × 10-6 N ⋅ s/m2, kl = 0.680 W/m ⋅ K, Prl = 1.76, σ = 58.9 × 10-3 N/m. 
 
ANALYSIS: The heat flux is 90% of the critical heat flux given by Eq. 10.6, thus with C = 0.131 for a 
large horizontal tube, 

 

1/4
3 3

2

1/43 2 3 3

3 2

( )0.9 0.9 0.131 2257 10  J/kg 0.596 kg/m

58.9 10  N/m 9.8 m/s (957.9 kg/m 0.596 kg/m )  
(0.596 kg/m )

l v
s fg v

v

gq Ch σ ρ ρρ
ρ

−

⎡ ⎤−′′ = = × × × ×⎢ ⎥
⎣ ⎦

⎡ ⎤× × × −
×⎢ ⎥
⎣ ⎦

 

  = 9.96 × 105 W/m2 
 
The nucleate boiling heat flux is given by Eq. 10.5, with Cs,f = 0.0068, n = 1.0 for a scored copper 
surface.  Solving for the excess temperature, 
 

 

1/31/2 3
,

,

1/1/25 2 3

6 2 3 2 3

0.0068 2257 10  J/kg 1.76
( ) 4217 J/kg K

9.96 10  W/m 58.9 10  N/m
279 10  N s/m 2257 10  J/kg 9.8 m/s (957.9 0.596) kg/m

n
s f fg l s

e
p l l fg l v

C h Pr qT
c h g

σ
μ ρ ρ

−

−

⎧ ⎫⎡ ⎤′′ × × ×⎪ ⎪Δ = =⎨ ⎬⎢ ⎥− ⋅⎣ ⎦⎪ ⎪⎩ ⎭

⎧ ⎫⎡ ⎤× ×⎪ ⎪×⎨ ⎬⎢ ⎥× ⋅ × × −⎣ ⎦⎪ ⎪⎩ ⎭

3
 

           
          = 10.1°C         

 
Thus, for the scored surface 

Ts = ΔTe + Tsat = 10.1°C + 100°C = 110.1°C     < 
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PROBLEM 10.11 (Cont.) 
 
After the surface degrades to conditions similar to a polished surface, the value of Cs,f becomes 0.0128.  
Recognizing that ΔTe is proportional to Cs,f, ΔTe = 10.1°C(0.0128/0.0068) = 19.1°C.  Hence, after 
prolonged service, 
 

Ts = ΔTe + Tsat = 19.1°C + 100°C = 119.1°C     < 
 
COMMENTS:  (1) A scored surface provides nucleation sites that enhance nucleate boiling, resulting 
in a smaller excess temperature relative to a smooth surface, for the same heat flux. 
 
 



PROBLEM 10.12  
KNOWN:  Copper pan, 150 mm diameter and filled with water at 1 atm, is maintained at 115°C.  
FIND:  Power required to boil water and the evaporation rate; ratio of heat flux to critical heat flux; 
pan temperature required to achieve critical heat flux.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Nucleate pool boiling, (2) Copper pan is polished surface. 
 
PROPERTIES:  Table A-6, Water (1 atm):  Tsat = 100°C, ρl  = 957.9 kg/m3, vρ  = 0.5955 kg/m3, 

p,c l  = 4217 J/kg⋅K, μl  = 279 × 10-6 N⋅s/m2, Prl  = 1.76, hfg = 2257 kJ/kg, σ = 58.9 × 10-3 N/m. 
 
ANALYSIS:  The power requirement for boiling and the evaporation rate can be expressed as 
follows, 
 boil s s boil fgq q A m q / h .′′= ⋅ =&  

The heat flux for nucleate pool boiling can be estimated using the Rohsenow correlation. 

 
( )

31/ 2
p, ev

s fg n
s,f fg

c Tg
q h .

C h Pr

ρ ρ
μ

σ

⎛ ⎞Δ⎡ ⎤− ⎜ ⎟′′ = ⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠
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Selecting Cs,f = 0.0128 and n = 1 from Table 10.1 for the polished copper finish, find 

( )
1/ 2 3

2 36 3
s 2 3 3

m kg J9.8 957.9 0.5955 4217 15 C
N s J kg Ks mq 279 10 2257 10

Jkgm 58.9 10 N / m 0.0128 2257 10 1.76
kg

−
−

− × °
⋅ ⋅′′ = × × ×

× × × ×

⎡ ⎤ ⎛ ⎞
⎢ ⎥ ⎜ ⎟
⎢ ⎥ ⎜ ⎟
⎢ ⎥ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦

 

 5 2
sq 4.839 10 W / m .′′ = ×  

The power and evaporation rate are 
 

 ( )25 2
boilq 4.839 10 W / m 0.150m 8.55kW

4
= × × =

π
    < 

 3 3
boilm 8.55kW / 2257 10 J / kg 3.79 10 kg / s 14kg / h.−= × = × =&    < 

 
The maximum or critical heat flux was found in Example 10.1 as 
 
 2

maxq 1.26MW / m .′′ =  
 
Hence, the ratio of the operating to maximum heat flux is 
 

 5 2 2s
max

q 4.619 10 W / m /1.26MW / m 0.384.
q

′′
= × =

′′
     < 

 
From the boiling curve, Fig. 10.4, ΔTe ≈ 30°C will provide the maximum heat flux.  < 



PROBLEM 10.13  
KNOWN:  Nickel-coated heater element exposed to saturated water at atmospheric pressure; 
thermocouple attached to the insulated, backside surface indicates a temperature To = 266.4°C when 
the electrical power dissipation in the heater element is 6.950 × 107 W/m3. 
 
FIND:  (a) From the foregoing data, calculate the surface temperature, Ts, and the heat flux at the 
exposed surface, and (b) Using an appropriate boiling correlation, estimate the surface temperature 
based upon the surface heat flux determined in part (a).  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Water exposed to standard atmospheric pressure 
and uniform temperature, Tsat, and (3) Nucleate pool boiling occurs on exposed surface, (4) Uniform 
volumetric generation in element, and (5) Backside of heater is perfectly insulated. 
 
PROPERTIES:  Table A-6, Saturated water, liquid (100°C):  3

f1/ v 957.9 kg / m ,ρ = =l  

p, p,fc c 4.217 kJ / kg K,= = ⋅l  6 2
f 279 10 N s / m ,μ μ −= = × ⋅l  fPr Pr 1.76,= =l  hfg = 2257 kJ/kg,  

σ = 58.9 × 10−3 N/m; Saturated water, vapor (100°C):  ρv = 1/vg = 0.5955 kg/m3. 
 
ANALYSIS:  (a) From Eq. 3.58, the temperature at the exposed surface, Ts, is 
 

 
( )27 32

s o
6.95 10 W / m 0.015 mqLT T 266.4 C

2k 2 50 W / m K
×

= − = ° −
× ⋅

&
 

 
 sT 110.0 C= °           < 
 
The heat flux at the exposed surface is 
 
 7 3 6 2

sq qL 6.95 10 W / m 0.015 m 1.043 10 W / m′′ = = × × = ×&     < 
 
(b) Since ΔTe = Ts – Tsat = (110 – 100)°C = 10°C, nucleate pool boiling occurs and the Rohsenow 
correlation, Eq. 10.5, with sq′′  from part (a) can be used to estimate the surface temperature, Ts,c, 
 

 
( )

31/ 2
p, e,cv

s fg n
s,f fg

c Tg
q h

C h Pr

ρ ρ
μ

σ

⎛ ⎞Δ⎡ ⎤− ⎜ ⎟′′ = ⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠

ll
l

l

 

 
From Table 10.1, for the water-nickel surface-fluid combination, Cs,f = 0.006 and n = 1.0.  
Substituting numerical values, find ΔTe,c and Ts,c. 
          Continued … 



PROBLEM 10.13 (Cont.) 
 

 6 2 6 2 31.043 10 W / m 279 10 N s / m 2257 10 J / kg−× = × ⋅ × ×  
 

  
( )

1/ 22 3

3
9.8 m / s 957.9 0.5955 kg / m

58.9 10 N / m−

⎡ ⎤−
⎢ ⎥×
⎢ ⎥×⎣ ⎦

 

 

  

33
e,c

3
4.217 10 J / kg K T

0.006 2257 10 J / kg 1.76

⎛ ⎞× ⋅ ×Δ⎜ ⎟×
⎜ ⎟× × ×⎝ ⎠

 

 

 e,c s,c sat s,cT T T 9.1 C T 109.1 CΔ = − = ° = °    < 
 
COMMENTS:  From the experimental data, part (a), the surface temperature is determined from the 
conduction analysis as Ts = 110.0°C.  Using the traditional nucleate boiling correlation with the 
experimental value for the heat flux, the surface temperature is estimated as Ts,c = 109.1°C.  The two 
approaches provide excess temperatures that are 10.0 vs. 9.1°C, which amounts to nearly a 10% 
difference. 



PROBLEM 10.14 
 
KNOWN:  Chips on a ceramic substrate operating at power levels corresponding to 50% of the critical 
heat flux. 
 
FIND:  (a) Chip power level and temperature rise of the chip surface, and (b) Compute and plot the chip 
temperature Ts as a function of heat flux for the range 0.25 s maxq q 0.90′′ ′′≤ ≤ . 
 
SCHEMATIC: 

 
ASSUMPTIONS: (1) Nucleate boiling, (2) Fluid-surface with Cs,f = 0.004, n = 1.7 for Rohsenow 
correlation, (3) Backside of substrate insulated. 
 
PROPERTIES:  Table  A-5,  Refrigerant  R-134a  (1 atm):  Tsat  = 247 K = -26°C,  ρl  = 1377 kg/m3 ,  ρv 
= 5.26 kg/m3 ,  hfg = 217 kJ/kg, σ = 15.4 × 10-3 N/m;  R-134a, sat. liquid (given, 247 K):  p,c l  = 1551  

J/kg⋅K,  μ l  = 1.46 × 10-4 N⋅s/m2 ,  Pr l = 3.2. 
 
ANALYSIS: (a)  The operating power level  (flux) is 0.50 maxq′′ , where the critical heat flux is estimated 
from Eq. 10.6 with C=0.149 for nucleate pool boiling, 

 ( )
1/ 42

max fg v v vq 0.149h gρ σ ρ ρ ρ⎡ ⎤′′ = −⎢ ⎥⎣ ⎦l  

( )
1/ 42

3 3
max 3 2 3 3

J kg N m kg kgq 0.149 217 10 5.26 15.4 10 9.8 1377 5.26 / 5.26
kg mm s m m

−
⎡ ⎤⎛ ⎞⎢ ⎥′′ = × × × × × − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 2
maxq 281kW m′′ = . 

Hence, the heat flux on a chip is 0.5 × 281 kW/m2 = 141 kW/m2 and the power level is  

 ( )23 2 2 3
chip s sq q A 141 10 W m 25mm 10 m mm 3.5W.−′′= × = × × =  < 

To determine the chip surface temperature for this condition, use the Rohsenow equation to find ΔTe =  Ts 

- Tsat  with sq′′  = 141 × 103  W/m2 .  The correlation, Eq. 10.5, solved for ΔTe is 

 
( )

( )
1/ 3 1/ 6n 1.73s,f fg s

e
p, fg v

C h Pr 0.004 217 10 J kg 3.2qT
c h g 1551J kg K

⎛ ⎞ ⎡ ⎤ × ×′′
Δ = = ×⎜ ⎟ ⎢ ⎥⎜ ⎟ − ⋅⎢ ⎥⎣ ⎦⎝ ⎠

l

l l l

σ
μ ρ ρ

 

                     
( )

1/ 61/ 3
3 2 3

4 3
2 2 3

141 10 W m 15.4 10 N m 6.8 C.N s J m kg1.46 10 217 10 9.8 1377 5.26
kgm s m

−

−

⎡ ⎤⎛ ⎞
⎜ ⎟ ⎢ ⎥× ⋅ ×⎜ ⎟ ⎢ ⎥ =

⋅⎜ ⎟ ⎢ ⎥× × × −⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

o  

Hence, the chip surface temperature is 
Continued... 

R-134a



 
PROBLEM 10.14 (Cont.) 

 

 s sat eT T T 26 C 6.8 C 19 C.= + Δ = − + ≈ −o o o  < 
 
(b) Using the IHT Correlations Tools, Boiling, Nucleate Pool Boiling -- Heat flux and Maximum heat 
flux, the chip surface temperature, Ts, was calculated as a function of the ratio s maxq q′′ ′′ .  The required 
thermophysical properties as provided in the problem statement were entered directly into the IHT 
workspace.  The results are plotted below. 
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COMMENTS:  (1) A copy of the IHT Workspace model used to generate the above plot is shown below. 

 
// Correlations Tool – Boiling, Nucleate pool boiling, Critical heat flux 
q''max = qmax_dprime_NPB(C,rhol,rhov,hfg,sigma,g)          // Eq 10.6 
g = 9.8    // Gravitational constant, m/s^2 
// Evaluate liquid(l) and vapor(v) properties at Tsat. 
// C = 0.131 for large horizontal cylinders and spheres 
// C = 0.149 for large horizontal plates 
C = 0.149 
/* Correlation description: Critical (maximum) heat flux for nucleate pool boiling (NPB). Eq 10.6, 
C=0.131 or 0.149 depending on geometry. See boiling curve, Fig 10.4 . */ 
// Correlations Tool – Boiling, Nucleate pool boiling, Heat flux 
q''s = qs_dprime_NPB(Csf,n,rhol,rhov,hfg,cpl,mul,Prl,sigma,deltaTe,g)    // Eq 10.5 
//g = 9.8                         // gravitational constant, m/s^2 
deltaTe = Ts - Tsat          // excess temperature, K 
Tsat =   247                   // saturation temperature, K 
/* Evaluate liquid(l) and vapor(v) properties at Tsat. From Table 10.1 (Fill in as required), */ 
// fluid-surface combination: 
Csf = 0.004                    // Given 
n = 1.7                          // Given 
/* Correlation description: Heat flux for nucleate pool boiling (NPB), water-surface combination 
(Cf,n), Eq 10.5, Table 10.1 . See boiling curve, Fig 10.4 . */ 
// Heat rates: 
qsqm = q''s / q''max           // Ratio, heat flux over critical heat flux 
qsqm = 0.5 
// Thermophysical properties (given): 
rhol = 1377                   // Density, liquid, kg/m^3 
rhov = 5.26                   // Density, vapor, kg/m^3 
hfg = 217000                // Heat of vaporization, J/kg 
sigma = 15.4e-3            // Surface tension, N/m 
cpl = 1551                    // Specific heat, saturated liquid, J/kg.K 
mul = 1.46e-4               // Viscosity, saturated liquid, N.s/m^2 
Prl = 3.2                      // Prandtl number, saturated liquid 



PROBLEM 10.15  
KNOWN:  Saturated ethylene glycol at 1 atm heated by a chromium-plated heater of 200 mm 
diameter and maintained at 480K.  
FIND:  Heater power, rate of evaporation, and ratio of required power to maximum power for critical 
heat flux.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Nucleate pool boiling, (2) Fluid-surface, Cs,f = 0.010 and n = 1.  
PROPERTIES:  Table A-5, Saturated ethylene glycol (1atm):  Tsat = 470K, hfg = 812 kJ/kg, ρf = 
1111 kg/m3, σ = 32.7 × 10-3 N/m; Saturated ethylene glycol (given, 470K):  ρv = 1.66kg/m3, μl  = 

0.38 × 10-3 N⋅s/m2, p,c l  = 3280 J/kg⋅K, Prl  = 8.7. 
 
ANALYSIS:  The power requirement for boiling and the evaporation rate are qboil = s sq A′′ ⋅  and 

boil fgm q / h .=&   Using the Rohsenow correlation, 

 
( )

31/ 2
p, ev

s fg n
s,f fg

c Tg
q h

C h Pr

ρ ρ
μ

σ

Δ−
′′ =

⎛ ⎞⎡ ⎤ ⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠

ll
l

l

 

( ) ( )

( )

3
1/ 22 3

3 3
s 2 3 3 1

9.8 m / s 1111 1.66 kg / m 3280 J / kg K 480 470 KN s J
q 0.38 10 812 10

Jkgm 32.7 10 N / m 0.01 812 10 8.7
kg

−
−

− ⋅ −⋅
′′ = × × ×

× × ×

⎛ ⎞
⎡ ⎤ ⎜ ⎟
⎢ ⎥ ⎜ ⎟
⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎜ ⎟

⎝ ⎠

 

( )24 2 4 2
s boilq 1.78 10 W / m q 1.78 10 W / m / 4 0.200m 559 Wπ′′ = × = × × =  < 

 3 4m 559 W / 812 10 J / kg 6.89 10 kg / s.−= × = ×&      < 
For this fluid, the critical heat flux is estimated from Eq. 10.6 with C=0.149, 

 ( )
1/ 42

max fg v v vq 0.149 h g /ρ σ ρ ρ ρ′′ = −⎡ ⎤
⎣ ⎦l  

( )

( )

1/ 4
3 2 3

3
max 3 23

32.7 10 N / m 9.8 m / s 1111 1.66 kg / mJ kg
q 0.149 812 10 1.66

kg m 1.66 kg / m

−× × −
′′ = × × ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 5 2
maxq 6.77 10 W / m .′′ = ×  

Hence, the ratio of the operating heat flux to the critical heat flux is, 

 
4 2

s
5 2max

q 1.78 10 W / m
0.026 or 2.6%.

q 6.77 10 W / m

′′ ×
= ≈

′′ ×
     < 

COMMENTS:  Recognize that the results are crude approximations since the values for Cs,f and n are 
just estimates.  This fluid is not normally used for boiling processes since it decomposes at higher 
temperatures. 



 
PROBLEM 10.16 

  
KNOWN: Copper tubes, 25 mm diameter × 0.75 m long, used to boil saturated water at 1 atm operating 
at 75% of the critical heat flux. 
 
FIND:  (a) Number of tubes, N, required to evaporate at a rate of 750 kg/h; tube surface temperature, Ts, 
for these conditions, and (b) Compute and plot Ts and N required to provide the prescribed vapor 
production as a function of the heat flux ratio, s max0.25 q q 0.90′′ ′′≤ ≤ . 
 
SCHEMATIC:  

  
ASSUMPTIONS: (1) Nucleate pool boiling, (2) Polished copper tube surfaces. 
 
PROPERTIES:  Table A-6, Saturated water (100°C): ρl  = 957.9 kg/m3, p,c l  = 4217 J/kg⋅K, μl  = 279 

× 10-6 N⋅s/m2, Prl  = 1.76, hfg  = 2257 kJ/kg, σ = 58.9 × 10-3 N/m, ρv = 0.5955 kg/m3. 
 
ANALYSIS:  (a) The total number of tubes, N, can be evaluated from the rate equations 
 
 s s s fg fg sq q A q N DL q mh N mh q DLπ π′′ ′′ ′′= = = =& & . (1,2,3) 
 
The tubes are operated at 75% of the critical flux.  From Eq. 10.6, the heat flux is  

 

( )

( )

( )

1/ 4
v 3 3

max fg v 2
v

1/ 4
3 2 3

5 2
23

g
q 0.75 Ch 0.75 0.131 2257 10 J kg 0.5955 kg / m

58.9 10 N m 9.8m s 957.9 0.5955 kg m
8.30 10  W/m

0.5955 kg / m

σ ρ ρ
ρ

ρ

−

⎡ ⎤−
′′ = × = × × × × ×⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥× × −

= ×⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

l

 

 
Substituting numerical values into Eq. (3), find 

( )3 5 2750 kg / hN 2257 10  J/kg 8.30 10 W m 0.025m 0.75m 9.6 10.
3600 s/h

π= × × × × × × = ≈ < 
 
To determine the tube surface temperature, use the Rohsenow correlation, 
 

 
( )

1/ 3 1/ 6n
s,f fg s

e
p, fg v

C h Pr qT
c h g

σ
μ ρ ρ

⎛ ⎞ ⎡ ⎤′′
Δ = ⎜ ⎟ ⎢ ⎥⎜ ⎟ −⎢ ⎥⎣ ⎦⎝ ⎠

l

l l l
    . 

 
From Table 10.1 for the polished copper-water combination, Cs,f  = 0.0128 and n = 1.0. 
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( )

1/ 313 5 2
e 6 2 3

0.0128 2257 10 J kg 1.76 8.30 10 W mT
4217J kg K 279 10 N s m 2257 10 J kg−

⎛ ⎞× × ×
Δ = ×⎜ ⎟

⎜ ⎟⋅ × ⋅ × ×⎝ ⎠
 

  
( )

1/ 63

2 3
58.9 10 N m

18.0 C.
9.8 m s 957.9 0.5955 kg m

−×
=

−

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

o  

 
 
Hence, 

 ( )s sat eT T T 100 18.0 C 118 C.= + Δ = + =o o  < 
 
(b) Using the IHT Correlations Tool, Boiling, Nucleate Pool Boiling, Heat flux and the Properties Tool  
for Water, combined with Eqs. (1,2,3) above, the surface temperature Ts and N can be computed as a 
function of s maxq q .′′ ′′   The results are plotted below. 
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Note that the tube surface temperature increases only slightly (112 to 119°C) as the ratio s maxq q′′ ′′  
increases.  The number of tubes required to provide the prescribed evaporation rate decreases markedly as 

s maxq q′′ ′′  increases. 
 
COMMENTS:  The critical heat flux for pool boiling on a flat plate is calculated in Example 10.1 to be 

maxq′′  =1.26 MW/m2.  For a horizontal cylinder, the critical heat flux is smaller by a factor of 
0.131/0.149 = 0.88. Hence, surface curvature effects can impact boiling phenomena. 



PROBLEM 10.17 
 
KNOWN:  Diameter and length of tube submerged in pressurized water.  Water pressure.  Flowrate 
and inlet temperature of gas flow through the tube. 
 
FIND:  Tube wall and gas outlet temperatures for (a) new, scored tube surfaces and (b) aged 
conditions with smooth tube walls. 
 
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state, (2) Uniform tube wall temperature, (3) Nucleate boiling at outer 
surface of tube, (4) Fully developed flow in tube, (5) Combustion gas is ideal with negligible viscous 
dissipation and pressure work, (6) Constant properties, (7) Thin tube wall. 
 
PROPERTIES:  Table A-6, saturated water (psat = 4.37 bars): Tsat = 420 K, hfg = 2.123 × 106 J/kg, 

3919 kg / m ,ρ =l  ρν = 2.4 kg/m3, 6 2185 10 N s / m ,μ −= × ⋅l  p,c 4302 J / kg K,= ⋅l  Pr 1.16=l , σ = 

0.0494 N/m.  Table A-4, air ( )mp 1atm, T 700 K := ≈  cp = 1075 J/kg⋅K, μ = 339 × 10-7 N⋅s/m2, k = 
0.0524 W/m⋅K, Pr = 0.695. 
 
ANALYSIS:  (a) From an energy balance performed for a control surface that bounds the tube, we 
know that the rate of heat transfer by convection from the gas to the inner surface must equal the rate 
of heat transfer due to boiling at the outer surface.  Hence, from Eqs. 8.34 and 10.5, the energy balance 
for a single tube is of the form 

 
( )

31/ 2
p, e

p mi mo s fg n
s,f fg

c Tg
mc (T T ) A h

C h Pr

⎛ ⎞Δ⎡ ⎤− ⎜ ⎟− = ⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠

ll
l

l

& νρ ρ
μ

σ
   (1) 

where s,fC 0.0068= and n = 1.0 from Table 10.1.  The corresponding unknowns are the wall 

temperature Ts and gas outlet temperature, Tm,o, which are also related through Eq. 8.41b. 

 s m,o

s m,i p

T T DLexp h
T T m c

π⎛ ⎞−
= −⎜ ⎟⎜ ⎟− ⎝ ⎠&

        (2) 

For DRe 4m / D 119, 600,π μ= =&  the flow is turbulent, and with n = 0.3, Eq. 8.60 yields,  
 

( ) ( )4 / 5 0.3 24 / 5 0.3
fd D

k 0.0524 W / m K
h h 0.023 Re Pr 0.023 119, 600 0.695 502 W / m K

D 0.025m

⋅
= = = = ⋅⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
Continued… 



PROBLEM 10.17 (Cont.) 
 
Solving Eqs. (1) and (2), we obtain 
 

   s m,oT 150 C, T 164 C= ° = °      < 
 
(b) When the surface degrades to become similar to a polished surface, the value of Cs,f  changes to 
0.00128.  Repeating the calculations yields 
 

s m,oT 152.6 C, T 166.7 C= ° = °     < 
 

 
COMMENTS:  (1) The heat rate per tube in part (a) is pq m c= &  (Tm,i – Tm,o) = 46,100 W, and the 
total heat rate is Nq = 230,500 W, in which case the rate of steam production is 

steam fgm q / h 0.109 kg / s.= =&   (2) The boiling heat transfer coefficient, hboil = sq′′ /(Ts – Tsat), is 2.5 × 

104 and 1.3 × 104 W/m2 ⋅ K in parts (a) and (b), respectively.  This large change has only a small effect 
on the surface and outlet temperatures because the dominant resistance is the internal forced 
convection gas resistance.  (3) It would not be possible to maintain isothermal tube walls without a 
large wall thickness, and Ts, as well as the intensity of boiling, would decrease with increasing 
distance from the tube entrance.  However the foregoing analysis suffices as a first approximation. 



PROBLEM 10.18  
KNOWN:  Nickel wire passing current while submerged in water at atmospheric pressure.  
FIND:  Current at which wire burns out.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Pool boiling.  
ANALYSIS:  The burnout condition 
will occur when electrical power 
dissipation creates a surface heat flux 
exceeding the critical heat flux, maxq .′′  
This burn out condition is illustrated on 
the boiling curve to the right and in 
Figure 10.3. 

 
 

 
The criterion for burnout can be expressed as 
 
 2

max elec elec eq D q q I R .π′′ ′ ′ ′⋅ = =       (1,2) 
 
That is, 
 

 [ ]1/ 2
max eI q D / R .π′′ ′=         (3) 

 
For pool boiling of water at 1 atm, we found in Example 10.1 that 
 
 2

maxq 1.26MW / m .′′ =  
 
Substituting numerical values into Eq. (3), find 
 

 ( )
1/ 26 2I 1.26 10 W / m 0.001m / 0.129 / m 175A.π⎡ ⎤= × × Ω =⎢ ⎥⎣ ⎦

   < 
 
COMMENTS:  The magnitude of the current required to burn out the 1 mm diameter wire is very 
large.  What current would burn out the wire in air? 
 



PROBLEM 10.19  
KNOWN:  Saturated water boiling on a brass plate maintained at ΔTe = 15°C.  
FIND:  Power required (W/m2) for pressures of 1 and 10 atm; fraction of critical heat flux at which plate is 
operating.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Nucleate pool boiling, (2) ΔTe = 15°C for both pressure levels. 
 
PROPERTIES:  Table A-6, Saturated water, liquid (1 atm, Tsat = 100°C):  ρl  = 957.9 kg/m3, p,c l  = 4217 

J/kg⋅K, μl  =279 × 10-6 N⋅s/m2, Prl  = 1.76, hfg = 2257 kJ/kg, σ = 58.9 × 10-3 N/m; Table A-6, Saturated water, 

vapor (1 atm):  ρv = 0.596 kg/m3; Table A-6, Saturated water, liquid (10 atm = 10.133 bar, Tsat = 453.4 K = 
180.4°C): ρl  = 886.7 kg/m3, p,c l  = 4410 J/kg⋅K, μl  = 149 × 10-6 N⋅s/m2, Prl  = 0.98, hfg = 2012 kJ/kg, σ = 

42.2 × 10-3 N/m; Table A-6, Water, vapor (10.133 bar):  ρv = 5.155 kg/m3. 
 
ANALYSIS:  With ΔTe = 15°C, we expect nucleate pool boiling.  The Rohsenow correlation with Cs,f = 0.006 and 
n = 1.0 for the brass-water combination gives 
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p, ev
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c Tg
q h

C h Pr

ρ ρ
μ

σ

Δ−
′′ =
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1 atm: 
( )

1/ 22 3
6 2 3

s 3
9.8 m / s 957.9 0.596 kg / m

q 279 10 N s / m 2257 10 J / kg
58.9 10 N / m

−
−

−
′′ = × ⋅ × × ×

×

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

   
3

2
3 1

4217 J / kg K 15K
4.70MW / m

0.006 2257 10 J / kg 1.76

⋅ ×
=

× × ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

10 atm:  2
sq 23.8MW / m′′ =  

From Example 10.1, ( ) 2
maxq 1atm 1.26 MW / m .′′ =   To find the critical heat flux at 10 atm, use the 

correlation of Eq. 10.6 with C = 0.149, 

 ( )
1/ 42

max fg v v vq 0.149 h g / .ρ σ ρ ρ ρ′′ = −⎡ ⎤
⎣ ⎦l  

 ( ) 3 3
maxq 10 atm 0.149 2012 10 J / kg 5.155kg / m′′ = × × × ×  

  
( )

( )

1/ 4
3 2 3

2
23

42.2 10 N / m 9.8 m / s 886.7 5.16 kg / m
2.97MW / m .

5.155 kg / m

−× × −
=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

For both conditions, the Rohsenow correlation predicts a heat flux that exceeds the maximum heat flux, maxq .′′   We 

conclude that the boiling condition with ΔTe = 15°C for the brass-water combination is beyond the inflection point 

(P, see Fig. 10.4) where the boiling heat flux is no longer proportional to 3
eT .Δ  

 ( ) ( )2 2
s max s maxq q 1 atm 1.26 MW / m q q 10 atm 2.97 MW / m .′′ ′′ ′′ ′′≈ ≤ ≈ ≤   < 



PROBLEM 10.20 
 
KNOWN:  Properties of dielectric fluid boiling at 1 atm on a horizontal platinum wire of 0.5 mm 
diameter.  Nucleate boiling constants.  Correction factor for small horizontal cylinders.  
FIND:  Temperature of wire when heated at 50% of critical heat flux.  
SCHEMATIC:   
 

 
 
 
ASSUMPTIONS:  (1) Steady-state conditions. (2) Nucleate pool boiling. 
 
PROPERTIES:  Dielectric fluid, given:  Tsat = 34°C, ρl  = 1400 kg/m3, ρv = 7.2 kg/m3, p,c l  = 1300 

J/kg⋅K, kl  = 0.075 W/m⋅K, νl  = 0.32 × 10-6 N⋅s/m2, σ = 12.4 × 10-3 N/m, hfg = 142 kJ/kg. 
 
ANALYSIS:  The critical heat flux for a large horizontal cylinder can be estimated using Eq. 10.6, 
with C = 0.131. 
 

( )
1/ 4

v
max,large fg v 2

v
3 3

1/ 43 2 3

3 2
2

g
q Ch

0.131 142 10  J/kg 7.2 kg/m

12.4 10  N/m 9.8 m/s (1400 7.2) kg/m

(7.2 kg/m )
180 kW/m

−

⎡ ⎤σ ρ −ρ
′′ ⎢ ⎥= ρ

⎢ ⎥ρ⎣ ⎦
= × × ×
⎡ ⎤× × × −

×⎢ ⎥
⎢ ⎥⎣ ⎦

=

l

 

 
The Confinement number is given by vCo /[g( )] / R 3.81= σ ρ −ρ =l , which is in the range of 
applicability of the expression for the correction factor, F, 
 

1/ 2 1/ 2F 0.89 2.27exp( 3.44Co ) 0.89 2.27exp[ 3.44(3.81) ] 1.28− −= + − = + − =  
 
The wire is operated at 50% of the critical heat flux or,  

2 2
s max,largeq 0.5Fq 0.5 1.28 180 kW/m 115 kW/m′′ ′′= = × × =  

The excess temperature can then be found from Eq. 10.5, the Rohsenow correlation, 

 
( )

31/ 2
p, ev 2

s fg n
s,f fg

c Tg
q h 115 kW/m

C h Pr

⎛ ⎞Δ⎡ ⎤ρ −ρ ⎜ ⎟′′ = μ =⎢ ⎥σ ⎜ ⎟⎣ ⎦ ⎝ ⎠

ll
l

l
 

 
Continued… 

 
 

q = 0.5qmax 

Ts, D = 0.5 mm 
Fluid, 

Cs,f = 0.005, n = 1.7 
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Substituting numerical values, with -4 24.48 10  m/sμ ρ= ν = ×ll l  and p,Pr c / k  7.77= μ =ll l l , 

 

 

( )
1/ 22 3

4 2 3
3

3
3 2e

3 1.7

9.8 m / s 1400 7.2 kg / m
4.48 10 N s / m 142 10 J / kg

12.4 10 N / m

1300 J / kg K T 115 10  W/m
0.005 142 10 J / kg 7.77

−
−

⎡ ⎤−
⎢ ⎥× ⋅ × × ×
⎢ ⎥×⎣ ⎦

⎛ ⎞⋅ × Δ
= ×⎜ ⎟⎜ ⎟× × ×⎝ ⎠

 

 
 eT 21.4 CΔ = °      
Thus 

Ts = 34°C + 21.4°C = 55.4°C          < 
 
COMMENTS: The critical heat flux on the small wire is 28% higher than on a large cylinder. 



PROBLEM 10.21  
KNOWN:  Zuber-Kutateladze correlation for critical heat flux, maxq .′′  
 
FIND:  Pressure dependence of maxq′′  for water; demonstrate maximum value occurs at 

approximately 1/3 pcrit; suggest coordinates for a universal curve to represent other fluids. 
 
ASSUMPTIONS:  Nucleate pool boiling conditions. 
 
PROPERTIES:  Table A-6, Water, saturated at various pressures; see below.  
ANALYSIS:  The Z-K correlation for estimating the critical heat flux, has the form 
 

 
( )

1/ 4
v

max v fg 2
v

g
q 0.149 h

σ ρ ρ
ρ

ρ

⎡ ⎤−
′′ = ⎢ ⎥

⎢ ⎥⎣ ⎦

l  

 
where the properties for saturation conditions are a function of pressure.  The properties (Table A-6) 
and the values for maxq′′  are as follows: 
 

 

     p     p/pc    ρl     vρ       hfg    σ×103    maxq′′  
  (bar)    (kg/m3)   (kJ/kg)    (N/m)  (MW/m2) 

 
   1.01    0.0045 957.9    0.5955 2257     58.9      1.258 
  11.71    0.053  879.5    5.988  1989     40.7      3.138 
  26.40    0.120  831.3  13.05  1825     31.6      3.935 
  44.58    0.202  788.1  22.47  1679     24.5      4.398 
  61.19    0.277  755.9  31.55  1564     19.7      4.549 
  82.16    0.372  718.4  43.86  1429     15.0      4.520 
 123.5    0.557  648.9  72.99  1176      8.4      4.047 
 169.1    0.765  562.4  117.6   858      3.5      2.905 
 221.2    1.000  315.5  315.5       0         0   0 
 
The maxq′′  values are plotted as a function of p/pc, where pc is the critical pressure.  Note the rapid 
decrease of hfg and σ with increasing pressure.  The universal curve coordinates would be max/ qmaxq ′′′′  

( )crit c1/ 3 p vs. p / p .  
 

                     < 



PROBLEM 10.22  
KNOWN:  Kutateladze’s dimensional analysis and the bubble diameter parameter.  
FIND:  Verify the dimensional consistency of the critical heat flux expression.  
ASSUMPTIONS:  Nucleate pool boiling.  
ANALYSIS:  Kutateladze postulated that the critical flux was dependent upon four parameters, 
 
 ( )max max fg v bq q h , , , Dρ σ′′ ′′=  
 
where Db is the bubble diameter parameter having the form 
 

 ( ) 1/ 2
b vD / g .σ ρ ρ⎡ ⎤= −⎣ ⎦l         (1) 

 
The form of the critical heat flux expression was presumed to be 
 
 1/ 2 1/ 2 1/ 2

max fg v bq C h Dρ σ−′′ =        (2) 
 
where C is a constant.  It is not possible to derive this equation from a dimensional (Pi) analysis.  We 
can only determine that the equation is dimensionally consistent.  Using SI units, check Eq. (1) for Db, 
 

 ( )( )( ) [ ]
1/ 221/ 21 1 2 1 3 2

b
sD Nm m s kg m N m m

kg m
− − −

⎡ ⎤⎛ ⎞⎡ ⎤ ⎢ ⎥⎜ ⎟=> => =>⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎢ ⎥⋅⎝ ⎠⎣ ⎦
 

 
and in Eq. (2) for maxq ,′′  
 

( )( )( )( )
1/ 22

1 1/ 2 3/ 2 1/ 2 1/ 2 1/ 2 2
max 2

J N s W
q J kg kg m m N m m .

s kg m m
− − − − −⋅′′ => => ⋅ =>

⋅

⎡ ⎤⎛ ⎞ ⎡ ⎤⎢ ⎥⎡ ⎤ ⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠⎢ ⎥⎣ ⎦

 

 
Hence, the equations are dimensionally consistent. 
  
COMMENTS:  Dimensional (Pi) analysis yields the following result:  2 / 3

max v fg v fg bq / h f ( / h D ).′′ ρ = σ ρ   

If  1/ 2
v fg b v fg bf ( / h D ) C( / h D ) ,σ ρ = σ ρ we recover Eq.(2). 



PROBLEM 10.23 
 
KNOWN:  Thickness and thermal conductivity of a silicon chip.  Properties of saturated fluorocarbon 
liquid. 
 
FIND:  (a) Temperature at bottom surface of chip for a prescribed heat flux and 90% of CHF, (b) Effect 
of heat flux on chip surface temperatures; maximum allowable heat flux. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Uniform heat flux and adiabatic sides, hence one-
dimensional conduction in chip, (3) Constant properties, (4) Nucleate boiling in liquid. 
 
PROPERTIES:  Saturated fluorocarbon (given):  p,c l  = 1100 J/kg⋅K, hfg = 84,400 J/kg, ρl  = 1619.2 

kg/m3, ρv = 13.4 kg/m3, σ = 8.1 × 10-3 kg/s2, μl  = 440 × 10-6 kg/m⋅s, Prl  = 9.01. 
 
ANALYSIS:  (a) Energy balances at the top and bottom surfaces yield ( )o cond s o sq q k T T L′′ ′′= = −  = 

sq′′ ; where Ts and sq′′  are related by the Rohsenow correlation, 
 

 
( )

1/ 3 1/ 6n
s,f fg s

s sat
p, fg v

C h Pr qT T
c h g

σ
μ ρ ρ

⎛ ⎞ ⎡ ⎤′′
− = ⎜ ⎟ ⎢ ⎥⎜ ⎟ −⎢ ⎥⎣ ⎦⎝ ⎠

l

l l l
 

 
Hence, for sq′′  = 5 × 104 W/m2, 

 
( )

1/ 31.7 4 2
s sat 6

0.005 84,400J kg 9.01 5 10 W mT T
1100J kg K 440 10 kg m s 84,400J kg−

⎛ ⎞×⎜ ⎟− =
⎜ ⎟⋅ × ⋅ ×⎝ ⎠

 

 

   
( )

1/ 63 2

2 3
8.1 10 kg s 15.9 C

9.8m s 1619.2 13.4 kg m

−⎡ ⎤×⎢ ⎥× =
⎢ ⎥−⎣ ⎦

o  

 ( )sT 15.9 57 C 72.9 C= + =o o . 
From Fourier’s law, 

 
4 2

o
o s

s

q L 5 10 W m 0.0025mT T 72.9 C 73.8 C
k 135W m K
′′ × ×

= + = + =
⋅

o o  < 

For a heat flux which is 90% of the critical heat flux (C1 = 0.9), it follows that 
 

( )
1/ 4

v 3
o max fg v 2

v

g
q 0.9q 0.9 0.149h 0.9 0.149 84,400J kg 13.4kg m

σ ρ ρ
ρ

ρ

⎡ ⎤−
′′ ′′= = × = × × ×⎢ ⎥

⎢ ⎥⎣ ⎦

l  

Continued... 
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( )

( )

1/ 4
3 2 2 3

23

8.1 10 kg s 9.8m s 1619.2 13.4 kg m

13.4kg m

−
⎡ ⎤
⎢ ⎥× × −

×⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
 4 2 4 2

oq 0.9 15.5 10 W m 13.9 10 W m′′ = × × = ×  
 
From the results of the previous calculation and the Rohsenow correlation, it follows that 
 

 ( ) ( )
1/3 1/ 34 2

e oT 15.9 C q 5 10 W m 15.9 C 13.9 5 22.4 C′′Δ = × = =o o o  
 
Hence, Ts = 79.4°C and 
 

 
4 2

o
13.9 10 W m 0.0025mT 79.4 C 82 C

135W m K
× ×

= + =
⋅

o o  < 

 
(b) Using the energy balance equations with the Correlations Toolpad of IHT to perform the parametric 
calculations for 0.2 ≤ C1 ≤ 0.9, the following results are obtained. 
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The chip surface temperatures, as well as the difference between temperatures, increase with increasing 
heat flux.  The maximum chip temperature is associated with the bottom surface, and To = 80°C 
corresponds to 

 4 2
o,maxq 11.3 10 W m′′ = ×  < 

 
which is 73% of CHF ( maxq′′  = 15.5 × 104 W/m2). 
 
COMMENTS:  Many of today’s VLSI chip designs involve heat fluxes well in excess of 15 W/cm2, in 
which case pool boiling in a fluorocarbon would not be an appropriate means of heat dissipation. 



PROBLEM 10.24  
KNOWN:  Boiling water at 1 atm pressure on moon where the gravitational field is 1/6 that of the 
earth.  
FIND:  Critical heat flux.  
ASSUMPTIONS:  Nucleate pool boiling conditions. 
 
PROPERTIES:  Table A-6, Water (1 atm):  Tsat = 100°C, ρl  = 957.9 kg/m3, ρv = 0.5955 kg/m3, hfg 

= 2257 kJ/kg, σ = 58.9 × 10-3 N/m. 
 
ANALYSIS:  The critical heat flux is given by Eq. 10.6 with C=0.149. 
 

 ( ) 1/ 41/ 2
max v fg vq 0.149 h g .ρ σ ρ ρ′′ ⎡ ⎤= −⎣ ⎦l  

 
The relation predicts the critical flux dependency on the gravitational acceleration as 
 
 1/ 4

maxq ~ g .′′  
 
It follows that if gmoon = (1/6) gearth and recognizing max,eq′′  = 1.26 MW/m2 for earth acceleration 
(see Example 10.1), 
 

 ( )1/ 4
max,moon max,earth moon earthq q g / g′′ ′′=  

 

 
1/ 4

2
max,moon 2

MW 1q 1.26 0.81 MW / m .
6m

⎛ ⎞′′ = =⎜ ⎟
⎝ ⎠

     < 

 
COMMENTS:  Note from the discussion in Section 10.4.5 that the g1/4

 dependence on the critical heat 
flux has been experimentally confirmed.  In the nucleate pool boiling regime, the heat flux is nearly 
independent of the gravitational field. 
 



PROBLEM 10.25  
KNOWN:  Concentric stainless steel tubes packed with dense boron nitride powder.  Inner tube has 

heat generation while outer tube surface is exposed to boiling heat flux, ( )3s s satq C T T .′′ = −   
Saturation temperature of boiling liquid and temperature of the outer tube surface.  
FIND:  Expressions for the maximum temperature in the stainless steel (ss) tubes and in the boron 
nitride (bn).  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional (cylindrical) steady-state heat 
transfer in tubes and boron nitride.  
ANALYSIS:  Construct the thermal circuit shown above where 23 34R and R′ ′  represent the 

resistances due to the boron nitride between r2 and r3 and to the outer stainless steel tube, respectively.  
From an overall energy balance, 
 
 gen boilq q ,′ ′=  
 

 ( ) ( ) ( )32 2
4 s sat2 1q r r 2 r C T T .π π− = −&  

 
With prescribed values for Tsat, Ts and C, the required volumetric heating of the inner stainless steel 
tube is 
 

 
( ) ( )34

s sat2 2
2 1

2rq C T T .
r r

= −
−

&  

 
Using the thermal circuit, we can write expressions for the maximum temperature of the stainless steel 
(ss) and boron nitride (bn). 
 
Stainless steel:  Tss,max occurs at r1.  Using the results of Section 3.5.2, the temperature distribution in 
a radial tube of inner and outer radii r1 and r2 is 
 

 ( ) 2
1 2

ss

qT r r C ln r C
4k

= − + +
&

 

 
for which the boundary conditions are 
 

2
1 1

1 1 1
ss 1 ss

qrCdT qBC #1: r r 0        0 2r 0 C
dr 4k r 2k

= = = − + + → = +
&&

 

 
          Continued … 
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( )
2

2 1
2 2 2 2 2 22

ss ss
2

2 1
2 2 22

ss ss

qrqBC #2 : r r T r T T r ln r C
4k 2k

qrqC T r ln r
4k 2k

= = = − + +

= + −

&&

&&
 

 
Hence, 
 

 ( ) ( ) ( )
2

2 2 1
2 22

ss ss

qrqT r r r ln r / r T .
4k 2k

= − − + +
&&

 

 
Using the thermal circuit, find T2 in terms of known parameters Ts, Tsat and C. 
 

 ( ) ( )32 s
4 s sat

23 34

T T 2 r C T T .
R R

π−
= −

′ ′+
 

 
Hence, the maximum temperature in the inner stainless steel tube (r = r1) is 
 

 ( ) ( ) ( )
2

2 2 1
ss,max 1 1 2 s1 2

ss ss

qrqT T r r r ln r / r T
4k 2k

= = − − + +
&&

 

 

   ( )( ) ( )323 34 4 s satR R 2 r C T Tπ′ ′+ + −      < 
 
where from Eq. 3.33 
 

 
( ) ( )3 2 4 3

23 34
bn ss

ln r / r ln r / r
R R .

2 k 2 kπ π
′ ′= =  

 
Boron nitride:  Tbn,max occurs at r1.  Hence 
 
 ( )bn,max 1T T r=          < 
 
as derived above for the inner stainless steel tube. 



PROBLEM 10.26 
 
KNOWN:  Operating conditions of apparatus used to determine surface boiling characteristics. 
 
FIND:  (a) Nucleate boiling coefficient for special coating, (b) Surface temperature as a function of heat 
flux; apparatus temperatures for a prescribed heat flux; applicability of nucleate boiling correlation for a 
specified heat flux. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) One-dimensional, steady-state conduction in the bar, (2) Water is saturated at 1 
atm, (3) Applicability of Rohsenow correlation with n = 1. 
 
PROPERTIES:  Table A.6, saturated water (100°C):  ρl  = 957.9 kg/m3, p,c l  = 4217 J/kg⋅K, μl  = 279 

× 10-6 N⋅s/m2, Prl  = 1.76, hfg = 2.257 × 106 J/kg, σ = 0.0589 N/m, vρ  = 0.5955 kg/m3. 
 
ANALYSIS:  (a) The coefficient Cs,f associated with Eq. 10.5 may be determined if sq′′  and Ts are 
known.  Applying Fourier’s law between x1 and x2,  

 
( ) 5 22 1

s cond
2 1

158.6 133.7 CT Tq q k 400 W m K 6.64 10 W m
x x 0.015m

−−′′ ′′= = = ⋅ × = ×
−

o

 

 
Since the temperature distribution in the bar is linear, Ts = T1 - (dT/dx)x1 = T1 - [(T2 - T1)/(x2 - x1)]x1.  
Hence, 
 

 sT 133.7 C 24.9 C 0.015m 0.01m 117.1 C⎡ ⎤= − =⎢ ⎥⎣ ⎦
o o o  

From Eq. 10.5, with n = 1, 

 
( )1/ 3 1/ 6

p, e fg v
s,f

fg s

c T h g
C

h Pr q
μ ρ ρ

σ
Δ ⎛ ⎞ ⎡ ⎤−

= ⎜ ⎟ ⎢ ⎥′′ ⎣ ⎦⎝ ⎠

l l l

l
 

         
( )
( )

1/ 3 1/ 66 6 2 3

s,f 6 5 2 2

4217 J kg K 17.1 C 279 10 kg s m 2.257 10 J kg 9.8 m s 957.3 kg m
C

2.257 10 J kg 1.76 6.64 10 W m 0.0589 kg s

−⋅ × ⋅ × × ×
=

× ×

⎛ ⎞ ⎡ ⎤
⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

o

 

 Cs,f = 0.0131 < 
 
(b) Using the appropriate IHT Correlations and Properties Toolpads, the following portion of the 
nucleate boiling regime was computed. 

Continued... 



 
PROBLEM 10.26 (Cont.) 

 

8 10 12 14 16 18 20

Excess temperature, DeltaTe(C)

100000

200000

400000

600000

800000

1E6

H
ea

t f
lu

x,
 q

s'
'(W

/m
^2

)

 
 
For sq′′  = 106 W/m2 = condq′′ , Ts = 119.6°C and  

 T1 = 144.6°C               and                T2 = 182.1°C < 
 
With the critical heat flux given by Eq. 10.6 with C=0.149, 
 

 
( )

1/ 4
v

max fg v 2
v

g
q 0.149h

σ ρ ρ
ρ

ρ

⎡ ⎤−
′′ = ⎢ ⎥

⎢ ⎥⎣ ⎦

l  

( )
( )

1/ 4
2 2 3

6 3
max 23

0.0589kg s 9.8m s 957.3kg mq 0.149 2.257 10 J kg 0.5955kg m
0.5955kg m

⎡ ⎤
⎢ ⎥× ×′′ = × ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 6 2
maxq 1.25 10 W m′′ = ×  

 
Since sq′′  = 1.5 × 106 W/m2 > maxq′′ , the heat flux exceeds that associated with nucleate boiling and the 
foregoing results can not be used. 
 
COMMENTS:  For s maxq q′′ ′′> , conditions correspond to film boiling, for which Ts may exceed 
acceptable operating conditions. 



PROBLEM 10.27 
 
KNOWN:  Small copper sphere, initially at a uniform temperature, Ti, greater than that corresponding to 
the Leidenfrost point, TD, suddenly immersed in a large fluid bath maintained at Tsat.  
FIND:  (a) Sketch the temperature-time history, T(t), during the quenching process; indicate temperature 
corresponding to Ti , TD, and Tsat , identify regimes of film, transition and nucleate boiling and the single-
phase convection regime; identify key features;  and (b) Identify times(s) in this quenching  process when 
you expect the surface temperature of the sphere to deviate most from its center temperature. 
 
SCHEMATIC: 

 
ANALYSIS: (a) In the right-hand schematic above, the quench process is shown on the “boiling curve” 
similar to Figure 10.4.  Beginning at an initial temperature, Ti > TD , the process proceeds as indicated by 
the arrows:  film regime from i to D,  transition  regime from D to C,  nucleate regime from C to A, and 
single-phase (free convection) from  A to the condition when ΔTe = Ts - Tsat = 0.  The quench process is 
shown on the temperature-time plot below and the boiling regimes and key temperatures are labeled.. 

  
The highest temperature-time change should occur in the nucleate pool boiling regime, especially near the 
critical flux condition, Tc .  The lowest temperature-time change will occur in the single-phase, free 
convection regime. 
 
(b)  The difference between the center and surface temperatures will be greatest when the Biot number is 
largest, which occurs in regimes with the highest convection coefficients.  The convection coefficient is 
maximum at point P on the boiling curve of Fig. 10.4, which falls between points C and A on the above 
plots.  



PROBLEM 10.28  
KNOWN:  A sphere (aluminum alloy 2024) with a uniform temperature of 500°C and emissivity of 
0.25 is suddenly immersed in a saturated water bath maintained at atmospheric pressure.  
FIND:  (a) The total heat transfer coefficient for the initial condition; fraction of the total coefficient 
contributed by radiation; and (b) Estimate the temperature of the sphere 30 s after it has been 
immersed in the bath.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Water exposed to standard atmospheric pressure and uniform temperature, Tsat, 
and (2) Lumped capacitance method is valid. 
 
PROPERTIES:  See Comment 2; properties obtained with IHT code.  
ANALYSIS:  (a) For the initial condition with Ts = 500°C, film boiling will occur and the coefficients 
due to convection and radiation are estimated using Eqs. 10.8 and 10.11, respectively, 

 
( )

( )D

1/ 43
v fgconv

v v v s sat

g h Dh DNu C
k k T T

⎡ ⎤′−
⎢ ⎥= =
⎢ ⎥−
⎣ ⎦

lρ ρ
ν

     (1) 

 
( )4 4

s sat
rad

s sat

T T
h

T T

εσ −
=

−
        (2) 

where C = 0.67 for spheres and σ = 5.67 × 10-8 W/m2⋅K4.  The corrected latent heat is 
 ( )fg fg p,v s sath h 0.8 c T T′ = + −        (3) 

The total heat transfer coefficient is given by Eq. 10.9 as 

 4 / 3 4 / 3 1/ 3
conv radh h h h= + ⋅         (4) 

The vapor properties are evaluated at the film temperature, 
 ( )f s satT T T / 2= +          (5) 
while the liquid properties are evaluated at the saturation temperature.  Using the foregoing relations in 
IHT (see Comments), the following results are obtained. 

  ( ) ( ) ( )D
2 2 2

cnv radNu h W / m K h W / m K h W / m K⋅ ⋅ ⋅  

   85.5     171      12.0   180  < 
The radiation process contribution is 6.7% that of the total heat rate. 
 
(b) For the lumped-capacitance method, from Section 5.3, the energy balance is 

 ( ) s
s s sat s s

dT
hA T T Vc

dt
ρ− − =         (6) 

where ρs and cs are properties of the sphere.  To determine Ts(t), it is necessary to evaluate h  as a 
function of Ts.  Using the foregoing relations in IHT (see Comments), the sphere temperature after 30s 
is 

 ( )sT 30s 300 C.= °          < 
          Continued … 



PROBLEM 10.28 (Cont.)  
COMMENTS:  (1) The Biot number associated with the aluminum alloy sphere cooling process for 
the initial condition is Bi = 0.019.  Hence, the lumped-capacitance method is valid. 

 
(2) The IHT code to solve this application uses the film-boiling correlation, the water 
properties functions, and the lumped capacitance energy balance, Eq. (6).  The results for 
part (a), including the properties required of the correlation, are shown at the outset of the 
code. 

 
/* Results, Part (a): Initial conditions, Ts = 500 C 
NuDbar hbar hcvbar hradbar F 
85.5 180 171 12.0 0.0667  /* 
 
/* Properties: Initial Conditions, Ts = 500 C, Tf = 573 K 
rhov cpv nuv kv rhol hfg h'fg 
0.3843  2010 51.44E-6 0.03988 958 2257E3 2.901E6 */ 
 
/* Results: with initial condition, Ts = 500 C; after 30 s 
Bi  F Ts_C hbar t 
0.019 0.067 500 180 0 
0.020 0.033 300 188 30   */ 
 
//LCM analysis, energy balance 
-hbar*As*(Ts-Tsat) = rhos * Vol * cps * der(Ts,t) 
As = pi*D^2 
Vol = pi*D^3/6 
 
/* Correlation description: coefficients for film pool boiling (FPB).  Eqs. 10.8, 10.9, and 
10.11.  See boiling curve, Fig. 10.4.  */ 
NuDbar = NuD_bar_FPB(C,rhol,rhov,h'fg,nuv,kv,deltaTe,D,g)    // Eq 10.8 
NuDbar = hcvbar * D / kv 
g = 9.8                           // gravitational constant, m/s^2 
deltaTe = Ts - Tsat      // excess temperature, K 
//Ts_C =    500                // surface temperature, K 
Ts_C = Ts - 273 
Tsat =       373               // saturation temperature, K 
// The vapor properties are evaluated at the film temperature,Tf, 
Tf = Tfluid_avg(Ts,Tsat) 
// The correlation constant is 0.62 or 0.67 for cylinders or spheres, 
C = 0.67 
// The corrected latent heat is 
h'fg = hfg + 0.80*cpv*(Ts - Tsat) 
// The radiation coefficient is 
hradbar = eps * sigma * (Ts^4 - Tsat^4) / (Ts - Tsat)     // Eq 10.11 
sigma = 5.67E-8         // Stefan-Boltzmann constant, W/m^2·K^4 
eps =       0.25              // surface emissivity 
// The total heat transfer coefficient is 
hbar^(4/3) = hcvbar^(4/3) + hradbar * hbar^(1/3)     // Eq 10.9 
F = hradbar / hbar // fractional contribution of radiation 
 
// Input variables 
D = 0.020 
rhos = 2702  // Sphere properties, aluminum alloy 2024 
cps = 875 
ks = 186 
Bi = hbar * D / ks 
 
// Water properties 
// Water property functions :T dependence, From Table A.6 
//Saturated liquid properties.   Units: T(K):;  
rhol = rho_Tx("Water",Tsat,0) // Density, kg/m^3 
hfg = hfg_T("Water",Tsat) // Heat of vaporization, J/kg 
 
// Water vapor property functions : From Table A.4 
// Units: T(K); 1 atm pressure 
rhov = rho_T("Water Vapor",Tf) // Density, kg/m^3 
cpv= cp_T("Water Vapor",Tf)  // Specific heat, J/kg·K 
nuv = nu_T("Water Vapor",Tf) // Kinematic viscosity, m^2/s 
kv = k_T("Water Vapor",Tf)  // Thermal conductivity, W/m·K 

 



PROBLEM 10.29 
 

 
KNOWN:  Initial temperature of hot rotor, temperature of water quenching bath, rotor orientation. 
 
FIND:  (a) Sketch of the rotor temperature versus time for Orientation A, (b) Relative cooling rate of 
the rotor for Orientation B. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Lumped capacitance behavior, (2) Constant properties. 
 
ANALYSIS:  Assuming lumped capacitance behavior for the rotor, the time rate of change of the 
rotor temperature is proportional to the instantaneous heat flux from the rotor surface.  In either 
orientation, the quenching process begins at an initial rotor temperature associated with film boiling 
(see Fig. 10.4 and the RHS schematic). 
 
(a) For Orientation A, the rotor temperature versus time is shown in the sketch below. In the film 
boiling regime, the slope of the T(t) curve continually decreases as the boiling heat flux decreases until 
the Leidenfrost point (Point D) is reached. Between Points D and C, transition boiling occurs and the 
heat flux increases as the rotor temperature decreases until the critical heat flux value (Point C) is 
reached. Point C corresponds to a local maximum rotor cooling rate. As the rotor continues to cool, the 
heat flux continues to decreases throughout the nucleate boiling regime until Point A is reached, 
corresponding to the curtailment of boiling, the onset of free convection cooling, and very slow 
decreases in the rotor temperature with time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) For Orientation A, vapor rises unimpaired from the vicinity of the rotor. For Orientation B, 
however, the rotor obstructs the movement of vapor away from the bottom surface of the rotor. Hence, 
even in the nucleate boiling regime, an insulating vapor blanket would tend to form on the bottom 
surface, resulting in slower cooling relative to Orientation A. 
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PROBLEM 10.30  
KNOWN:  Steel bar upon removal from a furnace immersed in water bath.  
FIND:  Initial heat transfer rate from bar.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Uniform bar surface temperature, (2) Film pool boiling conditions. 
 
PROPERTIES:  Table A-6, Water, liquid (1 atm, Tsat = 100°C):  ρl  = 957.9 kg/m3, hfg = 2257 

kJ/kg; Table A-4, Water, vapor (Tf = (Ts + Tsat)/2 = 550K):  ρv = 0.4005 kg/m3, cp,v = 1997 J/kg⋅K,  
νv = 47.04 × 10-6 m2/s , kv = 0.0379 W/m⋅K. 
ANALYSIS:  The total heat transfer rate from the bar at the instant of time it is removed from the 
furnace and immersed in the water is 
 ( )s s s sat s eq h A T T h A T= − = Δ        (1) 

where ΔTe = 455 – 100 = 355K.  According to the boiling curve of Figure 10.4, with such a high ΔTe, 
film pool boiling will occur.  From Eq. 10.9 or 10.10, 

 ( )4 / 3 4 / 3 1/ 3
conv rad conv rad conv rad

3h h h h or h h h if h h .
4

= + ⋅ = + >  (2) 

To estimate the convection coefficient, use Eq. 10.8, 

 
( )

D

1/ 43
v fgconv

v v v e

g h Dh DNu C
k k T

ρ ρ
ν

⎡ ⎤′−
⎢ ⎥= =
⎢ Δ ⎥
⎣ ⎦

l      (3) 

where C = 0.62 for the horizontal cylinder and ( )fg fg p,v s sath h 0.8 c T T .′ = + −   Find 

( ) ( )

( )

1 / 42 3 3 3

conv 6 2

9.8 m / s 957.9 0.4005 kg / m 2257 10 0.8 1997 355 J / kg 0.020m0.0379 W / m K
h 0.62

0.020 m 47.04 10 m / s 0.0379 W / m K 355K
−

− × + × ×⋅
=

× × ⋅ ×

⎡ ⎤⎡ ⎤
⎣ ⎦⎢ ⎥

⎢ ⎥⎣ ⎦
 

 2
convh 159 W / m K.= ⋅  

To estimate the radiation coefficient, use Eq. 10.11, 

( ) ( )4 4 8 2 4 4 4 4
s sat 2

rad
s sat

T T 0.9 5.67 10 W / m K 728 373 K
h 37.6 W / m K.

T T 355K

ε σ −− × × ⋅ −
= = = ⋅

−
 

Substituting numerical values into the simpler form of Eq. (2), find 

 ( )( ) 2 2h 159 3/ 4 37.6 W / m K 187 W / m K.= + ⋅ = ⋅  

Using Eq. (1), the heat rate, with As = π D L, is 

 ( )2
sq 187 W / m K 0.020m 0.200m 355K 835W.= ⋅ × × × =π    < 

 
COMMENTS:  For these conditions, the combined radiation and convection heat transfer coefficient 
is 18% larger than the convection coefficient alone.  



PROBLEM 10.31 
 
KNOWN:  Electrical conductor with prescribed surface temperature immersed in water. 
 
FIND:  (a) Power dissipation per unit length, sq′  and (b) Compute and plot q′s  as a function of surface 
temperature 250 ≤ Ts  ≤  650°C for conductor diameters of  1.5, 2.0, and 2.5 mm;  separately plot the 
percentage contribution of radiation as a function of Ts .  
SCHEMATIC: 

  
ASSUMPTIONS: (1) Steady-state conditions, (2) Water saturated at l atm,  (3) Film pool boiling. 
 
PROPERTIES: Table A-6, Water, liquid (1 atm, Tsat = 100°C):   ρl  = 957.9 kg/m3 , hfg = 2257 kJ/kg;  
Table A-4, Water, vapor  (Tf = (Ts + Tsat ) / 2 = 600 K):  ρv = 0.3652 kg/m3,  cp,v = 2026 J/kg⋅K,   
νv  = 56.60 × 10-6 m2/s , kv = 0.0422 W/m⋅K. 
 
ANALYSIS:  (a) The heat rate per unit length due to electrical power dissipation is  
 

 ( )s s
s s sat e

q Aq h T T h D Tπ′ = = − = Δ
l l

 
 
where ΔTe = (555 - 100)°C = 455°C.  According to the boiling curve of Figure 10.4, with such a high 
ΔTe, film pool boiling will occur.  From Eq 10.9 or 10.10, 
 

 ( )4 / 3 4 / 3 1/ 3
conv rad conv rad conv rad

3h h h h or h h h if h h .
4

= + ⋅ = + >  
 
To estimate the convection coefficient, use Eq. 10.8, 
 

 
( )

1/ 43
v fgconvD

v v v e

g h Dh DNu C
k k T

ρ ρ
ν

⎡ ⎤′−
⎢ ⎥= =
⎢ Δ ⎥
⎣ ⎦

l  

 
where C = 0.62 for the horizontal cylinder and h′fg  = hfg + 0.8cp,v (Ts - Tsat). Find 
 

( ) ( )

( )

1/ 43 32 3

conv 6 2

9.8 m s 957.9 0.3652 kg m 2257 10 0.8 2026 455 J kg 0.002m0.0422 W m K
h 0.62

0.002 m 56.60 10 m s 0.0422 W m K 455 K−

− × + × ×⋅
= ×

× × ⋅ ×

⎡ ⎤⎡ ⎤
⎣ ⎦⎢ ⎥

⎢ ⎥
⎣ ⎦

 

   
2

convh 279W m K.= ⋅  
 
To estimate the radiation coefficient, use Eq. 10.11. 

 
( ) ( )4 4 8 2 4 4 4 4

s sat 2
rad

s sat

T T 0.5 5.67 10 W m K 828 373 K
h 28W m K.

T T 455K

εσ −− × × ⋅ −
= = = ⋅

−
 

Since hconv > hrad , the simpler form of Eq. 10.10 is appropriate.  Find,  
 ( )( ) 2 2h 279 3 4 28 W m K 300 W m K= + × ⋅ = ⋅  

Continued... 



 
PROBLEM 10.31 (Cont.) 

 
The heat rate is  

 ( )2q 300 W m K 0.002m 455K 858kW m.′ = ⋅ × × =π  < 

 
(b) Using the IHT Correlation Tool, Boiling, Film Pool Boiling, combined with the Properties 
Tool for Water Vapor, the heat rate, q ′ , was calculated as a function of the surface temperature, 
Ts, for conductor diameters of 1.5, 2.0, and 2.5 mm.  Also plotted below is the ratio (%) of 

/ra d
q q′ ′  as a function of surface temperature. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the q′  vs. Ts plot, note that the heat rate increases with increasing surface temperature, and 
as expected, the heat rate increases with increasing diameter.  From the /ra d

q q′ ′  vs. Ts plot, the 
maximum contribution by radiation is 14%, and occurs at the maximum surface temperature. 
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PROBLEM 10.32 
 
KNOWN: Diameter and emissivity of heated platinum wire in saturated water at atmospheric 
pressure.  Water vapor properties at film temperature. 
 
FIND:  Heat flux from wire when it is at its melting temperature and corresponding centerline 
temperature. 
 
SCHEMATIC:    

 

ASSUMPTIONS:  (1) Steady-state conditions, (2) Film pool boiling occurs. 
 
PROPERTIES:  Table A.1, Platinum:  Tmelt = 2045 K, kp = 99.4 W/m·K.  Table A.6, Saturated water, 
liquid (Tsat = 100°C, 1 atm):ρl = 957.9 kg/m3, hfg = 2257 kJ/kg; Water vapor at film temperature (Tf = 
1209 K, 1 atm), given: ρv = 0.189 kg/m3, cp,v = 2404 J/kg⋅K, νv = 231 × 10-6 N⋅s/m2, kv = 0.113 
W/m⋅K. 
 
ANALYSIS: The heat flux is 
 
 ( )s s sat eq h T T h T′′ = − = Δ  (1)  
 
where ΔTe  = (2045 - 373)K = 1672 is indicative of film boiling.  From Eq. 10.9, 
 

 4 / 3 4 / 3 1/ 3
conv radh h h h= +  

 
For  convh  use Eq. 10.8 with C = 0.62 for a horizontal cylinder, 

 
( )

( )

1/ 43
v fgconvD

v v v s sat

g h Dh DNu C
k k T T

⎡ ⎤′ρ −ρ
⎢ ⎥= =
ν −⎢ ⎥

⎣ ⎦

l  

 

( ) ( )
( )

1/ 432 3
conv

6

39.8m s 957.9 0.189 kg m 5473 10 J kg 0.001mh 0.001m
0.62 20.113W m K 231 10 0.113W m K 2045 373 K m/s−

− × ××
=

⋅ × × ⋅ −

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 2
convh 410 W m K= ⋅  

 
where 

( ) ( )fg fg p,v s sath h 0.8c T T 2257 kJ kg 0.8 2.404 k J kg K 2045 373 K 5473kJ kg.′ = + − = + × ⋅ − =   To 

estimate the radiation coefficient, use Eq. 10.11, 
 

( ) ( )
( )

4 4 8 2 4 4 4 4
s sat 2

rad
s sat

T T 0.80 5.67 10  W/m K 2045 373 K
h 474 W m K.

T T 2045 373 K

−εσ − × × ⋅ −
= = = ⋅

− −
 

Continued… 

Saturated 
water, 1 atm 

Platinum wire, 
D = 1 mm 
ε = 0.80 

Ts = Tmelt 



PROBLEM 10.32 (Cont.) 
 
Then Eq. 10.9 becomes 
 

( ) ( )4 /34 / 3 2 2 1/ 3h 410 W/m K 474 W/m K h= ⋅ + ⋅  

Solving iteratively, find 2h 802 W m K.= ⋅   Then, using Eq. (1), find 

 ( )2 2
sq 802 W m K 2045 373 K 1.34 MW m .′′ = ⋅ − =  < 

The volumetric heat generation rate due to the electrical current can be found from the energy balance, 
2 2 9 3

sq D q D / 4         q 4q / D 4 1.34 MW/m / 0.001 m 5.36 10  W/mπ π′′ ′′= = = × = ×& &  
 
From Eq. 3.59, 

2
o

c s
qrT T(r 0) T
4k

= = = +
&

 

      
9 2 25.36 10  W/m (0.0005 m) 2045 K 2048 K

4 99.4 W/m K
× ×

= + =
× ⋅

 < 
 
COMMENTS: (1) The film boiling heat flux which causes the platinum wire to melt is not much 
greater than the critical heat flux.  A system which was operating near the critical heat flux and 
underwent a small, unintentional increase in electrical power could cause destruction of the wire.  (2) 
Radiation accounts for 60% of the heat flux from the wire at burnout.  (3) Radial temperature 
differences in the wire are small because of the small radius and large thermal conductivity. 
 



PROBLEM 10.33  
KNOWN:  Heater element of 5-mm diameter maintained at a surface temperature of 350°C when 
immersed in water under atmospheric pressure; element sheath is stainless steel with a mechanically 
polished finish having an emissivity of 0.25.  
FIND:  (a) The electrical power dissipation and the rate of evaporation per unit length; (b) If the 
heater element were operated at the same power dissipation rate in the nucleate boiling regime, what 
temperature would the surface achieve?  Calculate the rate of evaporation per unit length for this 
operating condition; and (c) Make a sketch of the boiling curve and represent the two operating 
conditions of parts (a) and (b).  Compare the results of your analysis.  If the heater element is operated 
in the power-controlled mode, explain how you would achieve these two operating conditions 
beginning with a cold element.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, and (2) Water exposed to standard atmospheric 
pressure and uniform temperature, Tsat.  
PROPERTIES:  Table A-6, Saturated water, liquid (100°C):  3957.9 kg / m ,ρ =l  p,c l  = 4217 

J/kg⋅K, 6 2279 10 N s / m ,μ −= × ⋅l  Pr 1.76,=l  hfg = 2257 kJ/kg, ( )fg fg p,v s sath h 0.80 c T T′ = + −  = 

2654 kJ/kg, σ = 58.9 × 10−3 N/m; Saturated water, vapor (100°C):  ρv = 0.5955 kg/m3; Table A-4, 
Water vapor (Tf ≈ 500 K):  ρv = 0.4405 kg/m3, cp,v = 1985 J/kg⋅K, kv = 0.0339 W/m⋅K, νv = 38.68 × 
10-6 m2/s. 
 
ANALYSIS:  (a) Since ΔTe > 120°C, the element is operating in the film-boiling (FB) regime.  The 
electrical power dissipation per unit length is 
 ( )( )s s satq h D T Tπ′ = −         (1) 
 
where the total heat transfer coefficient is 

 4 / 3 4 / 3 1/ 3
conv radh h h h= +         (2) 

The convection coefficient is given by the correlation, Eq. 10.8, with C = 0.62, 
 

 
( )

( )

1/ 43
v fgconv

v v v s sat

g h Dh D C
k k T T

⎡ ⎤′−
⎢ ⎥=
⎢ ⎥−
⎣ ⎦

lρ ρ
ν

      (3)

 

( ) ( )
( )

1/ 432 3 6

conv 6 2
9.8 m / s 833.9 0.4405 kg / m 2.654 10 J / kg K 0.005 m0.339 W / m K

h (0.62)
0.005 m 38.68 10 m / s 0.0339 W / m K 350 100 K−

− × × ⋅⋅
=

× × ⋅ −

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 2
convh 225 W / m K= ⋅  

 
The radiation coefficient, Eq. (10.11), with σ = 5.67 × 10−8 W/m2⋅K4, is 
          Continued … 



PROBLEM 10.33 (Cont.) 
 

 
( )
( )

4 4
s sat

rad
s sat

T T
h

T T

εσ −
=

−
 

 

 
( )
( )

4 4 4
2

rad
0.25 623 373 K

h 7.4 W / m K
350 100 K

−
= = ⋅

−

σ
 

 
Substituting numerical values into Eq. (2) for h,  and into Eq. (1) for sq ,′  find 
 
 2h 231 W / m K= ⋅  
 
 ( )( )2

sq 231W / m K 0.005 m 350 100 K 907 W / m′ = ⋅ × − =π    < 
 
 2

s sq q / D 57.8 kW / m′′ ′= =π  
 
The evaporation rate per unit length is 
 
 b s fgm q / h 1.4 kg / h m′ ′= = ⋅&        < 
 
(b) For the same heat flux, 2

sq 57.8 kW / m ,′′ =  using the Rohsenow correlation for the nucleate 

boiling (NB) regime, find ΔTe, and hence Ts.  

 
( )

31/ 2
p, ev

s fg n
s,f fg

c Tg
q h

C h Pr

ρ ρ
μ

σ

⎛ ⎞Δ⎡ ⎤− ⎜ ⎟′′ = ⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠

ll
l

l

 

 
where, from Table 10.1, for stainless steel mechanically polished finish with water, Cs,f = 0.0132 and 
n = 1.0. 
 
 3 2 6 2 657.8 10 W / m 279 10 N s / m 2.257 10 J / kg−× = × ⋅ × ×  
 

   
( )

1/ 22 3

3
9.8 m / s 957.9 0.5955 kg / m

58.9 10 N / m−

⎡ ⎤−
⎢ ⎥×
⎢ ⎥×⎣ ⎦

 

 

   
3

e
6

4217 J / kg K T

0.0132 2.257 10 J / kg 1.76

⎛ ⎞⋅ ×Δ
×⎜ ⎟⎜ ⎟× × ×⎝ ⎠

 

 
 e s sat sT T T 7.6 K T 107.6 CΔ = − = = °      < 
 
The evaporation rate per unit length is 
 
 ( )b s fgm q D h 1.4 kg / h m′ ′′= = ⋅& π        < 

 
          Continued … 



PROBLEM 10.33 (Cont.) 
 
(c) The two operating conditions are shown on the boiling curve, which is fashioned after Figure 10.4.  
For FB the surface temperature is Ts = 350°C (ΔTe = 250°C).  The element can be operated at NB with 
the same heat flux, sq′′  = 57.8 kW/m2, with a surface temperature of Ts = 108°C (ΔTe = 8°C).  Since 
the heat fluxes are the same for both conditions, the evaporation rates are the same. 
 

 
 
 
 
 
 
 
 
If the element is cold, and operated in a power-controlled mode, the element would be brought to the 
NB condition following the arrow shown next to the boiling curve near ΔTe = 0.  If the power is 
increased beyond that for the NB point, the element will approach the critical heat flux (CHF) 
condition.  If sq′′  is increased beyond maxq ,′′  the temperature of the element will increase abruptly, 
and the burnout condition will likely occur.  If burnout does not occur, reducing the heat flux would 
allow the element to reach the FB point. 
 

57.8 kW/m2

8

57.8 kW/m2

8

57.8 kW/m2

8

57.8 kW/m2

8



PROBLEM 10.34 
 
KNOWN:  Thickness and thermal conductivity of silicon chip.  Properties of saturated fluorocarbon 
boiling on top of chip.  Nucleate boiling constants.  Surge in heat flux causes film boiling, then returns to 
30% of critical heat flux.  
FIND:  (a) Boiling regime when heat flux returns to original value.  (b) How much clock speed must be 
reduced to return to nucleate boiling regime.  
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Uniform heat flux and adiabatic sides, hence one-
dimensional conduction in chip, (3) Constant properties. 
 
PROPERTIES:  Saturated fluorocarbon (given):  p,c l  = 1100 J/kg⋅K, hfg = 84,400 J/kg, ρl  = 1619.2 

kg/m3, ρv = 13.4 kg/m3, σ = 8.1 × 10-3 kg/s2, μl  = 440 × 10-6 kg/m⋅s, Prl  = 9.01. 
 
ANALYSIS:  (a) We begin by calculating the critical heat flux from Eq. 10.6 with C = 0.149 for a large 
horizontal plate. 

( )

( )

( )

1/ 4
v

max fg v 2
v

1/ 4
3 2 2 3

3
23

5 2

g
q 0.149h

8.1 10 kg s 9.8m s 1619.2 13.4 kg m
0.149 84,400J kg 13.4 kg m

13.4 kg m

1.55 10  W/m

−

⎡ ⎤σ ρ −ρ
′′ = ρ ⎢ ⎥

ρ⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥× × −

= × × × ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= ×

l

 
Thus the design heat flux is 4 2

des maxq 0.3q 4.64 10  W/m′′ ′′= = × .  When a power surge causes film 
boiling and then the heat flux returns to this value, the regime will still be film boiling if this value 
exceeds the minimum heat flux.  However, if it drops below the minimum heat flux it will return to 
nucleate boiling.  The minimum heat flux can be calculated from Eq. 10.7, 
 

( )
( )

1/ 4
v

min fg v 2
v

g
q 0.09h

⎡ ⎤σ ρ −ρ⎢ ⎥′′ = ρ
⎢ ⎥ρ +ρ⎣ ⎦

l

l

 

 
Continued... 

o maxq 0.3q′′ ′′=  



PROBLEM 10.34 (Cont.) 
 

( )

( )

1/ 4
3 2 2 3

3
min 23

3 2

8.1 10 kg s 9.8m s 1619.2 13.4 kg m
q 0.09 84,400J kg 13.4 kg m

1619.2 13.4 kg m

8.46 10  W/m

−
⎡ ⎤
⎢ ⎥× × −

′′ = × × × ⎢ ⎥
⎢ ⎥+⎢ ⎥⎣ ⎦

= ×
 
Thus des minq q′′ ′′>  and the chip will operate in the film boiling regime after the heat flux returns to the 

design value.  < 
 
(b) The heat flux must be reduced below 3 2

minq 8.46 10  W/m′′ = ×  in order to return to the nucleate 

boiling regime. That is, it must be reduced to 18% of the design value, or a reduction of 82%. < 
 
COMMENTS:  In addition to having limited capability to cool VLSI chips (see Solution to Problem 
10.23), boiling limits their reliability since, for all practical purposes, the chip must cease functioning 
in order to return to a safe operating condition. 
 
 



PROBLEM 10.35  
KNOWN:  Cylinder of 120 mm diameter at 1000K quenched in saturated water at 1 atm  
FIND:  Describe the quenching process and estimate the maximum heat removal rate per unit length 
during cooling.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  Water exposed to 1 atm pressure, Tsat = 100°C. 
 
ANALYSIS:  At the start of the quenching process, the surface temperature is Ts(0) = 1000K.  Hence, 
ΔTe = Ts – Tsat = 1000K – 373K = 627K, and from the typical boiling curve of Figure 10.4, film 
boiling occurs, with maxq q′′ ′′< . 
 
As the cylinder temperature decreases, ΔTe decreases, and the cooling process follows the boiling 
curve sketched above.  The cylinder boiling process passes through the Leidenfrost point D, into the 
transition or unstable boiling regime (D → C). 
 
At point C, the boiling heat flux has reached a maximum, maxq′′  = 1.26 MW/m2 (see Example 10.1).  
Hence, the heat rate per unit length of the cylinder is 
 
 ( ) ( )2

s max maxq q q D 1.26 MW / m 0.120m 0.475MW / m.π π′ ′ ′′ ⎡ ⎤= = = =⎣ ⎦   < 
 
As the cylinder cools further, nucleate boiling occurs (C → A) and the heat rate drops rapidly.  
Finally, at point A, boiling no longer is present and the cylinder is cooled by free convection.  
COMMENTS:  Why doesn’t the quenching process follow the cooling curve of Figure 10.3? 
 



PROBLEM 10.36 
 
KNOWN:  Horizontal platinum wire of diameter of 1 mm, emissivity of 0.25, and surface temperature of 
800 K in saturated water at 1 atm pressure. 
 
FIND:  (a) Surface heat flux, sq′′ , when the surface temperature is Ts = 800 K and (b) Compute and plot 
on log-log coordinates the heat flux as a function of the excess temperature, ΔTe  = Ts - Tsat, for the range 
150 ≤ ΔTe  ≤ 550 K  for emissivities of 0.1, 0.25, and 0.95; separately plot the percentage contribution of 
radiation as a function of ΔTe.  
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Film pool boiling. 
 
PROPERTIES:  Table A.6, Saturated water, liquid (Tsat = 100°C, 1 atm): ρl = 957.9 kg/m3, hfg = 2257 
kJ/kg; Table A.4, Water, vapor (Tf = (Ts + Tsat)/2 = (800 + 373)K/2 = 587 K): ρv = 0.3744 kg/m3, cp,v = 
2018 J/kg⋅K, νv = 54.11 × 10-6 m2/s, kv = 41.1 × 10-3 W/m⋅K. 
 
ANALYSIS: (a) The heat flux is 
 
 ( )s s sat eq h T T h T′′ = − = Δ  
 
where ΔTe  = (800 - 373)K = 427 is indicative of film boiling.  From Eq. 10.9 or 10.10, 

 ( )4 / 3 4 / 3 1/ 3
conv rad conv radh h h h or h h 3 4 h−= + = +  

 
if hrad < hconv.  Use Eq. 10.8 with C = 0.62 for a horizontal cylinder, 

 
( )

( )

1/ 43
v fgconvD

v v v s sat

g h Dh DNu C
k k T T

ρ ρ
ν

⎡ ⎤′−
⎢ ⎥= =
⎢ − ⎥
⎣ ⎦

l  

 

( ) ( )

( ) ( )

1/ 4
32 3

conv
3 6 2

9.8 m s 957.9 0.3744 kg m 2946 k J kg 0.001mh 0.001m
0.62

41.1 10 W m K 54.11 10 m / s 0.0411W m K 800 373 K− −

− ××
=

× ⋅ × × ⋅ −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 2
convh 333 W m K= ⋅  

 
where ( ) ( )fg fg p,v s sath h 0.8c T T 2257 kJ kg 0.8 2018 J kg K 800 373 K 2946 kJ kg.′ = + − = + × ⋅ − =   To 

estimate the radiation coefficient, use Eq. 10.11, 

 
( ) ( )

( )

4 4 4 4 4
s sat 2

rad
s sat

T T 0.25 800 373 K
h 13.0 W m K.

T T 800 373 K

εσ σ− −
= = = ⋅

− −
 

Since rad convh h< , use the simpler expression, 

 ( )2 2 2h 333W m K 3 4 13.0 W m K 343W m K.= ⋅ + ⋅ = ⋅  
Using the rate equation, find 

Continued... 



 
PROBLEM 10.36 (Cont.) 

 

 ( )2 2
sq 343W m K 800 373 K 146 kW/m .′′ = ⋅ − =  < 

 
b) Using the IHT Correlation Tool, Boiling, Film Pool Boiling, combined with the Properties 
Tool for Water Vapor, the heat flux, 

s
q ′′ , was calculated as a function of the surface 

temperature, ΔTe, for emissivities of 0.1, 0.25, and 0.95.  Also plotted below is the ratio (%) of 
/ra d s

q q′′ ′′  as a function of ΔTe. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the 

s
q′′  vs. ΔTe plot, note that the heat flux increases with increasing excess temperature 

and increasing emissivity.  The heat flux falls between the minimum heat flux (Liedenfrost 
point) of 18.9 kW/m2 and the critical heat flux, 1.26 MW/m2 (see Example 10.1 for these 
values), however for sufficiently large excess temperature, the film boiling heat flux will exceed 
the critical heat flux.  From the /ra d s

q q′′ ′′  vs. ΔTe plot, the maximum contribution by radiation is 
around 16%, and occurs at the maximum surface temperature. 
 
COMMENTS:  Since 2

s maxq q 1.26MW m′′ ′′< = , the prescribed condition can only be achieved in 
power-controlled heating by first exceeding maxq′′  and then decreasing the flux to 146 kW/m2. 
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PROBLEM 10.37  
KNOWN:  Surface temperature and emissivity of strip steel.  
FIND:  Heat flux across vapor blanket.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Vapor/jet interface is at Tsat for p = 1 atm, (3) 
Negligible effect of jet and strip motion. 
 
PROPERTIES:  Table A-6, Saturated water (100°C):  ρl  = 957.9 kg/m3, hfg = 2257 kJ/kg; 
Table A-4, Water vapor (Tf = 640K):  ρv = 0.3434 kg/m3, cp,v = 2050 J/kg⋅K,  
νv = 64.50 × 10-6 m2/s, k = 0.0456 W/m⋅K. 
 
ANALYSIS:  The heat flux is s eq h T′′ = Δ  
where  eT 907 K 373 K 534 KΔ = − =  
 
and  ( )4 / 3 4 / 3 1/ 3

conv rad conv radh h h h or h h 3/ 4 h .= + = +   (1,2) 
 
With  ( ) 6

fg fg p,v s sath h 0.80c T T 3.13 10 J / kg′ = + − = ×  
 
Equation 10.9 yields 
 

 
( ) ( )( )

( )( )D

1/ 432 3 6

6 2

9.8m / s 957.9 0.3434 kg / m 3.13 10 J / kg 1 m
Nu 0.62 1290.

64.50 10 m / s 0.0456 W / m K 907 373 K−

⎡ ⎤− ×⎢ ⎥= =⎢ ⎥× ⋅ −⎢ ⎥⎣ ⎦

 

 
Hence, 
 
 ( )D

2 2
conv vh Nu k / D 1290 W / m K 0.0456 W / m K /1 m 58.8 W / m K= = ⋅ ⋅ = ⋅  

 

 
( ) ( )

( )

4 4 8 2 4 4 4 4
s sat

rad
s sat

T T 0.35 5.67 10 W / m K 907 373 K
h

T T 907 373 K

ε σ −− × × ⋅ −
= =

− −
 

 
  2

radh 24 W / m K= ⋅  
 

Hence,  ( )( )2 2 2h 58.8 W / m K 3/ 4 24 W / m K 77.1 W / m K= ⋅ + ⋅ = ⋅  

Since hconv and hrad are the same order of magnitude, greater accuracy can be found by iterating on 
Eq.(1), which yields h =78.0 W/m2·K.  Then, 
 
  ( )2 4 2

sq 78.0 W / m K 907 373 K 4.16 10 W / m .′′ = ⋅ − = ×    < 
 
COMMENTS:  The foregoing analysis is a very rough approximation to a complex problem.  A more 
rigorous treatment is provided by Zumbrunnen et al. in ASME Paper 87-WA/HT-5. 



PROBLEM 10.38 
 
KNOWN:  Copper sphere, 10 mm diameter, initially at a prescribed elevated temperature is quenched in 
a saturated (1 atm) water bath. 
 
FIND:  The time for the sphere to cool (a) from Ti  = 130 to 110°C and (b) from Ti = 550°C to 220°C . 
 
SCHEMATIC:   

 
ASSUMPTIONS: (1) Sphere approximates lumped capacitance, (2) Water saturated at 1 atm, (3) 
Negligible radiation during film boiling process due to low emissivity of polished copper, (4) Average 
sphere temperature can be used in evaluating properties. 
 
PROPERTIES:  Table A-1, Copper:  ρ = 8933 kg/m3, (T = (130 + 120)°C/2 = 110°C = 383 K) cp = 392  
J/kg ⋅ K; (T = (550 + 220)°C/2 = 385°C = 658 K, cp = 422 J/kg ⋅ K. Table A.11, Copper (polished) : ε = 
0.04, typical value; Table A.6, Water (T = 373 K), ρl = 1/vf = 958 kg/m3, ρv = 1/vg = 0.596  kg/m3, hfg = 
2257 kJ/kg, cp,l = 4.217 kJ/kg ⋅ K, µl = 279 × 10-6 N ⋅ s/m2, σ = 58.9 × 10-3 N/m, Prl = 1.76; Table A.4, 
Water (Tf = (Ts + Tsat)/2 ≈ 515 K), ρv = 1/vg = 0.428 kg/m3, cp,v = 1.989 kJ/kg ⋅ K, νv =4.13 × 10-5 m2/s, kv = 
0.0351 W/m ⋅ K. 
 
ANALYSIS: For a heat transfer coefficient of the form given by Eq. 5.26, namely h = C(T – T∞)n, the 
temperature distribution is given by Eq. 5.28.  For boiling, T∞ is replaced with Tsat in the expression for h.  
Making use of this substitution in Eq. 5.28 yields 
 

1/
, satsat

sat

( )
1

nn
s c i

i i

nCA T TT T t
T T Vc

θ
θ ρ

−
⎡ ⎤−−

= = +⎢ ⎥
− ⎢ ⎥⎣ ⎦

   (1) 

 
Solving for t, 
 

sat

sat, sat

1
( )

n

n
is c i

Vc T Tt
T TnCA T T

ρ
−⎡ ⎤⎛ ⎞−⎢ ⎥= −⎜ ⎟−− ⎢ ⎥⎝ ⎠⎣ ⎦

    (2)  

 
(a) For cooling from Ti =130° to 110°C, with Tsat = 100°C, ΔTe = 30° to 10°C.  From Figure 10.4 the 
regime is nucleate pool boiling.  From the Rohsenow correlation, Eq. 10.5, h = 2/ ( )s e eq T C T′′ Δ = Δ , where 
 

31/2
,

,

( ) p ll v
l fg m

s f fg l

cgC h
C h Pr

ρ ρμ
σ

⎛ ⎞−⎡ ⎤= ⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠
 

 
Note that exponent m has been used instead of n, to distinguish from the n exponent in Eqs. (1) and (2).  
From Table 10.1, Cs,f = 0.0128, m = 1.0, thus 
 

Continued... 



 
PROBLEM 10.38 (Cont.) 

 

 

1/22 3 3
6 2 3

3

3
2 3

3 1.0

9.81 m/s (958 kg/m 0.596 kg/m )279 10  N s/m 2257 10  J/kg
58.9 10  N/m

4217 J/kg K      143 W/m K
0.0128 2257 10  J/kg 1.76

C −
−

⎡ ⎤−
= × ⋅ × × × ⎢ ⎥×⎣ ⎦

⎛ ⎞⋅
× = ⋅⎜ ⎟× × ×⎝ ⎠

 

 
Thus, from Eq. (2), with n = 2 
 

  
23

2 3 2
8933 kg/m 395 J/kg K 0.010 m/6 110 C 100 C 1 0.18 s

130 C 100 C2 143 W/m K (130 C 100 C)
t

−⎡ ⎤× ⋅ × ° − °⎛ ⎞= − =⎢ ⎥⎜ ⎟° − °× ⋅ × ° − ° ⎝ ⎠⎢ ⎥⎣ ⎦
 < 

 
(b) For cooling from Ti =550° to 220°C, with Tsat = 100°C, ΔTe = 450° to 120°C.  From Figure 10.4 the 
regime is film pool boiling.  From Eq. 10.8 with C = 0.67 for a sphere, h = 1/4( )eC T −Δ , where 
 

1/43( )
0.67 l v fgv

v v

g h DkC
D k

ρ ρ
ν

′⎡ ⎤−
= ⎢ ⎥

⎣ ⎦
 

 
In this expression, fgh′  is a function of temperature, , sat0.80 ( )fg fg p vh h c T T′ = + − .  However, since Eqs. (1) 
and (2) are only valid for C = const., we evaluate fgh′  at the average temperature, T = (550 + 220)°C/2 = 
385°C.  This is a reasonable approximation since the temperature-dependent second term is substantially 
smaller than hfg.  Thus,   
 

, sat0.80 ( ) 2257 kJ/kg 0.80 1.989 kJ/kg K (385 100) C 2710 kJ/kgfg fg p vh h c T T′ = + − = + × ⋅ × − ° =  
 
and 
 

1/42 3 3 3 3

5 2

2 3/4

0.0351 W/m K 9.81 m/s (958 kg/m 0.428 kg/m ) 2710 10  J/kg (0.010 m)0.67
0.010 m 4.13 10  m /s 0.0351 W/m K

856 W/m K

C −

⎡ ⎤⋅ − × × ×
= ⎢ ⎥× × ⋅⎣ ⎦
= ⋅

 

 
Thus, from Eq. (2), with n = –1/4, 
 

1/43

2 3/4 1/4
8933 kg/m 422 J/kg K 0.010 m/6 220 C 100 C 1 38.0 s

550 C 100 C(1/ 4) 856 W/m K (550 C 100 C)
t −

⎡ ⎤× ⋅ × ° − °⎛ ⎞= − =⎢ ⎥⎜ ⎟° − °− × ⋅ × ° − ° ⎝ ⎠⎢ ⎥⎣ ⎦
 < 

 
 
COMMENTS: Comparing the elapsed times for the two processes, the nucleate pool boiling process 
cools 20°C in 0.18s (110°C/s) vs. 330°C in 38.0s (8.7°C/s) for the film pool boiling process.  
 



PROBLEM 10.39  
KNOWN:  Saturated water at 1 atm is heated in cross flow with velocities 0 – 2 m/s over a 2 mm-
diameter tube.  
FIND:  Plot the critical heat flux as a function of water velocity; identify the pool boiling and 
transition regions between the low and high velocity ranges.  
SCHEMATIC:   

  
ASSUMPTIONS:  Nucleate boiling in the presence of external forced convection. 
 
PROPERTIES:  Table A-6, Water (1 atm):  Tsat = 100°C, ρl  = 957.9 kg/m3, ρv = 0.5955 kg/m3, hfg 

= 2257 kJ/kg, σ = 58.9 × 10-3 N/m. 
 
ANALYSIS:  The Lienhard-Eichhorn correlations for forced convection boiling with cross flow over 
a cylinder are appropriate for estimating maxq′′ , Eqs. 10.12 and 10.13. 
 
Low Velocity 

 

1/ 3
v fg

max 2
v

h 4q 1 V
V D

ρ σ
π ρ

⎡ ⎤⎛ ⎞⎢ ⎥′′ ⎜ ⎟= +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

 

 

1/ 33
3

max 3 3 2
1 kg J 4 58.9 10 N / mq 0.5955 2257 10 1 V

kgm 0.5955kg / m V 0.002mπ

−⎡ ⎤⎛ ⎞× ×⎢ ⎥′′ ⎜ ⎟= × × +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

 
 5 6 1/ 3

maxq 4.2782 10 V 2.493 10 V .′′ = × + ×  
 
High Velocity 

 

1/ 33/ 4 1/ 2
v fg

max 2v v v

h 1 1q V
169 19.2 V D

ρ ρ ρ σ
π ρ ρ ρ

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥′′ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

l l  

 

 
3/ 4

3
max 3

1 kg J 1 957.9q 0.5955 2257 10
kg 169 0.5955mπ

⎡ ⎛ ⎞′′ ⎢= × × +⎜ ⎟
⎝ ⎠⎢⎣

 

 

    

1/ 31/ 2 3

3 2
1 957.9 58.9 10 N / m V

19.2 0.5955 0.5955kg / m V 0.002m

− ⎤⎛ ⎞×⎛ ⎞ ⎥⎜ ⎟⎜ ⎟ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎥⎦

 

 
 5 6 1/ 3

maxq 6.4299 10 V 3.280 10 V′′ = × + ×  
          Continued … 



PROBLEM 10.39 (Cont.)  
The transition between the low and high velocity regions occurs when 
 

 
1/ 2

max v fg
v

0.275q h V 1ρρ
π ρ

⎡ ⎤⎛ ⎞⎢ ⎥′′ = +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

l  

 

 
1/ 2

3 6
max 3

kg J 0.275 957.9q 0.5955 2257 10 V 1 6.0627 10 V.
kg 0.5955m π

⎡ ⎤⎛ ⎞′′ ⎢ ⎥= × × + = ×⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 (3) 

 
For pool boiling conditions when the velocity is zero, the critical heat flux must be estimated 
according to the correlation for the small horizontal cylinder as introduced in Problem 10.20.  If the 
cylinder were “large,” the critical heat flux would be 1.26 MW/m2 as given by Eq. 10.6 with C=0.149.  
The Confinement number and correction factor are  

-3 2 3
vσ/g(ρ  - ρ ) 58.9 × 10  N/m/9.8 m/s (957.9 - 0.5955) kg/m

Co=  =  = 2.51
r 0.001 m

 

 
F = 0.89 + 2.27 exp (-3.44 1/ 2Co− ) = 1.15   

 
and the critical heat flux for the “small” 2 mm cylinder is 
 
 ) 2 2

max poolq 1.15 1.26 MW / m 1.45 MW / m .′′ = × =  
 
The graph below identifies four regions:  pool boiling where 2

maxq 1.45 MW / m′′ =  from V = 0 to 
0.17 m/s and the low velocity, transition and high velocity regimes. 
 

 
 

1.451.45



PROBLEM 10.40  
KNOWN:  Saturated water at 1 atm and velocity 2 m/s in cross flow over a heater element of 5 mm 
diameter.  
FIND:  Maximum heating rate, [ ]q W / m .′  
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  Nucleate boiling in the presence of external forced convection. 
 
PROPERTIES:  Table A-6, Water (1 atm):  Tsat = 100°C, ρl  = 957.9 kg/m3, ρv = 0.5955 kg/m3, hfg 

= 2257 kJ/kg, σ = 58.9 × 10-3 N/m. 
 
ANALYSIS:  The Lienhard-Eichhorn correlation for forced convection with cross flow over a 
cylinder is appropriate for estimating maxq .′′   Assuming high-velocity region flow, Eq. 10.13 with Eq. 
10.14 can be written as 

 

1/ 33/ 4 1/ 2
v fg

max 2v v v

h V 1 1q .
169 19.2 V D

ρ ρ ρ σ
π ρ ρ ρ

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥′′ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

l l  

Substituting numerical values, find 

 
3/ 4

3 3
max

1 1 957.9q 0.5955kg / m 2257 10 J / kg 2m / s
169 0.5955π

⎡ ⎛ ⎞′′ ⎢= × × × +⎜ ⎟
⎝ ⎠⎢⎣

 

   
( )

1/ 31/ 2 3

23
1 957.9 58.9 10 N / m

19.2 0.5955 0.5955kg / m 2m / s 0.005m

− ⎤⎛ ⎞× ⎥⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎥⎜ ⎟⎝ ⎠ ⎥⎝ ⎠ ⎦

 

 2
maxq 4.331 MW / m .′′ =  

 
The high-velocity region assumption is satisfied if 

 
1/ 2?

max
v fg v

q 0.275 1
h V

ρ
ρ π ρ

⎛ ⎞′′
+⎜ ⎟

⎝ ⎠
< l  

 
1/ 26 2 ?

3 3
4.331 10 W / m 0.275 957.91.61 1 4.51.

0.59550.5955kg / m 2257 10 J / kg 2m / s π
× ⎛ ⎞= + =⎜ ⎟

⎝ ⎠× × ×
<  

The inequality is satisfied.  Using the maxq′′  estimate, the maximum heating rate is 

 ( )2
max maxq q D 4.331MW / m 0.005m 68.0 kW / m.π π′ ′′= ⋅ = × =   < 

 
COMMENTS:  Note that the effect of the forced convection is to increase the critical heat flux by 
4.33/1.26 = 3.4 over the pool boiling case. 



PROBLEM 10.41 
 
KNOWN: Diameter and wall heat flux for vertical steel tube.  Velocity and pressure of saturated 
liquid water entering at bottom end. 
 
FIND:  (a) Tube wall temperature and water quality at x = 15 m. (b) Tube wall temperature at location 
where single-phase vapor flow exists at mean temperature T sat.  (c) Plot tube wall temperature for -5 m 
≤ x ≤ 30 m. 
 
SCHEMATIC:    
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties. (3) Gsf = 1. 
 
PROPERTIES:  Table A.6, Saturated water, liquid (10 bars): Tsat = 452.8 K, ρl = 887.3 kg/m3, hfg = 
2014 kJ/kg, μl=149.4 × 10-6 N⋅s/m2, /ν = μ ρ =l l l  1.684 × 10-7 m2/s, kl  = 0.6766 W/m⋅K, Prl = 
0.979.  Table A.4, water vapor (T = 452.8 K): vρ = 5.094 kg/m3, vμ = 14.95 × 10-6 N⋅s/m2, kv = 
0.03353 W/m⋅K, Prv = 1.149.   
 
ANALYSIS: (a) The mass flow rate is 

 3 2
m cm u A 887.3 kg/m 0.05 m/s (0.1 m) / 4 0.348 kg/s= ρ = × ×π =l&  

Then from Eq. 10.16, 

s
2Dx

6fg

q 100,000 W/m 0.1 m 15 mX(x 15 m) 0.672
mh 0.348 kg/s 2.014 10  J/kg
π′′ × π× ×

= = = =
× ×&

 (1) <  

 
To find the wall temperature, we must first find the convection coefficient from Eq. 10.15.  The 
Reynolds number is 

 7 2 4
D mRe u D / 0.05 m/s 0.1 m 1.684 10  m / s 2.97 10−= ν = × × = ×l   

 
Thus the flow is turbulent and the single phase convection coefficient can be calculated from Eq. 8.62, 
  

 
4

D
D 1/ 2 2 /3 1/ 2 2 /3

(f /8) (Re  -  1000) Pr (0.0237 /8) (2.97 10  -  1000) 0.979Nu     84.0
1  12.7 (f /8) (Pr  -  1) 1  12.7 (0.0237 /8) (0.979  -  1)

×
= = =

+ +
l

l

 

 
where from Equation 8.21,  
  
 f = (0.790 ln ReD – 1.64)-2 = (0.790 ln (2.97 × 104) – 1.64)-2 = 0.0237 
 
Thus  

2
sp Dh Nu k / D  84.0 0.6766 W / m K / 0.1 m 568 W / m K= = × ⋅ = ⋅l   

Continued… 

D = 0.1 m x 

q" = 100,000 W/m2 

Water 
um = 0.05 m/s, Tsat 



PROBLEM 10.41 (Cont.) 
 
We must evaluate h from both Eqs. 10.15a and 10.15b and take the larger value.  From Eq. 10.15b 
(which yields the larger value), 
 

0.70.45
0.72 0.08 0.8s

sf
sp v fg

0.45 5 2
0.72 0.08

qh 1.136 X (1 X) f (Fr) 667.2 (1 X) G                                             (2)
h m h

887.3 10  W / m1.136 0.672 (1 0.672) 1 667.2
5.094 44.4 kg

⎛ ⎞⎛ ⎞ ′′ρ
= − + −⎜ ⎟⎜ ⎟ ⎜ ⎟′′ρ⎝ ⎠ ⎝ ⎠

⎛ ⎞= − × +⎜ ⎟
⎝ ⎠

l

&

0.7
0.8

2 6 (1 0.672) 1
/ m s 2.014 10  J / kg

10.3

⎛ ⎞
− ×⎜ ⎟⎜ ⎟⋅ × ×⎝ ⎠

=

 

 
where mm u′′ = ρl

& = 44.4 kg/m2⋅K, f(Fr) = 1 for a vertical tube, and Gsf = 1.  Thus h = 10.3(568 
W/m2⋅K) = 5860 W/m2⋅K and from Eq. 10.3, 

 5 2 2
s satT T q / h 452.8 K 10  W / m / 5860 W / m K 470 K 197 C′′= + = + ⋅ = = °     (3) < 

(b) The mass flow rate is unchanged, but the viscosity is now that of the vapor, therefore, 

 6 2 5
D vRe 4m / D 4 0.348 kg / s / 0.1 m 14.95 10  N s / m 2.97 10−= π μ = × π× × × ⋅ = ×&  

And once again from Eqs. 8.62 and 8.21, 

 
5

D v
D 1/ 2 2 /3 1/ 2 2 /3

v

(f /8) (Re  -  1000) Pr (0.0145/8) (2.97 10  -  1000) 1.149Nu     584
1  12.7 (f /8) (Pr  -  1) 1  12.7 (0.0145/8) (1.149  -  1)

×
= = =

+ +
 

where 
 f = (0.790 ln ReD – 1.64)-2 = (0.790 ln (2.97 × 105) – 1.64)-2 = 0.0145 
Thus 
 2

D vh Nu k / D  584 0.03353 W / m K / 0.1 m 196 W / m K= = × ⋅ = ⋅  
and 

 5 2 2
s satT T q / h 452.8 K 10  W / m /196 W / m K 964 K 691 C′′= + = + ⋅ = = °                    < 

 
(c) For x < 0, the liquid is at its saturation temperature and the heat transfer coefficient is the single-
phase value calculated in part (a).  Thus the surface temperature is Ts = Tsat + q′′ /hsp = 356°C.  For x > 
0 (until the fluid becomes fully vapor) Eqs. (1), (2), and (3) were entered into the IHT workspace 
along with the property values, previously calculated values of m& , m′′& , and hsp, and other inputs.  For 
locations where pure single-phase vapor exists, Ts = 691°C as calculated in part (b).  The results are 
shown below. 
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PROBLEM 10.41 (Cont.) 

 
COMMENTS: (1) During pool boiling, we are concerned about approaching the critical heat flux.  
During forced convection boiling, an analogous situation exists whereby, once the liquid phase is 
entirely consumed, surface temperatures rise very rapidly, potentially melting the tube material.  In 
applications where production of superheated steam is desired, such as in a Rankine power cycle, 
precautions must be made to ensure the tube material will survive the high temperatures in regions 
associated with pure vapor conditions.  (2) Surface temperatures at negative x values will be slightly 
less than shown for the pure liquid flow.  This is because the fluid quality is averaged across the tube 
radius and, for x < 0, fluid near the centerline of the tube will consist of subcooled liquid while 
superheated vapor exists near the tube wall.  This situation can yield values of X  equal to zero, even 
though two-phase flow exists in the fluid, increasing the convection coefficient.  Similarly, the average 
quality reaches a value of unity at x = 22.3 m.  Just beyond this location, the flow consists mainly of 
vapor, but a subcooled liquid mist can exist near the core of the flow, suppressing tube surface 
temperatures relative to those indicated just beyond x = 22.3 m.  (3) The quality reaches a value of 0.8 
at x = 17.8 m and Equation 10.15 is no longer applicable.  The surface temperatures reported in the 
range 17.8 m ≤ x ≤ 22.3 m will be less accurate than for those further upstream.  (4) The pressure will 
decrease with increasing  x due to friction losses.  Prediction of pressure drops in flow boiling is 
difficult. 
 



PROBLEM 10.42 
 
KNOWN: Diameter and wall thickness of horizontal tube.  Saturation temperature and flow rate 
of R-134a.  Wall heat flux. 
 
FIND: Maximum wall temperature at x = 0.4 m for (a) copper tube, (b) stainless steel tube. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Constant properties, (2) Steady-state conditions, (3) The heat flux value 
of 105 W/m2 is based on the inner wall surface area. 
 
PROPERTIES: Table A.5, Saturated liquid R-134a: (Tsat = 288 K): kl  = 0.0855 W/m⋅K, p,c l  

= 1387 J/kg⋅K, μl  = 2.213 × 10-4 N⋅s/m2, Prl  = 3.54, ρl = 1243.8 kg/m3, hfg = 186.6 kJ/kg.  
Saturated vapor R-134a (given): vρ  = 23.75 kg/m3.  Table A.1, Pure copper (T ≈ 300 K): kw = 
401 W/m⋅K.  Table A.1, AISI 316 SS (T ≈ 300 K): kw = 13.4 W/m⋅K. 
 
ANALYSIS: (a) From Eq. 10.16, 

s
5 2Dx

3fg

q 10  W/m 0.01 m 0.4 mX(x 0.4 m) 0.673
mh 0.01 kg/s 186.6 10  J/kg
π′′ × π× ×

= = = =
× ×&

   

 
To find the wall temperature, we must first find the convection coefficient from Eq. 10.15.  The 
Reynolds number is 

 4 2
DRe 4m / D 4 0.01 kg / s / 0.01 m 2.213 10  N s / m 5753−= π μ = × π× × × ⋅ =l&  

Thus the flow is turbulent and the single phase convection coefficient can be calculated from Eq. 
8.62, 

 D
D 1/ 2 2 /3 1/ 2 2 /3

(f /8) (Re  -  1000) Pr (0.0370 /8) (5753 -  1000) 3.54Nu     36.3
1  12.7 (f /8) (Pr  -  1) 1  12.7 (0.0370 /8) (3.54 1)

= = =
+ + −

l

l

 

 
where from Equation 8.21,  
  
 f = (0.790 ln ReD – 1.64)-2 = (0.790 ln (5753) – 1.64)-2 = 0.0370 
Thus  

2
sp Dh Nu k / D  36.3 0.0855 W / m K / 0.01 m 311 W / m K= = × ⋅ = ⋅l  

Continued… 

x q" = 105 W/m2 

R-134a 
&m = 0.01 kg/s 

Tsat = 15°C 
D = 0.01 m 

t = 2 mm 



PROBLEM 10.42 (Cont.) 
 
We must evaluate h from both Eqs. 10.15a and 10.15b and take the larger value.  We first 
calculate 2

cm m / A 127 kg / m s′′ = = ⋅& & , 2Fr (m / ) / gD 0.1069′′= ρ =l
& , f(Fr) = 2.63Fr0.3 = 1.34, 

and note that Gsf = 1.63 from Table 10.2.  Then, from Eq. 10.15a (which yields the larger value), 
 

0.70.1
0.16 0.64 0.8s

sf
sp v fg

0.1 5 2
0.16 0.64

2

h q0.6683 X (1 X) f (Fr) 1058 (1 X) G                                      
h m h

1243.8 10  W / m0.6683 0.673 (1 0.673) 1.34 1058
23.75 127 kg / m s 186

⎛ ⎞⎛ ⎞ ′′ρ
= − + −⎜ ⎟⎜ ⎟ ⎜ ⎟′′ρ⎝ ⎠ ⎝ ⎠

⎛ ⎞= − × +⎜ ⎟ ⋅ ×⎝ ⎠

l

&

0.7
0.8

3 (1 0.673) 1.63
.6 10  J / kg

15.9

⎛ ⎞
− ×⎜ ⎟⎜ ⎟×⎝ ⎠

=

 

 
Thus h = 15.9(311 W/m2⋅K) = 4942 W/m2⋅K and from Eq. 10.3, 
 5 2 2

s satT T q / h 15 C 10  W / m / 4942 W / m K 35.2 C′′= + = ° + ⋅ = °    
This is the inner wall temperature.  The maximum wall temperature is the outer wall temperature, 
given by 

5 2
s.o s i o i wT T q r ln(r / r ) k 35.2 C 10  W / m 0.005 mln(0.007 / 0.005) / 401 W / m K′′= + = ° + × ⋅

 s,oT 35.6 C= °                                                                                                           < 
 
(b) For stainless steel, the value of Gsf changes, Gsf = 1, and the wall thermal conductivity is 
lower.  Repeating the calculations (with Eq. 10.15b now yielding the larger value of h) we find h 
= 3776 W/m2⋅K, Ts = 41.5°C, and 

 s,oT 54.0 C= °                                                                                                           < 
 
COMMENTS: (1) The confinement number is Co = 0.089 which is less than 1/2, therefore Eq. 
10.15 may be used. (2) For vertical tubes, the corresponding maximum wall temperatures are Tmax 
= 35.9ºC and 58.1ºC, respectively. 
 



PROBLEM 10.43 
 
KNOWN: Various fluids at atmospheric pressure boiling in a tube. 
 
FIND:  Tube diameter associated with a Confinement number of 0.5.  
 
SCHEMATIC:   
 
 

attached 
 
 
 
ASSUMPTIONS: (1) Constant properties. 
 
PROPERTIES: Table A.5, Saturated ethanol (p = 1 atm):  ρl  = 757 kg/m3, vρ  = 1.44 
kg/m3, σ = 17.7 × 10-3 N/m.  Saturated mercury (p = 1 atm):  ρl  = 12,740 kg/m3, vρ  = 
3.90 kg/m3, σ = 417 × 10-3 N/m.  Saturated R-134a (p = 1 atm):  ρl  = 1377 kg/m3, vρ  = 
5.26 kg/m3, σ = 15.4 × 10-3 N/m.  Saturated dielectric fluid, given in Problem 10.23 (p = 
1 atm):  ρl  = 1619.2 kg/m3, vρ  = 13.4 kg/m3, σ = 8.1 × 10-3 N/m.  Table A.6, Saturated 
water (p = 1 atm):  ρl  = 989 kg/m3, vρ  = 0.595 kg/m3, σ = 58.9 × 10-3 N/m. 
 
ANALYSIS:  The Confinement number is defined as, 
 
 vCo /[g( )] / D= σ ρ −ρl  
 
Thus for a critical Confinement number of 0.5, 
 
 vD 2 /[g( )]= σ ρ −ρl  
 
The results are tabulated below for all five fluids. 
 

Fluid Critical diameter (mm) 
Ethanol 3.03 
Mercury 3.65 
Water 4.93 
R-134a 2.14 
Dielectric fluid 1.43 

                                                                                             < 
COMMENTS: Despite the wide range of individual property values, the critical tube 
diameter below which the bubble occupies a significant fraction of the tube volume is 
confined to a relatively narrow range. 
 

Fluid 
D 



PROBLEM 10.44  
KNOWN:  Saturated steam condensing on the outside of a brass tube and water flowing on the inside 
of the tube; convection coefficients are prescribed.  
FIND:  Steam condensation rate per unit length of the tube.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state conditions. 
 
PROPERTIES:  Table A-6, Water, vapor (0.1 bar):  Tsat ≈ 320K, hfg = 2390 × 103 J/kg; Table A-1, 
Brass ( )( )m satT T T / 2 300K : k 110 W / m K= + ≈ = ⋅  
 
ANALYSIS:  The condensation rate per unit length follows from Eq. 10.34 written as 
 fgm q / h′ ′ ′=&           (1) 

where the heat rate follows from Eq. 10.33 using an overall heat transfer coefficient 
 ( )o o sat mq U D T Tπ′ = ⋅ −         (2) 
and from Eq. 3.36, 

 
1

o o o
o

o i i i

D / 2 D D1 1U n
h k D D h

−⎡ ⎤
= + +⎢ ⎥
⎣ ⎦

l       (3) 

 

 

1

o 2 2
1 0.0095m 19 19 1U n

110 W / m K 16.5 16.56800 W / m K 5200 W / m K

−⎡ ⎤
= + +⎢ ⎥

⋅⎢ ⎥⋅ ⋅⎣ ⎦
l  

 

 
16 6 6 2 2

oU 147.1 10 12.18 10 192.3 10 W / m K 2627 W / m K.
−− − −⎡ ⎤= × + × + × ⋅ = ⋅⎢ ⎥⎣ ⎦

 
 
Combining Eqs. (1) and (2) and substituting numerical values (see below for fgh′ ), find 
 
 ( )o o sat m fgm U D T T / hπ′ ′= −&  
 
 ( )( )2 3 3m 2627 W / m K 0.019m 320 303 K / 2410 10 J / kg 1.11 10 kg / s.π −′ = ⋅ − × = ×&   < 
 
COMMENTS:  (1) Note from evaluation of Eq. (3) that the thermal resistance of the brass tube is not 
negligible.  (2) From Eq. 10.27, with Ja = ( ) [ ]p, sat s fg fg fgc T T / h , h h 1 0.68 Ja .′− = +l   Note from 

expression for Uo, that the internal resistance is the largest.  Hence, estimate Ts,o ≈ To – (Ro/ΣR) (To – 
Tm) ≈ 313K.  Hence, 

 ( )3 3
fgh 2390 10 J / kg 1 0.68 4179J / kg K 320 313 K / 2390 10 J / kg⎡ ⎤′ ≈ × + × ⋅ − ×⎢ ⎥⎣ ⎦

 

 fgh 2410kJ / kg′ =  

where p,c l  for water (liquid) is evaluated at Tf = (Ts,o + To)/2 ≈ 317K. 



PROBLEM 10.45  
KNOWN:  Insulated container having cold bottom surface and exposed to saturated vapor.  
FIND:  Expression for growth rate of liquid layer, δ(t); thickness formed for prescribed conditions; 
compare with vertical plate condensate for same conditions.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Side wall effects are negligible and, (2) Vapor-liquid interface is at Tsat, (3) 
Temperature distribution in liquid is linear, (4) Constant properties. 
 
PROPERTIES:  Table A-6, Saturated vapor (p = 1.0133 bar):  Tsat = 100°C, ρv = 0.596 kg/m3, hfg = 
2257 kJ/kg; Table A-6, Saturated liquid (Tf = 90°C = 363K):  ρl  = 965 kg/m3, μl  = 313 × 10-6 

N⋅s/m2, kl  = 0.676 W/m⋅K, p,c l  = 4207 J/kg⋅K, lν  = μl / ρl  = 3.24 × 10-7 m2/s. 
 
ANALYSIS:  Perform a surface energy balance on the interface (see above) recognizing that 
m / A d / dtρ δ=l l&  from an overall mass rate balance on the liquid to obtain 
 

 sat s sat s
in out conds cond fg fg

T T T Tm dE E q q h k h k 0
A dt

δρ
δ δ
− −′′ ′′ ′′ ′′− = − = − = − =l l l

&& &   (1) 
 
where condsq′′  is the condensation heat flux and condq′′  is the conduction heat flux into the liquid layer 
of thickness δ with linear temperature distribution.  Eq. (1) can be rewritten as 
 

 sat s
fg

T Tdh k .
dt
δρ

δ
−

=l l  
 
Separate variables and integrate with limits shown to obtain the liquid layer growth rate, 
 

 
( ) ( )

1/ 2
t sat s sat s

0 0 fg fg

k T T 2k T T
d dt or t .

h h
δ
δ δ δ

ρ ρ

⎡ ⎤− −
= = ⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫ l l

l l
    (2) < 

 
For the prescribed conditions, the liquid layer thickness and condensate formed in one hour are 
 

( ) ( )
1/ 2

3
3

W kg J1h 2 0.676 100 80 C 3600s / 965 2257 10 6.69 mm
m K kgm

δ ⎡ ⎤
= × − ° × × × =⎢ ⎥⋅⎣ ⎦

 < 

 
 ( ) 3 6 2 3 3M 1h A 965kg / m 200 10 m 6.69 10 m 1.29 10 kg.ρ δ − − −= = × × × × = ×l  < 
 
          Continued … 



PROBLEM 10.45 (Cont.)  
The condensate formed on a vertical plate of length 2L 200 mm 0.0141 m= =  with the same 
conditions follows from Eq. 10.34, 
 
 ( )vp L sat s fgM m t h A T T t / h′= ⋅ = − ⋅&  
 
where fg Lh and h′  follow from Eqs. 10.27 and one of Eqs. 10.43 - 10.45, respectively, with P given 

by Eq. 10.42. 
 
 ( ) ( )fg fg fg p, fgh h 1 0.68Ja h 1 0.68c T / h′ = + = + Δl  
 

( )3 3
fg

Jh 2257 10 J / kg 1 0.68 4207 100 80 C / 2257 10 J / kg 2314kJ / kg
kg K

⎛ ⎞′ = × + × − ° × =⎜ ⎟⋅⎝ ⎠
 

 
From Eq. 10.42, 
 

sat s
2 1/3

fg

1/3-6 2 3 -7 2 2 2

k L(T T )P
h ( / g)

0.676 W/m K × 0.0141 m(100 - 80)°C        = 11.9
313×10  N s/m  × 2314 × 10  J/kg × (3.24 × 10  m /s) /9.8 m/s

ν

−
=

′μ

⋅
=

⎡ ⎤⋅ ⎣ ⎦

l

l l

 

 
Since P < 15.8, Eq. 10.43 gives
 

1/ 4 1/ 4 2
L 2 1/3 1/3-7 2 2 2

k 0.676 W/m Kh 0.943P 0.943 11.9 15,560 W / m K
( / g) (3.24 × 10  m /s) /9.8 m/s

− −⋅
= = × = ⋅

ν ⎡ ⎤
⎣ ⎦

l

l

 

 
Hence, 
 
 ( )2 6 2 3

vpM 15,560W / m K 200 10 m 100 80 C 3600s / 2314 10 J / kg−= ⋅ × × − ° × ×  
 
 2

vpM 9.7 10 kg.−= ×         < 
 
COMMENTS: Note that the condensate formed by the vertical plate is almost two orders of 
magnitude larger.  For the vertical plate the rate of condensate formation is constant.  For the container 
bottom surface, the rate decreases with increasing time since the conduction resistance increases as the 
liquid layer thickness increases. 
 



PROBLEM 10.46  
KNOWN:  Vertical tube experiencing condensation of steam on its outer surface.  
FIND:  Heat transfer and condensation rates.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Film condensation, (2) Negligible non-condensibles, (3) D/2 >> δ, vertical 
plate behavior. 
 
PROPERTIES:  Table A-6, Water, vapor (1.0133 bar):  Tsat = 100°C, ρv = 0.596 kg/m3, hfg = 2257 
kJ/kg; Table A-6, Water, liquid (Tf = 97°C):  ρl  = 960.6 kg/m3, μl  = 289 × 10-6 N⋅s/m2, p,c l  = 4214 

J/kg⋅K, kl  = 0.679 W/m⋅K, lν  = μl / ρl  = 3.01 × 10-7 m2/s. 
 
ANALYSIS:  The heat transfer and condensation rates are 
 
 ( )( )L sat s fgq h D L T T m q / hπ ′= − =&  
 
where ( )fg fgh h 1 0.68 Ja′ = +  and ( )p, sat s fgJa c T T / h .= −l   Hence Ja = 4214 J/kg⋅K (100 - 

94)K/2257 × 103 J/kg = 0.0112 and fgh′  = 2274 kJ/kg.   

 
Eq. 10.42 yields, 
 

sat s
2 1/3 1/3-6 2 3 -7 2 2 2fg

k L(T T ) 0.679 W/m K × 1 m (100 94)°CP 295
h ( / g) 289×10  N s/m  × 2274 × 10  J/kg × (3.01 × 10  m /s) /9.8 m/sν

− ⋅ × −
= = =

′μ ⎡ ⎤⋅ ⎣ ⎦

l

l l

 

 
Since 15.8 < P < 2530, Eq. 10.44 yields 
  

( )

( )

0.82
L 2 1/3

0.82 2
1/3-7 2 2 2

k 1h 0.68P 0.89
P( / g)

0.679 W/m K 1 0.68 295 0.89 8500 W / m K
295(3.01 × 10  m /s) /9.8 m/s

= +
ν

⋅
= × + = ⋅
⎡ ⎤
⎣ ⎦

l

l
 

       
Then from Eqs. 10.33 and 10.34, 

2
L sat sq h A(T T ) 8500 W / m K 0.1 m 1 m (100 94) C 16.0 kW= − = ⋅ ×π× × × − ° =   <  

3 6 -3
fgm = q/h  = (16.0×10 W)/(2.274 × 10  J/kg) = 7.1 × 10  kg/s′&     <  

 
 

COMMENTS:  To determine whether the assumption D/2 >> δ is satisfied, use Eq. 10.26 to estimate 
δ(L) ≈ 0.12mm.  Despite the laminar film assumption, clearly the assumption is justified and the 
vertical plate correlation is applicable. 
 



PROBLEM 10.47  
KNOWN:  Vertical tube experiencing condensation of steam on its outer surface.  
FIND:  Heat transfer and condensation rates.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Film condensation, (2) Negligible condensibles in steam, (3) D/2 >> δ, vertical 
plate behavior. 
 
PROPERTIES:  Table A-6, Water, vapor (1.5 bar):  Tsat ≈ 385K, ρv = 0.876 kg/m3, hfg = 2225 kJ/kg; 
Table A-6, Water, (liquid Tf = 376K):  ρl  = 956.2 kg/m3, p,c l  = 4220 J/kg⋅K, μl  = 271 × 10-6 

N⋅s/m2, kl  = 0.681 W/m⋅K, lν  = μl / ρl  = 2.83 × 10-7 m2/s. 
 
ANALYSIS:  The heat transfer and condensation rates are 
 
 ( )( )L sat s fgq h D L T T m q / hπ ′= − =&  
 
where ( )fg fgh h 1 0.68 Ja′ = +  and ( )p, sat s fgJa c T T / h .= −l   Hence, Ja = 4220 J/kg⋅K (385 – 

367)K/2225 × 103 J/kg = 0.0171 and fgh′  = 2277 kJ/kg.   
Eq. 10.42 yields, 
 

sat s
2 1/3 1/3-6 2 3 -7 2 2 2fg

k L(T T ) 0.681 W/m K × 1 m (385 367)KP  = 986
h ( / g) 271×10  N s/m  × 2277 × 10  J/kg × (2.83 × 10  m /s) /9.8 m/sν

− ⋅ × −
= =

′μ ⎡ ⎤⋅ ⎣ ⎦

l

l l

 
Since 15.8 < P < 2530, Eq. 10.44 yields 
  

( )

( )

0.82
L 2 1/3

0.82 2
1/3-7 2 2 2

k 1h 0.68P 0.89
P( / g)

0.681 W/m K 1 0.68 986 0.89 7130 W / m K
986(2.83 × 10  m /s) /9.8 m/s

= +
ν

⋅
= × + = ⋅
⎡ ⎤
⎣ ⎦

l

l
 

Hence, ( ) ( )2q 7130W / m K 0.1m 1m 385 367 K 40.3kWπ= ⋅ × × − =    < 

 3 3m 40.3 10 W / 2277 10 J / kg 0.0177 kg / s.= × × =&      < 
 
COMMENTS:  By comparing these results with those of Problem 10.46, the effect of increased 
pressure on condensation can be seen. 

p (bar)  Tsat(K)  Tsat-Ts(K) ( )2
Lh W / m K⋅   q (kW)       ( )3m 10 kg / s⋅&  

 
  1.01    373         6        8500   16.0    7.1 
    1.5    385       18        7130   40.3  17.7 
 
The effect of increasing the pressure from 1.01 to 1.5 bar is to increase the excess temperature three-
fold, to decrease Lh  by 16%, and to increase the rates by a factor of 2.5.    
       



PROBLEM 10.48 
 
KNOWN:  Length of isothermal vertical plate, L, experiencing wave-free laminar condensation. 
 
FIND:  Expression for the average heat transfer coefficients for N plates each of length LN = L/N to the 
average coefficient for the single plate. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Constant properties. 
 
ANALYSIS:  Equation 10.42 gives  
 

sat s
2 1/3

fg

k L(T T )P
h ( / g)ν

−
=

′μ
l

l l

 

 
For wave free laminar condensation, Eq. 10.43 reveals that 
 

1/ 4 1/ 4
L,1h P L− −∝ ∝  

 
For multiple plates, each of length LN = L/N,  
 

1/ 4
1/ 4

L,N N
Lh L
N

−
− ⎛ ⎞∝ ∝ ⎜ ⎟

⎝ ⎠
 

 
Therefore, 1/4

, ,1/L N Lh h N=          < 
 
COMMENTS: By breaking the single plate into shorter segments, the average liquid film thickness is 
reduced, resulting in a modest increase in the average heat transfer coefficient, resulting in heat 
transfer enhancement. 

Condensing 
liquid

LN = L/N
(N = 3 is shown)

Condensing
liquid

L

g



PROBLEM 10.49 
 
KNOWN:  Cooled vertical plate 500-mm high and 200-mm wide condensing saturated steam at 1 atm. 
 
FIND:  (a) Surface temperature, Ts, required to achieve a condensation rate of m&  = 25 kg/h, (b) Compute 
and plot Ts as a function of the condensation rate for the range 15 ≤ m&  ≤ 50 kg h , and (c) Compute and 
plot Ts for the same range of m& , but if the plate is 200 mm high and 500 mm wide (vs. 500 mm high and 
200 mm wide for parts (a) and (b)).  
 
SCHEMATIC: 

 
ASSUMPTIONS: (1) Film condensation, (2) Negligible non-condensables in steam. 
 
PROPERTIES: Table A-6, Water, vapor (1.0133 bar):   Tsat = 100°C, hfg = 2257   kJ/kg;  Table  A-6, 
Water,  liquid  (Tf  ≈ (74 + 100)°C/2 ≈ 360 K): ρl  = 967.1 kg/m3 , p,c l  = 4203 J/kg⋅K, μl  = 324 × 10-6  

N⋅s/m2 , kl  = 0.674 W/m⋅K, lν  = μl / ρl  = 3.35 × 10-7 m2/s. 
 
ANALYSIS: (a) With knowledge of 4m 25 kg/h 6.94 10  kg/s,  Re−

δ= = ×& can be calculated from Eq. 
10.36, 

 ( )4 -6 24mRe 4 6.94 10  kg/s 324 10  N s / m 0.2 m 429
b

−
δ = = × × × ⋅ × =

μl

&
 

Thus the flow is wavy laminar and Eq. 10.39 applies, from which 
 

L 2 1/3 1.22

2
1/3 1.22-7 2 2 2

k Reh
( / g) 1.08Re 5.2

0.674 W/m K 429 7320 W/m K
1.08 429 5.2(3.35 × 10  m /s) /9.8 m/s

δ

δ

=
ν −

⋅
= = ⋅

× −⎡ ⎤
⎣ ⎦

l

l
 

 
Equation 10.34 can then be solved for Tsat – Ts, making use of Eq. 10.27, to give 
 

4 3
fg

sat s 2 2 4
L p,

mh 6.94 10  kg/s 2257 10  J/kg KT T   = 22.0 C
h A 0.68mc 7320 W/m K 0.1 m 0.68 6.94 10  kg/s 4203 J/kg K

−

−
× × × ⋅

− = = °
− ⋅ × − × × × ⋅l

&

&

Thus 

 Ts = 78°C < 
 
This value is to be compared to the assumed value of 74°C used for evaluating properties.  See comment 
1.  
 
(b,c)  Using the IHT Correlations Tool, Film Condensation, Vertical Plate for laminar, wavy-laminar and 
turbulent regions, combined with the Properties Tool for Water, the surface temperature Ts was  
calculated as a function of the condensation rate, &m , considering the two plate configurations as indicated 
in the plot below.  
  Continued… 



PROBLEM 10.49 (Cont.) 
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As expected the condensation rate increases with decreasing surface temperature.  The plate with the 
shorter height (L = 200 mm vs 500 mm) will have the thinner boundary layer and, hence, the higher 
average convection coefficient.  Since both plate configurations have the same total surface area, the 200-
mm height plate will have the larger heat transfer and condensation rates.  For the range of conditions 
examined, the condensate flow is in the wavy-laminar region. 

COMMENTS:  (1) With the IHT model developed for parts (b) and (c), the result for the part (a) 
conditions with &m  = 25 kg/h is Ts = 77.9°C  (Reδ = 438 and Lh = 7400 W/m2 ⋅ K) .  Hence, the assumed 
value (Ts = 74°C) required to initiate the analysis was a good one.  
 
(2)  A copy of the IHT Workspace model used to generate the above plot is shown below. 
 

/* Correlations Tool  
- Film Condensation, Vertical Plate, Laminar, wavy-laminar and turbulent regions: */ 
NuLbar = NuL_bar_FCO_VP(Redelta,Prl)     // Eq 10.38, 39, 40 
NuLbar = hLbar * (nul^2 / g)^(1/3) / kl 
g = 9.8        // Gravitational constant, m/s^2 
Ts =  Ts_C + 273      // Surface temperature, K 
Ts_C = 78   // Initial guess value used to solve the model 
Tsat =  100 + 273      // Saturation temperature, K 
// The liquid properties are evaluated at the film temperature, Tf, 
Tf = Tfluid_avg(Ts,Tsat) 
// The condensation and heat rates are 
q = hLbar * As * (Tsat - Ts)      // Eq 10.33 
As = L * b        // Surface Area, m^2 
mdot = q / h'fg                                      // Eq 10.34 
h'fg = hfg + 0.68 * cpl * (Tsat - Ts)     // Eq 10.27 
// The Reynolds number based upon film thickness is 
Redelta = 4 * mdot / (mul * b)      // Eq 10.36 
// Assigned Variables: 
L = 0.5   // Vertical height, m 
b = 0.2   // Width, m 
mdot_h = mdot * 3600 // Condensation rate, kg/h 
//mdot_h = 25  // Design value, part (a)  
// Properties Tool - Water: 
// Water property functions :T dependence, From Table A.6 
// Units: T(K), p(bars);  
xl =  0   // Quality (0=sat liquid or 1=sat vapor) 
rhol = rho_Tx("Water",Tf,xl) // Density, kg/m^3 
hfg = hfg_T("Water",Tsat) // Heat of vaporization, J/kg 
cpl = cp_Tx("Water",Tf,xl) // Specific heat, J/kg·K 
mul = mu_Tx("Water",Tf,xl) // Viscosity, N·s/m^2 
nul = nu_Tx("Water",Tf,xl) // Kinematic viscosity, m^2/s 
kl = k_Tx("Water",Tf,xl) // Thermal conductivity, W/m·K 
Prl = Pr_Tx("Water",Tf,xl) // Prandtl number 



PROBLEM 10.50  
KNOWN:  Plate dimensions, temperature and inclination.  Pressure of saturated steam.  
FIND:  (a) Heat transfer and condensation rates for vertical plate, (b) Heat transfer and condensation 
rates for inclined plate.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Constant properties. 
 
PROPERTIES:  Table A-6, saturated vapor (p=1.0133 bars):  Tsat = 100°C, hfg = 2257 kJ/kg.  Table 

A-6, saturated liquid (Tf = 75°C): 3975 kg / m ,ρ =l  6 2375 10 N s / m ,μ −= × ⋅l  k 0.668 W / m K,= ⋅l  

p,c 4193 J / kg K= ⋅l , lν  = μl / ρl  = 3.85 × 10-7 m2/s, Prl  = 2.35. 
 
ANALYSIS:  (a) Equation 10.27 gives fg fg p, sat sh h 0.68c (T T )= 2400 kJ/kg.′ = + −   Then, from Eq. 
10.42, 
 

sat s
2 1/3

fg

1/3-6 2 3 -7 2 2 2

k L(T T )P
h ( / g)

0.668 W/m K × 2 m (100 50)°C        = 3000
375×10  N s/m  × 2400 × 10  J/kg × (3.85 × 10  m /s) /9.8 m/s

ν

−
=

′μ

⋅ × −
=

⎡ ⎤⋅ ⎣ ⎦

l

l l

 

 
Therefore, Eq. 10.45 applies, and  
 

( )

( )

4/31/ 2
L 2 1/3

4 /31/ 2 2
1/3-7 2 2 2

k 1h 0.024P 53 Pr 89
P( / g)

0.668 W/m K 1 0.024 3000 53 2.35 89 5220 W / m K
3000(3.85 × 10  m /s) /9.8 m/s

⎡ ⎤= − +⎣ ⎦ν
⋅ ⎡ ⎤= × − × + = ⋅⎣ ⎦⎡ ⎤

⎣ ⎦

l
l

l

From Eqs. (10.33) and (10.34) the heat and condensation rates are then 
2 6

L sat sq h A(T T ) 5220 W / m K 2 m 2 m (100 50) C 1.04 10  W= − = ⋅ × × × − ° = ×   <  
6 3

fgm = q/h  = (1.04×10  W)/(2400 × 10  J/kg) = 0.435 kg/s′&     <  

 (b) With ( ) ( )1/ 4
L incl Lh cos h ,θ≈  we obtain ( )

2 2
L inclh 0.917 5220 W / m K 4820 W / m K.≈ × ⋅ = ⋅   If 

the inclination reduces Lh  by 8.4%, the heat and condensation rates are reduced by equivalent 
amounts.  Hence, 

 6q 0.964 10 W, m 0.402 kg / s= × =&      < 
 
 



PROBLEM 10.51  
KNOWN:  Saturated ethylene glycol (1 atm) condensing on a vertical plate at 420 K.  
FIND:  Heat transfer rate to the plate and condensation rate.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Film condensation, (2) Negligible non-condensible gases in vapor.  
PROPERTIES:  Table A-5, Ethylene glycol vapor (1 atm):  Tsat = 470 K, ρv ≈ 0 kg/m3, hfg = 812 kJ/kg; 
Table A-5, Ethylene glycol, liquid (Tf = (Ts + Tsat)/2 ≈ 445K; use properties at upper limit of table 373K):  ρl  

= 1058.5 kg/m3, p,c l  = 2742 J/kg⋅K, μl  = 0.215 × 10-2 N⋅s/m2, kl  = 0.263 W/m⋅K, lν = 2.03 × 10-6 m2/s. 
 
ANALYSIS:  Equation 10.27 gives fg fg p, sat sh h 0.68c (T T )= 905 kJ/kg.′ = + −   Then Eq. 10.42 yields, 
 

sat s
2 1/3 1/3-2 2 3 -6 2 2 2fg

k L(T T ) 0.263 W/m K × 0.3 m (470 420)KP 27.1
h ( / g) 0.215×10  N s/m  × 905 × 10  J/kg × (2.03 × 10  m /s) /9.8 m/sν

− ⋅ × −
= = =

′μ ⎡ ⎤⋅ ⎣ ⎦

l

l l

 
Since 15.8 < P < 2530, Eq. 10.44 yields 
  

( )

( )

0.82
L 2 1/3

0.82 2
1/3-6 2 2 2

k 1h 0.68P 0.89
P( / g)

0.263 W/m K 1 0.68 27.1 0.89  1470 W / m K
27.1(2.03 × 10  m /s) /9.8 m/s

= +
ν

⋅
= × + = ⋅
⎡ ⎤
⎣ ⎦

l

l
 

       
Then from Eqs. 10.33 and 10.34, 

2
L sat sq h A(T T ) 1470 W / m K 0.3 m 0.1 m (470 420)K 2200 W= − = ⋅ × × × − =   <  

3 -3
fgm = q/h  = (2200 W)/(905 × 10  J/kg) = 2.43 × 10  kg/s′&     <  

 
COMMENTS:  Laminar condensation would yield results for the heat and mass rates within 1.2% of 
the wavy laminar values. 



PROBLEM 10.52 
 
KNOWN: Vertical plate 2.5 m high at a surface temperature Ts = 54°C exposed to steam at atmospheric 
pressure. 
 
FIND: (a) Condensation and heat transfer rates per unit width, (b) Whether flow regime would stay the 
same or change if the height were halved,  and (c) Compute and plot the condensation rates for the two 
plate heights (2.5 m and 1.25 m) as a function of surface temperature for the range, 54 ≤ Ts  ≤ 90°C.  
 
SCHEMATIC:  

 
ASSUMPTIONS: (1) Film condensation, (2) Negligible non-condensables in steam. 
 
PROPERTIES: Table A-6, Water, vapor (1 atm):  Tsat = 100°C, hfg = 2257  kJ/kg;  Table A-6, Water, 
liquid (Tf = (100 + 54)°C/2 = 350 K): ρl = 973.7 kg/m3, kl = 0.668 W/m⋅K, μl = 365 × 10-6 N⋅s/m2 , 

p,c l  = 4195 J/kg⋅K, Prl  = 2.29, lν  = μl / ρl  = 3.75 × 10-7 m2/s. 
 
ANALYSIS:  (a) From Equation 10.27, fg fg p, sat sh h 0.68c (T T )= 2388 kJ/kg.′ = + −  Then Eq. 10.42 
yields, 
 

sat s
2 1/3 1/3-6 2 3 -7 2 2 2fg

k L(T T ) 0.668 W/m K × 2.5 m (100 54)°CP 3630
h ( / g) 365×10  N s/m  × 2388 × 10  J/kg × (3.75 × 10  m /s) /9.8 m/sν

− ⋅ × −
= = =

′μ ⎡ ⎤⋅ ⎣ ⎦

l

l l

 

 
Since P > 2530, the regime is turbulent and Eq. 10.45 yields 
  

( )

( )

4 /31/ 2
L 2 1/3

4 /31/ 2 2
1/3-7 2 2 2

k 1h 0.024P 53 Pr 89
P( / g)

0.668 W/m K 1 0.024 3630 53 2.29 89  5540 W / m K
3630(3.75 × 10  m /s) /9.8 m/s

⎡ ⎤= − +⎣ ⎦ν
⋅ ⎡ ⎤= × − × + = ⋅⎣ ⎦⎡ ⎤

⎣ ⎦

l
l

l
 

       
Then from Eqs. 10.33 and 10.34, 
 

2
L sat sq h L(T T ) 5540 W / m K 2.5 m (100 54) C 637 kW / m′ = − = ⋅ × × − ° =   <  

3 3
fgm  = q /h  = 637×10  W/m 2388 × 10  J/kg  = 0.267 kg/m s′ ′ ′ ⋅&     <  

 
(b) If the length is halved, L = 1.25 m, then P will be halved, P = 1810. 

Since 15.8 < P < 2530, the flow regime changes to wavy laminar flow.              < 
Continued... 



 
PROBLEM 10.52 (Cont.) 

Eq. 10.44 then yields 2
Lh 5190 W / m K= ⋅ and we find L sat sq h L(T T ) 299 kW / m′ = − =  and 

fgm  = q /h  =  0.125 kg/m s′ ′ ′ ⋅& .  Note that the height was decreased by a factor of 2 while the rates 
decreased by a factor of 2.13.  Would you have expected this result? 
 
(c) Using the IHT Correlation Tool, Film Condensation, Vertical Plate for laminar, wavy-laminar, and 
turbulent regions, combined with the Properties Tool for Water, the condensation rates were calculated as 
a function of the surface temperature considering the two plate heights indicated. 
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The condensation rate decreases nearly linearly with increasing surface temperature.  The inflection in the 
upper curve (L = 2.5 m) corresponds to the flow transition at P = 2530 between wavy-laminar and 
turbulent.  For surface temperature lower than 76°C, the flow is turbulent over the 2.5 m plate.  The flow 
over the 1.25 m plate is always in the wavy-laminar region.  The fact that the 2.5 m plate experiences 
turbulent flow explains the height-rate relationship mentioned in the closing sentences of part (b). 
 
COMMENTS:  A copy of the IHT model used to generate the above plot is shown below. 

/* Correlations Tool  
- Film Condensation, Vertical Plate, Laminar, wavy-laminar and turbulent regions: */ 
NuLbar = NuL_bar_FCO_VP(Redelta,Prl)     // Eq 10.38, 39, 40 
NuLbar = hLbar * (nul^2 / g)^(1/3) / kl 
g = 9.8        // Gravitational constant, m/s^2 
Ts =  Ts_C + 273      // Surface temperature, K 
Ts_C = 54   // Part (a) design condition 
Tsat =  100 + 273      // Saturation temperature, K 
// The liquid properties are evaluated at the film temperature, Tf, 
Tf = Tfluid_avg(Ts,Tsat) 
// The condensation and heat rates are 
q = hLbar * As * (Tsat - Ts)       // Eq 10.33 
As = L * b       // Surface Area, m^2 
mdot = q / h'fg                                      // Eq 10.34 
h'fg = hfg + 0.68 * cpl * (Tsat - Ts)     // Eq 10.27 
// The Reynolds number based upon film thickness is 
Redelta = 4 * mdot / (mul * b)      // Eq 10.36 
 
// Assigned Variables: 
L = 1.25  // Height, m 
b = 1  // Width, m 
 
// Properties Tool - Water: 
// Water property functions :T dependence, From Table A.6 
// Units: T(K), p(bars);  
xl =  0   // Quality (0=sat liquid or 1=sat vapor) 
rhol = rho_Tx("Water",Tf,xl) // Density, kg/m^3 
hfg = hfg_T("Water",Tsat) // Heat of vaporization, J/kg 
cpl = cp_Tx("Water",Tf,xl) // Specific heat, J/kg·K 
mul = mu_Tx("Water",Tf,xl) // Viscosity, N·s/m^2 
nul = nu_Tx("Water",Tf,xl) // Kinematic viscosity, m^2/s 
kl = k_Tx("Water",Tf,xl) // Thermal conductivity, W/m·K 

 Prl = Pr_Tx("Water",Tf,xl) // Prandtl number 



PROBLEM 10.53   
KNOWN:  Two vertical plate configurations maintained at 90°C for condensing saturated steam at 1 
atm:  single plate L × w and two plates each L/2 × w where L and w are the vertical and horizontal 
dimensions, respectively.  
FIND:  Which case will provide the larger heat transfer or condensation rate.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible concentration of non-condensible gases in the steam. 
 
PROPERTIES:  Table A-6, Saturated water vapor (1 atm):  Tsat = 100°C, hfg = 2257 kJ/kg; Saturated 
water (Tf = (Ts + Tsat)/2 = (90 + 100)°C/2 = 95°C = 368K):  ρl  = (1/vf) = 962 kg/m3, μl  = 296 ×  

10-6 N⋅s/m2, kl  = 0.678 W/m⋅K, p,c l  = 4212 J/kg⋅K, lν  = μl / ρl  = 3.08 × 10-7 m2/s. 
 
ANALYSIS:  The heat transfer and condensation rates are 
 
 ( )L s sat s fgq h A T T m q / h′= − =&  
 
where the total area, As, is the same for the two cases.  Hence, 
 

L,11 1
2 2 L,2

hq m
q m h

= =
&

&
 

 
where the average convection coefficients L,1h  and L,2h are evaluated for plate lengths of L and L/2, 
respectively.  For laminar film condensation on both plates, using the correlation of Eq. 10.31, with 

Lh  α L-1/4, 
 

 [ ]( ) 1/ 4
1 2q / q L / L / 2 0.84.−= =  

 
Hence, case 2 is preferred and provides 19% more heat transfer ( 2 1q / q 1/ 0.84 1.19= = ). < 
 
The laminar solution is valid provided that P < 15.8, therefore from Eq. 10.42 we require 
 
  
 
          Continued … 
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PROBLEM 10.53 (Cont.) 
 
 

1/3-6 2 3 -7 2 2 22 1/3
fg

sat sk

296×10  N s/m  × 2286 × 10  J/kg × (3.08 × 10  m /s) /9.8 m/sh ( / g)
L 15.8 15.8

(T T ) 0.678 W/m K × (100 90)°C
0.035 m 35 mm

ν ⎡ ⎤⋅′μ ⎣ ⎦< = ×
− ⋅ −

= =

l l

l

 
where from Eq. 10.27, 
 
 ( )fg fg p, sat sh h 0.68c T T′ = + −l  
 
 ( )fgh 2257kJ / kg 0.68 4212 J / kg K 100 90 K 2286 kJ / kg.′ = + × ⋅ − =  
 
We can anticipate for other, larger values of L that the comparison of Lh  values cannot be so easily 
made.  However, according to Figure 10.13, we expect the same behavior of Lh  in the wavy region 

since Lh decreases with increasing Reδ (corresponding to increasing L), and anticipate that indeed case 
2 will provide the greater condensation rate.  Note that in the turbulent region with the increase in Lh  

with Reδ, we cannot conclude with certainty which case is preferred. 
 
COMMENTS:  In dealing with single-phase, forced or free convection, we associate thin thermal 
boundary layers with higher heat transfer rates.  For vertical plates, we would expect the shorter plate 
to have the higher convection heat transfer coefficient.  The results of this problem suggest the same is 
true for condensation on the vertical plate. 
 



PROBLEM 10.54  
KNOWN:  Number, diameter and wall temperature of condenser tubes in a square array.  Pressure of 
saturated steam around tubes.  
FIND:  Rates of heat transfer and condensation per unit length of the array.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Spatially uniform cylinder temperature, (2) Negligible concentration of 
noncondensable gases in steam, (3) Average heat transfer coefficient varies with tube row as n = -1/6 
in Eq. 10.49. 
 
PROPERTIES:  Table A-6, saturated vapor (psat = 0.105 bar):  Tsat = 320 K = 47°C, ρv = 0.0713 

kg/m3, hfg = 2390 kJ/kg.  Table A-6, saturated liquid (Tf = 32°C = 305 K):  3995 kg / m ,ρ =l  
6 2769 10 N s / m ,μ −= × ⋅l  k 0.620 W / m K,= ⋅l  p,c 4178 J / kg K.= ⋅l  

 
ANALYSIS:  Equation 10.46 may be used to find the convection coefficient for the top, unfinned 
tube.  With ( )p, sat s fgJa c T T / h 0.052= − =l  and fg fgh h′ =  (l + 0.68 Ja) = 1.04 (2.390 × 106 J/kg) = 

2.51 × 106 J/kg, 
 

 
( )
( )

1/ 43
v fg

D
sat s

g k h
h 0.729

T T D

ρ ρ ρ

μ

′−
=

−

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

l l l

l

 

 

( ) ( )

( )

1 / 42 3 3 63

D 6 2

9.8 m / s 995 kg / m 995 0.0713 kg / m 0.62 W / m K 2.51 10 J / kg 2h 0.729 7308 W / m K
769 10 N s / m 30 C 0.025m−

× − ⋅ ×
= = ⋅

× ⋅ °

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
From Eq. 10.49 the array-averaged convection coefficient is 
  
 2 1/ 6 2

, 7308 W/m K 25 4274 W/m Kn
D N Dh h N −= = ⋅ × = ⋅ . 

 
The heat rate per unit length of the array is  
 

( )( ) ( )2 2 6
D,N sat sq N h D T T 625 4274 W / m K 0.025m 30 C 6.29 10 W / mπ π′ = − = × ⋅ × ° = ×  < 

 
The corresponding condensation rate is 
 

 
6

6fg

q 6.29 10 W / mm 2.51kg / s m
h 2.51 10 J / kg

′ ×′ = = = ⋅
′ ×

&       < 

 
COMMENTS:  The heat transfer rate could be increased by adding fins to the tubes. 
 



PROBLEM 10.55  
KNOWN:  Tube wall diameters and thermal conductivity.  Mean temperature and flow rate of water 
flow through tube.  Pressure of saturated steam around tube.  
FIND:  (a) Rates of heat transfer and condensation per unit length, (b) Effect of flow rate on heat 
transfer.  
SCHEMATIC:    

 
 
ASSUMPTIONS:  (1) Negligible concentration of noncondensible gases in the steam, (2) Uniform 
tube surface temperatures, (3) Laminar film condensation, (4) Fully-developed internal flow, (5) 
Constant properties.  
PROPERTIES:  Table A-6, water (Tm = 290 K):  μ = 0.00108 N⋅s/m2, k = 0.598 W/m⋅K, Pr = 7.56.  
Table A-6, saturated vapor (p = 0.135 bar):  Tsat = 325 K = 52°C, ρv = 0.0904 kg/m3, hfg = 2378 

kJ/kg.  Table A-6, saturated liquid (Tf ≈ Tsat):  
3987 kg / m ,ρ =l  p,c 4182 J / kg K,= ⋅l  

6 2528 10 N s / m ,μ −= × ⋅l  k 0.645 W / m K.= ⋅l  
 
ANALYSIS:  (a) From the thermal circuit, the heat rate may be expressed as 

 sat m
fc cond conv

T Tq
R R R

−′ =
′ ′ ′+ +

        (1) 

where,  ( )cond o i sR n D / D / 2 k 0.00152 m K / Wπ′ = = ⋅l  

The convection resistance is ( ) 1
conv i iR D h .π −′ =   With D iRe 4m / D 11, 336,π μ= =&  the flow is 

turbulent and the Dittus-Boelter correlation yields 

( ) ( )4 / 5 0.44 / 5 0.4 2
i D

i

k 0.598 W / m K
h 0.023Re Pr 0.023 11,336 7.56 2082 W / m K

D 0.026m
⋅

= = = ⋅
⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

The convection resistance is then 

 ( ) ( ) 11 2
conv i iR D h 0.026m 2082 W / m K 0.00588m K / Wπ π

−−′ = = × × ⋅ = ⋅  

The resistance associated with the condensate film is ( )fc o oR D h ,1′ = −π  where oh  is given by Eq. 
10.46.  With C = 0.729, 

( )

( )
( ) ( )

( )

1/ 4 1/ 43 2 2 6 3
v fg fg

o 6 2
sat s,o o s,o

g k h 9.8 m / s 987 987 0.09 kg / m 0.645 W / m K h
h C 0.729

T T D 528 10 N s / m 325 T 0.030m

ρ ρ ρ

μ −

′ ′− × − ⋅
= =

− × ⋅ − ×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

l l l

l

 

 

1/ 4 1/ 43 fg
o 8 3 s,o

hW kgh 462
325 Tm K s

⎛ ⎞ ′⎛ ⎞⋅⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟ −⋅ ⋅ ⎝ ⎠⎝ ⎠
 

where ( ) ( )6
fg fg p, sat s,o s,oh h 0.68c T T 2.38 10 J / kg 2844J / kg K 325 T′ = + − = × + ⋅ −l  

The unknown surface temperature may be determined from an additional rate equation, such as 
          Continued … 



PROBLEM 10.55 (Cont.) 

 s,o m

cond conv

T T
q

R R
−

′ =
′ ′+

         (2) 

 
Substituting the thermal resistances into Eqs. (1) and (2), an iterative solution yields 
 
 s,oT 321.6K 48.6 C q 4270 W / m′= = ° =     < 
 
The condensation rate is then 
 

 cond 6fg

q 4270 W / mm 0.00179kg / s m
h 2.39 10 J / kg

′
′ = = = ⋅

′ ×
&      < 

 
The corresponding values of the condensate convection coefficient and resistance are  
 
 2

oh 13,380 W / m K= ⋅  
 
and fcR 0.000793m K / W′ = ⋅  
 
Because convR′  is much larger than condR′  and fcR ,′  attention should be paid to reducing the 
convection resistance in order to increase the heat rate.  The resistance to heat flow by convection is 
the limiting factor. 
 
(b) The effects of varying the flow rate are shown below 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
The effect of increasing m&  on q′  is significant and is accompanied by a reduction in Ts,o. 
 
COMMENTS:  (1) Use of the IHT convection and condensation correlations, as well as its 
temperature-dependent properties of water facilitated the numerical solution.  (2) Evaluation of the 
film properties at Tsat is reasonable for part (a), since Tf = (Ts,o + Tsat)/2 = 50.3°C ≈ Tsat.  However, 
with increasing m&  and hence decreasing Ts,o, the approximation would become inappropriate. 
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PROBLEM 10.56 
 
KNOWN: Inner surface of a vertical thin-walled container of length L and diameter D experiences 
condensation of a saturated vapor.  Container wall maintained at a uniform surface temperature by 
flowing cold water across its outer surface. 
 
FIND: Expression for the time, tf , required to fill the container with condensate assuming the condensate 
film is laminar.  Express your result in terms of D, L, (Tsat − Ts), g, and appropriate fluid properties. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Laminar film condensation on a vertical surface, (2) Uniform temperature 
container wall surface, and (3) Mass of liquid condensate in the laminar film negligible compared to 
liquid mass on bottom of container. 
 
ANALYSIS: From an instantaneous mass balance on the container,  
 

 
dMm(t)
dt

=&  (1) 
 
Where m& (t) is the condensate rate and the liquid mass in the container, M, is 

 ( )( )2M D 4 L xρ π= −l  (2) 

The condensate rate from Eq. 10.34 can be expressed as  

 ( ) ( )s s sat s

fg fg

h A T Tqm t
h h

−
= =

′ ′
&  (3) 

where the average film coefficient over the height 0 to x from Eq. 10.31 is,  

 
( )
( )

1/ 43
v fg

s
sat s

g k h
h 0.943

T T x
ρ ρ ρ
μ

⎡ ⎤′−
⎢ ⎥=
⎢ − ⎥
⎣ ⎦

l l l

l
 (4) 

and the surface area over which condensation occurs is  
 sA Dxπ=  (5) 
 

Continued...



 
PROBLEM 10.56 (Cont.) 

 
Substituting Eqs (2-5) into Eq. (1), 
 

 
( )
( ) ( ) ( )

1/ 43 1/ 4fg 2
sat s fg1/ 4sat s

g k h L dx0.943 Dx (T T ) h D 4
T T L dtx

⎡ ⎤′−
⎢ ⎥ ′− = −
⎢ ⎥−
⎣ ⎦

l l l
l

l

νρ ρ ρ
π ρ π

μ
 (6) 

 
Separate variables and identify the limits of integration,  
 

( )
( ) ( ) ( ) f

1/ 43
t 0fg 1/ 4 2 3/ 4

sat s fg 0 x Lsat s

g k h
0.943 L D (T T ) h D 4 dt x dx

T T L
−

=

⎧ ⎫⎡ ⎤′−⎪ ⎪⎡ ⎤⎢ ⎥ ′− = −⎨ ⎬⎢ ⎥⎣ ⎦⎢ ⎥−⎪ ⎪⎣ ⎦⎩ ⎭

∫ ∫
l l l

l
l

νρ ρ ρ
π ρ π

μ

 (7) 
 
The RHS integrates to 
 

 ( )
01/ 4 1/ 4
L

x 1 4 4L⎡ ⎤− =⎢ ⎥⎣ ⎦
  (8) 

 
and solving for tf, 
 

 
( )

( )
( ) ( )( )

2
fg

f 1/ 43
v fg

sat s
sat s

D 4 Lh
t 4

g k h
0.943 DL T T

T T L

ρ π

ρ ρ ρ
π

μ

⎡ ⎤
⎢ ⎥
⎢ ⎥′⎢ ⎥

= ⎢ ⎥
⎡ ⎤⎢ ⎥′−
⎢ ⎥⎢ ⎥−

−⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

l

l l l

l

 < 

 
COMMENTS: The numerator and denominator in the bracketed expression are of special significance.  
The numerator is the product of the mass in the filled container and the latent heat of vaporization; that is, 
the total energy removed by the cold water.  What is the physical significance of the denominator?  Can 
you interpret the time-to-fill, tf , expression in light of these terms? 



PROBLEM 10.57 
 

Determine the total condensation rate and heat transfer rate for the process of Problem 10.46 when the 
pipe is oriented at angles of θ = 0, 30, 45 and 60° from the horizontal. 
 
KNOWN:  Dimensions and surface temperature of tube exposed to steam. Non-vertical orientation 
angles. 
 
FIND:  Heat transfer and condensation rates. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Laminar film condensation, (2) Negligible end effects, (3) Negligible 
concentration of non-condensable gases in steam. 
 
PROPERTIES: Table A-6, Water Vapor (1 atm): Tsat = 100°C, ρv = 0.596 kg/m3, hfg = 2257 kJ/kg; 
Table A-6, Liquid Water (Tf = (Ts + Tsat)/2 = 370K): ρl = 960.6 kg/m3, cp,l = 4214 J/kg⋅K, μl = 289 × 
10-6 N⋅s/m2, kl = 0.679 W/m⋅K. 
 
ANALYSIS:  The tube’s length to diameter ratio, L/D = 10, must exceed B = 1.8tanθ in order to use 
Equation 10.46. The value of B is 0, 1.039, 1.8, and 3.118 for θ = 0, 30, 45 and 60°, respectively. 
Therefore, Equation 10.46 may be used by replacing g with gcosθ where the modified latent heat is 
found from Equation 10.27 
 

( ) ( )
( )

'
,1 0.68 0.68

     2257kJ/kg 0.68 4.214kJ/kg K 100 94 C 2274kJ/kg
fg fg fg p l sat sh h Ja h c T T= + = + −

= + × ⋅ − ° =
 

Hence, 

( )
( )

( ) ( )
( )

( )

1/ 43 '

sat

1/ 432 3 3 3

6 2

1/ 42

cos
0.729

9.81m/s cos 960.6 kg/m 960.6 0.596 kg/m 0.679W/m K 2274 10 J/kg K
    0.729

289 10 N s/m 100 94 C 0.1m

    10,120 W/m K cos

l l v l fg
D

l s

g k h
h

T T D
θρ ρ ρ
μ

θ

θ

−

⎡ ⎤−
= ⎢ ⎥

−⎢ ⎥⎣ ⎦

⎡ ⎤× × − × ⋅ × × ⋅
⎢ ⎥=

× ⋅ − ° ×⎢ ⎥⎣ ⎦

= ⋅

and the values of Dh are 10,120, 9760, 9280 and 8510 W/m2⋅K for θ = 0, 30, 45 and 60°, respectively.  
 
For θ = 0°, the heat transfer rate is 

( )( )2
sat( )( ) 10,120W/m K 0.1m 1m 100 94 C 19,076 WD sq h DL T Tπ π= − = ⋅ × × − ° =   < 

and the condensation rate is ' 3 3/ 19076 W / 2274 10 J/kg 8.39 10 kg/sfgm q h −= = × = ×&   < 

Similarly, q = 18,400, 17,500 and 16,000 W and m& =8.09× 10-3, 7.69 × 10-3 and 7.05 × 10-3 kg/s, for θ 
= 30, 45 and 60°, respectively.         < 
 
COMMENTS: The condensation rates decrease with increasing θ. Why? 

θ 

Saturated
steam, 1 atm

Ts = 94°C

Tube,
D = 0.1m,
L = 1m



PROBLEM 10.58  
KNOWN:  Horizontal tube, 50mm diameter, with surface temperature of 34°C is exposed to steam at 
0.2 bar.  
FIND: Estimate the heat transfer and condensation rates per unit length of the tube.   
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Laminar film condensation, (2) Negligible non-condensibles in steam. 
 
PROPERTIES:  Table A-6, Saturated steam (0.2 bar):  Tsat = 333K, ρv = 0.129 kg/m3, hfg = 2358 
kJ/kg; Table A-6, Water, liquid (Tf = (Ts + Tsat)/2 = 320K):  ρl  = 989.1 kg/m3, p,c l  = 4180 J/kg⋅K, 

μl  = 577 × 10-6 N⋅s/m2, kl  = 0.640 W/m⋅K. 
 
ANALYSIS:  From Eqs. 10.33 and 10.34, the heat transfer and condensate rates per unit length of the 
tube are 
 
 ( )( )D sat s fgq h D T T m q / hπ′ ′ ′ ′= − =&  
 
where from Eq. 10.27 with ( )p, sat s fgJa c T T / h ,= −l  
 

[ ] ( ) 3
fg fg

kJh h 1 0.68 Ja 2358 1 0.68 4180J / kg K 333 307 K / 2358 10 J / kg
kg

⎡ ⎤′ = + = + × ⋅ − ×⎢ ⎥⎣ ⎦
 

 
 fgh 2432 kJ / kg.′ =  
 
For laminar film condensation, Eq. 10.45 is appropriate for estimating Dh  with C = 0.729, 
 

 
( )
( )sat s

1/ 43
v fg

D
T T D

g k h
h 0.729

ρ ρ ρ
μ −

⎡ ⎤′−
⎢ ⎥=
⎢ ⎥
⎣ ⎦

l l l

l
 

 
 

( ) ( )
( )

2 3 3 33

D 6 2
9.8 m / s 989.1 kg / m 989.1 0.129 kg / m 0.640 W / m K 2432 10 J / kg

h 0.729
577 10 N s / m 333 307 K 0.050m

1/ 4

−

× − ⋅ × ×
=

× ⋅ − ×

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
 2

Dh 6926 W / m K.= ⋅  
 
Hence, the heat transfer and condensation rates are 
 
 ( )( )2q 6926 W / m K 0.050m 333 307 K 28.3kW / mπ′ = ⋅ × − =    < 
 
 3 3 2m 28.3 10 W / m / 2432 10 J / kg 1.16 10 kg / s m.−′ = × × = × ⋅&    < 
 



PROBLEM 10.59 
 
KNOWN:  Dimensions and surface temperature of grooved horizontal tube exposed to steam at 0.2 
bar.    
FIND: Minimum condensation and heat transfer rates per unit length of the tube.   
SCHEMATIC:   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Laminar film condensation, (2) Negligible non-condensable gas in steam. 
 
PROPERTIES:  Table A-6, Saturated steam (0.2 bar):  Tsat = 333 K, ρv = 0.129 kg/m3, hfg = 2358 
kJ/kg, σ = 66.1× 10-3 N/m; Table A-6, Water, liquid (Tf = (Ts + Tsat)/2 = 320 K): ρl  = 989.1 kg/m3, 

,pc l  = 4180 J/kg⋅K, μl  = 577 × 10-6 N⋅s/m2, kl  = 0.640 W/m⋅K. 
 
ANALYSIS:  The heat transfer rate of Problem 10.58 is based upon an unmilled tube of diameter D2  
= 50 mm. From Eqs. 10.33 and 10.34, the heat transfer and condensation rates per unit length for this 
tube are 
 

( )( )2 2 sat /D s fgq h D T T m q hπ′ ′ ′ ′= − =&    (1a,b)  
 
where from Eq. 10.27 with ( ), sat / ,p s fgJa c T T h= −l  
 

[ ] ( ) 31 0.68 2358 kJ/kg 1 0.68 4180J/kg K 333 307 K / 2358 10  J/kgfg fgh h Ja′ ⎡ ⎤= + = + × ⋅ − ×⎣ ⎦  
 

2432 kJ/kg.fgh′ =  
 
For laminar film condensation, Eq. 10.46 is appropriate for estimating Dh  with C = 0.729, 
 

( )
( )

1/43
2

2 sat

l l v fgl
D

l l s

g h Dkh C
D k T T

ρ ρ ρ
μ

⎡ ⎤′−
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
   (2) 

 
Continued… 

D2 = 50 mm

S = 2 mm

t = 2 mm

Steam, 0.2 bar

Ts = 34°C



PROBLEM 10.59 (Cont.) 
 
 

( )
( )

1/43 2 3 3 3

6 2

2

989.1kg/m 9.8m/s 989.1 0.129 kg/m 2432 10  J/kg (0.05 m)0.640W/m K0.729
0.05 m 577 10  N s/m 0.640W/m K 333 307  K

6926W/m K.

Dh −

⎡ ⎤× − × × ×⋅
= ⎢ ⎥× ⋅ × ⋅ × −⎢ ⎥⎣ ⎦
= ⋅

 
 
 
 
Hence, the heat transfer and condensation rates for the smooth large tube are  
 

( )( )2
2 6926W/m K 0.05 m 333 307 K 28.3kW/mq π′ = ⋅ × − =  

cond,2 2 28.3kW/m 2432 kJ/kg 0.0116 kg/s mfgm q h′ ′= = = ⋅&  
 
The portions of the larger tube that are not milled away serve as fins. Therefore, the heat transfer rate 
from the grooved large tube is related to the heat transfer rate from a corresponding smooth tube of 
smaller diameter D1 = 46 mm, modified by the enhancement ratio, Eq. 10.48.  We must first determine 
the heat transfer rate uft,1q′  from a smooth tube of diameter D1. From Eqs. (2) and (1a) above, with D2 
replaced by D1, and the same value for fgh′ : 
 

uft,1 26.6 kW/mq′ =  
 
 
The enhancement factor is given by Eq. 10.48. 
 

( )

( )

1/4

ft,min 2 1 1
ft,min 3

uft 1 2

1/4
3

2 3

1.02

2 mm 25 mm 23 mm 66.1 10  N/m 0.023 m1.02
4 mm 23 mm 25 mm 989.1 0.129 9.8 m/s (0.002 m)

1.16

l v

q tr r r
q Sr r gt

σε
ρ ρ

−

⎡ ⎤
= = +⎢ ⎥−⎢ ⎥⎣ ⎦

⎡ ⎤× × ×
= +⎢ ⎥× −⎢ ⎥⎣ ⎦
=

 

 
      
Thus the minimum heat transfer rate for the grooved tube is 
 

ft,min,1 ft,min uft,1 1.16 26.6kW/m 30.9 kW/mq qε′ ′= = × =     < 
 
The corresponding condensation rate is 
 

3 3 230.9 10 W/m / 2432 10 J/kg 1.27 10  kg/s mm −′ = × × = × ⋅&   < 
 

The enhancement due to milling the larger diameter tube, for either heat transfer or condensation rate, 
is therefore  
 
  Enhancement ratio = ft,min,1 2/q q′ ′ = 30.9 kW/m/28.3 kW/m = 1.09  < 
 
COMMENTS:  For a given fluid and operating conditions would an optimum groove geometry exist?  
 



PROBLEM 10.60  
KNOWN:  Horizontal tube 1m long with surface temperature of 70°C used to condense steam at 1 
bar.  
FIND:  Diameter required for condensation rate of 125 kg/h.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Laminar film condensation, (2) Negligible non-condensibles in steam. 
 
PROPERTIES:  Table A-6, Water, vapor (1 atm):  Tsat = 100°C, ρv = 0.596 kg/m3, hfg = 2257 kJ/kg; 
Table A-6, Water, liquid (Tf = (Ts + Tsat)/2 = 358K):  ρl  = 968.6 kg/m3, p,c l  = 4201 J/kg⋅K, μl  = 

332 × 10-6 N⋅s/m2, kl  = 0.673 W/m⋅K. 
 
ANALYSIS:  From the rate equation, Eq. 10.34, with A = π D L, the required diameter is 
 ( )fg D sat sD m h / L h T Tπ′= −&        (1) 

where from Eq. 10.27 with ( )p, sat s fgJa c T T / h ,= −l  
 

( ) ( )
fg fg 3

4201J / kg K 100 70 KkJh h 1 0.68Ja 2257 1 0.68 2343kJ / kg.
kg 2257 10 J / kg

⎛ ⎞⋅ × −
′ ⎜ ⎟= + = + =

⎜ ⎟×⎝ ⎠
 (2) 

 
Substituting numerical values, Eq. (1) becomes 

 ( )3 1
D D

125 kg JD 2343 10 / 1m h 100 70 K 863.2 h .
3600 s kg

π −= × × × × − =   (3) 

The appropriate correlation for Dh  is Eq. 10.46 with C = 0.729, 

 
( )
( )

1/ 43
v fg

D
sat s

g k h
h 0.729 .

T T D
ρ ρ ρ
μ

⎡ ⎤′−
⎢ ⎥=
⎢ − ⎥
⎣ ⎦

l l l

l
      (4) 

 
Substitute Eq. (4) for Dh  into Eq. (3) and use numerical values, 

 1863.2 D 0.729− = ×  
 

 
( ) ( )

( )

1/ 432 3 3 3

6 2
9.8 m / s 968.6 kg / m 968.6 0.596 kg / m 0.673 W / m K 2343 10 J / kg

332 10 N s / m 100 70 K D−
× − ⋅ × ×

× ⋅ − ×

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
 1 1/ 4863.2 D 3693.4 D− −=  
 
 D 0.144m 144mm.= =         < 
 
 
COMMENTS:  Note for this situation Ja = 0.06. 



 
PROBLEM 10.61 

 
KNOWN:  Array of condenser tubes exposed to saturated steam at 0.1 bar. 
 
FIND:  (a) Condensation rate per unit length of square array, (b) Options for increasing the condensation 
rate. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Spatially uniform cylinder temperature. (2) Average heat transfer coefficient 
varies with tube row with n = -1/6 in Eq. 10.49. (3) Negligible concentration on noncondensable gases in 
the steam. 
 
PROPERTIES:  Table A.6, Saturated water vapor (0.1 bar):  Tsat ≈ 319 K, ρv = 0.067 kg/m3, hfg = 2393 
kJ/kg; Table A.6, Water, liquid (Tf = (Ts + Tsat)/2 = 309 K):  ρl  = 993 kg/m3, p,c l  = 4178 J/kg⋅K, μl  = 

703 × 10-6 N⋅s/m2, kl  = 0.627 W/m⋅K. 
 
ANALYSIS:  (a) With Ja = p,c l ΔT/hfg = 4178 J/kg⋅K × (319 - 300)K/2393 × 103 J/kg = 0.033, fgh′  = 

hfg(1 + 0.68 Ja) = 2393 kJ/kg(1 + 0.68 × 0.033) = 2470 kJ/kg. 
 
Equation 10.46 may be written for the top tube, 

 
( )
( )

1/ 43
v fg

D
sat s

g k h
h 0.729

T T D
ρ ρ ρ
μ

⎡ ⎤′−
⎢ ⎥=

−⎢ ⎥
⎣ ⎦

l l l

l
 

 
( ) ( )

( )

1/ 42 3 3 33

D 6 2
9.8 m s 993kg m 993 0.067 kg m 0.627 W m K 2470 10 J kg

h 0.729
703 10 N s m 319 300 K 0.008 m−

× − ⋅ × ×
=

× ⋅ − ×

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 2
Dh 11,190W m K= ⋅ . 

 
From Eq. 10.49 the array-averaged convection coefficient is 
 
 2 1/ 6 2

, 11,190 W/m K 10 7622 W/m Kn
D N Dh h N −= = ⋅ × = ⋅  

 
Hence, the condensation rate for the entire array per unit tube length is 

 ( ) ( )2 3m 7622 W m K 100 0.008m 319 300 K 2470 10 J kgπ′ = ⋅ × − ×&  

 m 0.147 kg s m 530kg h m′ = ⋅ = ⋅& . < 
 
(b) Options for increasing the condensation rate include reducing the surface temperature and/or the 
number of tubes in a vertical tier.  The following results were obtained using IHT. 
 

Continued... 
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Condensation rate versus tube temperature (10 vertical tubes). 
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Condensation rate versus number of vertical tubes (Ts = 300K). 
 
 
COMMENTS:  Note the sensitivity of the condensation rate to the manner in which the tubes are 
positioned within the array. 



PROBLEM 10.62  
KNOWN:  Thin-walled concentric tube arrangement for heating deionized water by condensation of 
steam.  
FIND:  Estimates for convection coefficients on both sides of the inner tube.  Inner tube wall outlet 
temperature.  Whether condensation provides fairly uniform inner tube wall temperature 
approximately equal to the steam saturation temperature.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible thermal resistance of inner tube wall, (2) Internal flow is fully 
developed. 
 
PROPERTIES:  Deionized water (given):  ρ = 982.3 kg/m3, cp = 4181 J/kg⋅K, k = 0.643 W/m⋅K, μ = 
548 × 10-6 N⋅s/m2, Pr = 3.56; Table A-6, Saturated vapor (1 atm):  Tsat = 100°C, ρv = (1/vg) = 0.596 
kg/m3, hfg = 2257 kJ/kg; Table A-6, Saturated water (assume Ts ≈ 75°C, Tf = (75 + 100)°C/2 = 360K):  
ρl  = (1/vf) = 967 kg/m3, μl  = 324 × 10-6 N⋅s/m2, kl  = 0.674 W/m⋅K, p,c l  = 4203 J/kg⋅K. 
 
ANALYSIS:  From an energy balance on the inner tube at the outlet assuming a constant wall 
temperature, 
 ( ) ( )c sat s i s m,oh T T h T T− = −  

where ch  and hi are, respectively, the heat transfer coefficients for condensation (c) on a horizontal 
cylinder and internal (i) flow in a tube. 
 
Condensation.  From Eq. 10.46, for the horizontal tube, 
 

 
( )
( )

1/ 43
v fg

c
sat s

g k h
h 0.729

T T D
ρ ρ ρ
μ

⎡ ⎤′−
⎢ ⎥=
⎢ − ⎥
⎣ ⎦

l l l

l
 

 
where ( ){ }fg fg p, sat s fgh h 1 0.68c T T / h′ = + −l  
 

 ( ){ }3
fg sh 2257 kJ / kg 1 0.68 4203 J / kg K 100 T / 2257 10 J / kg′ = + × ⋅ − ×  

 

 ( ){ }3
fg sh 2257 kJ / kg 1 1.266 10 100 T−′ = + × −  

 

( ) ( )32 3 3
ch 0.729 9.8m / s 967 kg / m 967 0.596 kg / m 0.674 W / m K⎡= × − ⋅ ×⎢⎣

 
 

 ( ){ } ( )
1/ 43 6 2

s s2257 1 1.266 10 100 T kJ / kg / 324 10 N s / m 100 T 0.030 m− − ⎤+ × − × ⋅ − ⎥⎦
 

 
          Continued … 
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( )

1/ 43
s4

c
s

1 1.266 10 100 T
h 2.071 10 .

100 T

−⎡ ⎤+ × −
⎢ ⎥= ×

−⎢ ⎥⎣ ⎦
 

 
Internal flow.  From Eq. 8.6, evaluating properties at mT ,  find 
 

 5
D 6 2

4m 4 5 kg / sRe 3.872 10
D 548 10 N s / m 0.030 mπμ π −

×
= = = ×

× × ⋅ ×

&
 

 
and for turbulent flow use the Dittus Boelter equation, 
 

 0.8 0.4i
D D

h DNu 0.023Re Pr
k

= =  
 

 ( ) ( )
0.8 1/ 35 4 2

i
0.023 0.643 W / m Kh 3.872 10 3.56 2.42 10 W / m K.

0.03 m
× ⋅

= × = × ⋅  < 

 
Substituting numerical values into the energy balance relation, 
 

 
( ) ( )

1/ 43
s4

s
s,o

1 1.266 10 100 T
2.071 10 100 T K

100 T

−⎡ ⎤+ × −
⎢ ⎥× −

−⎢ ⎥⎣ ⎦
 

 
     ( )4 2

s2.42 10 W / m K T 60 K= × ⋅ −  
 
and by trial-and-error, find 
 
 sT 70.8 C.≈ °  
 
With this value of Ts, find that 
 
 2

ch 8990 W / m K= ⋅         < 
 
which is approximately half that for the internal flow.  Hence, the tube wall cannot be at a uniform 
temperature.  This could only be achieved if c ih h≈ . 
 



PROBLEM 10.63  
KNOWN:  Heat dissipation from multichip module to saturated liquid of prescribed temperature and 
properties.  Diameter and inlet and outlet water temperatures for a condenser coil.  
FIND:  (a) Condensation and water flow rates.  (b) Tube surface inlet and outlet temperatures.  (c) 
Coil length.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions since rate of heat transfer from the module is balanced 
by rate of heat transfer to coil, (2) Fully developed flow in tube, (3) Water is incompressible liquid 
with negligible viscous dissipation.  
 
PROPERTIES:  Saturated fluorocarbon (Tsat = 57°C, given):  kl  = 0.0537 W/m⋅K, p,c l  = 1100 

J/kg⋅K, fgh′  ≈ fgh  = 84,400 J/kg.  ρl  = 1619.2 kg/m3, ρv = 13.4 kg/m3, σ = 8.1 × 10-3 kg/s2, μl  = 

440 × 10-6 kg/m⋅s, Prl  = 9; Table A-6, Water, sat. liquid ( )mT 300K :=   ρ = 997 kg/m3, cp = 4179 

J/kg⋅K, μ = 855 × 10-6 N⋅s/m2, k = 0.613 W/m⋅K, Pr = 5.83. 
 
ANALYSIS:  (a) With 
 

 ( ) ( )25 2 3
mod uleq q A 10 W / m 0.1 m 10 W′′= × = =  

 
the condensation rate is 
 

 
3

co n
fg

q 10 Wm 0.0118 kg / s
h 84, 400 J / kg

= = =
′

&       < 

 
and the required water flow rate is 
 

 
( ) ( )

3

p m,o m,i

q 1000 Wm 7.98 10 kg / s.
4179 J / kg K 30 Kc T T

−= = = ×
⋅−

&    < 

 
(b) The Reynolds number for flow through the tube is 
 

 
( )

3
D 6 2

4 m 4 7.98 10 kg / sRe 1188.
D 0.01 m 855 10 N s / mπ μ π

−

−
× ×

= = =
× ⋅

&
 

 
Hence, the flow is laminar.  Assuming a uniform wall temperature, 
 
 ( ) 2

i Dh Nu k / D 3.66 0.613 W / m K / 0.01 m 224 W / m K.= = ⋅ = ⋅  
 
          Continued … 



PROBLEM 10.63 (Cont.) 
 
For film condensation on the outer surface, Eq. 10.46 yields 
 

( )( )( )

( )

1/ 432 3 3

o 6
sat s

9.8m / s 1619.2 kg / m 1605.8kg / m 0.0537 W / m K 84, 400 J / kg
h 0.729

440 10 kg / m s 0.01 m T T−

⎡ ⎤⋅⎢ ⎥= ⎢ ⎥× ⋅ × −⎢ ⎥⎣ ⎦

 

 

 ( ) 1/ 4
o sh 2150 57 T .−= −  

 
From an energy balance on a portion of the tube surface, 
 
 ( ) ( )o sat s i s mh T T h T T− = −  
 
or 
 

 ( ) ( )3/ 4
s s m2150 57 T 224 T T− = −  

 
At the entrance where ( )m,iT 285K ,=  trial-and-error yields: 
 
 s,iT 50.6 C= °           < 
 
and at the exit where ( )m,oT 315K ,=  
 
 s,oT 55.4 C= °           < 
 
We use an average value of Ts ≈ 53°C in the following. 
(c) From Eqs. 8.43 and 8.44, 
 

 
i m

qL
h D Tπ

=
Δ l

 

 
where 
 

 
( ) ( )
( ) ( ) ( )
s m,i s m,o

m
s m,i s m,o

T T T T 41 11T 22.8 C
ln 41/11ln T T / T T

− − − −
Δ = = = °

⎡ ⎤− −⎣ ⎦
l  

 

 
( ) ( )2

1000 WL 6.23 m.
224 W / m K 0.01 m 22.8 Cπ

= =
⋅ °

     < 

 
COMMENTS:  Some control over system performance may be exercised by adjusting the water flow 
rate.  By increasing ( )m,o m,im, T T−&  is reduced for a prescribed q.  The value of ih  is increased 
substantially if the internal flow is turbulent. 
 



PROBLEM 10.64  
KNOWN:  Saturated ethylene glycol vapor at 1 atm condensing on a sphere of 100 mm diameter 
having surface temperature of 150°C.  
FIND:  Condensation rate.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Laminar film condensation, (2) Negligible non-condensibles in vapor. 
 
PROPERTIES:  Table A-5, Saturated ethylene glycol, vapor (1 atm):  Tsat = 470K, ρv ≈ 0 kg/m3, hfg 
= 812 kJ/kg; Table A-5, Ethylene glycol, liquid (Tf = 423K, but use values at 373K, limit of data in 
table):  ρl  = 1058.5 kg/m3, p,c l  = 2742 J/kg⋅K, μl  = 0.215 × 10-2 N⋅s/m2, kl  = 0.263 W/m⋅K. 
 
ANALYSIS:  The condensation rate is given by Eq. 10.34 as 
 

 
( )( )2

L sat s

fg fg

h D T Tqm
h h

π −
= =

′ ′
&  

 
where A = π D2 for the sphere and fgh′ , with p, fgJa c T / h ,= Δl  is given by Eq. 10.27 as 
 

( ) ( ) 3
fg fg

kJ J
h h 1 0.68 Ja 812 1 0.68 2742 470 423 K / 812 10 J / kg 900 kJ / kg.

kg kg K
′ = + = + × − × =

⋅
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
The average heat transfer coefficient for the sphere follows from Eq. 10.46 with C = 0.826, 
 

 
( )
( )

1/ 43
v fg

D
sat s

g k h
h 0.826

T T D

⎡ ⎤′−
⎢ ⎥=
⎢ ⎥−
⎣ ⎦

l l l

l

ρ ρ ρ
μ

 

 

 
( ) ( )

( )

1/ 42 3 3 33

D 2 2
9.8 m / s 1058.5 kg / m 1058.5 0 kg / m 0.263 W / m K 900 10 J / kg

h 0.826
0.215 10 N s / m 470 423 K 0.100m−

× − ⋅ × ×
=

× ⋅ − ×

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
 2

Dh 1696 W / m K.= ⋅  
 
Hence, the condensation rate is 
 

 ( ) ( )22 3m 1696W / m K 0.100m 470 423 K / 900 10 J / kg= ⋅ × − ×& π  
 
 3m 2.78 10 kg / s.−= ×&          < 
 
COMMENTS:  Recognize this estimate is likely to be a poor one since properties were not evaluated 
at the proper Tf which was beyond the limit of the table. 



PROBLEM 10.65  
KNOWN:  Copper sphere of 10 mm diameter, initially at 50°C, is placed in a large container filled 
with saturated steam at 1 atm.  
FIND:  Time required for sphere to reach equilibrium and the condensate formed during this period.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Laminar film condensation, (2) Negligible non-condensables in vapor, (3) 
Sphere is spacewise isothermal, (4) Sphere experiences heat gain by condensation only. 
 
PROPERTIES:  Table A-6, Saturated water vapor (1 atm):  Tsat = 100°C, ρv = 0.596 kg/m3, hfg = 
2257 kJ/kg; Table A-6, Water, liquid (Tf ≈ (75 + 100)°C/2 = 360K):  ρl  = 967.1 kg/m3, p,c l  = 4203 

J/kg⋅K, μl  = 324 × 10-6 N⋅s/m2, kl  = 0.674 W/m⋅K; Table A-1, Copper, pure ( )T 75 C := °   ρsp = 

8933 kg/m3, cp,sp = 389 J/kg⋅K. 
 
ANALYSIS:  Using the lumped capacitance approach, an energy balance on the sphere provides, 
 in out stE E E− =& & &  

 ( ) s
fg D s sat s sp p,sp s

dTm h h A T T c V .
dt

ρ′ = − =&      (1) 

Properties of the sphere, ρsp and cp,sp, will be evaluated at ( )sT 50 100 C / 2 75 C,= + ° = °  while water 
(liquid) properties will be evaluated at ( )f s satT T T / 2 87.5 C 360K.= + = ° ≈   From Eq. 10.27 with Ja = 

p, fgc T / hΔl  where ΔT = Tsat - sT ,  find 

( ) ( ) 3
fg fg

kJ J kJ
h h 1 0.68 Ja 2257 1 0.68 4203 100 75 K / 2257 10 J / kg 2328 .

kg kg K kg
′ = + = + × − × =

⋅

⎛ ⎡ ⎤ ⎞
⎜ ⎟⎢ ⎥⎝ ⎣ ⎦ ⎠

 (2) 

To estimate the time required to reach equilibrium, we need to integrate Eq. (1) with appropriate 
limits.  However, to perform the integration, an appropriate relation for the temperature dependence of 

Dh  needs to be found, as discussed in Chapter 5.  Using Eq. 10.46 with C = 0.826, 

 
( )
( )

1/ 43
v fg

D
sat s

g k h
h 0.826 .

T T D

⎡ ⎤′−
⎢ ⎥=
⎢ ⎥−
⎣ ⎦

l l l

l

ρ ρ ρ
μ

 

Substitute numerical values and find, 
 

( ) ( )
( )

1/ 42 3 3 33

D 6 2
sat s

9.8 m / s 967.1kg / m 967.1 0.596 kg / m 0.674 W / m K 2328 10 J / kg
h 0.826

324 10 N s / m T T 0.010m−

× − ⋅ × ×
=

× ⋅ − ×

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

 ( ) ( )1/ 4 3/ 42
D sat sh B T T where B 31,120 W / m K .−= − = ⋅  (3) 

 
          Continued … 



PROBLEM 10.65 (Cont.) 
 

Substitute Eq. (3) into Eq. (1) for Dh  and recognize 3 2
s s

1
V / A D / D D / 6,

6
π π= =  

 ( ) ( ) ( )1/ 4 s
sat s sat s sp p,sp

dTB T T T T c D / 6 .
dt

ρ−− − =     (4) 

Note that d(Ts) = - d(Tsat – Ts); letting ΔT ≡ Tsat – Ts and separating variables, the energy balance 
relation has the form 

 
( ) ( )

o

t Tsp p,sp
3/ 40 T

c D / 6 d T
dt

B T

ρ Δ
Δ

Δ
= −

Δ
∫ ∫       (5) 

where the limits of integration have been identified, with o sat iT T TΔ = −  and Ti = Ts(0).  Performing 
the integration, find 

 
( )sp p,sp 1/ 4 1/ 4

o
c D / 6 1t T T .

B 1 3/ 4
ρ ⎡ ⎤= − ⋅ Δ −Δ⎢ ⎥⎣ ⎦−

 

Substituting numerical values with the limits, ΔT = 0 and ΔTo = 100-50 = 50°C, 
 

 
( )3

1/ 4 1/ 4 1/ 4
2 3/ 4

8933kg / m 389 J / kg K 0.010m / 6
t 4 0 50 K

31,120 W / m K

× ⋅ ⎡ ⎤= − × −⎢ ⎥⎣ ⎦⋅
 

 
 t 2.0s.=           < 
 
To determine the total amount of condensate formed during this period, perform an energy balance on 
a time interval basis, 
 
 in out final initialE E E E E− = Δ = −  
 
 ( ]in sp p,sp final initialE c V T Tρ= −        (6) 
 
where Tfinal = Tsat and Tinitial = Ti = Ts(0).  Recognize that 
 
 in fgE M h′=           (7) 
 
where M is the total mass of vapor that condenses.  Combining Eqs. (6) and (7), 
 

 [ ]sp p,sp
sat i

fg

c V
M T T

h
ρ

= −
′

 

 

 
( )( ) [ ]

33

3
8933kg / m 389 J / kg K / 6 0.010m

M 100 50 K
2328 10 J / kg

π× ⋅
= −

×
 

 
 5M 3.91 10 kg.−= ×          < 
 
COMMENTS:  The total amount of condensate could have been evaluated from the integral, 
 

 
( )t t t D s sat s

0 0 0fg fg

h A T T dtqM m dt dt
h h

−
= = =

′ ′∫ ∫ ∫&  

 
giving the same result, but with more effort. 
 



PROBLEM 10.66  
KNOWN:  Saturation temperature and inlet flow rate of refrigerant.  Diameter, length, and 
temperature of tube.   
FIND:  Rate of condensation and outlet flow rate.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible concentration of noncondensable gases in vapor. 
 
PROPERTIES:  Given, R-12, saturated vapor (Tsat = 310 K):  ρv = 50.1 kg/m3, hfg = 160 kJ/kg, μv = 

150 × 10-7 N⋅s/m2.  Saturated liquid (Tf = 300 K):  31306 kg / m ,ρ =l  p,c 978  J / kg K,= ⋅l  

2 20.0254 10 N s / m ,−μ = × ⋅l  k 0.072 W / m K.= ⋅l   R-134a, saturated vapor (Tsat = 310 K):  ρv = 46.1 

kg/m3, hfg = 166 kJ/kg, μv = 136 × 10-7 N⋅s/m2.  Table A.5: R-134a, Saturated liquid (Tf = 300 K):  
31199.7 kg / m ,ρ =l  p,c 1432 J / kg K,= ⋅l  2 20.01905 10 N s / m ,−μ = × ⋅l  k 0.0803W / m K.= ⋅l  

 
ANALYSIS:  For R-12:  The Reynolds number associated with the inlet vapor flow is 

v,i v,i vRe 4 m / D= π μ&  7 20.04 kg / s / 0.03 m 150 10 N s / m 28, 290 35, 000.π −= × × × ⋅ = <   Hence, the 
average convection coefficient may be obtained from Eq. 10.46 with C = 0.555, where 

( )fg fg p, sat sh h 0.375 c T T′ = + −l  = (1.6 × 105 + 0.375 × 978 × 20) J/kg = 1.67 × 105 J/kg. 
 

( )
( )

( ) ( )
1 / 4 1 / 43 2 3 3 53

v fg
D 2 2

sat s

g k h 9.8 m / s 1306 kg / m 1306 50.1 kg / m 0.072 W / m K 1.67 10 J / kg
h 0.555 0.555

T T D 0.0254 10 N s / m 20 K 0.03 m

ρ ρ ρ

μ −

′− − ⋅ ×
= =

− × ⋅ × ×

⎡ ⎤ ⎡ ⎤×
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

l l l

l

 
 
 2

Dh 889 W / m K= ⋅  
 
The heat rate is then 
 
 ( ) 2

D sat sq DL h T T 0.03 m 0.8 m 889 W / m K 20 K 1340 Wπ π= − = × × × ⋅ × =  
 
and the condensation rate is 
 

 cond 5fg

q 1340 Wm 0.0080kg / s
h 1.67 10

= = =
′ ×

&       < 

 
The flow rate of vapor leaving the tube is then 
 
 ( )v,o v,i condm m m 0.0100 0.0080 kg / s 0.0020kg / s= − = − =& & &    < 

Continued… 
 

 

Ref.

L = 0.8 m D = 0.03 m 



PROBLEM 10.66 (Cont.) 
 

Repeating the analysis for R-134a, we find that 2
Dh 1007 W / m K= ⋅ , q 1520W= , 

condm 0.0086kg / s=&  , and v,om 0.0014 kg / s=& .      < 
 
COMMENTS: The behavior of the two refrigerants is comparable since the properties are 
similar, and R-134a could replace R-12 in many applications.  The R-134a provides somewhat 
higher heat transfer and condensation rates in this application. 
 



PROBLEM 10.67  
KNOWN:  Saturated steam condensing on the inside of a horizontal pipe.  
FIND:  Heat transfer coefficient and the condensation rate per unit length of the pipe.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Film condensation with low vapor velocities. 
 
PROPERTIES:  Table A-6, Saturated water vapor (1.5 bar):  Tsat ≈ 385K, ρv = 0.88 kg/m3, hfg = 
2225 kJ/kg; Table A-6, Saturated water (Tf = (Tsat + Ts)/2 ≈ 380K): ρl  = 953.3 kg/m3, p,c l  = 4226 

J/kg⋅K, μl  = 260 × 10-6 N⋅s/m2, kl  = 0.683 W/m⋅K. 
 
ANALYSIS:  The condensation rate per unit length follows from Eq. 10.34 with A = π D L and has 
the form 
 

 ( )( )D sat s fg
mm h D T T / h
L

π′ ′= = −
&

&  
 
where Dh  is estimated from the correlation of Eq. 10.46 with the expression for '

fgh following the 
discussion after Eq. 10.50, 
 

 
( )
( )

1/ 43
v fg

D
sat s

g k h
h 0.555

T T D
ρ ρ ρ
μ

⎡ ⎤′−
⎢ ⎥=
⎢ − ⎥
⎣ ⎦

l l l

l
 

 
where 
 

 ( ) ( )3
fg fg p, sat s

3 J 3 Jh h c T T 2225 10 4226 385 373 K
8 kg 8 kg K

′ = + − = × + × −
⋅l  

 
 fgh 2244 kJ / kg.′ =  
 
Hence, 
 

( ) ( )

( )

1/ 4
32 3

3 3
D 6 2

kg kg9.8m / s 953.3 953.3 0.88 0.683W / m K 2244 10 J / kg
m mh 0.555

260 10 N s / m 385 373 K 0.075m−

⎡ ⎤× − ⋅ ×⎢ ⎥
⎢ ⎥=
⎢ ⎥× ⋅ − ×
⎢ ⎥⎣ ⎦

 

 
 2

Dh 7127 W / m K.= ⋅  
 
It follows that the condensate rate per unit length of the tube is 
 

( )( )2 3 3m 7127 W / m K 0.075m 385 373 K / 2224 10 J / kg 9.0 10 kg / s m.−′ = ⋅ × − × = × ⋅& π  < 



PROBLEM 10.68  
KNOWN:  Pressure of saturated steam condensing on the inside of a horizontal pipe.  Diameter and 
surface temperature of pipe.  Mass flow rate.  
FIND:  (a) Heat transfer coefficient and condensation rate per unit length of the pipe for X = 0.2. (b) 
Plot heat transfer coefficient and condensation rate for 0.1 ≤ X ≤ 0.3. 
  
SCHEMATIC:   

 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Film condensation with high vapor velocities, annular flow. 
 
PROPERTIES:  Table A-6, Saturated water (1.5 bar):  Tsat ≈ 385 K, ρl = 949.7 kg/m3, ρv = 0.88 
kg/m3, hfg = 2225 kJ/kg, cp,l = 4.232 kJ/kg, µl = 248 × 10-6 N ⋅ s/m2, µv = 12.49 × 10-6 N ⋅ s/m2, kl = 
0.685 W/m ⋅ K, Prl = 1.53.  
ANALYSIS:  The mass flow rate per unit cross sectional tube area is 
 

 2
2

2.5 kg/s 566 kg/s m
(0.075 m) / 4c

m
A π

= = ⋅
&

 

 
Since this exceeds 500 kg/s · m2, the Dobson and Chato correlation, Eq. 10.51a can be used.  The 
Reynolds number is 
 

6 2 5
, 4 (1 ) / ( ) 4 2.5 kg/s (1 0.2) / ( 0.075 m 248 10  N s/m ) 1.37 10D l lRe m X Dπ μ π −= − = × × − × × × ⋅ = ×&  

 
and the Martinelli parameter is 
 

0.5 0.10.9 0.9 0.5 0.11 1 0.2 0.88 248 0.143
0.2 949.7 12.49

v l
tt

l v

XX
X

ρ μ
ρ μ

⎛ ⎞ ⎛ ⎞− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

Then, 
 

0.8 0.4 5 0.8 0.4
, 0.89 0.89

2.22 2.220.023 1 0.023 (1.37 10 ) 1.53 1 4750
0.143D D l l

l tt

hDNu Re Pr
k X

⎡ ⎤ ⎡ ⎤= = + = × × × + =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
 

 
The heat transfer coefficient is 
 

 2/ 4750 0.685 W/m K / 0.075 m 43,300 W/m KD lh Nu k D= = × ⋅ = ⋅  < 
 

Continued… 

m= 2.5 kg/s·



PROBLEM 10.68 (Cont.) 
 
The condensation rate per unit length follows from Eq. 10.34 with A = πDL and 

, sat0.375 ( ) 2225 kJ/kg 0.375 4.232 kJ/kg K (385 373) K 2244 kJ/kgfg fg p l sh h c T T′ = + − = + × ⋅ × − = .  
Thus,  
 

( )( )cond
cond sat /s fg

mm h D T T h
L

π′ ′= = −
&

&  

2 343,400 W/m K 0.075 m (385 373) K / 2244 10  J/kg 0.0546 kg/s mπ= ⋅ × × × − × = ⋅  < 
 

(b) Solving the same equations for 0.1 ≤ X ≤ 0.3 yields the plots below. 
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COMMENTS:  (1) The value of X strongly impacts the heat transfer coefficient and condensation 
rate. (2) The condensation rate corresponding to the low vapor velocity case of Problem 10.67 is 9.0 × 
10-3 kg/s ⋅ m.  The higher vapor velocity yields a six-fold increase in heat transfer coefficient and 
condensation rate. (3) If the fluid were all vapor at the inlet, X = 1, the vapor velocity would be uv = 

3 2/ ( ) 2.5 / (0.88 kg/m (0.075 m) / 4)v cm Aρ π= ×& = 643 m/s. The inlet Reynolds number would then be 
3.4 × 106, and the criterion for the low vapor velocity solution, Eq. 10.50 would not be satisfied. (4) 
Treating water vapor as an ideal gas, the speed of sound at 385 K would be 479 m/s as determined in 
Comment 5. The mass flow rate specified in the problem could not be achieved in a tube of constant 
cross-sectional area with X = 1.  (5) For water at T = 385 K and p = 1.5 bar, R ≡ R/M = 8315 
J/kmol·K/18 kg/kmol =  462 J/kg. The specific heat at constant volume is 

2080 J / kg K 462 J / kg K 1618 J / kg Kv pc c R≡ − = ⋅ − ⋅ = ⋅ . Therefore the specific heat ratio is γ 
= cp/cv = 2080 J/kg·K/1618 J/kg·K = 1.29 and the speed of sound is 

1.29 462 J/kg K 385 K 479 m/sa = × ⋅ × = . 



PROBLEM 10.69 
 
KNOWN:  Mass flow rate and quality of R-22 condensing in tube.  Tube diameter.  Wall and 
saturation temperatures.  Refrigerant properties. 
 
FIND:  Heat transfer coefficient, heat transfer rate, and condensation rate for (a) X = 0.5, (b) 0.2 < X < 
0.8. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Film condensation with high vapor velocities, annular flow. (2) Heat of 
vaporization not strong function of temperature. 
 
PROPERTIES:  Refrigerant R-22 (Tsat = 318 K): Given ρv = 77 kg/m3, μv = 15 × 10-6 N·s/m2; Table 
A-5, ρl = 1106 kg/m3, μl = 131 × 10-6 N·s/m2, cp,l = 1377 J/kg ⋅ K, kl = 0.0741 W/m ⋅ K, Prl = 2.4, hfg = 
234 kJ/kg.  
 
ANALYSIS:  The mass flow rate per unit cross sectional tube area is 
 

 
3

2
2

8.75 10  kg/s 227 kg/s m
(0.007 m) / 4c

m
A π

−×
= = ⋅

&
 

 
Although this is below the recommended threshold of 500 kg/s · m2, since annular flow was observed, 
the Dobson and Chato correlation, Eq. 10.51a can be used.  The Reynolds number is 
 

3 6 2
, 4 (1 ) / ( ) 4 8.75 10  kg/s (1 0.5) / ( 0.007 m 131 10  N s/m ) 6070D l lRe m X Dπ μ π− −= − = × × × − × × × ⋅ =&  

and the Martinelli parameter is 
 

0.5 0.10.9 0.9 0.5 0.11 1 0.5 77 131 0.328
0.5 1106 15

v l
tt

l v

XX
X

ρ μ
ρ μ

⎛ ⎞ ⎛ ⎞− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

Then, 
 

0.8 0.4 0.8 0.4
, 0.89 0.89

2.22 2.220.023 1 0.023 (6070) 2.4 1 243
0.328D D l l

l tt

hDNu Re Pr
k X

⎡ ⎤ ⎡ ⎤= = + = × × + =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
 

 
The heat transfer coefficient and heat transfer rate per unit length are 
 

 2/ 243 0.0741 W/m K / 0.007 m 2570 W/m KD lh Nu k D= = × ⋅ = ⋅  < 
 

 2 2
sat( ) 2570 W/m K 0.007 m (45 40) C 283 W/ms sq h D T Tπ π′ = − = ⋅ × × × − ° =  < 

Continued… 

m= 2.5 kg/s· 8.75×10-3 kg/s

R 22

7 mm

40°C



PROBLEM 10.69 (Cont.) 
 

 
The condensation rate per unit length follows from Eq. 10.34 with A = πDL and  
 

, sat0.375 ( ) 234 kJ/kg 0.375 1.377 kJ/kg K (45 40) C 237 kJ/kgfg fg p l sh h c T T′ = + − = + × ⋅ × − ° = .  Thus,  
 

2 3 3
cond / 283 W/m / 237 10  J/kg 1.19 10  kg/s ms fgm q h −′ ′ ′= = × = × ⋅&   < 

 
(b) Solving the same equations for 0.2 < X < 0.8 yields the condensation rate plot below. 
 

    

X
0.80.70.60.50.40.30.2

m
do

t,c
on

d 
(k

g/
s-

m
)

0.002

0.001

0

   < 
 

 
COMMENTS:  (1) The value of X strongly impacts the heat transfer coefficient, heat transfer rate, 
and condensation rate.  (2) This problem corresponds to one of the experimental conditions on which 
the Dobson and Chato correlation is based.  Annular flow was observed for this and many, but not all, 
of the other cases for which the mass flow rate per unit area was less than 500 kg/s · m2.  Annular flow 
was always observed for values greater than 500 kg/s · m2.  Hence the recommended threshold value 
of / cm A& = 500 kg/s·m2 is conservative. 
 
 



PROBLEM 10.70 
 
KNOWN: Inner and outer diameter of brass tube.  Thickness of Teflon coating.  Saturated 
steam at 1 bar outside tube.  Convection coefficient and mean temperature of water flowing inside 
tube. 
 
FIND: Condensation convection coefficient.  Steam condensation rate per unit length.  
Comparison with condensation rate for uncoated brass tube. 
 
SCHEMATIC:  

 
 
 
ASSUMPTIONS: (1) Dropwise condensation, (2) Correlations for a copper surface can be 
applied to Teflon, and (3) Negligible effect of noncondensable vapors. 
 
PROPERTIES:  Table A.6, Water, vapor (0.1 bar):  Tsat = 318.9 K, hfg = 2393 × 103 J/kg; Table 
A.1, Brass ( )( )m satT T T / 2 300K : k 110 W / m Kb= + ≈ = ⋅ ; Table A.3, Teflon (T ≈ 300 K); kt = 
0.35 W/m⋅K.   
ANALYSIS:  The condensation rate per unit length follows from Eq. 10.34 written as 
 fgm q / h′ ′ ′=&          (1) 
where the heat rate per unit length follows from Eq. 10.33 using an overall heat transfer 
coefficient 
 ( )sat mq UP T T′ = −         (2) 
where P is the perimeter.  From Eq. 3.36, with resistances for the brass tube and Teflon coating, 

 
1

o o o i
o o t b i i

1 ln[(D 2L) / D ] ln(D / D ) 1UP
h (D 2L) 2 k 2 k h D

−⎡ ⎤+
= + + +⎢ ⎥π + π π π⎣ ⎦

 

The outer heat transfer coefficient, ho = dch , can be calculated from Eq. 10.52, 
2

dc sath 51,104 2044T ( C) 51,104 2044(319.9 273) 144,900 W / m K= + ° = + − = ⋅  
Thus 

2 3
1

2 3

1 ln(19.2 /19)UP
2 0.35W / m K144,900W / m K (19.2 10  m)

ln(19 /16.5) 1   
2 110W / m K 5200W / m K (16.5 10  m)

−

−

−

⎡
= +⎢

π× ⋅⋅ × π ×⎢⎣
⎤

+ + ⎥
π× ⋅ ⋅ × π × ⎥⎦

 

 
Continued… 

Teflon coated 
Brass tube 

L = 0.1 mm 



PROBLEM 10.70 (Cont.) 
 

14 3 4 3UP 1.14 10 4.76 10 2.04 10 3.71 10 W / m K 114 W / m K.
−− − − −⎡ ⎤= × + × + × + × ⋅ = ⋅⎢ ⎥⎣ ⎦

 
 
Combining Eqs. (1) and (2) and substituting numerical values (see below for fgh′ ), find 
 
 ( ) ( ) 3

sat m fgm UP T T / h 114 W / m K 318.9 303 K / 2393 10 J / kg′ ′= − = ⋅ − ×&  
 

4m 7.56 10 kg / s.−′ = ×&                  < 
 
COMMENTS: (1) Since the outer convection resistance is small relative to the sum of the 
remaining resistances, Ts,o ≈ Tsat and from Eq. 10.27, fg fgh h′ ≈ .  (2) The Teflon coating induces a 

21-fold increase in the condensation convection coefficient.  However, the condensation rate 
decreases by 25 percent.  This is because of the significant conduction resistance posed by the 
thin Teflon coating.  (3) In addition to the conduction resistance, a contact resistance would exist 
at the Teflon-brass interface as well as constriction resistances at the droplet-Teflon interfaces, 
further reducing the condensation rate.   



PROBLEM 10.71 
 
 
KNOWN:  Conditions of saturated steam. Surface temperature of aluminum and stainless steel plates 
of known dimension. 
 
FIND:  (a) Temperature of the cold surface of the aluminum plate, (b) Temperature of the cold 
surface of the stainless steel plate. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Dropwise condensation on stainless steel described by Equation 10.52, (2) 
Filmwise condensation on aluminum, (3) Constant properties, (4) Steady state. 
 
PROPERTIES: Table A.6, Water vapor (T∞ = 100°C = 373 K): pA,sat = 1.008 bar, hfg = 2.257 × 106 
J/kg; Table A.6, Water, liquid (Tf = (Ts + Tsat)/2 = 95°C = 368 K): cp,l = 4212 J/kg⋅K, μl = 
0.0002958N⋅s/m2, kl = 0.6782 W/m⋅K, νl = 3.076 × 10-7 m2/s; Table A.1, Aluminum 2024-T6 (T = 300 
K): kAl = 177 W/m⋅K; Table A.1 A302 Stainless Steel (T = 300 K): kSS = 15.1 W/m⋅K. 
 
ANALYSIS:  An energy balance for the control surface at Ts yields 
 

  ( ) ( )sat
m

s s c
k bLq hbL T T T T

t
= − = −      (1) 

 
where km is the thermal conductivity of the metal plate. Equation (1) may be rearranged to yield 
 

  ( )satc s s
m

thT T T T
k

= − −        (2) 

 
(a) For filmwise condensation on the aluminum plate, Ja = cp,l(Tsat – Ts)/hfg = 4212 J/kg⋅K(100 – 
90)K/2.257 × 106 J/kg = 0.0187. The modified latent heat is fgh′ = hfg(1 + 0.68Ja) = 2.257 × 106 J/kg × 
(1 + 0.68 × 0.0187) = 2.286 × 106 J/kg. Evaluation of Equation 10.42 yields 
 

( )
sat

2 1/3 1/322 6 7 2 2

( ) 0.6782 W/m K 0.25 m (100 90)K 118
( / )

0.0002958 N s/m 2.286 10  J/kg 3.076 10 m /s 9.8 m /s

l s

l fg l

k L T TP
h gμ ν −

− ⋅ × × −
= = =

′ ⎡ ⎤⋅ × × × ×⎢ ⎥⎣ ⎦
 
which is in the range of application of Equation 10.44. Therefore,  
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( )

0.82
2 1/3

0.82 2
1/327 2 2

1 (0.68 0.89)
( / )

0.6782 W/m K 1 (0.68 118 0.89) 9930 W/m K
118

3.076 10 m /s 9.8 m /s

lL
l

kh P
Pgν

−

= +

⋅
= × + = ⋅
⎡ ⎤×⎢ ⎥⎣ ⎦

 

 
From Equation (2), the cold surface temperature is 
   

( )
2

,AL
0.001 m 9930W/m K90 C 100 90 K 89.4 C

177 W/m KcT × ⋅
= ° − − = °

⋅
    < 

 
(b) For dropwise condensation on the stainless steel plate, Equation 10.52 yields 
 
 251,104 2044 100 C 255,500 W/m Kh = + × ° = ⋅  
 
From Equation (2), the cold surface temperature is 
 

( )
2

,SS
0.001 m 255,500W/m K90 C 100 90 K 79 C

15.1 W/m KcT × ⋅
= ° − − = − °

⋅
   < 

 
COMMENTS:  (1) The required cold surface temperature associated with the stainless steel is very 
low, compared to the corresponding value associated with the aluminum. (2) The heat transfer rate 
associated with the aluminum is 

AL

2
sat( ) 9930W/m K 0.1 m 0.25 m (100 90) K 2,480 Wsq hbL T T= − = ⋅ × × × − =  

while heat transfer rate associated with the stainless steel is 

SS

2
sat( ) 255,500W/m K 0.1 m 0.25 m (100 90) K 63,900 W.sq hbL T T= − = ⋅ × × × − =  

(3) For the aluminum with film condensation, the thermal resistances associated with conduction and 
condensation are 6

,cond / 0.001 m / (177 W/m K 0.25 m 0.1 m) 225 10  K/WtR t kA −= = ⋅ × × = ×  and 
2 6

,conv 1/ 1/ 9930 W/m K 0.25 m 0.1 m 4030 10  K/WtR hbL −⎡ ⎤= = ⋅ × × = ×⎣ ⎦ respectively. Hence, if 

dropwise condensation could be promoted on the aluminum plate, the overall thermal resistance would 
decrease and the heat transfer rate would increase. (4) For the stainless steel with dropwise 
condensation, the thermal resistances associated with conduction and condensation are 

6
,cond / 0.001 m / (15.1 W/m K 0.25 m 0.1 m) 2650 10  K/WtR t kA −= = ⋅ × × = ×  and 

2 6
,conv 1/ 1/ 255,500W/m K 0.25 m 0.1 m 157 10  K/WtR hbL −⎡ ⎤= = ⋅ × × = ×⎣ ⎦ respectively. Hence, the 

primary resistance is associated with conduction within the metal. Further increases in the heat transfer 
coefficient associated with the condensation would not significantly increase the heat transfer rate. (5) 
Further information on the ion implantation effect on condensation is available in the following two 
references. 
 

M.H. Rausch, A.P. Fröba, A. Leipertz, “Dropwise condensation heat transfer on ion implanted 
aluminum surfaces,” International Journal of Heat and Mass Transfer, Vol. 51, pp. 1061 – 1070, 
2008. 

A. Bani Kananeh, M.H. Rausch, A.P. Fröba, A. Leipertz, “Experimental study of dropwise 
condensation on plasma-ion implanted stainless steel tubes,” International Journal of Heat and Mass 
Transfer, Vol. 49, pp. 5018-5026, 2006. 



PROBLEM 10.72  
KNOWN:  Surface temperature and area of integrated circuits submerged in a dielectric fluid of 
prescribed properties.  Height and temperature of condenser plates.  
FIND:  (a) Heat dissipation by an integrated circuit, (b) Condenser surface area needed to balance heat 
load.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Nucleate pool boiling in liquid, (2) Laminar film condensation of vapor, (3) 
Negligible heat loss to surroundings.  
PROPERTIES:  Dielectric fluid (given, Tsat = 50°C):  ρl  = 1700kg/m3, p,c l  = 1005J/kg⋅K,  μl  = 

6.80 × 10-4 kg/s⋅m, kl  = 0.062W/m⋅K, Prl  = 11, σ = 0.013 kg/s2, hfg = 1.05 × 105 J/kg, Cs,f = 0.004, n 
= 1.7, lν  = μl / ρl  = 4.0 × 10-7 m2/s . 
 
ANALYSIS:  (a) For nucleate pool boiling, 

 
( ) ( )

31/ 2
p, e 4 5v

s fg n
s,f fg

c Tg
q h 6.8 10 kg / s m 1.05 10 J / kg

C h Pr
−Δ−

′′ = ≈ × ⋅ ×
⎛ ⎞⎡ ⎤ ⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠

ll
l

l

ρ ρ
μ

σ
 

 
1/ 2 32 3

2
2 5 1.7

9.8 m / s 1700 kg / m 1005 J / kg K 25K
84,530 W / m

0.013kg / s 0.004 1.05 10 J / kg 11

× ⋅ ×
× =

× × ×

⎡ ⎤ ⎛ ⎞
⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦

 

 2 6 2
s s sq A q 84,530 W / m 25 10 m 2.11W.−′′= = × × =      < 

(b) From Eq. 10.42, 
 

sat s
2 1/3

fg

1/3-4 5 -7 2 2 2

k L(T T )P
h ( / g)

0.062 W / m K 0.05 m (50 15)K        48.8
6.80 10  kg / s m 1.29 10  J / kg (4.0 10  m /s) / 9.8 m /s

ν

−
=

′μ

⋅ × −
= =

⎡ ⎤× ⋅ × × × ×⎣ ⎦

l

l l

 

where 5
fg fg p, sat sh h 0.68c (T T )= 1.29 10  J/kg.′ = + − ×   With 15.8 < P < 2530, the flow is wavy 

laminar and Eq. 10.44 gives 

( )

0.82
L 2 1/3

0.82 2
1/32-7 2 2

k 1h (0.68P 0.89)
P(ν /g)
0.062 W/m K 1 (0.68 48.8 0.89) 904 W/m K

48.8
4.0×10  m /s 9.8 m /s

= +

⋅
= × + = ⋅
⎡ ⎤
⎢ ⎥⎣ ⎦

l

l

 

To balance the heat load, qc = Nqs, thus from Eq. 10.33, 
 

L c sat c sh A (T T ) Nq 500 × 2.11 W 1055 W− = = =   

2
c 2

1055 WA 0.033 m
904 W/m K (50 15) C

= =
⋅ × − °

      <
   



PROBLEM 10.73  
KNOWN:  Thin-walled thermosyphon.  Absorbs heat by boiling saturated water at atmospheric 
pressure on boiling section Lb.  Rejects heat by condensing vapor into a thick film which falls length 
of condensation section Lc back into boiling section. 
 
FIND:  (a) Mean surface temperature, Ts,b, of the boiling surface if nucleate boiling flux is 30% 
critical flux, (b) Mean surface temperature, Ts,c of condensation section, and total condensation flow 
rate, m,&  in thermosyphon.   
 
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Film condensation occurs in condensation section which approximates a 
vertical plate, (2) Boiling and condensing section are separated by insulated length Li, (3) Top surface 
of condensation section is insulated, (4) For condensation, liquid properties evaluated at Tf = 90°C. 
 
PROPERTIES:  Table A-6, Saturated water (100°C):  3

f1/ v 957.9 kg / m ,ρ = =l  p,c l  = 4217 J/kg⋅K, 
6 2279 10 N s / m ,μ −= × ⋅l  Pr 1.76,=l  hfg = 2257 kJ/kg, σ = 58.9 × 10-3 N/m; Saturated vapor (100°C):  

ρv = 1/vg = 0.5955 kg/m3; Saturated water (90°C):  3
f1/ v 964.9 kg / m ,ρ = =l  p,c 4207=l  J/kg⋅K, μl  

= 313 × 10-6 N⋅s/m2, k 0.676 W / m K= ⋅l , lν  = μl / ρl  = 3.24 × 10-7 m2/s. 
 
ANALYSIS:  (a) The heat flux for the boiling section is 30% of the critical heat flux which at 
atmospheric pressure is 
 6 2 5 2

s,b maxq 0.30q 0.30 1.26 10 W / m 3.78 10 W / m .′′ ′′= = × × = ×  

Using the Rohsenow correlation for nucleate boiling with Tsat = 100°C and typical values for the 
surface of Cs,f = 0.0130 and n = 1.0, find 

 
( ) ( ) 31/ 2

p, s,b satv
s,b fg n

s,f fg

c T Tg
q h

C h Pr

ρ ρ
μ

σ

⎛ ⎞−⎡ ⎤− ⎜ ⎟′′ = ⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠

ll
l

l

 

 5 2 6 2 33.78 10 W / m 279 10 N s / m 2257 10 J / kg−× = × ⋅ × × ×  

   
( ) ( )1/ 2 32 3

s,b
3 3 1.0

4217 J / kg K T 1009.8 m / s 957.9 0.5955 kg / m

58.9 10 N / m 0.013 2257 10 J / kg1.76−

⋅ −−

× × ×

⎡ ⎤ ⎛ ⎞
⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦

 

 
          Continued … 



PROBLEM 10.73 (Cont.)  
 s,bT 114.0 C.= °          < 
 
(b) The heat transferred into the boiling section must be rejected by film condensation, 
 

 2
c b s,b bq q q D / 4 DLπ π⎡ ⎤′′= = +⎢ ⎥⎣ ⎦

 
 

 ( ) ( )25 2
cq 3.78 10 W / m 0.020m / 4 0.020m 0.020m 594 W.⎡ ⎤= × + × =⎢ ⎥⎣ ⎦

π π  

Thus from Eq. 10.34, c fgm q / h′=&  and from Eq. 10.36, c fgRe 4m / b 4q / h Dδ ′= μ = μ π& , where 

fg fg p, sat s,ch h 0.68c (T T ).′ = + −   We approximate fg fgh h′ =  and find Reδ≈ 53.5.  Thus the flow is 
wavy laminar.  From Eq. 10.39 we have  
 

( )

δL 2 1/3 1.22
δ

2
1/3 1.222-7 2 2

k Reh
(ν /g) 1.08Re 5.2

0.676 W/m K 53.5 12,290 W/m K
1.08 53.5 5.2

3.24×10  m /s 9.8 m /s

= =
−
⋅

= = ⋅
× −⎡ ⎤

⎢ ⎥⎣ ⎦

l

l

   (1) 

 
From Eq. 10.33 we can solve for Tsat – Ts,c, as 
 
Tsat – Ts,c = qc/ Lh πDL = 594 W/(12,290 W/m2⋅K × π × 0.02 m × 0.04 m) = 19.2°C   (2) 

 
This solution can now be iterated by recalculating fgh′ and Reδ  and re-solving Eqs. (1) and (2).  The 
iterations converge to Tsat – Ts,c = 19.1°C.  Thus  

 Ts,c = 80.9°C          < 
Finally, with 6

fgh 2.31 10 J / kg′ = × ,  

             6 -4
c fgm q / h 594 W/2.31 × 10  J/kg = 2.6 × 10  kg/s.′= =&      < 



PROBLEM 10.74 
 
KNOWN:  Thermosyphon configuration for cooling a computer chip of prescribed size. 
 
FIND:  (a) Chip temperature and total power dissipation when chip operates at 90% of critical heat flux,  
(b) Required condenser length. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state, (2) Saturated liquid/vapor conditions, (3) Negligible heat transfer 
from bottom of chip. 
 
PROPERTIES:  Fluorocarbon (prescribed):  Tsat = 57°C, cp,l  = 1100 J/kg⋅K, hfg = 84,400 J/kg, ρl  = 
1619.2 kg/m3, vρ  = 13.4 kg/m3, σ = 8.1 × 10-3 kg/s2, μl  = 440 × 10-6 kg/m⋅s, Prl  = 9.01, kl  = 0.054 
W/m⋅K, ν μ ρ=l l l  = 0.272 × 10-6 m2/s. 
 
ANALYSIS:  (a) With q′′  = 0.9 maxq′′  and the critical heat flux given by Eq. 10.6 with C=0.149, the 
chip power dissipation is 

 
( )

1/ 4
2 v
c fg v 2

v

g
q 0.9L 0.149h

σ ρ ρ
ρ

ρ

−
= ×

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

l  

( ) ( )
( )( )
( )

1/ 4
2 2 3

2 3
23

0.0081kg s 9.8 m s 1605.8 kg m
q 0.9 0.02 m 0.149 84, 400 J kg 13.4 kg m

13.4 kg m
= ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 ( )4 2 5 2
cq 0.9 4 10 m 1.55 10 W m 55.7 W−= × × =  < 

With operation at q′′  = 1.40 × 105 W/m2 in the nucleate boiling region, Eq. 10.5 yields 

 
( )

1/ 3 1/ 6n
s,f fg

sat
p, fg

C h Pr q
T T

c h g ν

σ
μ ρ ρ

′′
= +

−

⎛ ⎞ ⎡ ⎤
⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠

l

l l l
 

 
( )( )

( )

1/ 61/ 35 2 21.7

4 2 3

0.005 84, 400 J kg 9.01 1.40 10 W m 0.0081kg s
T 57 C

1100 J kg K 4.4 10 kg m s 84, 400 J kg 9.8 m s 1605.8 kg m−

×
= +

⋅ × ⋅ ×

⎡ ⎤⎛ ⎞ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

o  
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 T 57 C 22.4 C 79.4 C= + =o o o  < 
 
(b) The power dissipated by the chip must be balanced by the rate of heat transfer from the condensing 
section.  We combine Eqs. 10.34 and 10.36 to obtain Reδ μ= ′4q bhfgl , where b = πD = 0.0942 m and 
′ = + − = + ⋅h h c T T J kg J kg K Cfg fg p sat s0 68 84 400 0 68 1100 321. , ., b g a f o  = 108,300 J/kg.  Hence, Reδ = 

4(55.7 W)/4.4 × 10-4 kg/m⋅s(0.0942 m)108,300 J/kg = 49.6 and the condensate film is in the laminar-
wavy region.  Hence, from Eq. 10.39 
 

( )

δL 2 1/3 1.22
δ

2
1/3 1.222-6 2 2

k Reh
(ν /g) 1.08Re 5.2

0.054 W/m K 49.6 1130 W/m K
1.08 49.6 5.2

0.272×10  m /s 9.8 m /s

= =
−
⋅

= = ⋅
× −⎡ ⎤

⎢ ⎥⎣ ⎦

l

l

 

 
and from Eq. 10.33,  
 

 c
2

L sat s

q 55.7 WL 16.4mm
h D(T T ) 1130 W/m K 0.0942 m 32 C

= = =
π − ⋅ × × °

 < 

 
COMMENTS:  The chip operating temperature (T = 79.4°C) is not excessive, and the proposed scheme 
provides a compact means of cooling high performance chips. 



PROBLEM 10.75 
 
KNOWN: Copper plate, 2m × 2m, in a condenser-boiler section maintained at  Ts = 100°C separates 
condensing saturated steam and nucleate-pool boiling of saturated liquid X. 
 
FIND: (a) Rates of evaporation and condensation (kg/s) for the two fluids and (b) Saturation temperature 
Tsat and pressure p for the steam, assuming that film condensation occurs. 
 
SCHEMATIC: 
 

        

 

ASSUMPTIONS: (1) Steady-state conditions, (2) Isothermal copper plate. 
 
PROPERTIES: Fluid-X (Given, 1 atm):  Tsat = 80°C, hfg = 700 kJ/kg, portion of boiling curve shown 
above for operating condition,  ΔTe = Ts  − Tsat = (100 − 80)°C = 20°C,  sq′′  = 5 × 104  W/m2 ;  Table A.6, 

Water (saturated, Tf ≈ 100°C): ρl  = 957.9 kg/m3, hfg = 2257 kJ/kg , p,c l  = 4217 J/kg, μl  = 279 × 10-6 

N⋅s/m2, kl  = 0.680 W/m⋅K, Prl  = 1.76, lν  = μl / ρl  = 2.91 × 10-7 m2/s. 
 
ANALYSIS:  (a) For fluid-X, with ΔTe = Ts − Tsat = (100 − 80)°C = 20 K, the heat flux from the boiling 
curve is  

 2
sq 50,000 W m′′ =   

and the heat rate from the copper plate section into liquid-X is  

 ( )2 2
s s sq q A 50,000 W m 2 2 m 200,000 W′′= × = × × =  

From an energy balance around liquid-X, the evaporation rate for fluid-X is  

 X s fg,Xm q h 200,000 W 700,000 J kg 0.286 kg s= = =&  < 

The heat rate into the copper plate section from the steam is qs = 200,000 W, and from an energy balance 
around the condensate film, the condensation rate for steam (w) 

 6
w s fg,wm q h 200,000 W 2.257 10 J kg 0.0886kg s′= = × =&  

where we are assuming that Tsat,w is only a few degrees above Ts so that fg fgh h′ ≈ .  

  
(b) With Tsat unknown, we begin by evaluating the liquid water properties at 100°C as given above.  Then 
from Eq. 10.36, 
 -6 2

wRe = 4m /μ b = 4 × 0.0886 kg/s / 279 × 10  N s/m × 2 m = 635δ ⋅&  
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Thus the flow is wavy laminar.  From Eq. 10.39 we have  
 

( )

δL 2 1/3 1.22
δ

2
1/3 1.222-7 2 2

k Reh
(ν /g) 1.08Re 5.2

0.680 W/m K 635 7430 W/m K
1.08 635 5.2

2.91×10  m /s 9.8 m /s

= =
−
⋅

= = ⋅
× −⎡ ⎤

⎢ ⎥⎣ ⎦

l

l

    

 
From Eq. 10.33 we can solve for Tsat – Ts,c, as 
 
Tsat – Ts,c = qc/ Lh A = 200,000 W/(7430 W/m2⋅K × 4 m2) = 6.7°C      

 
Thus   

Tsat = 106.7°C = 379.7 K < 
 

From Table A.6, p = psat(379.7 K) = 1.27 bars < 
 
COMMENTS: The calculation could be repeated with properties evaluated at Tf = 103°C and with 

fg fgh h′ ≠ , but the results would not change much.  



PROBLEM 10.76 
 
KNOWN: Thin-walled container filled with a low boiling point liquid (A) at Tsat,A. Outer surface of 
container experiences laminar-film condensation with the vapor of a high-boiling point fluid (B).  
Laminar film extends from the location of the liquid-A free surface.  The heat flux for nucleate pool 
boiling in liquid-A along the container wall is given as npbq′′ = C(Ts − Tsat)3, where C is a known 

empirical constant. 
 

FIND: (a) Expression for the average temperature of the container wall, Ts; assume that the properties of 
fluids A and B are known; (b) Heat rate supplied to liquid-A, and (c) Time required to evaporate all the 
liquid-A in the container, assuming that initially the container is filled, y = L. 
 
SCHEMATIC: 

 
ASSUMPTIONS: (1) Nucleate pool boiling occurs on the inner surface of the container with liquid-A, 
(2) Laminar film condensation occurs on the outer surface of the container with fluid-B over the liquid-A 
free surface, y, and (3) Negligible wall thermal resistance. 
 
ANALYSIS:  (a)  Perform an energy balance on the control surface about the container wall along 
locations experiencing boiling (A) and condensation (B) as shown in the schematic above. 
 
 in outE E 0′′ ′′− =& &  (1) 
 
 cond npbq q 0′′ ′′− =  (2) 
 

 ( )( ) ( ) ( )3
y sat,B s s sat,Ah Dy T T Dy C T T 0π π− − − =  

 ( ) ( )3y sat,B s s sat,Ah T T C T T− = −  (3) < 
 
where yh  is the average convection coefficient for laminar film condensation over the surface length 0 to 

y.  From Eqs. 10.31 and 10.27, 
Continued... 
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( )
( )

1/ 43
v fg

y
sat s

B

g k h
h 0.943

T T y
ρ ρ ρ
μ

⎡ ⎤′−
⎢ ⎥=
⎢ − ⎥
⎣ ⎦

l l l

l
 (3) 

 
 ( )fg fg,B p,B sat,B sh h 0.68c T T′ = + −  (4) 
 
where the properties are for fluid-B.   
 
(b) The heat flux supplied to liquid-A is, from Eq. (2), cond npbq q′′ ′′= .  Since yh  is a function of y, Ts 

and, hence, the heat fluxes will be functions of y, the height of liquid A in the container.   
 
(c)  To determine the dry-out time, tf, begin with an energy balance on the inside of the container (fluid-
A).  The heat transfer supplied to liquid-A results in an evaporation rate of liquid-A, 
 

 ( )npb fg
dMq Dy h 0
dt

π′′ − =  (4) 
 
where M is the mass of liquid-A in the container, 
 

 ( )2
,AM D 4 yρ π= l  (5) 

 
Substituting Eq. (5) into (4), separating variables and identifying integration limits, find 
 

 ( ) ( ) ( )3 2
s sat,A ,A fg

dC T T Dy D 4 y h
dt

π ρ π⎡ ⎤− = ⎢ ⎥⎣ ⎦l  
 

 
( )

( )
f

2
,A fgt 0

f 30 L
s sat,A

D 4 h dydt t
C D T T y

ρ π

π
= =

−
∫ ∫

l
 (6) 

 
The definite integral could be numerically evaluated using values for Ts(y) obtained by solving Eq. (3). 
 



PROBLEM 10.77 
 
KNOWN:  Dimensions of ten thin-walled thermosyphons with boiling, insulated, and 
condensing sections of known lengths.  Working fluid is saturated water at 0.047 bars.    
FIND:  (a) Heating rate delivered by thermosyphons if nucleate boiling heat flux is 25% 
of CHF and mean temperatures of boiling and condensing sections, (b) Heat loss from 
hot water tank to cool attic.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Bottom of thermosyphon can be treated as a large horizontal 
surface, (2) Nucleate boiling constants are typical values of Cs,f = 0.0130 and n = 1.0, (3) 
Boiling and condensing section are separated by insulated length Li, (4) Laminar film 
condensation occurs in condensation section which approximates a vertical plate, (5) Top 
surface of condensation section is insulated, (6) For condensation, liquid properties 
evaluated at Tf = 300 K.   
PROPERTIES:  Table A-6, Saturated water (p = 0.047 bars):  Tsat = 305 K, ρl  = 1/vf = 

995 kg/m3, p,c l  = 4178 J/kg⋅K, 6 2769 10 N s / m ,−μ = × ⋅l  Pr 5.20=l , hfg = 2426 kJ/kg, 
σ = 70.9 × 10-3 N/m; Saturated vapor (p = 0.047 bars):  ρv = 1/vg = 0.0336 kg/m3; 
Saturated water (300 K):  3

f1/ v 997 kg / m ,ρ = =l  p,c 4179=l  J/kg⋅K, μl  = 855 × 10-6 

N⋅s/m2, /ν = μ ρl l l  = 8.58 × 10-7 m2/s, kl= 0.613 W/m⋅K. 
 
ANALYSIS:  (a) The heat flux for the boiling section is 25% of the critical heat flux, 
which is given by Eq. 10.6 with C = 0.149 for a large horizontal surface, 
 

 
1/ 4

v
s,b max fg v 2

v

g( )q 0.25q (0.25)0.149h
⎡ ⎤σ ρ −ρ′′ ′′= = ρ ⎢ ⎥

ρ⎢ ⎥⎣ ⎦

l  
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3 3
1/ 43 2 3

3 2
2

(0.25)0.149 2426 10  J/kg 0.0336 kg / m

70.9 10  N/m 9.8 m / s (995 0.0336)kg / m                        
(0.0336 kg / m )

84,900 W/m

−
= × × ×

⎡ ⎤× × −
× ⎢ ⎥
⎢ ⎥⎣ ⎦

=

 

 
Using the Rohsenow correlation for nucleate boiling, find 

 ( ) ( )
31/ 2

p, s,b satv
s,b fg n

s,f fg

c T Tg
q h

C h Pr

⎛ ⎞−⎡ ⎤ρ −ρ ⎜ ⎟′′ = μ ⎢ ⎥σ ⎜ ⎟⎣ ⎦ ⎝ ⎠

ll
l

l

 

 2 6 2 384,900 W / m 769 10 N s / m 2426 10 J / kg−= × ⋅ × × ×  
  

 ( ) ( )1/ 2 32 3 s,b
3 3 1.0

4178 J / kg K T 3059.8m / s 995 0.0336 kg / m

70.9 10 N / m 0.013 2426 10 J / kg 5.20−

⎡ ⎤ ⎛ ⎞⋅ −−
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥× × × ×⎝ ⎠⎣ ⎦

  

 s,bT 325 K.=          <  
 
The heat transferred into the boiling section must be rejected by film condensation,  
 2

c b s,b bq q q D / 4 DL⎡ ⎤′′= = π + π⎢ ⎥⎣ ⎦
 

 
 ( ) ( )22

cq 84,900W / m 0.020m / 4 0.020m 0.030m 187 W.⎡ ⎤= π + π × =⎢ ⎥⎣ ⎦
 

For all ten thermosyphons, the heating rate is therefore 
 
 qtot = 1870 W         < 
 
Thus from Eq. 10.34, c fgm q / h′=&  and from Eq. 10.36, c fgRe 4m / b 4q / h Dδ ′= μ = μ πl l& , 

where fg fg p, sat s,ch h 0.68c (T T ).′ = + −l   We approximate fg fgh h′ =  and find Re 5.7δ ≈ .  
Thus the flow is laminar as assumed.  From Eq. 10.38 we have  
 

( )

1/3
L δ2 1/3

1/3 2
1/32-7 2 2

kh 1.47Re
(ν /g)

0.613 W/m K 1.47 5.7 11,930 W/m K
8.58×10  m /s 9.8 m /s

−

−

= =

⋅
= × = ⋅
⎡ ⎤
⎢ ⎥⎣ ⎦

l

l

   (1) 
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From Eq. 10.33 we can solve for Tsat – Ts,c, as 
 
Tsat – Ts,c = qc/ Lh πDLc = 187 W/(11,930 W/m2⋅K × π × 0.02 m × 0.05 m) = 5.0°C        (2) 

 
This solution can now be iterated by recalculating fgh′ and Reδ  and re-solving Eqs. (1) 
and (2).  Subsequent iterations do not change the value of Tsat – Ts,c.  Thus  

 
Ts,c = Tsat – 5.0 K = 300 K       < 

 
Note that Tf = 302.5 K, which is not far from the assumed value of 300 K. 
 
(b)  There would be heat conduction through thermally-stratified water vapor in the 
thermospyphon tubes (neglecting tube wall conduction) which would yield a very small 
heat transfer rate.  Hence the heat loss is approximately zero.   < 
        
COMMENTS: (1)The thermosyphon is a unique device in that it acts like a thermal 
diode, promoting high heat transfer rates in one direction, while serving as an effective 
insulator in the opposite direction.  (2) The convective resistance between the boiling 
section and the attic air will be extremely large for an un-finned thermosyphon.  Hence, it 
would be necessary to significantly reduce this resistance by, for example, attaching 
annular fins to each boiling section and using a fan to heat the fins with forced 
convection.  (3) The operating temperatures in the boiling and condensation sections of 
the thermosyphon may not be optimal values. Adjustment of these temperatures can be 
accomplished by changing the pressure within the thermosyphon, or by using a working 
fluid other than water. 
 



PROBLEM 11.1  
KNOWN:  Initial overall heat transfer coefficient of a fire-tube boiler.  Fouling factors following one 
year’s  application.  
FIND:  Whether cleaning should be scheduled.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible tube wall conduction resistance, (2) Negligible changes in hc and 
hh. 
 
ANALYSIS:  From Equation 11.1b, the overall heat transfer coefficient after one year is 
 

 f ,i f ,o
i o

1 1 1 R R .
U h h

′′ ′′= + + +  

 
Since the first two terms on the right-hand side correspond to the reciprocal of the initial overall 
coefficient, 
 

 ( ) 2 2
2

1 1 0.0015 0.0005 m K / W 0.0045 m K / W
U 400 W / m K
= + + ⋅ = ⋅

⋅
 

 

 2U 222 W / m K.= ⋅  
 
COMMENTS:  Periodic cleaning of the tube inner surfaces is essential to maintaining efficient fire-
tube boiler operations. 
 



PROBLEM 11.2 
 
KNOWN:  Type-302 stainless tube with prescribed inner and outer diameters used in a cross-flow heat 
exchanger.  Prescribed fouling factors and internal water flow conditions. 
 
FIND:  (a) Overall coefficient based upon the outer surface, Uo, with air at To =15°C and velocity Vo = 20 
m/s in cross-flow; compare thermal resistances due to convection, tube wall conduction and fouling; (b) 
Overall coefficient, Uo, with water (rather than air) at To = 15°C and velocity Vo = 1 m/s in cross-flow; 
compare thermal resistances due to convection, tube wall conduction and fouling; (c) For the water-air 
conditions of part (a), compute and plot Uo as a function of the air cross-flow velocity for 5 ≤ Vo ≤ 30 m/s 
for water mean velocities of um,i = 0.2, 0.5 and 1.0 m/s; and (d) For the water-water conditions of part (b), 
compute and plot Uo as a function of the water mean velocity for 0.5 ≤ um,i ≤ 2.5 m/s for air cross-flow 
velocities of Vo = 1, 3 and 8 m/s. 
 
SCHEMATIC: 

 

 
 
ASSUMPTIONS: (1) Steady-state conditions, (2) Fully developed internal flow, 
 
PROPERTIES:  Table A.1, Stainless steel, AISI 302 (300 K):  kw = 15.1 W/m⋅K;  Table A.6, Water 
( m,iT  = 348 K): ρi = 974.8 kg/m3, μi = 3.746 × 10-4 N⋅s/m2, ki = 0.668 W/m⋅K, Pri = 2.354;  Table A.4, 

Air (assume f ,oT  = 315K, 1 atm): ko = 0.02737 W/m⋅K, νo = 17.35 × 10-6 m2/s, Pro = 0.705. 
 
ANALYSIS: (a) For the water-air condition, the overall coefficient, Eq. 11.1, based upon the outer area 
can be expressed as the sum of the thermal  resistances due to convection (cv), tube wall conduction (w) 
and fouling (f): 
 
 o o tot cv,i f ,i w f ,o cv,o1 U A R R R R R R= = + + + +  
 
 cv,i i i cv,o o oR 1 h A R 1 h A= =  
 
 f ,i f ,i i f ,o f ,o oR R A R R A′′ ′′= =  
 
and from Eq. 3.33, 
 
 ( ) ( )w o i wR ln D D 2 Lkπ=  
 
The convection coefficients can be estimated from appropriate correlations.   

Continued... 
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Estimating ih :  For internal flow, characterize the flow evaluating thermophysical properties at Tm,i with 

 m,i i
D,i 4 2 3i

u D 0.5m s 0.022mRe 28,625
3.746 10 N s m 974.8kg mν −

×
= = =

× ⋅
 

For the turbulent flow, use the Dittus-Boelter correlation, Eq. 8.60, 

 0.8 0.3
D,i D,i iNu 0.023Re Pr=  

 ( ) ( )0.8 0.3
D,iNu 0.023 28,625 2.354 109.3= =  

 2 2
i D,i i ih Nu k D 109.3 0.668W m K 0.022m 3313W m K= = × ⋅ = ⋅  

 
Estimating ho :  For external flow, characterize the flow with 
 

 o o
D,o 6 2o

V D 20m s 0.027mRe 31,124
17.35 10 m sν −

×
= = =

×
 

 
evaluating thermophysical properties at Tf,o = (Ts,o + To)/2 when the 
surface temperature is determined from the thermal circuit analysis 
result, 
 
 ( ) ( )m,i o tot s,o o cv,oT T R T T R− = −  
 
Assume Tf,o = 315 K, and check later.  Using the Churchill-Bernstein 
correlation, Eq. 7.54, find 
 

( )

4 /51/ 2 1/ 3 5/8
oD,o D,o

D,o 1/ 42 /3
o

0.62Re Pr Re
Nu 0.3 1

282,000
1 0.4 Pr

⎡ ⎤⎛ ⎞⎢ ⎥= + + ⎜ ⎟⎢ ⎥⎝ ⎠⎡ ⎤ ⎣ ⎦+⎢ ⎥⎣ ⎦

  

 
( ) ( )

( )

4 /51/ 2 1/ 3 5/8
D,o 1/ 42 /3

0.62 31,124 0.705 31,124Nu 0.3 1
282,000

1 0.4 0.705

⎡ ⎤⎛ ⎞⎢ ⎥= + + ⎜ ⎟⎢ ⎥⎝ ⎠⎡ ⎤ ⎣ ⎦+⎢ ⎥⎣ ⎦

 

 D,oNu 102.6=  

 D,oo o oh Nu k D 102.6 0.02737 W m K 0.027m 104.0 W m K= = × ⋅ = ⋅  

Using the above values for ih , and oh , and other prescribed values, the thermal resistances and overall 
coefficient can be evaluated and are tabulated below. 
 

Rcv,i Rf,i Rw Rf,o Rcv,o Uo Rtot 
(K/W) (K/W) (K/W) (K/W) (K/W) (W/m2⋅K) (K/W) 

0.00436 0.00578 0.00216 0.00236 0.1134 92.1 0.128 
 
The major thermal resistance is due to outside (air) convection, accounting for 89% of the total resistance.  
The other thermal resistances are of similar magnitude, nearly 50 times smaller than Rcv,o.  
(b) For the water-water condition, the method of analysis follows that of part (a).  For the internal flow, 
the estimated convection coefficient is the same as part (a).  For an assumed outer film coefficient, f ,oT = 

292 K, the convection correlation for the outer water flow condition Vo = 1 m/s and To = 15°C, 
     Continued... 



 
PROBLEM 11.2 (Cont.) 

 
find 

 2
D,o D,o oRe 26, 260 Nu 220.6 h 4914 W m K= = = ⋅  

 
The thermal resistances and overall coefficient are tabulated below. 
 

Rcv,i Rf,i Rw Rf,o Rcv,o Rtot Uo 
(K/W) (K/W) (K/W) (K/W) (K/W) (K/W) (W/m2⋅K) 

0.00436 0.00579 0.00216 0.00236 0.00240 0.0171 691 
 
Note that the thermal resistances are of similar magnitude.  In contrast with the results for the water-air 
condition of part (a), the thermal resistance of the outside convection process, Rcv,o, is nearly 50 times 
smaller.  The overall coefficient for the water-water condition is 7.5 times greater than that for the water-
air condition. 
 
(c) For the water-air condition, using the IHT workspace with the analysis of part (a), Uo was calculated 
as a function of the air cross-flow velocity for selected mean water velocities. 

Water (i) - air (o) condition

5 10 15 20 25 30

Air velocity, Vo (m/s)

40

60

80

100

120

U
o 

(W
/m

^2
.K

)

Water mean velocity, umi = 0.2 m/s
umi = 0.5 m/s
umi = 1.0 m/s  

The effect of increasing the cross-flow air velocity is to increase Uo since the Rcv,o is the dominant thermal 
resistance for the system.  While increasing the water mean velocity will increase ih , because Rcv,i << 
Rcv,o, this increase has only a small effect on Uo. 
 
(d) For the water-water condition, using the IHT workplace with the analysis of part (b), Uo was 
calculated as a function of the mean water velocity for selected air cross-flow velocities. 

Water (i) - water (o) condition

0.5 1 1.5 2 2.5

Water mean velocity, umi (m/s)

600

700

800

900

1000

 U
o 

(W
/m

^2
.K

)

Air velocity, Vo = 1 m/s
Vo = 3 m/s
Vo = 8 m/s  

Because the thermal resistances for the convection processes, Rcv,i and Rcv,o, are of similar magnitude 
according to the results of part (b), we expect to see Uo significantly increase with increasing water mean 
velocity and air cross-flow velocity. 



PROBLEM 11.3 
 

KNOWN: Inner and outer diameters of tubes in shell-and-tube heat exchanger.  Inner and outer 
heat transfer coefficients.  Properties of plastic and metal candidate wall materials. 
 
FIND: (a) Ratio of surface areas for the two materials for the same heat transfer rate, (b) Ratio of 
masses for the two materials, (c) Which tube material would be lower cost. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Steady-state conditions, (2) Negligible fouling. 
 
ANALYSIS: (a) From Eq. 11.14, the heat transfer rates will be the same for the two wall 
materials when UA is the same for both.  From Eq. 11.1, with no fouling or fins, and with the 
wall resistance given by Eq. 3.33, 
  

 ( )o i
conv,i w conv,o

i i w o o

ln(D / D )1 1 1 1 1R R R
UA h D 2 k h D L L

⎛ ⎞
′ ′ ′= + + = + +⎜ ⎟π π π⎝ ⎠

        (1) 

 
where  

conv,i 2i i

1 1R 0.0212 m K/W
h D 1500 W / m K 0.01 m

′ = = = ⋅
π ⋅ × π×

 

 

conv,o 2o o

1 1R 0.1447 m K/W
h D 200 W / m K 0.011 m

′ = = = ⋅
π ⋅ × π×

 

and 

 o i
w

w

ln(11/10) 0.0019 W / m K          metal alloyln(D / D ) 2 8 W / m KR
ln(11/10)2 k 0.0892 W / m K     plastic

2 0.17 W / m K

⎧ = ⋅⎪⎪ π× ⋅′ = = ⎨π ⎪ = ⋅
⎪ π× ⋅⎩

 

 
Thus, from Eq. (1), (UA)m = (UA)p implies the following ratio of areas, 
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Di = 10 mm

Do = 11 mm

hi = 1500 W/m2⋅K 

ho = 200 W/m2⋅K 

Metal alloy 
ρm = 8900 kg/m3 
km = 8 W/m⋅K 
 
or 
 
Plastic 
ρp = 1780 kg/m3 
kp = 0.17 W/m⋅K 
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p p conv,i w,p conv,o

m m conv,i w,m conv,o

A L R R R
A L R R R

0.0212 m K/W 0.0892 m K/W 0.1447 m K/W
0.0212 m K/W 0.0019 m K/W 0.1447 m K/W

+ +
= =

+ +

⋅ + ⋅ + ⋅
=

⋅ + ⋅ + ⋅

 

 
p

m

A
1.52

A
=                  < 

 
(b) The mass ratio is found as follows, 
 

3p p p
3m m m

m A 1780 kg / m 1.52 0.304
m A 8900 kg / m

ρ
= = =
ρ

             < 

 
(c) The cost ratio is                
 

p p

m m

C m 1 0.304 0.10
C 3m 3

= = =  

The plastic should be specified on the basis of cost.              < 
 
COMMENTS: (1) Because of its lower thermal conductivity, the plastic heat exchanger wall 
requires 50% more surface area than the metal wall.  Nonetheless, it is 70% lighter and 90% less 
expensive.  (2) Plastic heat exchanger components must operate at temperatures below their glass 
transition point, which for PVDF is approximately 160°C.  If the plastic heat exchanger is 
operated above the glass transition temperature, it will soften and lose all structural rigidity.  (3) 
The cost-based selection of the material will change depending on the values of the inside and 
outside heat transfer coefficients.  For example, as the inside and outside heat transfer coefficients 
approach infinity, the metal core should be selected on the basis of cost.  For applications 
involving condensation or boiling, the heat transfer coefficients will depend strongly on the tube 
material, as discussed in Chapter 10. 
 



PROBLEM 11.4  
KNOWN:  Dimensions of heat exchanger tube with or without fins.  Cold and hot side convection 
coefficients.  
FIND:  Cold side overall heat transfer coefficient without and with fins.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible fouling, (2) Negligible contact resistance between fins and tube 
wall, (3) hh is not affected by fins, (4) One-dimensional conduction in fins, (5) Adiabatic fin tip. 
 
ANALYSIS:  From Eq. 11.1, 

 
( )

( )
( )

i o i c
c o oc h

D ln D / D A1 1
U h 2k hAη η

= + +  

Without fins: o,c o,h 1η η= =  

 
( ) ( )

2 2c

0.02m ln 26 / 201 1 1 20
U 100 W / m K 268000 W / m K 200 W / m K

= + +
⋅⋅ ⋅

 

 ( )4 5 3 2 3 2
c1/ U 1.25 10 5.25 10 3.85 10 m K / W 4.02 10 m K / W− − − −= × + × + × ⋅ = × ⋅  

 2
cU 249 W / m K.= ⋅          < 

With fins: ( )( )o,c o,h f f1, 1 A / A 1η η η= = − −   Per unit length along the tube axis, 

 ( ) ( )f fA N 2L t 16 30 2 mm 512 mm= + = + =  

 ( ) ( )h f oA A D 16t 512 81.7 32 mm 561.7 mmπ= + − = + − =  

With ( ) ( )1/ 21/ 2 2 1m 2h / kt 400 W / m K / 50 W / m K 0.002m 63.3m−= = ⋅ ⋅ × =  

 ( )( )1
fmL 63.3m 0.015m 0.95−= =  

and Eq. 11.4 yields 
 ( )f f ftanh mL / mL 0.739 / 0.95 0.778.η = = =  
The overall surface efficiency is then 
 ( )( ) ( )( )o f h f1 A / A 1 1 512 / 561.7 1 0.778 0.798.η η= − − = − − =  

Hence
( )

( )
4 5 2 4 2

c

201 1.25 10 5.25 10 m K / W 8.78 10 m K / W
U 0.798 200 561.7

π− − −⎛ ⎞
= × + × + ⋅ = × ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
 2

cU 1138 W / m K.= ⋅         < 



PROBLEM 11.5  
KNOWN:  Geometry of finned, annular heat exchanger.  Gas-side temperature and convection 
coefficient.  Water-side flowrate and temperature.  
FIND:  Heat rate per unit length.  
SCHEMATIC:   
 

 
 
 
 
 

Do = 60 mm 
Di,1 = 24 mm 
Di,2 = 30 mm 
t = 3 mm = 0.003m 
L = (60-30)/2 mm = 0.015m 

ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) One-dimensional 
conduction in strut, (4) Adiabatic outer surface conditions, (5) Negligible gas-side radiation, (6) Fully-
developed internal flow, (7) Negligible fouling. 
 
PROPERTIES:  Table A-6, Water (300 K):  k = 0.613 W/m⋅K, Pr = 5.83, μ = 855 × 10-6 N⋅s/m2. 
 
ANALYSIS:  The heat rate is 
 ( ) ( )m,h m,ccq UA T T= −  

where 
 ( ) ( ) ( )w oc c h1/ UA 1/ hA R 1/ hAη= + +  
 

 
( ) ( )

( )
i,2 i,1 4

w
ln D / D ln 30 / 24

R 7.10 10 K / W.
2 kL 2 50 W / m K lmπ π

−= = = ×
⋅

 

 
With 

 
( )

D 6 2i,1

4m 4 0.161 kg / sRe 9990
D 0.024m 855 10 N s / mπ μ π −

×
= = =

× ⋅

&
 

internal flow is turbulent and the Dittus-Boelter correlation gives 
 

( ) ( ) ( )4 / 5 0.44 / 5 0.4 2
c i,1 D

0.613 W / m K
h k / D 0.023Re Pr 0.023 9990 5.83 1883 W / m K

0.024m
⋅

= = = ⋅⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 ( ) ( ) 11 2 3
chA 1883 W / m K 0.024m 7.043 10 K / W.π

−− −= ⋅ × × = ×  
 
Find the fin efficiency as 
 ( )( )o f f1 A / A 1η η= − −  

 ( ) ( ) 2
fA 8 2 L w 8 2 0.015m 1m 0.24m= × ⋅ = × × =  

 ( ) ( )2 2
f i,2A A D 8t w 0.24m 0.03m 8 0.003m 0.31m .π π= + − = + × − × =  

 
Continued… 



PROBLEM 11.5 (Cont.) 
 
From Eq. 11.4, 
 

 
( )

f
tanh mL

mL
η =  

 
where 
 

 [ ] ( )
1/ 21/ 2 2 1m 2h / kt 2 100 W / m K / 50 W / m K 0.003m 36.5m−⎡ ⎤= = × ⋅ ⋅ =⎢ ⎥⎣ ⎦

 
 

 ( )1/ 2 1mL 2h / kt L 36.5m 0.015m 0.55−= = × =  
 

 ( )1/ 2tanh 2h / kt L 0.499.⎡ ⎤ =⎢ ⎥⎣ ⎦
 

 
Hence 
 
 f 0.499 / 0.55 0.911= =η  
 
 ( )( ) ( )( )o f f1 A / A 1 1 0.24 / 0.31 1 0.911 0.931= − − = − − =η η  
 

 ( ) ( ) 11 2 2
o hhA 0.931 100 W / m K 0.31m 0.0347 K / W.

−− = × ⋅ × =η  
 
Hence 
 

 ( ) ( )1 3 4
cUA 7.043 10 7.1 10 0.0347 K / W− − −= × + × +  

 
 ( )cUA 23.6 W / K=  
 
and 
 
 ( )q 23.6 W / K 800 300 K 11,800 W= − =       < 
 
for a 1m long section.  
COMMENTS:  (1) The gas-side resistance is substantially decreased by using the fins (Af >> πDi,2) 
and q is increased. 
 
(2) Heat transfer enhancement by the fins could be increased further by using a material of larger k, 
but material selection would be limited by the large Tm,h. 



PROBLEM 11.6  
KNOWN:  Condenser arrangement of tube with six longitudinal fins (k = 200 W/m⋅K).  Condensing 
refrigerant at temperature 45°C flows axially through inner tube while water flows at 0.012 kg/s and 
15°C through the six channels formed by the splines.  
FIND:  Heat removal rate per unit length of the exchanger.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) No heat loss/gain to the surroundings, (2) Water is incompressible liquid with 
negligible viscous dissipation, (3) Negligible thermal resistance on condensing refrigerant side, hi → 
∞, (4) Water flow is fully developed, (5) Negligible thermal contact between splines and inner tube, 
(6) Heat transfer from outer tube negligible. 
 
PROPERTIES:  Table A-6, Water ( Tc  = 15°C = 288 K): ρ = 1000 kg/m3, k = 0.595 W/m⋅K, ν = μ/ρ 

= 1138 × 10-6 N⋅s/m2/1000 kg/m3 = 1.138 × 10-6 m2/s, Pr = 8.06; Tube fins (given): k = 200 W/m⋅K. 
 
ANALYSIS:  Following the discussion of Section 11.2, 
 

( )h cq UA T T′ ′= −      
 

 
( )h w c w

o c

1 1R R R R
UA hAη

′ ′ ′ ′= + + = +
′ ′

  

 
where hR 0,′ =  due to the negligible thermal resistance on the refrigerant side (h), and 

 
( ) ( )

( )
2 1 4

w
ln D / D ln 14 /10

R 2.678 10 m K / W.
2 k 2 200 W / m Kπ π

−′ = = = × ⋅
⋅

 

To estimate the thermal resistance on the water side (c), first evaluate the convection coefficient.  The 
hydraulic diameter for a passage, where Ac is the cross-sectional area of the passage is 

 
( ) ( )

( ) ( ) ( )

2 2
3 23 2c

h,c
2 3 3 2

4 D D / 4 6 D D t / 2 / 64AD
P D 6t / 6 D 6t / 6 2 D D / 2

π

π π

⎡ ⎤− − −⎢ ⎥⎣ ⎦= =
− + − + −

 

 

 
( ) ( )

( ) ( ) ( )

2 2 6 2

h,c 3

4 50 14 / 4 6 50 14 10 m / 6
D

14 6 2 / 6 50 6 2 / 6 50 14 10 m

π

π π

−

−

⎡ ⎤− − − ×⎢ ⎥⎣ ⎦=
⎡ ⎤− × + − × + − ×⎣ ⎦

 

 
4 2

h,c 2
4 2.656 10 mD 0.01622m.

6.551 10 m

−

−
× ×

= =
×

 

Hence the Reynolds number is 
          Continued … 



PROBLEM 11.6 (Cont.) 
 

 
( ) ( )3 4 2

D,c 6 2

0.012 kg / s / 6 / 1000 kg / m 2.656 10 m 0.01622m
Re 107

1.138 10 m / s

−

−

⎡ ⎤× × ×⎢ ⎥⎣ ⎦= =
×

 

 
and assuming the flow is fully developed, 

 c h,c
D,c

h D
Nu 3.66

k
= =  

 2
ch 3.66 0.595 W / m K / 0.01622 134 W / m K.= × ⋅ = ⋅  

The temperature effectiveness of the splines (fins) on the cold side is 

 ( )f ,c
o f

c

A
1 1

A
η η= − −  

where Af,c and Ac are, respectively, the finned and total (fin plus prime) surface areas, while 

 
( )

f
tanh mL

mL
η =  

 ( ) ( ) ( )
1/ 21/ 2 2 1

cm 2h / kt 2 134 W / m K / 200 W / m K 0.002m 25.88m−⎡ ⎤= = × ⋅ ⋅ × =⎢ ⎥⎣ ⎦
 

 
( )1

f 1

tanh 25.88m 0.018m 0.4348 0.934.
0.465825.88m 0.018m

η
−

−

×
= = =

×
 

Hence 

 
( )

( ) ( ) [ ]3 2
o f

3 2 2

6 D D
1 1

6 D D D 6t
η η

π
−

= − −
− + −

 

 
( )

( ) ( ) ( )o
6 50 14

1 1 0.934 0.943
6 50 14 14 6 2

η
π

−
= − − =

− + − ×
 

 
( ) ( )[ ]

2
2 3o c

1 1
3.22 10 m K / W

hA 0.943 134 W / m K 6 50 14 14 6 2 10 mη π

−
−

= = × ⋅
′ × ⋅ − + − × ×

 

and the heat rate is 

 
( )

h c
w o c

T Tq
R 1/ hAη

−′ =
′ ′+

 

 

 
( )

4 2
45 15 K

q 924 W / m.
2.678 10 m K / W 3.22 10 m K / W− −

−
′ = =

× ⋅ + × ⋅
   < 

 
COMMENTS:  (1) The effective length of the fin representing the splines was conservatively 
estimated.  The heat transfer by conduction through the splines to the outer tube and then by 
convection to the water was ignored. 
 
(2) Without the splines, find Dh = (D3 –D2) = 36 mm so that hc = 60.5 W/m2⋅K.  The heat rate with 

c 2A Dπ′ =  is 
 
 ( )( ) ( )( )2

c h cq hA T T 60.5 W / m K 0.014 m 45 15 K 79 W / m.π′ ′= − = ⋅ − =  
 
The splines enhance the heat transfer rate by a factor of 924/79 = 11.7. 



PROBLEM 11.7  
KNOWN:  Number, inner and outer diameters, and thermal conductivity of condenser tubes.  
Convection coefficient at outer surface.  Overall flow rate, inlet temperature and properties of water 
flow through the tubes.  Flow rate and pressure of condensing steam.  Fouling factor for inner surface.  
FIND:  (a) Overall coefficient based on outer surface area, Uo, without fouling, (b) Overall coefficient 
with fouling, (c) Temperature of water leaving the condenser.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Water is incompressible with negligible viscous dissipation, (2) Fully-
developed flow in tubes, (3) Negligible effect of fouling on Di.  
PROPERTIES:  Water (Given):  cp = 4180 J/kg⋅K, μ = 9.6 × 10-4 N⋅s/m2, k = 0.60 W/m⋅K, Pr = 6.6.  
Table A-6, Water, saturated vapor (p = 0.0622 bars):  Tsat = 310 K, hfg = 2.414 × 106 J/kg. 
 
ANALYSIS:  (a) Without fouling, Eq. 11.5 yields 
 

 
( )oo

o i i t o

D ln Do / DiDl l l
U h D 2 k h

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
 

 
With ( )i

4 2
D 1 iRe 4 m / D 1.60 kg / s / 0.025m 9.6 10 N s / m 21, 220,π μ π −= = × × × ⋅ =&  flow in the tubes is 

turbulent, and from Eq. 8.60  
 

( ) ( )
i

4 / 5 0.44 /5 0.4 2
i Di

k 0.60 W / m Kh 0.023Re Pr 0.023 21, 200 6.6 3400 W / m K
D 0.025m

⎛ ⎞ ⋅⎛ ⎞= = = ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

 

( ) 1
2

o
0.028ln 28 / 25l 28 l

U W / m K
3400 25 2 110 10, 000

−
= + + ⋅ =

×
⎡ ⎤⎛ ⎞

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

  ( ) 14 5 4 2 23.29 10 1.44 10 10 W / m K 2255 W / m K
−− − −× + × + ⋅ = ⋅   < 

 
(b) With fouling, Eq. 11.5 yields 

 ( ) ( )1 14 4 2
o f ,iU 4.43 10 Do / Di R 5.55 10 1800 W / m K

− −− −⎡ ⎤′′= × + = × = ⋅⎢ ⎥⎣ ⎦
  < 

(c) The rate at which energy is extracted from the steam equals the rate of heat transfer to the water, 
( )h fg c p m,o m,im h m c T T ,= −& &  in which case 

 
6h fg

m,o m,i
c p

m h 10 kg / s 2.414 10 J / kgT T 15 C 29.4 C
m c 400 kg / s 4180 J / kg K

× ×
= + = ° + = °

× ⋅

&

&
  < 

COMMENTS:  (1) The largest contribution to the thermal resistance is due to convection at the 
interior of the tube.  To increase Uo, hi could be increased by increasing 1m ,&  either by increasing cm&  

or decreasing N.  (2) Note that Tm,o = 302.4 K < Tsat = 310 K, as must be the case. 



PROBLEM 11.8 
 
KNOWN:  Diameter and inner and outer convection coefficients of a condenser tube.  Thickness, outer 
diameter, and pitch of aluminum fins. 
 
FIND:  (a) Overall heat transfer coefficient without fins, (b) Effect of fin thickness and pitch on overall 
heat transfer coefficient with fins. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Negligible tube wall conduction resistance, (2) Negligible fouling and fin contact 
resistance, (3) One-dimensional conduction in fin. 
 
PROPERTIES:  Table A.1, Aluminum (T = 300 K):  k = 237 W/m⋅K. 
 
ANALYSIS:  (a) With no fins, Eq. 11.1 yields 

 ( ) ( )1 11 1 4 2 2
i oU h h 2 10 0.01 W m K 98.0 W m K

− −− − −= + = × + ⋅ = ⋅  < 

(b) With fins and a unit tube length, Eqs. 11.1 and 11.3 yield 

 
i i i i o o o

1 1 1
U D h D h Aπ π η

= +
′

 

and ηo = 1 - ( )( )f o fA A 1 η′ ′ − .  The total fin surface area per unit length is ( )2 2
f oc iA N 2 r rπ′ ′= − , where 

the number of fins per unit length is N 1m / S(m)′ = .  The total outside surface area per unit length is oA′  
= fA′  + (1 - N t′ )πDi, and the fin efficiency is given by Eq. 3.96 or Fig. 3.20.   
 
For t = 0.0015 m and S = 0.0035 m, roc = (Do/2) + (t/2) = 0.01075 m, N′  ≈ 286, fA′  = 0.163 m2/m, and 

oA′  = (0.163 + 0.018) m2/m = 0.181 m2/m.  With roc/ri = 2.15, Lc = 0.00575 m, Ap = 8.625 × 10-6 m2, and   

3/ 2
cL ( )1/ 2

o ph kA  = 0.0964, Fig. 3.20 yields ηf ≈ 0.99.  Hence, ηo ≈ 1 - (0.163/0.181)(0.01) = 0.99 

and 

 ( ) ( ) 1
i i i o o oU 1 h D h Aπ η −′⎡ ⎤= +⎣ ⎦  

 
14 2 2 2 2

iU 2 10 m K W 0.01m 0.99 100 W m K 0.181m m 512 W m Kπ
−−= × ⋅ + × × ⋅ × = ⋅⎡ ⎤

⎣ ⎦ < 

We may use the IHT Extended Surface Model (Performance Calculations for a Circular Rectangular Fin 
Array) to consider the effect of varying t and S.  To maximize N′ , the minimum allowable value of  
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PROBLEM 11.8 (Cont.) 

 
S - t = 1.5 mm should be selected.  It is then a matter of choosing between a large number of thin fins or a 
smaller number of thicker fins.  Calculations were performed for the following options. 
 

t (mm) S (mm) ′N  Ui (W/m2⋅K) 
1 2.5 400 640 
2 3.5 286 512 
3 4.5 222 460 
4 5.5 182 420 

 
Since heat transfer increases with Ui, the best configuration corresponds to t = 1 mm and S = 2.5 mm, 
which provides the largest airside surface area. 
 
COMMENTS:  The best performance is always associated with a large number of closely spaced fins, so 
long as the flow between adjoining fins is sufficient to maintain the convection coefficient. 



PROBLEM 11.9  
KNOWN:  Operating conditions and surface area of a finned-tube, cross-flow exchanger.  
FIND:  Overall heat transfer coefficient.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Constant properties, (3) Exhaust gas 
properties are those of air. 
 
PROPERTIES:  Table A-6, Water ( )mT 87 C := °  pc 4203 J / kg K;= ⋅  Table A-4, Air 

( )mT 275 C :≈ °  pc 1040 J / kg K.= ⋅  
 
ANALYSIS:  Since this is a cross-flow heat exchanger, we will use the ε – NTU method, for which 
 c c p,cC  = m c = 0.5 kg/s × 4203 J/kg K = 2102 W/K⋅&  

 h h p,hC  = m c = 2 kg/s × 1040 J/kg K = 2080 W/K⋅&  

 r min maxC C / C 0.990= =  

 5
max min h,i c,iq  = C (T  - T ) = 2080 W/K (325 - 25)°C = 6.24 × 10  W  

 5
c c,o c,iq = C (T  - T ) = 2102 W/K (150 - 25)°C = 2.63 × 10  W  

 Thus 
 maxq / q 0.421ε = =  
 
and from Figure 11.14 or solving Eq. 11.32 iteratively for NTU,  
  

NTU = 0.81 
and  

 U=CminNTU/A = 2080 W/K × 0.81/10 m2 =168 W/m2·K     < 
  
COMMENTS:  The hot outlet temperature is found from q = Ch (Th,i – Th,o) to be 199°C,  thus 
properties of the hot fluid should be evaluated at around 262°C.  This will have little effect since cp is 
not a strong function of temperature for water.  



PROBLEM 11.10  
KNOWN:  Heat exchanger with two shell passes and eight tube passes having an area 925m2; 45,500 
kg/h water is heated from 80°C to 150°C; hot exhaust gases enter at 350°C and exit at 175°C.  
FIND:  Overall heat transfer coefficient.  
SCHEMATIC:   
 

 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Negligible losses to surroundings, (2) Constant properties, (3) Exhaust gas 
properties are approximated as those of atmospheric air. 
 
PROPERTIES:  Table A-6, Water ( )( )cT 80 150 C / 2 388K := + ° =  cc = cp,f = 4236 J/kg⋅K. 
 
ANALYSIS:  Since this is a shell-and-tube heat exchanger, we will use the ε - NTU method, for 
which 

 4
c c c

45,500 kg/hC  = m c  =  × 4236 J/kg K = 5.35 × 10  W/K
3600 s/h

⋅&  

 4 6
c c,o c,iq = C (T T ) = 5.35 × 10  W/K (150 80)°C = 3.75 × 10  W− −  

 
Then we can find Ch from an energy balance on the hot stream, 
 6 4

h h,i h,oC  = q/(T T ) = 3.75 × 10  W/(350 175)°C = 2.14 × 10  W/K− −  
Thus 
 Cr = Cmin/Cmax = 0.40 
 6 4

min h,i c,iε = q/C (T T ) = 3.75 × 10  W/2.14 × 10  W/K (350 80)°C = 0.648− −  
 
From Eqs. 11.31b and c, with n = 2,  

 
1/n

r
1

r

εC 1 F 1F =  = 1.45,     ε  =  = 0.429
ε 1 F C

− −⎛ ⎞
⎜ ⎟− −⎝ ⎠

 

 
From Eqs. 11.30c and 11.30b, 

 1 r
2 1/2
r

2/ε (1 + C )E =  = 3.0
(1 + C )

−  

 (NTU)1 = –(1 + 2 1/ 2
r

E 1C ) ln 0.637
E 1

− −⎡ ⎤ =⎢ ⎥+⎣ ⎦
 

and from Eq. 11.31d, 
 NTU = n(NTU)1 = 1.27 
 
Therefore, 

 U = NTU × Cmin/A = 1.27 × 2.14 × 104 W/K/(925 m2) = 29.5 W/m2·K   < 
 
COMMENTS:  Compare the above result with representative values for air-water exchangers, as 
given in Table 11.2.   

55



PROBLEM 11.11 
 
KNOWN: Geometry of heat exchanger made from extruded polypropylene sheets.  Thermal 
conductivity of polypropylene.  Temperature, pressure, and velocity, of air and carbon dioxide 
flowing in channels. 
 
FIND: Product of overall heat transfer coefficient and surface area, UA, for 200 cool and 200 
warm channels. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Constant properties and steady-state conditions, (2) Density of air and CO2 
is proportional to pressure, (3) Wall temperature is approximately uniform along channels, (4) 
Thermal resistance at welded interface is negligible, (5) Channel walls can be treated as fins. 
 
PROPERTIES: Table A.5, Air: (Tm,h = 303 K, p = 2 atm): kh = 0.0265 W/m⋅K, cp,h = 1007 
J/kg⋅K, μh = 186 × 10-7 N⋅s/m2, Prh = 0.707, ρh = 2.303 kg/m3: CO2 (Tm,c = 283 K): kc = 0.0154 
W/m⋅K, cp,c = 833 J/kg⋅K, μc = 141 × 10-7 N⋅s/m2, Prc = 0.765, ρc = 3.76 kg/m3.  Polypropylene 
(given): kp = 0.17 W/m⋅K. 
 
ANALYSIS: We begin by finding the heat transfer coefficients for air and CO2.  In both cases, 
the hydraulic diameter is Dh = 4Ac/P = 4×11×4/(2(11+4) mm = 5.87 mm.  The Reynolds number 
for air is 

 
3h m,h h

D,h 7 2h

u D 2.303 kg / m 0.2 m / s 0.00587 mRe 145
186 10  N s / m−

ρ × ×
= = =

μ × ⋅
 

 
A similar calculation for CO2 gives ReD,c = 156, thus both flows are laminar.  From Table 8.1, 
assuming uniform wall temperature and interpolating for an aspect ratio of (d-c)/a = 2.75, we find 
NuD = 3.82.  Then for air, 
 

Continued… 
 

Sheet N           N+1               N+2               N+3

CO2
Tm,c = 10°C, p = 2 atm
um = 0.1 m/s Welded Interface

d = 15 mm
c = 4 mm

a = 4 mm

b = 4 mm

Polypropylene
k = 0.17 W/m⋅K

Air
Tm,h = 30°C, p = 2 atm
um = 0.2 m/s

Sheet N           N+1               N+2               N+3

CO2
Tm,c = 10°C, p = 2 atm
um = 0.1 m/s Welded Interface

d = 15 mm
c = 4 mm

a = 4 mm

b = 4 mm

Polypropylene
k = 0.17 W/m⋅K

Air
Tm,h = 30°C, p = 2 atm
um = 0.2 m/s



PROBLEM 11.11 (Cont.) 
 

2
h D,h h hh Nu k / D 3.82 0.0265 W / m K / 0.00587 m 17.2 W/m K= = × ⋅ = ⋅  

And a similar calculation for CO2 yields hc = 10.0 W/m2⋅K.   
 
Focusing on one vertical wall of thickness c in the schematic above, we see that it has fins 
extending to the right and left into the two fluids.  By symmetry, the midpoint of those fins is an 
adiabat, and we can treat the fins as having length L = (d-c)/2 = 5.5 mm, with an insulated tip.  
We will use Eq. 11.1 for UA, with Eqs. 11.3 and 11.4 for the fin efficiency.  Note that for 
channels of length w, P/Ac = 2(w+b)/wb ≈ 2/b.  For air, 
 

2
1h h

h
p c p

-1
h

f ,h h h

h P 2h 2 17.2 W/m Km 225 m
k A k b 0.17 W / m K 0.004 m

m L 225 m 0.0055 m 1.24
tanh(m L) / m L tanh(1.24) /1.24 0.682

−× ⋅
= = = =

⋅ ×

= × =
η = = =

 

 
Then Af/A = 2L/(2L + a) = 0.733 and 
 

f
o,h f ,h

A1 (1 ) 1 0.733(1 0.682) 0.767
A

η = − − η = − − =  

A similar calculation for CO2 yields o,c 0.839η = .  Finally, we use Eq. 11.1 to calculate UA.  
Note that for N = 200 channels (and N fins) of depth w, A = 2LwN + awN =  3w m2 and Aw = 
(a+b)wN = 1.6w m2.  Thus, for a unit length of the heat exchanger (w = 1 m), 
 

o c p w o c

2 2 2 2 2

1 1 c 1
UA ( hA) k A ( hA)

1 0.004 m 1
0.839 10.0 W / m K 3 m 0.17 W / m K 1.6 m 0.767 17.2 W / m K 3 m

= + +
η η

= + +
× ⋅ × ⋅ × × ⋅ ×

  

UA = 12.6 W/m2⋅K                 < 
 
COMMENTS: (1) The product of the overall heat transfer coefficient and the heat transfer area 
is not large, but the design enables production of a compact heat exchanger that is not prone to 
corrosion and can be constructed at low cost.  (2) The low thermal conductivity of the “fins” may 
result in significant temperature variation across their thickness, rendering the assumption of one-
dimensional heat transfer in these extended surfaces invalid.  (3) The contact resistance at the 
welded interfaces may not be negligible.  In this case the system is not symmetric about the 
channel centerlines.  (4) A numerical solution could account for two-dimensional conduction and 
address the considerations of Comments 2 and 3.  (5) The thermal boundary condition at the 
channel boundaries is neither constant temperature nor constant heat flux.  (6) Polypropylene is a 
semitransparent material (see Chapter 12) and radiation transfer may occur between the two 
gases. Since the temperatures are relatively low and the convective heat transfer coefficient is 
relatively high, radiation heat transfer will not be significant. 



PROBLEM 11.12  
KNOWN:  Properties and flow rates for the hot and cold fluid of a heat exchanger. 
 
FIND:  Which fluid limits the heat transfer rate of the exchanger? 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, and (3) Negligible losses to 
the surroundings. 
 
ANALYSIS:  The properties and flow rates for the hot and cold fluid of the heat exchanger are 
tabulated below. 
       Cold fluid  Hot fluid  
 Density, kg/m3         997      1247 
 Specific heat, J/kg⋅K       4179      2564 
 Thermal conductivity, W/m⋅K     0.613     0.287 
 Viscosity, N⋅s/m2    8.55 × 10-4  1.68 × 10-4 
 Flow rate, m3/h           14          16 
 
The fluid which limits the heat transfer rate of the exchanger is the minimum fluid, 
C m cmin min= ⋅& .b g   For the hot and cold fluids, find 

 

 C m  c  m h 1247 kg / m  J / kg K 1h / 3600s  kW / Kh h h
3 3= = × × ⋅ × =& / .16 2564 14 21b g  

 

 C m  c  m h 997 kg / m  J / kg K 1h / 3600s  kW / Kc c c
3 3= = × × ⋅ × =& / .14 4179 16 20b g  

 
Hence, the hot fluid is the minimum fluid, 
 

 C Cmin h=           < 
 
For any exchanger, the heat rate is q = ε qmax, where ε depends upon the exchanger type.  The 
maximum heat rate is qmax = Cmin (Th,i - Tc,i).  Hence, it is the conditions for the minimum fluid that 
limit the performance of the exchanger. 
 



PROBLEM 11.13  
KNOWN:  Process (hot) fluid having a specific heat of 3500 J/kg⋅K and flowing at 2 kg/s is to be 
cooled from 80°C to 50°C with chilled-water (cold fluid) supplied at 2.5 ks/g and 15°C assuming an 
overall heat transfer coefficient of 2000 W/m2⋅K. 
 
FIND:  The required heat transfer areas for the following heat exchanger configurations; (a) 
Concentric tube (CT) - parallel flow, (b) CT - counterflow, (c) Shell and tube, one-shell pass and 2 
tube passes; (d) Cross flow, single pass, both fluids unmixed.  Use the IHT Tools | Heat Exchanger 
models as your solution tool.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible losses to the surroundings, (3) Overall 
heat transfer coefficient remains constant with different configurations, and (4) Constant properties.  
ANALYSIS:  The IHT Tools | Heat Exchanger models are based upon the effectiveness-NTU method 
and suited for design-type problems.  The table below summarizes the results of our analysis using the 
IHT models including model equations, figures, and the required heat transfer area.  The cold fluid 
outlet temperature for all configurations is Tc,o = 35.1°C.  The IHT code for the concentric tube, 
parallel flow heat exchanger is provided in the Comments. 
 

Heat exchanger type     Eqs.    Figs  A(m2) 
 

(a)  CT -Parallel flow   11.28b  11.10    3.09 
(b)  CT -Counterflow   11.29b  11.11    2.64 
(c)  Shell and tube (1 - sp, 2 - tp) 11.30b  11.12    2.83 
(d)  Crossflow (1 - p, unmixed)  11.32  11.14    2.84  

COMMENTS:  (1) Referring to the tabulated results, note that for the concentric tube exchangers, the 
area required for parallel flow is 17% larger than for counterflow.  Under what circumstances would 
you choose  to use the PF arrangement if the area has to be significantly larger? 
 
(2) The shell-tube and crossflow exchangers require nearly the same heat transfer area.  What are other 
factors that might influence your decision to select one type over the other for an application? 
 
(3) Based upon area considerations only, the CF arrangement requires the smallest heat transfer area.  
What practical issues need to be considered in making a CF heat exchanger with a 2.6 m2 area? 
 
          Continued … 



PROBLEM 11.13 (Cont.) 
 
(4) The IHT code used for the concentric tube, parallel flow heat exchanger is shown below.  Note the 
use of the water property function, cp_Tx, and the intrinsic function, Tfluid_avg, to provide the 
specific heat at the mean water (cold fluid) temperature. 
 
 
 /” Results - energy balance only 
 Cc  Ch  Tco cc q Tci Thi Tho ch 
 1.045E4  7000  35.1 4180 2.1E5 15 80 50 3500*/ 
 
 /” Results of sizing 
 A CR NTU eps 

3.87   0.6699 0.882 0.4615    */ 
 
 // Design conditions 
 Thi = 80 
 Tho = 50 
 mdoth = 2 
 ch = 3500 
 mdotc = 2.5 
 Tci = 15 
 U = 2000 
 
 // For the parallel-flow, concentric-tube heat exchanger, 
 // For the parallel-flow, concentric-tube heat exchanger, 
 NTU = -ln(1 - eps * (1 + Cr))/(1 + Cr)  // Eq 11.28b 
 // where the heat-capacity ratio is 
 Cr = Cmin/Cmax 
 // and the number of transfer units, NTU, is 
 NTU = U * A/Cmin    // Eq 11.24 
 // The effectiveness is defined as 
 eps = q/qmax 
 qmax = Cmin * (Thi - Tci)   // Eq 11.18, 11.19 
 // See Tables 11.3 and 11.4 and Fig 11.14 
 
 // Energy balances 
 q = Cc * (Tco - Tci) 
 q = Ch * (Thi - Tho) 
 Cc = mdotc * cc 
 Ch = mdoth * ch 
 Cmin = Ch 
 Cmax = Cc 
 
 // Water property functions: T dependence, From Table A.6 
 // Units: T(K), p(bars): 
 xc = 0     // Quality (0=sat liquid or 1-sat vapor) 
 cc = cp_Tx(“Water”, Tcm,xc)   // Specific heat, J/kg⋅K 
 Tcm = Tfluid_avg(Tci, Tco)   // Mean temperature; K; intrinsic function 
 
  
 
 
 



PROBLEM 11.14  
KNOWN:  A shell and tube Hxer (two shells, four tube passes) heats 10,000 kg/h of pressurized water 
from 35°C to 120°C with 5,000 kg/h water entering at 300°C.  
FIND:  Required heat transfer area, As.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Constant properties. 
 
PROPERTIES:  Table A-6, Water ( )cT 350 K :=  cp = 4195 J/kg⋅K; Table A-6, Water (Assume Th,o ≈ 

150°C, hT  ≈ 500 K): cp = 4660 J/kg⋅K. 
 
ANALYSIS:  For a shell and tube heat exchanger, we use the ε – NTU method.  An energy balance 
on the cold fluid yields 

( ) ( ) 5
c p,c c,o c,i

10,000 kg / h Jq m c T T 4195 120 35 K 9.905 10 W.
3600 s / h kg K

= − = × − = ×
⋅

&  

An energy balance on the hot fluid yields 
5

h,o h,i h p,h
5000 kg JT T q / m c 300 C 9.905 10 W / 4660 147 C.
3600 s kg K

= − = ° − × × = °
⋅

&  

Thus hT = (300 + 147)°C/2 = 497 K is the proper temperature for evaluating properties of the hot 
fluid.  Then 

c c p,c
10,000 kg/hC  = m c =  × 4195 J/kg K = 11,650 W/K

3,600 s/h
⋅&  

 h h p,h
5,000 kg/hC  = m c =  × 4660 J/kg K = 6470 W/K
3,600 s/h

⋅&  

 r min maxC C / C 6470 /11,650 0.555= = =  

 6
max min h,i c,iq  = C (T  - T ) = 6470 W/K (300 - 35)°C = 1.75 × 10  W  

5 6
maxq / q 9.905 10  W /1.72 10  W 0.577ε = = × × =  

 
From Eqs. 11.31c, 11.31b, and 11.30c, with n =2, 

 
1/n

r
1

r

εC 1 F 1F =  = 1.27,     ε  =  = 0.376
ε 1 F C

− −⎛ ⎞
⎜ ⎟− −⎝ ⎠

 

 1 r
2 1/2
r

2/ε (1 + C )E =  = 3.29
(1 + C )

−  

 
then from Eqs. 11.30b and 11.31d,  

 NTU = n (NTU)1 = –n (1 + 2 1/ 2
r

E 1C ) ln 1.10
E 1

− −⎡ ⎤ =⎢ ⎥+⎣ ⎦
 

Finally, 

  A = NTU × Cmin/U = (1.10 × 6470 W/K)/(1500 W/m2·K) = 4.75 m2   < 



PROBLEM 11.15  
KNOWN:  The shell and tube Hxer (two shells, four tube passes) of Problem 11.14, known to have an 
area 4.75m2, provides 95°C water at the cold outlet (rather than 120°C) after several years of 
operation.  Flow rates and inlet temperatures of the fluids remain the same.  
FIND:  The fouling factor, Rf.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Constant properties, (3) Thermal 
resistance for the clean condition is tR′′  = (1500 W/m2⋅K)-1. 
 
PROPERTIES:  Table A-6, Water ( cT  ≈ 338 K): cp = 4187 J/kg⋅K; Table A-6, Water (Assume Th,o ≈ 

190°C, hT  ≈ 520 K): cp = 4840 J/kg⋅K. 
 
ANALYSIS:  The overall heat transfer coefficient can be expressed as 
 ( )t f f tU 1/ R R or R 1/ U R′′ ′′ ′′ ′′= + = −    (1) 

where tR′′  is the thermal resistance for the clean condition and fR′′ , the fouling factor, represents the 
additional resistance due to fouling of the surface.  We use the ε – NTU method as follows, 

4
c c p,c

10,000 kg/hC  = m c =  × 4187 J/kg K = 1.16  10  W/K
3,600 s/h

⋅ ×&  

 3
h h p,h

5,000 kg/hC  = m c =  × 4840 J/kg K = 6.72 10   W/K
3,600 s/h

⋅ ×&  

 r min maxC C / C 0.578= =  

 3 6
max min h,i c,iq  = C (T  - T ) = 6.72 10  W/K (300 35)°C = 1.78 × 10  W× −  

 4 5
c c,o c,iq = C (T  - T ) = 1.16  10  W/K (95 35)°C = 6.98 × 10  W× −  

maxq / q 0.392ε = =  
 

Note, that Th,o = Th,i – q/ Ch = 196°C, so properties should be evaluated at 

h h,i h,oT (T T ) / 2 248°C 521 K,= + = = very close to the assumed value.  From Eqs. 11.31 and 11.30, 
with n =2, 

 
1/n

r
1

r

εC 1 F 1F =  = 1.13,     ε  =  = 0.232,
ε 1 F C

− −⎛ ⎞
⎜ ⎟− −⎝ ⎠

 

 1 r
2 1/2
r

2/ε (1 + C )E =  = 6.09
(1 + C )

−  

 NTU = –n (1 + 2 1/ 2
r

E 1C ) ln 0.574
E 1

− −⎡ ⎤ =⎢ ⎥+⎣ ⎦
 

Continued… 



PROBLEM 11.15 (Cont.) 
 
Thus, 
  U = NTU × Cmin/A = (0.574 × 6.72 × 103 W/K)/(4.75 m2) = 813 W/m2·K  
 
From Eq. (1), the fouling factor is 

 4 2
f 2 2

1 1R 5.64 10 m K / W.
813 W / m K 1500 W / m K

−′′ = − = × ⋅
⋅ ⋅

   < 

 
COMMENTS:  Note that the effect of fouling is to nearly double (Uclean/Ufouled = 1500/813 ≈ 1.9) 
the resistance to heat transfer.  Note also the assumption for Th,o used for property evaluation is 
satisfactory. 



PROBLEM 11.16 
 

 
KNOWN:  Inlet and outlet temperatures of hot and cold fluid streams in a concentric tube heat 
exchanger. 
 
FIND:  Whether the heat exchanger is operated in counter- or parallel flow, heat exchanger 
effectiveness, heat exchanger NTU. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Negligible heat transfer between the heat exchanger and the surroundings, (2) 
Constant properties. 
 
ANALYSIS:   The heat exchanger must be operating in a counterflow configuration because Th,o <  

Tc,o.            < 
 
From energy balances on each fluid, q = Ch(Th,i – Th,o) = Cc(Tc,o – Tc,i), from which 
 
 Ch/Cc= Cmin/Cmax = (Tc,o – Tc,i)/(Th,i – Th,o) = 25/90 = 0.278 and Cmin = Ch. 
 
From the definition of the effectiveness, q = εCmin(Th,i – Tc,i) = εCh(Th,i – Tc,i) = Ch(Th,o – Th,i) from 
which 
 

 ε = (Th,o – Th,i)/(Th,i – Tc,i) = 90/100 = 0.90      < 
 
From Fig. 11.11, NTU ≈ 2.8         < 
 
COMMENTS:  The NTU may also be found from Eq. 11.28b, yielding NTU = 2.79. 
 

Parallel flow?

Th,i = 200°C
Tc,i = 100°C

Th,o = 110°C

Tc,0 = 125°C

Counterflow?

Th,i = 200°C

Tc,i = 100°C

Th,o = 110°C

Tc,0 = 125°C

Parallel flow?

Th,i = 200°C
Tc,i = 100°C

Th,o = 110°C

Tc,0 = 125°C

Counterflow?

Th,i = 200°C

Tc,i = 100°C

Th,o = 110°C

Tc,0 = 125°C



PROBLEM 11.17 
 

 
KNOWN:  Inlet temperatures of pharmaceutical product and water in a concentric tube heat 
exchanger. Tube diameters and fluid velocities. 
 
FIND:  (a) Value of the overall heat transfer coefficient, U, (b) Mean outlet temperature of the 
pharmaceutical product for counterflow operation, (c) Mean outlet temperature of the pharmaceutical 
product for parallel-flow operation. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Negligible heat transfer between the heat exchanger and the surroundings, (2) 
Constant properties, (3) Negligible conduction resistance posed by the thin-walled inner tube, (4) 
Smooth tube surfaces. 
 
PROPERTIES: Pharmaceutical product (given): ν = 10 × 10-6 m2/s, k = 0.25 W/m⋅K, ρ = 1100 kg/m3 
and cp = 2460 J/kg⋅K. Table A.6, water ( hT = 50°C): ν = 5.54 × 10-7 m2/s, k = 0.643 W/m⋅K, ρ = 987.9 
kg/m3, Pr = 3.56 and cp = 4181 J/kg⋅K. 
 
ANALYSIS: (a) The Prandtl number of the pharmaceutical product is Prc = ρcpν/k = (1100 kg/m3 × 
2460 J/kg⋅K × 10 × 10-6 m2/s)/0.25 W/m⋅K = 108. The overall heat transfer coefficient is U = (1/hi + 
1/ho)-1. For the flow in the inner tube, ReDi = um,cDi/ν = (0.1 m/s × 0.01 m)/10 × 10-6 m2/s = 100. The 
thermal entrance length is xfd,t = 0.05ReDiPrDi = 0.05ReDi(ρcpν/k)Di = 0.05 × 100 × (1100 kg/m3 × 
2460 J/kg⋅K × 10 × 10-6 m2/s/0.25 W/m⋅K) × 0.01m = 5.41 m. Therefore, entrance effects are 
important. The Hausen correlation is appropriate for determining the average Nusselt number 
associated with the inner tube flow. 
 

      
( ) ( )2 /3 2 /3

0.0668( / ) 0.0668 (0.01/ 2) 100 1083.66 3.66 5.96
1 0.04 / 1 0.04 0.01/ 2 100 108

DiDi

Di

D L Re PrNu
D L Re Pr

× × ×
= + = + =

⎡ ⎤ ⎡ ⎤+ + × ×⎣ ⎦ ⎣ ⎦
 

 
Therefore, 
 

  25.96 0.25W/m K 149W/m K
0.01m

Di
i

i

Nu kh
D

× ⋅
= = = ⋅  

 
Continued… 

Parallel flow

Th,i = 60°C

Tc,i = 20°C

Counterflow

Th,i = 60°C

Tc,i = 20°C

um,h = 0.2 m/s

um,c = 0.1 m/s

L = 2 m

um,h = 0.2 m/s

um,c = 0.1 m/s
Pharmaceutical
product

Pharmaceutical
product

Water

Water

Do = 20 mm

Di = 10 mm



Problem 11.17 (Cont.) 
 
For the annular flow, ReDh = um,h(Do – Di)/ν = 0.2 m/s × 0.01 m/5.54 × 10-7 m2/s = 3610. Hence, the 
Gnielinski correlation is appropriate for use. The friction factor for the annular region is obtained from 
Eq. 8.21 and is 
 

  ( ) ( )( ) 220.790ln 1.64 0.790ln 3610 1.64 0.0428Dhf Re
−−= − = − =  

 
Therefore, 
 

 ( )( )
( ) ( )

( )( )
( ) ( )1/ 2 1/ 22 /3 2 /3

/8 1000 0.0428/8 3610 1000 3.56
22.22

1 12.7 /8 1 1 12.7 0.0428/8 3.56 1
Dh

Dh
f Re Pr

Nu
f Pr

− −
= = =

+ − + −
 

 
 
and 
 

 222.22 0.643W/m K 1430W/m K
0.01m

Dh
o

o i

Nu kh
D D

× ⋅
= = = ⋅

−
 

 
The overall heat transfer coefficient is 
 
  

      U = (1/hi + 1/ho)-1 = [1/(1430 W/m2⋅K) + 1/(149 W/m2⋅K)]-1 = 135 W/m2⋅K.  < 
 

(b) The heat capacity rate of the cold (pharmaceutical product) stream is 
 
 

( )23
2

,
0.1m/s 1100kg/m 0.01m

/ 4 2460 J/kg K 21.3 W/K
4c c p m c i pC m c u D c

π
ρπ

⎡ ⎤× × ×⎡ ⎤ ⎢ ⎥= = = × ⋅ =⎣ ⎦ ⎢ ⎥⎣ ⎦
&  

 
The heat capacity rate of the hot (water) stream is 
 

( )
( ) ( )

2 2
,

2 23

/ 4

0.2m/s 987.9 kg/m 0.02m 0.01m
    4181 J/kg K 195 W/K

4

c c p m c o i pC m c u D D cρπ

π

⎡ ⎤= = −⎣ ⎦
⎡ ⎤⎡ ⎤× × × −⎢ ⎥⎢ ⎥⎣ ⎦= × ⋅ =⎢ ⎥
⎢ ⎥⎣ ⎦

&

 

 
Therefore, Cr = Cmin/Cmax = (21.3 W/K)/(195 W/K) = 0.11 and the number of transfer units is NTU = 
UA/Cmin = UπDiL/Cmin = (135 W/m2⋅K × π × 0.01 m × 2m)/21.3 W/K = 0.398. The effectiveness of the 
counterflow heat exchanger is obtained from Eq. 11.29a and is 
 

[ ]
[ ]

[ ]
[ ]

1 exp NTU(1 ) 1 exp 0.398(1 0.11)
0.323

1 exp NTU(1 ) 1 0.11exp 0.398(1 0.11)
r

r r

C
C C

ε
− − − − − −

= = =
− − − − − −

 

 
 

Continued… 



Problem 11.17 (Cont.) 
 
 
The heat transfer rate is  
 
 , , min , ,( ) ( )c p c o c i h i c iq m c T T C T Tε= − = −&      from which  
 

( )
( ) ( )

min , ,
, , 2 3 2

,

0.323 21.3W/K (60 C 20 C)20 C
/ 4 1100kg/m 0.1m/s (0.01m) / 4 2460J/kg K

h i c i
c o c i

m c i p

C T T
T T

u D c

ε

ρ π π

− × × ° − °
= + = ° +

× × ⋅
= 33.0°C  < 

 
(c) For parallel-flow operation, 
 

( ) ( )1 exp 1 1 exp 0.398 1 0.11
0.322

1 1 0.11
r

r

NTU C
C

ε
⎡ ⎤ ⎡ ⎤− − + − − +⎣ ⎦ ⎣ ⎦= = =

+ +
 

Therefore, the cold stream outlet temperature is  
  
 

( )
( ) ( )

min , ,
, , 2 3 2

,

0.322 21.3W/K (60 C 20 C)20 C
/ 4 1100kg/m 0.1m/s (0.01m) / 4 2460J/kg K

h i c i
c o c i

m c i p

C T T
T T

u D c

ε

ρ π π

− × × ° − °
= + = ° +

× × ⋅
= 31.2°C  < 

 
COMMENTS:  There is little difference in the outlet temperature of the pharmaceutical product. 
However, if the outlet temperature of the pharmaceutical product cannot exceed some critical value, 
the heat exchanger should be operated in parallel-flow since the ultimate outlet temperature associated 
with a very long concentric tube apparatus would be determined by the conservation of energy 
principle. 
 



PROBLEM 11.18 
 
KNOWN:  Inner tube diameter (D = 0.02 m) and fluid inlet and outlet temperatures corresponding to 
design conditions for a counterflow, concentric tube heat exchanger.  Overall heat transfer coefficient (U 
= 500 W/m2⋅K) and desired heat rate (q = 3000 W).  Cold fluid outlet temperature after three years of 
operation. 
 
FIND:  (a) Required heat exchanger length, (b) Heat rate, hot fluid outlet temperature, overall heat 
transfer coefficient, and fouling factor after three years. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Negligible heat loss to the surroundings, (2) Negligible tube wall conduction 
resistance, (3) Constant properties. 
 
ANALYSIS:  (a) The tube length needed to achieve the prescribed conditions may be obtained from Eqs. 
11.14 and 11.15 where ΔT1 = Th,i - Tc,o = 80°C and ΔT2 = Th,o - Tc,i = 120°C.  Hence, ΔT1m = (120 - 
80)°C/ln(120/80) = 98.7°C and 
 

 
( ) ( ) 21m

q 3000 WL 0.968m
D U T 0.02 m 500 W m K 98.7 Cπ π

= = =
Δ × ⋅ × o

 < 

 
(b) With q = Cc(Tc,o - Tc,i), the following ratio may be formed in terms of the design and 3 year 
conditions. 

 
( )
( )

c c,o c,i

3 c c,o c,i 3

C T Tq 60 C 1.333
q C T T 45 C

−
= = =

−

o

o
 

 
Hence, 

 3q q 1.33 3000 W 1.333 2250 W= = =  < 
 
Having determined the ratio of heat rates, it follows that 

 
( )
( )

h h,i h,o

3 h h,i h,o h,o(3)3

C T Tq 20 C 1.333
q C T T 160 C T

−
= = =

− −

o

o
 

Hence, 

 h,o(3)T 160 C 20 C 1.333 145 C= − =o o o  < 

With ( ) ( )lm,3T 125 95 ln 125 95 109.3 CΔ = − = o , 

 
( ) ( ) ( )

23
3

1m,3

q 2250 WU 338 W m K
DL T 0.02 m 0.968m 109.3 Cπ π

= = = ⋅
Δ o

 < 

Continued... 



 
PROBLEM 11.18 (Cont.) 

 

With ( ) ( ) 1
i oU 1 h 1 h −⎡ ⎤= +⎣ ⎦  and ( ) ( ) 1

3 i o f ,cU 1 h 1 h R
−⎡ ⎤′′= + +⎣ ⎦ , 

 

 2 4 2
f ,c

3

1 1 1 1R m K W 9.59 10 m K W
U U 338 500

−⎛ ⎞′′ = − = − ⋅ = × ⋅⎜ ⎟
⎝ ⎠

 < 

 
COMMENTS:  Over time fouling will always contribute to a degradation of heat exchanger 
performance.  In practice it is desirable to remove fluid contaminants and to implement a regular 
maintenance (cleaning) procedure. 



PROBLEM 11.19  
KNOWN:  Counterflow, concentric tube heat exchanger of Example 11.1; maintaining the outlet oil 
temperature of 60°C, but with variable rate of cooling water, all other conditions remaining the same.  
FIND:  (a) Calculate and plot the required exchanger tube length L and water outlet temperature Tc,o 
for the cooling water flow rate in the range 0.15 to 0.3 kg/s, and (b) Calculate U as a function of the 
water flow rate assuming the water properties are independent of temperature; justify using a constant 
value of U for the part (a) calculations.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible losses to the surroundings, (3) Overall 
heat transfer coefficient independent of water flow rate for this range, and (4) Constant properties. 
 

PROPERTIES:  Table A-6, Water T C 308 Kc = =35oe j:  c  J / kg K,p = ⋅4178  μ = ×725 10-6  

N s / m2⋅ ,  k 0.625 W / m K,  Pr 4.85,= ⋅ =  Table A-4, Unused engine oil T  Kh = 353c h:  
c  J / kg K.p = ⋅2131  
 
ANALYSIS:  (a) The NTU-ε method will be used to calculate the tube length L and water outlet 
temperature Tc,o using this system of equations in the IHT workspace: 
 
NTU relation, CF hxer, Eq. 11.29b  

 NTU 1
C

n
1

 C
C C C

r r
r max min=

−
−
−

=
1 1
l

ε
ε
b g
b g /    (1, 2) 

 
 NTU U A / Cmin= ⋅         (3) 
 
 A D Li= ⋅π          (4) 
 
Capacity rates, find minimum fluid  
 C m  c  kg / s 2131 J / kg K 213.1 W / Kh h h= = × ⋅ =& .01  
 
 C m  c  to 0.30 kg / s 4178 J / kg K 626.7 1253 W / Kc c c= = × ⋅ = −& .015b g  (5) 
 
 C Cmin h=          (6) 
 
Effectiveness and maximum heat rate, Eqs. 11.18 and 11.19 
 ε = q / qmax          (7) 

 q C T T C T Tmax min h,i c,i c h,i c,i= − = −d i d i      (8) 

 
          Continued … 



PROBLEM 11.19 (Cont.) 
 
 q C T Th h,i h,o= −d i         (9) 
 
With the foregoing equations and the parameters specified in the schematic, the results are plotted in 
the graphs below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) The overall coefficient can be written in terms of the inner (cold) and outer (hot) side convection 
coefficients, 
 
 U 1/ 1/ h hi o= +1/b g          (10) 
 
From Example 11.1, ho = 38.8 W/m2⋅K, and hi will vary with the flow rate from Eq. 8.60 as 
 

 h h  m mi i,b i i,b= & / &
.d i0 8

        (11) 
 
where the subscript b denotes the base case when & .m  kg / s.i = 0 2   From these equations, the results 
are tabulated. 
 

 &m kg / scb g    h  W / m Ki
2 ⋅e j    h  W / m Ko

2 ⋅e j    U W / m K2 ⋅e j  
    015   1787   38.8   38.0 
    0.20   2250   38.8   38.1 
    0.25   2690   38.8   38.2 
    0.30   3112   38.8   38.3 
 
Note that while hi varies nearly 50%, there is a negligible effect on the value of U. 
 
COMMENTS:  Note from the graphical results, that by doubling the flow rate (from 0.15 to 0.30 
kg/s), the required length of the exchanger can be decreased by approximately 6%.  Increasing the 
flow rate is not a good strategy for reducing the length of the exchanger.  However, any increase in the 
hot-side (oil) convection coefficient would provide a proportional decrease in the length. 
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PROBLEM 11.20  
KNOWN:  Concentric tube heat exchanger with area of 50 m2 with operating conditions as shown on 
the schematic.  
FIND:  (a) Outlet temperature of the hot fluid; (b) Whether the exchanger is operating in counterflow 
or parallel flow; or can’t tell from information provided; (c) Overall heat transfer coefficient; (d) 
Effectiveness of the exchanger; and (e) Effectiveness of the exchanger if its length is made very long  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Constant properties.  
ANALYSIS:  From overall energy balances on the hot and cold fluids, find the hot fluid outlet 
temperature 
 
 ( ) ( )c c,o c,i h h,i h,oq C T T C T T= − = −       (1) 
 
 ( ) ( )h,o h,o3000 W / K 54 30 K 6000 60 T T 48 C− = − = °   < 
 
(b) HXer must be operating in counterflow (CF) since Th,o < Tc,o.  See schematic for temperature 
distribution. 
 
(c) From the rate equation with A = 50 m2, with Eq. (1) for q, 
 
 ( )c c,o c,i mq C T T UA T= − = Δ l        (2) 
 

 
( )

( ) ( )
( )

1 2
m

1 2

60 54 K 48 30 KT TT 10.9 C
m T / T n 6 /18

− − −Δ −Δ
Δ = = = °

Δ Δl
l l

   (3) 

 
 ( ) 23000 W / K 54 30 K U 50 m 10.9 K− = × ×  
 
 2U 132 W / m K= ⋅          < 
 
(d) The effectiveness, from Eq. 11.19, with the cold fluid as the minimum fluid, Cc = Cmin, 
 

 
( )
( )

( )
( )

c c,o c,i

max min h,i c,i

C T T 54 30 Kq 0.8
q 60 30 KC T T

ε
− −

= = = =
−−

     < 

 
(e) For a very long CF HXer, the outlet of the minimum fluid, Cmin = Cc, will approach Th,i.  That is, 
 
 ( )min c,o c,i maxq C T T q 1ε→ − → =      < 



PROBLEM 11.21  
KNOWN:  Specifications for a water-to-water heat exchanger as shown in the schematic including the 
flow rate, and inlet and outlet temperatures.  
FIND:  (a) Design a heat exchanger to meet the specifications; that is, size the heat exchanger, and (b) 
Evaluate your design by identifying what features and configurations could be explored with your 
customer in order to develop more complete, detailed specifications.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Tube walls have negligible thermal 
resistance, (3) Flow is fully developed, and (4) Constant properties.  
ANALYSIS:  (a) Referring to the schematic above and using the rate equation, we can determine the 
value of the UA product required to satisfy the design requirements.  Sizing the heat exchanger 
involves determining the heat transfer area, A (tube diameter, length and number), and the associated 
overall convection coefficient, U, such that U × A satisfies the required UA product.  Our approach 
has five steps:  (1) Calculate the UA product: Select a configuration and calculate the required UA 
product; (2) Estimate the area, A:  Assume a range for the overall coefficient, calculate the area and 
consider suitable tube diameter(s); (3) Estimate the overall coefficient, U:  For selected tube 
diameter(s), use correlations to estimate hot- and cold-side convection coefficients and the overall 
coefficient; (4) Evaluate first-pass design:  Check whether the A and U values (U × A) from Steps 2 
and 3 satisfy the required UA product; if not, then (5) Repeat the analysis:  Iterate on different values 
for area parameters until a satisfactory match is made, (U × A) = UA. 
 
To perform the analysis, IHT models and tools will be used for the effectiveness-NTU method 
relations, internal flow convection correlations, and thermophysical properties.  See the Comments 
section for details. 
 
Step 1  Calculate the required UA.  For the initial design, select a concentric tube, counterflow heat 
exchanger.  Calculate UA using the following set of equations, Eqs. 11.29a, 

 
( )
( )

r

r r

1 exp NTU 1 C
1 C exp NTU 1 C

ε
⎡ ⎤− − −⎣ ⎦=
⎡ ⎤− − −⎣ ⎦

       (1) 

 
 min r min maxNTU UA / C C C / C= =      (2,3) 
 
 ( )max max min h,i c,iq / q q C T Tε = = −     (4,5) 
 
where pC m c ,= &  and cp is evaluated at the average mean temperature of the fluid, mT  = (Tm,i + 

Tm,o)/2.  Substituting numerical values, find 

 6
h,o0.464 NTU 0.8523 q 2.934 10 W T 65.0 Cε = = = × = °  

          Continued … 



PROBLEM 11.21 (Cont.) 
 
 4UA 9.62 10 W / K= ×         < 
 
Step 2  Estimate the area, A.  From Table 11.2, the typical range of U for water-to-water exchangers is 
850 – 1700 W/m2⋅K.  With UA = 9.619 × 104 W/K, the range for A is 57 – 113 m2, where 
 
 iA D LNπ=           (6) 
 
where L and N are the length and number of tubes, respectively.  Consider these values of Di with L = 
10 m to describe the exchanger: 
 

Case Di (mm) L (m) N A (m2)  
1 25 10 73-146 57-113  
2 50 10 36-72 57-113 < 
3 75 10 24-48 57-113  

 
Step 3  Estimate the overall coefficient, U.  With the inner (hot) and outer (cold) fluids in the 
concentric tube arrangement, the overall coefficient is 
 
 i o1/ U 1/ h 1/ h= +          (7) 
 
and the h  are estimated using the Dittus-Boelter correlation assuming fully developed turbulent flow. 
 
Coefficient, hot side, ih .  For flow in the inner tube, 
 

 h,i
Di h hi

i h

4 m
Re m m N

Dπ μ
= = ⋅

&
& &       (8,9) 

 
and the correlation, Eq. 8.60 with n = 0.3, is 
 

 D
4 / 5 0.3i i
Di

h DNu 0.037 Re Pr
k

= =        (10) 
 
where properties are evaluated at the average mean temperature, ( )h hi hoT T T / 2.= +  
 
Coefficient, cold side, oh .   For flow in the annular space, Do – Di, the above relations apply where the 
characteristic dimension is the hydraulic diameter, 
 

 ( ) ( )2 2
h,o c,o o c,o o o o iiD 4A / P A D D / 4 P D Dπ π= = − = +         (11-13) 

 
To determine the outer diameter Do, require that the inner and outer fluid flow areas are the same, that 
is, 

 ( )2 2 2
c,i c,o oi iA A D / 4 D D / 4π π= = −            (14,15) 

 
Summary of the convection coefficient calculations.  The results of the analysis with L = 10 m are 
summarized below. 
 
          Continued … 



PROBLEM 11.21 (Cont.) 
 

Case Di N A ih  oh  U U × A 
 (mm)  (m2) (W/m2⋅K) (W/m2⋅K) (W/m2⋅K) W/K 

1a 25 73 57 4795 4877 2418 1.39 ×105 
2a 50 36 57 2424 2465 1222 6.91 x 104 
3a 75 24 57 1616 1644 814 4.61 × 104 

 
For all these cases, the Reynolds numbers are above 10,000 and turbulent flow occurs. 
 
Step 4  Evaluate first-pass design.  The required UA product value determined in step 1 is UA = 9.62 
× 104 W/K.  By comparison with the results in the above table, note that the U × A values for cases 1a 
and 2a are, respectively, larger and smaller than that required.  In this first-pass design trial we have 
identified the range of Di and N (with L = 10 m) that could satisfy the exchanger specifications.  A 
strategy can now be developed in Step 5 to iterate the analysis on values for Di and N, as well as with 
different L, to identify a combination that will meet specifications. 
 
(b) What information could have been provided by the customer to simplify the analysis for design of 
the exchanger?  Looking back at the analysis, recognize that we had to assume the exchanger 
configuration (type) and overall length.  Will knowledge of the customer’s installation provide any 
insight?  While no consideration was given in our analysis to pumping power limitations, that would 
affect the flow velocities, and hence selection of tube diameter.  
COMMENTS:  The IHT workspace with the relations for step 3 analysis is shown below, including 
summary of key correlation parameters.  The set of equations is quite stiff so that good initial guesses 
are required to make the initial solve. 
 

/* Results, Step 3 - Di = 25 mm, N = 73, L = 10 m  
A Do U UA Di L N 
57.33 0.03536 2418 1.386E5 0.025 10 73  
ReDi  ReDo hDi hDo 
5.384E4 1.352E4 4795 4877  */ 
 
/* Results, Step 3 - Di = 50 mm, N = 36, L = 10 m  
A Do U UA Di L N 
56.55 0.07071 1222 6.912E4 0.05 10 36    
ReDi  ReDo hDi hDo 
5.459E4 1.371E4 2424 2465          */ 
 
/* Results, Step 3 - Di = 75 mm, N = 24, L = 10 m  
A Do U UA Di L N 
56.55 0.1061 814.8 4.608E4 0.075 10 24  
ReDi  ReDo hDi hDo 
5.459E4 1.371E4 1616 1644 */ 
 
// Input variables 
//Di = 0.050 
Di = 0.025 
//Di = 0.075 
//N = 36 
N = 73 
//N = 24 
L = 10 
mdoth = 28  
Thi_C = 90 
Tho_C = 65.0               // From Step 1 
mdotc = 27 
Tci_C = 34 
Tco_C = 60 

          Continued … 



PROBLEM 11.21 (Cont.) 
 

// Flow rate and number of tubes, inside parameters (hot) 
mdoth = N * umi * rhoi * Aci 
Aci = pi * Di^2 /4 
1 / U = 1 / hDi + 1/ hDo 
UA = U * A 
A = pi * Di * L * N 
 
// Flow rate, outside parameters (cold) 
mdotc = rhoo * Aco * umo * N 
Aco = Aci                   // Make cross-sectional areas of equal size 
Aco = pi * (Do^2 - Di^2) / 4 
Dho = 4 * Aco / P    // hydraulic diameter 
P = pi * ( Di + Do)               // wetted perimeter of the annular space  
 
// Inside coefficient, hot fluid 
NuDi = NuD_bar_IF_T_FD(ReDi,Pri,n)     // Eq 8.60 
n = 0.3   // n = 0.4 or 0.3 for Tsi>Tmi or Tsi<Tmi 
NuDi = hDi * Di / ki 
ReDi = umi * Di / nui 
/* Evaluate properties at the fluid average mean temperature, Tmi. */ 
Tmi = Tfluid_avg(Thi,Tho) 
//Tmi = 310 
 
// Outside coefficient, cold fluid 
NuDo = NuD_bar_IF_T_FD(ReDo,Pro,nn)     // Eq 8.60 
nn = 0.4   // n = 0.4 or 0.3 for Tsi>Tmi or Tsi<Tmi 
NuDo= hDo * Dho / ko 
ReDo= umo * Dho/ nuo 
/* Evaluate properties at the fluid average mean temperature, Tmo. */ 
Tmo = Tfluid_avg(Tci,Tco)  
//Tmo = 310 
 
// Water property functions :T dependence, From Table A.6 
// Units: T(K), p(bars);  
x = 0    // Quality (0=sat liquid or 1=sat vapor) 
rhoi = rho_Tx("Water",Tmi,x) // Density, kg/m^3 
nui = nu_Tx("Water",Tmi,x)  // Kinematic viscosity, m^2/s 
ki = k_Tx("Water",Tmi,x)  // Thermal conductivity, W/m·K 
Pri = Pr_Tx("Water",Tmi,x)  // Prandtl number 
rhoo = rho_Tx("Water",Tmo,x) // Density, kg/m^3 
nuo = nu_Tx("Water",Tmo,x) // Kinematic viscosity, m^2/s 
ko = k_Tx("Water",Tmo,x)  // Thermal conductivity, W/m·K 
Pro = Pr_Tx("Water",Tmo,x)  //Prandtl number 
 
// Conversions 
Thi_C = Thi - 273 
Tho_C = Tho - 273 
Tci_C = Tci - 273 
Tco_C = Tco - 273 

 
 
 



PROBLEM 11.22 
 
KNOWN: Inlet and outlet temperatures for a shell-and-tube heat exchanger with 10 tubes 
making eight passes.  Heat transfer coefficient for oil flowing in shell.  Mass flow rate of water in 
tubes.  Tube diameter. 
 
FIND: Oil flow rate required to achieve specified outlet temperature.  Tube length required to 
achieve specified water heating. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS: (1) Negligible heat loss to the surroundings, (2) Constant properties, (3) 
Negligible tube wall thermal resistance and fouling effects, (4) Fully developed water flow in 
tubes. 
 
PROPERTIES: Table A.5, unused engine oil: ( hT  = 130°C): cp = 2350 J/kg⋅K.  Table A.6, 

water ( cT  = 50°C): cp = 4181 J/kg⋅K, μ = 548 × 10-6 N⋅s/m2, k = 0.643 W/m⋅K, Pr = 3.56. 
 
ANALYSIS: From the overall energy balance, Eq. 11.7b, the heat transfer required of the 
exchanger is 
 5

c p,c c,o c,iq m c (T T ) 2.5 kg / s 4181 J / kg K(85 15) C 7.317 10  W= − = × ⋅ − ° = ×&  
Hence from Eq. 11.6b, 

5
h

p,h h,i h,o

q 7.317 10  Wm 5.19 kg / s
c (T T ) 2350 J / kg K(160 100) C

×
= = =

− ⋅ − °
&           < 

 
The required tube length may be obtained using the ε-NTU method.  We first calculate the heat 
capacity rates, h h p,hC m c= & = 12,195 W/K, c c p,cC m c= & =10,453 W/K.  Thus, Cmin = Cc, and 

Cr = Cmin/Cmax = 0.857.  Then from Eq. 11.21, 
 

c,o c,i

h,i c,i

T T (85 15) C 0.483
T T (160 15) C

− − °
ε = = =

− − °
  

Using Eqs. 11.30b,c for one shell pass and an even number of tube passes, we find 
 
 

Continued… 
 
 

Th,i = 160°C 

Th,o = 100°CTc,o = 85°C 

Tc,i = 15°C =& cm 2.5 kg / s

& hm  Shell and tube hx 
1 shell pass 
8 tube passes 
10 tubes 
D = 25 mm 
ho = 400 W/m2⋅K 
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  r
2 1/ 2 2 1/ 2
r

2 / (1 C ) 2 / 0.483 (1 0.857)E 1.74
(1 C ) (1 0.857 )
ε − + − +

= = =
+ +

 

 
2 1/ 2 2 1/ 2
r

E 1 1.74 1NTU (1 C ) ln (1 0.857 ) ln 0.997
E 1 1.74 1

− −− −⎛ ⎞ ⎛ ⎞= − + = − + =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
  

 
Thus UA = NTU×Cmin = 10,420 W/K.  To find the required tube length, we must know the heat 
transfer coefficients for the water flow.  We calculate the Reynolds number, with 1 cm m / N=& & = 
0.25 kg/s defined as the water flow rate per tube, Eq. 8.6 yields 
 

1
D 6 2c

4m 4 0.25 kg / sRe 23,234
D (0.025 m)548 10  N s/m−

×
= = =
π μ π × ⋅

&
 

 
Hence the flow is turbulent, and from Eq. 8.60, 
 

4 /5 0.4 4 /5 0.4
D DNu 0.023Re Pr 0.023(23,234) (3.56) 119= = =  

 
and 
 

2c
c D

k 0.643 W / m Kh Nu 119 3060 W / m K
D 0.025 m

⋅
= = = ⋅  

 
Hence U = [1/hc + 1/hh]-1 = 354 W/m2⋅K and we can find the required tube length from 
 
  

2
UA 10,420 W / KL 37.5 m

UN D 354 W / m K 10 0.025 m
= = =

π ⋅ × × π×
        < 

 
COMMENTS: (1) With L/D = 1516, the assumption of fully developed conditions throughout 
the tube is justified.  (2) With eight passes, the shell length is approximately L/8 = 4.7 m. 
 



PROBLEM 11.23  
KNOWN:  Counterflow concentric tube heat exchanger.  
FIND:  (a) Total heat transfer rate and outlet temperature of the water and (b) Required length.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Negligible thermal resistance due to 
tube wall thickness. 
 
PROPERTIES:  (given): 
 
    ρ (kg/m3) cp (J/kg⋅K) ν (m2/s) k (W/m⋅K) Pr 
   Water    1000      4200  7 × 10-7     0.64  4.7 
   Oil      800      1900  1 × 10-5    0.134  140 
 
ANALYSIS:  (a) With the outlet temperature, Tc,o = 60°C, from an overall energy balance on the hot 
(oil) fluid, find 

 ( ) ( )h h h,i h,oq m c T T 0.1 kg / s 1900 J / kg K 100 60 C 7600 W.= − = × ⋅ − ° =&  < 
 
From an energy balance on the cold (water) fluid, find 

 c,o c,i c cT T q / m c 30 C 7600 W / 0.1 kg / s 4200 J / kg K 48.1 C.= + = ° + × ⋅ = °&  < 
 
(b) Using the LMTD method, the length of the CF heat exchanger follows from 
 ( ) ( )lm,CF lm,CF lm,CFq UA T U DL T L q / U D Tπ π= Δ = Δ = Δ  
 
where 

 
( )

( ) ( )
( )

1 2
lm,CF

1 2

60 30 C 100 48.1 CT TT 40.0 C
ln T / T ln 30 / 51.9

− ° − − °Δ −Δ
Δ = = = °

Δ Δ
 

 
 ( )2L 7600 W / 60 W / m K 0.025m 40.0 C 40.3m.π= ⋅ × × ° =    < 
 
COMMENTS:  Using the ε-NTU method, find Cmin = Ch = 190 W/K and Cmax = Cc = 420 W/K.  
Hence 
 
 ( ) ( )max min h,i c,iq C T T 190 W / K 100 30 K 13,300 W= − = − =  
 
and ε=q/qmax = 0.571.  With Cr = Cmin/Cmax = 0.452 and using Eq. 11.29b, 
 

 
min r r

UA 1 1 1 0.571 1NTU ln ln 1.00
C C 1 C 1 0.452 1 0.571 0.452 1

ε
ε

⎛ ⎞− −⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟− − − × −⎝ ⎠⎝ ⎠
 

 
so that with A = πDL, find L = 40.3 m. 



PROBLEM 11.24  
KNOWN:  Counterflow, concentric tube heat exchanger undergoing test after service for an extended 
period of time; surface area of 5 m2 and design value for the overall heat transfer coefficient of           
Ud = 38 W/m2⋅K. 
 
FIND:  Fouling factor, if any, based upon the test results of engine oil flowing at 0.1 kg/s cooled from 
110°C to 66°C by water supplied at 25°C and a flow rate of 0.2 kg/s.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible losses to the surroundings, (3) Constant 
properties. 
 
PROPERTIES:  Table A-5, Engine oil ( Th  = 361 K): c = 2166 J/kg⋅K; Table A-6, Water 

( )c c,oT 304 K, assuming T   36 C := = o  c = 4178 J/kg⋅K. 
 
ANALYSIS:  For the CF conditions shown in the Schematic, find the heat rate, q, from an energy 
balance on the hot fluid (oil); the cold fluid outlet temperature, Tc,o, from an energy balance on the 
cold fluid (water); the overall coefficient U from the rate equation; and a fouling factor, R, by 
comparison with the design value, Ud. 
 
Energy balance on hot fluid 
 q m c  T T  kg / s 2166 J / kg K 110 66 K 9530 Wh h h,i h,o= − = × ⋅ − =& .d i b g01  
Energy balance on the cold fluid 
 q m c  T T find T Cc c c,o c,i c,o= − =& , .d i 36 4o  
Rate equation 
 q UA T n,CF= Δ l  

 ΔT
T T T T

n T T T T

C 66 25 C
n 73.6 / 41.0

Cn,CF
h,i c,o h,o c,i

h,i c,o h,o c,i
l

o o
o

l l
=

− − −

− −
=

− − −
=

d i d i
d i d i

b g b g
/

.
.

110 36 4
557  

 9530 557 W U 5 m C2= × × . o  
 U 34.2 W / m K2= ⋅  
Overall resistance including fouling factor 
 U 1/ 1/ U Rd f= + ′′  

 34 2.  W / m K 1/ 1/ 38 W / m K R2 2
f⋅ = ⋅ + ′′  

 ′′ = ⋅R  m K / Wf
20 0029.         < 

 



PROBLEM 11.25 
 
KNOWN:  Flow rates and inlet temperatures for automobile radiator configured as a cross-flow heat 
exchanger with both fluids unmixed.  Overall heat transfer coefficient. 
 
FIND: (a) Area required to achieve hot fluid (water) outlet temperature, Tm,o = 330 K, and (b) Outlet 
temperatures, Th,o and Tc,o, as a function of the overall coefficient for the range, 200 ≤ U ≤ 400 W/m2⋅K 
with the surface area A found in part (a) with all other heat transfer conditions remaining the same as for 
part (a). 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Constant properties. 
 
PROPERTIES:  Table A.6, Water ( hT  = 365 K):  cp,h = 4209 J/kg⋅K; Table A.4, Air ( )cT 310K≈ : cp,c 

= 1007 J/kg⋅K. 
 
ANALYSIS: (a) The required heat transfer rate is 
 
 ( ) ( )h p,h h,i h,oq m c T T 0.05kg s 4209 J kg K 70 K 14,732 W= − = ⋅ =& . 
 
Using the ε -NTU method, 
 min h max cC C 210.45W/K C C 755.25W K= = = = . 
Hence, Cmin/Cmax  = 0.279 and 
 
 ( )max min h,i c,iq C T T 210.45 W K (100 K) 21,045 W= − = =  
 
 maxq q 14,732 W 21,045W 0.700ε = = = . 
 
Figure 11.14 yields NTU ≈ 1.5, hence, 

 ( ) ( )2 2
minA NTU C U 1.5 210.45W K 200 W m K 1.58m= = × ⋅ = . < 

(b) Using the IHT Heat Exchanger Tool for Cross-flow with both fluids unmixed arrangement and the 
Properties Tool for Air and Water, a model was generated to solve part (a) evaluating the efficiency using 
Eq. 11.32.  The following results were obtained: 
 
 2

c,oA 1.516 m NTU 1.441 T 319.5K= = =  
 
Using the model but assigning A = 1.516 m2, the outlet temperature Th,o and Tc,o were calculated as a 
function of U and the results plotted below. 

Continued... 
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With a higher U, the outlet temperature of the 
hot fluid (water) decreases.  A benefit is 
enhanced heat removal from the engine block 
and a cooler operating temperature.  If it is 
desired to cool the engine with water at 330 K, 
the heat exchanger surface area and, hence its 
volume in the engine component could be 
reduced. 
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COMMENTS:  (1) For the results of part (a), the air outlet temperature is  
 
 c,o c,i cT T q C= +  ( )300 K 14,732 W 755.25 W K 319.5K= + = . 
  
(2) The IHT workspace with the model to generate the above plot is shown below.  Note that it is 
necessary to enter the overall energy balances on the fluids from the keyboard. 
 

// Heat Exchanger Tool - Cross-flow with both fluids unmixed: 
// For the cross-flow, single-pass heat exchanger with both fluids unmixed, 
eps = 1 - exp((1 / Cr) * (NTU^0.22) * (exp(-Cr * NTU^0.78) - 1))      // Eq 11.32 
// where the heat-capacity ratio is 
Cr = Cmin / Cmax 
// and the number of transfer units, NTU, is 
NTU = U * A / Cmin            // Eq 11.24 
// The effectiveness is defined as 
eps = q / qmax 
qmax = Cmin * (Thi - Tci)        // Eq 11.18, 11.19 
// See Tables 11.3 and 11.4 and Fig 11.14 
// Overall Energy Balances on Fluids: 
q = mdoth * cph * (Thi - Tho) 
q = mdotc * cpc * (Tco - Tci) 
// Assigned Variables: 
Cmin = Ch  // Capacity rate, minimum fluid, W/K 
Ch = mdoth * cph  // Capacity rate, hot fluid, W/K 
mdoth = 0.05  // Flow rate, hot fluid, kg/s 
Thi = 400  // Inlet temperature, hot fluid, K 
Tho = 330  // Outlet temperature, hot fluid, K; specified for part (a)  
Cmax = Cc  // Capacity rate, maximum fluid, W/K   
Cc = mdotc * cpc  // Capacity rate, cold fluid, W/K 
mdotc = 0.75  // Flow rate, cold fluid, kg/s 
Tci = 300  // Inlet temperature, cold fluid, K 
U = 200  // Overall coefficient, W/m^2.K 
// Properties Tool - Water (h) 
// Water property functions :T dependence, From Table A.6 
// Units: T(K), p(bars);  
xh =  0    // Quality (0=sat liquid or 1=sat vapor) 
rhoh = rho_Tx("Water",Tmh,xh) // Density, kg/m^3 
cph = cp_Tx("Water",Tmh,xh) // Specific heat, J/kg·K 
Tmh =  Tfluid_avg(Thi,Tho )  
// Properties Tool - Air(c) 
// Air property functions : From Table A.4 
// Units: T(K); 1 atm pressure 
rhoc = rho_T("Air",Tmc)  // Density, kg/m^3 
cpc = cp_T("Air",Tmc)  // Specific heat, J/kg·K 
Tmc = Tfluid_avg(Tci,Tco) 



PROBLEM 11.26  
KNOWN:  Flowrates and inlet temperatures of a cross-flow heat exchanger with both fluids unmixed.  
Total surface area and overall heat transfer coefficient for clean surfaces.  Fouling resistance associated 
with extended operation.  
FIND:  (a) Fluid outlet temperatures, (b) Effect of fouling, (c) Effect of UA on air outlet temperature.  
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Constant properties, (3) Negligible tube 
wall resistance.  
PROPERTIES:  Air and gas (given):  cp = 1040 J/kg⋅K.  
ANALYSIS:  (a) With Cmin = Ch = 1 kg/s × 1040 J/kg⋅K = 1040 W/K and Cmax = Cc = 5 kg/s × 1040 
J/kg⋅K = 5200 W/K, Cmin/Cmax = 0.2.  Hence, NTU = UA/Cmin = 35 W/m2⋅K(25 m2)/1040 W/K = 0.841 
and Fig. 11.14 yields ε ≈ 0.57.  With Cmin(Th,i - Tc,i) = 1040 W/K(500 K) = 520,000 W = qmax, Eqs. 
(11.20) and (11.21) yield 

 ( )h,o h,i max hT T q C 800 K 0.57 520, 000 W 1040 W K 515 K= − = − =ε  < 

 ( )c,o c,i max cT T q C 300 K 0.57 520,000 W 5200 W K 357 K= + = + =ε  < 
(b) With fouling, the overall heat transfer coefficient is reduced to 

 ( ) ( )
1 11 2 2

f fU U R 0.029 0.004 m K W 30.7 W m K
− −− ′′= + = + ⋅ = ⋅⎡ ⎤

⎣ ⎦  

This 12% reduction in performance is large enough to justify cleaning of the tubes. < 
 
(c) Using the Heat Exchangers option from the IHT Toolpad to explore the effect of UA, we obtain the 
following result. 

500 900 1300 1700 2100 2500

Heat transfer parameter, UA(W/K)

300

320

340

360

380

400

A
ir 

ou
tle

t t
em

pe
ra

tu
re

, T
co

(K
)

  
The heat rate, and hence the air outlet temperature, increases with increasing UA, with Tc,o approaching a 
maximum outlet temperature of 400 K as UA → ∞ and ε → 1.  
COMMENTS:  Note that, for conditions of part (a), Eq. 11.32 yields a value of ε = 0.538, which reveals 
the level of approximation associated with reading ε from Fig. 11.14. 



PROBLEM 11.27  
KNOWN:  Cooling milk from a dairy operation to a safe-to-store temperature, Th,o ≤ 13°C, using 
ground water in a counterflow concentric tube heat exchanger with a 50-mm diameter inner pipe and 
overall heat transfer coefficient of 1000 W/m2⋅K. 
 
FIND:  (a) The UA product required for the chilling process and the length L of the exchanger, (b) 
The outlet temperature of the ground water, and (c) the milk outlet temperatures for the cases when the 
water flow rate is halved and doubled, using the UA product found in part (a)  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible heat loss to surroundings, and (3) 
Constant properties. 
 

PROPERTIES:  Table A-6, Water T  K,  assume T  18 Cc c,o= =287 oe j:   ρ = 1000 kg / m3,  

cp =  4187 J / kg K;⋅  Milk (given): ρ = 1030 kg / m3,  c  J / kg K.p = ⋅3860  
 
ANALYSIS:  (a) Using the effectiveness-NTU method, determine the capacity rates and the minimum 
fluid. 
 
Hot fluid, milk: 
 
 & & /m  kg / m  liter / h 10 m liter 1 h / 3600 s = 0.0715 kg / sh h h

3 -3 3= ∀ = × × ×ρ 1030 250  
 
 C m c  kg / s 3860 J / kg K = 276 W / Kh h h= = × ⋅& .0 0715  
 
Cold fluid, water: 
 

 C m c  kg / m  m / s  J / kg K 837 W / Kc c c
3 3= = × × ⋅ =& . /1000 0 72 3600 4187e j  

 
It follows that Cmin = Ch.  The effectiveness of the exchanger from Eq. 11.20 is 
 

 ε = =
−

−
=

−
=

q
q

C  T T

C  T T
K

38.6 -10 Kmax

h h,i h,o

min h,i c,i

d i
d i

b g
b g
38 6 13

0 895
.

.     (1) 

 
The NTU can be calculated from Eq. 11.29b, where Cr = Cmin/Cmax = 0.330, 
 

 NTU = l
C

n l
 Cr r−
−
−

F
HG

I
KJ1 1

l
ε

ε
        (2) 

 

 NTU = l
0.330 1

n 0.895 l
0.895 0.330 l−

−
× −

F
HG

I
KJ =l 2 842.  
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PROBLEM 11.27 (Cont.) 
 
From Eq. 11.24, find UA 
 
 UA NTU C  W / K = 785 W / Kmin= ⋅ = ×2 842 276.     < 
 
and the exchanger tube length with A = π DL is 
 
 L UA /  DU  785 W / K /  0.050 m 1000 W / m K 5.0 m2= = × ⋅ =π π   < 
 
(b) The water outlet temperature, Tc,o, can be calculated from the heat rates, 
 
 C  T T C  T Th h,i h,o c c,o c,i− = −d i d i        (3) 
 
 276 10 W / K 38.6 13 K 837 W / K T Kc,o− = −b g d i  
 
 T Cc,o = 18 4. o           < 
 
(c) Using the foregoing Eqs. (1 - 3) in the IHT workspace, the hot fluid (milk) outlet temperatures are 
evaluated with UA = 785 W/K for different water flow rates.  The results, including the hot fluid outlet 
temperatures, are compared to the base case, part (a). 
 
Case     Cc (W/K)  Tc,o (°C)  Th,o (°C) 
 
1, halved flow rate      419      14.9      25.6 
Base, part (a)       837        13      18.4 
2, doubled flow rate     1675      12.3      14.3 
 
COMMENTS:  (1) From the results table in part (c), note that if the water flow rate is halved, the 
milk will not be properly chilled, since Tc,o = 14.9°C > 13°C.  Doubling the water flow rate reduces 
the outlet milk temperature by less than 1°C. 
 
(2) From the results table, note that the water outlet temperature changes are substantially larger than 
those of the milk with changes in the water flow rate.  Why is this so?  What operational advantage is 
achieved using the heat exchanger under the present conditions?  
(3) The water thermophysical properties were evaluated at the average cold fluid temperature, 
T T Tc c,i c,o= +d i / .2   We assumed an outlet temperature of 18°C, which as the results show, was a 

good choice.  Because the water properties are not highly temperature dependent, it was acceptable to 
use the same values for the calculations of part (c).  You could, of course, use the properties function 
in IHT that will automatically use the appropriate values. 
 
(4) The value of the overall heat transfer coefficient, U, will change as the mass flow rate is varied. 
The answer to part (c) would be different if this variation is accounted for. 
 



PROBLEM 11.28  
KNOWN:  Flow rate, inlet temperatures and overall heat transfer coefficient for a regenerator.  
Desired regenerator effectiveness.  Cost of natural gas.  
FIND:  (a) Heat transfer area required for regenerator and corresponding heat recovery rate and outlet 
temperatures, (b) Annual energy and fuel cost savings.  
SCHEMATIC:    

 
 
ASSUMPTIONS:  (a) Negligible heat loss to surroundings, (b) Constant properties. 
 
PROPERTIES: Problem 11.27, milk: cp = 3860 J/kg⋅K.  
ANALYSIS:  (a) With Cr = 1 and ε = 0.50 for one shell and two tube passes, Eq. 11.30c yields E = 
1.414.  With Cmin = 5 kg/s × 3860 J/kg⋅K = 19,300 W/K, Eq. 11.30b then yields 

 
( ) ( )

( )
( ) 2min

1/ 2 22
r

ln E 1 / E l ln 0.171C 19,300W / KA 12.03m
U 1.4142000W / m Kl C

− +⎡ ⎤⎣ ⎦= − = − =
⋅+

 < 

With ε = 0.50, the heat recovery rate is then 

 ( )min h,i c,iq C T T 627,000Wε= − =       < 

and the outlet temperatures are 
 

 c,o c,i
c

q 627,000WT T 5 C 37.5 C
C 19,300W / K

= + = ° + = °      < 

 

 h,o h,i
h

q 627,000WT T 70 C 37.5 C
C 19,300W / K

= − = ° − = °      < 

 
(b) The amount of energy recovered for continuous operation over 365 days is 
 
 13E 627,000W 365d / yr 24 h / d 3600s / h 1.98 10 J / yrΔ = × × × = ×  
 
The annual fuel savings SA is then 
 

 
7ng

A
E C 1.98 10 MJ / yr $0.02 / MJS $440,000 / yr

0.9η
Δ × × ×

= = =    < 

 
COMMENTS:  (1) With Cc = Ch, the temperature changes are the same for the two fluids, (2) A 
larger effectiveness and hence a smaller value of A can be achieved with a counterflow exchanger 
(compare Figs. 11.11 and 11.12 for Cr = 1), (c) The savings are significant and well worth the cost of 
the heat exchanger.  An additional benefit is that, with Th,o reduced from 70 to 37.5°C, less energy is 
consumed by the refrigeration system used to restore the milk temperature to 5°C. 



PROBLEM 11.29 
 
KNOWN:  Twin-tube counterflow heat exchanger with balanced flow rates, &m  = 0.003 kg/s.  Cold 
airstream enters at 280 K and must be heated to 340 K.  Maximum allowable pressure drop of cold 
airstream is 10 kPa. 
 
FIND:  (a) Tube diameter D and length L which satisfies the heat transfer and pressure drop 
requirements, and (b) Compute and plot the cold stream outlet temperature  Tc,o, the heat rate q, and 
pressure drop Δp as a function of the balanced flow rate from 0.002 to 0.004 kg/s. 
 
SCHEMATIC: 

  
ASSUMPTIONS: (1) Steady-state conditions, (2) Negligible heat loss to surroundings, (3) Average 
pressure of the airstreams is 1 atm, (4) Tube walls act as fins with 100% efficiency, (4) Fully developed 
flow. 
 
PROPERTIES: Table A.4, Air ( mT = 310 K, 1 atm) : ρ  = 1.128 kg/m3,  cp = 1007 J/kg⋅K, μ = 18.93 × 
10-6 m2 / s,  k = 0.0270 W/m⋅K, Pr = 0.7056. 
 
ANALYSIS:  (a) The heat exchanger diameter D and length L can be specified through two analyses: (1) 
heat transfer based upon the effectiveness-NTU method to meet the cold air heating requirement and (2) 
pressure drop calculation to meet the requirement of 10 kPa.  The heat transfer analysis begins by 
determining the effectiveness from Eq. 11.21, since Cmin = Cmax and Cr = 1, 
 

 
( )
( )

( )
( )

c,o c,i

max h,i c,i

C T T 340 280 Kq
0.750

q 360 280 KC T T
ε

− −
= = = =

−−
 (1) 

 
From Table 11.4, Eq. 11.29b for Cr = 1, 

 
0.750

NTU 3
1 1 0.750
ε
ε

= = =
− −

 (2) 

where NTU, following its definition, Eq. 11.24, is 

 
min

UA
NTU

C
=  (3) 

with 
 min pC mc 0.003kg s 1007 J kg K 3.021K W= = × ⋅ =&  (4) 

 
Continued... 



 
PROBLEM 11.29 (Cont.) 

 
and 1 UA  represents the thermal resistance between the two fluids at Tm,h and Tm,c as illustrated in the 
above-right schematic.  Since the tube walls are isothermal, it follows that 
 
 c h1 UA 1 h A 1 h A= +  (5) 
 
and since the flow conditions are nearly identical c hh h=  so that 
 
 U 0.5h=  (6) 
 
where the heat transfer area is 
 
 A DLπ=  (7) 
 
This is a consequence of the assumption that the walls act as fins with 100% efficiency. Hence, Eq. (3) 
can now be expressed as 
 

 
( )0.5h DL

3
3.021K W

π
=  

 
 hDL 5.7697=  (8) 
 
Assuming an average mean temperature m,cT 310 K= , characterize the flow with 
 

 D 6 2
4m 4 0.003kg s 201.78

Re
D DD 18.93 10 m sπ μ π −

×
= = =

× × ×

&
 (9) 

 
and assuming the flow is both turbulent and fully developed using the Dittus-Boelter, Eq. 8.60, 

 0.8 0.4
D D

hD
Nu 0.023Re Pr

k
= =  

 ( ) ( )0.8 0.4hD 0.023 0.0270 W m K 201.78 D 0.7056= × ⋅    

 1.8hD 0.0377=  (10) 
Note that the heating condition has been selected (n = 0.4) for both streams, as an estimate. 
The pressure drop for fully developed flow, Eq. 8.22a, is 

 
2
mu

p f L
2D
ρ

Δ =  (11) 

where the mean velocity is um = &m /(ρπD2/4) so that  

 
( )2 2

2 5

2
4m D L 8 m L

p f f
2D D

Δ = =
& &ρ ρπ

π ρ
 

 
( )2 6 5

2 5
0.003kg s L8

p f 6.467 10 f L D3(1.128kg / m )D
− −Δ = = ×

π
 (12) 

Recall that the pressure drop requirement is Δp = 10 kPa = 104 N/m2 , so that Eq. (12) can be rewritten 
as  

 5 9fLD 1.546 10− = ×  (13) 
 

Continued... 



 
PROBLEM 11.29 (Cont.) 

 
For the Reynolds number range, 3000 ≤ ReD  ≤ 5 ×106 , Eq. 8.21 provides an estimate for the friction 
factor, 
 

 ( )( ) 2
Df 0.790 n Re 1.64 −

= −⎡ ⎤⎣ ⎦l  
 

 ( )( ) 2f 0.790 n 201.78 D 1.64 −
= −⎡ ⎤⎣ ⎦l  (14) 

 
In the foregoing analysis, there are 4 unknowns (D, L, f, h ) and 4 equations (8, 10, 13, 14).  Using the 
IHT workspace, find 
 
 2D 9.0 mm L 3.5m f 0.0254 h 183W m K= = = = ⋅  
 
For this configuration, ReD = 22,500 so the flow is turbulent and since L/D = 3.5/0.0090 = 390 >> 10, the 
fully developed assumption is reasonable.  
 
(b) The foregoing analysis entered into the IHT workspace was used to determine Tc,o , q and Δp as a 
function of the balanced flow rate, &m .   

0.002 0.003 0.004

Flow rate, mdot (kg/s)

4

8

12

16

20

de
lta

p 
(k

P
a)

0.002 0.003 0.004

Flow rate, modt (kg/s)

100

150

200

250

q 
(W

)

0.002 0.003 0.004

Flow rate, mdot (kg/s)

335

340

345

Tc
o 

(K
)

  
The outlet temperature of the cold air, Tc,o , is nearly insensitive to the flow rate.  It follows that the heat 
rate, q, must be nearly proportional to the flow rate as can be seen in the q vs. m&  plot above.  The 
pressure drop varies with the mean velocity squared. 
 



PROBLEM 11.30  
KNOWN:  Dimensions and thermal conductivity of twin-tube, counterflow heat exchanger.  Contact 
resistance between tubes.  Air inlet conditions for one tube and pressure of saturated steam in other 
tube.  
FIND:  Air outlet temperature and condensation rate.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible heat exchange with surroundings, (2) Fully developed air flow, (3) 
Negligible fouling, (4) Constant properties.  
PROPERTIES:  Table A-4, air ( )cT 325K, p 5atm :≈ =   cp = 1008 J/kg⋅K, μ = 196.4 × 10-7 

N⋅s/m2, k = 0.0281 W/m⋅K, Pr = 0.703.  Table A-6, sat. steam (p = 2.455 bar):  Th,i = Th,o = 400 K, hfg 
= 2183 kJ/kg.  
ANALYSIS:  With Cmax → ∞, Cr = 0 and Eqs. 11.21 and 11.35a yield 

 ( )c,o c,i

h,i c,i

T T
1 exp NTU

T T
ε

−
= = − −

−
       (1) 

From Eq. 11.1, 

 
( ) ( )

t
o oc h

R1 1 1
UA hA L hAη η

′
= + +        (2) 

With ( ) 7 2
D iRe 4m / D 0.12 kg / s / 0.05m 196.4 10 N s / m 38,900,π μ π −= = × ⋅ =&  the air flow is 

turbulent and the Dittus-Boelter correlation yields 
 

( ) ( )4 / 5 0.4 24 / 5 0.4
c fD D

i

k 0.0281 W / m K
h h 0.023 Re Pr 0.023 38, 900 0.703 52.7 W / m K

D 0.05m

⋅
≈ = = = ⋅

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 
As shown on the inset, each tube wall may be modelled as two fins, each of length Lf ≈ π Di/2 = 
0.0785m.  The total surface area for heat transfer is At = π DiL = 0.785 m2 = Ac, which is equivalent 
to the surface area of the fins.  With NAf = At from Eq. 3.102, ηo = ηf.  Because the outer surface of 
the tube is insulated, a wall thickness of 2t must be used in evaluating ηf.  With m = (2h/k × 2t)1/2 = 
(h/kt)1/2 = [52.7 W/m2⋅K/(60 W/m⋅K × 0.004m)]1/2 = 14.8 m-1, Lc = Lf for an adiabatic tip, and mLf = 
1.163, Eq. 3.92 yields 

 f
f o,c

f

tanh mL 0.821 0.706
mL 1.163

η η= = = =  

          Continued … 



PROBLEM 11.30 (Cont.) 
 
Similarly, for the steam tube, m = (h/kt)1/2 = [5,000 W/m2⋅K/(60 W/m⋅K × 0.004m)]1/2 = 144.3 m-1 
and mLf = 11.33.  Hence, 
 

 f
f o,h

f

tanh mL 1.00 0.088
mL 11.33

η η= = = =  

 
Substituting into Eq. (2), 
 

 
11 0.01 1 W WUA 25.6

0.706 52.7 0.785 5 0.088 5000 0.785 K K

−⎡ ⎤= + + =⎢ ⎥× × × ×⎣ ⎦
 

 
Hence, with ( )min p c

C m c 0.03 kg / s 1008 J / kg K 30.2 W / K,= = × ⋅ =&  NTU = UA/Cmin = 0.847 

and ε = 1 – exp (-NTU) = 0.571.  From Eq. (1), the air outlet temperature is then 
 

 ( ) ( )c,o c,i h,i c,iT T T T 17 C 0.571 127 17 C 79.8 Cε= + − = ° + − ° = °    < 

 
The rate of heat transfer to the air is 
 
 ( )p c,o c,iq m c T T 0.03kg / s 1008J / kg K 62.8 C 1900 W= − = × ⋅ × ° =&  

 
and the rate of condensation is 
 

 4
cond 6fg

q 1900 Wm 8.70 10 kg / s
h 2.183 10 J / kg

−= = = ×
×

&     < 

 
COMMENTS:  (1) With cT 321.4K,=  the initial estimate of 325K is reasonable and iteration on 
the property values is not necessary, (2) The major contribution to the total thermal resistance 
is due to air-side convection, (3) The foregoing results are independent of air pressure. 
 



PROBLEM 11.31 
 
KNOWN:  Tube inner and outer diameters and longitudinal and transverse pitches for a cross-flow heat 
exchanger.  Number of tubes in transverse plane.  Water and gas flow rates and inlet temperatures.  Water 
outlet temperature. 
 
FIND:  (a) Gas outlet temperature and number of longitudinal tube rows, (b) Effect of gas flowrate and 
inlet temperature on fluid outlet temperatures. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Constant properties, (3) Negligible 
fouling. 
 
PROPERTIES:  Table A.6, Water ( cT  = 320 K):  cp = 4180 J/kg⋅K, μ = 577 × 10-6 N⋅s/m2, kf = 0.640 

W/m⋅K, Pr = 3.77;  Table A.4, Air ( hT  ≈ 550 K):  cp = 1040 J/kg⋅K, μ = 288.4 × 10-7 N⋅s/m2, k = 0.0439 
W/m⋅K, Pr = 0.683, ρ = 0.633 kg/m3. 
 
ANALYSIS:  (a) The required heat transfer rate is 

 ( ) ( ) 7
c p,c c,o c,iq m c T T 50 kg s 4180 J kg K 60 K 1.254 10 W= − = ⋅ = ×& . 

Hence, with Th,o = Th,i - h p,hq m c& , 

 ( )7
h,oT 700 K 1.254 10 W 40 kg s 1040 J kg K 398.6 K= − × × ⋅ =  < 

Use the ε - NTU method to compute the hot side HX surface area, AH.  To calculate Uh, we must find hh.  
For the tube bank, SD = 44.7 mm > (ST + D)/2 = 30 mm.  Hence, with ρVmax = ( )[ ]T T oS S D Vρ−  = 

( )[ ]( )T T o hS S D m WH− & , 

 ( ) ( ) 2 2
maxV 40 20 40 kg s 2 1.2 m 33.3kg s mρ = × = ⋅⎡ ⎤

⎣ ⎦
 

 ( ) ( )2 7 2
D,max max oRe V D 33.3kg s m 0.02 m 288.4 10 N s m 23,116ρ μ −= = ⋅ × ⋅ =⎡ ⎤

⎣ ⎦ . 

From the Zukauskas correlation, with (Pr/Prs) ≈ 1, and Table 7.5, 

 ( ) ( )0.6 0.360.6 0.36
D DNu 0.35 Re Pr 0.35 23,116 0.683 127= = =  

where it is assumed that NL > 20.  Hence, 

 ( ) ( ) 2
Dh oh Nu k D 127 0.0439 W m K 0.02 m 279 W m K= = ⋅ = ⋅ . 

From Eq. 11.1, 
Continued... 



 
PROBLEM 11.31 (Cont.) 

 

 
( )o o io

h c i h

D ln D DD1 1 1
U h D 2k h

= + +  
( )

2 2
0.02 m ln 20 151 20 1

15 60 W m K3000 W m K 279 W m K
= + +

⋅⋅ ⋅
 

 ( )4 5 3 2 3 2

h

1
4.44 10 9.59 10 3.58 10 m K W 4.12 10 m K W

U
− − − −= × + × + × ⋅ = × ⋅  

 2
hU 243W m K= ⋅ . 

With Ch = Cmin = 4.160 × 104 W/K and Cc = Cmax = 2.09 × 105 W/K, Cmin/Cmax = 0.199 and qmax = Cmin(Th,i 
- Tc,i) = 4.16 × 104 W/K(410 K) = 1.71 × 107 W.  Hence, ε = (q/qmax) = (1.254 × 107 W/1.71 × 107 W) = 
0.735.  With Cmin mixed and Cmax unmixed, Eq. 11.34b gives NTU = 1.54 and 

 ( ) ( )4 2 2
h min hA NTU C U 1.54 4.160 10 W K 243 W m K 264 m= = × ⋅ = . 

Hence, 
( ) ( ) ( )

2
h

L 2o T

A 264 m
N 70

D W N 0.02 2 30 mπ π
= = =  < 

(b) Using the IHT Correlations, Heat Exchangers and Properties Toolpads to perform the parametric 
calculations, we obtain the following results for NL = 90. 
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Since hh, and hence Uh, increases with hm& , q, and hence, Tc,o, increases with increasing hm& , as well as 

with increasing Th,i.  Although q increases with hm& , the proportionality is not linear (q α a
hm& , where a < 

1) and (Th,i - Th,o) must decrease with increasing hm& , in which case Th,o must increase.  From the above 
results, it is clear that operation is restricted to hm&  ≥ 40 kg/s and Th,i ≥ 700 K, if corrosion of the heat 
exchanger surfaces is to be avoided. 
 
COMMENTS:  To check the presumed value of hc = 3000 W/m2⋅K, compute 

 
( ) ( )

( )
c

D 6 2i

4 m N 4 50 kg s 70 30
Re 3500

D 0.015 m 577 10 N s mπ μ π −
×

= = =
× ⋅

&
. 

Hence, ( ) ( )4 / 5 0.44 / 5 0.4
D DNu 0.023Re Pr 0.023 3500 3.77 26.8= = =  

 ( ) ( ) 2
c Dh k D Nu 0.640 W m K 0.015 m 26.8 1142 W m K= = ⋅ = ⋅ . 

Hence, the cold side convection coefficient has been overestimated and the calculations should be 
repeated using a value of hc calculated from the Gnielinski correlation, which applies in this Reynolds 
number range. 



PROBLEM 11.32  
KNOWN:  Single pass, cross-flow heat exchanger with hot exhaust gases (mixed) to heat water 
(unmixed)  
FIND:  Required surface area.  
SCHEMATIC:   
 

 
 
 
 
 
 

 
 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Exhaust gas properties assumed to be 
those of air. 
 
 
PROPERTIES:  Table A-6, Water ( cT  = (80 + 30)°C/2 = 328 K): cp = 4184 J/kg⋅K; Table A-4, Air 

(1 atm, hT  = (100 + 225)°C/2 = 436 K): cp = 1019 J/kg⋅K. 
 
 
ANALYSIS:  Using the ε-NTU method, 
 
 c c cC m c 3kg / s 4184 J / kg K 12,552 W / K= = × ⋅ =&  
 
 c c,o c,iq C (T T ) 12,552W / K(80 30) C 627,600 W= − = − ° =  
 
From an energy balance on the hot fluid, 
 
 h h,i h,oC q /(T T ) 627,600 W /(225 100) C 5,021 W / K= − = − ° =  
 
Thus, Cr = Cmin/Cmax = 0.40 and ε = q/Cmin(Th,i – Tc,i) = 0.641. With Cmin mixed and Cmax unmixed, Eq. 
11.34b yields 
 

 [ ] [ ]r
r

1 1NTU ln C ln(1 ) 1 ln 0.4ln(1 0.641) 1 1.32
C 0.4

= − − ε + = − − + =  

 
Thus, 
 

 A = NTU × Cmin/U = 1.32 × 5021 W/K / 200W/m2·K = 33.1 m2    < 
 
 



PROBLEM 11.33 
 
KNOWN:  Concentric tube heat exchanger operating in parallel flow (PF) conditions with a thin-walled 
separator tube of 100-mm diameter; fluid conditions as specified. 
 
FIND:  (a) Required length for the exchanger; (b) Convection coefficient for water flow, assumed to be 
fully developed; (c) Compute and plot the heat transfer rate, q, and fluid inlet temperatures, Th,o and Tc,o, 
as a function of the tube length for 60 ≤ L ≤ 400 m with the PF arrangement and overall coefficient 

U W m K= ⋅200 2d i , inlet temperatures (Th,i = 225°C and Tc,i = 30°C), and fluid flow rates from Problem 

11.32; (d) Reduction in required length relative to the value found in part (a) if the exchanger were 
operated in the counterflow (CF) arrangement; and (e) Compute and plot the effectiveness and fluid outlet 
temperatures as a function of  tube length for 60 ≤ L ≤ 400 m for the CF arrangement of part (c). 
 
SCHEMATIC: 
 

 
 
 

 
 

 
ASSUMPTIONS:  (1) No losses to surroundings, (2) Separation tube has negligible thermal resistance, 
(3) Water flow is fully developed, (4) Constant properties, (5) Exhaust gas properties are those of 
atmospheric air. 
 
PROPERTIES:  Table A-4, Hot fluid, Air (1 atm, T = (225 +100)°C /2 = 436 K): cp = 1019 J/kg⋅K; 
Table A-6, Cold fluid, Water  T = (30 + 80)°C /2 ≈ 328 K): ρ = 1/vf = 985.4 kg/m3, cp = 4183 J/kg⋅K, k = 
0.648 W/m⋅K, μ = 505 × 10-6 N⋅s/m2, Pr = 3.58. 
 
ANALYSIS: (a) From the rate equation, Eq. 11.14, with A = πDL, the length of the exchanger is 
 m,PFL q U D T= ⋅ ⋅ Δ lπ . (1) 
The heat rate follows from an energy balance on the cold fluid, using Eq. 11.7, find 

 ( ) ( ) 3
c c c,o c,iq m c T T 3kg s 4183J kg K 80 30 K 627.5 10 W= − = × ⋅ − = ×& . 

Using an energy balance on the hot fluid, find &mh  for later use. 

 ( ) ( )3
h h h,i h,om q c T T 627.5 10 W 1019 J kg K 225 100 K 4.93kg s= − = × ⋅ − =&  (2) 

For parallel flow, Eqs. 11.15 and 11.16, 

 
( ) ( )

( ) ( )
1 2

m,PF
1 2

225 30 C 100 80 CT T
T 76.8 C

n T T n 225 30 100 80
− − −Δ − Δ

Δ = = =
Δ Δ − −

o o
o

l
l l

. 

Substituting numerical values into Eq. (1), find 

 ( )3 2L 627.5 10 W 200 W m K 0.1m 76.8K 130mπ= × ⋅ × = . < 
Continued... 
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(b) Considering the water flow within the separator tube, from Eq. 8.6, 
 

 ( )6 2
DRe 4m D 4 3kg s 0.1m 505 10 N s m 75,638π μ π −= = × × × × ⋅ =& . 

 
Since ReD > 2300, the flow is turbulent and since flow is assumed to be fully developed, use the Dittus-
Boelter correlation with n = 0.4 for heating, 
 

 ( ) ( )0.8 0.40.8 0.4
D DNu 0.023Re Pr 0.023 75, 638 3.58 306.4= = =  

 

 ( ) 2
D

k
h Nu 306.4 0.648 W m K 0.1m 1985 W m K

D
= = × ⋅ = ⋅ . < 

 
(c) Using the IHT Heat Exchanger Tool, Concentric Tube, Parallel Flow, Effectiveness relation, and the 
Properties Tool for Water and Air, a model was developed for the PF arrangement.  With U = 200 
W/m2⋅K and prescribed inlet temperatures, Th,i = 225°C and Tc,i = 30°C, the outlet temperatures, Th,o and 
Tc,o  and heat rate, q, were computed as a function of tube length L.   

Parallel flow arrangement
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As the tube length increases, the outlet temperatures approach one another and eventually reach Th,o = Tc,o 
= 85.6°C. 
 
(d) If the exchanger as for part (a) is operated in 
counterflow (rather than parallel flow), the log 
mean temperature difference is 
 

 i 2
m,CF

1 2

T T
T

n T T
Δ − Δ

Δ =
Δ Δl

l
 

 
( ) ( )
( )m,CF

225 80 100 30
T 103.0 C

n 225 80 100 30
− − −

Δ = =
− −

o
l

l
. 

 
 
Using Eq. (1), the required length is 

 3 2L 627.5 10 W 200 W m K 0.1m 103.0 K 97 mπ= × ⋅ × × × = . 
The reduction in required length of CF relative to PF operation is 

Continued... 
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 ( ) ( )PF CF PFL L L L 103 97 103 5.8%Δ = − = − =  < 
 
(e) Using the IHT Heat Exchanger Tool, Concentric Tube, Counterflow, Effectiveness relation, and the 
Properties Tool for Water and Air, a model was developed for the CF arrangement.  For the same 
conditions as part (c), but CF rather than PF, the effectiveness and fluid outlet temperatures were 
computed as a function of tube length L.   
 

Counterflow arrangement

60 120 180 240 300 360

Tube length, L (m)

20

40

60

80

100

120

140

Th
o,

 T
co

 (C
) o

r e
ps

*1
00

Cold outlet temperature, Tco (C)
Hot outlet temperature, Tho (C)
Effectiveness, eps*100  

 
Note that as the length increases, the effectiveness tends toward unity, and the hot fluid outlet temperature 
tends toward Tc,i = 30°C.  Remember the heat rate for an infinitely long CF heat exchanger is qmax and the 
minimum fluid (hot in our case) experiences the temperature change, Th,i - Tc,i.   
 
COMMENTS:  (1) As anticipated, the required length for CF operations was less than for PF operation. 
 
(2) Note that U is substantially less than hi implying that the gas-side coefficient must be the controlling 
thermal resistance. 
 



PROBLEM 11.34  
KNOWN:  Heat exchanger in car operating between warm radiator fluid and cooler outside air.  

Effectiveness of heater is 0.2
air~ mε −&  since water flow rate is large compared to that of the air.  For 

low-speed fan condition, heater warms outdoor air from 0°C to 30°C.  
FIND:  (a) Increase in heat added to car for high-speed fan condition causing airm&  to be doubled 
while inlet temperatures remain the same, and (b) Air outlet temperature for medium-speed fan 
condition where air flow rate increases 50% and heat transfer increases 20%.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Negligible heat losses from heat exchanger to surroundings, (2) Th,i and Tc,i 
remain fixed for all fan-speed conditions, (3) Water flow rate is much larger than that of air.  
ANALYSIS:  (a) Assuming the flow rate of the water is much larger than that of air, 
 min c air p,cC C m c .= = &  

Hence, the heat rate can be written as 
 ( ) ( )max min h,i c,i air p,air h,i c,iq q C T T m c T T .ε ε ε= = − = ⋅ −&  

Taking the ratio of the heat rates for the high and low speed fan conditions, find 

 
( )
( )

( )
( )

0.8
airair 0.8hi hi hi
0.8lo air lo air lo

mmq 2 1.74
q m m

ε

ε
= = = =

&&

& &
      < 

 
where we have used 0.2

air~ mε −&  and recognized that for the high speed fan condition, the air flow rate 
is doubled.  Hence the heat rate is increased by 74%. 
 
(b) Considering the medium and low speed conditions, it was observed that, 

 
( )
( )

airmed med
lo air lo

mq 1.2 1.5.
q m

= =
&

&
 

To find the outlet air temperature for the medium speed condition, 

 
( )
( )

air p,c c,o c,imed med
lo air p,c c,o c,i lo

m c T Tq
q m c T T

⎡ ⎤−⎣ ⎦=
⎡ ⎤−⎣ ⎦

&

&
 

 

 
( )
( )

c,o
c,o

1.5 T 0 C
1.2 T 24 C.

30 0 C

− °
= = °

− °
      < 



PROBLEM 11.35  
KNOWN:  Counterflow heat exchanger formed by two brazed tubes with prescribed hot and cold 
fluid inlet temperatures and flow rates.  
FIND:  Outlet temperature of the air.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Negligible loss/gain from tubes to surroundings, (2) Flow in tubes is fully 
developed since L/Dh = 40 m/0.030m = 1333. 
 
PROPERTIES:  Table A-6, Water ( hT  = 335 K): ch = cp,h = 4186 J/kg⋅K, μ = 453 × 10-6 N⋅s/m2, k = 

0.656 W/m⋅K, Pr = 2.88; Table A-4, Air (300 K): cc = cp,c = 1007 J/kg⋅K, μ = 184.6 × 10-7 N⋅s/m2, k = 
0.0263 W/m⋅K, Pr = 0.707; Table A-1, Nickel ( T  = (23 + 85)°C/2 = 327 K): k = 88 W/m⋅K.  
ANALYSIS:  Using the NTU - ε method, from Eq. 11.28a, 
 

( )
( ) r min max

r
min C C / C .

r r

1 exp NTU 1 C
NTU UA / C

1 C exp NTU 1 C
ε =

⎡ ⎤− − −⎣ ⎦= =
⎡ ⎤− − −⎣ ⎦

 (1,2,3) 

 
Estimate UA from a model of the tubes and flows, and determine the outlet temperature from the 
expression 
 
 ( ) ( )c c,o c,i min h,i c,iC T T / C T T .ε = − −       (4) 
 

Water-side: h
D 6 2

4m 4 0.04 kg / sRe 11,243.
D 0.010m 453 10 N s / mπ μ π −

×
= = =

× × × ⋅

&
 

 
The flow is turbulent and since fully developed, use the Dittus-Boelter correlation, 
 

 ( ) ( )h
0.8 0.30.8 0.3

h DNu h D / k 0.023Re Pr 0.023 11,243 2.88 54.99= = = =  
 
 2

hh 54.99 0.656 W / m K / 0.01m 3,607 W / m K.= × ⋅ = ⋅  
 

Air-side: c
D 7 2

4m 4 0.120 kg / sRe 275,890.
D 0.030m 184.6 10 N s / mπ μ π −

×
= = =

× × × ⋅

&
 

 
The flow is turbulent and since fully developed, again use the correlation 

 ( ) ( )c
0.8 0.40.8 0.4

c DNu h D / k 0.023Re Pr 0.023 275,890 0.707 450.9= = = =  
 
 2

ch 450.9 0.0263 W / m K / 0.030m 395.3 W / m K.= × ⋅ = ⋅  
 
Overall coefficient:  From Eq. 11.1, considering the temperature effectiveness of the tube walls and the 
thermal conductance across the brazed region, 
          Continued … 



PROBLEM 11.35 (Cont.) 
 

 
( ) ( )o t oh c

1 1 1 1
UA hA K L hAη η

= + +
′

       (5) 

 
where ηo needs to be evaluated for each of the tubes. Note that each tube can be viewed as two fins of 
length πD/2. However, since the fins exchange heat on only one side, they can be combined into a 
single fin of length πD/2 and thickness 2t, exchanging heat on both sides. 
 
Water-side temperature effectiveness: ( ) 2

h hA D L 0.010m 40m 1.257 mπ π= = =  

 ( ) ( ) ( )1/ 2 1/ 2
o,h f ,h h h h htanh mL / mL m h P / kA h / ktη η= = = =  

 ( )1/ 22 1m 3607 W / m K / 88 W / m K 0.002m 143.2m−= ⋅ ⋅ × =  

and with Lh = 0.5 πDh, ηo,h = tanh(143.2 m-1 × 0.5 π × 0.010m)/143.2 m-1 × 0.5 π × 0.010 m = 0.435. 
 
Air-side temperature effectiveness: Ac = πDcL = π(0.030m)40m = 3.770 m2 
 

( ) ( )1/ 22 1
o,c f ,c c ctanh mL / mL m 395.3 W / m K / 88 W / m K 0.002m 47.39 mη η −= = = ⋅ ⋅ × =  

 
and with Lc = 0.5πDc, ηo,c = tanh(47.39 m-1 × 0.5 π × 0.030m)/47.39 m-1 × 0.5 π × 0.030m = 0.438. 
 
Hence, the overall heat transfer coefficient using Eq. (5) is 
 

( )2 2 2 2
1 1 1 1

UA 100 W / m K 40m0.435 3607 W / m K 1.257 m 0.438 395.3 W / m K 3.770 m
= + +

⋅× ⋅ × × ⋅ ×
 

 

 
14 4 3UA 5.070 10 2.50 10 1.533 10 W / K 437 W / K.
−− − −⎡ ⎤= × + × + × =⎢ ⎥⎣ ⎦

 
 
Evaluating now the heat exchanger effectiveness from Eq. (1) with 
 

}h h h max r min maxc c c min
C m c 0.040 kg / s 4186 J / kg K 167.4 W / K C C C / C 0.722C m c 0.120 kg / s 1007 J / kg K 120.8 W / K C

= = × ⋅ = ← = == = × ⋅ = ←
&
&  

 

 
( )

( )min

1 exp 3.62 1 0.722UA 437 W / KNTU 3.62 0.862
C 120.8 W / K 1 0.722 exp 3.62 1 0.722

ε
⎡ ⎤− − −⎣ ⎦= = = = =

⎡ ⎤− − −⎣ ⎦
 

 
and finally from Eq. (4) with Cmin = Cc, 
 

 
( )
( )

c c,o
c,o

c

C T 23 C
0.862 T 76.4 C

C 85 23 C

− °
= = °

− °
     < 

 
COMMENTS:  (1) Using overall energy balances, the water outlet temperature is 
 
 ( )( ) ( )h,o h,i c h c,o c,iT T C / C T T 85 C 0.722 76.4 23 C 46.4 C.= + − = ° − − ° = °  
 
(2) To initially evaluate the properties, we assumed that hT  ≈ 335 K and cT  ≈ 300 K.  From the 

calculated values of Th,o and Tc,o, more appropriate estimates of hT  and cT  are 338 K and 322 K, 
respectively.  We conclude that proper thermophysical properties were used for water but that the 
estimates could be improved for air. 



PROBLEM 11.36 
 

 
KNOWN:  Air and ammonia flow rates and inlet temperatures. Relationship of UA product to water 
flow rate. Water mass flow rates in tubes. Heat exchanger type. 
 
FIND:  (a) Air and ammonia outlet temperatures and heat transfer rate.  (b) Air and ammonia outlet 
temperatures for water flow rates in the range 0 kg/s ≤ ,A ,B c hm m=& & ≤ 2 kg/s. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Negligible heat transfer between heat exchangers and surroundings, negligible 
heat transfer between two heat exchangers, (2) Constant properties, (3) Negligible energy added to the 
system by the pump. 
 
PROPERTIES:  Table A.6 (water) (T = 400 K): cp = 4256 J/kg⋅K. Table A.4 (air) (T = 500 K): cp = 
1030 J/kg⋅K. Table A.4 (ammonia) ( T = 300 K): cp = 2158 J/kg⋅K.  
 
ANALYSIS:   (a) For heat exchanger A, Ch,A = 10 kg/s × 1030 J/kg⋅K = 10,300 W/K. For heat 
exchanger B, Cc,B = 5kg/s × 2158 J/kg⋅K = 10790 W/K. For the water, Cc,A = Ch,B = 1kg/s × 4256 
J/kg⋅K = 4256 W/K. Therefore, Cmin,A = Cmin,B = 4256 W/K. For heat exchanger A, UAA = 6000 W/K + 
100 J/kg⋅K × 1 kg/s = 6100 W/K while for heat exchanger B, UAB = 1.2UAA =  7320 W/K. The 
relative heat rates are Cr,A = 4256/10,300 =  0.4132 and Cr,B = 4256/10,790 = 0.3944. The number of 
transfer units for heat exchanger A is NTUA = 6100/4256 = 1.433, while for heat exchanger B NTUB = 
7320/4256 = 1.720. The effectiveness may be evaluated using Eq. 11.30a resulting in εA = 0.6468, εB 
= 0.6966.  
 
For heat exchangers A and B, the following equations may be written, making special note that the 
water temperature is the same between the inlet and outlet of the shell-side of each heat exchanger. 
 
 A A min,A , ,A , ,A , ,A( ) 0.6468 4256W / K (520K )h i c i c iq C T T Tε= − = × × −   (1) 
 B B min,B , ,B , ,B , ,B( ) 0.6966 4256W / K ( 280K)h i c i h iq C T T Tε= − = × × −   (2) 
 , ,A , ,A A max,A A/ 520K /10300W / Kh o h iT T q C q= − = −     (3) 
 , ,B , ,B B max,B B/ 280K+ /10790W / Kc o c iT T q C q= + =     (4) 
 , ,B , ,Ah i c oT T=          (5) 
 , ,B , ,Ah o c iT T=          (6) 
 
Equations (1) through (6) may be solved simultaneously to yield 
 

 qA = qB = 5.17 × 105 W, Th,o,A = 469.8 K, Tc,o,B = 327.9 K    < 
Continued… 
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PROBLEM 11.36 (Cont.) 
 

In addition, we note that 
 
  , ,B , ,A 454.5Kh i c oT T= =   , ,B , ,A 332.9Kh o c iT T= =  
 
 
(b) IHT was used to solve the preceding equations simultaneously, and to plot the following results. 
 

 
 
 
 
 
 
 

            < 
 
 
 
 
 
 
 
 
 
 
COMMENTS:  (1) The IHT code used in part (b) is listed below. (2) As evident in part (b), fine-
tuning is feasible, but to a limited degree for the conditions of this problem. The capability to fine-tune 
the device is dependent upon the UA values associated with each heat exchanger. Neglecting the 
dependence of UA on the water mass flow rate, the calculations were repeated and the outlet 
temperatures of the air in heat exchanger A are shown in the plot below.  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Continued… 
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//IHT code for Cmin associated with the water flow rate 
 
/* For the shell-and tube heat exchanger with one shell and any multiple of two tube passes (2, 4, ...), 
*/ 
epsA = 2 * (1 + CrA + (1 + CrA^2)^0.5 * (1 + exp(-NTUA * (1 + CrA^2)^0.5)) / (1 - exp(-NTUA * (1 + 
CrA^2)^0.5)))^(-1)      //  
// where the heat-capacity ratio is 
CrA = CminA / CmaxA 
// and the number of transfer units, NTUA, is 
NTUA = UAA / CminA          // Eq 11.24 
// The effectiveness is defined as 
epsA = qA / qmaxA 
qmaxA = CminA * (ThiA - TciA)       // Eq 11.18, 11.19 
// See Tables 11.3 and 11.4 and Fig 11.12 
 
/* For the shell-and tube heat exchanger with one shell and any multiple of two tube passes (2, 4, ...), 
*/ 
epsB = 2 * (1 + CrB + (1 + CrB^2)^0.5 * (1 + exp(-NTUB * (1 + CrB^2)^0.5)) / (1 - exp(-NTUB * (1 + 
CrB^2)^0.5)))^(-1)      //  
// where the heat-capacity ratio is 
CrB = CminB / CmaxB 
// and the number of transfer units, NTUB, is 
NTUB = UAB / CminB          // Eq 11.24 
// The effectiveness is defined as 
epsB = qB / qmaxB 
qmaxB = CminB * (ThiB - TciB)       // Eq 11.18, 11.19 
// See Tables 11.3 and 11.4 and Fig 11.12 
 
mdot = 1 
cpw = 4256 
UAA = 6000 + 100*mdot 
UAB = 1.2*UAA 
CminA = mdot*cpw 
CmaxA = 10300 
CmaxB = 10790 
CminB = mdot*cpw 
ThiA = 520 
TciB = 280 
 
qA = CminA*(TcoA-TciA) 
qB = CminB*(ThiB-ThoB) 
 
ThiB = TcoA 
ThoB = TciA 
 
//Equations to determine outlet temperatures on shell side 
 
ThoA = ThiA - qA/CmaxA 
TcoB = TciB + qB/CmaxB 



PROBLEM 11.37 
 

 
KNOWN:  Air and ammonia flow rates and inlet temperatures. Relationship of UA product to water 
flow rate. Mass flow rate of water in tubes. 
 
FIND:  (a) Air and ammonia outlet temperatures and heat transfer rate.  (b) Air and ammonia outlet 
temperatures for water flow rates in the range 5 kg/s ≤ ,A ,B c hm m=& & ≤ 50 kg/s. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Negligible heat transfer between heat exchangers and surroundings, negligible 
heat transfer between two heat exchangers, (2) Constant properties. 
 
PROPERTIES:  Table A.6 (water) (T = 400 K): cp = 4256 J/kg⋅K. Table A.4 (air) (T = 500 K): cp = 
1030 J/kg⋅K. Table A.4 (ammonia) ( T = 300 K): cp = 2158 J/kg⋅K.  
 
ANALYSIS:   (a) For heat exchanger A, Ch,A = 10 kg/s × 1030 J/kg⋅K = 10,300 W/K. For heat 
exchanger B, Cc,B = 5kg/s × 2158 J/kg⋅K = 10,790 W/K. For the water, Cc,A = Ch,B = 10kg/s × 4256 
J/kg⋅K = 42,560 W/K. Therefore, Cmin,A = 10,300 W/K and Cmin,B = 10,790 W/K. For heat exchanger 
A, UAA = 6000 W/K + 100 J/kg⋅K × 10 kg/s = 7000 W/K while for heat exchanger B, UAB = 1.2UAA =  
8400 W/K. The relative heat rates are Cr,A = 10,300/42,560 =  0.2420 and Cr,B = 10,790/42,560 = 
0.2535. The number of transfer units for heat exchanger A is NTUA = 7000/10,300 = 0.6796, while for 
heat exchanger B NTUB = 8400/10,790 = 0.779. The effectiveness may be evaluated using Eq. 11.30a 
resulting in εA = 0.4647, εB = 0.5052.  
 
For heat exchangers A and B, we may write the following, making special note that the water 
temperature is the same between the inlet and outlet of the shell-side of each heat exchanger. 
 
 A A min,A , ,A , ,A , ,A( ) 0.4647 10300W / K (520K )h i c i c iq C T T Tε= − = × × −   (1) 
 B B min,B , ,B , ,B , ,B( ) 0.5052 10790W / K ( 280K)h i c i h iq C T T Tε= − = × × −   (2) 
 , ,A , ,A A max,A A/ 520K /10300W / Kh o h iT T q C q= − = −     (3) 
 , ,B , ,B B max,B B/ 280K+ /10790W / Kc o c iT T q C q= + =     (4) 
 , ,B , ,Ah i c oT T=          (5) 
 , ,B , ,Ah o c iT T=          (6) 
 
Equations (1) through (6) may be solved simultaneously to yield 
 

 qA = qB = 6.51 × 105 W, Th,o,A = 456.8 K, Tc,o,B = 340.3 K    < 
Continued… 
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In addition, we note that 
 
  , ,B , ,A 399.4Kh i c oT T= =   , ,B , ,A 384.1Kh o c iT T= =  
 
 
(b) IHT was used to solve the preceding equations simultaneously, and to plot the following results. 
 

 
 
 
 
 
 
 

            < 
 
 
 
 
 
 
 
 
 
 
 
COMMENTS:  (1) The IHT code used in part (b) is listed below. (2) As evident in part (b), fine-
tuning is feasible. 
 

//IHT code for Cmin associated with the shell-side flows 
/* For the shell-and tube heat exchanger with one shell and any multiple of two tube passes (2, 4, ...), 
*/ 
epsA = 2 * (1 + CrA + (1 + CrA^2)^0.5 * (1 + exp(-NTUA * (1 + CrA^2)^0.5)) / (1 - exp(-NTUA * (1 + 
CrA^2)^0.5)))^(-1)      / 
// where the heat-capacity ratio is 
CrA = CminA / CmaxA 
// and the number of transfer units, NTUA, is 
NTUA = UAA / CminA           
// The effectiveness is defined as 
epsA = qA / qmaxA 
qmaxA = CminA * (ThiA - TciA)       
// See Tables 11.3 and 11.4 and Fig 11.12 
 
/* For the shell-and tube heat exchanger with one shell and any multiple of two tube passes (2, 4, ...), 
*/ 
epsB = 2 * (1 + CrB + (1 + CrB^2)^0.5 * (1 + exp(-NTUB * (1 + CrB^2)^0.5)) / (1 - exp(-NTUB * (1 + 
CrB^2)^0.5)))^(-1)       
// where the heat-capacity ratio is 
CrB = CminB / CmaxB 
// and the number of transfer units, NTUB, is 
NTUB = UAB / CminB          
// The effectiveness is defined as 
epsB = qB / qmaxB 
qmaxB = CminB * (ThiB - TciB)      
// See Tables 11.3 and 11.4 and Fig 11.16 
 

Continued… 
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PROBLEM 11.37 (Cont.) 
 

 
mdot = 10 

 
cpw = 4256 
UAA = 6000 + 100*mdot 
UAB = 1.2*UAA 
CminA = 10300 
CmaxA = mdot*cpw 
CmaxB = mdot*cpw 
CminB = 10790 
ThiA = 520 
TciB = 280 
 
qA = mdot*cpw*(TcoA-TciA) 
qB = mdot*cpw*(ThiB-ThoB) 
 
ThiB = TcoA 
ThoB = TciA 
 
//Equations to determine outlet temperatures on shell side 
 
ThoA = ThiA - qA/10300 
TcoB = TciB + qB/10790 
 

 
 
 



PROBLEM 11.38 
 

 
KNOWN:  Air flow rate, cold outside temperature, warm indoor temperature, dew point temperature, 
UA product. 
 
FIND:  (a) Required water flow rate. 
 
SCHEMATIC: 

Cold, fresh air
from outside
Tc,i,A = -4°C

Warmed, fresh air
to interior

Warm, stale air
from interior
Th,i,B = 23°C

Cool, stale air
to outside
Th,o,B = Tdp = 13°C

Water

Pump

A

B  
 

 
ASSUMPTIONS:  (1) Negligible heat transfer between heat exchangers and surroundings, negligible 
heat transfer between two heat exchangers, (2) Constant properties, (3) Negligible energy added to the 
system by the pump, (4) Cmax is associated with the air, (5) Properties of water with anti-freeze agent 
are the same as properties of water. 
 
 
PROPERTIES:  Table A.6 (water) (T = 9°C = 283 K): cp = 4194 J/kg⋅K. Table A.4 (air) (T = 9°C = 
283 K): cp = 1007 J/kg⋅K. 
 
  
ANALYSIS:   (a) Note that max air 1.50kg / s 1007J/kg K 1510 W/KpC C mc= = = × ⋅ =& . The heat 
transfer rate is q = qA = qB = Cmax×(Th,i,B – Th,o,B) = 1510 W/K × (23 – 13)°C = 15,100 W.  The 
following equations describe the behavior of the system. 
 
  ( )min minNTU / 2500W/K /UA C C= =  
  min , ,A , ,A min , ,A( ) 15,100W ( ( 4 ))h i c i h iq C T T C T Cε ε= − = = − − °  
  min , ,B , ,B min , ,B( ) 15,100W (23 )h i c i c iq C T T C C Tε ε= − = = ° −  
  min , ,B , ,B min , ,B , ,B( ) 15,100W ( )c o c i c o c iq C T T C T T= − = = −  
  Cr = Cmin/Cmax 
  Tc,o,B = Th,i,A 
  Th,o,A = Tc,i,B 

  ( ) ( ){ }0.22 0.7811 exp NTU exp NTU 1r
r

C
C

ε
⎡ ⎤⎛ ⎞ ⎡ ⎤= − − −⎢ ⎥⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦

 

 

A trial-and-error solution yields ( )min ,/ 776K/W / 4194J/kg K 0.185kg/sw p wm C c= = ⋅ =&   < 
 

Continued… 
 



 
 

PROBLEM 11.38 (Cont.) 
 
 
COMMENTS: (1) Note that the maximum allowable water flow rate to justify the assumption that 
Cmax is associated with the air flow is m& max = Cmax/cp,w = 1510 W/K/4194 J/kg⋅K = 0.36 kg/s. The 
assumption is valid. (2) The maximum heat transfer rate is associated with an infinite water flow rate. 
For this case, the water temperature is constant at an average value of T = 9°C = 283 K and Cmin is 
associated with the air flow and is equal to 1510 K/W.  Assuming a constant value of UA, the 
effectiveness for an infinite Cmax is given by Eq. 11.35a and is ε = 1 – exp(-NTU) = 1 – exp(-
2500/1510) = 0.81. Hence, for an infinite water flow rate, q = 0.81 × 1510W/K × (23 – 9.5)°C = 
16,500 W. (3) The heat transfer rate, as well as the maximum and minimum water temperatures as a 
function of the water flow rate, are shown in the plots below (letting the cool stale air temperature be 
unknown). Note that at water mass flow rates of approximately 0.25 kg/s, the heat transfer rate 
asymptotically approaches that of an infinite water flow rate calculated in Comment 2. 
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PROBLEM 11.39  
KNOWN:  Cross-flow heat exchanger (both fluids unmixed) cools blood to induce body hypothermia 
using ice-water as the coolant.  
FIND:  (a) Heat transfer rate from the blood, (b) Water flow rate, &∀c  (liter/min), (c) Surface area of 
the exchanger, and (d) Calculate and plot the blood and water outlet temperatures as a function of the 
water flow rate for the range, 2  ≤ ∀ ≤&  4 liter/min, assuming all other parameters remain unchanged.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible losses to the surroundings, (3) Overall 
heat transfer coefficient remains constant with water flow rate changes, and (4) Constant properties. 
 

PROPERTIES:  Table A-6, Water T K  1000 kg / m  c  J / kg K.c
3= = = ⋅280 4198c h, ,ρ   Blood 

(given): ρ = = ⋅1050 kg / m  c 3740 J / kg K.3,  
 
ANALYSIS:  (a) The heat transfer rate from the blood is calculated from an energy balance on the hot 
fluid, 
 

& & /m  kg / m  liter / min 1 min / 60 s m liter 0.0875 kg / sh h h
3 3= ∀ = × × × =−ρ 1050 5 10 3b g  

 

 q m c T T  kg / s 3740 J / kg K 37 25 K 3927 Wh h h,i h,o= − = × ⋅ − =& .d i b g0 0875       < (1) 

 
(b)  From an energy balance on the cold fluid, find the coolant water flow rate, 
 
 q m  c T Tc c c,o c,i= −& d i         (2) 

 
 ( )c c3927 W m 4198 J/kg K 15 0 K m 0.0624 kg/s= × ⋅ − =& &  
 
& & / .∀ = = × × =c c c

3 3m  kg / s / 1000 kg / m liter / m  s / min 3.74 liter / minρ 0 0624 10 603  < 
 
(c) The surface area can be determined using the effectiveness-NTU method.  The capacity rates for 
the exchanger are 
 
 C m c  W / K C m  c  W / K C Ch h h c c c min c= = = = =& &327 262      (3, 4, 5) 
 
From Eq. 11.18 and 11.19, the maximum heat rate and effectiveness are 
 
          Continued ….. 



PROBLEM 11.39 (Cont.) 
 
 q C T T  W / K 37 0 K 9694 Wmax min h,i c,i= − = − =d i b g262     (6) 

 
 ε = = =q / qmax 3927 9694 0 405/ .        (7) 
 
For the cross flow exchanger, with both fluids unmixed, substitute numerical values into Eq. 11.32 to 
find the number of transfer units, NTU, where C C Cr min max= / . 
 

 ε = − − −L
NM

O
QP1 1exp 1/ C NTU exp C NTUr

0.22
r

0.78b g { }     (8) 

 
 NTU 0.691=  
 
From Eq. 11.24, find the surface area, A. 
 
 NTU UA / Cmin=  
 

 A 0.691 262 W / K / 750 W / m K 0.241 m2 2= × ⋅ =      < 
 
(d) Using the foregoing equations in the IHT workspace, the blood and water outlet temperatures, Th,o 
and Tc,o, respectively, are calculated and plotted as a function of the water flow rate, all other 
parameters remaining unchanged. 
 

Outlet temperatures for blood flow rate 5 liter/min
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From the graph, note that with increasing water flow rate, both the blood and water outlet temperatures 
decrease.  However, the effect of the water flow rate is greater on the water outlet temperature.  This is 
an advantage for this application, since it is desirable to have the blood outlet temperature relatively 
insensitive to changes in the water flow rate.  That is, if there are pressure changes on the water supply 
line or a slight mis-setting of the water flow rate controller, the outlet blood temperature will not 
change markedly. 
 



PROBLEM 11.40 
 
KNOWN:  Steam at 0.14 bar condensing in a shell and tube HXer (one shell, two tube passes consisting 
of 130 brass tubes of length 2 m, Di = 13.4 mm, Do = 15.9 mm).  Cooling water enters at 20°C with a 
mean velocity 1.25 m/s.  Heat transfer convection coefficient for condensation on outer tube surface is ho 
= 13,500 W/m2 ⋅K. 
 
FIND: (a) Overall heat transfer coefficient, U, for the HXer, outlet temperature of cooling water, Tc,o, and 
condensation rate of the steam hm& ; and (b) Compute and plot Tc,o  and hm&  as a function of the water 
flow rate 10 ≤ cm&  ≤ 30 kg/s with all other conditions remaining the same, but accounting for changes in  
U. 
 
SCHEMATIC:  

        
ASSUMPTIONS:  (1)  Negligible heat loss to surroundings, (2) Constant properties,  (3) Fully 
developed water flow in tubes. 
 
PROPERTIES: Table A-6, Steam (0.14  bar):  Tsat = Th  = 327 K, hfg = 2373 kJ/kg, cp  = 1898 J/kg⋅K;  
Table  A-6, Water  (Assume  Tc,o  ≈ 44°C  or  cT ≈ 305 K):  vf = 1.005 × 10-3  m3/kg , cp  = 4178  J/kg⋅K,  

μf = 769 × 10-6  N⋅s/m2 ,  kf = 0.620  W/m⋅K, Prf = 5.2;  Table A-1, Brass  - 70/30  (Evaluate at T = (Th  + 

cT )/2 = 316 K):  k = 114 W/m⋅K. 
 
ANALYSIS:  (a) The overall heat transfer coefficient based upon the outside tube area follows from Eq. 
11.5, 

 
1

o o o
o

o i i i

r r r1 1
U n

h k r r h

−

= + +
⎡ ⎤⎛ ⎞
⎢ ⎜ ⎟ ⎥

⎝ ⎠⎣ ⎦
l . (1) 

 
The value for hi can be estimated from an appropriate internal flow correlation.  First determine the nature 
of the flow within the tubes.  From Eq. 8.1, 

 
( )

i

13 3 3
i

D m 6 2

1.005 10 m kg 1.25m s 13.4 10 mD
Re u 21, 673

769 10 N s m
ρ

μ

−− −

−

× × × ×
= = =

× ⋅
. 

The water flow is turbulent and fully developed  (L/Di  = 2 m /13.4 × 10-3 m = 150 > 10). The Dittus-
Boelter correlation with n = 0.4 is appropriate, 

 ( ) ( )0.8 0.40.8 0.4
D i i f D fNu h D k 0.023Re Pr 0.023 21, 673 5.2 130.9= = = × =  

Continued... 
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 2f
i D 3i

k 0.620W m K
h Nu 130.9 6057 W m K

D 13.4 10 m−
⋅

= = × = ⋅
×

. 

 
Substituting numerical values into Eq. (1), the overall heat transfer coefficient is  
 

 
( ) 13

o 2 2

15.9 10 m 21 15.9 15.9 1
U n

114 W m K 13.4 13.413,500 W m K 6057 W m K

−−×
= + + ×

⋅⋅ ⋅

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

l  

 
15 5 5 2 2

oU 7.407 10 1.193 10 19.590 10 W m K 3549 W m K
−− − −= × + × + × ⋅ = ⋅⎡ ⎤

⎣ ⎦ . < 
 
To find the outlet temperature of the water, we’ll employ the ε − NTU method.  From an energy balance 
on the cold fluid, 
 
 c,o c,i cT T q C= +  (3) 
 
where the heat rate can be expressed as  
 
 ( )max max min h,i h,oq q q C T Tε= = − . (4,5) 
 
The minimum capacity rate is that of the cold water since Ch → ∞ .  Evaluating, find  
 

 ( )min c p c
C C mc 22.8 kg s 4178 J kg K 95, 270 W K= = = × ⋅ =& . 

where 

 ( ) ( )23
c mm Au N 995.0 kg/m 4 0.0134m 1.25 m s 130 22.8 kg sρ π= = × × × =&  

To determine ε, use Fig. 11.12 (one shell and any multiple of tube passes)  with Cr = 0 and 
 

 
( )2

o o

min

3549 W m K 0.0159m 2m 130 2U A
NTU 0.968

C 95, 270 W K
π⋅ × × ×

= = =  

 
where 130 and 2 represent the number of tubes and passes, respectively, to find ε ≈ 0.62.  Combining Eqs. 
(4) and (5) into Eq. (3), find 

 ( ) ( )c,o c,i min h,i c,i cT T C T T C 20 C 0.62 327 293 K 41.1 Cε= + − = + − =o o . < 
 
The condensation rate of the steam is given by 
 
 h fgm q h=&  (6) 
 
where the heat rate can be determined from Eq. (3) with Tc,o , 

 ( ) ( ) 3
h c c,o c,i fgm C T T h 95, 270 W K 41.1 20.0 K 2373 10 J kg K 0.85 kg s= − = − × ⋅ =& . < 

 
(b) Using the IHT Heat Exchanger Tool, All Exchangers, Cr = 0, and the Properties Tool for Water, a 
model was developed and the cold outlet temperature and condensation rate were computed and plotted. 
 

Continued... 



 
PROBLEM 11.40 (Cont.) 

 

10 14 18 22 26 30

Cold flow rate, mdotc (kg/s)

0

10

20

30

40

50

Tc
o 

(C
) a

nd
 m

do
th

*1
0^

-1
 (k

g/
s)

Cold outlet temperature, Tco (C)
Condensation rate, mdoth*10^-1 (kg/s)  

 
With increasing cold flow rate, the cold outlet temperature decreases as expected.  The condensation rate 
increases with increasing cold flow rate.  Note that Tc,o and hm&  are nearly linear with the cold flow rate. 
 
COMMENTS: For part (a) analysis, note that the assumption Tc,o  ≈ 44°C used for evaluation of the cold 
fluid properties was reasonable.  Using the IHT model of part (b), we found Tc,o = 40.2°C and hm&  = 
0.812 kg /s. 



PROBLEM 11.41 
 
KNOWN: Shell-and-tube (one shell, two tube passes) heat exchanger design.  Water flow rate and inlet 
temperature.  Steam pressure and convection coefficient. 
 
FIND: (a) Water outlet temperature, Tc,o; (b) Tc,o as a function of flow rate, cm& , for the range, 5 ≤ cm&  ≤ 
20 kg/s, with all other conditions remaining the same, but accounting for changes in the overall 
coefficient, U;  and (c)  Plot Tc,o  on the same graph considering fouling factors of fR′′  = 0.0002 and 
0.0005 m2⋅K/W 
 
SCHEMATIC:  

 
ASSUMPTIONS: (1) Negligible heat loss to surroundings, (2) Negligible wall conduction and fouling 
resistances, (3) Constant properties. 
 
PROPERTIES: Table A-6, Sat. water (p = 1.0133 bar):  Tsat = T = 373.1 K;  ( cT ≈ 320 K):  cp = 4180 
J/kg⋅K,  μ = 577 × 10-6 N⋅s/m2  , k = 0.640 W/m⋅K,  Pr = 3.77. 
 
ANALYSIS: Using the NTU-effectiveness method, calculate U by finding hi .  With  
 

 ( )[ ] ( )( )6 2
DRe 4m D 4 10 kg s 100 0.02m 577 10 N s m 11, 033π μ π −= = × ⋅ =⎡ ⎤

⎢ ⎥⎣ ⎦
&  (1) 

 
and using the Dittus-Boelter correlation, 
 

 ( ) ( )4 / 5 0.44 / 5 0.4
D DNu 0.023Re Pr 0.023 11, 033 3.77 67.05= = =  (2) 

 
 ( ) ( ) 2

i Dh k D Nu 0.640 W m K 0.02m 67.05 2146 W m K= = ⋅ = ⋅ . 
 
From Eq. 11.5 
 
 ( ) ( )[ ] 2 4 2

i o1 U 1 h 1 h 1 10, 000 1 2146 m K W 5.66 10 m K W−= + = + ⋅ = × ⋅  (3) 
 
 2U 1766 W m K= ⋅ . 
 
The heat transfer surface area, capacity rates and NTU are 

 ( ) ( ) 2A N D 2L 100 0.02m 2 2m 25.1mπ π= = × =  
 ( )min cC C 10 kg s 4180 J kg K 41,800 W K= = ⋅ =  

 2 2
minNTU UA C 1766 W m K 25.1 m 41,800 W K 1.06= = ⋅ × =  

From Eq. 11.35a 
Continued... 
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 ( ) ( )1 exp NTU 1 exp 1.06 0.654ε = − − = − − = . (4) 
 
With 

 ( ) ( ) 6
max min h,i c,iq C T T 41,800 W K 373.15 290 K 3.48 10 W= − = − = ×  (5) 

 

 ( )6 6
maxq q 0.654 3.48 10 W 2.27 10 Wε= = × = ×  

find 

 ( ) ( )6
c,o c,i cT T q C 290 K 2.27 10 W 41,800W K 344.4K= + = + × = . (6)< 

 
(b,c) Using the IHT Heat Exchanger Tool, All Exchangers, Cr = 0, the Properties Tool for Water and the 
Correlation Tool, Forced Convection, Internal Flow, for Turbulent, fully developed conditions, a model 
was developed following the foregoing analysis to compute and plot the outlet temperature Tc,o  as a 
function of the cold fluid flow rate, cm& .  The expression for the overall coefficient, Eq.(1), was modified 
to include the fouling factor, 
 
 i f o1 U 1 h R 1 h′′= + + . 
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The effect of increasing the cold flow rate is to decrease the outlet temperature.  The effect of the fouling 
resistance is to decrease the outlet temperature as well. 
 
COMMENTS:  (1) For the part (a) analysis, cT  = 317 K and the initial guess of 320 K was reasonably 
good.   
 
(2) In the anlysis of parts (b,c),  ReD,c is as low as 4880, below the turbulent range (10,000) and above the 
laminar range (2300).  We chose to treat the flow as turbulent. 



PROBLEM 11.42  
KNOWN:  Saturated steam at 110°C condensing in a shell and tube heat exchanger (one shell pass, 2, 
4, tube passes) with a UA value of 2.5 kW/K; cooling water enters at 40°C.  
FIND:  Cooling water flow rate required to maintain a heat rate of 150 kW; and (b) Calculate and plot 
the water flow rate required to provide heat rates over the range 130 to 160 kW, assuming that UA is 
independent of flow rate.  Comment on the validity of the assumption.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) UA independent of flow rate, and (3) 
Constant properties. 
 
PROPERTIES:  Table A-6, Water (Tm,c = (Tc,i + Tc,o)/2 = 49.5°C = 322.5 K):  cp,c = 4181 J/kg⋅K. 
 
ANALYSIS:  (a) For the shell-tube heat exchanger with any multiple of two-tube passes, from Eq. 
11.35a with Cr = 0, using Eqs. 11.19 and 11.22, 
 
 ( ) min1 exp NTU NTU UA / Cε = − − =      (1,2) 
 
 ( )max max c h,i c,iq / q q C T Tε = = −     (3,4) 

 
By combining the equations with min c c p,cC C m c ,= = &  

 

 
( ) c p,cc p,c h,i c,i

q UA1 exp
m cm c T T

⎛ ⎞
= − −⎜ ⎟⎜ ⎟− ⎝ ⎠&&

      (5) 

 
Substituting numerical values, and solving using IHT find 
 

 cm 1.89 kg / s=&          < 
 
The specific heat of the cold fluid, cp,c, is evaluated at the average of the mean inlet and outlet 
temperatures, Tm,c = (Tc,i + Tc,o)/2, with Tc,o determined from the energy balance equation, 
 
 ( )p,c c,o c,iq m c T T .= −&         (6) 

 
(b) Solving the above system of equations in the IHT workspace, the graph below illustrates the water 
flow rate required to provide a range of heat rates. 
          Continued … 
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COMMENTS:  (1) The assumption that UA is constant with flow rate is a poor one.  Because the 
heat transfer coefficient for condensation is so high, the overall coefficient is controlled by the water-
side coefficient.  Presuming the flow is turbulent, from the Dittus-Boelter correlation, we’d expect 

0.8
cU m .∝   Over the range of the graph above, U will vary by approximately a factor of (3.5/1)0.8 = 

2.7. 
 
(2) If we considered UA to vary with the cold water flow rate as just described, make a sketch of 

cm vs. q&  and compare it to the graph above. 
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PROBLEM 11.43  
KNOWN:  Temperature, convection coefficient and condensation rate of saturated steam.  Tube 
diameter for shell-and-tube heat exchanger with one shell pass and two tube passes.  Velocity and inlet 
and maximum allowable exit temperatures of cooling water.  
FIND:  (a) Minimum number of tubes and tube length per pass, (b) Effect of tube-side heat transfer 
enhancement on tube length.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible heat exchange with surroundings, (2) Negligible tube wall 
conduction and fouling resistance, (3) Constant properties, (4) Fully developed internal flow 
throughout. 
 
PROPERTIES:  Table A-6, Sat. water (340 K):  hfg = 2.342 × 106 J/kg; Sat. water 

( )cT 22.5 C 295 K := ° ≈   ρ=998 kg/m3, cp = 4181 J/kg⋅K, μ = 959 × 10-6 N⋅s/m2, k = 0.606 W/m⋅K, 

Pr = 6.62.  
ANALYSIS:  (a) The required heat rate and the maximum allowable temperature rise of the water 
determine the minimum allowable flow rate.  That is, with 
 

 6 6
cond cond fgq q m h 2.73 kg / s 2.342 10 J / kg 6.39 10 W= = = × × = ×&  

 

 
( ) ( )

6
c,min

p,c c,o c,i

q 6.39 10 Wm 101.9 kg / s
4181 J / kg K 15 Cc T T

×
= = =

⋅ °−
&  

 
With a specified flow rate per tube of c,1m&  =ρumπ D2/4 = 998 kg/m3 × 0.5 m/s × π (0.019m)2/4 = 
0.141 kg/s, the minimum number of tubes is 
 

 c,min
min

c,1

m 101.9 kg / sN 720
m 0.141 kg / s

= = =
&

&
      < 

 
To determine the corresponding tube length, we must first find the required heat transfer surface area.  
With ReD = ρumD/μ = 998 kg/m3 (0.5 m/s) 0.019m/959 × 10-6 N⋅s/m2 = 9,886, the Dittus-Boelter 
equation yields 
 

( ) ( ) ( ) ( )4 / 5 0.4 24 / 5 0.4
i Dh k / D 0.023 Re Pr 0.606 W / m K / 0.019m 0.023 9886 6.62 2454 W / m K= = ⋅ = ⋅  

 
          Continued … 
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Hence, 
11 1 2

oiU h h 1970 W / m K
−− −⎡ ⎤= + = ⋅⎢ ⎥⎣ ⎦

 

 
With Cr = 0, Cmin = cm&  cp,c = 101.9 kg/s × 4181 J/kg⋅K = 4.26 × 105 W/K, qmax = Cmin (Th,i – Tc,i) 

= 4.26 × 105 W/K (340 – 288) K = 2.215 × 107 W and ε = q/qmax = 0.289, Eq. 11.35b yields NTU =  – 
ln (1 – ε) = – ln (1 – 0.289) = 0.341.  Hence the tube length per pass is 
 

 
( )

5
min

2
A NTU C 0.341 4.26 10 W / KL 0.858m

2N D 2N DU 2 720 0.019m 1970 W / m Kπ π π

× × ×
= = = =

× × ⋅
 < 

 

(b) If the tube-side convection coefficient is doubled, 2
ih 4908 W / m K= ⋅  and U = 3292 W/m2⋅K.  

Since q, Cr, Cmin, qmax and hence ε are unchanged, the number of transfer units is still NTU = 0.341.  
Hence, the tube length per pass is now 
 

 
( )

5
min

2
NTU C 0.341 4.26 10 W / KL 0.513m

2 N DU 2 720 0.019m 3292 W / m Kπ π

× × ×
= = =

× × ⋅
  < 

 
COMMENTS:  Heat transfer enhancement for the flow with the smallest convection coefficient 
significantly reduces the size of the heat exchanger. 
 



PROBLEM 11.44  
KNOWN:  Pressure and initial flow rate of water vapor.  Water inlet and outlet temperatures.  Initial 
and final overall heat transfer coefficients.  
FIND:  (a) Surface area for initial U and water flow rate, (b) Vapor flow rate for final U.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Negligible wall conduction resistance. 
 
PROPERTIES:  Table A-6, Sat. water ( cT  = 310 K): cp,c = 4178 J/kg⋅K; (p = 0.51 bars): Tsat = 355 

K, hfg = 2304 kJ/kg. 
 
ANALYSIS:  (a) The required heat transfer rate is 

 ( )6 6
h fgq m h 1.5 kg / s 2.304 10 J / kg 3.46 10 W= = × = ×&  

and the corresponding heat capacity rate for the water is 
 
 ( ) 6

c min c,o c,iC C q / T T 3.46 10 W / 40 K 86,400 W / K.= = − = × =  
 
Hence,   ( ) ( )6

min h,i c,iq / C T T 3.46 10 W / 86,400 W / K 65 K 0.62.ε ⎡ ⎤= − = × =⎣ ⎦  
 
Since Cmin/Cmax = 0, Eq. 11.35b yields 
 ( ) ( )NTU ln 1 ln 1 0.62 0.97ε= − − = − − =  

and ( ) ( )2 2
minA NTU C / U 0.97 86,400 W / K / 2000 W / m K 41.9m= = ⋅ =   < 

 c c p,cm C / c 86, 400 W / K / 4178 J / kg K 20.7 kg / s.= = ⋅ =&    < 

(b) Using the final overall heat transfer coefficient, find 

 ( )2 2
minNTU UA / C 1000 W / m K 41.9m / 86,400 W / K 0.485.= = ⋅ =  

Since Cmin/Cmax = 0, Eq. 11.35a yields 
 
 ( ) ( )1 exp NTU 1 exp 0.485 0.384.ε = − − = − − =  
 
Hence,  ( ) ( ) 6

min h,i c,iq C T T 0.384 86,400 W / K 65 K 2.16 10 Wε= − = = ×  
 
 6 6

h fgm q / h 2.16 10 W / 2.304 10 J / kg 0.936 kg / s.= = × × =&    < 
 
COMMENTS:  The significant reduction (38%) in hm&  represents a significant loss in turbine power.  
Periodic cleaning of condenser surfaces should be employed to minimize the adverse effects of 
fouling. 



PROBLEM 11.45  
KNOWN:  Two-fluid heat exchanger with prescribed inlet and outlet temperatures of the two fluids.  
FIND:  (a) Whether exchanger is operating in parallel or counter flow, (b) Effectiveness of the 
exchanger when Cc = Cmin. 
 
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Negligible heat loss to the surroundings.  
ANALYSIS:  (a) To determine whether operation is PF or CF, consider the temperature distributions.  
From the distributions we note that PF or CF operation is possible. 
 
(b) The effectiveness of the exchanger follows from Eq. 11.19, 
 
 maxq / qε =           (1) 
 
where from Eq. 11.18, 
 
 ( )max min h,i c,iq C T T .= −         (2) 

 
Since the hot fluid undergoes a larger temperature change than the cold fluid,  Cmin = Ch and 
performing an energy balance on the cold fluid, Eq. (1) with Eq. (2) becomes 
 

 ( ) ( ) ( ) ( )h h,i min h,i c,i h,i h,o h,i c,ih,oC T T / C T T T T / T T= − − = − −ε  

 

 ( ) ( )65 40 C / 65 15 C 0.50.= − ° − ° =ε        < 
 
COMMENTS:  If Tc,o were greater than Th,o, parallel-flow operation would not be possible. 
 



PROBLEM 11.46 
 
KNOWN: Length and diameters of vein and artery running from chest to base of skull.  
Separation distance.  Inlet temperatures and mass flow rates of blood flowing in opposite 
directions in vein and artery.  Thermal conductivity of surrounding tissue. 
 
FIND: Outlet temperature of arterial blood.  How much higher the arterial blood inlet 
temperature can be if blood flow rate is halved and exit temperature must still be below 37°C. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Constant properties and steady-state conditions, (2) Blood properties are 
those of water, (3) All heat leaving artery enters vein, (4) Vessel walls have negligible thermal 
resistance.  (4) Properties of both flows can be evaluated at 305 K, (5) Uniform wall temperature 
correlation is appropriate, (5) Flows are hydrodynamically and thermally fully developed. 
 
PROPERTIES: Table A.6, water: (T = 305 K): cp = 4178 J/kg⋅K, µ = 769 × 10-6 N⋅s/m2, k = 
0.620 W/m⋅K,.  Tissue (given): kt = 0.5 W/m⋅K. 
 
ANALYSIS: The pair of vessels can be seen as a counterflow heat exchanger.  We begin by 
evaluating the heat transfer coefficients, which will be the same in both vessels.  From Eq. 8.6, 
 

D 6 2
4m 4 0.003 kg / sRe 993
D (0.005 m)769 10  N s/m−

×
= = =
π μ π × ⋅

&
 

 
Hence the flow is laminar and NuD = 3.66.  Therefore, 
 

2
c D

k 0.620 W / m Kh Nu 3.66 454 W / m K
D 0.005 m

⋅
= = = ⋅  

 
With the assumption that all the heat that leaves the artery enters the vein, conduction between 
the two cylinders can be represented by the shape factor in Table 4.1, case 4.  Then 
 

2 2 2 2
1 1

2 2
cond

t t

4w 2D 4(0.007 m) 2(0.005 m)cosh cosh
2D 2(0.005 m)1R 2.208 K / W

Sk 2 Lk 2 0.250 m 0.5 W / m K

− −⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= = = =
π π× × ⋅

 
Then we can find UA for heat transfer between the two blood flows. 
 

Continued… 

Arterial blood 
& hm = 0.003 kg/s 

Th,i = 37°C 
D = 5 mm 

w = 7 mm Venous blood 
& cm = 0.003 kg/s 

Tc,i = 27°C

L = 250 mm 



PROBLEM 11.46 (Cont.) 
 

1
cond

2

1 1UA R
h DL h DL

12  +2.208 K / W 3.33 K/W
454 W / m K 0.005 m 0.25 m

− = + +
π π

= =
⋅ × π× ×

 

 
UA 0.300 W / K=  

 
Now using the ε-NTU method, with equal heat capacity rates for the two flows, 
 

 r
p

UA 0.300 W / KNTU 0.0240,      C 1
mc 0.003 kg / s 4178 J / kg K

= = = =
× ⋅&

 

From Eq. 11.29b, with Cr = 1 and using Eq. 11.20 
 

h,i h,o

h,i c,i

T TNTU 0.024 0.0234
NTU 1 0.024 1 T T

−
ε = = = =

+ + −
 

Thus 
 h,o h,i h,i c,iT T (T T ) 37 C 0.0234(37 C 27 C)= − ε − = ° − ° − °   

h,oT 36.8 C= °                   < 
 
If the mass flow rate is halved, the flows remain laminar and the heat transfer coefficients are 
unchanged, as is UA.  Thus, NTU doubles, i.e. NTU = 0.0480, and ε = 0.048/1.048 = 0.0458.  
Thus 

h,i h,o h,o c,i
h,i

h,i c,i

T T T T 37 C 0.0458 27 C,      T 37.5 C
T T 1 1 0.0458

− − ε ° − × °
ε = = = = °

− − ε −
            < 

 
COMMENTS: (1) The assumed mean temperature is not accurate, but this is not worth 
correcting since the properties of blood are not those of water.  (2) With xfd,h = 0.05ReDPrD = 1.3 
m, the flow is not fully developed thermally.  The actual heat transfer coefficients would be 
greater and there would be a larger temperature change between inlet and outlet.  (3) Heat transfer 
from the artery to the cooler neck surface can have a comparable or somewhat larger effect on 
cooling the arterial blood. 
  
 



PROBLEM 11.47  
KNOWN:  A very long, concentric tube heat exchanger having hot and cold water inlet temperatures, 
85°C and 15°C, respectively; flow rate of hot water is twice that of the cold water.  
FIND:  Outlet temperatures for counterflow and parallel flow operation.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Equivalent hot and cold water specific heats, (2) No heat loss to surroundings.  
ANALYSIS:  The heat rate for a concentric tube heat   
exchanger with very large surface area operating in the 
counterflow mode is 
 
 ( )max min h,i c,iq q C T T= = −  

 
where Cmin = Cc.  From an energy balance on the hot fluid, 
 
 ( )h h,i h,oq C T T .= −  
 
Combining the above relations and rearranging, find 

 ( ) ( )cmin
h,o h,i c,i h,i h,i c,i h,i

h h

CCT T T T T T T .
C C

= − − + = − − +  

Substituting numerical values, 
 

 ( )h,o
1T 85 15 C 85 C 50 C.
2

= − − ° + ° = °       < 
 
For parallel flow operation, the hot and cold outlet   
temperatures will be equal; that is, Tc,o = Th,o. 
Hence, 
 
 ( ) ( )c c,o c,i h h,i h,oC T T C T T .− = −  

 
Setting Tc,o = Th,o and rearranging, 

 c c
h,o h,i c,i

h h

C CT T T / 1
C C

⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 h,o
1 1T 85 15 C / 1 61.7 C.
2 2

⎛ ⎞ ⎛ ⎞= + × ° + = °⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

      < 

 
COMMENTS:  Note that while ε = 1 for CF operation, for PF operation find ε = q/qmax = 0.67. 



PROBLEM 11.48  
KNOWN:  Saturation temperature and condensation rate of refrigerant.  Frontal area of condenser and 
dependence of overall coefficient on inlet velocity.  Operational range of the air inlet temperature.  
FIND:  (a) Required heat exchanger area and air outlet temperature for prescribed air inlet velocity 
and temperature, (b) Variation in air velocity needed to achieve prescribed condensation rate.  
SCHEMATIC:    

 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Constant properties. 
 
PROPERTIES:  Given (Refrigerant): hfg = 1.35 × 105 J/kg.  Table A-4, air (Tc,i = 303 K):  ρc = 1.17 
kg/m3, cp,c = 1007 J/kg⋅K. 
 
ANALYSIS:  (a) With ,

3 2
c c frm VA 1.17 kg / m 2 m / s 0.25 m 0.585 kg / sρ= = × × =&  

min c p,cC m c 589 W / K.= =&   Hence, from Eq. 11.18, with Th,i = Tsat, 
 
 ( ) ( )max min h,i c,iq C T T 589 W / K 45 30 K 8,836 W= − = − =  
 
and with 5

h fgq m h 0.015 kg / s 1.35 10 J / kg 2025 W= = × × =&  
 

 
max

q 2025 0.229
q 8836

ε = = =  

 
From Eq. 11.35b we then obtain (for Cr = 0), 
 

 ( ) ( ) 2min min
2

C C 589 W / KA NTU ln l ln 0.771 3.067 m
U U 50 W / m K

ε= = − − = − =
⋅

 < 

 
With q = Cmin (Tc,o – Tc,i), the outlet temperature is 
 

 c,o c,i
min

q 2025WT T 30 C 33.4 C
C 589 W / K

= + = ° + = °      < 

 
(b) With q = 2025 W, A = 3.06 m2 and U = 50 W/m2⋅K (V/2)0.7, the foregoing equations may be 
solved to obtain V as a function of Tc,i. 
 
          Continued… 
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PROBLEM 11.48 (Cont.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
With increasing Tc,i, the driving potential for heat transfer, Th,i – Tc,i, decreases and a larger value of 
U, and hence V, is needed to maintain the required heat rate.  For 27 ≤ Tc,i ≤ 38°C, 1.56 ≤ V ≤ 5.66 
m/s and 42.1 ≤ U ≤ 103.6 W/m2⋅K. 
 
COMMENTS:  The variation of V with Tc,i is nonlinear, and, in principle, V → ∞ as Tc,i → Tsat. 
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PROBLEM 11.49 

 
KNOWN: Conditions of oil and water for heat exchanger, one shell with 4 tube passes. 
 
FIND:  Length of exchanger tubes per pass,  L; and (b) Compute and plot the effectiveness, ε, fluid outlet 
temperatures, Th,o and Tc,o, and water-side convection coefficient, hc , as a function of the water flow rate 
for 5000 ≤ cm&  ≤ 15,000 kg / h  for the tube length found in part (a) with all other conditions remaining 
the same. 
 
SCHEMATIC: 

 
ASSUMPTIONS: (1) Negligible heat loss to surroundings, (2) Constant properties, (3) Fully-developed 
flow in tubes. 
 
PROPERTIES: Table A-1, Brass (400 K):  k = 137  W/m⋅K;  Table A-5, Water (323 K): ρ= 998.1 
kg/m3, k = 0.643 W/m⋅K, cp  = 4182  J/kg⋅K, μ = 548 × 10-6 N⋅s/m2, Pr = 3.56. 
 
ANALYSIS: (a) Using the ε-NTU method, 
 

 c c c
10,000 kg / hC m c 4182 J / kg K 11,620 W / K

3600 s / h
= = × ⋅ =&  

 
From an energy balance on the water, c c,o c,iq C (T T ) 11,620 W / K(84 16) C 789,900 W= − = − ° =  
From an energy balance on the oil, h h,i h,oC q /(T T ) 789,900 W /(160 94) C 11,970 W / K= − = − ° =  
 
Thus, Cr = Cmin/Cmax = 0.971, qmax = Cmin(Th,i - Tc,i) = 11,620 W/K(160 – 16)°C = 1.673 × 106 W, and ε = 
q/qmax = 0.472. From Eqs. 11.30c and 11.30b,  
 

 

( ) ( )

( ) ( )

r
1/ 2 1/ 22 2

r

1/ 2 1/ 22 2
r

2 / (1 C ) 2 / 0.472 (1 0.971)E 1.625
1 C 1 0.971

E 1 1.625 1NTU 1 C ln 1 0.971 ln 1.03                      (1)
E 1 1.625 1

− −

ε − + − +
= = =

+ +

− −⎛ ⎞ ⎛ ⎞= − + = − + =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 

 
and since NTU = UA/Cmin, Ao = NTU ×  Cmin/Uo                                                                           (2) 
Thus we can determine L if we know Uo. From Eq. 11.5, 

 
1

o o o
o

o i i i

r r r1 1
U n

h k r r h

−
= + +
⎡ ⎤
⎢ ⎥
⎣ ⎦

l  

 
where hi must be estimated from the appropriate correlation.  With N = 11, the number of tubes, 

Continued... 
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( ) ( )

D 3 6 2
4 10,000 3600 kg s 114m N

Re 25,621
D 22.9 10 m 548 10 N s mπ μ π − −

×
= = =

× × × × ⋅

&
. 

 
For fully developed turbulent flow, the Dittus-Boelter correlation with n = 0.4 yields 

 ( ) ( )0.8 0.40.8 0.4
D i DNu h D k 0.023Re Pr 0.023 25, 621 3.56 128.6= = = =  

 ( ) ( )3 2
i Dh Nu k D 128.6 0.643 W m K 22.9 10 m 3610 W m K−= = × ⋅ × = ⋅ .

 
13

2
o 2 2

1 25.4 10 m 25.4 25.4 1
U n 355 W m K

2 137 W m K 22.9 22.9400 W m K 3610 W m K

−−×
= + + × = ⋅

× ⋅⋅ ⋅

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

l . 

 
Returning now to Eq. (2), find Ao, then the length, 
 
 3

o oA D L No. of Passes No.of Tubes 25.4 10 m 4 11L 3.511 Lπ π −= × × = × × × × =  

 2L NTU C / 3.511U 1.03 11,620 W / K / 3.511 m 355 W / m K 9.6 mmin o= × = × × ⋅ =  < 
 
(b)  Using the IHT Heat Exchanger Tool, Shell and Tube, One-shell pass and N tube passes, the 
Correlation Tool, Forced Convection, Internal Flow for Turbulent, fully developed condition, and the 
Properties Tool for Water, a model was developed using the effectiveness - NTU method to compute and 
plot Tc,o , Th,o , ε, and hi  as a function of cm& . 
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In order to avoid a boiling condition in the cold fluid, the cold flow rate should not be less than 8000 
kg/h.  As expected, Tc,o and Th,o  decrease and the internal convection coefficient increases nearly linearly 
with increasing flow rate.  The effectiveness increases with increasing flow rate since the overall 
convection coefficient is increasing. 
 
COMMENT: The thermal resistance of the brass tubes is negligible.  Since L/Di  = 400, fully-developed 
conditions are reasonable.   
 



PROBLEM 11.50 
 
KNOWN: Properties and flow rate of computer coolant.  Diameter and number of heat exchanger tubes.  
Heat exchanger transfer rate and inlet temperature of computer coolant.  Flow rate, specific heat, inlet 
temperature, and average convection coefficient of water. 
 
FIND: (a) Tube flow convection coefficient, ih , (b) Tube length/pass required to achieve prescribed 
fluid outlet temperature, (c) Compute and plot the dielectric fluid outlet temperature, Tf,o , as a function of 
its flow rate fm&  for the range 4 ≤ fm&  ≤ 6 kg/s based upon the length/pass found in part (c), (d) the 
effect of ±10% change in the water flow rate, wm& , on Tf,o and (e) the effect of ±3°C change in inlet water 
temperature, Tw ,i, on Tf,o.   For parts (c, d, e), account for any changes in the overall convection 
coefficient, while all other conditions remain the same. 
 
SCHEMATIC: 

 
ASSUMPTIONS: (1) Negligible heat loss to surroundings, fouling and tube wall resistance; (2) Constant 
properties;  (3) Fully developed flow, (4) Convection coefficient on shell side, oh , remains constant for 
all operating conditions. 
  
PROPERTIES:  Coolant (given):  cp  = 1040 J/kg⋅K, μ = 7.65 × 10-4  kg/s⋅m, k = 0.058 W/m⋅K,  Pr = 14; 
Water (given):  cp = 4200 J/kg⋅K. 
 
ANALYSIS:  (a) For flow through a single tube,  
 

 
( )

( )
f ,t

D 4
4m 4 4.81kg s 72

Re 11,120
D 0.01m 7.65 10 kg s m

/
π μ π −

= = =
× ⋅

&
 

 
and using the Dittus-Boelter correlation, find 

 ( ) ( ) ( )4 / 5 0.34 / 5 0.3 2
i D

0.058 W m K
h k D 0.023Re Pr 0.023 11,120 14 508 W m K

0.01m
⋅

= = = ⋅ . < 
 
(b) Find the capacity ratio 
 
 ( )f f p,f minC m c 4.81kg s 1040 J kg K 5002 W K C= = ⋅ = =&  
 
 ( )w w p,w maxC m c 2.5 kg s 4200 J kg K 10,500 W K C= = ⋅ = =&  
 
hence, Cr = Cmin /Cmax = 0.476 and 

 
( )
( )

( )
( )

f f ,i f ,o

max f f ,i w,i

C T T 25 15 Cq
0.500

q C T T 25 5 C
ε

− −
= = = =

− −

o

o
. 

 
Using Fig. 11.12 with NTU = (UA/Cmin ) = (UNπD2L/Cmin ) ≈ 0.85, 

Continued... 
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 ( ) ( ) ( )
11 111 1 4 2 2

i oU h h 508 10 W m K 483 W m K
−− −−− −= + = + ⋅ = ⋅

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 ( ) ( )2L 0.85 5002 W K 144 483W m K 0.01m 1.95mπ= ⋅ = . < 

 
(c) Using the IHT Heat Exchanger Tool, Shell and Tube, One-shell pass and N-tube passes, and the 
Correlation Tool, Forced Convection, Internal Flow for Turbulent, fully developed conditions, a model 
was developed using the effectiveness-NTU method employed above to compute and plot Tf,o as a 
function of fm& . 
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A change in the dielectric fluid flow rate of  ±1 kg/s causes approximately ±0.5°C change in its outlet 
temperature. 
 
(d) Using the above IHT model with the base conditions for part (c), the effect of a  ±10% change in the 
water flow rate from its design value, wm& = 2.5 kg/s (2.25 ≤ wm&  ≤ 2.75 kg/s) causes the dielectric fluid 
outlet temperature to change as 

 f ,oT 15 0.14 C= ± o  < 
 
(e) Using the IHT model of part (c) with the base case conditions for part (c), the effect of a ±3°C in the 
water inlet temperature from its design value, Tc,i = 5°C ( 2 ≤ Tc,i  ≤ 8°C) cause the dielectric fluid outlet 
temperature to change as 

 f ,oT 15 1.5 C= ± o  < 
 
COMMENTS:  (1) For the analyses of part (a), Eq. 11.30b,c yields NTU = 0.85 and q = 50 kW and Tw,o 
= 9.76°C.   
 
(2) The results of the analyses provide operating performance information on the effect of changes due to 
dielectric fluid flow rate (±1 kg/s of fm& ), water fluid flow rate (≤ 10% of wm& ) and water inlet 
temperature (±3°C of Tw,i) on the dielectric fluid outlet temperature, Tf,o, supplied to the computer.  The 
greatest effect on Tf,o, is that by the input water temperature. 



PROBLEM 11.51 
 

 
KNOWN:  Inlet temperatures of brine and working fluid in a geothermal power plant heat exchanger. 
Brine outlet temperature. Electric power generation and thermal efficiency of the geothermal plant. 
Overall heat transfer coefficients under clean and fouled conditions. 
 
FIND:  (a) Brine flow rate, heat exchanger effectiveness, required heat transfer surface area for clean 
conditions. (b) Electric power generated under fouled conditions. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Negligible heat transfer between heat exchanger and surroundings, (2) 
Constant properties. 
 
PROPERTIES:  Table A.6 brine (water), T = 140°C: cp = 4285 J/kg⋅K. 
 
ANALYSIS:   (a) The heat input to the working fluid of the Rankine cycle is supplied from the heat 
exchanger and is q = P/η = 25 × 106W/0.20 = 125 × 106 W. Therefore, the required brine flow rate is  
 

6
, ,/[ ( )] 125 10  W /[4285 J/kg K (200 C 80 C)] 243 kg/sp h i h om q c T T= − = × ⋅ × ° − ° =&   < 

 
and 6

min 243 kg/s 4285 J/kg K 1.04 10  W/KpC mc= = × ⋅ = ×& . The required effectiveness is 

 6 6
min , ,/[ ( )] 125 10 W /[1.04 10  W/K(200 C 45 C)] 0.775h i c iq C T Tε = − = × × ° − ° =   < 

 
From Fig. 11.12, the NTU is 1.5 and A = NTU⋅Cmin/U = (1.5 × 1.04 × 106 W/K)/4000 W/m2⋅K  

= 390 m2.            < 
 
(b) Under fouled conditions, NTU = UA/Cmin = 2000 W/m2⋅K × 390 m2/(1.04 × 106 W/m2⋅K) = 0.75. 
From Fig. 11.12, the effectiveness is ε = 0.55. Hence, q = εCmin(Th,i – Tc,i) = 0.55 × 1.04 × 106 W/K × 
(200° - 45°C) = 88.7 × 106 W and the electric power generated is P = ηq = 0.20 × 88.7 × 106 W = 17.7 
× 106 W = 17.7 MW (electric).   

            < 
COMMENTS:  (1) With this analysis, the electric power output is reduced by [(25 – 17.7)/25] × 100 
= 29% due to fouling. (2) The outlet brine temperature as well as the inlet Rankine fluid temperature 
would also change as a result of fouling. A more accurate estimate of the effect of fouling would 
require coupling the heat transfer analysis with an analysis of the Rankine cycle and its components. 
(3) Use of Eq. 11.35b yields NTU = 1.49 in part (a) and ε = 0.525 and P = 17.0 MW in part (b). (4)  
See Tester et al., “Impact of Enhanced Geothermal Systems on U.S. Energy Supply in the Twenty-
First Century,” Philosophical Transactions of the Royal Society A, Vol. 365, pp. 1057 – 1094,  2007 
for a discussion of the geothermal energy potential in the United States. 
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PROBLEM 11.52 
 

 
KNOWN:  Warm water flow rate and temperature. Cold water flow rate and temperature. 
Configuration of a shell-and-tube heat exchanger including number of tube passes, number of tubes, 
and tube length and tube diameter. Outside heat transfer coefficient during melting of the phase 
change material. Duration of melting. 
 
FIND:  (a) Volume of phase change material melted over a 12-hour period. Diameter of shell.  (b) 
Heat transfer rate during solidification of phase change material relative to heat transfer rate in part 
(a). 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Negligible heat transfer between heat exchanger and surroundings, (2) 
Negligible fouling effects, (3) Negligible wall resistance, (4) Negligible convective resistance on 
inside of tubing, (5) Negligible sensible energy change in phase change material, (6) Constant 
properties. 
 
PROPERTIES:  n-octadecane (Problem 8.47): Tf = 27.4°C, hsf = 244 kJ/kg, ρ = 770 kg/m3. Table A.6 
(water) ( T = 27°C = 300 K): cp = 4179 J/kg⋅K. 
 
ANALYSIS:   (a) With no change in the n-octadecane temperature, the minimum heat rate is 
associated with the water and is Cmin = Ch = pmc& = 2kg/s × 4179 J/kg⋅K = 8358 W/K. The heat transfer 

area is A = 2N(πDtLt) = 2× 50 × (π × 0.025 m × 2m) = 15.7 m2. For negligible convective and tube 
wall resistances and negligible fouling effects, U = ho = 25 W/m2⋅K. Therefore, NTU = UA/Cmin = (25 
W/m2⋅K × 15.7 m2)/8358 W/K = 0.047. The effectiveness is 
 
  1 exp( NTU) 1 exp( 0.047) 0.0458.ε = − − = − − =  
 
and the heat transfer rate is 
 
  ( )min ,( ) 0.0458 8358W / K 40 27.4 C 4823Wh i fq C T Tε= − = × × − ° =  
 
Over a 12-hour period, the volume of phase change material that is melted is 
      

( ) 3 3 3
,/( ) 4823W 12h 60min/ h 60s / min /(770kg / m 244 10 J / kg) 1.11mpcm s fV qt hρ= = × × × × × =   < 

 
so the total volume of phase change material in the shell is Vtot = 1.5×1.11 m3 = 1.66 m3 . 
 

Continued… 
 
 

Tube data

N = 50 tubes
Two tube passes
Dt = 0.025 m
m = 2 kg/s (water)
Lt = 2 m (length/pass)
ho = 25 W/m2·K
Heating: Th,i = 40°C
Cooling: Tc,i = 15°C

•

Ls = 2.2 m

Tube data

N = 50 tubes
Two tube passes
Dt = 0.025 m
m = 2 kg/s (water)
Lt = 2 m (length/pass)
ho = 25 W/m2·K
Heating: Th,i = 40°C
Cooling: Tc,i = 15°C

•

Ls = 2.2 m



PROBLEM 11.52 (Cont.) 
 

The total shell volume is occupied by (i) phase change material and (ii) tubing. The tubing volume is 
 
  [ ]22 32 ( / 4) 2 50 2m ( 0.025m / 4) 0.098mtub t tV NL Dπ π= = × × × =  
 
Therefore, the shell diameter is 
 

  
3 34( ) 4(0.098m 1.66m ) 1.0 m
2.2m

tub pcm
s

s

V V
D

Lπ π
+ +

= = =
×

    < 
 
 
(b) The difference between the water temperature and the melting temperature of the phase change 
material is approximately 12.5 degrees Celsius for both heating and cooling modes. However, during 
solidification of the phase change material, the solid phase will form adjacent to the cold tube wall. 
Since the thermal conductivity of the phase change material is small (k = 0.653 W/m⋅K; Problem 8.47) 
we expect the conduction resistance posed by the solid material to be very large and will increase as 
the solidification ensues. Hence, the overall heat transfer coefficient, U, will be much smaller during 
solidification and the overall heat transfer rate will be much smaller relative to that of part (a).  

            < 
 
COMMENTS:  (1) Evaluating water properties at 40°C and for N = 50 tubes, 

4 =3100DRe = m/(N D )π μ& , 22.2DNu =  and hi = 560 W/m2·K using the Dittus-Boelter relationship of 
Chapter 8. Since hi >> ho, the assumption of negligible convection resistance on the inside of the tube 
is reasonable. (2) The outlet temperature of the warm water is  
 
  , , min/ 40 C 4823W /8358K / W 39.4 Ch o h iT T q C= − = ° − = °  
 
(3) During melting, the value of the overall heat transfer coefficient will vary with time as the distance 
between the warm tube wall and the solid-liquid interface increases. (4) A detailed analysis would be 
necessary to determine the time-variation of the overall heat transfer coefficient, particularly when 
operating in the solidification mode. 



PROBLEM 11.53 
 
KNOWN:  Shell and tube heat exchanger with 135 tubes (one shell, double pass) of inner diameter 12.5 
mm and surface area 47.5 m2. 
 
FIND: (a) Exchanger gas and water outlet temperatures, (b) Tube heat transfer coefficient, ih , assuming 
fully developed flow,  (c) Compute and plot the effectiveness and fluid outlet temperatures, Tc,o and Th,o  
for the water flow rate range 6 ≤ cm&  ≤ 12 kg/s with all other conditions remaining the same, and (d) Hot 
gas inlet temperature, Th,i, required to supply 10 kg/s of hot water with an outlet temperature of 42°C with 
all other conditions the same; determine also the effectiveness. 
 
SCHEMATIC: 

  
ASSUMPTIONS: (1) Negligible heat lost to surroundings, (2) Fully-developed conditions for internal 
flow of water in tubes, (3) Exhaust gas properties are those of air, and (4) The overall coefficient remains 
unchanged for the operating conditions examined. 
 
PROPERTIES:  Table A-6, Water ( cT  ≈ 300 K): ρ = 997 kg/m3, c = 4179 J/kg⋅K, k = 0.613  

W/m⋅K, μ = 855 × 10-6 N⋅s/m2, Pr = 5.83; Table A-4, Air (1 atm, hT  ≈ 400 K): ρ = 0.8711 kg/m3, c = 
1014 J/kg⋅K. 
 
ANALYSIS:  (a) Using the ε-NTU method, first find the capacity rates, C = mc& , 
 
 c hC 6.5 kg s 4179 J kg K 27,164 W K C 5.0 kg s 1014 J kg K 5, 070 W K= × ⋅ = = × ⋅ = . 
 
Recognize that Ch = Cmin and determine 

 
2 2

min h

max c min

C C 5, 070 AU 47.5m 200 W m K
0.19 NTU 1.87

C C 27,164 C 5, 070 W K
× ⋅

= = = = = = . 

 
From Fig. 11.12 for the shell and tube exchanger, find with NTU = 1.87 and Cmin/Cmax = 0.19 that ε ≈ 
0.78.  From the definition of effectiveness, 

 
( )
( )

h h,i h,o h,o
h,o

max min h,i c,i

C T T 200 Tq
0.78 or T 55.7 C

q 200 15C T T
ε

− −
= = = = =

−−
o . < 

 
From energy balances on the two fluids, Ch (Th,i - Th,o) = Cc (Tc,o - Tc,i), find 

 ( )( ) ( )c,o c,i h c h,i h,oT T C /C T T 15 C 0.19 200 55.7 C 41.9 C= + − = + − =oo o . < 
 
(b) To estimate ih  for the water, find first the Reynolds number.  From Eq. 8.6, 

Continued... 



 
PROBLEM 11.53 (Cont.) 

 

 i
c

D 3 6 2i i

4m N4m 4 6.5 kg s 135
Re 5736

D D 12.5 10 m 855 10 N s mπ μ π μ π − −
×

= = = =
× × × ⋅

&&
 

 
While the flow is fully developed and turbulent, ReD = 10,000 such that Dittus-Boelter correlation is not 
strictly applicable.  However, its use allows a first estimate. 
 

 ( ) ( )i
4 / 5 0.44 / 5 0.4

D i DNu h D k 0.023Re Pr 0.023 5736 5.83 47.3= = = =  

 2 3 2
Di ih Nu k D 47.3 0.613 W m K 12.5 10 m 2320 W m K−= = × ⋅ × = ⋅ . <  

 
(c) Using the IHT Heat Exchanger Tool, Shell and Tube, One-shell pass and N-tube  passes, and the 
prescribed properties, a model was developed following the analysis of part (a) to compute and plot ε, 
Tc,o, and Th,o for a function of cm& . 

6 8 10 12

Cold flow rate, mdotc (kg/s)

20

40

60

80

100

Tc
o,

 T
ho

 (C
), 

ep
s*

10
0

Cold outlet temperature, Tco  (C)
Hot outlet temperature, Tho (C)
Effectiveness, eps * 100  

The outlet temperatures decrease nearly linearly with increasing cold fluid flow rate; the decrease in the 
cold outlet temperature is nearly twice that of the hot fluid.  The change in the effectiveness with 
increasing flow rate is only slightly increased. 
 
(d) Using the above IHT model, the hot inlet temperature Th,i, required to provide cm&  = 10 kg/s with Tc,o 
= 42°C and the effectiveness for this operating condition are 

 h,iT 74.4 C 0.55ε= =o  < 
 
COMMENTS:  (1) Check that assumptions for hT  and cT  used in part (a) for evaluation of the fluid 

properties are satisfactory as hT 400.7 K=  and cT 301.5 K= .   
 
(2) From part (b), with ih  = 2320 W/m2⋅K and U = 200 W/m2 ⋅K, the shell-side convection coefficient is 

oh  = 219 W/m2 ⋅K.  As such, U is controlled by shell-side conditions.  Assuming U as a constant in part 
(c) with changes in cm&  is therefore reasonable.  However, for part (d) with hm&  doubling, we should 
expect U to increase. 



PROBLEM 11.54  
KNOWN:  Power output and efficiency of an ocean energy conversion system.  Temperatures and 
overall heat transfer coefficient of shell-and-tube evaporator.  
FIND:  (a) Evaporator area, (b) Water flow rate.  
SCHEMATIC:   
 

 
 
 
 
 
 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Constant properties. 
 
PROPERTIES:  Table A-6, Water ( mT  = 296 K): cp = 4181 J/kg⋅K. 
 
ANALYSIS:  (a) The efficiency is 
 

 
W 2 MW 0.03.
q q

η = = =
&

 

 

Hence the required heat transfer rate is
2MWq 66.7 MW.
0.03

= =  

From the ε-NTU method, Cc → ∞, and Ch = Cmin can be found from an energy balance on the hot fluid, 
 
 6 6

h h,i h,oC q /(T T ) 66.7 10 W /(300 292)K 8.33 10 W / K= − = × − = ×  
 
Thus qmax = Cmin(Th,i - Tc,i) = 8.33 × 107 W and ε = q/qmax = 0.80. Then, from Eqs. 11.30 b and c, 
 

 ( )
( )

r
1/ 22

r

1/ 22
r

2 / (1 C ) 2 / 0.8 (1 0)E 1.50
1

1 C

E 1 1.5 1NTU 1 C ln ln 1.61
E 1 1.5 1

−

ε − + − +
= = =

+

− −⎛ ⎞ ⎛ ⎞= − + = − =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 

Then, A = NTU × Cmin/U = 1.61 × 8.33 × 106 W/K / 1200 W/m2·K = 11,200 m2                                < 
 
(b) The water flow rate through the evaporator is 
 

 
( ) ( )

7
h

p,h h,i h,o

q 6.67 10 Wm
4181 J / kg K 300 292c T T

×
= =

⋅ −−
&  

 
 hm 1994 kg / s.=&          < 
 
 
COMMENT:  (1) The required heat exchanger size is enormous due to the small temperature 
differences involved. 

Th,i

Tc,i

Tc,o

Th,o



PROBLEM 11.55 
 

KNOWN: Single-pass cross-flow heat exchanger with both fluids unmixed.  Flow rate and inlet 
and outlet temperatures of cold water.  Inlet temperature of hot exhaust gases.  Value of UA. 
 
FIND: Required mass flow rate of exhaust gases. 
 
SCHEMATIC:  

 
 
ASSUMPTIONS: (1) Constant properties and steady-state conditions, (2) Negligible heat loss 
to surroundings, (3) U independent of mass flow rates. 
 
PROPERTIES: Water (given): cp,c = 4200 J/kg⋅K.  Oil (given): cp,h = 1200 J/kg⋅K. 
 
ANALYSIS:  We use the ε-NTU method, but without knowing the hot mass flow rate or the hot 
outlet temperature we don’t know which fluid is the minimum fluid.  We begin by assuming the 
cold fluid is the minimum fluid: if this leads to a solution for which the cold heat capacity rate is 
indeed lower than for the hot fluid, this is the correct solution.  If it does not lead to a consistent 
solution, our assumption is incorrect.  Thus, we assume 
 

min c p,cC m c 2 kg / s 4200 J / kg K 8400 W / K= = × ⋅ =&  

 
Thus, NTU = UA/Cmin = 4700/8400 = 0.560, q = Cc(Tc,o – Tc,i) = 6.72×105 W and from Eqs. 11.18 
and 11.19, 

5

min h,i c,i

q 6.72 10  W 0.267
C (T T ) 8400 W / K (320 20) C

×
ε = = =

− − °
 

Referring to Figure 11.14, we see that there is no solution for NTU = 0.560, ε = 0.267, therefore 
our initial assumption was incorrect and the hot fluid is the minimum fluid.  We have the 
following four equations relating the four unknowns ε, Cmin, NTU, and Cr, 
 

5

min h,i c,i min min

q 6.72 10  W 2240 W / K
C (T T ) C (320 20) C C

×
ε = = =

− − °
           (1) 

min min
r

min min max

UA 4700 W / K C CNTU ,      C
C C C 8400 W / K

= = = =         (2,3) 

 
and from Eq. 11.32, 

Continued… 

Th,i = 320°C 

Th,o Tc,o = 100°C 

Tc,i = 20°C =& cm 2 kg / s

& hm  

Cross flow hx 
Both fluids unmixed 
UA = 4700 W/K 

Oil 
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 { }0.22 0.78
r

r

11 exp (NTU) exp C (NTU) 1
C

⎡ ⎤⎛ ⎞ ⎡ ⎤ε = − − −⎢ ⎥⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦
           (4) 

 
These equations can be solved simultaneously using IHT, or by hand.  One approach to solving 
the equations by hand is as follows.  Substituting Eqs. (1), (2), and (3) into Eq. (4) yields (where 
the units have been omitted), 
 

0.22 0.78
min

min min min min

2240 8400 4700 C 47001 exp exp 1
C C C 8400 C

⎡ ⎤⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥⎢ ⎥= − − −⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭⎣ ⎦

 

Beginning with an assumed value of Cmin and substituting it into the right hand side, we solve for 
Cmin on the left hand side, and repeat the process until it converges.  Beginning with Cmin = 5000, 
the sequence of Cmin values is 5000, 4375, 3984, 3745, 3601, 3515, 3463, 3434, 3416, 3406, 
3400, 3396, 3394, 3393, 3392, 3392.  Thus 
 

 h min p,hm C / c 3392 W/K 1200 J / kg K 2.83 kg / s= = ⋅ =&             < 

 
COMMENTS: It is easier to solve the system of simultaneous equations using IHT or other 
non-linear equation solver.  



PROBLEM 11.56 
 
KNOWN:  Shell(1)-and-tube (two passes, p = 2) heat exchanger for condensing saturated steam at 1 atm.  
Inlet cooling water temperature and mean velocity.  Thin-walled tube diameter and length prescribed, as 
well as, convective heat transfer coefficient on outer tube surface, ho.  
FIND:  (a) Number of tubes/pass, N, required to condense 2.3 kg/s of steam, (b) Outlet water 
temperature, Tc,o, (c) Maximum condensation rate possible for same water flowrate and inlet temperature, 
and (d) Compute and plot Tc,o and the condensation rate, hm& , for water mean velocity, um, in the range 1 
≤ um ≤ 5 ms/, using the heat transfer surface area found in part (a) assuming the shell-side convection 
coefficient remains unchanged. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Negligible thermal resistance due to the 
tube walls. 
 
PROPERTIES:  Table A.6, Saturated steam (1 atm):  Tsat = 100°C, hfg = 2257 kJ/kg; Water (assume Tc,o 
≈ 25°C, mT  = (Th + Tc)/2 ≈ 295 K):  ρ = 1/vf = 998 kg/m3, cc = cp,f = 4181 J/kg⋅K, μ = μf = 959 × 10-6 
N⋅s/m2, k = kf = 0.606 W/m⋅K, Pr = fPr  = 6.62. 
 
ANALYSIS:  (a) The heat transfer rate for the heat exchanger is 
 
 3 6

h fgq m h 2.3kg s 2257 10 J kg 5.191 10 W= = × × = ×&  (1) 
 
Using the ε-NTU method, evaluate the following parameters: 
 
Water-side heat transfer coefficient: 

 m
D 6 2 3

u D 3.5 m s 0.014 m
Re 50,993

959 10 N s m 998 kg mμ ρ −
×

= = =
× ⋅

 (2) 

 

  ( ) ( ) 20.8 0.40.606 W m K
0.023 50, 993 6.62 12, 400 W m K

0.014 m
0.8 0.4

i D D
k kh Nu 0.023Re Pr
D D

⋅
= × = ⋅= = (3) 

 
using the Dittus-Boelter equation for fully developed turbulent conditions. 
 
Overall coefficient: 

 ( ) ( )1 1 2
i oU 1 h 1 h 1 12, 400 1 21,800 7900 W m K− −= + = + = ⋅  (4) 

Effectiveness relations:  With Cmin = Cc and cm&  = ρ(πD2/4)umN, 

 ( )max min h,i c,iq q C T Tε ε= = −  (5) 

 ( )3 2 2
min c cC m c 998 kg m 0.014 m 4 3.5 m s N 4181J kg K 2248 Nπ= = × × × × ⋅ =&  (6) 

 
Continued... 
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 ( )65.191 10 W 2248 N 100 15 Kε× = × −  
 εN = 27.17 (7) 
From Eq. 11.35a with Cr = 0, the effectiveness is 
 
 ( ) ( )1 exp NTU 1 exp 0.155 0.144ε = − − = − − =  (8) 
 
where, using As = πDLNP, NTU is evaluated as, 

 
( )2

s

min

7900 W m K 0.014 m 0.5m N 2UA
NTU 0.155

C 2248 N
π⋅ × × ×

= = =  

Hence, using Eq. (7), the required number of tubes is 

 N = 27.17/ε = 205.8 ≈ 189 < 
and the total surface area is 

 2
sA DLNP 0.014 m 0.5m 189 2 8.31mπ π= = × × × × = . 

(b) The water outlet temperature with Cmin = 2248 N = 424,900 W/K, 

 6
c,o c,i minT T q C 15 C 5.191 10 W 424,900 W K 27.2 C= + = + × =o o  < 

 
(c) The maximum condensation rate will occur when q = qmax.  Hence 

 
( ) ( )min h,i c,imax

h,max 3fg fg

C T T 424,900 W K 100 15 Kq
m 16.0 kg s

h h 2257 10 J kg

− −
= = = =

×
& . < 

(d) Using the IHT Heat Exchanger Tool, All Exchangers, Cr = 0, along with the Properties Tool for 
Water, the foregoing analysis was performed to obtain Th,o and &mh  using the heat transfer surface area As 
= 8.31 m2 (part a) as a function of um. 
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Water mean velocity, um (m/s)
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Outlet temperature, Tco (C)
Condensation rate, mdoth*10 (kg/s)   

Note that the condensation rate increases nearly linearly with the water mean velocity.  The cold water 
outlet temperature decreases nearly linearly with um.  We should expect this behavior from energy balance 
considerations.  Since hh is nearly two times greater than hc, U  is controlled by the water side coefficient.  
Hence U  will increase with increasing um. 
 
COMMENTS:  Note that the assumed value for mT  to evaluate water properties in part (a) was a good 
choice. 



PROBLEM 11.57 
 
KNOWN: Dimensions of counterflow, concentric tube heat exchanger for recovering heat from 
shower drains.  Inlet temperatures of hot and cold water streams.  Heat transfer coefficient of 
inner (hot) flow.  Mass flow rate of outer (cold) flow. 
 
FIND: (a) Heat transfer rate and outlet temperature of cold flow, (b) Heat transfer rate and outlet 
temperature of cold flow when helical spring provides specified outer heat transfer coefficient, (c) 
Daily savings if 15,000 students each take a 10-minute shower per day and cost of heating water 
is $0.07/kW⋅h. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Constant properties and steady-state conditions, (2) Negligible heat 
transfer to surroundings, (3) Fully developed flow in the annular gap, (4) Uniform surface 
temperature correlation is appropriate, (5) Inner tube wall thermal resistance is negligible. 
 
PROPERTIES: Table A.6, water (T ≈ 285 K): k = 0.591 W/m⋅K, cp = 4189 J/kg⋅K, μ = 1225 × 
10-6 N⋅s/m2, Pr = 8.81.  
 
ANALYSIS:  (a) We begin by finding the heat transfer coefficient for the flow in the annular 
gap.  The Reynolds number is 
  

 m h h
D 6 2c

u D m D 4m 4 10 kg / min/ 60 min/ sRe 1444
A P 1225 10  N s / m (0.05 m 0.07 m)−

ρ ×
= = = = =

μ μ μ × ⋅ × π +

& &
 

 
Thus the flow is laminar, and from Table 8.2 with Di/Do = 0.71, Nui = 5.36.  Hence, 
 

 2i
c

h

Nu k 5.36 0.591 W / m Kh 158 W / m K
D 0.02 m

× ⋅
= = = ⋅  
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Cold fresh water 
Tc,i = 10°C 
m&  = 10 kg/min 

Annulus Falling film 
hh = 10,000 W/m2⋅K  

Copper 

Hot waste water 
Th,i = 38°C, m&  = 10 kg/min 

Di = 0.05 m 

L = 1 m

d = 0.01 m 
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Then the overall heat transfer coefficient is 
 

1 2 2 1 2
c hU [1/ h 1/ h ] [1/158 W / m K 1/10,000 W / m K] 156 W / m K− −= + = ⋅ + ⋅ = ⋅

 
and using the ε-NTU method, with Cmin = Cmax = pmc& = 698 W/K, Cr = 1, we have 

 
 NTU = UA/Cmin = UπDiL/Cmin = 156 W/m2⋅K × π × 0.05 m × 1 m/698 W/K = 0.035 
 
And from Eq. 11.29a, ε = NTU/(1 + NTU) = 0.034.  Thus from Eqs. 11.18 and 11.19, 
 

 q = εCmin(Th,i – Tc,i) = 0.034× 698 W/K (38 – 10)°C = 661 W                < 
 
and from Eq. 11.7b, 
 

Tc,o = Tc,i + q/Cc = 10°C + 661 W/698 W/K = 11.0°C             < 
 
(b) The value of U changes to U = [1/9050 W/m2⋅K + 1/10,000 W/m2⋅K]-1 = 4751 W/K.  Then 
NTU = 1.07, ε = 0.517, and 

 q = εCmin(Th,i – Tc,i) = 0.517× 697 W/K (38 – 10)°C = 10,100 W              < 
 

Tc,o = Tc,i + q/Cc = 10°C + 10,100 W/698 W/K = 24.5°C             < 
 

(c) The savings is the cost of the energy transferred from the wastewater to the cold water, 

 Savings = 10.1 kW × 600 s × 15,000/3600 s/h × $0.07/kW⋅h = $1767       < 
 
COMMENTS: (1) Commercially-available devices that are used in high density buildings such 
as dormitories are typically installed on larger drains that collect shower water from multiple 
showers, rather than on individual showers. The devices use heat transfer enhancement 
techniques to ensure large values of the cold side heat transfer coefficient.  (2) With xfd,t = 
0.05ReDPrDh = 13 m, the flow in the annular gap is not fully developed, and the actual heat 
transfer coefficient would be higher than predicted in part (a).  (3) In part (a), the mean 
temperature of the cold stream is 283.5 K.  Evaluation of properties at 285 K is appropriate. 



PROBLEM 11.58  
KNOWN:  Shell-and-tube heat exchanger with one shell pass and 20 tube passes.  
FIND:  Average convection coefficient for the outer tube surface.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Constant properties, (3) Type of oil 
not specified, (4) Thermal resistance of tubes negligible; no fouling.  
PROPERTIES:  Table A-6, Water, liquid ( hT  = 330 K): cp = 4184 J/kg⋅K, k = 0.650 W/m⋅K, μ = 

489 × 10-6 N⋅s/m2, Pr = 3.15. 
 
ANALYSIS:  To find the average coefficient for the outer tube surface, ho, we need to evaluate hi for 
the internal tube flow and U, the overall coefficient.  From Eq. 11.5, 

 
i i o o t i i o o

1 1 1 1 1 1
UA h A h A N L h D h Dπ

⎡ ⎤
= + = +⎢ ⎥

⎣ ⎦
 

where Nt is the total number of tubes.  Solving for ho, 

 ( )
111

o o t i ih D UA N L 1/ h D .π
−−− ⎡ ⎤= −⎢ ⎥⎣ ⎦

      (1) 

Evaluate hi from an appropriate correlation; begin by calculating the Reynolds number. 

 
( )

h
D,i 6 2i

4 m 4 0.2 kg / sRe 26,038.
D 0.020m 489 10 N s / mπ μ π −

×
= = =

× ⋅

&
 

Hence, flow is turbulent and since L >> Di, the flow is likely to be fully developed.  Use the Dittus-

Boelter correlation with n = 0.3 since Ts < Tm, NuD = 0.023 4 / 5
DRe  Pr0.3 

 ( ) ( )4 / 5 0.3 2
i D

k 0.650 W / m Kh Nu 0.023 26,038 3.15 3594 W / m K.
D 0.020m

⋅
= = × = ⋅  (2) 

 
To evaluate UA, we use the ε-NTU method.  
 

h h p,h

h h,i h,o

C m c 0.2 kg / s 4184 J / kg K 836.8 W / K

q C (T T ) 836.8 W / K(87 27) C 50,208 W

= = × ⋅ =

= − = − ° =

&
 

Then from an energy balance on the cold fluid, 
 
 Cc = q/(Tc,o – Tc,i) = 50,208 W/(37 – 7)°C = 1674 W/K 
 
Thus Cr = Cmin/Cmax = 0.50, qmax = Cmin(Th,i – Tc,i) = 66,944 W, and ε = q/qmax = 0.75. From Eqs. 
11.30b,c, 
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r
2 1/ 2 2 1/ 2
r

2
r

2 / (1 C ) 2 / 0.75 (1 0.5)E 1.04
(1 C ) (1 0.5 )

E 1NTU (1 C )ln 3.44
E 1

ε − + − +
= = =

+ +

−⎛ ⎞= − + =⎜ ⎟+⎝ ⎠

 

 
Therefore, 
 
 UA = NTU × Cmin = 3.44 × 836.8 W/K = 2881 W/K     (3) 
 
and 

( ) ( )
11 1 2

oh 0.024m 2881 W / K 20 3m 1/ 3594 W / m K 0.020m
−− −⎡ ⎤= × × × − ⋅ ×⎢ ⎥⎣ ⎦

π   

2808 W / m K.    = ⋅           < 
 



PROBLEM 11.59  
KNOWN:  Engine oil cooled by air in a cross-flow heat exchanger with both fluids unmixed.  
FIND:  (a) Heat transfer coefficient on oil side of exchanger assuming fully-developed conditions and 
constant wall heat flux, (b) Effectiveness, and (c) Outlet temperature of the oil.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Constant properties, (3) Oil flow and 
thermal conditions are fully developed, (4) Oil cooling process approximates constant wall flux 
conditions. 
 
PROPERTIES:  Table A-5, Engine oil (assume Th,o ≈ 45°C, hT  = (45 + 75)°C/2 = 333 K): ch = 2047 

J/kg⋅K, μ = 7.45 × 10-2 N⋅s/m2, k = 0.140 W/m⋅K; Table A-4, Air (assume Tc,o ≈ 40°C, cT  = (30 + 

40)°C/2 = 308 K, 1 atm): cc = 1007 J/kg⋅K. 
 
ANALYSIS:  (a) For the oil side, using Eq. 8.6, find, 
 

 ( ) ( )( )2 2
DRe 4 m / D 4 0.026 kg / s / 0.01m 7.45 10 N s / m 44.4π μ π −= = × ⋅ =&  

 
Since ReD < 2000 the flow is laminar.  For the fully-developed conditions with constant wall flux, 
 

2i
D i

h D k 0.140 W / m KNu 4.36, h 4.36 4.36 61.0 W / m K.
k D 0.01m

⋅
= = = = = ⋅  < 

 
(b) The effectiveness can be determined by the ε-NTU method. 
 
 h h h min hC m c 0.026 kg / s 2047 J / kg K 53.22 W / K C C= = × ⋅ = =&  
 

c c c min maxC m c 0.53 kg / s 1007 J / kg K 533.7 W / K C / C 0.10= = × ⋅ = =&  
 
 2 2

minNTU UA / C 53 W / m K 1m / 53.22 W / K 1.00.= = ⋅ × =  
 
Using Fig. 11.14, with Cmin/Cmax = 0.1 and NTU = 1, find ε ≈ 0.64.    < 
 
(c) From Eqs. 11.19 and 11.18, 
 

 
( )
( )

h h,i h,o h,i h,o

max h,i c,imin h,i c,i

C T T T Tq .
q T TC T T

ε
− −

= = =
−−

 

 
Solving for Th,o and substituting numerical values, find 
 
 ( ) ( )h,o h,i h,i c,iT T T T 75 C 0.64 75 30 C 46.2 C.ε= − − = ° − − ° = °    < 
 
COMMENTS:  Note that the hT  value at which the oil properties were evaluated is reasonable. 



PROBLEM 11.60 
 
KNOWN:  Dimensions, configuration and material of a single-pass, cross-flow heat exchanger.  Inlet 
conditions of inner and outer flow.  Fouling factor of inner surface. 
 
FIND:  (a) Percent fuel savings for prescribed conditions, (b) Effect of UA on air outlet temperature and 
fuel savings. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Air properties are those of atmospheric 
air at 300 K, (3) Gas properties are those of atmospheric air at 1400 K, (4) Tube wall temperature may be 
approximated as 800 K for treating variable property effects. 
 
PROPERTIES:  Table A.4, Air (1 atm, T = 300 K):  ν = 15.89 × 10-6 m2/s, cp = 1007 J/kg⋅K, k = 0.0263 
W/m⋅K, Pr = 0.707; (T = 1400 K):  μ = 530 × 10-7 kg/s⋅m, cp = 1207 J/kg⋅K, k = 0.091 W/m⋅K, Pr = 
0.703;  (T = 800 K): Pr = 0.709. 
 
ANALYSIS:  (a) With capacity rates of Cc  = c p,cm c&  = 1 kg/s × 1007 J/kg⋅K = 1007 W/K = Cmin and Ch 

= h p,hm c&  = 1.05 kg/s × 1207 J/kg⋅K = 1267 W/K = Cmax, Cmin/Cmax = 0.795.  The overall coefficient is 

 
( )

( )
f ,i o i

i i i o o

R ln D D1 1 1
UA h A A 2 kL N h Aπ

′′
= + + + . 

 
For flow through a single tube, 
 

 
( )

h
D 7i

4m 4 1.05 kg s
Re 5733

N D 80 0.055 m 530 10 kg s mπ μ π −
×

= = =
× ⋅

&
. 

 
Assuming fully developed turbulent flow throughout and using the Gnielinski correlation, 

 D
DNu 1/ 2 2 / 3

(f / 8)(Re 1000) Pr 18.8
1 12.7(f / 8) (Pr 1)

=
−

=
+ −

 

where f = (0.79 ln ReD – 1.64)-2 = 0.0370 

 ( ) 2
i D ih Nu k D 18.8 0.091W m K 0.055 m 31.1W m K= = ⋅ = ⋅ . 

 
For flow over the tube bank, 
 ( )[ ] ( )[ ]max T T oV S S D V 0.12 m 0.12 0.08 m 1m s 3m s= − = − =  

 
( )max o

D,max 6 2
3m s 0.08 mV D

Re 15,100
15.89 10 m sν −

= = =
×

 

 
From the Zukauskas correlation for a tube bank, 

 ( ) ( ) ( )0.63 0.36 1/ 4
DNu 0.27 15,100 0.707 0.707 0.709 102.3= =  

 ( ) ( ) 2
Do oh Nu k D 102.3 0.0263W m K 0.08m 33.6 W m K= = ⋅ = ⋅ . 

Hence, based on the inner surface, the overall coefficient is 
Continued... 



 
PROBLEM 11.60 (Cont.) 

 

 
( )i o i i

f ,i
i i o o

D ln D D1 1 D
R

U h 2k D h
′′= + + +  

 
( ) 2

i

0.055ln 0.08 0.0551 0.055
0.0322 0.0002 m K W

U 20 0.08 33.6
= + + + ⋅

×
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
12 2

iU 0.0322 0.0002 0.001 0.0205m K W 18.6 W m K
−

= + + + ⋅ = ⋅⎡ ⎤
⎣ ⎦ . 

Hence, ( ) ( )2
i iiUA U N D L 18.6 W m K 80 0.055 m 1.4 m 360 W K= = ⋅ × =π π .  The number of transfer 

units is then NTU = UA/Cmin = 360 W/K/1007 W/K = 0.357, and with Cmixed/Cunmixed = Cc/Ch = Cmin/Cmax 
= 0.795, Fig. 11.15 yields ε ≈ 0.29 or, from Eq. 11.34 a, 

 [ ]{ }( )1
r r1 exp C 1 exp C NTU 0.267−= − − − − ⋅ =ε .   

Hence, with 

 ( ) ( ) 6
max min h,i c,iq C T T 1007 W K 1100 K 1.11 10 W= − = = ×  

 6
maxq q 0.267 1.11 10 W 295,800 W= = × × =ε  

 ( )c,o c,i minT T q C 300 K 295,800 W 1007 W K 594 K= + = + = . 
Hence, 

 ( ) ( )c% fuel savings FS T 10 K 1% 294 K 10 K 1% 29.4%≡ = Δ × = × =  < 
(b) Using the Heat Exchangers Toolpad of IHT to perform the parametric calculations, the following 
results are obtained. 
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Significant benefits are derived by increasing UA, with values of Tc,o = 716 K and FS = 41.6% obtained 
for UA = 600 W/K.  The major contributions to the total resistance are made by the inner and outer 
convection resistances.  These contributions could be reduced by using extended surfaces on both the 
inner and outer surfaces. 
 
COMMENTS:  For part (a), properties of the flue gas should be evaluated at (Th,i + Th,o)/2 and 
the calculations repeated.   



PROBLEM 11.61 
 
KNOWN:  Rate of thermal energy production in combustor and transfer to load in furnace.  Cold air and 
flue gas flowrates and specific heats in recuperator.  Recuperator cold air inlet temperature. 
 
FIND:  Recuperator hot gas inlet and outlet temperatures and air outlet temperature for a recuperator 
effectiveness of ε = 0.3.  Value of ε needed to achieve a recuperator outlet temperature of 800 K. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Constant properties, (2) Negligible effect of fuel addition on flow rate. 
 
PROPERTIES:  Air and gas:  cp,c = cp,h = 1200 J/kg⋅K. 
 
ANALYSIS:  With Cc = Ch = Cmin, the effectiveness of the recuperator, ε = q/qmax, may be expressed as 
 

 
( )
( )

c c,o c,i c,o

h,imin h,i c,i

C T T T 300 K
0.3

T 300 KC T T
ε

− −
= = =

−−
 

 
The unknown temperatures, Tc,o and Th,i, are also related through an energy balance performed on the air 
entering the combustor and leaving the furnace.  Specifically, 
 
 ( ) 6

h,i c,o comb loadC T T q q 0.6 10 W− = − = ×  
 
where C = 1 kg/s × 1200 J/kg⋅K = 1200 W/K.  Solving the foregoing equations, we obtain 

 h,iT 1014 K=                   Tc,o = 514 K < 
 
Expressing the effectiveness as 
 

 
( )
( )

h h,i h,o h,o

min h,i c,i

C T T 1014 K T

714 KC T T
ε

− −
= =

−
 

we also obtain      Th,o = 800 K. < 
 
For a combustor air inlet temperature of Tc,o = 800 K and Th,i = 1014 K, the required effectiveness is 
 

 
( )
( )

c,o c,i

h,i c,i

T T 800 300 K
0.70

T T 1014 300 K
ε

− −
= = =

− −
 < 

 
COMMENTS:  The effectiveness of the recuperator may be increased by increasing NTU and hence UA, 
as, for example, by increasing the number of tubes. 



PROBLEM 11.62  
KNOWN:  Shell-tube heat exchanger with one shell and single tube pass; Tube side: exhaust gas with 
specified flow rate and temperature change; Shell side: supply of saturated water at 11.7 bar; Tube 
dimensions and thermal conductivity, and fouling resistance on gas side, ′′Rf,h ,  specified. 
 
FIND:  Number of tubes and their length if the gas velocity is not to exceed um,i = 25 m/s. 
 
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible losses to the surroundings, (3) 
Negligible water-side thermal resistance, (4) Exhaust gas properties are those of atmospheric air, (5) 
Gas-side flow is fully developed, and (6) Constant properties. 
 

PROPERTIES:  Table A-4, Air T  Kh = 581c h:  ρ = 0 600. , kg / m3  c 1047 J / kg K,= ⋅  

ν = ×4.991 10  m s,-5 2 /  k 0.0457 W / m K,  Pr 0.684.= ⋅ =   Table A-6, Water (11.7 bar, 

saturated): T  K 187 C.c,i = =460 o  
 
ANALYSIS:  We’ll employ the NTU-ε method to design the exchanger.  Since Cr = 0, use Eq. 
11.35b. 
 
 NTU n 1= − −l εb g  
 
where the effectiveness can be evaluated from Eqs. 11.18 and 11.19. 
 
 C C m  c  kg / s 1047 J / kg K 2094 W / Kmin h h h= = = × ⋅ =& 2  
 

 ε =
−

−
=

−

−
=

C  T T

C  T T
C

400 187 C

h h,i h,o

min h,i c,i

d i
d i

b g
b g
400 215

0 868
o

o
.  

 
 NTU n 1 0.868= − − =l b g 2 029.  
 
From Eq. 11.24, 
 
 UA C NTU 2094 W / K 2.029 4249 W / Kmin= ⋅ = × =     (1) 
 
Considering the gas-side flow rate and velocity criteria, find the number of tubes required as 
 

 & /m N A u N  D uh h c m,i h i
2

m,i= ⋅ ⋅ ⋅ = ⋅ρ ρ π 4e j  

 
          Continued … 



PROBLEM 11.62 (Cont.) 
 
 ( )232 kg/s N 0.600 kg/m 0.050 m / 4 25 m/s= × ×π ×  
 

 N 67.9  tubes, specify 68=         < 
 
The overall coefficient, considering the convection process, fouling resistance and the tube thermal 
resistance, is evaluated as 
 

 U R R R  W / m Ki f,i cv,i cd,t
2= ′′ + ′′ + ′′ = ⋅1 56 4/ .  

 

 ′′ = ⋅R  m K / Wf,i
20 0015.  

 

 ′′ = = ⋅ ⋅R h  W / m K = 0.0161 m K / Wcv,i i
2 21 1 62/ /  

 

 ′′ = =
× ⋅

= × ⋅−R
D  n D D

2 k
 m n 58 / 50

2 40 W / m K
 m K / Wcd,t

i o i 2l l/ .
.b g b g0 050

9 28 10 5  

 
where the gas-side convection coefficient estimate is explained in the Comments section.  Substituting 
numerical values, determine the required tube length 
 
 UA U A U  N  D  Li i i i= ⋅ = πb g  
 

 4249 W / K 56.4 W / m K 68 0.050 m L2= ⋅ × × × ×π  
 

 L 7.1 m=           < 
 
COMMENTS:  (1) Is the assumption of negligible water-side thermal resistance reasonable?  Explain 
why. 
 
(2) Knowing the tube gas-side velocity, the usual convection correlation calculation methodology is 

followed.  The flow is turbulent, ReDi = ×2 5 104. ,  and assuming fully developed flow, use the 

Dittius-Boelter correlation, Eq. 8.60, to find NuDi = 67 8.  and h  W / m K.i
2= ⋅62 0.  

 



PROBLEM 11.63  
KNOWN:  Hot and cold gas flow rates and inlet temperatures of a recuperator.  Overall heat transfer 
coefficient.  Desired cold gas outlet temperature.  
FIND:  (a) Required surface area, (b) Effect of surface area on cold-gas outlet temperature.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Constant properties. 
 
PROPERTIES:  Given:  cp,c = cp,h = 1040 W/m⋅K. 
 
ANALYSIS:  (a) With Cmin = Cc = 6.2 kg/s × 1040 J/kg⋅K = 6,448 W/K, Cmax = Ch = 6.5 kg/s × 1040 
J/kg⋅K = 6,760 W/K, Cr = Cmin/Cmax = 0.954, q = Cc (Tc,o – Tc,i) = 6,448 W/K (200 K) = 1.29 × 106 
W, qmax = Cmin (Th,i – Tc,i) = 6,448 W/K (400 K) = 2.58 × 106 W, and ε = q/qmax = 0.50, Fig. 11.14 
yields NTU ≈ 1.10.  Hence 
 

 2min
2

NTU C 1.10 6, 448 W / KA 70.9 m
U 100 W / m K

× ×
= = =

⋅
     < 

 
(b) Using the Heat Exchanger option of IHT, the following result was obtained 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The air outlet temperature increases, of course, with increasing heat exchanger area, but the approach 
to the maximum possible outlet temperature, Th,i, is slow and the heat exchanger size needed to 
achieve a large outlet temperature may be prohibitively expensive. 
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PROBLEM 11.64  
KNOWN:  Inlet temperature and flow rates for a concentric tube heat exchanger.  Hot fluid outlet 
temperature.  
FIND:  (a) Maximum possible heat transfer rate and effectiveness, (b) Preferred mode of operation.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state operation, (2) Negligible heat loss to surroundings, (3) Fixed 
overall heat transfer coefficient. 
 
PROPERTIES:  Table A-5, Ethylene glycol ( mT  = 80°C): cp = 2650 J/kg⋅K; Table A-6, Water ( mT  

≈ 30°C): cp = 4178 J/kg⋅K. 
 
ANALYSIS:  (a) Using the ε-NTU method, find 
 
 ( )( )min h h p,hC C m c 0.5 kg / s 2650 J / kg K 1325 W / K.= = = ⋅ =&  
 
Hence from Eqs. 11.18 and 11.6, 
 
 ( ) ( )( ) 5

max min h,i c,iq C T T 1325W / K 100 15 C 1.13 10 W.= − = − ° = ×  
 
 ( ) ( )( ) 5

h p,h h,i h,oq m c T T 0.5 kg / s 2650J / kg K 100 60 C 0.53 10 W.= − = ⋅ − ° = ×&  < 
 
Hence from Eq. 11.19, 
 
 5 5

maxq / q 0.53 10 /1.13 10 0.47.ε = = × × =       < 
 
(b) From Eq. 11.7, 
 

 
5

c,o c,i
c p,c

q 0.53 10T T 15 C 40.4 C.
m c 0.5kg / s 4178J / kg K

×
= + = ° + = °

× ⋅&
 

 
Since Tc,o < Th,o, a parallel flow mode of operation is possible.  However, with (Cmin/Cmax) = ( hm&  

cp,h/ cm&  cp,c) = 0.63, 
 
 Fig. 11.10 → (NTU)PF ≈ 0.95  Fig. 11.11 → (NTU)CF ≈ 0.75. 
 
Hence from Eq. 11.24 
 
 ( ) ( ) ( ) ( )CF PF CF PFA / A NTU / NTU 0.75 / 0.95 0.79.= ≈ =  
 
Because of the reduced size requirement, and hence capital investment, the counterflow mode of 
operation is preferred. 
 



PROBLEM 11.65  
KNOWN:  Single-pass, cross-flow heat exchanger with both fluids (water) unmixed; hot water enters 
at 90°C and at 10,000 kg/h while cold water enters at 10°C and at 20,000 kg/h; effectiveness is 60%.  
FIND:  Cold water exit temperature, Tc,o. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Constant properties. 
 
PROPERTIES:  Table A-6, Water ( cT  ≈ (10 + 40)°C/2 ≈ 300 K): cc = 4179 J/kg⋅K; Table A-6, Water 

( hT  ≈ (90 + 60)°C/2 ≈ 350 K): ch = 4195 J/kg⋅K. 
 
ANALYSIS:  From an energy balance on the cold fluid, Eq. 11.7, the outlet temperature can be 
expressed as 
 
 c,o c,i c cT T q / m C .= + &  
 
The heat rate can be written in terms of the effectiveness and qmax.  Using Eqs. 11.19 and 11.18, 
 
 ( )max min h,i c,iq q C T T .ε ε= = −  
 
By inspection, it can be noted that the hot fluid is the minimum capacity fluid.  Substituting numerical 
values, 
 
 ( )( )h h h,i c,iq m c T Tε= −&  
 
 ( ) ( ) 3q 0.60 10,000 kg / h / 3600s / h 4195J / kg K 90 10 C 559.3 10 W.= ⋅ − ° = ×  
 
The exit temperature of the cold water is then 
 

 3
c,o

20,000T 10 C 559.3 10 W / kg / s 4179J / kg K 34.1 C.
3600

= ° + × × ⋅ = °   < 
 
COMMENTS:  (1) The properties of the cold fluid should be evaluated at T  = (Tc,o + Tc,i)/2 = (34.1 
+ 10)°C/2 = 295 K.  Note the analysis assumed cT  ≈ 300 K, hence little error is incurred.  For best 

precision, one should check hT  and Ch. 
 
(2) From Fig. 11.14, the value of NTU could be determined.  First evaluate the term 
 

 min max h h c c
10,000 4195C / C m C / m C 0.50
20,000 4179

×
= = =

×
& &  

 
and with ε = 0.60, find NTU ≈ 1.2. 



PROBLEM 11.66  
KNOWN:  Hxer consisting of 32 tubes in 0.6m square duct.  Hot water enters tubes at 150°C with 
mean velocity 0.5 m/s.  Atmospheric air at 10°C enters exchanger with volumetric flow rate of 1 m3/s.  
Heat transfer coefficient on tube outer surfaces is 400 W/m2⋅K. 
 
FIND:  Outlet temperatures of the fluids, Tc,o and Th,o. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Constant properties, (3) Hxer is a 
single-pass, cross-flow type with one fluid mixed (air) and the other unmixed (water), (4) Tube water 
flow is fully developed, (5) Negligible thermal resistance due to tube wall. 
 
PROPERTIES:  Table A-4, Air (Tc,i = 10°C = 283 K, 1 atm): ρ = 1.2407 kg/m3; Table A-4, Air 
(assume Tc,o ≈ 40°C, cT  = (10 + 40)°C/2 = 298 K, 1 atm): cp = 1007 J/kg⋅K; Table A-6, Water 

(assume Th,o ≈ 140°C, hT  = (140 + 150)°C/2 = 418 K): ρ = 1/vf = 1/1.0850 × 10-3 m3/kg, cp = 4297 

J/kg⋅K, μf = 188 × 10-6 N⋅s/m2, kf = 0.688 W/m⋅K, Prf = 1.18. 
 
ANALYSIS:  Using the ε-NTU method, first find the capacity rates. 
 ( )h h p,h c m p,hhC m c A u N cρ= = ⋅&  
 

 ( )23
h 3 3

1 m J WC 10.2 10 m 0.5 32 4297 5178
4 s kg K K1.0850 10 m / kg

π −
−

= × × × × × =
⋅×

 

 

 ( ) 3
c c p,c p,cc 3

kg WC m c V c 1.2407 lm / s 1007 J / kg K 1249 .
Km

ρ= = = × × ⋅ =&  (1,2) 

 
Note that the cold fluid is the minimum fluid, Cc = Cmin.  The overall heat transfer coefficient follows 
from Eq. 11.5, 

 
1

o o
i i o o

1 1U A
h A h A

−⎡ ⎤
= +⎢ ⎥
⎣ ⎦

        (3) 

 
where hi must be estimated from an appropriate internal flow correlation.  The Reynolds number for 
water flow is 

 
( ) ( )3 3 3

m i
D 6 2

1/1.0850 10 m kg 0.5m / s 10.2 10 mu DRe 25,002.
188 10 N s / m

ρ
μ

− −

−

× × × ×
= = =

× ⋅
 (4) 

 
          Continued … 



PROBLEM 11.66 (Cont.) 
 
The flow is turbulent and since L/Di = 0.6m/10.2 × 10-3m = 59, fully developed conditions may be 
assumed.  The Dittus-Boelter correlation with n = 0.3 is appropriate. 
 

 ( ) ( )0.8 0.30.8 0.3i i
D D

h DNu 0.023Re Pr 0.023 25,002 1.18 79.7
k

= = = =  
 

 2
i D 3i

k 0.688W / m Kh Nu 79.7 5376 W / m K.
D 10.2 10 m−

⋅
= = × = ⋅

×
 

 
Substituting numerical values into Eq. (3), find 
 

 

1
2

o 2 2
12.5mm 1 1U 366.6 W / m K.
10.2mm 5376 W / m K 400 W / m K

−⎡ ⎤⎛ ⎞= + = ⋅⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⋅ ⋅⎣ ⎦

 

 
It follows from Eq. 11.24, with Ao = N(πDo L), that 
 

 ( )3o o
2min

U A W WNTU 366.6 32 12.5 10 m 0.6m /1249 0.22.
C Km K

π −= = × × × × × =
⋅

 

 
From Fig. 11.15, noting that Cmin = Cc is the mixed fluid (solid curves), 
 

 mixed cmin
unmixed max h

C CC 1249 W / K 0.24
C C C 5178W / K

= = = =  

 
and with NTU = 0.22 find ε ≈ 0.19.  From the definition of effectiveness, Eq. 11.19, 
 

 
( )
( )

c c,o c,i

max min h,i c,i

C T Tq
q C T T

ε
−

= =
−

 

 
 ( ) ( )c,o c,i h,i c,iT T T T 10 C 0.19 150 10 C 36.6 C.ε= + − = ° + − ° = °    < 
 
Equating the energy balances on both fluids, 
 
 ( ) ( )c c,o c,i h h,i h,oC T T C T T− = −  
 
or 
 

 ( )c
h,o h,i c,o c,i

h

CT T T T
C

= − −  

 

 ( )h,o
1249 W / KT 150 C 36.6 10 C 143.5 C.
5178W / K

= ° − − ° = °     < 

 
COMMENTS:  (1) Note that the assumptions of Th,o and Tc,o used in evaluating properties are 
reasonable. 
 
(2) Note that to calculate cm&  from V, the density at 10°C is more appropriate than at cT . 
 



PROBLEM 11.67  
KNOWN:  Flow rates and inlet temperatures of exhaust gases and combustion air used in a cross-flow 
(one fluid mixed) heat exchanger.  Overall heat transfer coefficient.  Desired air outlet temperature.  
FIND:  Required heat exchanger surface area.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible heat loss to surroundings, (3) Constant 
properties, (4) Gas properties are those of air. 
 
PROPERTIES:  Table A-4, Air ( mT  ≈ 700 K, 1 atm): cp = 1075 J/kg⋅K. 
 
ANALYSIS:  Using the ε – NTU method, 

c c p,cC  = m c = 10 kg/s × 1075 J/kg K = 10,750 W/K⋅&  

 h h p,hC  = m c = 15 kg/s × 1075 J/kg K = 16,125 W/K⋅&  

 
Thus  r min max max c,o c,i h,i c,iC = C /C = 0.667,   ε = q/q = (T T )/(T T ) = 0.688− −  
 
From Eq. 11.34b, 

 [ ] [ ]r
r

1 1NTU = ln C  ln (1 ε) + 1  = ln 0.667 ln (1 0.688) + 1  = 2.24
C 0.667

− − − −  

 
Therefore, 

 A = NTU × Cmin/U = (2.24 × 10,750 W/K)/ (100 W/m2·K) = 241 m2   < 
 
  



PROBLEM 11.68 
 

 
KNOWN:  Heat exchanger with Cr = 0. 
 
FIND:  Derivation of Equation 11.35a. 
 
ASSUMPTIONS:  (1) Negligible heat transfer between heat exchangers and surroundings, negligible 
heat transfer between two heat exchangers, (2) Constant properties. 
 
ANALYSIS:   For Cr = 0, Cmax → ∞. If the hot stream is associated with Cmax, then Th,i = Th,o. From 
Eq. 8.45 with T∞ = Th,i and Tm,o = Tc,o, Tm,i = Tc,i, 
 

   ( ), ,

, ,
exp exp NTUh i c o

h i c i p

T T UA
T T mc

⎛ ⎞−
= − = −⎜ ⎟⎜ ⎟− ⎝ ⎠&

    (1) 

 
where minp cmc C C= =& or 
 
   ( ) ( ), , , , exp NTUc o h i h i c iT T T T= − − −      (2) 

 
and 
  
 ( ) ( ) ( ), , min , , min , , , ,exp( NTU)p m o m i c o c i h i h i c i c iq mc T T C T T C T T T T⎡ ⎤= − = − = − − − −⎣ ⎦&  (3) 

 
From Eq. 11.22, 
 
   min , ,( )h i c iq C T Tε= −        (4) 
 
Equating Eqs. (3) and (4) yields 
 
   ( )min , , min , , , ,( ) exp( NTU)h i c i h i h i c i c iC T T C T T T Tε ⎡ ⎤− = − − − −⎣ ⎦  

 

or   ( )1 exp NTUε = − −        < 
 
 
 
COMMENTS:  Eq. 11.35a may be used to solve a wide variety of problems, beyond those 
associated with two-fluid heat exchangers, involving constant surface temperature conditions. 



PROBLEM 11.69 
 
KNOWN:  Inlet and outlet temperatures of natural gas and seawater in an LNG vaporizer. LNG flow 
rate and properties of its liquid and vapor phases, as well as phase change temperature and latent heat 
of vaporization. Overall heat transfer coefficients for three sections of the vaporizer. Seawater 
properties. 
 
FIND:  Required vaporizer heat transfer area. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Negligible heat transfer between the heat exchanger and the surroundings, (2) 
Constant properties, (3) Parallel flow. 
 
PROPERTIES: Given. NG: cp,l = 4200 J/kg⋅K, cp,v = 2210 J/kg⋅K, hfg = 575 kJ/kg, Tf = -75°C. SW: 
cp,SW = 3985 J/kg⋅K. 
 
ANALYSIS:   Application of the conservation of energy principle to the gas stream yields 
 

( ) ( )
( ) ( )

NG , , , , A B C

3

6 6 6 6

  150 kg/s 4200J/kg K 75 ( 155) C 575 10 J/kg K 2210J/kg K 8 ( 75) C

  50.4 10  W + 86.3 10  W+27.5 10  W = 164 10  W = 164 MW

p l f c i fg p v c o fq m c T T h c T T q q q⎡ ⎤= − + + − = + +⎣ ⎦
⎡ ⎤= ⋅ − − − ° + × ⋅ + ⋅ − − °⎣ ⎦

= × × × ×

&

 

The flow rate of seawater is  
 

( ) ( )6
sw ,sw , ,/ 164 10  W / 3985 J/kg K 10 C 4120 kg/sp h i h om q c T T⎡ ⎤ ⎡ ⎤= − = × ⋅ ° =⎣ ⎦⎣ ⎦&  

 
Recognizing that the outlet conditions of Section A (B) serve as inlet conditions to Section B (C), we 
may analyze the vaporizer on a section-by-section basis. 
 
Section A The heat capacity rates are 
 

NG: 3
, min,A150 kg/s 4200 J/kg K 630 10  W/Kp lmc C= × ⋅ = × =&  

SW: 6
, max,A4120 kg/s 3985 J/kg K 16.4 10  W/Kp swmc C= × ⋅ = × =&  

 3 6
,A min,A max,A/ 630 10 /16.4 10 0.0384rC C C= = × × =  
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Section B
Liquid to Vapor Phase Change, UB = 260 W/m2·K

Section C
Vaporized gas, UC = 40 W/m2·K

Vaporizer



 
PROBLEM 11.69 (Cont.) 

 
 
The effectiveness is 

 
6

A
A 3

min,A , ,A , ,A

50.4 10  W 0.457
( ) 630 10  W/K (20 ( 155) C)h i c i

q
C T T

ε ×
= = =

− × × − − °
 

 
and the NTU  is determined from Equation 11.28b   
                                           

( )
A

ln 1 0.457 1 0.0384
NTU 0.620

1 0.0384
⎡ ⎤− +⎣ ⎦= − =

+
;

3
A min,A 2

A 2
A

NTU 0.620 630 10  W/K 2600 m
150W / m K

C
A

U
× ×

= = =
⋅

 

 
while the outlet temperature of the seawater is 
 6 6

, ,A , ,A A max,A/ 20 C 50.4 10  W /16.4 10  W/K 16.9 Ch o h iT T q C= − = ° − × × = °  
 
Section B   The heat capacity rates are 
 

NG: max,BC →∞  

SW: 6
, min,B4120 kg/s 3985 J/kg K 16.4 10  W/Kp swmc C= × ⋅ = × =&  

 ,B min,B max,B/ 0rC C C= =  
 
The effectiveness is 

6
B B

B 6
min,B , ,B , ,B min,B , ,A

86.3 10  W 0.0572
( ) ( ) 16.4 10  W/K (16.9 ( 75) C)h i c i h o f

q q
C T T C T T

ε ×
= = = =

− − × × − − °
 

 
and the NTU  is determined from Equation 11.28b 
 

[ ]
B

ln 1 0.0572
NTU 0.0588

1
−

= − =   ; 
6

B min,B 2
B 2

B

NTU 0.0588 16.4 10  W/K 3720 m
260W / m K

C
A

U
× ×

= = =
⋅

 

while the outlet temperature of the seawater is 
 6 6

, ,B , ,B B min,B/ 16.9 C 86.3 10  W /16.4 10  W/K 11.7 Ch o h iT T q C= − = ° − × × = °  
 
Section C  The heat capacity rates are 
 

NG: 3
, min,C150 kg/s 2210 J/kg K 332 10  W/Kp vmc C= × ⋅ = × =&  

SW: 6
, max,C4120 kg/s 3985 J/kg K 16.4 10  W/Kp swmc C= × ⋅ = × =&  

 3 6
,C min,C max,C/ 332 10 /16.4 10 0.020rC C C= = × × =  

 
The effectiveness is 
 

 
6

C C
C 3

min,C , ,C , ,C min,C , ,B

27.5 10  W 0.958
( ) ( ) 332 10  W/K (11.7 ( 75) C)h i c i h o f

q q
C T T C T T

ε ×
= = = =

− − × × − − °
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and the NTU  is found from Equation 11.28b 
 

( )
C

ln 1 0.958 1 0.020
3.69

1 0.020
NTU

⎡ ⎤− +⎣ ⎦= − =
+

;
3

C min,C 2
C 2

C

NTU 3.69 332 10  W/K 30,600 m
40W / m K

C
A

U
× ×

= = =
⋅

 

Therefore, the total heat transfer area for the vaporizer is 
 

 2 2 2 2
A B C 2600 m  +3720 m  + 30,600 m  = 36,900 mA A A A= + + =    < 

 
COMMENTS:  (1) The scheme may not be feasible in a cold-weather port due to the potential of 
freezing the seawater. In cold-weather ports, approximately 2% of the natural gas will be burned, with 
the combustion products sent through the vaporizer to supply the necessary heating. See B. Eisentrout, 
S. Wintercorn and B. Weber, “Study Focuses on Six LNG Regasification Systems,” LNG Journal, 
July/August, pp. 21 – 22, 2006. (2) For a counterflow vaporizer with sea water introduced at the top of 
the heat exchanger, the required area is A = 23,700 m2, a 36% size reduction.  See Problem 11.70. 
 



PROBLEM 11.70 
 
KNOWN:  Inlet and outlet temperatures of natural gas and seawater in an LNG vaporizer. LNG flow 
rate and properties of its liquid and vapor phases, as well as phase change temperature and latent heat 
of vaporization. Overall heat transfer coefficients for three sections of the vaporizer. Seawater 
properties. 
 
FIND:  Required vaporizer heat transfer area. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Negligible heat transfer between the heat exchanger and the surroundings, (2) 
Constant properties, (3) Counterflowing fluids. 
 
PROPERTIES: Given. NG: cp,l = 4200 J/kg⋅K, cp,v = 2210 J/kg⋅K, hfg = 575 kJ/kg, Tf = -75°C. SW: 
cp,SW = 3985 J/kg⋅K. 
 
ANALYSIS:   Application of the conservation of energy principle to the gas stream yields 
 

( ) ( )
( ) ( )

NG , , , , A B C

3

6 6 6 6

  150 kg/s 4200J/kg K 75 ( 155) C 575 10 J/kg K 2210J/kg K 8 ( 75) C

  50.4 10  W + 86.3 10  W + 27.5 10  W=164 10  W = 164 MW

p l f c i fg p v c o fq m c T T h c T T q q q⎡ ⎤= − + + − = + +⎣ ⎦
⎡ ⎤= ⋅ − − − ° + × ⋅ + ⋅ − − °⎣ ⎦

= × × × ×

&

 

The flow rate of seawater is  
 

( ) ( )6
sw ,SW , ,/ 164 10  W / 3985 J/kg K 10 4120 kg/sp h i h om q c T T C⎡ ⎤ ⎡ ⎤= − = × ⋅ ° =⎣ ⎦⎣ ⎦&  

 
Recognizing that the NG (cold stream) outlet conditions of Section A (B) serve as NG inlet conditions 
to Section B (C), and that the SW (hot stream) outlet conditions of Section C (B) serve as the SW inlet 
conditions for Section B(A), we may write 
 

( )6
, ,C , B C C SW sw20 C  ;  20 C 27.5 10  W 4120 kg/s 3985 J/kg K 18.3 Ch i h i h,i, h,i, p,T T T  = T - q / m c - /= = ° = ° × × ⋅ = °&

( )6
A B B sw sw 18.3 C 86.3 10  W 4120 kg/s 3985 J/kg K 13.1 Ch,i, h,i, p,T  = T - q / m c - /= ° × × ⋅ = °&  

, ,A , B C155 C  ;   = 75 C  ;   = 75 Cc i c i c,i, f c,i, fT T T T = - T T = -= = − ° ° °  
 
Section A The heat capacity rates are 
 

NG: 3
, min,A150 kg/s 4200 J/kg K 630 10  W/Kp lmc C= × ⋅ = × =&  
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SW: 6
,sw max,A4120 kg/s 3985 J/kg K 16.4 10  W/Kpmc C= × ⋅ = × =&  

 3 6
,A min,A max,A/ 630 10 /16.4 10 0.0384rC C C= = × × =  

 
The effectiveness is 

 
6

A
A 3

min,A , ,A , ,A

50.4 10  W 0.476
( ) 630 10  W/K (13.1 ( 155) C)h i c i

q
C T T

ε ×
= = =

− × × − − °
 

 
The NTU is determined from Equation 11.29b 
 

 A
A

,A A ,

1 1 1 0.476 1NTU ln ln 0.653
1 1 0.0384 1 0.476 0.0384 1r r AC C

ε
ε

⎛ ⎞− −⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟− − − × −⎝ ⎠⎝ ⎠
 

 
and the area of Section A is 
 

 
3

A min,A 2
A 2

A

NTU 0.653 630 10  W/K 2740 m
150W / m K

C
A

U
× ×

= = =
⋅

 

 
Section B   The heat capacity rates are 
 

NG: max,BC →∞  

SW: 6
,sw min,B4120 kg/s 3985 J/kg K 16.4 10  W/Kpmc C= × ⋅ = × =&  

 ,A min,B max,B/ 0rC C C= =  
 
The effectiveness is 

6
B B

B 6
min,B , ,B , ,B min,B , ,B

86.3 10  W 0.0563
( ) ( ) 16.4 10  W/K (18.3 ( 75) C)h i c i h i f

q q
C T T C T T

ε ×
= = = =

− − × × − − °
 

 
and the NTU  is determined from Equation 11.29b 
 

[ ]
B

ln 1 0.0563
NTU 0.0579

1
−

= − =   ; 
6

B min,B 2
B 2

B

NTU 0.0579 16.4 10  W/K 3660 m
260W / m K

C
A

U
× ×

= = =
⋅

 

Section C  The heat capacity rates are 
 

NG: 3
, min,C150 kg/s 2210 J/kg K 332 10  W/Kp vmc C= × ⋅ = × =&  

SW: 6
,sw max,C4120 kg/s 3985 J/kg K 16.4 10  W/Kpmc C= × ⋅ = × =&  

 3 6
,C min,C max,C/ 332 10 /16.4 10 0.020rC C C= = × × =  

 
The effectiveness is 

 
6

C C
C 3

min,C , ,C , ,C min,C , ,C

27.5 10  W 0.874
( ) ( ) 332 10  W/K (20 ( 75) C)h i c i h i f

q q
C T T C T T

ε ×
= = = =

− − × × − − °
 

 
and the NTU  is found from Equation 11.29b 

Continued… 
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C
1 0.874 1NTU ln 2.09

0.020 1 0.874 0.020 1
−⎛ ⎞= =⎜ ⎟− × −⎝ ⎠

;
3

C min,C 2
C 2

C

NTU 2.09 332 10  W/K 17,300 m
40W / m K

C
A

U
× ×

= = =
⋅

 

Therefore, the total heat transfer area for the vaporizer is 
 

 2 2 2 2
A B C 2740 m  +3660 m  + 17,300 m  = 23,700 mA A A A= + + =    < 

 
COMMENTS:  (1) The scheme may not be feasible in a cold-weather port due to the potential of 
freezing the seawater. In cold-weather ports, approximately 2% of the natural gas will be burned, with 
the combustion products sent through the vaporizer to supply the necessary heating. See B. Eisentrout, 
S. Wintercorn and B. Weber, “Study Focuses on Six LNG Regasification Systems,” LNG Journal, 
July/August, pp. 21 – 22, 2006. (2) For a parallel flow vaporizer with sea water introduced at the 
bottom of the heat exchanger, the required area is A = 36,900 m2, a 55% larger heat exchanger.  See 
Problem 11.69. 
 



PROBLEM 11.71 
 
KNOWN:  Heat dissipation by electronics in sealed enclosure and dissipation from air-handling fan, 
mass flow rate of air, dimensions of concentric tube tower, temperature of ground water, heat transfer 
coefficients at top and bottom surfaces. 
 
FIND:  Temperature of the hot plate, T2, for infinite and zero conduction resistance in the inner 
concentric tube. Determine whether maximum temperatures are maintained below 80°C. 
 
SCHEMATIC: 

T1 = 5°C, h1 = 40 W/m2·K
D1 = Do

q2 = 50 W, h2 = 60 W/m2·K, T2
D2 = Do

Fan, P = 10 W
m = 0.0325 kg/s

L = 10 m

Hot surface

Cool surface

Tc,i

Tc.o

Th,o

Th,i

Tf,o

Di = 100 mm

Do = 150 mm

Electronics
cabinet

Insulation

·

 
ASSUMPTIONS:  (1) Negligible heat transfer between the device and the surroundings, (2) Constant 
properties. 
 
PROPERTIES:  Table A.4 (air) (T = 300 K): cp = 1014 J/kg⋅K, μ = 185 × 10-7 N⋅s/m2, k = 0.0263 
W/m⋅K, Pr = 0.707. 
 
ANALYSIS:   The overall heat transfer coefficient associated with the concentric tube section of the 
device depends on the values of the inside and outside convective heat transfer coefficients, hi and ho. 
For the inside convection coefficient, the Reynolds number is 
 

 7 2
4 4 0.0325 kg/s 22370

0.100 m 185 10 N s/mD
mRe

Dπ μ π −
×

= = =
× × × ⋅

&
 

 
Since L/D = 10 m/ 0.100 m = 100, the flow is fully-developed and turbulent. Using the Dittus-Boelter 
correlation, 
 

4 /5 0.40.023 (22370) 0.707 60.43DNu = × × =  ; 260.43 0.0263W/m K / 0.100 m 15.90W/m Kih = × ⋅ = ⋅  
 
For the annulus, the characteristic length is the hydraulic diameter, Dh = Do – Di = 0.150 m – 0.100 m 
= 0.050 m. Hence, the Reynolds number for the annular flow is ReD = 22370 × 2 = 44740. Therefore, 
the annular flow is also turbulent and fully-developed. Using the Dittus-Boelter correlation,  
 

4 /5 0.30.023 (44740) 0.707 108.9DNu = × × =  ; 2108.9 0.0263W/m K / 0.050 m 57.28 W/m Koh = × ⋅ = ⋅  
 

Continued… 
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The overall heat transfer coefficient is U = (1/hi + 1/ho)-1 = 12.44 W/m2⋅K, assuming no wall 
conduction resistance. The heat capacity rates of the two air streams are identical and are Cmin = Cmax = 
m& cp = 0.0325 kg/s × 1014 J/kg⋅K = 32.73 W/K. The relative heat capacity rate is Cr = 1. Hence, NTU 
= UA/Cmin = 12.44 W/m2⋅K × π × 0.100 m × 10 m/[32.73 W/K] = 1.19. From Eq. 11.29a, the 
effectiveness is ε = NTU/(1 + NTU) = 1.19/2.19 = 0.543. The heat transfer rate in the concentric tube, 
counter-flow heat exchanger, qHX, is 
 
 HX min , , , ,( ) 0.543 32.73W/K( )h i c i h i c iq C T T T Tε= − = × −      (1) 
 
 HX , , , ,( ) 0.0325kg/s 1014J/kg K( )p h i h o h i h oq mc T T T T= − = × ⋅ −&     (2) 
 
At Surface 1, the heat flux is 
 

 
( )( ) ( ) ( )2

1 1 , 1 , 12
( ) (50W 10W) 40W/m K

0.15m / 4
h o h o

c

q Pq h T T T T
A π

+ +′′ = = = − = ⋅ −    (3) 

 
At Surface 2, the heat flux may be expressed as 
 

 
( )( ) ( ) ( )2

2 2 2 , 2 ,2
50W 60W/m K

0.15m / 4
f o f o

c

qq h T T T T
A π

′′ = = = − = ⋅ −    (4) 

 
By considering a control volume about the fan, 
 
 
 , , , ,10W ( ) 10W 0.0325kg/s 1014J/kg K( )p f o c o f o c oP mc T T T T= = − = = × ⋅ −&   (5) 
 
For the control volume in the vicinity of Surface 1, 
 
     , , , ,( ) 50W 10W 0.0325kg/s 1014J/kg K ( )p h o c i h o c iP q mc T T T T+ = − = + = × ⋅ × −&   (6) 
 
For the control volume in the vicinity of Surface 2,  
 
     , , , ,( ) 50W 0.0325kg/s 1014J/kg K ( )p h i f o h i f oq mc T T T T= − = = × ⋅ × −&     (7) 
 
Equations (1) through (7) may be solved simultaneously to yield the following results. 
 
U = 12.44 W/m2⋅K (zero conduction resistance): 
T2  Tf,o  Tc,i  Tc,o  Th,i  Th,o  qHX 
137.6°C 90.49°C 88.06°C 90.19°C 92.01°C 89.88°C 70.1 W 
 
U = 0 W/m2⋅K (infinite conduction resistance): 
T2  Tf,o  Tc,i  Tc,o  Th,i  Th,o  qHX 
135.5°C 88.37°C 88.06°C 88.06°C 89.88°C 89.88°C 0 W 
 
Neither case provides acceptable maximum temperatures.     < 

  Continued… 
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COMMENTS:  (1). The heat transfer coefficients at Surfaces 1 and 2 are relatively small. Improved 
performance would result by increasing the surface area available for transfer through, for example, 
addition of fins. (2). Significantly improved performance would result by replacing the air and fan 
arrangement with liquid water and a pump. (3) See Hadim, Mehmedagic, and Wendell, “A New 
GEOPOLE Cooling Technique for Outdoor Electronic Enclosures,” International Journal of Energy 
Research, Vol. 30, pp. 459 – 470, 2006, for more information. 
 



PROBLEM 11.72 
 

KNOWN: Inlet and outlet temperatures and flow rates for a shell-and-tube heat exchanger with 
a single shell and 100 tubes making two passes.  Tube inner and outer diameters and length.  Heat 
transfer coefficient for ethylene-glycol water mixture flowing in shell. 
 
FIND: (a) Heat transfer rate and outlet temperatures when the tubes are copper.  (b) For nylon 
tubes, heat exchanger length required to transfer the same amount of energy as in part (a). 
 
SCHEMATIC:   
 

 
 
ASSUMPTIONS: (1) Negligible heat loss to the surroundings, (2) Constant properties, (3) 
Fully developed water flow in tubes. 
 
PROPERTIES: Table A.6, water (T ≈ 300 K): k = 0.613 W/m⋅K, cp = 4179 J/kg⋅K, μ = 855 × 
10-6 N⋅s/m2, Pr = 5.83. Ethylene-glycol water mixture (given): ρ = 1040 kg/m3, cp = 3660 J/kg⋅K.  
Copper (T ≈ 300 K): kc = 401 W/m⋅K.  Nylon (given): kn = 0.31 W/m⋅K. 
 
ANALYSIS: (a) We begin by finding the heat transfer coefficient for the flow in tubes.  The 
Reynolds number is 
  

 41
D 6 2i c

4m 4 2.5 kgs /100Re 1.03 10
D 0.0036 m 855 10  N s / m−

×
= = = ×
π μ π× × × ⋅

&
 

 
Hence the flow is turbulent and we can use the Dittus-Boelter correlation, 
 

4 /5 0.4 4 4 /5 0.4
c i D

4 2
h (k / D )0.023Re Pr (0.613 W / m K / 0.0036 m)0.023(1.03 10 ) (5.83)

1.29 10  W / m K

= = ⋅ ×

= × ⋅
 
Then UA can be found from 

1
o i

i i c o o

1 ln(D / D ) 1UA LN
h D 2 k h D

−⎡ ⎤
= + +⎢ ⎥π π π⎣ ⎦   

       
13 5 36.85 10 2.15 10 7.62 10 W / m K 0.8 m 100 5522 W / K
−− − −⎡ ⎤= × + × + × ⋅ × × =⎢ ⎥⎣ ⎦
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Th,i = 160°C 

Tc,i = 20°C =& cm 2.5 kg / s  

Shell and tube hx 
1 shell pass 
2 tube passes 
100 tubes 
Di = 3.6 mm 
Do = 3.8 mm 
L = 0.8 m (0.4 m per pass) 
ho = 11,000 W/m2⋅K 

Ethylene-glycol 
water mixture 

hm 2.5 kg / s=&
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Using the ε-NTU method, Cmin = Ch = 2.5 kg/s × 3600 J/kg⋅K = 9000 W/K, Cmax = 2.5 kg/s × 
4179 J/kg⋅K = 10,450 W/K, Cr = 0.861, and NTU = UA/Cmin = 0.614.  Then from Eq. 11.30a, 
 

 

12 1/ 2
r2 1/ 2

r r 2 1/ 2
r

1 exp NTU(1 C )
2 1 C (1 C ) 0.378

1 exp NTU(1 C )

−⎧ ⎫⎡ ⎤+ − +⎢ ⎥⎪ ⎪⎣ ⎦ε = + + + × =⎨ ⎬
⎡ ⎤− − +⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 
and from Eqs. 11.18, 11.19, 11.6b, and 11.7b, 
 

 q = εCmin(Th,i – Tc,i) = 0.378× 9000 W/K (80 – 20)°C = 204 kW               < 

Th,o = Th,i - q/Ch = 80°C - 204,000 W/9000 W/K = 57.3°C            < 
Tc,o = Tc,i + q/Cc = 20°C + 204,000 W/10,450 W/K = 42.7°C            < 

 
(b)  In order to maintain the same heat rate, we must have the same effectiveness, which means 
that NTU and UA must be the same as in part (a).  When the tubes are nylon, we can recalculate 
UA from Eq. (1), 

1
o i

i i n o o

1 ln(D / D ) 1UA LN
h D 2 k h D

−⎡ ⎤
= + +⎢ ⎥π π π⎣ ⎦   

       
13 2 36.85 10 2.78 10 7.62 10 W / m K 100 L (m) 5522 W / K
−− − −⎡ ⎤= × + × + × ⋅ × × =⎢ ⎥⎣ ⎦

 

 
Solving for L, 
 

 L = 2.33 m                 < 
 
COMMENTS: (1) The nylon tube bundle is significantly larger due to nylon’s low thermal 
conductivity relative to the copper.  Based upon a nylon density of 1150 kg/m3, the masses of the 
two tube bundles are 0.83 kg and 0.39 kg for the copper and nylon, respectively.  The cost 
difference between the two raw materials is negligible.  However, the nylon heat exchanger may 
ultimately be less expensive when assembly costs are considered.  Time-consuming and 
expensive brazing, joining, and welding processes associated with construction of the copper heat 
exchanger are avoided with use of materials such as nylon. (2) With L/D ≈ 200, the fully 
developed assumption is excellent.  (3) The properties of the cold stream should have been 
calculated at the mean temperature of 304 K, very close to the assumed value. 
 



PROBLEM 11.73  
KNOWN:  Heat exchanger operating in parallel-flow configuration.  
FIND:  Expression for Rlm/Rt which doesn’t involve temperatures.  Plot result. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Negligible change in kinetic and 
potential energy.  
ANALYSIS:  (a) For the exchanger, the rate equation is 
 lmq UA T= Δ  
and we can define thermal resistances as 
 ( ) ( )t h,i c,i lm lmR T T / q or R T / q 1/ UA.= − = Δ =  

Using the rate equation and the definition of effectiveness, find the thermal resistance based upon the 
inlet temperatures of the hot and cold fluids as 
 ( )t min h,i c,i min minR C T T / C q 1/ C .ε= − ⋅ =  

The ratio of these resistances is 
 

 lm
t min min

R 1/ UA
R 1/ C UA / C NTU

ε ε
ε

= = =  

 
and for the parallel flow, concentric tube configuration using Eq. 11.28a, 
 

 
( )

( )
( )rlm

t r

1 exp NTU 1 C 1 exp BR
R NTU 1 C B

⎡ ⎤− − + − −⎣ ⎦= =
+

     < 

 
where B = NTU(1 + Cr).  Evaluating the ratio for various values of B, find 
 
   B Rlm/Rt          < 

  0.1 0.95    
  0.5 0.79 

   1.0 0.63 
   3.0 0.32 
   5.0 0.20 
 10.0 0.10 
 
 
COMMENTS:  (1) For Cmax → ∞, Cr → 0; hence B → NTU.  (2) For Cmax ≈ Cmin, B → 2NTU or B 

~ 1
minC .−   (3) For B << 1, Rlm/Rt → 1.  (4) For B >> 1, Rlm/Rt → B-1.  (5) We conclude that care must 

be taken in representing heat exchangers with a thermal resistance, recognizing that the resistance will 
depend on flow rates for wide ranges of conditions. 



PROBLEM 11.74 
 
KNOWN: Required power for automobile.  Overall heat transfer coefficient for radiator, 
analyzed as a cross-flow heat exchanger with both fluids unmixed.  Inlet temperature of air for 
cooling. 
 
FIND: (a) Required heat transfer area if engine efficiency is 35%, water inlet and outlet 
temperatures are 400 and 330 K, respectively, and air flow rate is 3 kg/s.  (b) Required heat 
transfer area and engine coolant (water) mass flow rate if vehicle is powered by 50% efficient 
fuel cell, water inlet and outlet temperatures are 335 and 330 K, respectively, and air flow rate is 
proportional to radiator surface area.  (c) Required heat transfer area and coolant (water) outlet 
temperature for fuel cell powered vehicle if air flow rate is 3 kg/s. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Negligible heat loss to the surroundings, (2) Constant properties, (3) 
Negligible fouling factors. 
 
PROPERTIES: Table A.6, water: ( mT  = 365 K): cp = 4209 J/kg⋅K: Table A.4, air ( mT  ≈ 350 
K): cp = 1009 J/kg⋅K. 
 
ANALYSIS: (a) We can determine how much heat must be removed by the radiator as follows.  
The required mechanical power is 9 kW, which is 35% of the total engine power, i.e. Ptot = 9 
kW/0.35 = 25.7 kW.  The waste heat is 65% of the total power, or 
 

q = 0.65Ptot = 0.65 × 25.7 kW = 16.7 kW 
 
Then from Eq. 11.6b, 
 

h h,i h,oC q /(T T ) 16.7 kW /(400 330)K 239 W / K= − = − =  
 
The heat capacity rate for the air is 
 
 c p cC (mc ) 3 kg / s 1009 J / kg K 3027 W / K= = × ⋅ =&  

 
Continued… 
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PROBLEM 11.74 (Cont.) 
 
Thus Cmin = Ch, Cr = 239/3027 = 0.0789 and ε = q/Cmin(Th,i – Th,o) = 0.699.  Then from Fig. 11.14, 
NTU ≈ 1.25, and we can refine this estimate by solving Eq. 11.32 iteratively, to yield NTU = 
1.26.  Thus, UA = NTU × Cmin = 1.26 × 239 W/K = 301 W/K.  With U = 400 W/m2⋅K, 
 

 A = UA/U = 301 W/K / 400 W/m2⋅K = 0.752 m2              < 
 
(b) With 50% efficiency, Ptot = 9 kW/0.50 = 18 kW and q = 0.50Ptot = 9 kW.  Then 
 

h h,i h,oC q /(T T ) 9 kW /(355 330)K 360 W / K= − = − =  
and  
 

 h h p,hm C / c 360 W / K / 4209 J / kg K 0.0855 kg/s= = ⋅ =&             < 

 
The heat capacity rate for the air is unknown, but can be expressed as follows, where the “o” 
subscript refers to the baseline conditions of part (a), 
 

 2
c p c o p c 2o

A AC (mc ) (m c ) 3027 W / K (4025 W/m K)A
A 0.752 m

= = = = ⋅& &  

 
Assuming the hot fluid is still the minimum fluid, Cmin = 360 W/K, 
 

ε = q/Cmin(Th,i – Tc,i) = 9 kW/[360 W/K(355 – 300)K] = 0.455           (1) 
 

Cr = (360 W/K /4025 W/m2⋅K)A-1 = (0.0895 m2) A-1            (2) 
 
NTU = UA/Cmin = (400 W/m2⋅K/360 W/K)A = (1.11 m-2)A           (3) 

 
And from Eq. 11.32, 
 

 { }0.22 0.78
r

r

11 exp (NTU) exp C (NTU) 1
C

⎡ ⎤⎛ ⎞ ⎡ ⎤ε = − − −⎢ ⎥⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦
           (4) 

Substituting Eqs. (1), (2), and (3) into Eq. (4), 
2

2 0.22 2 0.78
2

A 0.0895 m0.455 1 exp (1.11 m A) exp (1.11 m A) 1
A0.0895 m

− −
⎡ ⎤⎧ ⎫⎡ ⎤⎛ ⎞ ⎪ ⎪⎢ ⎥= − − −⎢ ⎥⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠ ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭⎣ ⎦

 
Solving iteratively for A results in  
 

 A = 0.576 m2                  < 
 
Note that Cc = 2.30 kg/s × 1009 J/kg⋅K = 2319 W/K, so that our assumption that the hot fluid is 
the minimum was correct. 

Continued… 



PROBLEM 11.74 (Cont.) 
 
(c) With the same coolant (water) flow rate as in part (a), Ch = 239 W/K.  Then 
 

ε = q/Cmin(Th,i – Tc,i) = 9 kW/[239 W/K(355 – 300)K] = 0.685           (5) 
 

Cr = (239 W/K /4025 W/m2⋅K)A-1 = (0.0594 m2) A-1            (6) 
 
NTU = UA/Cmin = (400 W/m2⋅K/239 W/K)A = (1.67 m-2)A           (7) 

 
And substituting Eqs. (5), (6), and (7) into Eq. (4), 

2
2 0.22 2 0.78

2
A 0.0594 m0.685 1 exp (1.67 m A) exp (1.67 m A) 1

A0.0594 m
− −

⎡ ⎤⎧ ⎫⎡ ⎤⎛ ⎞ ⎪ ⎪⎢ ⎥= − − −⎢ ⎥⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠ ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭⎣ ⎦
 
Solving iteratively for A results in  
 

 A = 0.723 m2                  < 
 
The outlet temperature of the coolant (water) is calculated from Eq. 11.6b, 
 

 Th,o = Th,i – q/Ch = 355 K – 9000 W/239 W/K = 317 K         < 
 
COMMENTS: (1) The heat that must be rejected from the radiator when the fuel cell 
is used is 9000 W/16700 W × 100 = 53% of that associated with the internal 
combustion engine.  (2) As seen in Part (b), using the fuel cell and increasing the flow 
rate of the coolant results in a significantly smaller radiator size.  (3) As seen in Part 
(c), if the coolant flow rate is the same as that of the internal combustion engine the 
coolant exits the radiator at a lower value since its residence time in the radiator is 
larger.  (4) Reduced radiator sizes will provide opportunities to enhance streamlining of 
the front of the vehicle and will reduce drag forces, further increasing fuel economy.  
The radiator size can be reduced significantly with the fuel cell in place if a metal 
hydride hydrogen storage system is on board and waste heat from the fuel cell is used 
to desorb the hydrogen, as discussed in Example 7.5. 
 
 



PROBLEM 11.75  
KNOWN:  Air conditioner modeled as a reversed Carnot heat engine, with refrigerant as the working 
fluid, operating between indoor and outdoor temperatures of 23 and 43°C, respectively, removing 5 
kW from a building.  Compressor and fan motor efficiency of 80%.  
FIND:  (a) Required motor power assuming negligible thermal resistances between the refrigerant in 
the condenser and the outside air and between the refrigerant in the evaporator and the inside air, and 
(b) Required power if thermal resistances are each 3 × 10-3 K/W. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Ideal heat exchanger with no losses, (2) Air conditioner behaves as reversed 
Carnot engine.  
ANALYSIS:  (a) With negligible thermal resistances, the Carnot cycle and reversed heat engine can 
be represented as shown above.  Hence, from Chapter 1 
 ( ) ( )ideal H L L H Lw q q q T / T 1 5kW 316 K / 296 K 1 0.3378 kW.⎡ ⎤ ⎡ ⎤= − = − = − =⎣ ⎦ ⎣ ⎦&  

Considering the fan power requirement and the efficiency of the motor, 

 ( ) ( )act ideal fan cw w w / 0.3378 0.200 kW / 0.8 0.672 kW.η= + = + =& & &   < 

(b) Consider now thermal resistances of Rt = 3 × 10-3 K/W on the high temperature (condenser) and 
low temperature (evaporator) sides. 
         
Low side:  in order to remove heat from the  
room, TC < Ti.  That is 
 

 ( )3
i C tT T qR 5 kW 3 10 K / W 15 K−− = = × =  

 
 C iT T 15 K 23 C 15 K 8 C.= − = ° − = °  
 
High side: in order to reject heat from the 
condenser to the outside air, TH > To, 
 ( )H o H t c H c tT T q R q T / T R− = =  

( ) ( ) 3
H H HT 43 273 K 5 kW T / 8 273 3 10 K / W T 333.9 K 61 C.−⎡ ⎤− + = + × = = °⎣ ⎦  

 
The work required for this cycle is 
 

( ) ( ) ( )ideal H L L H Lw q q q T / T 1 5 kW 61 273 K / 8 273 K 1 0.943 kW⎡ ⎤ ⎡ ⎤= − = − = + + − =⎣ ⎦ ⎣ ⎦&  
 
 ( ) ( )act ideal fan cw w w / 0.943 0.2 kW / 0.8 1.43 kW.η= + = + =& & &    < 
 
The effect of finite thermal resistances in the evaporator and condenser is to increase the power by a 
factor of two. 



PROBLEM 11.76 
 
KNOWN:  Flow rate and pressure of saturated vapor entering a condenser.  Number and diameter of 
condenser tubes.  Water flow rate and inlet temperature.  Tube outside convection coefficient. 
 
FIND:  (a) Water outlet temperature, (b) Total tube length, (c) Effect of fouling on mass condensation, 
(d) Effect of water flow rate and inlet temperature on condenser performance. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Constant properties, (3) Negligible wall 
conduction resistance and fouling (initially). 
 
PROPERTIES:  Water (given):  cp = 4178 J/kg⋅K, μ = 700 × 10-6 kg/s⋅m, k = 0.628 W/m⋅K, Pr = 4.6;  
Table A.6, Sat. steam (355 K):  hfg = 2.304 × 106 J/kg; With fouling:  fR′′  = 0.0003 m2⋅K/W. 
 
ANALYSIS:  (a) From an energy balance, qh = ( ) ( )h h,i h,o h fg c c p,c c,o c,im i i m h q m c T T− = = = −& & & , or  
 

 
6h fg

c,o c,i
c p,c

m h 1.5 kg s 2.304 10 J kg
T T 280 K 335.1K

m c 15 kg s 4178 J kg K
× ×

= + = + =
× ⋅

&

&
. < 

 
(b) Since Cr = 0, NTU = -ln(1 - ε), where 
 

 
( )
( )

( )
( )

c p,c c,o c,i

max c p,c h,i c,i

m c T T 335.1 280 Kq
0.735

q 355 280 Km c T T
ε

− −
= = = =

−−

&

&
 

 
Hence, NTU = -ln(1 - 0.735) = 1.327 = UA/Cmin.  The overall heat transfer coefficient is given by 1/U = 
1/ ih  + 1/ oh .  For the internal tube flow, 

 
( )

c,1
D 6

4m 4 15 kg s 100
Re 27, 284

D 0.01m 700 10 kg s mπ μ π −
×

= = =
× ⋅

&
 

Hence, assuming fully developed flow with the Dittus-Boelter correlation, 

 ( ) ( )4 / 5 0.44 / 5 n
D DNu 0.023Re Pr 0.023 27, 284 4.6 149.8= = =  

 ( ) 2
i D

0.628 W m K
h k D Nu 149.8 9408 W m K

0.01m
⋅

= = = ⋅  

and ( ) ( )[ ] 1 2 2U 1 9408 1 5000 W m K 3265 W m K−= + ⋅ = ⋅ .  Hence, the heat transfer area is 

 ( ) ( )( )2 2
c p,cA m c NTU U 15 kg s 4178 J kg K 1.327 3265 W m K 25.5 m= = ⋅ ⋅ =&  

and the tube length is L = A/NπD = 25.5 m2/100π(0.01 m) = 8.11 m. < 
 
(c) With fouling, the overall heat transfer coefficient is 1/Uw = 1/Uwo + fR′′ .  Hence, 

Continued... 



 
PROBLEM 11.76 (Cont.) 

 

 ( )4 4 2
w1 U 3.063 10 3 10 m K W− −= × + × ⋅  

 
 Uw = 1649 W/m2⋅K. 
 

 ( ) ( )2 2
minNTU UA C 1649 W m K 25.5 m 15 kg s 4178 J kg K 0.671= = ⋅ × × ⋅ =  

 
From Eq. 11.35a, ε = 1 - exp(-NTU) = 1 - exp(-0.671) = 0.489.  Hence, q = εqmax = 0.489 × 15 kg/s × 
4178 J/kg⋅K(355 - 280)K = 2.30 × 106 W.  Without fouling the heat rate was 
 
 6 6

h fgq m h 1.5 kg s 2.304 10 J kg 3.46 10 W= = × × = ×& . 

Hence,  6 6
h,w h,wom m 2.30 10 3.46 10 0.666= × × =& & . < 

 
The condensation rate with fouling is then h,wm 0.666 1.5kg s 0.998kg s= × =& . 
 
(d) The prescribed water inlet temperature of Tc,i = 280 K is already at the lower limit of available 
sources, and it would not be feasible to consider smaller values.  In addition, with ih  already quite large, 
an increase in cm&  is not likely to provide a significant improvement in performance.  Using the Heat 
Exchanger and Correlations Tools from IHT, the following results were obtained for 15 ≤ cm&  ≤ 25 kg/s. 

15 17 19 21 23 25

Water mass flow rate, mdotc(kg/s)

0.9

1

1.1

1.2

C
on
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ns
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n 
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, m

do
th

(k
g/
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Over the specified range of cm& , there is approximately an 18% increase in the heat rate, and hence in the 

condensation rate.  This increase is, in part, due to the increase in ih  from 9408 to 14,160 W/m2⋅K, which 
increases U from 1649 to 1752 W/m2⋅K, as well as to a reduction in Tc,o from 316.6 to 306.0 K, which 
increases the mean driving potential for heat transfer. 
 
COMMENTS:  There is a significant reduction in performance due to fouling, which can not be restored 
by increasing cm& .  The desired performance could be achieved by oversizing the condenser, that is, by 
increasing the number of tubes and/or the tube length. 



PROBLEM 11.77  
KNOWN:  Rankine cycle with saturated steam leaving the boiler at 2 MPa and a condenser pressure 
of 10 kPa.  Net reversible work of 0.5 MW.  
FIND:  (a) Thermal efficiency of ideal Rankine cycle, (b) Required cooling water flow rate to 
condenser at 15°C with allowable temperature rise of 10°C, and (c) Design of a shell and tube heat 
exchanger (one shell and multiple tube passes) to satisfy condenser flow rate and temperature rise.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible loss from condenser to surroundings, (2) Ideal Rankine cycle, and 
(3) Negligible thermal resistance on condensate side of exchanger tubes. 
 
PROPERTIES:  Steam Tables, (Wark, 4th Edition):  (1) p1 = p4 = 10 kPa = 0.10 bar, Tsat = 45.8°C = 
319 K, vf = 1.0102 × 10-3 m3/kg, hf = 191.83 kJ/kg; (3) p2 = p3 = 2 MPa = 20 bar, hg = 2799.5 kJ/kg, 
sg = 6.3409 kJ/kg⋅K; (4) s4 = s3 = 6.3409 kJ/kg⋅K, p4 = 0.10 bar, sf = 0.6493 kJ/kg⋅K, sg = 8.1502 
kJ/kg⋅K, hf = 191.83 kJ/kg⋅K, hfg = 2392.8 kJ/kg; Table A-6, Water (Tsat = 293 K): cp,c = 4182 J/kg⋅K, 
μ = 1007 × 10-6 N⋅s/m2, k = 0.603 W/m⋅K, Pr = 7.0.  Note:  1 bar = 105 N/m2 = 105 Pa. 
 
ANALYSIS:  (a) Referring to Chapter 1 and your thermodynamics text, find that 
 

 
( ) ( )t p 3 4 1 2 1net

H H 3 2

w w h h v p pw
Q Q h h

η
− − − −

= = =
−

 

 
where the net work is the turbine minus the pump work.  Assuming the liquid in the pump is 
incompressible, 
 

 ( ) ( )3 3 6 3 2
p 1 2 1w v p p 1.0102 10 m / kg 2 10 10 10 N / m 2.01 kJ / kg.−= − = × × − × =  

 
To find the enthalpies at states 2, 3, and 4, consider the individual processes.  For the pump, 
 ( )2 1 ph h w 191.83 2.01 kJ / kg 193.84 kJ / kg.= + = + =  

Since the exit state of the boiler is saturated at p3 = 2 MPa, 
 3 gh h 2799.5 kJ / kg.= =  

 ( )H 3 2Q h h 2799.5 193.84 kJ / kg 2605.7 kJ / kg.= − = − =  

Since the process from 3 to 4 is isentropic, s4 – s3, hence 

 ( ) ( ) ( ) ( )4 4 f g fx s s / s s 6.3409 0.6493 / 8.1502 0.6493 0.759= − − = − − =  

 ( )4 f fgh h xh 191.83 0.759 2392.8 kJ / kg 2007.5 kJ / kg.⎡ ⎤= + = + =⎣ ⎦  

 
          Continued … 
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 ( )t 3 4w h h 2799.5 2007.5 kJ / kg 792.0 kJ / kg.= − = − =  
 
Substituting appropriate values, the thermal efficiency is 

 
( )792.0 2.01 kJ / kg

0.303 30.3%.
2605.7 kJ / kg

η
−

= = =       < 

(b) From an overall balance on the cycle, the heat rejected to the condenser is 
 ( )c H netQ Q w 2605.7 792.0 2.01 kJ / kg 1815.7 kJ / kg.⎡ ⎤= − = − − =⎣ ⎦  

Since the net reversible power is 0.5 MW, the required steam rate (h) is 
 
 ( )6

h net netm W / w 0.5 10 W / 792.0 2.01 kJ / kg 0.6329 kg / s.= = × − =&&  
 
Hence, the heat rate to be removed by the cold water passing through the condenser is 
 
 ( )c c h c p,c c,out c,inq Q m m c T T= ⋅ = −& &  
 
 ( )6

c1815.7 kJ / kg 0.6329 kg / s 1.149 10 W m 4182 J / kg K 25 15 K× = × = × ⋅ −&  
 
 cm 27.47 kg / s=&          < 
 
where cp,c = cp,f is evaluated at T2, Tc,in = 15°C and Tc,out – Tc,in = 10°C, the specified allowable rise. 
 
(c) To design the heat exchanger we need to    
evaluate UA.  Considering the shell-tube 
configuration and since Cr = Cmin/Cmax = 0, 
 

( ) ( )min1 exp NTU 1 exp UA / Cε ⎡ ⎤= − − = − −⎣ ⎦  
 

 
( )

c
max c p,c h c,i

qq
q m c T T

ε = =
−&

 

 

 
( )

61.149 10 W 0.326
27.47 kg / s 4182 J / kg K 45.7 15 K

ε ×
= =

× ⋅ −
 

 

 
UA0.326 1 exp

27.47 kg / s 4182 J / kg K
⎛ ⎞

= − −⎜ ⎟× ⋅⎝ ⎠
 

 
 sUA 45,372 W / K=  
 
where Cmin = c p,cm c .&   Our design process will involve the following steps:  select tube diameter, D 

= 15 mm; set um = 2 m/s in each tube and find number of tubes; perform internal flow calculation to 
estimate ch  and then determine the length. 
 

 ( ) ( )( )1 23 3
c c mm A Nu 1.010 10 m / kg 0.015m / 4 2m / s N 27.47 kg / sρ π

−−= = × × =&  

 N 78.5 79.= ≈  
          Continued … 
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For flow in a single tube, 
 

 
( )

( )
t

D 6 2
4 27.47 kg / s / 794mRe 29,310.

D 0.015m 1007 10 N s / mπ μ π −
= = =

× ⋅

&
 

 
Assuming the flow is fully developed and using the Dittus-Boelter correlation, 
 

 ( ) ( )0.8 0.40.8 0.4
D

hDNu 0.023Re Pr 0.023 29,310 7.00 187.7
k

= = = =  
 
 2h 0.603 W / m K 187.7 / 0.015m 7544 W / m K.= ⋅ × = ⋅  
 
Hence, the tube length is 
 
 ( )sUA h DL N 45,372 W / Kπ= =  
 
 ( )2L 45,372 W / K / 7544 W / m K 0.015m 79 1.6mπ= ⋅ × =  
 
and our design has the following parameters: 
 
 N 79 tubes L 1.6m D 15 mm.= = =     < 
 
COMMENTS:  (1) The selection of the tube diameter and water velocity values (15 mm, 2 m/s) was 
based upon prior experience; they seemed reasonable.  We could, however, establish other 
requirements which would influence these choices such as allowable pressure drop and standard tube 
sizes. 
 



PROBLEM 11.78  
KNOWN:  Rankine cycle with saturated steam leaving the boiler at 2 MPa and a condenser pressure 
of 10 kPa.  Heat rejected to the condenser of 2.3 MW.  Condenser supplied with cooling water at rate 
of 70 kg/s at 15°C.  
FIND:  (a) Size of the condenser as determined by the parameter, UA, and (b) Reduction in thermal 
efficiency of the cycle if U decreases by 10% due to fouling assuming water flow rate and inlet 
temperature and the condenser steam pressure remain fixed.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible loss from condenser to surroundings, (2) Ideal Rankine cycle, (3) 
For fouled operating condition, c, c,im T&  and p4 remain the same. 
 
PROPERTIES:  Steam Tables (Thermodynamics text):  See previous problem for calculations to 
obtain cycle enthalpies; h1 = 191.83 kJ/kg, h4 = 2007.5 kJ/kg. 
 
ANALYSIS:  (a) For the condenser, recognize that Cmin = Cc, and Cr = Cmin/Cmax = 0, 
 

 ( ) ( )min
max

q 1 exp NTU 1 exp UA / C
q

ε = = − − = − −  

 
 min c p,cC m c 70 kg / s 4182 J / kg K 292,740 W / K= = × ⋅ =&  
 
 ( ) ( ) 6

max min h c,iq C T T 292,740 W / K 45.7 15 K 8.987 10 W.= − = − = ×  
 
 6

hq q 2.30 10 W= = ×  
 

 
6

6
2.30 10 W UA0.256 1 exp

292,740 W / K8.987 10 W

⎛ ⎞×
= = − −⎜ ⎟

⎝ ⎠×
 

 
 UA 86,538 W / K.=          < 
 
(b) In the fouled condition, U is reduced 10%, hence 
 
 fU A 0.9 UA 77,884 W / K= =  
 
and 

 f
f

min

U A 77,884 W / KNTU 0.266
C 292,740 W / K

= = =  

 ( ) ( )f f1 exp NTU 1 exp 0.266 0.234.ε = − − = − − =  
          Continued … 
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If we operate the cycle at the same back pressure p4 = 10 kPa so that Th = 45.7°C, the heat removal 
rate must decrease, 
 
 6 6

h maxq q 0.234 8.987 10 W 2.103 10 Wε= = × × = ×  
 
since qmax = Cmin (Th – Tc,i) remains the same.  From the previous problem, we found the heat 
rejected as 
 
 ( )4 1h h 2007.5 191.83 kJ / kg 1815.7 kJ / kg− = − =  
 
and hence the cycle steam rate through the fouled condenser is 
 
 ( ) 6

h,f h 4 1m q / h h 2.103 10 W /1815.7 kJ / kg 1.158 kg / s.= − = × =&  
 
For the unfouled condenser of part (a), the steam rate was 
 
 hm 2.3 MW /1815.7 kJ / kg 1.267 kg / s.= =&  
 
Hence, we see that fouling reduces the steam rate by 8.5% when U is decreased 10%.  Since p4 
remains the same, the thermal efficiency remains unchanged, 
 
 30.3%η =           < 
 
as calculated in the previous problem.  However, the net work of the cycle will decrease 8.5%.  
COMMENTS:  Fouling of the condenser heat exchanger has no effect on the thermal efficiency of 
the cycle since the back pressure at the condenser is maintained constant.  The effect is, however, to 
reduce the heat rejection rate while maintaining exchanger flow rate and inlet temperature fixed.  
Comparing the conditions: 
 
   Parameter Clean  Fouled  Change (%) 
   UA, W/K 86,538  77,884    -10.0 
   ε    0.256    0.234      -8.6 
   qh, MW  2.300    2.103      -8.6 
   netw&       --      --      -8.6 
 



PROBLEM 11.79  
KNOWN:  Concentric tube heat exchanger with prescribed conditions.  
FIND:  (a) Maximum possible heat transfer, (b) Effectiveness, (c) Whether heat exchanger should be 
run in PF or CF to minimize size or weight; determine ratio of required areas for the two flow 
conditions.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Constant properties, (3) Overall heat 
transfer coefficient remains unchanged for PF or CF conditions. 
 
PROPERTIES:  Hot fluid (given): c = 2100 J/kg⋅K; Cold fluid (given): c = 4200 J/kg⋅K.  
ANALYSIS:  (a) The maximum possible heat transfer rate is given by Eq. 11.18. 
 ( )max min h,i c,oq C T T .= −  

The minimum capacity fluid is the hot fluid with Cmin = hm&  ch, giving 

 ( ) ( )max h h h,i c,o
kg Jq m c T T 0.125 2100 210 40 K 44,625W.
s kg K

= − = × − =
⋅

&  < 

(b) The effectiveness is defined by Eq. 11.19 and the heat rate, q, can be determined from an energy 
balance on the cold fluid. 
 ( )max c c c,o c,i maxq / q m c T T / qε = = −&  

 ( )0.125 kg / s 4200 J / kg K 95 40 K / 44,625 W 0.65.ε = × ⋅ − =    < 
(c) Operating the heat exchanger under CF conditions will require a smaller heat transfer area than for 
PF conditions.  The ratio of the areas is 

 m,CF m,PFCF
PF m,PF m,CF

q / U T TA .
A q / U T T

Δ Δ
= =

Δ Δ
l l

l l
 

To calculate the LMTD, first find Th,o from overall energy balances on the two fluids. 

 ( ) ( )c c
h,o h,i c,o c,i

h h

m c 0.125 4200T T T T 210 C 95 40 C 100 C.
m c 0.125 2100

×
= − − = ° − − ° = °

×
&

&
 

Using Eq. 11.15 with ΔT1 and ΔT2 as shown below, find mTΔ l  = (ΔT1 - ΔT2)/ l n (ΔT1/ΔT2).  
Substituting values, find 

 
( ) ( ) ( )
( ) ( ) ( )

CF
PF

210 40 100 95 / n 170 / 5A 46.8 C 0.55.
A 84.5 C210 95 100 40 n 115 / 60

⎡ ⎤− − − °⎣ ⎦= = =
°⎡ ⎤− − −⎣ ⎦

l

l
   < 

COMMENTS:  In solving part (c), it is also possible to use Figs. 11.11 and 11.12 to evaluate NTU 
values for corresponding ε and Cmin/Cmax values.  With knowledge of NTU it is then possible to find 
ACF/APF. 



PROBLEM 11.80 
 
KNOWN: Inlet and outlet temperatures for a shell-and-tube heat exchanger with two shells, 
each with 10 tubes making eight passes.  Heat transfer coefficient for oil flowing in shell.  Mass 
flow rate of water in tubes.  Tube diameter. 
 
FIND: Is the required tube length sufficiently small to fit in an 8 m long facility, if the floor 
space must be at least 2.5 times the length of the heat exchanger? 
 
SCHEMATIC:   

 
 
ASSUMPTIONS: (1) Negligible heat loss to the surroundings, (2) Constant properties, (3) 
Negligible tube wall thermal resistance and fouling effects, (4) Fully developed water flow in 
tubes. 
 
PROPERTIES: Table A.5, unused engine oil: ( hT  = 130°C): cp = 2350 J/kg⋅K.  Table A.6, 

water ( cT  = 50°C): cp = 4181 J/kg⋅K, μ = 548 × 10-6 N⋅s/m2, k = 0.643 W/m⋅K, Pr = 3.56. 
 
ANALYSIS: From the overall energy balance, Eq. 11.7b, the heat transfer required of 
the exchanger is 
 5

c p,c c,o c,iq m c (T T ) 2.5 kg / s 4181 J / kg K(85 15) C 7.317 10  W= − = × ⋅ − ° = ×&  
Hence from Eq. 11.6b, 

5
h

p,h h,i h,o

q 7.317 10  Wm 5.19 kg / s
c (T T ) 2350 J / kg K(160 100) C

×
= = =

− ⋅ − °
&   

 
The required tube length may be obtained using the ε-NTU method.  We first calculate the heat 
capacity rates, h h p,hC m c= & = 12,195 W/K, c c p,cC m c= & =10,453 W/K.  Thus, Cmin = Cc, and 

Cr = Cmin/Cmax = 0.857.  Then from Eq. 11.21, 
 

c,o c,i

h,i c,i

T T (85 15) C 0.483
T T (160 15) C

− − °
ε = = =

− − °
  

Using Eqs. 11.31c, 11.31b, 11.30c, 11.30b, and 11.31d, in that order, we find, F = 1.06, ε1 = 
0.311,  
 

Continued… 
 
 

Th,i = 160°C 

Th,o = 100°CTc,o = 85°C 

Tc,i = 15°C =& cm 2.5 kg / s

& hm  Shell and tube hx 
2 shell passes 
8 tube passes 
10 tubes 
D = 25 mm 
ho = 400 W/m2⋅K 



PROBLEM 11.80 (Cont.) 
 

 1 r
2 1/ 2 2 1/ 2
r

2 / (1 C ) 2 / 0.311 (1 0.857)E 3.47
(1 C ) (1 0.857 )
ε − + − +

= = =
+ +

 

 
2 1/ 2 2 1/ 2

1 r
E 1 3.47 1(NTU) (1 C ) ln (1 0.857 ) ln 0.451
E 1 3.47 1

− −− −⎛ ⎞ ⎛ ⎞= − + = − + =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
 

  
NTU = n(NTU)1 = 2 × 0.451 = 0.901 
 

Thus UA = NTU×Cmin = 9420 W/K.  To find the required tube length, we must know the heat 
transfer coefficient for the water flow.  We calculate the Reynolds number from Eq. 8.6, with the 
water flow rate per tube as 1 cm m / N=& & = 0.25 kg/s, 
  

1
D 6 2c

4m 4 0.25 kg / sRe 23,234
D (0.025 m)548 10  N s/m−

×
= = =
π μ π × ⋅

&
 

 
Hence the flow is turbulent, and from Eq. 8.60, 
 

4 /5 0.4 4 /5 0.4
D DNu 0.023Re Pr 0.023(23,234) (3.56) 119= = =  

 
and 
 

2c
c D

k 0.643 W / m Kh Nu 119 3060 W / m K
D 0.025 m

⋅
= = = ⋅  

 
Hence U = [1/hc + 1/hh]-1 = 354 W/m2⋅K and we can find the required tube length from 
 

2
UA 9420 W / KL 33.9 m

UN D 354 W / m K 10 0.025 m
= = =

π ⋅ × × π×
 

 
This is the total tube length for all ten tubes in both shells, therefore the length of the heat 
exchanger shell must be 
 
 Lshell = L/(8 × 2) = 2.12 m  
 
Therefore the room would have to be 2.12 m × 2.5 = 5.3 m. 

Yes, the floorspace of 8 m is sufficiently long to service the heat exchanger.           < 
 
COMMENTS: (1) With L/D = 33.9/0.025 = 1356, the assumption of fully developed 
conditions throughout the tube is justified.  (2) The floor-to-ceiling height must be sufficiently 
large to stack one shell above the other. 
 



PROBLEM 11.81 
 
KNOWN: Configuration of a cubical plate-type heat exchanger with 40 gaps.  Fluid flow rates, 
inlet temperatures, and desired oil outlet temperature. 
 
FIND: (a) Core dimension, L, of the heat exchanger, when the sheet thickness is 0.8 mm, for 
aluminum and PVDF sheets.  (b) Plot core dimension as a function of sheet thickness for 
aluminum and PVDF over the range 0 ≤ t ≤ 1 mm. 
 
SCHEMATIC: 

                
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Negligible heat loss to the surroundings, (2) Constant properties, (3) 
Negligible fouling factors, (4) Laminar, fully developed conditions for the water and oil, (5) 
Identical gap-to-gap heat transfer coefficients.  (6) Heat exchanger exterior dimension is large 
compared to the gap width. 
 
PROPERTIES: Table A.6, water ( cT ≈ 35°C):  µ = 725 × 10-6 N⋅s/m2, k = 0.625 W/m⋅K.  
Table A.5, unused engine oil ( hT = 353 K): µ = 3.25 × 10-2 N⋅s/m2, k = 0.138 W/m⋅K.  Aluminum 
(given):  kal = 237 W/m⋅K.  PVDF (given): kpv = 0.17 W/m⋅K. 
 
ANALYSIS: (a) From Example 11.2, assuming the flow is still laminar, 
 
  hc = 7.54k/Dh = 7.54k/2a,     hca = 7.54 × 0.625 W/m⋅K /2 = 2.36 W/m⋅K        (1a) 
 
 hh = 7.54k/Dh = 7.54k/2a,     hha = 7.54 × 0.138 W/m⋅K /2 = 0.520 W/m⋅K       (1b) 
 
and the overall convection coefficient, including the wall thermal resistance, is given by 
 

1
c w h c w hU 1/ h t / k 1/ h a /(h a) t / k a /(h a)− = + + = + +            (2) 

 
where (hca) and (hha) are constants given by Eq. (1).  In addition, from Example 11.1, the 
required log mean temperature difference and heat transfer rate are ΔTlm = 43.2°C and q = 8524 
W, respectively.  Thus with A = (N-1)L2, we have 

2
1 2lmA T 39 43.2 C LU 0.198 K/W L

q 8524 W
− Δ × ° ×

= = =             (3) 

Continued… 

L a 

t = 0.8 mm 

N = 40 gaps

Water 

Oil 

kal or kpv 



PROBLEM 11.81 (Cont.) 
 
The core dimension, L, is related to the gap dimension, a, and sheet thickness, t, (neglecting the 
exterior plates) by the expression 
 
 L = Na + (N-1)t                 (4) 
 
Thus, Eq. (3) becomes 
 

[ ]21U 0.198 K/W Na (N 1)t− = + −               (5) 
 
Equating Eqs. (2) and (5), we can solve the resulting quadratic equation for a, 
 

 
[ ]2c w h

2
2

a /(h a) t / k a /(h a) 0.198 K / W Na (N 1)t

B B 4ACAa Ba C 0,      a
2A

+ + = + −

− ± −
+ + = =

  

where 
 

2 2

c h

2 2
w

2 2

A 0.198 K / W N 0.198 K / W 40 316 K/W
1 1B 2(0.198 K / W)N(N 1)t

h a h a
1 10.395 K / W 40 39 0.0008 m 1.85 m K/W

2.36 W/m K 0.520 W/m K
tC (0.198 W / K)(N 1) t

k
0.0008 m(0.198 K / W)39 (0.0008 m) 1

237 W / m K

= = × =

= − − −

= × × × − − = − ⋅
⋅ ⋅

= − −

= − =
⋅

4 2.89 10  m K / W−× ⋅

 

 
We have used kw = kal in evaluating C.  Thus 
  

2 2 4

4

B B 4AC 1.85 1.85 4 316 1.89 10a  m
2A 2 316

1.04 10  m or 0.0058 m

−

−

− ± − ± − × × ×
= =

×

= ×

          

 
See the Comments for a discussion of the two different solutions.  Hence from Eq. (4), when the 
sheets are aluminum, 
 

 al
0.0354 m

L  = 
0.261 m
⎧
⎨
⎩

                 < 
 
 

Continued… 



PROBLEM 11.81 (Cont.) 
 
Repeating the calculations for PVDF, we find only one (positive) solution, a = 0.00771 m, for 
which 

pvL  = 0.340 m                  < 

(b)  The calculations were keyed into the IHT workspace and solved for 0 ≤ t ≤ 1 mm.  The 
solution is shown below for aluminum and PVDF sheets. 
      

 
Aluminum PVDF Lal2 Lpv2

Sheet thickness, t (mm)
10.80.60.40.20

C
or

e 
di

m
en

si
on

, L
 (m

) 0.4

0.3

0.2

0.1

0

            < 
 
COMMENTS: (1) We can check the Reynolds number to see if the flow is truly laminar.  The 
largest Reynolds number would be for water, since it is less viscous and has a higher flow rate.  
Thus Re = 14m / Pμ ≈&  4m /(N / 2) / 2 Lμ& .  For the smaller value of L, Re = 779.  Hence the flow 
is laminar for both oil and water.  (2) As expected, utilization of PVDF results in a larger heat 
exchanger due to its lower thermal conductivity.  (3) For aluminum sheets, there are two 
solutions.  The very small spacing gives rise to high heat transfer coefficients that enable a small 
heat exchange area.  The larger spacing corresponds to smaller heat transfer coefficients that 
require a larger heat exchange area.  For PVDF, the thermal resistance of the sheets is larger and 
it is impossible to increase the value of U sufficiently to enable the smaller channel solution.  (4) 
Manufacturing of the smaller channels would pose a challenge, and the pressure drop could be 
prohibitively large.  Fouling could also be more of a problem in the smaller channels.  (5) If the 
heat exchanger didn’t have to be cubical, there could be solutions with superior properties with 
respect to pressure drop and manufacturing constraints. 



PROBLEM 11.82  
KNOWN:  Shell and tube heat exchanger for cooling exhaust gases with water.  
FIND:  Required surface area using ε-NTU method.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Constant properties, (3) Gases have 
properties of air. 
 
PROPERTIES:  Table A-6, Water, liquid ( cT  = (85 + 35)°C/2 = 333 K): cp = 4185 J/kg⋅K. 
 
ANALYSIS:  Using the ε-NTU method, the area can be expressed as 
 minA NTU C / U= ⋅          (1) 

where NTU must be found from knowledge of ε and Cmin/Cmax = Cr.  The capacity rates are: 
 c c p,cC m c 2.5kg / s 4185 J / kg K 10, 463W / K= = × ⋅ =&  

Equating the energy balance relation for each fluid, 
 
 ( ) ( ) ( ) ( )h c c,o c,i h,i h,oC C T T / T T 10, 463W / K 85 35 / 200 93 4889 W / K.= − − = − − =  
 
Hence, 
 
 r min max h cC C / C C / C 4889 /10,463 0.467.= = = =  
 
The effectiveness of the exchanger, with qmax = Cmin (Th,i – Tc,i) and Cmin = Ch, is 
 
 ( ) ( ) ( ) ( )max h h,i h,o h h,i c,iq / q C T T / C T T 200 93 / 200 35 0.648.ε = = − − = − − =  
 
Considering the HXer to be a single shell with 2,4….tube passes, Eqs. 11.30b,c are appropriate to 
evaluate NTU. 

 ( ) ( )

( )
1/ 2 1 r2

r 1/ 22
r

2 / 1 CE 1NTU 1 C n E .
E 1

1 C

ε− − +−
= − + =

+
+

l  

Substituting numerical values, 

 
( )

( )
( )( ) 1/ 22

1/ 22

2 / 0.648 1 0.467 1.467 1E 1.467 NTU 1 0.467 n 1.51.
1.467 1

1 0.467

−− + −
= = = − + =

+
+

l  

Using the appropriate numerical values in Eq. (1), the required area is 
 
 2 2A 1.51 4889 W / K /180 W / m K 40.9m .= × ⋅ =      < 
 
COMMENTS:  Figure 11.12 could also have been used with Cr and ε to find NTU. 



PROBLEM 11.83 
 
KNOWN:  Dimensions, fluid flow rates, and fluid temperatures for a counterflow heat exchanger used to 
heat blood.  
FIND:  (a) Outlet temperature of the blood, (b) Effect of water flowrate and inlet temperature on heat rate 
and blood outlet temperature.  
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Constant properties.  
PROPERTIES:  Table A.6, Water ( mT  ≈ 55°C):  cp = 4183 J/kg⋅K. 
 
ANALYSIS:  (a) Using the ε - NTU method, we first obtain Ch = ( h p,hm c& ) = (0.10 kg/s × 4183 J/kg⋅K) 

= 418.3 W/K and Cc = ( c p,cm c& ) = (0.05 kg/s × 3500 J/kg⋅K) = 175 W/K = Cmin.  Hence, (Cmin/Cmax) = 

0.418 and  

 
( ) ( )( )2

min

500 W m K 0.055 m 0.5 mUA
NTU 0.247

C 175 W K

π⋅
= = = . 

From Eq. 11.29a, ε = 0.21.  Hence, from Eq. 11.22 

 ( ) ( )( )min h,i c,iq C T T 0.21 175 W K 60 18 C 1544 Wε= − = − =o . 

From Eq. 11.7, 

 c,o c,i
c

q 1544 W
T T 18 C 26.8 C

C 175 W K
= + = + =o o  < 

(b) Because the variation of Cmin/Cmax with hm&  does not have a significant effect on ε for the prescribed 
NTU, Tc,o and q increase only slightly with increasing hm& . 
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However, the water inlet temperature does have a significant effect, and accelerated heating is achieved 
with Th,i = 70°C. 
 
COMMENTS:  With hm&  = 0.2 kg/s and Th,i = 70°C, the outlet temperature of the blood is still below 
the desired level of Tc,o ≈ 37°C.  This value of Tc,o could be increased by increasing L or Th,i. 



PROBLEM 11.84 
 
KNOWN:  Inlet temperatures and flow rates of water (c) and ethylene glycol (h) in a shell-and-tube heat 
exchanger (one shell pass and two tube passes) of prescribed area and overall heat transfer coefficient. 
 
FIND:  (a) Heat transfer rate and fluid outlet temperatures and  (b) Compute and plot the effectiveness, ε, 
and fluid outlet temperatures, Tc,o and Th,o as a function of the flow rate of ethylene glycol, hm& , for the 
range 0.5 ≤ hm& ≤ 5 kg/s. 
 
SCHEMATIC: 

        
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Constant properties, and (3) Overall 
coefficient remains unchanged. 
 
PROPERTIES:  Table A-5, Ethylene glycol ( mT  ≈ 40°C): cp = 2474 J/kg⋅K; Table A-6, Water ( mT  ≈ 
15°C): cp = 4186 J/kg⋅K. 
 
ANALYSIS:  (a) Using the ε-NTU method we first obtain 
 ( ) ( )h h p,hC m c 2kg s 2474J kg K 4948 W K= = × ⋅ =&  

 ( ) ( )c c p,cC m c 5kg s 4186J kg K 20,930 W K= = × ⋅ =& . 

Hence with Cmin = Ch = 4948 W/K and Cr = Cmin/Cmax = 0.236, 

 
( )2 2

min

800 W m K 15mUA
NTU 2.43

C 4948 W K

⋅
= = = . 

From Fig. 11.12, ε = 0.81 and from Eq. 11.22 

 ( ) ( )( ) 5
min h,i c,iq C T T 0.81 4948 W K 60 10 K 2 10 Wε= − = − = × . < 

From Eqs. 11.6 and 11.7, energy balances on the fluids, 

 
5

h,o h,i
h

q 2 10 W
T T 60 C 19.6 C

C 4948 W K
×

= − = − =o o  < 

 
5

c,o c,i
c

q 2 10 W
T T 10 C 19.6 C

C 20,930 W K
×

= = + =+ o o . < 

 
(b) Using the IHT Heat Exchanger Tool, Shell and 
Tube, and the Properties Tool for Water and Ethylene 
Glycol, Tc,o,  Th,o, and ε as a function of hm& were 
computed and plotted. 
 
At very low Cmin, (low hm& ) note that ε → 1 while 
Th,o → Tc,i.  As hm&  increases, both fluid outlet 
temperatures increase and the effectiveness 
decreases. 
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PROBLEM 11.85  
KNOWN:  Flow rate, specific heat and inlet temperature of gas in cross-flow heat exchanger.  Flow 
rate and temperature of water which enters as saturated liquid and leaves as saturated vapor.  Number 
of tubes, tube diameter and overall heat transfer coefficient.  
FIND:  Required tube length.  
SCHEMATIC:   

 
 
 
 
 
 

 
 
 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Constant gas specific heat. 
 
PROPERTIES:  Table A-6, Saturated Water, (T = 450 K): hfg = 2.024 ×106 J/kg. 
 
ANALYSIS:  Use effectiveness-NTU method 
 

 
( ) ( )max min h,i c,i h p,h h,i c,i

q q q
q C T T m c T T

ε = = =
− −&

 

 
 6 6

c fgq m h 3 kg / s 2.024 10 J / kg 6.072 10 W= = × × = ×&  
 

 
( )

6
min max

6.072 10 W 0.571 C / C 0.
10 kg / s 1120J / kg K 1400 450 K

ε ×
= = =

× ⋅ −
 

 
From Fig. 11.15, find 
 
 o o minNTU 0.8 U N D L / Cπ≈ ≈  
 

 2
0.8 10 kg / s 1120J / kg KL 4.56m.

50 W / m K 500 0.025mπ

× × ⋅
≈ =

⋅ × ×
     < 

 
COMMENTS:   The gas outlet temperature is 

 6
h,o h,i h p,hT T q / m c 1400K 6.072 10 W /10kg / s 1120J / kg K 857.9K.= − = − × × ⋅ =&  

 



PROBLEM 11.86 
 
KNOWN:  Gas flow conditions upstream of a tube bank of prescribed geometry.  Flow rate and inlet 
temperature of water passing through the tubes. 
 
FIND:  (a) Overall heat transfer coefficient, (b) Water and gas outlet temperatures, (c) Effect of water 
flow rate on heat recovery and outlet temperatures. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Negligible heat loss to the 
surroundings, (3) Negligible tube fouling and wall thermal resistance, (4) Fully developed water flow, (5) 
Gas properties are those of air. 
 
PROPERTIES:  Table A.6, Water (Assume mT  ≈ 340 K):  cp = 4188 J/kg⋅K, μ = 420 × 10-6 N⋅s/m2, k = 
0.660 W/m⋅K, Pr = 2.66;  Table A.4, Air (Assume mT  ≈ 600 K):  cp = 1051 J/kg⋅K, ν = 52.7 × 10-6 m2/s, 
k = 0.047 W/m⋅K, Pr = 0.69. 
 
ANALYSIS:  (a) For the prescribed conditions, U = (1/hi + 1/ho)-1.  For the internal flow, with c,1m&  = 
0.025 kg/s, 

 
( )

c,1
D 6 2

4m 4 0.025 kg s
Re 3032

D 0.025 m 420 10 N s mπ μ π −
×

= = =
× ⋅

&
. 

Hence, from the Gnielinski correlation, 

 D
1/ 2 2 / 3 1/ 2 2 / 3

(f /8)(Re 1000)Pr (0.0454 /8)(3032 1000)2.66NuD 16.3
1 12.7(f /8) (Pr 1) 1 12.7(0.0454 /8) (2.66 1)

− −
= = =

+ − + −
 

where f = (0.79 ln ReD – 1.64)-2 = 0.0454 

 i D
k 0.660 W m K 2h Nu 16.3 431 W / m K
D 0.025 m

⋅
= = = ⋅ . 

For the external flow, Vmax = 
( )

0.05 m
5.0 m s 10.0 m s

0.05 0.025 m
=

−
.  Hence 

 max
D,max 6 2

V D 10 m s 0.025
Re 4744

52.7 10 m sν −
×

= = =
×

 

From the Zukauskas correlation and Tables 7.5 and 7.6, ( ) ( )0.63 0.36 1/ 4
D D,max sNu 0.97 0.27 Re Pr Pr Pr= .  

Neglecting the Prandtl number ratio, 

 ( ) ( ) ( )0.63 0.36
DNu 0.97 0.27 4744 0.69 47.4= =  

 2
Do

k 0.047 W m K
h Nu 47.4 89.1W m K

D 0.025 m
⋅

= = = ⋅ . 

Continued... 
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Hence, U = (1/431 + 1/89.1)-1 = 73.9 W/m2⋅K. < 
 (b) The fluid outlet temperatures may be determined from the ε-NTU method.  With cm&  = 2.5 kg/s, Cc = 

c p,cm c&  = 2.5 kg/s × 4188 J/kg⋅K = 10,470 W/K.  With Ch = h p,hm c&  = 2.25 kg/s × 1051 J/kg⋅K = 2365 

W/K, Cmin/Cmax = Cmixed/Cunmixed = 2365/10,470 = 0.23.  Hence, with A = NπDL = 100π × 0.025 m × 4 m 
= 31.4 m2, 

 
( )2 2

min

73.9 W m K 31.4 mUA
NTU 0.98

C 2365 W K

⋅
= = =  

From Fig. 11.15, ε ≈ 0.61.  From Eq. 11.18, qmax = Cmin(Th,i - Tc,i) = 2365 W/K(800 - 300)K = 1.18 × 106 
W.  Hence, q = εqmax = 0.72 × 106 W.  From Eq. 11.6b, 

 ( )
6

h,i h,o
h

q 0.72 10 W
T T 304 K

C 2365 W K
×

− = = =                Th,o = 496 K < 

From Eq. 11.7b,       ( )
6

c,o c,i
c

q 0.72 10 W
T T 69 K

C 10, 470 W K
×

− = = =         Tc,o = 369 K < 

(c) Using the appropriate Heat Exchangers, Correlations and Properties Toolpads of IHT, the following 
results were obtained. 

2 4 6 8 10 12 14 16 18 20

Water flow rate, mdotc(kg/s)

300

340

380

420

460

500

540

O
ut

le
t t

em
pe

ra
tu

re
s 

(K
)

Gas outlet temperature, Tho(K)
Water outlet temperature, Tco(K)       

2 4 6 8 10 12 14 16 18 20

Water flow rate, mdotc(kg/s)

650000

700000

750000

800000

H
ea

t r
at

e,
 q

(W
)

 
With increasing &mc  (and c,1m& ), hi increases, thereby increasing U and q.  However, because the total 

resistance is dominated by the gas-side condition, cm&  = 20 kg/s only yields U = 83.9 W/m2⋅K, despite 
the fact that hi = 2180 W/m2⋅K.  Because the extent to which q increases with increasing cm&  is much 
smaller than the increase in cm&  itself, Tc,o decreases with increasing cm& .  Hence, there is a trade-off 
between the amount of hot water and the temperature at which it is delivered.  If, for example, the 
temperature must exceed 50°C (Tc,o > 323 K), cm&  cannot exceed 8 kg/s.  To maintain an acceptable 
value of Tc,o, while increasing cm& , hm&  (and V) should be increased, thereby increasing ho, and hence U 
and q. 
 
COMMENTS:  If the air and water property functions of IHT are used to evaluate properties at 
appropriate mean values of the inlet and outlet fluid temperatures and Eq. 11.34a is used to evaluate ε, the 
following, more accurate, results would be obtained for Parts (a) and (b):  ε = 0.565, q = 0.677 × 106 W, 
Tc,o = 364.6 K, Th,o = 517.5 K, hi = 383 W/m2⋅K, ho = 86.3 W/m2⋅K and U = 70.5 W/m2⋅K. 



PROBLEM 11.87 
 
KNOWN:  Tube arrangement in steam-to-air, cross-flow heat exchanger.  Flow rate cm&  and inlet 
temperature of air.  Condensing temperature of steam. 
 
FIND:  (a) Air outlet temperature for &mc  = 12 kg/s, (b) Effect of cm&  on air outlet temperature, heat rate 
and condensation rate. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Negligible steam side convection and 
tube wall conduction resistance, (3) Mean air temperature is 350 K. 
 
PROPERTIES:  Table A.4, Air (Assume ( )c c,i c,oT T T 2≡ +  ≈ 350 K, 1 atm):  ρ = 0.995 kg/m3, cp = 

1009 J/kg⋅K, ν = 20.92 × 10-6 m2/s, k = 0.030 W/m⋅K, Pr = 0.700; Ts = 400 K:  Pr = 0.690. 
 
ANALYSIS:  (a) For a single-pass, cross-flow heat exchanger with one fluid mixed and the other 
unmixed, Fig. 11.15 can be used to obtain ε, where Cmin/Cmax = Cmixed/Cunmixed = 0 and NTU = UA/Cmin = 
U(πDL)N/ cm& cp.  From Eq. 11.5, U = oh , and the Zukauskas correlation may be used to estimate oh .  
The upstream velocity may be obtained from cm&  = ρVA ≈ ρVNTLST.  Hence, 

 c
3T T

m 12 kg s
V 1.44 m s

N LS 0.995 kg m 30 2 m 0.14 mρ
= = =

× × ×

&
. 

For aligned tubes, 

 
( )

T
max

T

S 0.14 m
V V 1.44 m s 2.88 m s

S D 0.14 0.07 m
= = =

− −
 

 max
D,max 6 2

V D 2.88 m s 0.07 m
Re 9637

20.92 10 m sν −
×

= = =
×

. 

From Table 7.5, select values of C = 0.27 and m = 0.63.  Hence, 

 ( )0.250.63 0.36
D D,max sNu 0.27 Re Pr Pr Pr=  

 ( ) ( ) ( )0.63 0.36 0.25
DNu 0.27 9637 0.70 0.70 0.69 77.1= =  

 2
Do

k 0.030 W m K
h Nu 77.1 33.0 W m K

D 0.07 m
⋅

= = = ⋅ . 

Hence, 

 
( ) ( )2

o

c p

33.0 W m K 0.07 m 2 m 1200h DLN
NTU 1.44

m c 12 kg s 1009 J kg K
ππ ⋅ ×

= = =
× ⋅&

. 

 
From Fig. 11.15, find ε ≈ 0.77 and then determine 

Continued... 
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( )
( )

c p,c c,o c,i c,o c,i

max s c,ic p,c s c,i

m c T T T Tq
q T Tm c T T

− −
= = =

−−

&

&
ε  

 ( ) ( )c,o c,i s c,iT T T T 300 K 0.77 400 300 K 377 K 104 Cε= + − = + − = = o  < 

(b) With q = εqmax = εCc(Ts - Tc,i) and the condensation rate given by Eqs. 10.34 and 10.27, 

 cd
fg fg

q q
m

h h
= ≈

′
&  

the foregoing model may be used with the Heat Exchangers, Correlations and Properties Toolpads of IHT 
to determine the effect of &mc  on Tc,o, q and cdm& . 
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Since oh  increases with increasing cm& , q must also increase.  However, since the increase in q is 
proportionally less than the increase in cm& , Tc,o decreases with increasing cm& . 
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The condensation rate increases proportionally with the increase in q, and if the objective is to maximize 
the condensation rate, the largest value of cm&  should be maintained. 
 
COMMENTS:  If the objective is to heat the air, there is obviously a trade-off between maintaining 
elevated values of the flow rate and outlet temperature. 



PROBLEM 11.88 
 

 
KNOWN:  Steel balls cooled in an oil bath. 
 
FIND:  Derivation of the expression for the modified effectiveness of Comment 4 of Example 11.8. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Spatially uniform bath and ball temperature at any instant, (2) Constant 
properties, (3) Negligible heat losses from bath. 
 
 
ANALYSIS: From Comment 4 of Example 11.8, 
 

  max ,min , ,
max min

( )   ;   *=    ;   NTU*=t h i c i
t,

E UA tE C T T
E C

ε Δ Δ
Δ = −

Δ
        (1, 2, 3) 

Combining Eqs. (1) and (2) yields 
 
  ,min , ,* ( )t h i c iE C T TεΔ = −        (4) 
 

Assuming Ct,min = Ct,h, it follows that , ,

, ,
* h i h f

h i c i

T T
T T

ε
−

=
−

      (5) 

 
and therefore, 
 

  , ,,min

,max , ,

c f c it h h

t c c h i h f

T TC m c
C m c T T

−
= =

−
       (6) 

 
Note that Eqs. (1) through (6) are analogous to Eqs. 11.18, 11.19, 11.24, 11.22, 11.25 and 11.26 in the 
text.  
 
 
From Comment 3 of Example 11.8,  
 

, , ,min2

1 , , , , ,max

1 1ln ln NTU * 1h f c f t

h i c i t h t c t

T T CT UA t
T T T C C C

⎛ ⎞ ⎛ ⎞ ⎛ ⎞−⎛ ⎞Δ
= = − + Δ = − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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or 
 

  , , ,min

, , ,max
exp NTU * 1h f c f t

h i c i t

T T C
T T C

⎡ ⎤⎛ ⎞−
= − +⎢ ⎥⎜ ⎟⎜ ⎟− ⎢ ⎥⎝ ⎠⎣ ⎦

    (7) 

 
  
Equation (7) is identical in form to Eq. 11.27 in the text. 
 
Noting the analogy between Eqs.(1) through (7) with the equations in the text, we may proceed in a 
manner identical to that of the text, after Equation 11.27, obtaining 
 
 

   ,

,

1 exp NTU *(1 )
*

1
t r

t r

C
C

ε
⎡ ⎤− − +⎣ ⎦=

+
     <  

 
 
COMMENTS:  The derivation is straightforward, once the analogy between the parallel-flow 
concentric tube heat exchanger analysis is recognized. 
 



PROBLEM 11.89 
 

 
KNOWN:  Dimensions and maximum allowable temperature of an electronic chip. Thermal contact 
resistance between chip and heat sink. Dimensions and thermal conductivity of heat sink. Inlet 
temperature and convection coefficient associated with air flow through the heat sink. 
 
FIND:  (a) Inlet air velocity using an appropriate correlation from Chapter 8, (b) Chip power, qc and 
the outlet temperature of the air exiting the channels. (c) Chip power and air outlet temperature for air 
velocity half of the value calculated in part (a). 
 
SCHEMATIC  

 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady state, (2) One-dimensional heat transfer in fins and base, (3) Isothermal 
chip, (4) Negligible heat transfer from top of chip, (5) Uniform convection coefficient over exposed 
surfaces, (6) Negligible radiation, (7) Negligible axial conduction in the heat sink, (8) Laminar flow, 
(9) Combined entry length. 
 
PROPERTIES:  Given. Aluminum, khs = 180 W/m⋅K. Air (T = 300 K; Table A.4) ρ = 1.1614 kg/m3, 
cp = 1007 J/kg⋅K, k  = 0.0263 W/m⋅K, ν = 15.89 × 10-6 m2/s, Pr = 0.707. 
 
ANALYSIS:   (a) The hydraulic diameter is Dh = 4Ac/P = 4Lf (S – t)/[2(S - t) + 2Lf] = 4 × 0.0018 m × 
0.015 m/[2 × 0.0018 m  + 2 × 0.015 m] = 0.00321 m. From the specified convection coefficient, 
 

  
2100 W / m K 0.00321 m 12.22

0.0263 W/m Kh
hD

hDNu
k

⋅ ×
= = =

⋅
 

 

Using Eq. 8.58  

( )
( )

1
1/3 2 /3

1/6 1/6

3.66 0.0499 tanh
tanh 2.264 1.7

12.22
tanh 2.432

h h

hh
h

h

D D
DD

D
D

Gz Gz
Gr Gz

Nu
Pr Gz

−
− −

−

+
⎡ ⎤+⎣ ⎦= =   

 
from which 204 ( / ) (0.00321/ 0.02) 0.707

h h hD h D DGz D W Re Pr Re= = = × × . This yields 
hDRe = 

1800. The flow is in the upper laminar range. From the definition of the Reynolds number, 
 

   
6 21800 15.89 10 m /s 8.89 m/s

0.00321 m
hD

w
h

Re v
u

D

−× ×
= = =    < 

 
(b) The resistances between the chip and the channel flow are due to the chip-heat sink interface (Rt,c), 
the base of the heat sink (Rt,b) and the fin array resistance (Rt,o). The resistance values are: 
 
 " 2 6 2 2

, , / 2 10 m K/W /(0.02 m) 0.005 K/Wt c t cR R W −= = × ⋅ =  
Continued... 
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 [ ]22

, /( ) 0.003 m /(180 W/m K 0.02 m ) 0.042 K/Wt b b hsR L k W= = ⋅ × =  

 ( ),
1  where 1 1  and  =  + f

t o o f t f b
o t t

NA
R A NA A

hA A
η η

η
= = − −  

 
 
where Af = 2WLf = 2× 0.02 m × 0.015 m = 6 × 10-4 m2 and Ab = W2 - N(tW) = (0.02 m)2 - 11(0.182 × 
10-3 m × 0.02 m) = 3.6 × 10-4 m2. With mLf = (2 h /khst)1/2Lf = (200 W/m2⋅K/180 W/m⋅K × 0.182 × 10-3 
m)1/2(0.015 m) = 1.17, tanh (mLf) = 0.824 and Eq. (3.87) yields ηf = (tanhmLf)/mLf = 0.824/1.17 = 
0.704. It follows that At = 6.96 × 10-3m2, ηo = 0.719 and Rt,o = 2.00 K/W. Accounting for the air flow 
within the heat sink only, the value of the minimum heat capacity rate is  
 

 
min

3

( )( 1)

        8.89 m/s 0.015 m 0.0018 m 10 1.1614 kg/m 1007J/kg K = 2.80 W/K

p w f pC mc u L S t N cρ= = − −

= × × × × × ⋅

&
 

 
The NTU is  
 

( ) ( )min
, , , min

1 1NTU / 0.174
0.005 K/W 0.042 K/W 2.00 K/W 2.80 W/Kt c t b t o

UA C
R R R C

= = = =
+ ++ +

 
while the effectiveness is found from Eq. 8.35a. 
 
  1 exp( NTU) 1 exp( 0.174) 0.160ε = − − = − − =  
 
yielding a heat rate of 
 
  ( )0.160 2.80 W/K 85 20 K = 29.1 Wcq = × −      < 
 
The temperature of the air exiting the heat sink is found from 
 
  To = T∞ + qc/Cmin = 20°C + 29.1 W/(2.80 W/K) = 30.4°C    < 
 
(c) If the air flow velocity is halved, 102

hDGz = and 275.2 W/m Kh = ⋅  
 
yielding mLf = 1.016 and tanh(mLf) = 0.768. Following the steps described in part (b), ηf = 
0.769/1.0183 = 0.756 and ηo = 0.768. Also, Rt,o = 2.48 K/W, NTU = 0.281 and ε = 0.245. The heat rate 
is qc = 22.4 W and the outlet air temperature is To = 36.0°C.     < 
 
COMMENTS: (1) Without accounting for the increase in the air flow temperature, the answer for 
Part (a) is (from Problem 3.144) qc = 31.8 W. As expected, the increasing air temperature, as it makes 
its way through the heat sink, reduces the heat transfer rate. (2) The heat rate in Part (c) is reduced 
because of the combined effects of (i) decreasing value of the convective heat transfer coefficient and 
(ii) decreasing average temperature difference between the chip and the coolant. (3) Although the flow 
is laminar, the value of the heat transfer coefficient is relatively high. How much would the allowable 
heat rate increase (or decrease) if the flow in Part (a) was treated as turbulent?  



PROBLEM 11.90 
 

 
KNOWN:  Dimensions of aluminum heat sink. Temperature and velocity of coolant (water) flow 
through the heat sink. Power dissipation of electronic package attached to the heat sink. 
 
FIND:  Base temperature of heat sink. 
 
SCHEMATIC:   
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Average convection coefficient associated with water flow over fin surfaces 
may be approximated as that for a flat plate in parallel flow, (2) All of the electric power is dissipated 
by the heat sink, (3) Transition Reynolds number of Rex,c = 5 × 105, (4) Constant properties, (5), Water 
does not exit the upper surface of the heat sink. 
 
PROPERTIES:  Given. Aluminum, khs = 180 W/m⋅K. Water, ρ = 995 kg/m3, cp = 4178 J/kg⋅K, kw = 
0.62 W/m⋅K, ν = 7.73 × 10-7 m2/s, Pr = 5.2. 
 
ANALYSIS:   The heat transfer rate is 
 
   elec min , min( ) ( )b c i bq P C T T C T Tε ε ∞= = − = −     (1) 
 
where ε = 1 - exp(-NTU) = 1 – exp(-UA/Cmin) = 1 – exp(-1/[(Rb + Rt,o)Cmin])   (2) 
 
The base resistance is Rb = Lb/khs(w1 × w2) = 0.01m/180W/m⋅K(0.10 m)2 = 5.56 × 10-3 K/W and from 
Eqs. 3.107 and 3.108, 
 

   ( )
1

, 1 1f
t o t f

t

NA
R hA

A
η

−
⎧ ⎫⎡ ⎤⎪ ⎪= − −⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

     (3) 

 
The Reynolds number is Rew2 = u∞w2/ν = 3 m/s × 0.10 m/7.73 × 10-7 m2/s = 3.88 × 105, and the flow is 
laminar. Hence, 
 

     ( ) ( )
2

1/ 2 1/31/ 2 1/3 5 2

2

0.62W/m K0.664 0.664 3.88 10 5.2 4443 W/m K
0.10m

w
w

kh Re Pr
w

⎛ ⎞ ⋅⎛ ⎞= = × × × = ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

  

 
The fin area is Af = 2w2(Lf + t/2) = 0.2 m (0.055 m) = 0.011 m2 while the total surface area of the array 
is At = NAf + Ab = NAf + (N – 1)(S – t)w2 = 6(0.011 m2) + 5(0.008 m)0.1m = 0.070 m2.  The fin 
parameter m = (2 h /khst)1/2 = ([2 × 4443 W/m2⋅K]/[180 W/m⋅K × 0.01 m])1/2 = 70.3 m-1 and Lc = Lf + 
t/2 = 0.050 m + 0.010/2 m = 0.055 m. Hence, Eq. 3.94 yields ηf = tanh(mLc)/(mLc) = 0.259. 
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Hence,  
 

 ( )
12

2 2
, 2

0.066 m4443 W/m K 0.070 m 1 1 0.259 0.0107 K/W
0.070 mt oR

−
⎧ ⎫⎡ ⎤⎪ ⎪= ⋅ × − − =⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

 

 
The heat capacity rate is Cmin = ρ(N – 1)Lf(S – t)u∞cp = 995 kg/m3 × (6 – 1) × 0.050 m × (0.018 m – 
0.010 m) × 3 m/s × 4178 J/kg⋅K = 24,940. 
 
Equations (1) and (2) can be combined to yield 
 

 
( )

( )

elec

min
,

3

11 exp
min

1800 W   17 C
11 exp 24,940 W/K

5.56 10 K/W 0.0107K/W 24,940 W/K

b

b t o

PT T

C
R R C

∞

−

= +
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟− −

⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦

= ° +
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟− −
⎢ ⎥⎜ ⎟× +⎝ ⎠⎣ ⎦

  

                  = 46.3 °C.          < 
 
COMMENTS: (1) The outlet water temperature is Tc,o = Tc,i + Pelec/Cmin = 17°C + 1800 W/24,940 
W/K = 17.1°C and the assumption of constant water temperature made in Problem 7.29 is valid. (2) 
The hydrodynamic boundary layer thickness at the exit of the heat sink is δ = 5w2Rew2

-1/2 =  0.80 mm 
which is much less than S – t = 8 mm. Hence, the assumption of flow over a flat plate is reasonable. 
(3) For this problem, reduced water flow rates, or use of a gaseous coolant may invalidate the 
assumption of constant coolant temperature and a heat exchanger-based analysis would be needed. (4) 
To ensure against coolant loss from the upper surface of the heat sink, a shroud would normally be 
added. 
 
 
 
   

 
 
 
 

 
 
 
 
 
 
 
 
 
  



PROBLEM 11.91 
 

 
KNOWN:  Dimensions of aluminum heat sink. Temperature of air entering the heat sink and specified 
base temperature. 
 
FIND:  Plot of the allowable power dissipation and air exit temperature as a function of air velocity 
over the range 1 m/s ≤ u∞ ≤ 5 m/s. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Average convection coefficient associated with air flow over fin surfaces may 
be approximated as that for a channel composed of isothermal parallel plates of width Lf, (2) All of the 
electric power is dissipated by the heat sink, (3) Laminar flow, (4) Constant properties, (5), Air does 
not exit through the upper surface of the heat sink. 
 
PROPERTIES:  Given. Aluminum, khs = 180 W/m⋅K. Air, ρ = 1.145 kg/m3, cp = 1007 J/kg⋅K, k  = 
0.027 W/m⋅K, ν = 16.4 × 10-6 m2/s, Pr = 0.706. 
 
ANALYSIS:   Assuming laminar flow, from Eq. 8.58 the average Nusselt number (for a hydraulic 
diameter of Dh = 4Ac/P = 4Lf (S – t)/[2(S - t) + 2Lf] = 4 × 0.05 m × (0.018 m – 0.010 m)/[2 × (0.018 m 
– 0.010 m) + 2 × 0.050 m] = 0.0138 m) is, 
 

         

( )
( )

1
1/3 2 /3

1/6 1/6

3.66 0.0499 tanh
tanh 2.264 1.7

tanh 2.432 Pr

h h

hh
h

h

D D
DD

D
D

Gz Gz
Gr Gz

Nu
Gz

−
− −

−

+
⎡ ⎤+⎣ ⎦=   (1a) 

 
where 6 2

2 air( / ) (0.0138 / 0.01) ( 0.0138 m /16.4 10  m /s) 0.706
h hD h DGz D w Re Pr u −= = × × × ×   (1b) 

 
and / 0.027 W/m K / 0.0138 m

h hD h Dh Nu k D Nu= = × ⋅       (1c) 
 
The total resistance consists of the base and fin resistances in series. The base resistance is Rb = 
Lb/khs(w1 × w2) = 0.01m/180W/m⋅K(0.10 m)2 = 5.56 × 10-3 K/W and from Eqs. 3.107 and 3.108, 

   ( )
1

, 1 1f
t o t f

t

NA
R hA

A
η

−
⎧ ⎫⎡ ⎤⎪ ⎪= − −⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

     (2) 

  
The fin area is Af = 2w2(Lf + t/2) = 0.2 m (0.055 m) = 0.011 m2 while the total surface area of the array 
is At = NAf + Ab = NAf + (N – 1)(S – t)w2 = 6(0.011 m2) + 5(0.008 m)0.1 m = 0.070 m2.  To find the fin 
efficiency, note that the fin parameter, m, is  
 

Continued... 
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m = (2 h /khst)1/2 = ([2 × h  W/m2⋅K]/[180 W/m⋅K × 0.01 m])1/2    (3) 
 

and Lc = Lf + t/2 = 0.050 m + 0.010/2 m = 0.055 m. From Eq. 3.94, the fin array efficiency is 
 

ηf = tanh(mLc)/(mLc) = tanh(m× 0.055 m)/(m × 0.055 m)   (4) 
 
The minimum heat capacity rate is 
  

 
min

3

( 1)( )

       1.145 kg/m 1007 J/kg K (6 1) (0.018 m 0.010 m) 0.050 m

p fC u c N S t L

u

ρ∞

∞

= − −

= × × ⋅ × − × − ×
  (5) 

 
and the effectiveness is  
 

  

min
, min

3
, min

11 exp( NTU) 1 exp( / ) 1 exp
( )

1   = 1 exp
( 5.56 10 K/W)

t o b

t o

UA C
R R C

R C

ε

−

⎛ ⎞
= − − = − − = − −⎜ ⎟⎜ ⎟+⎝ ⎠

⎛ ⎞
− −⎜ ⎟⎜ ⎟+ ×⎝ ⎠

  (6) 

The heat transfer rate may be expressed as 
 
   elec min min( ) (70 C 20 C)bq P C T T Cε ε∞= = − = ° − °    (7) 
 
and the outlet air temperature is 
 
   min/o elecT T P C∞= +        (8) 
 
Equations 1 through 7 can be solved using IHT as noted in Comment 1. The allowable power and exit 
air temperatures are shown below. 
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PROBLEM 11.91 (Cont.) 

 
COMMENTS: (1) The IHT code is shown below. (2) Values of the Reynolds number range from 
841 to 4205 for air velocities ranging from 1 m/s to 5 m/s. Hence, the flow will be transitioning to a 
turbulent state at velocities greater than approximately 3 m/s. (3) To dissipate Pelec = 70 W, it is 
necessary to provide an air velocity of u∞ = 3.3 m/s, corresponding to a Reynolds number of 2775.  (4) 
Increasing air velocity has two effects, (i) the heat transfer coefficient is increased (from 13 to 28 
W/m2⋅K for the range of velocities considered here), and (ii) the average air temperature is reduced, as 
evident in the graph above.  
 
//Geometrical Values 
w2 = 0.10     //m 
At = 0.070    //m^2 
Af = 0.011    //m^2 
N = 6 
Lc = 0.055    //m 
t = 0.010     //m 
S = 0.018     //m 
Lf  = 0.050    //m 
 
//Properties 
nuair = 16.4e-6    //m^2/s  
Prair = 0.706 
kair = 0.027    //W/mK 
cpair = 1007    //J/kgK 
khs = 180     //W/mK 
rhoair = 1.145    //kg/m^3 
 
//Base Thermal Resistance 
Rtb = 5.56*10^-3    //K/W 
 
//Driving Temperatures 
Tbase = 70    //C 
Tinf = 20     //C 
 
//Begin by Guessing the Air Velocity 
uair = 2     //m/s 
 
//Convection Coefficient 
Dh = 4*Lf*(S - t)/(2*(S - t) + 2*Lf)  //m 
Re = uair*Dh/nuair 
//Apply the Baehr and Stephan correlation of Chapter 8 
Gz = (Dh/w2)*Re*Prair 
Nuair = (A + B)/C 
A = 3.66/(2.264*tanh(Gz^(-1/3)+1.7*Gz^(-2/3)))   
B = 0.0499*Gz*tanh(1/Gz) 
C = tanh(2.432*Prair^(1/6)*Gz^(-1/6)) 
hbar = Nuair*kair/Dh   //W/m^2K 
 
//Fin Resistance 
m = sqrt(2*hbar/khs/t)   //m^-1 
etaf = tanh(m*Lc)/(m*Lc) 
Rto = 1/(hbar*At*arg)   //K/W 
arg = 1-N*(Af/At)*(1-etaf) 
UA = 1/(Rtb + Rto)    //W/K 
 
//Heat Exchanger Dimensionless Parameters 
Cmin = uair*(N-1)*rhoair*cpair*(S - t)*Lf  //W/K 
NTU = UA/Cmin    //W/K 
eff = 1 - exp(-NTU) 
 
//Energy Balances 
 
Pelec = eff*Cmin*(Tbase - Tinf)  //W 
Pelec = Cmin*(Tout - Tinf)   //W 



PROBLEM 11.92  
KNOWN:  Chip and cooling channel dimensions.  Water flow rate and inlet temperature.  
Temperature of chip at base of channel.  Chip thermal conductivity.  
FIND:  Water outlet temperature and chip power.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1)Incompressible liquid with negligible viscous dissipation, (2) Flow may be 
approximated as fully developed and channel walls as isothermal for purposes of estimating the 
convection coefficient, (3) One-dimensional conduction along channel side walls, (4) Adiabatic 
condition at end of side walls, (5) Heat dissipation is exclusively through fluid flow in channels, (6) 
Constant properties. 
 
PROPERTIES:  Table A-6, Water ( mT  = 300K): cp = 4179 J/kg⋅K, μ = 855 × 10-6 kg/s⋅m, k = 0.613 
W/m⋅K, Pr = 5.83.  
ANALYSIS:  Since the heat sink’s bottom surface temperature is spatially uniform, and axial 
conduction is neglected, the heat sink’s thermal behavior corresponds to a single stream heat 
exchanger. We may use Equation 11.22 to determine the heat transfer rate,   
 
    q = εCmin(Th,i – Tc,i)     (1) 
 
where Cmin = Cc = ,c p cm c& and Cr → 0.  From Section 11.2 and the discussion surrounding Equations 
8.45b and 8.46b, we note that the term 1/UA used in the definition of NTU corresponds to the overall 
thermal resistance between the two fluid streams of a heat exchanger. In this example, UA = 1/Rtot 
where Rtot is the total thermal resistance between the bottom of the heat sink and the fluid. Therefore, 
Equation 11.35a may be written as 

 
min tot min

11 exp( NTU) 1 exp 1 expUA
C R C

ε
⎛ ⎞⎛ ⎞

= − − = − − = − −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

   (2) 

Once Cmin and Rtot are evaluated, the effectiveness can be found from Equation 2, and the heat rate 
may be determined from Equation 1. 
Determination of Rtot. The channel sidewalls act as fins, and a unit channel/sidewall combination is 
shown in schematic (a), where the total number of unit cells corresponds to N = L/S.  With N = 50 and 
L = 10 mm, S = 200 μm and δ = S – W = 150 μm.  Alternatively, the unit cell may be represented in 
terms of a single fin of thickness δ, as shown in schematic (b).  The thermal resistance of the unit cell 
may be obtained from the expression for a fin array, Eq. (3.108), Rt,o = (ηohAt)

-1, where At = Af + Ab 
= L (2 H + W) = 0.01m (4 × 10-4 + 0.5 × 10-4) m = 4.5 × 10-6 m2.  With Dh = 4 (H × W)/2 (H + W) = 
4 (2 × 10-4m × 0.5 × 10-4m)/2 (2.5 × 10-4m) = 8 × 10-5m, the Reynolds number is ReD = ρum Dh/μ = 

1m&  Dh/Acμ = 10-4 kg/s × 8 × 10-5m/(2 × 10-4m × 0.5 × 10-4m) 855 × 10-6 kg/s⋅m = 936.  Hence, the 
flow is laminar, and assuming fully developed conditions throughout a channel with uniform surface 
temperature, Table 8.1 yields NuD = 4.44.  Hence, 

Continued... 
 



PROBLEM 11.92 (Cont.) 
 

 2
D 5h

k 0.613W / m K 4.44h Nu 34,022 W / m K
D 8 10 m−

⋅ ×
= = = ⋅

×
 

 
With m = (2h/kchδ)1/2 = (68,044 W/m2⋅K/140 W/m⋅K × 1.5 × 10-4m)1/2 = 1800 m-1 and mH = 0.36, 
the fin efficiency is 

 f
tanh mH 0.345 0.958

mH 0.36
η = = =  

and the overall surface efficiency is 

 ( ) ( )
6

f
o f 6t

A 4.0 10l l l l 0.958 0.963
A 4.5 10

η η
−

−
×

= − − = − − =
×

 

 
The thermal resistance of the unit cell is then 
           
 ( ) ( ) 11 2 6 2

tot o tR h A 0.963 34,022W / m K 4.5 10 m 6.78K / Wη
−− −= = × ⋅ × × =  

 
  
Determination of Cmin. The minimum heat capacity rate is  

 
Cmin = 1m& cp = 410 kg / s 4179J / kg K− × ⋅ = 0.4179 W/K 

 
From Equation 2,    

tot min

1 11 exp 1 exp 0.297
6.78 K/W 0.4179 W/KR C

ε
⎛ ⎞ ⎛ ⎞= − − = − − =⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠

 

 
and from Equation 1, the heat rate per channel is 

 
q1 = εCmin(Th – Tc,i) = 0.297 × 0.4179 W/K × (350 K – 290 K) = 7.46 W       

 
 
and the chip power dissipation is 
 
 lq Nq 50 7.46 W 373W= = × =        < 
 
The outlet temperature follows from an energy balance on a channel, 

( ) 1
1 min m,o m,i m,o m,i

min

q 7.46Wq C T T ,  T T 290 K 307.8 K
C 0.4179 W/K

= − = + = + =   < 

 
COMMENTS:  (1) With L/Dh = 125 and (L/Dh)fd ≈ 0.05 ReD Pr = 273, fully developed flow is not 
achieved and the value of h = hfd underestimates the actual value of h  in the channel.  The coefficient 
is also underestimated by using a Nusselt number that presumes heat transfer from all four (rather than 
three) surfaces of a channel. 
 



PROBLEM 11.93 
 
KNOWN:  Dimensions, particle diameter, and porosity of bronze foam sheet.  Temperature of upper 
and lower surfaces of foam.  Velocity and inlet temperature of air flowing through foam. 
 
FIND:  Convection heat transfer rate to air accounting for both the increase in the air temperature as it 
flows through the foam and thermal resistance due to conduction in the foam. Whether actual heat 
transfer rate would be greater, less, or the same. 
  
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Heat transfer coefficient 
between foam and air can be determined from packed bed analysis, (4) Foam behaves as extended 
surface, (5) Effective thermal conductivity of foam can be found from Maxwell’s relation, (6) 
Negligible radiation transfer. 
 
PROPERTIES:  Table A-1, Commercial bronze (T ≈  325 K):  kb = 52 W/m⋅K.  Table A-4, Air (T ≈  
325 K): ρ = 1.0782 kg/m3, cp = 1008 J/kg⋅K, k = 0.0282 W/m⋅K, ν = 18.41 × 10-6 m2/s, Pr = 0.704. 
 
ANALYSIS:  Following Example 11.7, the air flow can be treated as flow through a single stream 
heat exchanger, exchanging heat with a surface at Ts through a single fin resistance.  Due to symmetry, 
the foam sheet can be treated as a fin of length L/2 with an insulated fin tip.   
 
Because the fin is foam and the air flows through it, the heat transfer coefficient can be found from the 
packed bed analysis of Equation 7.81: 
 

 2/3 0.5752.06H D
p

h
j Pr Re

c V
ε ε

ρ
−= =  

 
where ReD = VD/ν = 10 m/s × 0.0006 m/18.41 × 10-6 m2/s = 326 
 

 0.575 2/32.06 p
D

c V
h Re Pr

ρ

ε
− −=  

    ( )
3

0.575 2/32.06 1.0782 kg/m 1008 J/kg K 10 m/s
326 (0.704)

0.25
− −× × ⋅ ×

= 24060 W/m K= ⋅   

         
The surface area of the sintered particles can be found as follows, where N = number of particles: 
 
Vp = NπD3/6 = (1 – ε)Vtot = (1 – ε)WtL and  

Ap,t = NπD2 = 6(1 – ε)WtL/D = 26 0.75 0.04 m 0.01 m 0.04 m
0.12 m

0.0006 m
× × × ×

= =  
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W = 40 mm

Ts = 80°C



PROBLEM 11.93 (Cont.) 
 
For a slice of the foam of length dx, the surface area of foam in contact with the air is dAs = Ap,tdx/L.  
Thus,  
 

,
conv ( ( ) )p thA dx

dq T x T
L ∞= −       

 
By analogy with conv ( ( ) )dq hPdx T x T∞= −  for a solid fin, we find 

 
2

,
eff

0.12 m
3.0 m

0.04 m
p tA

P
L

= = =      

 
From Equation 3.25, with ks = kb,  
 

eff

2 2 ( )
2 ( )

f b b f
b

f b b f

k k k k
k k

k k k k
ε

ε

+ − −
=

+ + −

⎡ ⎤
⎢ ⎥
⎣ ⎦

     

      
(0.0282 2 52 2 0.25 (52 0.0282))W/m K

52 W/m K 34.7 W/m K
(0.0282 2 52 0.25 (52 0.0282))W/m K

+ × − × × − ⋅
= × ⋅ = ⋅

+ × + × − ⋅
⎡ ⎤
⎢ ⎥⎣ ⎦

 < 

 
The fin efficiency is given by Equation 11.4, where Ac is the fin cross-sectional area, Ac = Wt = 0.04 m 
× 0.01 m = 4 × 10-4 m2.  We first calculate  
 

2 4 2
eff eff/ ( / 2) 4060 W/m K 3 m /(34.7 W/m K 4 10  m ) 0.02 m 18.7f cmL hP k A L −= = ⋅ × ⋅ × × × =  

Then  

( )tanh( ) tanh 18.7
0.0535

18.7
f

f
f

mL
mL

η = = =  

The fin is inefficient because it is significantly longer than it needs to be to maximize heat transfer 
between the air and foam.  From Equation 3.97, the fin resistance is 
 

2 2
, ,1/ 1/(4060 W/m K 0.12 m 0.0535) 0.0384 K/Wt f p t fR hA η= = ⋅ × × =  

 
Note that the fin surface area is Ap,t, since this is the area for heat transfer between the foam and air.  
Following the approach in Example 11.7,  
 
Cmin = ,c p cm c& = , pc bVA cρ  

       3 21.0782 kg/m 10 m/s (0.04 m) 1008 J/kg K 17.4 W/K= × × × ⋅ =  
Continued… 
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, min

1 1
1 exp( NTU) 1 exp

0.0384 K/W 17.4 W/K
1 exp 0.776

t fR C
ε = − − = − − −

×

⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

Finally, 

q = εCmin(Ts – Tc,i) = 0.776 × 17.4 W/K × (80°C – 20°C) = 810 W               < 

This is probably close to the correct answer, although temperature gradients in the streamwise 

direction in the foam are not accounted for. The actual value would therefore be less than 810 W.  < 
 
COMMENTS:  The solution to Problem 7.113 was achieved in two ways:  (a) assuming the foam 
temperature is uniform at Ts and accounting for the variation of air temperature in the flow direction, 
and (b) assuming the air temperature is uniform at Ti and accounting for the variation of foam 
temperature in the x-direction.  Both of these approaches significantly overestimate the actual heat 
transfer rate. 
 
 



PROBLEM 11.94 
 
KNOWN:  Dimensions, particle diameter, and porosity of bronze foam heat sink attached to silicon 
chip.  Chip temperature.  Velocity and inlet temperature of air flowing through foam. 
 
FIND:  Heat transfer rate from chip. 
 
SCHEMATIC: 

V = 5 m/s
Ti = 27°C

L = 10 mm

x

Ts = 70°C

Chip

Foam heat sink

W = 25 mm

 
 
ASSUMPTIONS:  (1) Steady-state, (2) Constant properties, (3) Heat transfer coefficient between 
foam and air can be determined from packed bed analysis, (4) Foam behaves as extended surface, (5) 
Effective thermal conductivity of foam can be found from Maxwell’s relation, (6) Air flows uniformly 
through foam rather than being diverted toward open region above heat sink, (7) Negligible radiation 
transfer. 
 
PROPERTIES:  Table A-1, Commercial bronze (T ≈  323 K):  kb = 52 W/m⋅K.  Table A-4, Air (T ≈  
325 K): ρa = 1.0782 kg/m3, cp,a = 1008 J/kg⋅K, ka = 0.0282 W/m⋅K, νa = 18.41 × 10-6 m2/s, Pr = 0.704. 
 
ANALYSIS:   Following Example 11.7, the air flow can be treated as flow through a single stream 
heat exchanger, exchanging heat with a surface at Ts through a single fin resistance.  Because the fin is 
foam and the air flows through it, the heat transfer coefficient can be found from the packed bed 
analysis of Equation 7.81: 
 

 2/3 0.5752.06H D
p

h
j Pr Re

c V
ε ε

ρ
−= =  

 
where ReD = VD/ν = 5 m/s × 0.0006 m/18.41 × 10-6 m2/s = 163 
 

 0.575 2/32.06 p
D

c V
h Re Pr

ρ

ε
− −=  

    ( )
3

0.575 2/32.06 1.0782 kg/m 1008 J/kg K 5 m/s
163 (0.704)

0.25
− −× × ⋅ ×

= 23030 W/m K= ⋅   

         
The surface area of the sintered particles can be found as follows, where N = number of particles: 
 
Vp = NπD3/6 = (1 – ε)Vtot = (1 – ε)W2L and  

Ap,t = NπD2 = 6(1 – ε)W2L/D = 2
26 0.75 (0.025 m) 0.01 m

0.0469 m
0.0006 m

× × ×
= =  
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For a slice of the foam of length dx, the surface area of foam in contact with the air is dAs = Ap,tdx/L.  
Thus,  
 

,
conv ( ( ) )p thA dx

dq T x T
L ∞= −       

 
By analogy with conv ( ( ) )dq hPdx T x T∞= −  for a solid fin, we find 

 
2

,
eff

0.0469 m
4.69 m

0.01 m
p tA

P
L

= = =      

 
From Equation 3.25, with ks = kb,  
 

eff

2 2 ( )
2 ( )

f b b f
b

f b b f

k k k k
k k

k k k k
ε

ε

+ − −
=

+ + −

⎡ ⎤
⎢ ⎥
⎣ ⎦

     

      
(0.0282 2 52 2 0.25 (52 0.0282))W/m K

52 W/m K 34.7 W/m K
(0.0282 2 52 0.25 (52 0.0282))W/m K

+ × − × × − ⋅
= × ⋅ = ⋅

+ × + × − ⋅
⎡ ⎤
⎢ ⎥⎣ ⎦

  

 
The fin efficiency is given by Equation 11.4, where Ac is the fin cross-sectional area, Ac = W2 = (0.025 
m)2 = 6.25 × 10-4 m2.  We first calculate  
 

2 4 2
eff eff/ 3030 W/m K 4.69 m / (34.7 W/m K 6.25 10  m ) 0.01 m 8.09cmL hP k A L −= = ⋅ × ⋅ × × × =  

Then  

( )tanh( ) tanh 8.09
0.124

8.09
f

f
f

mL
mL

η = = =  

From Equation 3.97, the fin resistance is 
 

2 2
, ,1 / 1 / (3030 W/m K 0.0469 m 0.124) 0.0570 K/Wt f p t fR hA η= = ⋅ × × =  

 
Note that the fin surface area is Ap,t, since this is the area for heat transfer between the foam and air.  
Following the approach in Example 11.7,  
 
Cmin = ,c p cm c& = , pc bVA cρ  

       31.0782 kg/m 5 m/s 0.01 m 0.025 m 1008 J/kg K 1.36 W/K= × × × × ⋅ =  
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, min

1 1
1 exp( NTU) 1 exp 1 exp 1.0

0.0570 K/W 1.36 W/Kt fR C
ε = − − = − − = − − =

×

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

Finally, 

q = εCmin(Ts – Tc,i) = 1.0 × 1.36 W/K × (70°C – 27°C) = 58.4 W               < 

COMMENTS:  (1) With a fin efficiency of unity, the foam temperature is essentially uniform at Ts, 
and the heat transfer rate is identical to that which would be found from a packed bed analysis that 
ignored the conduction resistance in the foam.  This is an indication that the heat sink design could be 
improved to reduce its weight without significantly sacrificing performance.  (2) The heat sink poses a 
resistance to air flow, and much of the air would be diverted around the foam block toward the open 
area above it, reducing its performance.  The design could be altered to inhibit diversion of the air to 
the open region. 
 



PROBLEM 12.1  
KNOWN:  Opaque, horizontal plate, well insulated on backside, is subjected to a prescribed 
irradiation.  Also known are the reflected irradiation, emissive power, plate temperature and 
convection coefficient for known air temperature. 
FIND:  (a) Emissivity, absorptivity and radiosity and (b) Net heat transfer per unit area of the plate. 
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Plate is insulated on backside, (2) Plate is opaque.  
ANALYSIS:  (a) The emissivity of the plate according to Table 12.1 is 

 
( ) ( )

2

4 48 2 4 4b s s

E E 1200 W / m 0.34.
E T T 5.67 10 W / m K 227 273 K

ε
σ −

= = = =
× ⋅ × +

  < 

The absorptivity is related to the reflectivity by Eq. 12.3 for an opaque surface.  That is, α = 1 - ρ.  By 
definition, the reflectivity is the fraction of irradiation reflected, such that 

 ( )2 2
ref1 G / G 1 500 W / m / 2500 W / m 1 0.20 0.80.α = − = − = − =   < 

The radiosity, J, is defined as the radiant flux leaving the surface by emission and reflection per unit 
area of the surface (Eq. 12.4). 

 2 2 2
b refJ G E G E 500 W / m 1200 W / m 1700 W / m .ρ ε= + = + = + =  < 

(b) The net heat transfer to the surface is determined from 
an energy balance, 
 
 net in out ref convq q q G G E q′′ ′′ ′′ ′′= − = − − −  
 

 ( ) ( )2 2 2
netq 2500 500 1200 W / m 15 W / m K 227 127 K 700 W / m .′′ = − − − ⋅ − = −  < 

 
An alternate approach to the energy balance using the 
radiosity, Eq. 12.5, 
 
 net convq G J q′′ ′′= − −      
 
 ( ) 2

netq 2500 1700 1500 W / m′′ = − −  
 
 2

netq 700 W / m .′′ = −  
 
COMMENTS:  (1) Since the net heat rate per unit area is negative, energy must be added to the plate 
in order to maintain it at Ts = 227°C.  (2) Note that α ≠ ε.  Hence, the plate is not a gray surface, as 
described in Section 1.2.3.  (3) Note the use of radiosity in performing energy balances.  That is, 
considering only the radiation processes, netq G J.′′ = −  

 



PROBLEM 12.2  
KNOWN:  Horizontal, opaque surface at steady-state temperature of 77°C is exposed to a convection 
process; emissive power, irradiation and reflectivity are prescribed.  
FIND:  (a) Absorptivity of the surface, (b) Net radiation heat transfer rate for the surface; indicate 
direction, (c) Total heat transfer rate for the surface; indicate direction.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Surface is opaque, (2) Effect of surroundings included in the specified 
irradiation, (3) Steady-state conditions.  
ANALYSIS:  (a) From the definition of the thermal radiative properties and a radiation balance for an 
opaque surface, according to Eq. 12.3, 

 1 1 0.4 0.6.α ρ= − = − =         < 
(b) The net radiation heat transfer rate from the surface   
is 
 
 
 
 

 ( ) 2 2rad E G G 628 0.4 1380 1380 W / m 200W / m .
q

ρ= + − = + × − =−
′′    < 

 
Since radq′′  is negative, the net radiation heat transfer rate is to the surface. 
 
(c) Performing a surface energy balance considering all   
heat transfer processes, the local heat transfer rate is 
 
  
 
 tot rad convq q q′′ ′′ ′′= +  

 ( )2 2 2
totq 200 W / m 28 W / m K 77 27 K 1200 W / m .′′ = − + ⋅ − =    < 

 
The total heat flux is shown as a positive value indicating the heat flux is from the surface.  
COMMENTS:  (1) Note that the surface radiation   
balance could also be expressed as 
 
 radq J G or E G.α′′ = − −  
 
Note the use of radiosity to express the radiation flux leaving the surface. 
 
(2) From knowledge of the surface emissive power and Ts, find the emissivity as 

 ( )( )44 2 8 2 4 4
sE / T 628 W / m / 5.67 10 W / m K 77 273 K 0.74.ε σ −≡ = × ⋅ + =  

COMMENT: Since ε ≠ α, we know the surface is not gray, as discussed in Section 1.2.3. 

qrad″



PROBLEM 12.3 
 
KNOWN:  Thickness and temperature of aluminum plate.  Irradiation.  Convection conditions.  
Absorptivity and emissivity. 
 
FIND: Radiosity and net radiation heat flux at top plate surface, rate of change of plate temperature. 
 
SCHEMATIC:   
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Plate temperature is uniform, (2) Plate is opaque, τ = 0. 
 
PROPERTIES:  Table A-1, Pure aluminum (T = 400 K):  ρ = 2702 kg/m3, c = 949 J/kg⋅K. 
 
ANALYSIS:   The radiosity is equal to the sum of emitted and reflected radiation: 
 

 
4

2 8 2 4 4

(1 )

(1 0.14) 1000 W/m 0.76 5.67 10  W/m K (400 K)
bJ G E G Tρ ε α εσ

−

= + = − +

= − × + × × ⋅ ×
 

     21963 W/m=         < 
 
The net radiation heat flux from the plate is equal to the radiosity minus the irradiation: 
 

" 2 2 2
rad 1963 W/m 1000 W/m 963 W/mq J G= − = − =     < 

 
The rate of change of the plate temperature can be found from an energy balance on the plate, 
accounting for heat loss by both radiation and convection, 
 

conv rad conv rad rad( )dT q q q q h T T q
dt cV cL cLρ ρ ρ

∞′′ ′′ ′′+ + − +
= − = − = −  

      
2 2

3

40 W/m K (400 K (30 273)K) 963 W/m  0.378 K/s
2702 kg/m 949 J/kg K 0.005 m

⋅ × − + +
= − = −

× ⋅ ×
  < 

   
 

COMMENTS:  (1) The values given for absorptivity and emissivity correspond to solar irradiation 
and room temperature emission for anodized aluminum. (2) The surroundings temperature is not 
needed for this solution since the irradiation value is given. 
 
 

L = 5 mm

G = 1000 W/m2

α = 0.14
ε = 0.76

T∞ = 30°C
h = 40 W/m2·K

Insulation

T = 400 K

J

qconv
″qconv
″



PROBLEM 12.4  
KNOWN:  Temperature, absorptivity, transmissivity, radiosity and convection conditions for a 
semitransparent plate.  
FIND:  Plate irradiation and total hemispherical emissivity.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Uniform surface conditions.  
ANALYSIS:  From an energy balance on the plate 
 
 in outE E=& &  
 
 conv2G 2q 2J.′′= +  
 
Solving for the irradiation and substituting numerical values, 
 
 ( )2 2 2G 40 W / m K 350 300 K 5000 W / m 7000 W / m .= ⋅ − + =    < 
 
From the definition of the radiosity J, 
 
 ( )J E G G E 1 G.ρ τ α= + + = + −  
 
Solving for the emissivity and substituting numerical values, 
 

 
( ) ( ) ( )

( )

2 2

4 48 2 4

5000 W / m 0.6 7000 W / mJ 1 G
0.94.

T 5.67 10 W / m K 350 K

α
ε

σ −

−− −
= = =

× ⋅
   < 

 
Hence, 
 
 α ε≠  
 
and the surface is not gray for the prescribed conditions.  
COMMENTS:  The emissivity may also be determined by expressing the plate energy balance as 
 
 conv2 G 2q 2E.α ′′= +  
 
Hence 
 
 ( )4T G h T Tε σ α ∞= − −  
 

 
( ) ( )

( )

2 2

48 2 4

0.4 7000 W / m 40 W / m K 50 K
0.94.

5.67 10 W / m K 350 K
ε

−

− ⋅
= =

× ⋅
 



PROBLEM 12.5  
KNOWN:  Rate at which radiation is intercepted by each of three surfaces (see Example 12.1).  
FIND:  Irradiation, G [W/m2], at each of the three surfaces. 
 
SCHEMATIC:   

 
 
ANALYSIS:  The irradiation at a surface is the rate at which radiation is incident on a surface per unit 
area of the surface.  The irradiation at surface j due to emission from surface 1 is 

 1 j
j

j

q
G .

A
−=  

With A1 = A2 = A3 = A4 = 10-3 m2 and the incident radiation rates q1-j from the results of Example 
12.1, find 

 
3

2
2 3 2

12.1 10 WG 12.1 W / m
10 m

−

−
×

= =        < 

 

 
3

2
3 3 2

28.0 10 WG 28.0 W / m
10 m

−

−
×

= =        < 

 

 
3

2
4 3 2

19.8 10 WG 19.8 W / m .
10 m

−

−
×

= =        < 

 
COMMENTS:  The irradiation could also be computed from Eq. 12.18, which, for the present 
situation, takes the form 
 
 j 1 j 1 jG I cosθ ω −=  
 
where I1 = I = 7000 W/m2⋅sr and ω1-j is the solid angle subtended by surface 1 with respect to j.  For 
example, 
 
 2 1 2 1 2G I cosθ ω −=  
 
 2

2G 7000 W / m sr= ⋅ ×  
 

  
( )

3 2

2
10 m cos 60cos 30

0.5m

− × °
°  

 
 2

2G 12.1 W / m .=  
 
Note that, since A1 is a diffuse radiator, the intensity I is independent of direction. 



PROBLEM 12.6 
 
KNOWN: A diffuse surface of area A1 = 10-4m2 emits diffusely with total emissive power E = 5 × 104 
W/m2 . 
 
FIND:  (a) Rate this emission is intercepted by small surface of  area A2 = 5 × 10-4 m2 at a prescribed 
location and orientation, (b) Irradiation G2 on A2, and (c) Compute and plot G2 as a function of the 
separation distance r2  for the range 0.25 ≤ r2 ≤ 1.0 m for zenith angles  θ2 = 0, 30 and 60°. 
 
SCHEMATIC:   

 
ASSUMPTIONS: (1) Surface A1 emits diffusely, (2) A1  may be approximated as a differential surface 

area and that 2
2 2A r  << 1. 

 
ANALYSIS: (a) The rate at which emission from A1  is intercepted by A2  follows from Eq. 12.11 written 
on a total rather than spectral basis. 
 
 ( )1 2 e,1 1 1 2 1q I , A cos dθ φ θ ω→ −= . (1) 
 
Since the surface A1 is diffuse, it follows from Eq. 12.16 that  
 
 ( )e,1 e,1 1I , I Eθ φ π= =  . (2) 
 
The solid angle subtended by A2 with respect to A1 is 
 

 2
2 1 2 2 2d A cos rω θ− ≈ ⋅  . (3) 

 
Substituting Eqs. (2) and (3) into Eq. (1) with numerical values gives 
 

    1 2 2
1 2 1 1 2

2

E A cos
q A cos

r

θ
θ

π→ = ⋅ ⋅ ( )
( )

4 2 4 2
4 2

2
5 10 W m 5 10 m cos30

10 m cos 60 sr
sr 0.5mπ

−
−× × ×

= × × ×
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

o
o (4) 

 ( )2 5 2 3 3
1 2q 15,915 W m sr 5 10 m 1.732 10 sr 1.378 10 W− − −
→ = × × × × = × . < 

 
(b) From section 12.3.3, the irradiation is the rate at which radiation is incident upon the surface per unit 
surface area, 

 
3

21 2
2 4 22

q 1.378 10 W
G 2.76 W m

A 5 10 m

−
→

−
×

= = =
×

 (5) < 

(c) Using the IHT workspace with the foregoing equations, the G2 was computed as a function of the 
separation distance for selected zenith angles.  The results are plotted below. 
 

Continued... 
 



PROBLEM 12.6 (Cont.) 
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For all zenith angles, G2 decreases with increasing separation distance r2 .  From Eq. (3), note that dω2-1 
and, hence G2, vary inversely as the square of the separation distance.  For any fixed separation distance, 
G2 is a maximum when θ2 = 0° and decreases with increasing θ2, proportional to cos θ2. 
 
COMMENTS:  (1) For a diffuse surface, the intensity, Ie, is independent of direction and related to the 
emissive power as Ie = E/ π. Note that π has the units of [ ]sr  in this relation.  
 
(2) Note that Eq. 12.12 is an important relation for determining the radiant power leaving a surface in a 
prescribed manner.  It has been used here on a total rather than spectral basis. 
 
(3) Returning to part (b) and referring to Figure 12.10, the irradiation on A2 may be expressed as 
 

 1 1
2 i,2 2 2

2

A cosG I cos
r

θθ=  

 
Show that the result is G2 = 2.76 W/m2.  Explain how this expression follows from Eq. 12.18. 
 



PROBLEM 12.7 
 
KNOWN:  Furnace with prescribed aperture and emissive power. 
 
FIND:  (a) Position of gauge such that irradiation is G = 1000 W/m2,  (b) Irradiation when gauge is tilted  
θd = 20o,  and (c) Compute and plot the gage irradiation, G, as a function of the separation distance, L, for 
the range 100 ≤ L ≤ 300 mm and tilt angles of θd = 0, 20, and 60o. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Furnace aperture emits diffusely,  (2) Ad << L2. 
 
ANALYSIS:  (a)  The irradiation on the detector area is defined as the power incident on the surface per 
unit area of the surface.  That is 
 f d dG q A→=    f d e f d fq I A cos fθ ω→ −=                                                   (1,2) 
where f dq →  is the radiant power which leaves Af and is intercepted by Ad.  From Eqs. 12.7 and 12.12, 

d fω −  is the solid angle subtended by surface Ad with respect to Af, 

 2
d f d dA cos Lω θ− = .                                                                                                            (3) 

Noting that since the aperture emits diffusely, Ie = E/π (see Eq. 12.17), and hence 

 ( ) ( )2
f d d dG E A cos A cos L Afπ θ θ=                                                                               (4) 

Solving for L2 and substituting for the condition θf = 0o and θd = 0o, 

 2
d fL E cos cos A Gfθ θ π= .                                                                                                   (5) 

 
1/ 2

5 2 3 2 2 2L 3.72 10 W m (20 10 ) m 1000 W m 193 mm
4
π

π−= × × × × =⎡ ⎤
⎢ ⎥⎣ ⎦

.   < 

(b)  When θd = 20o, qf→d will be reduced by a factor of cos θd since ωd-f is reduced by a factor cos θd.  
Hence, 

 G  =  1000 W/m2 × cos θd   = 1000W/m2 × cos 20o  =  940 W/m2 .   < 
(c)  Using the IHT workspace with Eq. (4), G is computed and plotted as a function of L for selected θd.  
Note that G decreases inversely as L2.  As expected, G decreases with increasing θd and in the limit, 
approaches zero as θd  approaches 90o. 
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PROBLEM 12.8  
KNOWN:  Radiation from a diffuse radiant source A1 with intensity I1 = 1.2 × 105 W/m2⋅sr is 
incident on a mirror Am, which reflects radiation onto the radiation detector A2. 
 
FIND:  (a) Radiant power incident on Am due to emission from the source, A1, q1→m (mW), (b) 
Intensity of radiant power leaving the perfectly reflecting, diffuse mirror Am, Im (W/m2⋅sr), and (c) 
Radiant power incident on the detector A2 due to the reflected radiation leaving Am, qm→2 (μW), (d) 
Plot the radiant power qm→2 as a function of the lateral separation distance yo for the range 0 ≤ yo ≤ 
0.2 m; explain features of the resulting curve. 
 
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Surface A1 emits diffusely, (2) Surface Am does not emit, but reflects perfectly 
and diffusely, and (3) Surface areas are much smaller than the square of their separation distances. 
 
ANALYSIS:  (a) The radiant power leaving A1 that is incident on Am is 
 
 q I A cos1 m 1 1 m-1→ = ⋅ ⋅ ⋅1 θ ωΔ  
 
where ωm-1 is the solid angle Am subtends with respect to A1, Eq. 12.7, 
 

 Δω θ
m-1

n
2

m m

o
2

o
2

2

2 2
dA

r

A  cos 

x y

 m cos 45

0.1 m
 sr≡ =

+
=

× ⋅ °

+
= ×

−
−2 10

01
7 07 10

4

2
3

.
.  

 
with θ θ θm 1 and = °− = °90 451 ,  
 
 q  W / m sr 1 10  m cos 45 7.07 10  sr 60 mW1 m

2 -4 2 -3
→ = × ⋅ × × × °× × =12 105.  < 

 
(b) The intensity of radiation leaving Am, after perfect and diffuse reflection, is 
 

 I q A  W

2 10  m
 W / m srm 1 m m -4 2

2= =
×

× ×
= ⋅→

−
/ / .b g π

π

60 10 955
3

 

 
(c) The radiant power leaving Am due to reflected radiation leaving Am is 
 
 q q I A cos m 2 2 m m m 2 m→ −= = ⋅ ⋅ ⋅θ ωΔ  
 
where Δω2-m is the solid angle that A2 subtends with respect to Am, Eq. 12.7, 
 

          Continued … 
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2
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01
354 10−

−
−≡ =

− +
=

× × °

+
= ×m

n
2

2 2

o o o
2

2

2 2
dA

r

A  cos 

L x y

 m cos 45

0.1 m
 sr

b g .
.  

 
with θ2 = 90° - θm 
 
 2 -4 2 -3

m 2 2q q 95.5 W/m sr 2 10  m cos 45 3.54 10  sr 47.8 W→ = = ⋅ × × × °× × = μ  < 
 
(d) Using the foregoing equations in the IHT workspace, q2  is calculated and plotted as a function of 

yo for the range 0 ≤ yo ≤ 0.2 m. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the relations, note that q2 is dependent upon the geometric arrangement of the surfaces in the 
following manner.  For small values of yo, that is, when θ1 ≈ 0°, the cos θ1 term is at a maximum, near 
unity.  But, the solid angles Δωm-1 and Δω2-m are very small.  As yo increases, the cos θ1 term doesn’t 
diminish as much as the solid angles increase, causing q2 to increase.  A maximum in the power is 
reached as the cos θ1 term decreases and the solid angles increase.  The maximum radiant power 
occurs when yo = 0.058 m which corresponds to θ1 = 30°. 
 

Emitted power from A1 reflected from Am onto A2
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PROBLEM 12.9  
KNOWN:  Flux and intensity of direct and diffuse components, respectively, of solar irradiation.  
FIND:  Total irradiation.  
SCHEMATIC:   
 

 
 
ANALYSIS:  Since the irradiation is based on the actual surface area, the contribution due to the 
direct solar radiation is 
 
 dir dirG q cos .θ′′= ⋅  
 
From Eq. 12.17 the contribution due to the diffuse radiation is 
 
 dif difG I .π=  
 
Hence 
 
 dir dif dir difG G G q cos Iθ π′′= + = ⋅ +  
 
or 
 
 2 2G 1000 W / m 0.866 sr 70 W / m srπ= × + × ⋅  
 
 ( ) 2G 866 220 W / m= +  
 
or 
 
 2G 1086 W / m .=          < 
 
COMMENTS:  Although a diffuse approximation is often made for the non-direct component of 
solar radiation, the actual directional distribution deviates from this condition, providing larger 
intensities at angles close to the direct beam. 



PROBLEM 12.10  
KNOWN:  Daytime solar radiation conditions with direct solar intensity Idir = 2.10 × 107 W/m2⋅sr 
within the solid angle subtended with respect to the earth, ΔωS = 6.74 × 10-5 sr, and diffuse intensity  
Idif = 70 W/m2⋅sr. 
 
FIND:  (a) Total solar irradiation at the earth’s surface when the direct radiation is incident at 30°, and 
(b) Verify the prescribed value of ΔωS recognizing that the diameter of the earth is DS = 1.39 × 109 m, 
and the distance between the sun and the earth is re-S = 1.496 × 1011 m (1 astronomical unit). 
 
SCHEMATIC:   
 

 
 
 
 
 
 
 
ANALYSIS:  (a) From Eq. 12.22 the diffuse irradiation is 
 
 G  I  sr 70 W / m sr 220 W / mdif dif

2 2= = × ⋅ =π π  
 
The direct irradiation follows from Eq. 12.18, expressed in terms of the solid angle 
 
 G I cos  dir dir S= θ ωΔ  
 
 G  W / m sr cos 30 6.74 10  sr 1226 W / mdir

2 -5 2= × ⋅ × °× × =210 107.  
 
The total solar irradiation is the sum of the diffuse and direct components, 
 
 G G G W / m 1446 W / mS dif dir

2 2= + = + =220 1226b g     < 
  
(b)  The solid angle the sun subtends with respect to the earth is calculated from Eq. 12.7, 
 

 Δω π π
S

n
2

S
2

e-S

dA

r

 D

r

 m

 m
 sr= = =

×

×
= × −/ . /

.
.4 139 10 4

1496 10
6 74 102

9 2

11 2
5e j

e j
   < 

 
where dAn is the projected area of the sun and re-S, the distance between the earth and sun.  We are 

assuming that r De-S
2

S
2>> .  

 
COMMENTS:  Can you verify that the direct solar intensity, Idir, is a reasonable value, assuming that 

the solar disk emits as a black body at 5800 K?  I T  Kb,S S
4= =FH σ π σ π/ /5800 4b g  

= × ⋅2 04 107. .W / m sr2 j   Because of local cloud formations, it is possible to have an appreciable 

diffuse component.  But it is not likely to have such a high direct component as given in the problem 
statement. 
 

ΔΔ



PROBLEM 12.11  
KNOWN:  Directional distribution of solar radiation intensity incident at earth’s surface on an 
overcast day.  
FIND:  Solar irradiation at earth’s surface.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Intensity is independent of azimuthal angle θ.  
ANALYSIS:  Applying Eq. 12.18 to the total intensity 
 

 ( )2 / 2
i0 0

G I cos sin d d
π π

θ θ θ θ φ= ∫ ∫  
 

 
/ 2 2

n 0
G 2 I cos sin d

π
π θ θ θ= ∫  

 

 ( )
/ 2

0
2 31G 2 sr 80 W / m sr cos

3
π

π θ⎛ ⎞= × ⋅ −⎜ ⎟
⎝ ⎠

 

 

 2 3 3G 167.6 W / m sr cos cos 0
2
π⎛ ⎞= − ⋅ −⎜ ⎟

⎝ ⎠
 

 
 2G 167.6 W / m .=          < 



PROBLEM 12.12 
 
KNOWN:  Hemispherical and spherical arrangements for radiant heat treatment of a thin-film material.  
Heater emits diffusely with intensity Ie,h = 169,000 W/ m2⋅sr and has an area 0.0052 m2. 
 
FIND: (a) Expressions for the irradiation on the film as a function of the zenith angle, θ, and (b) Identify 
arrangement which provides the more uniform irradiation, and hence better quality control for the 
treatment process. 
 
SCHEMATIC: 

 
ASSUMPTIONS: (1) Heater emits diffusely, (2) All radiation leaving the heater is absorbed by the thin 
film. 
 
ANALYSIS: (a) The irradiation on any differential area, dAs, due to emission from the heater, Ah , 
follows from its definition, Section 12.3.3, 
 

 h s
s

qG
dA
→=  (1) 

 
Where qh→s is the radiant heat rate leaving Ah and intercepted by dAs.   From Eq. 12.12, 
 
 h s e,h h h s hq I dA cosθ ω→ −= ⋅ ⋅  (2) 
 
where ωs-h  is the solid angle dAs subtends with respect to any point on Ah.  From the definition, Eq. 12.7, 
 

 n
2

dA

r
ω =  (3) 

 
where dAn is normal to the viewing direction and r is the separation distance. 
 
For the hemisphere:  Referring to the schematic above, the solid angle is 
 

 s
s h 2

dA

R
ω − =  

 
and the irradiation distribution on the hemispheric surface as a function of θh is 

 2
e,h h hG I A cos Rθ=  (1) < 

 
For the sphere:  From the schematic, the solid angle is 
 

 s s s
s,h 2 2

o h

dA cos dA

R 4R cos

θω
θ

= =  

 
where Ro, from the geometry of sphere cord and radii with θs = θh, is 

Continued... 
 



 
PROBLEM 12.12 (Cont.) 

 
 o hR 2R cosθ=  
 
and the irradiation distribution on the spherical surface as a function of θh is 

 2
e,h hG I d A 4R=  (2) < 

 
(b) The spherical shape provides more uniform irradiation as can be seen by comparing Eqs. (1) and (2).  
In fact, for the spherical shape, the irradiation on the thin film is uniform and therefore provides for better 
quality control for the treatment process.  Substituting numerical values, the irradiations are: 
 

 ( )22 2 2
hem h hG 169,000 W m sr 0.0052m cos 2m 219.7cos W mθ θ= ⋅ × =  (3) 

 

 ( )
22 2 2

sphG 169,000 W m sr 0.0052 m 4 2m 54.9 W m= ⋅ × =  (4) 

 
COMMENTS:  (1) The radiant heat rate leaving the diffuse heater surface by emission is 
 
 tot e,h hq I A 2761W= =π  
 
The average irradiation on the spherical surface, Asph = 4πR2, 
 

 ( )2 2
sph tot sphG q A 2761W 4 2m 54.9 W m= = =π  

 
while the average irradiation on  the hemispherical surface, Ahem = 2πR2 is 
 

 ( )2 2
hemG 2761W 2 2m 109.9 W m= =π  

 
(2) Note from the foregoing analyses for the sphere that the result for sphG  is identical to that found as 

Eq. (4).  That follows since the irradiation is uniform. 
 
(3) Note that hemG  > sphG  since the surface area of the hemisphere is half that of the sphere.  

Recognize that for the hemisphere thin film arrangement, the distribution of the irradiation is quite 
variable with a maximum at θ = 0° (top) and half the maximum value at θ = 30°. 
 



PROBLEM 12.13 
 
KNOWN:  Hot part, ΔAp, located a distance x1 from an origin directly beneath a motion sensor at a 
distance Ld = 1 m. 
 
FIND:  (a) Location x1 at which sensor signal S1 will be 75% that corresponding to x = 0, directly beneath 
the sensor, So, and (b) Compute and plot the signal ratio, S/So, as a function of the part position x1 for the 
range 0.2 ≤ S/So  ≤ 1 for Ld = 0.8, 1.0 and 1.2 m; compare the x-location for each value of Ld at which 
S/So = 0.75. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1)  Hot part is diffuse emitter,  (2) 2

dL >> ΔAp, ΔAo. 
 
ANALYSIS:  (a) The sensor signal, S, is proportional to the radiant power leaving ΔAp and intercepted 
by ΔAd,  
 p d p,e p p d pS ~ q I A cosθ ω→ −= Δ Δ  (1) 

when 
 

 2 2 1/ 2d
p d d d 1

L
cos cos L (L x )

R
θ θ= = = +   (2) 

 

 2 2 3/ 2d d
d p d d d 12

A cos
A L (L x )

R

θ
ω −

Δ ⋅
Δ = = Δ ⋅ +                                             (3) 

Hence, 

 
2
d

p d p,e p d 2 2 2
d 1

L
q I A A

(L x )
→ = Δ Δ

+
                                                                  (4) 

 
It follows that, with So occurring when x= 0 and Ld = 1 m, 
 

 
22 2 2 2 2

d d 1 d
2 2 2 2 2 2o d d d 1

L (L x ) LS
S L (L 0 ) L x

+
= =

+ +

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

                                                         (5) 

 
so that when S/So = 0.75, find, 

 x1 = 0.393 m < 
 
(b)  Using Eq. (5) in the IHT workspace, the signal ratio, S/So, has been computed and plotted as a 
function of the part position x for selected Ld values. 
 

Continued... 
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When the part is directly under the sensor, x = 0, S/So = 1 for all values of Ld.  With increasing x, S/So 
decreases most rapidly with the smallest Ld.  From the IHT model we found the part position x 
corresponding to S/So = 0.75 as follows. 
 

S/So Ld (m) x1 (m) 
0.75 0.8 0.315 
0.75 1.0 0.393 
0.75 1.2 0.472 

 
If the sensor system is set so that when S/So reaches 0.75 a process is initiated, the technician can use the 
above plot and table to determine at what position the part will begin to experience the treatment process. 
 



PROBLEM 12.14 
 

 
KNOWN: Surface area, and emission from area A1. Size and orientation of area A2. 
 
FIND: (a) Irradiation of A2 by A1 for L1 = 1 m, L2 = 0.5 m, (b) Irradiation of A2 over the range 0 
≤ L2 ≤ 10 m. 
 
SCHEMATIC: 
 
 
 

 
 
 
 
 
 
 
ASSUMPTIONS: Diffuse emission. 
 
ANALYSIS: (a) The irradiation of Surface 1 is G1-2 = q1-2/A2 and from Example 12.1, 
 
 q1-2 = I1A1cosθ1ω2-1 = I1A1cosθ1A2cosθ2/r2 
 
Since θ1 = θ2 = θ = tan-1(L1/L2) = tan-1(1/0.5) = 63.43° and r2 = L1

2 + L2
2 = (1m)2 + (0.5m)2 = 1.25 m2, 

 

G1-2 = I1A1cos2θ/r2 = 1000W/m2⋅sr × 2 × 10-4 m2 × cos2(63.43°)/1.25m2 = 0.032 W/m2 < 
 
(b) The preceding equations may be solved for various values of L2. The irradiation over  
the range 0 ≤ L2 ≤ 10 m is shown below. 
 

Irradiation of Surface 2 vs. Distance L2

0 2 4 6 8 10

L2(m)

0

0.02

0.04

0.06

G
2(

W
/m

^2
)

 
 
COMMENTS: The irradiation is zero for L2 = 0 and L2 → ∞. 
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PROBLEM 12.15  
KNOWN:  Emissive power of a diffuse surface.  
FIND:  Fraction of emissive power that leaves surface in the directions π/4 ≤ θ ≤ π/2 and 0 ≤ φ ≤ π.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Diffuse emitting surface.  
ANALYSIS:  According to Eq. 12.15, the total, hemispherical emissive power is 
 

 ( )2 / 2
,e0 0 0

E I , , cos sin d d d .
π π

λ λ θ φ θ θ θ φ λ
∞

= ∫ ∫ ∫  
 
For a diffuse surface Iλ,e (λ, θ, φ) is independent of direction, and as given by Eq. 12.17, 
 
 eE I .π=  
 
The emissive power, which has directions prescribed by the limits on θ and φ, is 
 

 ( ) / 2
,e0 0 / 4

E I d d cos sin d
π π

λ π
λ λ φ θ θ θ

∞ ⎡ ⎤ ⎡ ⎤Δ = ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫ ∫  

 

 [ ] [ ] ( )
/ 22

2
e e0

/ 4

sin 1E I I 1 0.707
2 2

π
π

π

θφ π
⎡ ⎤ ⎡ ⎤Δ = × = −⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

 

 
 eE 0.25 I .πΔ =  
 
It follows that 
 

 e
e

0.25 IE 0.25.
E I

π
π

Δ
= =         < 

 
COMMENTS:  The diffuse surface is an important concept in radiation heat transfer, and the 
directional independence of the intensity should be noted. 



PROBLEM 12.16 
 
KNOWN:  Spectral distribution of Eλ for a diffuse surface. 
 
FIND:  (a)  Total emissive power E,  (b)  Total intensity associated with directions θ = 0o and θ = 30o,  
and (c) Fraction of emissive power leaving the surface in directions π/4 ≤ θ ≤ π/2. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1)  Diffuse emission. 
 
ANALYSIS:  (a)  From Eq. 12.14 it follows that  
 

 
5 10 15 20

0 0 5 10 15 20
E E ( ) d (0) d (100) d (200) d (100) d (0) dλ λ λ λ λ λ λ λ

∞ ∞
= = + + + +∫ ∫ ∫ ∫ ∫ ∫  

 
 E = 100 W/m2 ⋅μm (10 − 5) μm + 200W/m2 ⋅μm (15 − 10) μm + 100 W/m2 ⋅μm (20−15) μm 

 E = 2000 W/m2                < 
 
(b)  For a diffuse emitter, Ie is independent of θ and Eq. 12.17 gives 
 

 
2

e
E 2000 W m

I
srπ π

= =  

 2
eI 637 W m sr= ⋅  < 

 
(c)  Since the surface is diffuse, use Eqs. 12.13 and 12.17, 
 

 

2 / 2
e0 / 4

e

I cos sin d dE( 4 2)
E I

π π
π

θ θ θ φπ π
π

→
=
∫ ∫

 

 

 

/ 2 2
/ 4 0

cos sin d dE( 4 2)
E

π π
π

θ θ θ φπ π
π

→
=
∫ ∫ / 22

2
0

/ 4

1 sin
2

π
π

π

θ
φ

π
=

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

 2 2E( 4 2) 1 1
(1 0.707 )(2 0) 0.50

E 2
π π

π
π

→
= − − =⎡ ⎤

⎢ ⎥⎣ ⎦
 < 

 
COMMENTS:  (1) Note how a spectral integration may be performed in parts.  
 
 (2)  In performing the integration of part (c), recognize the significance of the diffuse emission 
assumption for which the intensity is uniform in all directions. 
 



PROBLEM 12.17 
 
KNOWN:  Diffuse surface ΔAo, 5-mm square, with total emissive power Eo = 4000 W/m2. 
 
FIND:  (a) Rate at which radiant energy is emitted by ΔAo, qemit;   (b) Intensity Io,e of the radiation field 
emitted from the surface ΔAo;  (c) Expression for qemit presuming knowledge of the intensity Io,e beginning 
with Eq. 12.13;  (d) Rate at which radiant energy is incident on the hemispherical surface, r = R1 = 0.5 m, 
due to emission from ΔAo;  (e) Rate at which radiant energy leaving  ΔAo is intercepted by the small area 
ΔA2 located in the direction (40o, φ) on the hemispherical surface using Eq. 12.10; also determine the 
irradiation on ΔA2;  (f) Repeat part (e), for the location (0o, φ); are the irradiations at the two locations 
equal?  and (g) Irradiation G1 on the hemispherical surface at r = R1 using Eq. 12.18. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1)  Diffuse surface, ΔAo,  (2) Medium above ΔAo is also non-participating,  (3) 

2
1 oR A>> Δ , ΔA2. 

 
ANALYSIS:  (a) The radiant power leaving  ΔAo by emission is 

 qemit = Eo⋅ΔAo = 4000 W/m2 (0.005 m × 0.005 m) = 0.10 W    < 
 
(b)  The emitted intensity is Io,e and is independent of direction since  ΔAo is a diffuser emitter, 

 2
o,e oI E 1273 W m srπ= = ⋅         < 

 
The intensities at points P1 and P2 are also Io,e and the intensity in the directions shown in the schematic 
above will remain constant no matter how far the point is from the surface ΔAo since the space is non-
participating. 
 
(c)  From knowledge of Io,e, the radiant power leaving ΔAo from Eq. 12.13 is, 

      
2 / 2

emit o,e o o,e o o,e oh 0 0
q I A cos sin d d I A cos sin d d I A 0.10 W

π π
φ θ

θ θ θ φ θ θ θ φ π
= =

= Δ = Δ = Δ =∫ ∫ ∫  < 
 
(d)  Defining control surfaces above ΔAo and on A1, the radiant power leaving ΔAo must pass through A1.  
That is, 

 1,inc o oq E A 0.10 W= Δ =         < 

Recognize that the average irradiation on the hemisphere, A1, where 2
1 1A 2 Rπ= , based upon the 

definition, Section 12.3.3, 

 22
1 1,inc 1 o o 1G q A E A 2 R 63.7 mW mπ= = Δ =  

where q1,inc is the radiant power incident on surface A1. 
Continued... 



 
PROBLEM 12.17 (Cont.) 

 
(e)  The radiant power leaving ΔAo intercepted by ΔA2, where ΔA2 = 4×10-6 m2, located at (θ = 45o, φ) as 
per the schematic, follows from Eq. 12.10, 
 
 o 2A A o,e o o 2 oq I A cosθ ωΔ →Δ −= Δ Δ  
 
where θo = 45o and the solid angle ΔA2 subtends with respect to ΔAo is 
 
 2 6 2 2 5

2 o 2 2 1A cos R 4 10 m 1 (0.5m) 1.60 10 srω θ − −
−Δ = Δ = × ⋅ = ×  

 
where θ2 =  0o, the direction normal to ΔA2, 

 o 2
2 6 2 o 5 7

A Aq 1273W m sr 25 10 m cos 45 1.60 10 sr 3.60 10 W− − −
Δ →Δ = ⋅ × × × × = ×  < 

 
From the definition of irradiation, Section 12.3.3,  

 o 2
2

2 A A 2G q A 90 mW mΔ →Δ= Δ =  

 
(f)  With ΔA2, located at (θ = 0o, φ), where cosθo = 1, cosθ2 = 1, find 

 5
2 o 1.60 10 srω −
−Δ = ×      o 2

7
A Aq 5.09 10 W−

Δ →Δ = ×      2
2G 127 mW m=  < 

 
Note that the irradiation on  ΔA2 when it is located at (0o, φ) is larger than when ΔA2 is located at (45o, φ); 
that is, 127 mW/m2 > 90 W/m2.  Is this intuitively satisfying? 
 
(g)  Using Eq. 12.18, based upon Figure 12.10, find 

 2
1 1,i 1 0 1 1 o,e o 1h

G I dA d A I A A 63.7 mW mω π−= ⋅ = Δ Δ =∫  < 
 
where the elemental area on the hemispherical surface A1 and the solid angle ΔAo subtends with respect to 
ΔA1 are, respectively,  
 2

1 1dA R sin d dθ θ φ=                   2
o 1 o 1d A cos Rω θ− = Δ  

 
From this calculation you found that the average irradiation on the hemisphere surface, r = R1, is  

2
1G 63.7 mW m= .  From parts (e) and (f), you found irradiations, G2 on  ΔA2 at (0o, φ) and (45o, φ) as 

127 mW/m2 and 90 mW/m2, respectively.  Did you expect 1G  to be less than either value for G2?  How 
do you explain this? 
 
COMMENTS:  (1)  Note that from Parts (e) and (f) that the irradiation on A1 is not uniform.  Parts (d) 
and (g) give an average value. 
 
(2)  What conclusions would you reach regarding G1 if ΔAo were a sphere? 



PROBLEM 12.18 
 

 
KNOWN: Intensities of radiating various surfaces of known areas. 
 
FIND: Surface temperature and emitted energy assuming blackbody behavior. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 

ANALYSIS: For blackbody emission, 
1/ 4ET ⎛ ⎞= ⎜ ⎟σ⎝ ⎠

 and E = πI. Therefore, 

 

 
1/ 4

eIT π⎛ ⎞= ⎜ ⎟σ⎝ ⎠
 ;   qe = AE = AπIe      (1,2) 

 

Equations (1) and (2) may be used to find T and qe as follows.   < 
 
 
 Problem Ie (W/m2⋅sr) A(m2)  T(K)  qe(W) 
 
 Example 12.1  7000  10-3  789  22 
 Problem 12.8 1.2 × 105 10-4  1606  37.7 
 Problem 12.12 169,000  0.0052  1750  2761 
 Problem 12.14 1000  2 × 10-4  485  0.628 
 
 
 
COMMENTS: If the surface is not black, the intensity leaving the surface will include a 
reflected component. 
 

A

I(W/m2·sr)

E, qe

A

I(W/m2·sr)

E, qe



PROBLEM 12.19  
KNOWN:  Diameter and temperature of burner.  Temperature of ambient air.  Burner efficiency.  
FIND:  (a) Radiation and convection heat rates, and wavelength corresponding to maximum spectral 
emission.  Rate of electric energy consumption.  (b) Effect of burner temperature on convection and 
radiation rates.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Burner emits as a blackbody, (2) Negligible irradiation of burner from 
surrounding, (3) Ambient air is quiescent, (4) Constant properties. 
 
PROPERTIES:  Table A-4, air (Tf = 408 K):  k = 0.0344 W/m⋅K, ν = 27.4 × 10-6 m2/s, α = 39.7 × 
10-6 m2/s, Pr = 0.70, β = 0.00245 K-1. 
 
ANALYSIS:  (a) For emission from a blackbody 
 

( ) ( ) ( )2 42 4 8 2 4
rad s bq A E D / 4 T 0.2m / 4 5.67 10 W / m K 523K 133 Wπ σ π −= = = × ⋅ =⎡ ⎤

⎢ ⎥⎣ ⎦
 < 

 
With L = As/P = D/4 = 0.05m and RaL = gβ(Ts - T∞) L3/αν = 9.8 m/s2 × 0.00245 K-1 (230 K) 
(0.05m)3/(27.4 × 39.7 × 10-12 m4/s2) = 6.35 × 105, Eq. 9.30 yields 
 

( )L
1/ 41/ 4 5 2

L
k k 0.0344 W / m Kh Nu 0.54 Ra 0.54 6.35 10 10.5 W / m K
L L 0.05m

⋅⎛ ⎞ ⎛ ⎞= = = × = ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

 ( ) ( )22
conv s sq h A T T 10.5 W / m K 0.2m / 4 230K 75.7 W∞

⎡ ⎤= − = ⋅ =⎢ ⎥⎣ ⎦
π   < 

 
The electric power requirement is then 
 

 
( )rad conv

elec
133 75.7 Wq qP 232 W

0.9η
++

= = =      < 

 
The wavelength corresponding to peak emission is obtained from Wien’s displacement law, Eq. 12.31 
 
 max 2898 m K / 523K 5.54 mλ μ μ= ⋅ =       < 
 
(b) As shown below, and as expected, the radiation rate increases more rapidly with temperature than 

the convection rate due to its stronger temperature dependence ( )4 5 / 4
s sT vs. T .  

 
          Continued … 



PROBLEM 12.19 (Cont.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
COMMENTS:  If the surroundings are treated as a large enclosure with isothermal walls at Tsur = T∞ 

= 293 K, irradiation of the burner would be G = 4
surTσ  = 418 W/m2 and the corresponding heat rate 

would be As G = 13 W.  This input is much smaller than the energy outflows due to convection and 
radiation and is justifiably neglected. 
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PROBLEM 12.20  
KNOWN:  Solar flux at outer edge of earth’s atmosphere, 1368 W/m2. 
 
FIND:  (a) Emissive power of sun, (b) Surface temperature of sun, (c) Wavelength of maximum solar 
emission, (d) Earth equilibrium temperature.  
SCHEMATIC:   
 

 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Sun and earth emit as blackbodies, (2) No attenuation of solar radiation 
enroute to earth, (3) Earth atmosphere has no effect on earth energy balance.  
ANALYSIS:  (a) Applying conservation of energy to the solar energy crossing two concentric 
spheres, one having the radius of the sun and the other having the radial distance from the edge of the 
earth’s atmosphere to the center of the sun 

 ( )
2

2 e
s s s e

DE D 4 R q s.
2

π π −
⎛ ⎞ ′′= −⎜ ⎟
⎝ ⎠

 

Hence 

 
( )

( )

211 7 2
7 2

s 29

4 1.5 10 m 0.65 10 m 1368 W / m
E 6.37 10 W / m .

1.39 10 m

× − × ×
= = ×

×
  < 

(b) From Eq. 12.32, the temperature of the sun is 
 

 

1/ 41/ 4 7 2
s

s 8 2 4
E 6.37 10 W / mT 5790 K.

5.67 10 W / m Kσ −

⎛ ⎞×⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ × ⋅⎝ ⎠
    < 

 
(c) From Wien’s displacement law, Eq. 12.25, the wavelength of maximum emission is 

 3
max

C 2898 m K 0.50 m.
T 5790 K

μλ μ⋅
= = =  

(d) From an energy balance on the earth’s surface 

 ( ) ( )2 2
e e S eE D q D / 4 .π π′′=  

Hence, from Eq. 12.26, 

 

1/ 41/ 4 2
S

e 8 2 4
q 1368 W / mT 279 K.
4 4 5.67 10 W / m Kσ −

⎛ ⎞′′⎛ ⎞
= = =⎜ ⎟⎜ ⎟ ⎜ ⎟× × ⋅⎝ ⎠ ⎝ ⎠

   < 

 
COMMENTS:  The average earth temperature is higher than 279 K due to the shielding effect of the 
earth’s atmosphere (transparent to solar radiation but not to longer wavelength earth emission). 

De= 1.29 × 107 mDe= 1.29 × 107 m



PROBLEM 12.21 
 
KNOWN:  Small flat plate positioned just beyond the earth’s atmosphere oriented such that its normal 
passes through the center of the sun.  Pertinent earth-sun dimensions from Problem 12.20. 
 
FIND:  (a) Solid angle subtended by the sun about a point on the surface of the plate, (b) Incident 
intensity, Ii , on the plate using the known value of the solar irradiation about the earth’s atmosphere, GS = 
1368 W/m2,  and (c) Sketch of the incident intensity as a function of the zenith angle θ, where θ is 
measured from the normal to the plate. 
 
SCHEMATIC: 

  
ASSUMPTIONS: (1) Plate oriented normal to centerline between sun and earth, (2) Height of earth’s 
atmosphere negligible compared to distance from the sun to the plate, (3) Dimensions of the plate are very 
small compared to sun-earth dimensions. 
 
ANALYSIS: (a) The pertinent sun-earth dimensions are shown in the schematic (a) above while the 
position of the plate relative to the sun and the earth is shown in (b). The solid angle subtended by the sun 
with respect to any point on the plate follows from Eq. 12.7,  

 
( )

( )

2
S ps p

S p 2 2
S,p S,e

D 4 cosA cos

L R
− = =

π θθ
ω

( )
( )

29
5

211

1.39 10 m 4 1
6.74 10 sr

1.5 10 m

−
× ×

= = ×

×

π
 (1) < 

where AS  is the projected area of the sun (the solar disk), θp is the zenith angle measured between the 
plate normal and the centerline between the sun and earth, and LS,p is the separation distance between the 
plate at the sun’s center. 
 
(b) The plate is irradiated by solar flux in the normal direction only (not diffusely).  Using Eq. 12.18, 
the radiant power incident on the plate can be expressed as 
 S p i p p S pG A I A cosθ ω −Δ = ⋅Δ ⋅  (2) 

and the intensity Ii due to the solar irradiation GS with cos θp = 1, 

 i S S pI G ω −=
52 7 21368 W m 6.74 10 sr 2.03 10 W m sr

−
= × = × ⋅  < 

 
(c) As illustrated in the schematic to the right, the intensity Ii will 
be constant for the zenith angle range 0 ≤ θp ≤ θp,o where 

 

 
9

S
p,o 11S,p

D 2 1.39 10 m 2
L 1.5 10 m

×
= =

×
θ              

 3
p,o 4.633 10 rad 0.27θ −= × ≈ o  

For the range θp > θp,o, the intensity will be zero. Hence 
the Ii as a function of θp will appear as shown to the 
right. 

 
 

 
 

 



PROBLEM 12.22  
KNOWN:  Evacuated, aluminum sphere (D = 2m) serving as a radiation test chamber.  
FIND:  Irradiation on a small test object when the inner surface is lined with carbon black and at 
600K.  What effect will surface coating have?  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Sphere walls are isothermal, (2) Test surface area is small compared to the 
enclosure surface.  
ANALYSIS:  It follows from the discussion of Section 12.4 that this isothermal sphere is an enclosure 
behaving as a blackbody.  For such a condition, see Fig. 12.11(c), the irradiation on a small surface 
within the enclosure is equal to the blackbody emissive power at the temperature of the enclosure.  
That is 
 

 ( ) 4
1 b s sG E T Tσ= =  

 

 ( )48 2 4 2
1G 5.67 10 W / m K 600K 7348W / m .−= × ⋅ =     < 

 
The irradiation is independent of the nature of the enclosure surface coating properties.  
COMMENTS:  (1) The irradiation depends only upon the enclosure surface temperature and is 
independent of the enclosure surface properties. (2) Note that the test surface area must be small 
compared to the enclosure surface area.  This allows for inter-reflections to occur such that the 
radiation field, within the enclosure will be uniform (diffuse) or isotropic. (3) The irradiation level 
would be the same if the enclosure were not evacuated since, in general, air would be a non-
participating medium. 



PROBLEM 12.23 
 

KNOWN:  Diameter of spherical fuel pellet. Pellet emissivity and absorptivity. Laser power and 
number of lasers. Laser entrance hole diameters.  
 
 
FIND:  (a) Maximum fuel temperature for direct laser irradiation. (b) Maximum fuel temperature for 
irradiation using the enclosure.  
 
SCHEMATIC: 
 

 
 

 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady state conditions. (2) Negligible irradiation from surroundings. (3) 
Uniform temperature inside enclosure. (4) Enclosure behaves as a blackbody. (5) Negligible heat loss 
through enclosure walls. 
  
 
PROPERTIES: Given: ε = 0.8, α = 0.3. 
 
ANALYSIS:  
 
(a) An energy balance on the spherical pellet yields 
 
   ( )2 4

in out p pE E NP D Tα π εσ= = =& &  

or 

 
1/ 4 1/ 4

2 8 2 4 3 2
0.3 200 500 W 15,970 K

0.8 5.67 10  W/m K (1.8 10  m)p
p

NPT
D

α
εσπ π− −

⎛ ⎞ ⎛ ⎞× ×
⎜ ⎟= = =⎜ ⎟⎜ ⎟ × × × × ×⎝ ⎠⎝ ⎠

    < 

 
(b) An energy balance on the enclosure yields 
 
   ( )2 4

LEH2 / 4in out eE E NP D Tπ σ= = =& &  

or 

 
1/ 4 1/ 4

2 8 2 4 3 2
LEH

2 2 200 500 W 23,020 K
5.67 10  W/m K (2.0 10  m)e

NPT
Dσπ π− −

⎛ ⎞ ⎛ ⎞× ×
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ × × × ×⎝ ⎠⎝ ⎠

  

 
Since the enclosure temperature is assumed to be uniform, Tp = Te = 23,020 K   < 
 
COMMENTS:  (1) The temperature of the pellet is increased by 44% by placing it in the enclosure. 
(2) The actual maximum temperature of the pellet in the enclosure can be much less than calculated if 
the area of the laser entrance holes is not small relative to the interior area of the enclosure. (3) The 
temperatures are extremely high, as required. (4) This problem is motivated by the U.S. National 
Ignition Facility at the Lawrence Livermore National Laboratory. The lasers used to heat the 1.8 mm 
diameter pellet occupy a facility that is 10 stories tall with a footprint the size of three football fields.  

(a) (b)

N = 200 laser beams
P = 50 W

N = 200 laser beams
P = 50 W

Dp = 1.8 mm Dp

(a) (b)

N = 200 laser beams
P = 50 W

N = 200 laser beams
P = 50 W

Dp = 1.8 mm Dp

DLEH = 2 mm



PROBLEM 12.24  
KNOWN:  Isothermal enclosure of surface area, As, and small opening, Ao, through which 70W 
emerges.  
FIND:  (a) Temperature of the interior enclosure wall if the surface is black, (b) Temperature of the 
wall surface having ε = 0.15.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Enclosure is isothermal, (2) Ao << As.  
ANALYSIS:  A characteristic of an isothermal enclosure, according to Section 12.4, is that the radiant 
power emerging through a small aperture will correspond to blackbody conditions.  Hence 
 

 ( ) 4
rad o b s o sq A E T A Tσ= =  

 
where qrad is the radiant power leaving the enclosure opening.  That is, 
 

 

1/ 41/ 4
rad

s 2 8 2 4o

q 70WT 498K.
A 0.02m 5.670 10 W / m Kσ −

⎛ ⎞⎛ ⎞
⎜ ⎟= = =⎜ ⎟ ⎜ ⎟× × ⋅⎝ ⎠ ⎝ ⎠

  < 

 
Recognize that the radiated power will be independent of the emissivity of the wall surface.  As long 
as Ao << As and the enclosure is isothermal, then the radiant power will depend only upon the 
temperature.  
COMMENTS:  It is important to recognize the unique characteristics of isothermal enclosures.  See 
Fig. 12.11 to identify them. 
 



PROBLEM 12.25  
KNOWN:  Sun has equivalent blackbody temperature of 5800 K.  Diameters of sun and earth as well 
as separation distance are prescribed.  
FIND:  Temperature of the earth assuming the earth is black.  
SCHEMATIC:   
 

 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Sun and earth emit as blackbodies, (2) No attenuation of solar irradiation 
enroute to earth, and (3) Earth atmosphere has no effect on earth energy balance.  
ANALYSIS:  Performing an energy balance on the earth, 
 in outE E 0− =& &  

 ( )e,p S e,s b eA G A E T⋅ = ⋅  

 ( )2 2 4
e S e eD / 4 G D Tπ π σ=  

 ( )1/ 4
e ST G / 4σ=  

where Ae,p and Ae,s are the projected area and total surface area of the earth, respectively.  To 
determine the irradiation GS at the earth’s   
surface, equate the rate of emission from the 
sun to the rate at which this radiation passes 
through a spherical surface of radius RS,e – De/2. 
 
 in outE E 0− =& &  
 

 
22 4

S,e e SS SD T 4 R D / 2 Gπ σ π ⎡ ⎤⋅ = −⎣ ⎦  
 

 ( ) ( )
2 49 8 2 41.39 10 m 5.67 10 W / m K 5800 Kπ −× × × ⋅  

      
211 7 2

S4 1.5 10 1.27 10 / 2 m Gπ ⎡ ⎤= × − × ×⎢ ⎥⎣ ⎦
 

 2
SG 1377.5 W / m .=  

 
Substituting numerical values, find 

 ( )1/ 42 8 2 4
eT 1377.5 W / m / 4 5.67 10 W / m K 279 K.−= × × ⋅ =    < 

 
COMMENTS:  (1) The average earth’s temperature is greater than 279 K since the effect of the 
atmosphere is to reduce the heat loss by radiation. 
 
(2) Note carefully the different areas used in the earth energy balance.  Emission occurs from the total 
spherical area, while solar irradiation is absorbed by the projected spherical area. 

De= 1.29 × 107 mDe= 1.29 × 107 m



PROBLEM 12.26 
 

KNOWN:  Solar power concentrated into cavity, energy storage rate for salt, salt temperature, cavity 
opening diameter. 
 
 
FIND:  Thermal energy delivered to the Rankine cycle.  
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Temperatures are not changing with time. (2) Negligible irradiation from 
surroundings and convective losses. (3) Cavity opening area is small relative to cavity surface area. 
 
ANALYSIS:  
 
(a) An energy balance on the control volume shown in the schematic yields 
 
    sol lossR stq q E q= − −&  
 
where the heat loss through the cavity opening is 
 
 

2 2
4 8 2 4 4

loss salt
(1 m) 5.67 10 W/m K (1000 273 K) 117,000 W 0.12 MW

4 4
sDq Tπ πσ −= = × × ⋅ × + = =  

 
Hence the heat transfer to the Rankine cycle is 
 

7.50 3.45 0.12 3.93 MWRq = − − =      < 
      
 
COMMENTS:  (1) The radiation heat loss through the cavity opening is relatively small, but could be 
reduced further by decreasing the size of the cavity opening. Reducing the size of the opening would 
require more expensive heliostats and mirrors in order to more precisely direct the concentrated solar 
irradiation into the cavity.  (2) Convection losses through the cavity opening may be large, 
necessitating placement of a radiatively-transparent window over the cavity opening. 

Salt
Tsalt = 1000°C

Ds

qR

Est
·Est
· = 3.45 MW

qsol = 7.50 MW
qloss



PROBLEM 12.27  
KNOWN:  Spectral distribution of the emissive power given by Planck’s distribution.  
FIND:  Approximations to the Planck distribution for the extreme cases when (a) C2/λT >> 1, Wien’s 
law and (b) C2/λT << 1, Rayleigh-Jeans law. 
 
ANALYSIS:  Planck’s distribution provides the spectral, hemispherical emissive power of a 
blackbody as a function of wavelength and temperature, Eq. 12.30, 

 ( ) ( )5
,b 1 2E ,T C / exp C / T 1 .λ λ λ λ⎡ ⎤= −⎣ ⎦  

We now consider the extreme cases of C2/λT >> 1 and C2/λT << 1. 
 
(a) When C2/λT >> 1 (or λT << C2), it follows exp(C2/λT) >> 1.  Hence, the –1 term in the 
denominator of the Planck distribution is insignificant, giving 

 ( ) ( ) ( )5
,b 1 2E ,T C / exp C / T .λ λ λ λ≈ −       < 

This approximate relation is known as Wien’s law.  The ratio of the emissive power by Wien’s law to 
that by the Planck law is, 
 

 
( )

( )
,b,Wien 2

,b,Planck 2

E 1/ exp C / T
.

E 1/ exp C / T 1
λ

λ

λ
λ

=
⎡ ⎤−⎣ ⎦

 

 

For the condition λT = λmax T = 2898 μm⋅K, C2/λT = 
14388 m K
2898 m K

μ
μ

⋅

⋅
 = 4.966 and 

 

 
( )

( )
,b Wien

,b Planck

E 1/ exp 4.966
0.9930.

E 1/ exp 4.966 1
λ

λ
= =

⎡ ⎤−⎣ ⎦
     < 

 
That is, for λT ≤ 2898 μm⋅K, Wien’s law is a good approximation to the Planck distribution. 
 
(b) If C2/λT << 1 (or λT >> C2), the exponential term may be expressed as a series that can be 
approximated by the first two terms.  That is, 
 

 
2 3

x x xe 1 x ... 1 x when x 1.
2! 3!

= + + + + ≈ + <<  
 
The Rayleigh-Jeans approximation is then 
 
 ( ) ( )5 4

,b 1 2 1 2E ,T C / 1 C / T 1 C T / C .λ λ λ λ λ⎡ ⎤≈ + − =⎣ ⎦  
 
For the condition λT = 100,000 μm⋅K, C2/λT = 0.1439 
 

( ) ( ) ( )
4 1,b,R J 1 2

2 2 25,b,Planck 1

E C T / C exp C / T 1 T / C exp C / T 1 1.0754.
E C /

λ

λ

λ λ λ λ
λ

−− ⎡ ⎤ ⎡ ⎤= − = − =⎣ ⎦ ⎣ ⎦  < 

 
That is, for λT ≥ 100,000 μm⋅K, the Rayleigh-Jeans law is a good approximation (better than 10%) to 
the Planck distribution.  
COMMENTS:  Wien’s law is used extensively in optical pyrometry for values of λ near 0.65 μm and 
temperatures above 700 K.  The Rayleigh-Jeans law is of limited use in heat transfer but of utility for 
far infrared applications. 



PROBLEM 12.28  
KNOWN:  Various surface temperatures.  
FIND:  (a) Wavelength corresponding to maximum emission for each surface, (b) Fraction of solar 
emission in UV, VIS and IR portions of the spectrum.  
ASSUMPTIONS:  (1) Spectral distribution of emission from each surface is approximately that of a 
blackbody, (2) The sun emits as a blackbody at 5800 K.  
ANALYSIS:  (a) From Wien’s displacement law, Eq. 12.31, the wavelength of maximum emission 
for blackbody radiation is 
 

 3
max

C 2898 m K .
T T

⋅
= =

μλ  
 
For the prescribed surfaces 
 

         Hot   Cool 
Surface     Sun  Tungsten   metal    Skin metal 
  (5800K)  (2500K) (1500K) (305K) (60K) 

 
  λmax(μm)    0.50     1.16     1.93     9.50    48.3 < 
 
(b) From Fig. 12.3, the spectral regions associated with each portion of the spectrum are 
 

Spectrum  Wavelength limits, μm 
 
    UV   0.01 – 0.4 
    VIS   0.4 – 0.7 
    IR   0.7 - 100 
 
For T = 5800K and each of the wavelength limits, from Table 12.1 find: 
 
 λ(μm)  10-2   0.4   0.7    102 
 λT(μm⋅K)  58 2320 4060 5.8 × 105 
 F(0→λ)    0 0.125 0.491       1 
 
Hence, the fraction of the solar emission in each portion of the spectrum is: 
 
 FUV = 0.125 – 0 = 0.125        < 
 
 FVIS = 0.491 – 0.125 = 0.366        < 
 
 FIR = 1 – 0.491 = 0.509.         < 
 
COMMENTS:  (1) Spectral concentration of surface radiation depends strongly on surface 
temperature. (2) Much of the UV solar radiation is absorbed in the earth’s atmosphere. 



PROBLEM 12.29  
KNOWN:  Thermal imagers operating in the spectral regions 3 to 5 μm and 8 to 14 μm. 
 
FIND:  (a) Band-emission factors for each of the spectral regions, 3 to 5 μm and 8 to 14 μm, for 
temperatures of 300 and 900 K, (b) Calculate and plot the band-emission factors for each of the 
spectral regions for the temperature range 300 to 1000 K; identify the maxima, and draw conclusions 
concerning the choice of an imager for an application; and (c) Considering imagers operating at the 
maximum-fraction temperatures found from the graph of part (b), determine the sensitivity (%) 
required of the radiation detector to provide a noise-equivalent temperature (NET) of 5°C. 
 
ASSUMPTIONS:  The sensitivity of the imager’s radiation detector within the operating spectral 
region is uniform. 
 
ANALYSIS:  (a) From Eqs. 12.34 and 12.35, the band-emission fraction F(λ1 → λ2, T) for 
blackbody emission in the spectral range λ1 to λ2 for a temperature T is 
 
 ( ) ( ) ( )1 2, T 0 2, T 0 1, TF F Fλ λ λ λ→ → →= −  
 
Using the IHT Radiation | Band Emission tool (or Table 12.1), evaluate F(0-λT) at appropriate λ⋅T 
products: 
 
3 to 5 μm region  
 ( )1 2, 300 KF 0.1375 0.00017 0.01373− = − =λ λ      < 
 
 ( )1 2, 900 KF 0.5640 0.2055 0.3585λ λ− = − =       < 
 
8 to 14μm region  
 ( )1 2, 300 KF 0.5160 0.1403 0.3757− = − =λ λ       < 
 
 ( )1 2, 900 KF 0.9511 0.8192 0.1319λ λ− = − =       < 
 
(b) Using the IHT Radiation | Band Emission tool, the band-emission fractions for each of the spectral 
regions is calculated and plotted below as a function of temperature. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

          Continued … 
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PROBLEM 12.29 (Cont.) 
 
For the 3 to 5 μm imager, the band-emission factor increases with increasing temperature.  For low 

temperature applications, not only is the radiant power ( )4T ,  T 300 Kσ ≈  low, but the band fraction 

is small.  However, for high temperature applications, the imager operating conditions are more 
favorable with a large band-emission factor, as well as much higher radiant power 

( )4T ,  T 900 K .σ →  

 
For the 8 to 14 μm imager, the band-emission factor decreases with increasing temperature.  This is a 
more favorable instrumentation feature, since the band-emission factor (proportionally more power) 
becomes larger as the radiant power decreases.  This imager would be preferred over the 3 to 5 μm 
imager at lower temperatures since the band-emission factor is 8 to 10 times higher. 
 
Recognizing that from Wien’s displacement law, the peaks of the blackbody curves for 300 and 900 K 
are approximately 10 and 3.3 μm, respectively, it follows that the imagers will receive the most radiant 
power when the peak target spectral distributions are close to the operating spectral region.  It is good 
application practice to chose an imager having a spectral operating range close to the peak of the 
blackbody curve (or shorter than, if possible) corresponding to the target temperature. 
 
The maxima band fractions for the 3 to 5 μm and 8 to 14 μm spectral regions correspond to 
temperatures of 960 and 355 K, respectively.  Other application factors not considered (like smoke, 
water vapor, etc), the former imager is better suited with higher temperature scenes, and the latter with 
lower temperature scenes. 
 
(c) Consider the 3 to 5 μm and 8 to 14 μm imagers operating at their band-emission peak 
temperatures, 355 and 960 K, respectively.  The sensitivity S (% units) of the imager to resolve an 
NET of 5°C can be expressed as 
 

 ( ) ( ) ( )
( )

1 2, T1 1 2, T2

1 2, T1

F F
S % 100

F
λ λ λ λ

λ λ

− −

−

−
= ×  

 
where T1 = 355 or 960 K and T2 = 360 or 965 K, respectively.  Using this relation in the IHT 
workspace, find 
 

 S S3 5 8 14− −= =0 035% 0 023%. .     < 
 
That is, we require the radiation detector (with its signal-processing system) to resolve the output 
signal with the foregoing precision in order to indicate a 5°C change in the scene temperature. 
 



PROBLEM 12.30  
KNOWN:  Tube furnace maintained at Tf = 2000 K used to calibrate a heat flux gage of sensitive area 
5 mm2 mounted coaxial with the furnace centerline, and positioned 60 mm from the opening of the 
furnace. 
 
FIND:  (a) Heat flux (kW/m2) on the gage, (b) Radiant flux in the spectral region 0.4 to 2.5 μm, the 
sensitive spectral region of a solid-state (photoconductive type) heat-flux gage, and (c) Calculate and 
plot the heat fluxes for each of the gages as a function of the furnace temperature for the range 2000 ≤ 
Tf ≤ 3000 K.  Compare the values for the two types of gages; explain why the solid-state gage will 
always indicate systematically low values; does the solid-state gage performance improve, or become 
worse as the source temperature increases? 
 
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Graphite tube furnace behaves as a blackbody, (3) 
Areas of gage and furnace opening are small relative to separation distance squared, and (4) Extension 
tube is cold relative to the furnace. 
 
ANALYSIS:  (a) The heat flux to the gage is equal to the irradiation, Gg, on the gage and can be 
expressed as (see Section 12.3.3) 
 
 G I cos g f g f g= ⋅ ⋅ −θ ωΔ  
 
where Δωf - g is the solid angle that the furnace opening subtends relative to the gage.  From Eq. 12.7, 
with θg = 0° 
 

 Δω
θ π

f g
n

2
f g

2
dA

r

A  cos 

L

 m

 m
 sr−

−≡ = =
×

= ×
0 0125 4 1

0 060
3 409 10

2

2
2. /

.
.b g

b g
 

 
The intensity of the radiation from the furnace is 
 

I E T T  W / m K  2000 K  W / m srf b,f f f
4 2 4 2= = = × ⋅ = × ⋅−b g b g/ / . / .π σ π π567 10 2 888 108 4 5  

 
Substituting numerical values, 
 
 G  W / m sr 1 3.409 10  sr 9.84 kW / mg

2 -2 2= × ⋅ × × × =2 888 105.    < 
 
(b) The solid-state detector gage, sensitive only in the spectral region λ1 = 0.4 μm to λ2 = 2.5 μm, will 
receive the band irradiation. 
 

 ( ) ( ) ( )g, 1 2 g,b g,b1 2, Tf 0 2, Tf 0 1, TfG F G F F  Gλ λ λ λ λ λ− → → →
⎡ ⎤= ⋅ = −⎢ ⎥⎣ ⎦

 

 
          Continued … 



PROBLEM 12.30 (Cont.) 
 
where for λ1 Tf = 0.4 μm × 2000 K = 800 μm⋅K, F(0 - λ1) = 0.0000 and for λ2 ⋅ Tf = 2.5 μm × 2000 K 
= 5000 μm⋅K, F(0 - λ2) = 0.6337.  Hence, 
 
 G  kW / m  kW / mg, 1 2

2 2
λ λ− = − × =0 6337 0 0000 9 84 6 24. . . .    < 

 
(c) Using the foregoing equation in the IHT workspace, the heat fluxes for each of the gage types are 
calculated and plotted as a function of the furnace temperature. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the black gage, the irradiation received by the gage, Gg, increases as the fourth power of the 
furnace temperature.  For the solid-state gage, the irradiation increases slightly greater than the fourth 
power of the furnace temperature since the band-emission factor for the spectral region, F(λ1 - λ2, Tf), 
increases with increasing temperature.  The solid-state gage will always indicate systematic low 
readings since its band-emission factor never approaches unity.  However, the error will decrease with 
increasing temperature as a consequence of the corresponding increase in the band-emission factor. 
 
COMMENTS:  For this furnace-gage geometrical arrangement, evaluating the solid angle, Δωf - g, 
and the areas on a differential basis leads to results that are systematically high by 1%.  Using the view 
factor concept introduced in Chapter 13, the results for the black and solid-state gages are 9.74 and 
6.17 kW/m2, respectively. 
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PROBLEM 12.31 
 
KNOWN:  Bandgap of photovoltaic material.  Relationship between wavelength and energy state of 
photon.  Inter-band gap efficiency.  Half of incident photons not converted to electricity are absorbed 
as thermal energy.  Solar irradiation and associated blackbody temperature. 
 
FIND:  Wavelengths of solar irradiation corresponding to material’s band gap. Overall efficiency. 
Heat absorption per unit surface area. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  Wavelength distribution of solar irradiation corresponds to a blackbody at 5800 K. 
  
ANALYSIS:   The lower boundary of the band-gap, B = 1.1 eV, corresponds to a wavelength of 
 

2
1240 eV nm 1240 eV nm 1127 nm 1.127 m

1.1 eVB
λ μ⋅ ⋅

= = = =  

 
Similarly, the upper boundary, B = 1.8 eV, corresponds to λ1 = 0.689 µm.  Thus, the wavelength range 
corresponding to the band gap is 
 

0.689 m 1.127 mμ λ μ≤ ≤      < 
 
The fraction of the irradiation that falls in this wavelength range can be found from Table 12.1.  With 
T = 5800 K, λ1T = 0.689 µm × 5800 K = 4000 µm⋅K, λ2T = 6540 µm⋅K, thus 
 
 

1 2 2 1( ) (0 ) (0 ) 0.7647 0.4809 0.2838F F Fλ λ λ λ→ → →= − = − =  
 

Hence the overall efficiency is 
 

η = ηbgFbg = 0.50 × 0.2838 = 0.1419    < 
 

 
If half of the irradiation that is not converted to electricity is absorbed as thermal energy, then the 
fraction absorbed is 0.5 × (1 – 0.1419) = 0.4290.  Thus, the absorbed energy is 
 

q = 0.4290 × 1000 W/m2 = 429 W/m2    < 
 

 COMMENT: The irradiation that is neither converted to electricity nor converted to thermal energy 
is reflected from or transmitted through the material.  

G = 1000 W/m2

Photovoltaic material

Bandgap: 1.1 ≤ B ≤ 1.8 eV
Interband gap efficiency: ηbg = 0.50
Efficiency: η



PROBLEM 12.32 
 
KNOWN:  Geometry and temperature of a ring-shaped radiator.  Area of irradiated part and distance 
from radiator. 
 
FIND:  Rate at which radiant energy is incident on the part. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Heater emits as a blackbody. 
 
ANALYSIS:  Expressing Eq. 12.12 on the basis of the total radiation, dq = Ie dAh cosθ dω, the rate at 
which radiation is incident on the part is 
 
 h p e p h h e p h hq dq I cos d dA I cos Aθ ω θ ω− − −= = ≈ ⋅ ⋅∫ ∫ ∫  
 
Since radiation leaving the heater in the direction of the part is oriented normal to the heater surface, θ = 0 
and cos θ = 1.  The solid angle subtended by the part with respect to the heater is ωp-h = Ap cos θ1/L2, 

while the area of the heater is Ah ≈ 2πrhW = 2π(L sin θ1)W.  Hence, with Ie = Eb/π = 4
hTσ π , 

 

 
( ) ( )

( )
( )

248 2 4
h p 2

0.007 m cos305.67 10 W m K 3000 K
q 2 1.5m 0.03m

3m
π

π

−

−
× ⋅

≈ × ×

o

 

 h pq 278.4 W− ≈  < 
 
COMMENTS:  The foregoing representation for the double integral is an excellent approximation since 
W << L and Ap << L2. 



PROBLEM 12.33  
KNOWN:  Aperture of an isothermal furnace emits as a blackbody.  
FIND:  (a) An expression for the ratio of the fractional change in the spectral intensity to the fractional 
change in temperature of the furnace aperture, (b) Allowable variation in temperature of a furnace 
operating at 2000 K such that the spectral intensity at 0.65μm will not vary by more than 1/2%.  
Allowable variation for 10μm.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Furnace is isothermal and aperture radiates as a blackbody.  
ANALYSIS:  (a) The Planck spectral distribution, Eq. 12.30, is 

 ( ) ( )5
1 2I ,T C / exp C / T 1 .λ λ πλ λ⎡ ⎤= −⎣ ⎦  

Taking natural logarithms of both sides, find ( )[ ]5
1 2nI n C / n exp C / T 1 .λ πλ λ= − −⎡ ⎤

⎣ ⎦l l l   Take the 

total derivative of both sides, but consider the λ variable as a constant. 

 
( )
( )

( ){ }( )( )
( )

2
2 22

2 2

exp C / T C / 1/ T dTd exp C / T 1d I
I exp C / T 1 exp C / T 1
λ
λ

λ λλ

λ λ

−⎡ ⎤−⎣ ⎦= − = −
⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦

 

 

 
( )

( ) ( )
22 2

22

exp C / Td I d I / IC dT C 1or .
I T T d T / T T 1 exp C / Texp C / T 1
λ λ λ
λ

λ
λ λ λλ

= ⋅ ⋅ = ⋅
− −⎡ ⎤−⎣ ⎦

 < 

(b) If the furnace operates at 2000 K and the desirable fractional change of the spectral intensity is 
0.5% at 0.65 μm, the allowable temperature variation is 

 
( )

2
2

d IdT C 1/
T I T 1 exp C / T

λ
λ λ λ

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎡ ⎤− −⎪ ⎪⎣ ⎦⎩ ⎭

 

 

 4dT 14,388 m K 14,388 m K0.005 / / 1 exp 4.517 10 .
T 0.65 m 2000K 0.65 m 2000K

μ μ
μ μ

−⎧ ⎫⎡ ⎤⎛ ⎞⋅ − ⋅⎪ ⎪= − = ×⎨ ⎬⎢ ⎥⎜ ⎟× ×⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
 

That is, the allowable fractional variation in temperature is 0.045%; at 2000 K, the allowable 
temperature variation is 

 4 4T 4.517 10 T 4.517 10 2000K 0.90K.− −Δ ≈ × = × × =     < 
Substituting with T = 2000 K and λ = 10 μm, find that 

 3 3dT 3.565 10 and T 3.565 10 T 7.1K.
T

− −= × Δ ≈ × =   < 

COMMENTS:  Note that the power control requirements to satisfy the spectral intensity variation for 
0.65 μm and 10 μm conditions are quite different.  The peak of the blackbody curve for 2000 K is 
λmax = 2898 μm⋅K/2000 K=1.45 μm. 



PROBLEM 12.34  
KNOWN:  Variation of spectral, hemispherical emissivity with wavelength for two materials.  
FIND:  Nature of the variation with temperature of the total, hemispherical emissivity.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) ελ is independent of temperature. 
 
ANALYSIS:  The total, hemispherical emissivity may be obtained from knowledge of the spectral, 
hemispherical emissivity by using Eq. 12.43 
 

 ( )
( ) ( )

( ) ( ) ( )
( )

,b ,b0
0b b

E ,T d E ,T
T d .

E T E T
λ λ λ

λ
ε λ λ λ λ

ε ε λ λ

∞
∞

= =
∫

∫  

 
We also know that the spectral emissive power of a blackbody becomes more concentrated at lower 
wavelengths with increasing temperature (Fig. 12.12).  That is, the weighting factor, Eλ,b (λ,T)/Eb (T) 
increases at lower wavelengths and decreases at longer wavelengths with increasing T.  Accordingly, 
 

Material A:  ε(T) increases with increasing T     < 
 

Material B:  ε(T) decreases with increasing T.    < 
 



PROBLEM 12.35 
 
KNOWN:  Initial and final object temperature.  Variation of spectral emissivity with wavelength for 
two coatings. 
 
FIND:  Which coating cools faster. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Surface is a diffuse emitter, (2) Negligible radiation from low-temperature 
vacuum chamber to object, (3) The spectral emissivity distribution can be approximated as a step 
change. 
 
ANALYSIS:   The object cools by radiation to the surroundings, and the object will cool faster if its 
emissivity is greater.  The total, hemispherical emissivity is given by Equation 12.43, and changes 
with time as the temperature of the object changes.  From Equation 12.43, 
 

( )

, 1 , 2 ,0 0 0

1 (0 ) 2 (0 )

( )
( ) ( )

1

c c

c c

b b b

b b

E d E d E d
T

E T E T

F F

λ λ

λ λ λ λ

λ λ

ε λ ε λ ε λ
ε

ε ε

∞

→ →

+
= =

= + −

∫ ∫ ∫
 

 
where λc = 10 µm is the cut-off wavelength at which the emissivity changes from ε1 to ε2.  For coating 
A, ε1 is the higher value and ε2 is the lower value, and vice versa for coating B.  At the initial 
temperature of 1000 K, we find λcT = 10,000 µm⋅K, and from Table 12.1, (0 )c

F λ→  = 0.914.  Therefore 
coating A has the higher emissivity value over 91.4% of the spectrum and has the higher total 
emissivity.  At the final temperature of 500 K, we find λcT = 5000 µm⋅K, and from Table 12.1, (0 )c

F λ→  
= 0.0634.  Thus, coating A still has the higher emissivity value. 
 

Coating A will cause the object to cool faster.       < 
 

COMMENTS:  The emissivity of coatings A and B are the same when (0 )c
F λ→  = 0.5.  From Table 

12.1, this occurs at a temperature of T = 411 K.  Below this temperature, coating B will cause faster 
cooling than coating A.  If the object were to be cooled below 411 K, a more complex analysis would 
be required to determine which coating would lead to the fastest cooling over the entire time period. 

1 10 100
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0.5ε λ

Coating A Coating B



PROBLEM 12.36  
KNOWN:  The total directional emissivity of non-metallic materials may be approximated as             
εθ = εn cos θ where εn is the total normal emissivity. 
 
FIND:  Show that for such materials, the total hemispherical emissivity, ε, is 2/3 the total normal 
emissivity. 
 
SCHEMATIC:   
 

 
 
ANALYSIS:  From Eq. 12.42, written on a total rather than spectral basis, the hemispherical 
emissivity ε can be determined from the directional emissivity εθ as 
 

 ε ε θ θ θθ
π

= z2 0

2/
 cos  sin  d  

 
With ε ε θθ = n cos ,  find 
 

 ε ε θ θ θ
π

= z2  cos  sin  dn
2

0

/2
 

 

 ε ε θ ε
π

= − =2 2 3  cos  / 3  |  n
3

n0

/2
e j /        < 

 
COMMENTS:  (1) Refer to Fig. 12.16 illustrating on cartesian coordinates representative directional 
distributions of the total, directional emissivity for nonmetallic and metallic materials.  In the 
schematic above, we’ve shown ε θθ  vs.   on a polar plot for both types of materials, in comparison 
with a diffuse surface. 
 
(2) See Section 12.5 for discussion on other characteristics of emissivity for materials. 
 



PROBLEM 12.37 
 
KNOWN:  Metallic surface with prescribed spectral, directional emissivity at 2000 K and 1 μm (see 
Example 12.7) and additional measurements of the spectral, hemispherical emissivity. 
 
FIND:  (a) Total hemispherical emissivity, ε, and the emissive power, E, at 2000 K,  (b) Effect of 
temperature on the emissivity. 
 
SCHEMATIC:   

 
ANALYSIS:  (a) The total, hemispherical emissivity, ε, may be determined from knowledge of the 
spectral, hemispherical emissivity, λε , using Eq. 12.43. 
 

 ,b b0
(T) ( )E ( , T) d E (T)λ λε ε λ λ λ

∞
= ∫

2 m 4 m,b ,b
1 20 2 mb b

E ( , T)d E ( ,T)d

E (T) E (T)
μ μλ λ

μ

λ λ λ λ
ε ε= +∫ ∫  

 
or from Eq. 12.34,  
 
 1 2 11 (0 ) 2 (0 ) (0 )(T) F F Fλ λ λε ε ε→ → →= + −⎡ ⎤⎣ ⎦  
 
From Table 12.1, 
 11 1 (0 )2 m, T 2000 K : T 4000 m K, F 0.481λλ μ λ μ →= = = ⋅ =  

 22 2 (0 )4 m, T 2000 K : T 8000 m K, F 0.856λλ μ λ μ →= = = ⋅ =  

Hence, 

 (T) 0.36 0.481 0.20(0.856 0.481)ε = × + − = 0.25      < 
 
The total emissive power at 2000 K is 
 E(2000 K)  =  ε (2000 K) ⋅ Eb (2000 K) 

 8 2 4 4 5 2E(2000 K) 0.25 5.67 10 W m K (2000 K) 2.27 10 W m−= × × ⋅ × = × .  < 
 
(b)  Using the Radiation Toolpad of IHT, the following result was generated. 
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Continued... 



 
PROBLEM 12.37 (Cont.) 

 
At T ≈ 500 K, most of the radiation is emitted in the far infrared region (λ > 4 μm), in which case ε ≈ 0.   
With increasing T, emission is shifted to lower wavelengths, causing ε to increase.  As T → ∞,   ε → 
0.36. 
 
COMMENTS:  Note that the value of λε for 0 < λ ≤ 2 μm cannot be read directly from the λε  
distribution provided in the problem statement.  This value is calculated from knowledge of , ( )λ θε θ  in 
Example 12.7. 
 



PROBLEM 12.38 
 
KNOWN: Expression for spectral emissivity of titanium at room temperature. 
 
FIND: (a) Emissive power of titanium surface at 300 K.  (b) Value of λmax for emissive power of 
surface in part (a). 
 
SCHEMATIC: 

                
 
 
 
 
 
 
 
 
 
 
 
 
ANALYSIS: (a) Combining Eqs. 12.40 and 12.43, the emissive power is given by 

b ,b 1 2 30
E(T) (T)E (T) ( ,T)E ( ,T)d I I I

∞
λ λ= ε = ε λ λ λ = + +∫  

where 
0.3 m 0.3 m

1 ,b ,b (0 0.3 m) b0 0
30 m 0.5

2 ,b0.3 m

3 ,b (30 m ) b30 m

I ( ,T)E ( ,T)d E ( ,T)d F E (T)

I 0.52 E ( ,T)d

I 0.1 E ( ,T)d 0.1F E (T)

μ μ
λ λ λ → μ

μ −
λμ

∞
λ μ →∞μ

= ε λ λ λ ≤ λ λ =

= λ λ λ

= λ λ =

∫ ∫

∫

∫

 

From Table 12.1, with λ1T = 0.3 µm × 300 K = 90 µm⋅K and λ2T = 30 µm × 300 K = 9000 
µm⋅K, 

(0 0.3 m)

(30 m ) (0 30 m)

F 0

F 1 F 1 0.890029 0.110
→ μ

μ →∞ → μ

≈

= − = − =
 

Thus 
1

8 2 4 4 2
3

I 0

I 0.1 0.110 5.67 10  W / m K (300 K) 5.05 W / m−

≈

= × × × ⋅ × =
 

 
The integral I2 must be evaluated numerically.  Making use of Eq. 12.30 for Eλ,b, 

 

( )
30 m 0.5 1

2 50.3 m 2

CI 0.52 d
exp C / T 1

μ −
μ

= λ λ
λ ⎡ λ − ⎤⎣ ⎦

∫  
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PROBLEM 12.38 (Cont.) 
 
This integral can be evaluated using the INTEGRAL function of IHT.  The result is I2 = 61.16 
W/m2.  Thus, 

 E(T) = I1 + I2 + I3 = 0 + 61.16 W/m2 + 5.05 W/m2 = 66.2 W/m2            < 
 
(b) The value of λmax is the value of λ for which Eλ is maximum.  The maximum in Eλ,b occurs for 
λmaxT = 2898 µm⋅K, or at 300 K, λmax = 9.66 µm.  However, for Eλ = ελEλ,b, the maximum will be 
shifted because of the dependence of ελ on λ.  We consider 
 

 ,b ,b
,b

d( E ) dEdE d
E 0

d d d d
λ λ λλ λ

λ λ
ε ε

= = ε + =
λ λ λ λ

  

 
Considering the range 0.3 µm ≤ λ ≤ 30 µm, for which ελ = 0.52λ-0.5, this becomes 

( ),b0.5 1.5
,b

dE
0.52 0.5 0.52 E 0

d
λ− −

λλ − λ =
λ

 

,b
,b

dE
0.5E 0

d
λ

λλ − =
λ

                    (1) 

Then 

 
( )

( )
( )

,b 1 21 2
6 2 252 2

dE C exp C / T5C C
d exp C / T 1 Texp C / T 1

λ − λ ⎛ ⎞−
= + −⎜ ⎟λ λ ⎡ λ − ⎤ λ⎝ ⎠λ ⎡ λ − ⎤⎣ ⎦ ⎣ ⎦

  

( )
( )

,b ,b ,b 2 2
22

dE E E exp C / T C5
d exp C / T 1 T
λ λ λ λ ⎛ ⎞

= − + ⎜ ⎟λ λ λ −⎡ ⎤ λ⎝ ⎠⎣ ⎦
            (2) 

 
Substituting Eq. (2) into Eq. (1) and simplifying, 

 
( )

( )
2 2

2

exp C / T C 5.5
Texp C / T 1

λ ⎛ ⎞ =⎜ ⎟λ⎡ λ − ⎤ ⎝ ⎠⎣ ⎦
                       (3) 

 
Solving this implicit equation for C2/λT yields 
 

 2C 5.477
T
=

λ
 

Thus 
4

2
max

C 1.439 10  m K 8.76 m
5.477T 5.477 300 K

× μ ⋅
λ = = = μ

×
                         <  

 
Eλ,b will be smaller in the ranges λ < 0.3 µm, and λ > 30 µm. 
 
COMMENTS:  Because the titanium has an emissivity that increases with decreasing 
wavelength, the value of λmax is smaller than would have been predicted with use of Wien’s 
displacement law, λmax,W = 2898 μm⋅K/300K = 9.66 μm. 
 



PROBLEM 12.39  
KNOWN:  Spectral directional emissivity of a diffuse material at 2000K. 
FIND:  (a) Total, hemispherical emissivity, (b) Emissive power over the spectral range 0.8 to 2.5 μm 
and for directions 0 ≤ θ ≤ π/6. 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Surface is diffuse emitter. 
ANALYSIS:  (a) Since the surface is diffuse, ελ,θ is independent of direction; from Eq. 12.42, ελ,θ = 
ελ.  Using Eq. 12.43, 

 ( ) ( ) ( ) ( ),b b0
T E ,T d / E Tλ λε ε λ λ λ

∞
= ∫  

 ( ) ( ) ( )1.5
1 ,b b 2 ,b b0 1.5

E T E , 2000 d / E E , 2000 d / E .λ λε λ λ ε λ λ
∞

= +∫ ∫  

Written now in terms of F(0 → λ), with F(0 → 1.5) = 0.2732 at λT = 1.5 × 2000 = 3000 μm⋅K, (Table 
12.1) find, 

( ) ( ) ( ) [ ]1 20 1.5 0 1.52000K F 1 F 0.2 0.2732 0.8 1 0.2732 0.636.ε ε ε→ →
⎡ ⎤= × + − = × + − =⎢ ⎥⎣ ⎦

 < 

(b) For the prescribed spectral and geometric limits, from an equation similar to Eq. 12.15, 

 ( )2.5 2 / 6
, ,b0.8 0 0

E I ,T cos sin d d d
π π

λ θ λε λ θ θ θ φ λΔ = ∫ ∫ ∫  

where Iλ,e (λ, θ, φ) = ελ,θ Iλ,b (λ,T).  Since the surface is diffuse, ελ,θ = ελ, and noting Iλ,b is 
independent of direction and equal to Eλ,b/π, we can write 

( ) ( )
( )

( )
( )

1.5 2.5
1 ,b 2 ,b2 / 6 b 0.8 1.5

0 0 b b

E ,T d E ,T dE T
E cos sin d d

E T E T
λ λπ π ε λ λ ε λ λ

θ θ θ φ
π

⎧ ⎫
⎪ ⎪⎧ ⎫Δ = +⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎪ ⎪
⎩ ⎭

∫ ∫
∫ ∫  

or in terms F(0 → λ) values, 

 [ ] [ ]{ }
2 / 6

0 0

2 4
1 0 1.5 0 0.8 2 0 2.5 0 1.5

sin TE F F F F .
2

π πθ σφ ε ε
π → → → →

⎧ ⎫⎪ ⎪Δ = × − + −⎨ ⎬
⎪ ⎪⎩ ⎭

 

From Table 12.1: λT = 0.8 × 2000 = 1600 μm⋅K  F(0 → 0.8)= 0.0197 
   λT = 2.5 × 2000 = 5000 μm⋅K  F(0 → 2.5) = 0.6337 

[ ] [ ]{ }
2 8 4

2
sin / 6 5.67 10 2000 W

E 2 0.2 0.2732 0.0197 0.8 0.6337 0.2732
2 m

π
π

π

−× ×
Δ = × ⋅ − + −

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

 

 ( )8 4 2 2E 0.25 5.67 10 2000 W / m 0.339 76.89 kW / m .−Δ = × × × × =   < 



PROBLEM 12.40 
 
KNOWN:  Spectral emissivity distribution of diffuse surface.  Surface temperature range. 
 
FIND:  Temperature at which the emissive power is minimized.  
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  Surface is a diffuse emitter. 
 
ANALYSIS:   The emissive power is E(T) = ε(T)Eb(T).  It is known that Eb(T) increases with T, but it 
is not immediately obvious how ε(T) varies with temperature since as temperature increases, the 
heaviest weighting of the spectral emissivity distribution shifts from higher to lower wavelengths.  
From Eq. 12.43, 
 

 

( ) ( )

1 2 3

1 2 1 2

, 1 , 2 , 3 ,0 0 0 0

1 (0 ) 2 (0 ) (0 ) 3 (0 )

( )
( ) ( )

1

b b b b

b b

E d E d E d E d
T

E T E T

F F F F

λ λ λ

λ λ λ λ λ

λ λ λ λ

ε λ ε λ ε λ ε λ
ε

ε ε ε

∞

→ → → →

+ +
= =

= + − + −

∫ ∫ ∫ ∫
   

 
where λ1 = 4 µm, λ2 = 6 µm, ε1 = 0.75, ε2 = 0. 10, and ε3 = 0.50.  At T = 300 K,  
 

λ1T = 1200 µm⋅K, λ2T = 1800 µm⋅K.   
 
From Table 12.1,  
 

1 2(0 ) (0 )0.002134,    0.039341.F Fλ λ→ →= =  
 
Thus, 
 
 

(300 K) 0.75 0.002134 0.10 (0.039341 0.002134) 0.50 (1 0.039341) 0.486ε = × + × − + × − =  
 

and 
 

4 8 2 4 2(300 K) (300 K) 0.486 5.67 10  W/m K (300 K) 223 W/mE Tε σ −= = × × ⋅ × =  
 

Repeating these calculations over the temperature range 300 ≤ Ts ≤ 1000 K, the following plots can be 
generated. 
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PROBLEM 12.40 (Cont.) 
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It can be seen that ε(T) has a minimum around 570 K, however 
 

the minimum value of E occurs at 300 K     <
  

 
and is Emin = 223 W/m2. 
 
 
COMMENTS:  The blackbody emissive power varies as T4.  The variation of emissivity with 
temperature is nowhere near as strong and therefore does not give rise to a local minimum in emissive 
power. 
 
 



PROBLEM 12.41  
KNOWN:  Directional emissivity, εθ, of a selective surface. 
 
FIND:  Ratio of the normal emissivity, εn, to the hemispherical emissivity, ε. 
 
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  Surface is isotropic in φ direction.  
ANALYSIS:  From Eq. 12.42 written on a total, rather than spectral, basis, the hemispherical 
emissivity is 
 

 ( )/ 2
0

2 cos sin d .
π

θε ε θ θ θ θ= ∫  
 
Recognizing that the integral can be expressed in two parts, find 
 

 ( ) ( )/ 4 / 2
0 / 4

2 cos sin d cos sin d
π π

π
ε ε θ θ θ θ ε θ θ θ θ⎡ ⎤= +⎢ ⎥⎣ ⎦∫ ∫  

 

 
/ 4 / 2

0 / 4
2 0.8 cos sin d 0.3 cos sin d

π π
π

ε θ θ θ θ θ θ⎡ ⎤= +⎢ ⎥⎣ ⎦∫ ∫  

 

 
/ 4 / 2

0 / 4

2 2sin sin2 0.8 0.3
2 2

π π

π

θ θε
⎡ ⎤
⎢ ⎥= +
⎢ ⎥⎣ ⎦

 

 

 ( ) ( )1 12 0.8 0.50 0 0.3 1 0.50 0.550.
2 2

ε ⎡ ⎤= − + × − =⎢ ⎥⎣ ⎦
 

 
The ratio of the normal emissivity (εn) to the hemispherical emissivity is 
 

 n 0.8 1.45.
0.550

ε
ε

= =          < 
 
COMMENTS:  Note that Eq. 12.42 is based on the assumption that the directional emissivity is 
independent of the φ coordinate.  If this is not the case, then Eq. 12.41 would need to be evaluated. 



PROBLEM 12.42  
KNOWN:  Incandescent sphere suspended in air within a darkened room exhibiting these 
characteristics: 
 
 initially: brighter around the rim 
 after some time:    brighter in the center  
FIND:  Plausible explanation for these observations.  
ASSUMPTIONS:  (1) The sphere is at a uniform surface temperature, Ts. 
 
ANALYSIS:  Recognize that in observing the   
sphere by eye, emission from the central region 
is in a nearly normal direction.  Emission from 
the rim region, however, has a large angle from 
the normal to the surface. 
 
 
 
Note now the directional behavior, εθ, for conductors and non-conductors as represented in Fig. 12.16. 
 
Assume that the sphere is fabricated from a metallic material.  Then, the rim would appear brighter 
than the central region.  This follows since εθ is higher at higher angles of emission. 
 
If the metallic sphere oxidizes with time, then the εθ characteristics change.  Then εθ at small angles of 
θ become larger than at higher angles.  This would cause the sphere to appear brighter at the center 
portion of the sphere.  
COMMENTS:  Since the emissivity of non-conductors is generally larger than for metallic materials, 
you would also expect the oxidized sphere to appear brighter for the same surface temperature. 



PROBLEM 12.43 
 
KNOWN: Surface area, temperature, and emissivity of the heated surface A1.  Surface area and 
orientation of area A2.  Distance L1 between the two surfaces. 
 
FIND: (a) Distance, L2, between the two surfaces associated with maximum irradiation on 
surface 2, when surface 1 emits diffusely with ε = 0.85.  (b) Distance associated with maximum 
irradiation, when the directional emissivity of surface 1 is εθ = εncosθ.  (c) Plot irradiation on 
surface 2 for 0 ≤ L2 ≤ 10 m. 
 
SCHEMATIC:  
 
 
 
 
 

 
 
 
 
 
 
ASSUMPTIONS:  (1) Surfaces can be treated as differential areas. 
 
ANALYSIS: (a) Treating both surfaces as differential areas, from Eq. 12.7 and Example 12.1, 
 
 ω2-1 = A2cosθ2/r2

 
 
Then from Eq. 12.11 the total radiation from surface 1 to surface 2 is, 
 

q1-2 = Ie1A1cosθ1ω2-1 = (ε1Eb1/π)A1cosθ1(A2cosθ2/r2)            (1) 
 
Since 1 2 2cos cos L / rθ = θ =  and 2 2 2

1 2r L L= + , Eq. (1) can be written 
 

2 2 2 2
1 2 1 b1 1 2 2 1 2q ( E / )A A L /(L L )− = ε π +                                  (2) 

 
We can find the value of L2 corresponding to the maximum value of q1-2 by differentiating Eq. (2) 
with respect to L2 and setting the derivative equal to zero,  
 

 
2 2 3

21 b11 2 1 2 2
1 2 2 2 32 1 2

2L (L L ) 4LEdq A A 0
dL (L L )
−

⎛ ⎞+ −ε ⎜ ⎟= =
⎜ ⎟π +⎝ ⎠

 

12,critL L=                   < 
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PROBLEM 12.43 (Cont.) 
 
(b) We repeat the calculation for the case in which surface 1 is no longer diffuse.  The radiation 
heat transfer rate is still given by Eq. (2), except that the emissivity is the value for radiation in 
the direction corresponding to θ1.  That is,  
 

2 2 2 2 3 2 2 2.5
1 2 n1 1 b1 1 2 n1 b1 1 22 1 2 2 1 2q ( cos E / )A A L /(L L ) ( E / )A A L /(L L )− = ε θ π + = ε π +                  (3) 

 
Differentiating Eq. (3),  
 

2 2 2 4
n1 b11 2 2 1 2 2

1 2 2 2 3.52 1 2

3L (L L ) 5LEdq A A 0
dL (L L )
−

⎛ ⎞+ −ε ⎜ ⎟= =
⎜ ⎟π +⎝ ⎠

 

 

  2 1 1L 3/ 2L 1.225L= =                      < 
 
(c)  Eqs. (2) and (3) were keyed into the IHT workspace and the following graph was generated. 

                   
 
 
 
 
 

< 

 
 
 
 
 
COMMENTS: (1) The value of L2,crit is independent of the object’s temperature or emissivity, 
but does depend on the directional nature of the emissivity.  If the detector is calibrated to 
respond to the proximity of a diffuse object and the object emits as a typical non-metallic 
material, an error of (1.225 – 1)/1.225 = 18% results.  (2) The value of L2,crit can be changed by 
changing the separation distance, L1. (3) The temperature and emissivity of the hotter surface 
must be relatively high, otherwise the reflected component will dominate and the device will not 
work. 
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PROBLEM 12.44 
 
KNOWN:  Temperature of polished stainless steel.  Spectral emissivity distribution. 
 
FIND:  Total hemispherical emissivity using 5-band integration.  Emissive power.  
 
SCHEMATIC: 

 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  Spectral hemispherical and normal emissivities are equal. 
 
ANALYSIS:  From Equation 12.43, 
 

 

5

, 5 5,0 1
( , , 1)

1 1

( ) (0.2)i
i b

b i
i i i i

i ib b

E dE d
T F

E E

λλλ λ
λ λ

ε λε λ
ε ε ε

∞

Δ
=

→ +
= =

= = = =
∑ ∫∫ ∑ ∑  

 
The last equality results from the choice that each band contains 20% of the blackbody emission.  The 
median wavelength for the first band is chosen such that (0 )m

F λ→  = 0.1.  Interpolating in Table 12.1, 

(0 )m
F λ→  = 0.1 when λm,1T = 2195 µm⋅K.  For T = 800 K, λm,1 =  2195 µm⋅K/800 K = 2.74 µm.  From 

Figure 12.17, ε1 = εn,1 ≈ 0.35. The following table can be constructed for all the bands: 
 

Band (0 )m
F λ→  λm (µm) ε 

1 0.1 2.74 0.35 
2 0.3 3.90 0.31 
3 0.5 5.14 0.28 
4 0.7 6.99 0.26 
5 0.9 11.73 0.20 

 
Thus, 
 

 ε = (ε1 + ε2 + ε3 + ε4 + ε5)(0.2) = (0.35 + 0.31 + 0.28 + 0.26 + 0.20)/5 = 0.28 <  
 
 
The surface emissive power is 
 

  E = εσT4 = 0.28 × 5.67 × 10-8 W/m2⋅K × (800 K)4 = 6500 W/m2  < 
 
COMMENTS:  Estimating the average emissivity value directly from Figure 12.17 might suggest an 
average value of about 0.4, leading to a 40% error in the emissive power calculation. Much of the high 
emissivity data plotted in Figure 12.17 are for regions for which there is negligible blackbody 
radiation at 800 K (see Figure 12.12).   



PROBLEM 12.45  
KNOWN:  Radiation thermometer responding to radiant power within a prescribed spectral interval 
and calibrated to indicate the temperature of a blackbody.  
FIND:  (a) Whether radiation thermometer will indicate temperature greater than, less than, or equal to 
Ts when surface has ε < 1, (b) Expression for Ts in terms of spectral radiance temperature and spectral 
emissivity, (c) Indicated temperature for prescribed conditions of Ts and ελ. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Surface is a diffuse emitter, (2) Thermometer responds to radiant flux over 
interval dλ about λ.  
ANALYSIS:  (a) The radiant power which reaches the radiation thermometer is 
 ( ),b s t tq I ,T Aλ λ λε λ ω= ⋅ ⋅         (1) 

where At is the area of the surface viewed by the thermometer (referred to as the target) and ωt the 
solid angle through which At is viewed.  The thermometer responds as if it were viewing a blackbody 
at Tλ, the spectral radiance temperature, 
 ( ),b t tq I ,T A .λ λ λλ ω= ⋅ ⋅         (2) 
By equating the two relations, Eqs. (1) and (2), find 
 ( ) ( ),b ,b sI ,T I ,T .λ λ λ λλ ε λ=        (3) 

Since ελ < 1, it follows that Iλ,b(λ, Tλ) < Iλ,b(λ, Ts) or that Tλ < Ts.  That is, the thermometer will 
always indicate a temperature lower than the true or actual temperature for a surface with ε < 1. 
 
(b) Using Wien’s distribution in Eq. (3), find 

 ( ) ( )5
1 2

1I ,T C exp C / Tλ λ λ λ
π

−= −  
 

 ( ) ( )5 5
1 2 1 2 s

1 1C exp C / T C exp C / T .λ λλ λ ε λ λ
π π

− −− = ⋅ −  

Canceling terms (C1λ
-5/π), taking natural logs of both sides of the equation and rearranging, the 

desired expression is 

 
s 2

1 1 n .
T T C λ

λ

λ ε= + l             (4) < 

(c) For Ts = 1000K and ε = 0.9, from Eq. (4), the indicated temperature is 
 

 ( )
s 2

1 1 1 0.65 mln n 0.9 T 995.3K.
T T C 1000K 14,388 m Kλ λ
λ

λ με
μ

= − = − =
⋅

l   < 

 
That is, the thermometer indicates 5K less than the true temperature. The ratio of the emissive power 
by Wien’s distribution to that by the Planck distribution is, 
 

 
( )

( )
,b,Wien 2

,b,Planck 2

E 1/ exp C / T
.

E 1/ exp C / T 1
λ

λ

λ
λ

=
⎡ ⎤−⎣ ⎦

            Continued... 

 



Problem 12.45 (Cont.) 
 

For the condition λT = 0.65 μm × 1000 K = 650 μm·K, C2/λT = 14388 μm·K/650 μm·K = 22.14 and  
 
 

 
( )

( )
,b Wien

,b Planck

E 1/ exp 22.14
0.995.

E 1/ exp 22.14 1
= =

⎡ ⎤−⎣ ⎦

λ

λ
     < 

 
Thus, Wien’s spectral distribution is an excellent approximation to Planck’s distribution for this 
situation. 



PROBLEM 12.46  
KNOWN:  Spectral distribution of emission from a blackbody.  Uncertainty in measurement of 
intensity.  
FIND:  Corresponding uncertainities in using the intensity measurement to determine (a) the surface 
temperature or (b) the emissivity.  
ASSUMPTIONS:  Diffuse surface behavior.  
ANALYSIS:  From Eq. 12.29, the spectral intensity associated with emission may be expressed as 
 

 
( )

1
,e ,b 5

2

C /I I
exp C / T 1

λ
λ λ λ

ε πε
λ λ

= =
⎡ ⎤−⎣ ⎦

 

 
(a) To determine the effect of temperature on intensity, we evaluate the derivative, 
 

( ) ( )( )
( ){ }

5 2
1 2 2,e

25
2

C / exp C / T C / TI
T

exp C / T 1

λλ ε π λ λ λ

λ λ

−∂
= −

∂
⎡ ⎤−⎣ ⎦
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( )

2
2 2,e

,e
2
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I
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λ
∂

=
∂ −

 

 
Hence, 
 

 
( )

( )
,e2

2 ,e

d I1 exp C / TdT
T C / T I

λ

λ

λ
λ

− −
=  

 
With ( ) 4

,e ,e 2d I / I 0.1, C 1.439 10 m Kλ λ μ= = × ⋅  and 10 m,λ μ=  
 

 
( )1 exp 1439 K / TdT 0.1

T 1439 K / T
⎡ ⎤− −

= ×⎢ ⎥
⎣ ⎦

 

 T = 500 K: dT/T = 0.033 → 3.3% uncertainty     < 
 
 T = 1000 K: dT/T = 0.053 → 5.3% uncertainty     < 
 
(b) To determine the effect of the emissivity on intensity, we evaluate 
 

,e ,e
,b

I I
Iλ λ
λ

λ λε ε
∂

= =
∂

 

Hence, ,e

,e

d Id 0.10 10%
I
λλ

λ λ

ε
ε

= = →  uncertainty      < 

 
COMMENTS:  The uncertainty in the temperature is less than that of the intensity, but increases with 
increasing temperature (and wavelength).  In the limit as C2/λT → 0, exp (- C2/λT) → 1 – C2/λT and 
dT/T → d Iλ,e/Iλ,e.  The uncertainty in temperature then corresponds to that of the intensity 
measurement.  The same is true for the uncertainty in the emissivity, irrespective of the value of T or 
λ. 
 



PROBLEM 12.47  
KNOWN:  Temperature, thickness and spectral emissivity of steel strip emerging from a hot roller.  
Temperature dependence of total, hemispherical emissivity.  
FIND:  (a) Initial total, hemispherical emissivity, (b) Initial cooling rate, (c) Time to cool to prescribed 
final temperature.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible conduction (in longitudinal direction), convection and radiation 
from surroundings, (2) Negligible transverse temperature gradients. 
 
PROPERTIES:  Steel (given):  ρ = 7900 kg/m3, c = 640 J/kg⋅K, ε = 1200εi/T (K). 
 
ANALYSIS:  (a) The initial total hemispherical emissivity is 

 ( ) ( )i b b0
E 1200 / E 1200 dλ λε ε λ

∞
⎡ ⎤= ⎣ ⎦∫  

and integrating by parts using values from Table 12.1, find 
 ( ) ( )0 1 m 0 6 mT 1200 m K F 0.002; T 7200 m K F 0.819μ μλ μ λ μ− −= ⋅ → = = ⋅ → =  
 
 ( ) ( )i 0.6 0.002 0.4 0.819 0.002 0.25 1 0.819 0.373.ε = × + − + − =    < 
(b) From an energy balance on a unit surface area of strip (top and bottom), 

 ( )4
out stE dE / dt 2 T d cT / dtεσ ρδ− = − =&  

 

 
( ) ( )

( )( )

48 2 44
i i

3i

2 0.373 5.67 10 W / m K 1200 KdT 2 T
5.78 K / s.

dt c 7900 kg / m 0.003 m 640 J / kg K

ε σ
ρδ

−− × ⋅
= − = = −

⋅

⎞
⎟
⎠

 < 

(c) From the energy balance, 

 
( ) f

i

4 T ti i
3 2 2T 0 i f i

2 1200 / T TdT dT 2400 c 1 1, dt, t
dt c c 4800T T T

ε σ ε σ ρδ
ρδ ρδ ε σ

⎛ ⎞
⎜ ⎟= − = − = −
⎜ ⎟
⎝ ⎠

∫ ∫  

 
( )3

2
8 2 4 2 2

7900 kg / m 0.003m 640 J / kg K 1 1t K 311 s.
4800 K 0.373 5.67 10 W / m K 600 1200

−
−

⋅ ⎛ ⎞
= − =⎜ ⎟

× × × ⋅ ⎝ ⎠
 < 

 
COMMENTS:  Initially, from Eq. 1.9, hr ≈ 3

i iTε σ  = 36.6 W/m2⋅K.  Assuming a plate width of W = 

1m, the Rayleigh number may be evaluated from RaL = gβ(Ti - T∞) (W/2)3/να.  Assuming T∞ = 300 
K and evaluating properties at Tf = 750 K, RaL = 1.8 × 108.  From Eq. 9.31, NuL = 84, giving h  = 9.2 
W/m2⋅K.  Hence heat loss by radiation exceeds that associated with free convection.  To check the 
validity of neglecting transverse temperature gradients, compute Bi = h(δ/2)/k.  With h = 36.6 W/m2⋅K 
and k = 28 W/m⋅K, Bi = 0.002 << 1.  Hence the assumption is valid. 



PROBLEM 12.48  
KNOWN:  Large body of nonluminous gas at 1200 K has emission bands between 2.5 – 3.5 μm and 
between 5 – 8 μm with effective emissivities of 0.8 and 0.6, respectively.  
FIND:  Emissive power of the gas.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Gas radiates only in specified bands, (2) Emitted radiation is diffuse.  
ANALYSIS:  The emissive power of the gas is 
 

 ( ) ( )g b g ,b g0
E E T E T dλ λε ε λ

∞
= = ∫  

 

 ( ) ( )3.5 8
g ,1 ,b g ,2 ,b g2.5 5

E E T d E T dλ λ λ λε λ ε λ= +∫ ∫  
 

 ( )
4

g 1 2 (5 8 m) g2.5 3.5 mE F F T .μμε ε σ−−
⎡ ⎤= +⎢ ⎥⎣ ⎦

 
 
Using the blackbody function F(0-λT) from Table 12.1 with Tg = 1200 K, 
 
  λT(μm⋅K) 2.5 × 1200 3.5 × 1200 5 × 1200 8 × 1200 
       3000     4200     6000     9600 
  F(0-λT)     0.273     0.516     0.738     0.905 
 
so that 
 

( ) ( ) ( )2.5 3.5 m 0 3.5 m 0 2.5 mF F F 0.516 0.273 0.243μ μ μ− − −= − = − =  
 
 ( ) ( ) ( )5 8 m 0 8 m 0 5 mF F F 0.905 0.738 0.167.μ μ μ− − −= − = − =  
 
Hence the emissive power is 
 

 [ ] ( )48 2 4
gE 0.8 0.243 0.6 0.167 5.67 10 W / m K 1200 K−= × + × × ⋅  

 
 2 2

gE 0.295 117,573 W / m 34,684 W / m .= × =      < 
 
COMMENTS:  Note that the effective emissivity for the gas is 0.295.  This seems surprising since 
emission occurs only at the discrete bands.  Since λmax = 2.4 μm, all of the spectral emissive power is 
at wavelengths beyond the peak of blackbody radiation at 1200 K. 



PROBLEM 12.49  
KNOWN:  An opaque surface with prescribed spectral, hemispherical reflectivity distribution is 
subjected to a prescribed spectral irradiation.  
FIND:  (a) The spectral, hemispherical absorptivity, (b) Total irradiation, (c) The absorbed radiant 
flux, and (d) Total, hemispherical absorptivity.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Surface is opaque.  
ANALYSIS:  (a) The spectral, hemispherical absorptivity, αλ, for an opaque surface is given by Eq. 
12.62, 

 1λ λα ρ= −           < 

which is shown as a dashed line on the ρλ distribution axes. 
 
(b) The total irradiation, G, follows from Eq. 12.19 which can be integrated by parts, 

 
5 m 10 m 20 m

0 0 5 m 10 m
G G d G d G d G d

μ μ μ
λ λ λ λμ μ
λ λ λ λ

∞
= = + +∫ ∫ ∫ ∫  

 

( ) ( ) ( )2 2 2
1 W W 1 WG 600 5 0 m 600 10 5 m 600 20 10 m
2 2m m m m m m

μ μ μ
μ μ μ

= × − + − + × × −
⋅ ⋅ ⋅

 

 2G 7500 W / m .=          < 
 
(c) The absorbed irradiation follows from Eqs. 12.51 and 12.52 with the form 

 
5 m 10 m 20 m

abs 1 ,2 30 0 5 m 10 m
G G d G d G d G d .

μ μ μ
λ λ λ λ λ λμ μ

α λ α λ α λ α λ
∞

= = + +∫ ∫ ∫ ∫  

Noting that α1 = 1.0 for λ = 0 → 5 μm, Gλ,2 = 600 W/m2⋅μm for λ = 5 → 10 μm and α3 = 0 for λ > 
10 μm, find that 
 

( )( ) ( )( )2 2
absG 1.0 0.5 600 W / m m 5 0 m 600 W / m m 0.5 0.5 10 5 m 0μ μ μ μ= × ⋅ − + ⋅ × − +  

 2
absG 2250 W / m .=          < 

 
(d) The total, hemispherical absorptivity is defined as the fraction of the total irradiation that is 
absorbed.  From Eq. 12.51, 

 
2

abs
2

G 2250 W / m 0.30.
G 7500 W / m

α = = =        < 

COMMENTS:  Recognize that the total, hemispherical absorptivity, α = 0.3, is for the given spectral 
irradiation.  For a different Gλ, one would then expect a different value for α. 



PROBLEM 12.50 
 
KNOWN:  Temperature and spectral emissivity of small object suspended in large furnace of prescribed 
temperature and total emissivity. 
 
FIND:  (a) Total surface emissivity and absorptivity, (b) Reflected radiative flux and net radiative flux to 
surface, (c) Spectral emissive power at λ = 2 μm, (d) Wavelength λ1/2 for which one-half of total emissive 
power is in spectral region λ ≥ λ1/2.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Surface is opaque and diffuse, (2) Walls of furnace are much larger than object. 
 
ANALYSIS:  (a) The emissivity of the object may be obtained from Eq. 12.43, which is expressed as 
 

 ( )
( ) ( )

( ) ( ) ( ) ( )
,b so

s 1 20 3 m 0 1 m 0 3 m
b

E ,T d
T F F 1 F

E T

λ λ
μ μ μ

ε λ λ λ
ε ε ε

∞

→ → →= = − + −⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦

∫
 

 
where, with λ1Ts = 400 μm⋅K and λ2Ts = 1200 μm⋅K, F(0→1μm) = 0 and ( )0 3 mF μ→  = 0.002.  Hence, 

 ( ) ( ) ( )sT 0.7 0.002 0.5 0.998 0.500ε = + =  < 
 
The absorptivity of the surface is determined by Eq. 12.52, 
 

 
( ) ( )

( )

( ) ( )
( )

,b fo o

b f
o

G d E ,T d

E TG d

λ λ λ λ

λ

α λ λ λ α λ λ λ
α

λ λ

∞ ∞

∞
= =
∫ ∫

∫
 

 
Hence, with λ1Tf = 2000 μm⋅K and λ2Tf = 6000 μm⋅K, F(0→1μm) = 0.067 and ( )0 3 mF μ→  = 0.738.  It 

follows that 

 ( ) ( ) ( )1 20 3 m 0 1 m 0 3 mF F 1 F 0.7 0.671 0.5 0.262 0.601μ μ μα α α→ → →= − + − = × + × =⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦  < 

 
(b) The reflected radiative flux is 

( ) ( ) ( )48 2 4 5 2
ref b fG G 1 E T 0.399 5.67 10 W m K 2000 K 3.620 10 W mρ α −= = − = × × ⋅ = ×  < 

 
The net radiative flux to the surface is 
 ( ) ( ) ( )rad b s b f b sq G G E T E T E Tρ ε α ε′′ = − − = −  

 ( ) ( )4 48 2 4 5 2
radq 5.67 10 W m K 0.601 2000 K 0.500 400 K 5.438 10 W m−′′ = × ⋅ − = ×⎡ ⎤

⎢ ⎥⎣ ⎦
 < 

(c) At λ = 2 μm, λTs = 800 K and, from Table 12.1, Iλ,b(λ,T)/σT5 = 0.991 × 10-7 (μm⋅K⋅sr)-1.  Hence, 
Continued... 



 
PROBLEM 12.50 (Cont.) 

 

 ( )
2 4

57 8
,b 2

W m K W
I 0.991 10 5.67 10 400 K 0.0575

m K sr m m sr
λ μ μ

− − ⋅
= × × × × =

⋅ ⋅ ⋅ ⋅
 

 
Hence, with Eλ = ελEλ,b = ελπIλ,b, 

 ( ) 2 2E 0.7 sr 0.0575 W m m sr 0.126 W m mλ π μ μ= ⋅ ⋅ = ⋅  < 
 
(d) From Table 12.1, F(0→λ) = 0.5 corresponds to λTs ≈ 4100 μm⋅K, in which case,  

 1/ 2 4100 m K 400 K 10.3 mλ μ μ≈ ⋅ ≈  < 
 
COMMENTS:  Because of the significant difference between Tf and Ts, α ≠ ε.  With increasing Ts → Tf, 
ε would increase and approach a value of 0.601. 



PROBLEM 12.51 
 
KNOWN:  Small flat plate maintained at 400 K coated with white paint having spectral absorptivity 
distribution (Figure 12.22) approximated as a stairstep function.  Enclosure surface maintained at 3000 K 
with prescribed spectral emissivity distribution.  
FIND:  (a) Total emissivity of the enclosure surface, εes, and (b) Total emissivity, ε, and absorptivity, α, 
of the surface. 
 
SCHEMATIC: 

  
ASSUMPTIONS: (1) Coated plate with white paint is diffuse and opaque, so that αλ = ελ, (2) Plate is 
small compared to the enclosure surface, and (3) Enclosure surface is isothermal, diffuse and opaque. 
 
ANALYSIS:  (a) The total emissivity of the enclosure surface at Tes = 3000 K follows from Eq. 12.43 
which can be expressed in terms of the bond emission factor, F(0-λT), Eq. 12.35, 

 ( ) ( )1 es 1 ese,s 1 20 T 0 TF 1 Fλ λε ε ε− −= + −⎡ ⎤
⎣ ⎦  [ ]0.2 0.738 0.9 1 0.738 0.383= × + − =  < 

where, from Table 12.1, with λ1Tes = 2 μm × 3000 K = 6000 μm⋅K, F(0-λT) = 0.738. 
 
(b) The total emissivity of the coated plate at T = 400 K can be expressed as 

 ( ) ( ) ( ) ( )1 s 2 s 1 s 2 s1 2 30 T 0 T 0 T 0 TF F F 1 Fλ λ λ λε α α α− − − −= + − + −⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦  

 [ ] [ ]0.75 0 0.15 0.002134 0.000 0.96 1 0.002134 0.958ε = × + − + − =  < 
where, from Table 12.1, the band emission factors are:  for λ1Ts = 0.4 × 400 = 160 μm⋅K, find 

( )1 s0 TF λ− = 0.000; for λ2Tes = 3.0 × 400 = 1200 μm⋅K, find ( )2 s0 TF λ−  = 0.002134.  The total 

absorptivity for the irradiation due to the enclosure surface at Tes = 3000 K is 

 ( ) ( ) ( ) ( )1 es 2 es 2 es 2 es1 2 30 T 0 T 0 T 0 TF F F 1 Fλ λ λ λα α α α− − − −= + − + −⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦  

 [ ] [ ]0.75 0.002134 0.15 0.8900 0.002134 0.96 1 0.8900 0.240α = × + − + − =  < 
where, from Table 12.1, the band emission factors are:  for λ1Tes  = 0.4 × 3000 = 1200 μm⋅K, find 

( )1 es0 TF λ−  = 0.002134; for λ2Tes  = 3.0 × 3000 = 9000 μm⋅K, find ( )2 es0 TF λ− = 0.8900. 
  
COMMENTS: (1) In evaluating the total emissivity and absorptivity, remember that ε ε ελ= ,Tsb g  and α 
= α(αλ, Gλ) where Ts is the temperature of the surface and Gλ is the spectral irradiation, which if the 
surroundings are large and isothermal, Gλ = Eb,λ(Tsur).  Hence, α = α(αλ ,Tsur ).  For the opaque, diffuse 
surface, αλ = ε λ. (2) Note that the coated plate (white paint) has an absorptivity for the 3000 K-enclosure 
surface irradiation of α = 0.240.  You would expect it to be a low value since the coating appears visually  
“white”.  (3) The emissivity of the coated plate is quite high, ε  = 0.958.  Would you have expected this 
of a  “white paint”?  Most paints are oxide systems (high absorptivity at long wavelengths) with 
pigmentation (controls the “color” and hence absorptivity in the visible and near infrared regions).  



PROBLEM 12.52  
KNOWN:  Area, temperature, irradiation and spectral absorptivity of a surface.  
FIND:  Absorbed irradiation, emissive power, radiosity and net radiation transfer from the surface.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Opaque, diffuse surface behavior, (2) Spectral distribution of solar radiation 
corresponds to emission from a blackbody at 5800 K.  
ANALYSIS:  The absorptivity to solar irradiation is 

 
( )

( ) ( )
b0 0

s 1 20.5 1 m 2
b

G d E 5800 K d
F F .

G E
λ λ λ λ

μ
α λ α λ

α α α

∞ ∞

→ →∞= = = +
∫ ∫

 

 
From Table 12.1,  λT = 2900 μm⋅K:  F(0 → 0.5 μm) = 0.250 
    λT = 5800 μm⋅K:  F(0 → 1 μm) = 0.720 
    λT = 11,600 μm⋅K:  F(0 → 2 μm) = 0.941 
 
 ( ) ( )s 0.8 0.720 0.250 0.9 1 0.941 0.429.α = − + − =  
 

Hence,  ( )2 2
abs S SG G 0.429 1200 W / m 515 W / m .α= = =    < 

 
The emissivity is 

 ( ) ( ) ( )b b 1 20.5 1 m 20
E 400 K d / E F F .λ λ με ε λ ε ε

∞
→ →∞= = +∫  

 
From Table 12.1,  λT = 200 μm⋅K:  F(0 → 0.5 μm) = 0 
    λT = 400 μm⋅K:  F(0 → 1 μm) = 0 
    λT = 800 μm⋅K   F(0 → 2 μm) = 0. 
 
Hence, ε = ε2 = 0.9, 

 ( )44 8 2 4 2
sE T 0.9 5.67 10 W / m K 400 K 1306 W / m .εσ −= = × × ⋅ =   < 

 
The radiosity is 

 ( ) [ ] 2 2
S S s SJ E G E 1 G 1306 0.571 1200 W / m 1991 W / m .ρ α= + = + − = + × =  < 

 
The net radiation transfer from the surface is 
 
 ( ) ( ) 2 2

net S S sq E G A 1306 515 W / m 4 m 3164 W.α= − = − × =    < 
 
COMMENTS:  Unless 3164 W are supplied to the surface by other means (for example, by 
convection), the surface temperature will decrease with time. 



PROBLEM 12.53 
 
KNOWN:  Solar irradiation, specular reflectivity of polished silver, absorptivity of wood, cumulative 
irradiation of N mirrors from N students, Gs,N = 70,000 W/m2 as in Problem 4.51. 
 
FIND:  (a) Number of students, N, for first-surface mirrors, (b) Number of students, N, for second-
surface mirrors. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Spectral transmissivity of plain glass as in Problem 12.62, (2) Solar irradiation 
is that of a blackbody at Ts = 5800 K. 
 
ANALYSIS:   (a) From the schematic for the first-surface mirror, 
 

 ,s N s m wG NG ρ α=   or  
2

,
2

70,000W/m 90
1000 W / m 0.98 0.80

s N

s m w

G
N

G ρ α
= = =

× ×
     < 

 
where ρm is the reflectivity of the silver surface and αw is the absorptivity of the wood.  
 
(b) From the schematic for a second-surface mirror, ,s N s g m wG NG τ ρ α=  where τg is the 
transmissivity of the plain glass.  Using Table 12.1,  
 

λ2 = 2.5 μm  λ2T = 2.5 μm × 5800 K = 14,500 μm⋅K  F(0→λ2) = 0.966 
λ1 = 0.3 μm     λ1T = 0.3 μm × 5800 K = 1740 μm⋅K  F(0→λ1) = 0.033 

 
τg = 0.9(0.966 – 0.033) = 0.839 and  
 

 
2

,
2

70,000W/m 106
1000 W / m 0.839 0.98 0.80

s N

s g m w

G
N

G τ ρ α
= = =

× × ×
   < 

 
COMMENTS: (1)The first-surface mirror is preferred in order to maximize the irradiation 
of the target. (2) First-surface mirrors are used in applications involving large radiation heat 
fluxes, such as in laser processing. Use of a second-surface mirrors might lead to excessive 
heating of the mirror material (glass) and failure of the mirrors. 
 
  

Gs = 1000 W/m2

One of
N mirrors

Target

θ = 45°



PROBLEM 12.54  
KNOWN:  Temperature and spectral emissivity of a receiving surface.  Direction and spectral 
distribution of incident flux.  Distance and aperture of surface radiation detector.  
FIND:  Radiant power received by the detector.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Target surface is diffuse, (2) Ad/L2 << 1. 
 
ANALYSIS:  The radiant power received by the detector depends on emission and reflection from the 
target. 
 d e r s d s d sq I A cosθ ω+ − −= Δ  

 
4
s d

d s 2
T G Aq A

L

εσ ρ
π
+

=  

 
( )

( ) ( ) ( )
b0

1 23 10 m 10
b

E 700 K d
F F .

E 700 K
λ λ

μ
ε λ

ε ε ε

∞

→ →∞= = +
∫

 

From Table 12.1,  λT = 2100 μm⋅K:  F(0 → 3 μm) = 0.0838 
    λT = 7000 μm⋅K:  F(0 → 10 μm) = 0.8081. 
 
The emissivity can be expected as 
 ( ) ( )0.5 0.8081 0.0838 0.9 1 0.8081 0.535.ε = − + − =  
Also, 

 
( )

( ) ( )
0 0

1 3 m 3 6 m
G d 1 q d

1 F 0.5 F
G q

∞ ∞

→ →

′′−
= = = × + ×

′′
∫ ∫λ λ λ λ

μ μ
ρ λ ε λ

ρ  

 1 0.4 0.5 0.6 0.70.ρ = × + × =  

Hence, with 2
iG q cos 866 W / m ,θ′′= =  

 

 
( )

( )

48 2 4 2 5 2
4 2

d 2
0.535 5.67 10 W / m K 700 K 0.7 866 W / m 10 mq 10 m

1mπ

− −
−× × ⋅ + ×

=  

 
 6

dq 2.51 10 W.−= ×          < 
 
COMMENTS:  A total radiation detector cannot discriminate between emitted and reflected radiation 
from a surface. 



PROBLEM 12.55  
KNOWN:  Small disk positioned at center of an isothermal, hemispherical enclosure with a small 
aperture.  
FIND:  Radiant power [μW] leaving the aperture.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Disk is diffuse-gray, (2) Enclosure is isothermal and has area much larger than 
disk, (3) Aperture area is very small compared to enclosure area, (4) Areas of disk and aperture are 
small compared to radius squared of the enclosure.  
ANALYSIS:  The radiant power leaving the aperture is due to radiation leaving the disk and to 
irradiation on the aperture from the enclosure.  That is, 
 ap 1 2 2 2q q G A .→= + ⋅         (1) 

The radiation leaving the disk can be written in terms of the radiosity of the disk.  For the diffuse disk, 

 1 2 1 1 1 2 1
1q J A cosθ ω
π→ −= ⋅ ⋅         (2) 

and with ε = α for the gray behavior, the radiosity is 

 ( ) ( )4 4
1 1 b 1 1 1 11 3J E T G T 1 Tε ρ ε σ ε σ= + = + −      (3) 

where the irradiation G1 is the emissive power of the black enclosure, Eb (T3); G1 = G2 = Eb (T3).  
The solid angle ω2 – 1 follows from Eq. 12.7, 
 
 2

2 1 2A / R .ω − =          (4) 
 
Combining Eqs. (2), (3) and (4) into Eq. (1) with 4

2 3G T ,σ=  the radiant power is 
 

 ( )4 4 42
ap 1 1 1 1 21 3 32

1 Aq T 1 T A cos A T
R

σ ε ε θ σ
π

⎡ ⎤= + − ⋅ +⎢ ⎥⎣ ⎦
 

 

 ( ) ( )( ) ( )4 4 28
ap 2 4

1 Wq 5.67 10 0.7 900K 1 0.7 300K 0.005m cos 45
4m K

π
π

− ⎡ ⎤= × + − °×⎢ ⎥⎣ ⎦⋅
 

  
( )

( )
( ) ( )

2
2 48 2 4

2
/ 4 0.002m

0.002m 5.67 10 W / m K 300K
40.100m

π π −+ × ⋅  

 
 ( )apq 36.2 0.19 1443 W 1479 W.μ μ= + + =       < 
 
COMMENTS:  Note the relative magnitudes of the three radiation components.  Also, recognize that 
the emissivity of the enclosure ε3 doesn’t enter into the analysis.  Why? 



PROBLEM 12.56  
KNOWN:  Spectral, hemispherical absorptivity of an opaque surface.  
FIND:  (a) Solar absorptivity, (b) Total, hemispherical emissivity for Ts = 340K. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Surface is opaque, (2) ελ = αλ, (3) Solar spectrum has Gλ = Gλ,S proportional 
to Eλ,b (λ, 5800K). 
 
ANALYSIS:  (a) The solar absorptivity follows from Eq. 12.53. 

 ( ) ( ) ( )S ,b ,b0 0
E ,5800K d / E ,5800K d .λ λ λα α λ λ λ λ λ

∞ ∞
= ∫ ∫  

 
The integral can be written in three parts using F(0 → λ) terms. 

 ( ) ( ) ( ) ( )S 1 2 30 0.3 m 0 1.5 m 0 0.3 m 0 1.5 mF F F 1 F .→ → → →
⎡ ⎤ ⎡ ⎤= + − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦μ μ μ μα α α α  

 
From Table 12.1, 
 
 λT = 0.3 × 5800 = 1740 μm⋅K  F(0 → 0.3 μm) = 0.0335 
 λT = 1.5 × 5800 = 8700 μm⋅K  F(0 → 1.5 μm) = 0.8805. 
 
Hence, 

 [ ] [ ]S 0 0.0355 0.9 0.8805 0.0335 0.1 1 0.8805 0.774.α = × + − + − =    < 
 
(b) The total, hemispherical emissivity for the surface at 340K will be 
 

 ( ) ( ) ( ),b b0
E ,340K d / E 340K .λ λε ε λ λ λ

∞
= ∫  

 
If ελ = αλ, then using the αλ distribution above, the integral can be written in terms of F(0 → λ) values.  
It is readily recognized that since 
 
 ( )0 1.5 m,340KF 0.000 at T 1.5 340 510 m Kμ λ μ→ ≈ = × = ⋅  
 
there is negligible spectral emissive power below 1.5 μm.  It follows then that 
 
 0.1λ λε ε α= = =          < 
 
COMMENTS:  The assumption ελ = αλ can be satisfied if this surface were irradiated diffusely or if 
the surface itself were diffuse.  Note that for this surface under the specified conditions of solar 
irradiation and surface temperature αS ≠ ε.  Such a surface is referred to as a spectrally selective 
surface. 



PROBLEM 12.57  
KNOWN:  Spectral distribution of the absorptivity and irradiation of a surface at 1000 K.  
FIND:  (a) Total, hemispherical absorptivity, (b) Total, hemispherical emissivity, (c) Net radiant flux 
to the surface.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) αλ = ελ. 
 
ANALYSIS:  (a) From Eq. 12.52, 
 

 

2 m 4 m 6 m
0 0 2 4

2 m 4 m 6 m
0 0 2 4

G d G d G d G d

G d G d G d G d

μ μ μ
λ λ λ λ λ λ λ λ λ

μ μ μ
λ λ λ λ λ

α α λ α λ α λ
α

λ λ λ

∞

∞

+ +
= =

+ +

∫ ∫ ∫ ∫
∫ ∫ ∫ ∫

 

 

 
( ) ( ) ( )
( ) ( )( ) ( )

0 1/ 2 2 0 5000 0.6 4 2 5000 0.6 1/ 2 6 4 5000
1/ 2 2 0 5000 4 2 5000 1/ 2 6 4 5000

α
× − + − + × −

=
− + − + −

 

 

 
9000 0.45.

20,000
α = =          < 

 
(b) From Eq. 12.43, 

 

2 m
,b ,b ,b0 0 2

b b b

E d 0 E d 0.6 E d

E E E

μ
λ λ λ λε λ λ λ

ε

∞ ∞

= = +
∫ ∫ ∫

 

 

 ( ) ( )2 m 0 2 m0.6F 0.6 1 F .μ με →∞ →
⎡ ⎤= = −⎢ ⎥⎣ ⎦

 
 
From Table 12.1, with λT = 2 μm × 1000K = 2000 μm⋅K, find F(0 → 2 μm) = 0.0667.  Hence, 
 
 [ ]0.6 1 0.0667 0.56.ε = − =         < 
 
(c) The net radiant heat flux to the surface is 
 
 4

rad,netq G E G Tα α ε σ′′ = − = −  
 

 ( ) ( )42 8 2 4
rad,netq 0.45 20,000 W / m 0.56 5.67 10 W / m K 1000K−′′ = − × × ⋅ ×  

 
 ( ) 2 2

rad,netq 9000 31,751 W / m 22,751W / m .′′ = − = −     < 



PROBLEM 12.58  
KNOWN:  Spectral distribution of surface absorptivity and irradiation.  Surface temperature.  
FIND:  (a) Total absorptivity, (b) Emissive power, (c) Nature of surface temperature change.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Opaque, diffuse surface behavior, (2) Convection effects are negligible.  
ANALYSIS:  (a) From Eqs. 12.51 and 12.52, the absorptivity is defined as 
 

 abs 0 0
G / G G d / G d .λ λ λα α λ λ

∞ ∞
≡ = ∫ ∫  

 
The absorbed irradiation is, 
 

( ) ( )2 2 2
absG 0.4 5000 W / m m 2 m / 2 0.8 5000 W / m m 5 2 m 0 14,000 W / m .μ μ μ μ= ⋅ × + × ⋅ − + =  

 
The irradiation is, 
 

 ( ) ( )2 2 2G 2 m 5000 W / m m / 2 10 2 m 5000 W / m m 45,000 W / m .μ μ μ μ= × ⋅ + − × ⋅ =  
 
Hence,  2 214,000 W / m / 45,000 W / m 0.311.α = =     < 
 
(b) From Eq. 12.43, the emissivity is 
 

 
2 5

,b b ,b b ,b b0 0 2
E d / E 0.4 E d / E 0.8 E d / Eλ λ λ λε ε λ λ λ

∞
= = +∫ ∫ ∫  

 
From Table 12.1, λT =2 μm × 1250K = 2500K,  F(0 – 2) = 0.162 
   λT = 5 μm × 1250K = 6250K,  F(0 – 5) = 0.757. 
 
Hence, ( )0.4 0.162 0.8 0.757 0.162 0.54.ε = × + − =  
 

 ( )44 8 2 4 2
bE E T 0.54 5.67 10 W / m K 1250K 74,751 W / m .ε ε σ −= = = × × ⋅ =  < 

 
(c) From an energy balance on the surface, the net heat flux to the surface is 
 
 ( ) 2 2

netq G E 14,000 74,751 W / m 60,751W / m .α′′ = − = − = −  
 
Hence the temperature of the surface is decreasing.      < 
 
COMMENTS:  Note that α ≠ ε.  Hence the surface is not gray for the prescribed conditions. 



PROBLEM 12.59  
KNOWN:  Spectral emissivity of an opaque, diffuse surface. 
 
FIND:  (a)  Total, hemispherical emissivity of the surface when maintained at 1000 K,  (b) Total, 
hemispherical absorptivity when irradiated by large surroundings of emissivity 0.8 and temperature 1500 
K,  (c) Radiosity when maintained at 1000 K and irradiated as prescribed in part (b),  (d) Net radiation 
flux into surface for conditions of part (c),  and  (e) Compute and plot each of the parameters of parts (a)-
(c) as a function of the surface temperature Ts for the range 750 < Ts ≤ 2000 K.   
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1)  Surface is opaque, diffuse, and  (2) Surroundings are large compared to the 
surface. 
 
ANALYSIS:  (a)  When the surface is maintained at 1000 K, the total, hemispherical emissivity is 
evaluated from Eq. 12.43 written as 
 

 1
,b b ,1 ,b b ,2 ,b b0 0 1

E (T) d E (T) E (T) d E (T) E (T) d E (T)
λ

λ λ λ λ λ λλ
ε ε λ ε λ ε λ

∞ ∞
= = +∫ ∫ ∫  

 
 1 1,1 (0 T) ,2 (0 T)F (1 F )λ λ λ λε ε ε− −= + −  
 
where for λT  =  6μm × 1000 K  =  6000μm⋅K, from Table 12.1, find 0 TF 0.738λ− = .  Hence, 

 ε  =  0.8 × 0.738 + 0.3(1 − 0.738)  =  0.669. < 
 
(b)  When the surface is irradiated by large surroundings at Tsur = 1500 K,  G =  Eb(Tsur). 
From Eq. 12.52, 

 ,b sur b sur0 0 0
G d G d E (T ) d E (T )λ λ λ λ λα α λ λ ε λ

∞ ∞ ∞
= =∫ ∫ ∫  

 1 sur 1 sur,1 (0 T ) ,2 (0 T )F (1 F )λ λ λ λα ε ε− −= + −  

where for λ1Tsur  =  6 μm × 1500 K  =  9000 μm⋅K, from Table 12.1, find (0 T)F 0.890λ− = .  Hence, 

 α  =  0.8 × 0.890 + 0.3 (1 − 0.890)  =  0.745. < 
Note that α ελ λ=  for all conditions and the emissivity of the surroundings is irrelevant. 
 
(c)  The radiosity for the surface maintained at 1000 K and irradiated as in part (b) is  
 J  =  εEb (T) + ρG  =  εEb (T) + (1 − α)Eb (Tsur) 
 J  =  0.669 × 5.67 × 10-8 W/m2 ⋅K4 (1000 K)4 + (1 − 0.745) 5.67 × 10-8 W/m2 ⋅K4 (1500 K)4 

 J  =  (37,932 + 73,196) W/m2 = 111,128 W/m2 < 

 
Continued... 



 PROBLEM 12.59 (Cont.) 

(d)  The net radiation flux into the surface with G Tsur= σ 4  is 
 
 q″rad,in  =  αG − εE b (T)  =  G − J 
 
 q″rad,in  =  5.67 × 10-8 W/m2 ⋅K (1500 K)4 − 111,128 W/m2 

 q″rad,in  =  175,915 W/m2. < 
 

 
(e)  The foregoing equations were entered into the IHT workspace along with the IHT Radiaton Tool, 
Band Emission Factor, to evaluate F T( )0−λ  values and the respective parameters for parts (a)-(d) were 
computed and are plotted below. 
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Note that the absorptivity, sur( , T )λα α α= , remains constant as Ts changes since it is a function of 
(or )λ λα ε  and Tsur only.  The emissivity s( ,T )λε ε ε=  is a function of Ts and increases as Ts increases.  

Could you have surmised as much by looking at the spectral emissivity distribution?  At what condition is 
ε = α? 
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The radiosity, J1 increases with increasing Ts since Eb(T) increases markedly with temperature; the 
reflected irradiation, (1 - α)Eb(Tsur) decreases only slightly as Ts increases compared to Eb(T).  Since G is 
independent of Ts, it follows that the variation of rad,inq′′  will be due to the radiosity change; note the sign 
difference. 
 
COMMENTS:  We didn’t use the emissivity of the surroundings (ε = 0.8) to determine the irradiation 
onto the surface.  Why?  



PROBLEM 12.60  
KNOWN:  Furnace wall temperature and aperture diameter.  Distance of detector from aperture and 
orientation of detector relative to aperture.  
FIND:  (a) Rate at which radiation from the furnace is intercepted by the detector, (b) Effect of 
aperture window of prescribed spectral transmissivity on the radiation interception rate.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Radiation emerging from aperture has characteristics of emission from a 
blackbody, (2) Cover material is diffuse, (3) Aperture and detector surface may be approximated as 
infinitesimally small.  
ANALYSIS:  (a) From Eq. 12.12, the heat rate leaving the furnace aperture and intercepted by the 
detector is 
 
 e a 1 s aq I A cos .θ ω −=  
 
From Eqs. 12.17 and 12.32 
 

 
( ) ( )4 48

b f 4 2f
e

TE T 5.67 10 1500
I 9.14 10 W / m sr.

σ
π π π

−×
= = = = × ⋅  

 
From Eq. 12.7, 

 
( )

5 2
5s 2n

s a 2 2 2
A cosA 10 m cos 45 0.707 10 sr.

r r 1m

θω
−

−
−

⋅ × °
= = = = ×  

Hence 

 ( )24 2 5 4q 9.14 10 W / m sr 0.02m / 4 cos30 0.707 10 sr 1.76 10 W.π − −⎡ ⎤= × ⋅ °× × = ×⎢ ⎥⎣ ⎦
 < 

(b) With the window, the heat rate is 
 
 ( )e a 1 s aq I A cosτ θ ω −=  
 
where τ is the transmissivity of the window to radiation emitted by the furnace wall.  From Eq. 12.61, 
 

 
( )

( ) ( )
,b f 20 0

,b b 0 2 m0
,b0 0

G d E T d
0.8 E / E d 0.8F .

G d E d

λ λ λ λ
λ μ

λ λ

τ λ τ λ
τ λ

λ λ

∞ ∞

→∞ ∞
= = = =
∫ ∫

∫
∫ ∫

 

 
With λT = 2 μm × 1500K = 3000 μm⋅K, Table 12.1 gives F(0 → 2 μm) = 0.273.  Hence, with τ = 0.273 
× 0.8 = 0.218, find 
 
 4 4q 0.218 1.76 10 W 0.384 10 W.− −= × × = ×       < 



PROBLEM 12.61 
 

 
KNOWN: Approximate spectral transmissivity of 1-mm thick liquid water layer. 
 
FIND: (a) Transmissivity of a 1-mm thick water layer adjacent to surface at the critical 
temperature (Ts = 647.3 K), (b) Transmissivity of a 1-mm thick water layer subject to irradiation 
from a melting platinum wire (Ts = 2045 K), (c) Transmissivity of a 1-mm thick water layer 
subject to solar irradiation at Ts = 5800 K. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: Irradiation is proportional to that of a blackbody. 
 
ANALYSIS: From Eq. 12.61 and incorporating the assumption, the transmissivity is expressed as 

 

1.2 1.8
,b ,1 ,b ,2 ,b ,3 ,b0 0 1.2 1.8

b b b b

E d E d E d E d

E E E E

∞ ∞
λ λ λ λ λ λ λ λτ λ τ λ τ λ τ λ

τ = = + +
∫ ∫ ∫ ∫     or 

 ,1 (0 1.2 m) ,2 (1.2 1.8 m) ,3 (1.8 m )F F Fλ − μ λ − μ λ μ −∞τ = τ + τ + τ  
 
where F(1.2 - 1.8μm) = F(0 - 1.8μm) - F(0 - 1.2μm) and F(1.8μm - ∞) = 1 - F(0 - 1.2μm) - F(1.2 - 1.8μm) 

 
(a) For a source temperature of 647.3 K,  
 F(0 - 1.2μm) = 1.414 × 10-5, F(0 - 1.8μm) = 0.001818 

 τ = 0.99 × 1.414 × 10-5 + 0.54 × (0.001818 – 1.414 × 10-5) = 0.00099  < 
 
(b) For a source temperature of 2045 K,  
 F(0 - 1.2μm) = 0.1518, F(0 - 1.8μm) = 0.4197 

 τ = 0.99 × 0.1518 + 0.54 × (0.4197 – 0.1518) = 0.295    < 
 
(c) For a source temperature of 5800 K,  
 F(0 - 1.2μm) = 0.8057, F(0 - 1.8μm) = 0.9226 

 τ = 0.99 × 0.8057 + 0.54 × (0.9226 – 0.8057) = 0.861    < 
 
COMMENTS: Liquid water may be treated as opaque for most engineering applications. 
Exceptions include applications involving solar irradiation, irradiation from very high 
temperature plasmas that can achieve temperatures at tens of thousands of kelvins, and situations 
involving very thin layers of liquid water. 

λ(μm)

τλ

0 1 1.2 1.8 2

1.0

0.5

0

τλ,1 = 0.99

τλ,2 = 0.54

τλ,3 = 0

λ(μm)

τλ

0 1 1.2 1.8 2

1.0

0.5

0

τλ,1 = 0.99

τλ,2 = 0.54

τλ,3 = 0



PROBLEM 12.62  
KNOWN:  Spectral transmissivity of a plain and tinted glass.  
FIND:  (a) Solar energy transmitted by each glass, (b) Visible radiant energy transmitted by each with 
solar irradiation.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Spectral distribution of solar irradiation is proportional to spectral emissive 
power of a blackbody at 5800K.  
ANALYSIS:  To compare the energy transmitted by the glasses, it is sufficient to calculate the 
transmissivity of each glass for the prescribed spectral range when the irradiation distribution is that of 
the solar spectrum.  From Eq. 12.61, 

 ( ) ( )S ,S ,S ,b b0 0 0
G d / G d E ,5800K d / E 5800K .λ λ λ λ λτ τ λ λ τ λ λ

∞ ∞ ∞
= ⋅ = ⋅∫ ∫ ∫  

Recognizing that τλ will be constant for the range λ1 →λ2, using Eq. 12.29, find 

 ( ) ( ) ( )1 2 2 1S 0 0F F F .λ λλ λ λ λτ τ τ→ → →
⎡ ⎤= ⋅ = −⎢ ⎥⎣ ⎦

 

(a) For the two glasses, the solar transmissivity, using Table 12.1 for F, is then 
Plain glass: λ2 = 2.5 μm λ2 T = 2.5 μm × 5800K = 14,500 μm⋅K  F(0 → λ2) = 0.966 
  λ1 = 0.3 μm λ1 T = 0.3 μm × 5800K = 1,740 μm⋅K  ( )10F 0.033λ→ =  
 

 τS = 0.9 [0.966 – 0.033] = 0.839.      < 
 
Tinted glass: λ2 = 1.5 μm λ2 T = 1.5 μm × 5800K = 8,700 μm⋅K  ( )20F 0.881λ→ =  

  λ1 = 0.5 μm λ1 T = 0.5 μm × 5800K=2,900 μm⋅K  ( )10F 0.250→ =λ  
 
  τS = 0.9 [0.881 – 0.250] = 0.568.      < 
 
(b) The limits of the visible spectrum are λ1 = 0.4 and λ2 = 0.7 μm.  For the tinted glass, λ1 = 0.5 μm 
rather than 0.4 μm.  From Table 12.1, 
  λ2 = 0.7 μm λ2 T = 0.7 μm × 5800K = 4,060 μm⋅K  ( )20F 0.491λ→ =  

  λ1 = 0.5 μm λ1 T = 0.5 μm × 5800K = 2,900 μm⋅K  ( )10F 0.250λ→ =  

  λ1 = 0.4 μm λ1 T = 0.4 μm × 5800K=2,320 μm⋅K  ( )10F 0.125λ→ =  

Plain glass: τvis = 0.9 [0.491 – 0.125] = 0.329      < 

Tinted glass: τvis = 0.9 [0.491 – 0.250] = 0.217      < 
 
COMMENTS:  For solar energy, the transmissivities are 0.839 for the plain glass vs. 0.568 for the 
tinted glass.  Within the visible region, τvis is 0.329 vs. 0.217.  Tinting reduces solar flux by 32% and 
visible solar flux by 34%. 



PROBLEM 12.63  
KNOWN:  Spectral transmissivity of low iron glass (see Fig. 12.23).  
FIND:  Interpretation of the greenhouse effect.  
SCHEMATIC:   
 

 
 
ANALYSIS:  The glass affects the net radiation transfer to the contents of the greenhouse.  Since 
most of the solar radiation is in the spectral region λ < 3 μm, the glass will transmit a large fraction of 
this radiation.  However, the contents of the greenhouse, being at a comparatively low temperature, 
emit most of their radiation in the medium to far infrared.  This radiation is not transmitted by the 
glass.  Hence the glass allows short wavelength solar radiation to enter the greenhouse, but does not 
permit long wavelength radiation to leave. 



PROBLEM 12.64  
KNOWN:  Spectrally selective, diffuse surface exposed to solar irradiation.  
FIND:  (a) Spectral transmissivity, τλ, (b) Transmissivity, τS, reflectivity, ρS, and absorptivity, αS, for 
solar irradiation, (c) Emissivity, ε, when surface is at Ts = 350K, (d) Net heat flux by radiation to the 
surface.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Surface is diffuse, (2) Spectral distribution of solar irradiation is proportional 
to Eλ,b (λ, 5800K). 
 
ANALYSIS:  (a) Conservation of radiant energy requires, according to Eq. 12.54, that ρλ + αλ + τλ 
=1 or τλ = 1 - ρλ - αλ.  Hence, the spectral transmissivity appears as shown above (dashed line).  Note 
that the surface is opaque for λ > 1.38 μm. 
 
(b) The transmissivity to solar irradiation, GS, follows from Eq. 12.61, 

 ( ) ( )S ,S S ,b b0 0
G d / G E ,5800K d / E 5800Kλ λ λ λτ τ λ τ λ λ

∞ ∞
= =∫ ∫  

 

( ) ( ) ( )1
1.38

S ,b ,b b ,1 00
E ,5800K d / E 5800K F 0.7 0.856 0.599→= = = × =∫λ λ λ λτ τ λ λ τ  < 

 
where λ1 TS = 1.38 × 5800 = 8000 μm⋅K and from Table 12.1, ( )10F 0.856.λ→ =   From Eqs. 12.58 

and 12.63, 

 ( )1S ,S S ,1 00
G d / G F 0.1 0.856 0.086λ λ λ λρ ρ λ ρ

∞
→= = = × =∫     < 

 
 S S S1 1 0.086 0.599 0.315.α ρ τ= − − = − − =       < 

(c) For the surface at Ts = 350K, the emissivity can be determined from Eq. 12.43.  Since the surface 
is diffuse, according to Eq. 12.67, αλ = ελ, the expression has the form 

 ( ) ( ) ( ) ( ),b s b s ,b b0 0
E T d / E T E 350K d / E 350Kλ λ λ λε ε λ α λ

∞ ∞
= =∫ ∫  

 ( ) ( ),1 ,2 ,20 1.38 m 0 1.38 mF 1 F 1λ λ λμ με α α α− −= + − = =⎡ ⎤
⎣ ⎦     < 

where from Table 12.1 with λ1 TS = 1.38 × 350 = 483 μm⋅K, ( )0 TF 0.λ− ≈  
 
(d) The net heat flux by radiation to the    
surface is determined by a radiation balance 
 rad S S S S Sq G G G Eρ τ′′ = − − −  
 rad S Sq G Eα′′ = −  
 

( )42 8 2 4 2
radq 0.315 750 W / m 1.0 5.67 10 W / m K 350K 615 W / m .−′′ = × − × × ⋅ = −  < 



PROBLEM 12.65  
KNOWN:  Large furnace with diffuse, opaque walls (Tf, εf) and a small diffuse, spectrally selective 
object (To, τλ, ρλ). 
 
FIND:  For points on the furnace wall and the object, find ε, α, E, G and J.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Furnace walls are isothermal, diffuse, and gray, (2) Object is isothermal and 
diffuse.  
ANALYSIS:  Consider first the furnace wall (A).  Since the wall material is diffuse and gray, it 
follows that 

 A f A 0.85.ε ε α= = =          < 
The emissive power is 

( ) ( )48 2 4 6 2
A A b f A fE E T T 0.85 5.67 10 W / m K 3000 K 3.904 10 W / m .ε ε σ −= = = × × ⋅ = ×  < 

Since the furnace is an isothermal enclosure, blackbody conditions exist such that 
 

( ) ( )44 8 2 4 6 2
A A b f fG J E T T 5.67 10 W / m K 3000 K 4.593 10 W / m .σ −= = = = × ⋅ = ×  < 

 
Considering now the semitransparent, diffuse, spectrally selective object at To = 300 K.  From the 
radiation balance requirement, find 
 1 21 or 1 0.6 0.3 0.1 and 1 0.7 0.0 0.3λ λ λα ρ τ α α= − − = − − = = − − =  
 

( ) ( )B 0 T 1 0 T 20
G d / G F 1 F 0.970 0.1 1 0.970 0.3 0.106λ λ λ λα α λ α α

∞
− −= = ⋅ + − ⋅ = × + − × =∫  < 

 
where F0 - λT = 0.970 at λT = 5 μm × 3000 K = 15,000 μm⋅K since G = Eb(Tf).  Since the object is 
diffuse, ελ = αλ, hence 

( ) ( ) ( )B ,b o b,o 0 T 1 0 T 20
E T d / E F 1 F 0.0138 0.1 1 0.0138 0.3 0.297λ λ λ λε ε λ α α

∞
− −= = + − ⋅ = × + − × =∫  < 

 
where F0-λT = 0.0138 at λT = 5 μm × 300 K = 1500 μmK.  The emissive power is 
 

 ( ) ( )48 2 4 2
B B b,B oE E T 0.297 5.67 10 W / m K 300 K 136.5 W / m .ε −= = × × ⋅ =  < 

 
The irradiation is that due to the large furnace for which blackbody conditions exist, 

 4 6 2
B A fG G T 4.593 10 W / m .σ= = = ×       < 

 
The radiosity leaving point B is due to emission and reflected irradiation, 
 
 2 6 2 6 2

B B B BJ E G 136.5 W / m 0.3 4.593 10 W / m 1.378 10 W / m .ρ= + = + × × = ×  < 
 
If we include transmitted irradiation, JB = EB + (ρB + τB) GB = EB + (1 - αB) GB = 4.106 × 106 W/m2.  
In the first calculation, note how we set ρB ≈ ρλ (λ < 5 μm). 



PROBLEM 12.66  
KNOWN:  Spectral characteristics of four diffuse surfaces exposed to solar radiation.  
FIND:  Surfaces which may be assumed to be gray.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Diffuse surface behavior.  
ANALYSIS:  A gray surface is one for which αλ and ελ are constant over the spectral regions of the 
irradiation and the surface emission. 
 
For λ = 3 μm and T = 5800K, λT = 17,400 μm⋅K and from Table 12.1, find F(0 → λ) = 0.984.  Hence, 
98.4% of the solar radiation is in the spectral region below 3 μm. 
 
For λ = 6 μm and T = 300K, λT = 1800 μm⋅K and from Table 12.1, find F(0 → λ) = 0.039.  Hence, 
96.1% of the surface emission is in the spectral region above 6 μm. 
 

Hence:  Surface A is gray:  αS ≈ ε = 0.8     < 
 
  Surface B is not gray:  αS ≈ 0.8, ε ≈ 0.3    < 
 
  Surface C is not gray:  αS ≈ 0.3, ε ≈ 0.7    < 
 
  Surface D is gray:  αS ≈ ε = 0.3.     < 



PROBLEM 12.67  
KNOWN:  A gray, but directionally selective, material with α (θ, φ) = 0.5(1 - cosφ).  
FIND:  (a) Hemispherical absorptivity when irradiated with collimated solar flux in the direction (θ = 
45° and φ = 0°) and (b) Hemispherical emissivity of the material.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Gray surface behavior.  
ANALYSIS:  (a) The surface has the directional absorptivity given as 
 
 ( ) [ ],, 0.5 1 cos .λ φα θ φ α φ= = −  
 
When irradiated in the direction θ = 45° and φ = 0°, the directional absorptivity for this condition is 
 
 ( ) ( )45 ,0 0.5 1 cos 0 0.α ⎡ ⎤° ° = − ° =⎣ ⎦        < 
 
That is, the surface is completely reflecting (or transmitting) for irradiation in this direction. 
 
(b) From Kirchhoff’s law, Eq. 12.68 
 
 , ,θ φ θ φα ε=  
 
so that 
 
 ( ), , 0.5 1 cos .θ φ θ φε α φ= = −  
 
Using Eq. 12.41 find 
 

 

2 / 2
, ,0 0

2 / 2
0 0

cos sin d d

cos sin d d

π π
θ φ λ

π π

ε θ θ θ φ
ε

θ θ θ φ
=
∫ ∫
∫ ∫

 

 

 
( ) ( )

22
0

2
0 0

0.5 1 cos d 0.5 sin
0.5.

2d

ππ

π

φ φ φ φ
ε

πφ

− −
= = =
∫

∫
     < 



PROBLEM 12.68 
 

 
KNOWN: Approximate spectral transmissivity of polymer film over the range 2.5 μm ≤ λ ≤ 15 
μm. 
 
FIND: (a) Maximum possible total transmissivity for irradiation from blackbody at 30°C, (b) 
Minimum possible total transmissivity for irradiation from blackbody at 30°C, (c) Maximum and 
minimum possible total transmissivities for a source temperature of 600°C. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Irradiation is proportional to that of a blackbody. 
 
ANALYSIS: (a) The maximum possible total transmissivity is associated with τλ,1 = τλ,5 = 1. 
From Eq. 12.61 and incorporating the assumption, the total transmissivity is written as 
 

 

2.5 7
,b ,1 ,b ,2 ,b0 0 2.5

b b b
13 15

,3 ,b ,4 ,b ,5 ,b7 13 15

b b b

E d E d E d

E E E

E d E d E d
     

E E E

∞
λ λ λ λ λ λ

∞
λ λ λ λ λ λ

τ λ τ λ τ λ
τ = = +

τ λ τ λ τ λ
+ + +

∫ ∫ ∫

∫ ∫ ∫
 

 
or 
 
 ,1 (0 2.5 m) ,2 (2.5 7 m) ,3 (7 13 m) ,4 (13 15 m) ,5 (15 m )F F F F Fλ − μ λ − μ λ − μ λ − μ λ μ −∞τ = τ + τ + τ + τ + τ  
 
where, at Ts = 30°C + 273 K = 303 K, 
 
 5

(2.5 7 m) (0 7 m) (0 2.5 m)F F F 0.08739 1.26 10 0.08738−
− μ − μ − μ= − = − × =  

 (7 13 m) (0 13 m) (0 7 m)F F F 0.4694 0.008739 0.3820− μ − μ − μ= − = − =  
 (13 15 m) (0 15 m) (0 13 m)F F F 0.5709 0.4694 0.1015− μ − μ − μ= − = − =  
 (15 m ) (0 15 m)F 1 F 1 0.5709 0.4291μ −∞ − μ= − = − =  
Therefore,  

Continued… 
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PROBLEM 12.68 (Cont.) 
 

 

τmax = 1 × 1.26 × 10-5 + 0.80 × 0.08738 + 0.05 × 0.3820 + 0.55 × 0.1015 + 1 × 0.4291 = 0.574 < 
 
(b) The minimum possible total transmissivity is associated with τλ,1 = τλ,5 = 0. Hence, 
 

τmin = 0 × 1.26 × 10-5 + 0.80 × 0.08738 + 0.05 × 0.3820 + 0.55 × 0.1015 + 0 × 0.4291 = 0.145 < 
 
(c) at Ts = 600°C + 273 K = 873 K, 
 
 (2.5 7 m) (0 7 m) (0 2.5 m)F F F 0.7469 0.0979 0.6490− μ − μ − μ= − = − =  
 (7 13 m) (0 13 m) (0 7 m)F F F 0.9375 0.7469 0.1906− μ − μ − μ= − = − =  
 (13 15 m) (0 15 m) (0 13 m)F F F 0.9559 0.9375 0.0184− μ − μ − μ= − = − =  
 (15 m ) (0 15 m)F 1 F 1 0.9559 0.0441μ −∞ − μ= − = − =  
 
Therefore,  

τmax = 1 × 0.0979 + 0.80 × 0.6490 + 0.05 × 0.1906 + 0.55 × 0.0184 + 1 × 0.0441 = 0.681       < 
 
The minimum possible total transmissivity is associated with τλ,1 = τλ,5 = 0. Hence, 
 

τmin = 0 × 0.0979 + 0.80 × 0.6490 + 0.05 × 0.1906 + 0.55 × 0.0184 + 0 × 0.0441 = 0.539       < 
 
 
COMMENTS: (1) For irradiation from the low temperature source, 43% of the irradiation is in 
the wavelength range greater that 15 μm. Since the spectral transmissivity is not known in this 
wavelength range, there is a very large uncertainty regarding the total transmissivity of the 
polymer film. (2) For irradiation from the high temperature source, 9.8% + 4.4% = 14.4% of the 
irradiation is in wavelength ranges less than 2.5 μm and greater than 15 μm. Hence, the 
uncertainty of the total transmissivity of the polymer film is significantly smaller than that 
associated with the low temperature source. (3) A source temperature exists for which the 
uncertainty in the total transmissivity is minimum. This temperature is between 30°C and 600°C. 
Why? 



PROBLEM 12.69 
 

 
KNOWN: Thickness, thermal conductivity and surface temperatures of a flat plate. Irradiation 
on the top surface, reflected irradiation, air and water temperatures, air convection coefficient. 
 
FIND: Transmissivity, reflectivity, absorptivity, and emissivity of the plate. Radiosity of the 
surface. Convection coefficient associated with the water flow. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Opaque and diffuse surface, (2) Water is opaque to thermal radiation. 
 
ANALYSIS: The plate is opaque. Therefore, τ = 0     < 

The reflectivity is ρ = ρG/G = (435 W/m2)/(1450 W/m2) = 0.3    < 

The absorptivity is α = 1 – τ – ρ = 1 – 0 – 0.3 = 0.7     < 
 
Consider an energy balance on the top surface.  
 
 
 

 
 
 
 
 
 

" " 4
cond conv sq G q G E     where     E = T= + −ρ − εσ .  Rearranging, we see that 

 

 

" " 4
conv cond t

2 2 2

-8 2 4 4 4

(G q G q ) /( T )

1450 W/m + 40W/m K×(260 - 43)°C - 435W/m
- 25W/m K × (43 - 35)°C/0.021m

  0.303
5.67×10 W/m K  × (273+43)  K

 

ε = + −ρ − σ

⎡ ⎤⋅
⎢ ⎥

⋅⎣ ⎦= =
⋅

  < 

Since α ≠ ε, the plate is not gray.       < 
Continued… 
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PROBLEM 12.69 (Cont.) 
 
 
The radiosity associated with the top surface is 
 

     J = E + ρG = 0.303 × 5.67 × 10-8 W/m2⋅K4 × (273 + 43)4 K4 + 435 W/m2 = 606 W/m2 < 
 
Consider an energy balance on the bottom surface with " "

cond convq q= which yields 
 
hw = k(Tt – Tb)/[L(Tb - T∞,w)]  

     = [25 W/m⋅K × (43 – 35)°C]/[0.021m × (35 – 25)°C] = 952 W/m2⋅K.    < 
 
COMMENTS: (1) The calculated emissivity is extremely sensitive to the plate thickness. 
Conduction through the plate is much larger than the emission; small changes in the conduction 
heat flux result in very large changes in the calculated emission. For example, reducing the plate 
thickness to 20 mm yields a negative emissivity, while increasing the plate thickness to 22 mm 
yields an emissivity greater than unity. In reality, as the plate thickness is modified, the surface 
temperatures would also change. 
 



PROBLEM 12.70  
KNOWN:  Isothermal enclosure at a uniform temperature provides a known irradiation on two small 
surfaces whose absorption rates have been measured.  
FIND:  (a) Net heat transfer rates and temperatures of the two surfaces, (b) Absorptivity of the 
surfaces, (c) Emissive power of the surfaces, (d) Emissivity of the surfaces.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Enclosure is at a uniform temperature and large compared to surfaces A and B, 
(2) Surfaces A and B have been in the enclosure a long time, (3) Irradiation to both surfaces is the 
same.  
ANALYSIS:  (a) Since the surfaces A and B have been within the enclosure a long time, thermal 
equilibrium conditions exist.  That is, 
 A,net B,netq q 0.= =  

Furthermore, the surface temperatures are the same as the enclosure, Ts,A = Ts,B = Tenc.  Since the 
enclosure is at a uniform temperature, it follows that blackbody radiation exists within the enclosure 
(see Fig. 12.11) and 

 ( ) 4
b enc encG E T Tσ= =  

 

 ( ) ( )1/ 41/ 4 2 8 2 4
encT G / 6300 W / m / 5.67 10 W / m K 577.4K.σ −= = × ⋅ =   < 

(b) From Eq. 12.51, the absorptivity is Gabs/G, 

 
2 2

A B2 2
5600 W / m 630 W / m0.89 0.10.
6300 W / m 6300 W / m

α α= = = =    < 

 
(c) Since the surfaces experience zero net heat transfer, the energy balance is Gabs = E.  That is, the 
absorbed irradiation is equal to the emissive power, 

 2 2
A BE 5600 W / m E 630 W / m .= =      < 

 
(d) The emissive power, E(T), is written as 

 ( ) 4 4
bE E T T or E / T .ε ε σ ε σ= = =  

 
Since the temperature of the surfaces and the emissive powers are known, 
 

 ( )42 8
A B2 4

W5600 W / m / 5.67 10 577.4K 0.89 0.10.
m K

ε ε−⎡ ⎤
= × = =⎢ ⎥

⋅⎣ ⎦
 < 

 
COMMENTS:  Note for this equilibrium condition, ε = α. 



PROBLEM 12.71 
 
KNOWN:  Temperature and spectral characteristics of a diffuse surface at Ts = 500 K situated in a large 
enclosure with uniform temperature, Tsur = 1500 K. 
 
FIND:  (a) Sketch of spectral distribution of Eλ  and  E bλ, for the surface,  (b) Net heat flux to the surface, 
q″rad,in  (c) Compute and plot q″rad,in as a function of Ts for the range 500 ≤ Ts ≤ 1000 K; also plot the heat 
flux for a diffuse, gray surface with total emissivities of 0.4 and 0.8;  and  (d) Compute and plot ε and 
α as a function of the surface temperature for the range 500 ≤ Ts ≤ 1000 K. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Surface is diffuse,  (2) Convective effects are negligible,  (3) Surface irradiation 
corresponds to blackbody emission at 1500 K. 
 
ANALYSIS:  (a)  From Wien’s displacement law, Eq. 
12.31, λmax T  =  2898 μm⋅K.  Hence, for blackbody 
emission from the surface at Ts  =  500 K, 
 

 max
2898 m K

5.80 m
500 K

μ
λ μ

⋅
= = . < 

 
(b)  From an energy balance on the surface, the net heat 
flux to the surface is 
 
q″rad,in  =  αG − E  =  αEb (1500 K) − εEb (500 K). (1) 

 
 

 
 
From Eq. 12.52,  
 

 
4 ,b ,b

(0 4 m) (0 4 m)0 4b b

E (1500) E (1500)
0.4 d 0.8 d 0.4F 0.8[1 F ].

E E
∞

− −= + = − −∫ ∫λ λ
μ μα λ λ  

 
From Table 12.1 with λT  =  4μm × 1500 K  =  6000 μm⋅K, F(0-4)  =  0.738,  find 
 
 α  =  0.4 × 0.738 + 0.8 (1 − 0.738)  =  0.505. 
 
From Eq. 12.43 

 
4 ,b ,b

(0 4 m) (0 4 m)0 4b b

E (500) E (500)
0.4 d 0.8 d 0.4F 0.8[1 F ]

E E
∞

− −= + = + −∫ ∫λ λ
μ με λ λ . 

From Table 12.1 with λT  =  4μm × 500 K  =  2000 μm⋅K, F(0-4)  =  0.0667,  find 
 ε  =  0.4 × 0.0667 + 0.8 (1 − 0.0667)  =  0.773. 
 
Hence, the net heat flux to the surface is 

8 2 4 4 4
rad,inq 5.67 10 W m K [0.505 (1500 K) 0.773 (500 K) ]−′′ = × ⋅ × − × 5 21.422 10 W m= × . < 

 
Continued... 
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PROBLEM 12.71 (Cont.) 

 
(c)  Using the foregoing equations in the IHT workspace along with the IHT Radiation Tool, Band 
Emission Factor, rad,inq′′  was computed and plotted as a function of Ts. 
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The net radiation heat rate, rad,inq′′ decreases with increasing surface temperature since E increases with 
Ts and the absorbed irradiation remains constant according to Eq. (1).  The heat flux is largest for the gray 
surface with ε = 0.4 and the smallest for the gray surface with ε = 0.8.  As expected, the heat flux for the 
selective surface is between the limits of the two gray surfaces. 
 
(d)  Using the IHT model of part (c), the emissivity and absorptivity of the surface are computed and 
plotted below. 

500 600 700 800 900 1000

Surface temperature, Ts (K)

0.4

0.5

0.6

0.7

0.8

ep
s 

 o
r  

al
ph

a

Emissivity, eps
Absorptivity, alpha  

 
The absorptivity, sur( , T )λα α α= , remains constant as Ts changes since it is a function of αλ  (or ελ ) and 
Tsur only.  The emissivity, s( ,T )λε ε ε=  is a function of Ts and decreases as Ts   increases.  Could you 
have surmised as much by looking at the spectral emissivity distribution?  Under what condition would 
you expect α = ε? 
 
 



PROBLEM 12.72  
KNOWN:  Opaque, diffuse surface with prescribed spectral reflectivity and at a temperature of 750K 
is subjected to a prescribed spectral irradiation, Gλ.  
FIND:  (a) Total absorptivity, α, (b) Total emissivity, ε, (c) Net radiative heat flux to the surface.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Opaque and diffuse surface, (2) Backside insulated.  
ANALYSIS:  (a) The total absorptivity is determined from Eq. 12.52 and 12.62, 

 
0

1 and G d / G.λ λ λ λα ρ α α λ
∞

= − = ∫    (1,2) 

Evaluating by separate integrals over various wavelength intervals. 

 
( ) ( ) ( )3 6 8

,1 ,2 ,21 3 6 abs
3 6 8

1 3 6

1 G d 1 G d 1 G d G
GG d G d G d

λ λ λ λ λ λ

λ λ λ

ρ λ ρ λ ρ λ
α

λ λ λ

− + − + −
= =

+ +

∫ ∫ ∫

∫ ∫ ∫
 

( ) ( ) ( ) ( )2 2
absG 1 0.6 0.5 500 W / m m 3 1 m 1 0.2 500 W / m m 6 3 mμ μ μ μ= − × ⋅ − + − ⋅ −⎡ ⎤ ⎡ ⎤

⎣ ⎦ ⎣ ⎦  

  ( ) ( )21 0.2 0.5 500 W / m m 8 6 mμ μ+ − × ⋅ −⎡ ⎤
⎣ ⎦  

( ) ( ) ( )2 2 2G 0.5 500 W / m m 3 1 m 500 W / m m 6 3 m 0.5 500 W / m m 8 6 mμ μ μ μ μ μ= × ⋅ × − + ⋅ − + × ⋅ −  

 
[ ]
[ ]

2 2

2 2
200 1200 400 W / m 1800 W / m

0.720.
500 1500 500 W / m 2500 W / m

α
+ +

= = =
+ +

     < 

(b) The total emissivity of the surface is determined from Eq. 12.43 and 12.62, 
 and, hence 1 .λ λ λ λε α ε ρ= = −     (3,4) 
The total emissivity can then be expressed as 

 ( ) ( ) ( ) ( ) ( ),b s b s ,b s b s0 0
E ,T d / E T 1 E , T d / E Tλ λ λ λε ε λ λ ρ λ λ

∞ ∞
= = −∫ ∫  

 ( ) ( ) ( ) ( ) ( ) ( )3
,1 ,b s b s ,2 ,b s b s0 3

1 E , T d / E T 1 E , T d / E Tλ λ λ λε ρ λ λ ρ λ λ
∞

= − + −∫ ∫  

 ( ) ( ) ( ) ( ),1 ,20 3 m 0 3 m1 F 1 1 Fλ λμ με ρ ρ→ →= − + − −⎡ ⎤
⎣ ⎦  

 ( ) ( )[ ]1 0.6 0.111 1 0.2 1 0.111 0.756ε = − × + − − =      < 

where Table 12.1 is used to find F(0 - λ) = 0.111 for λ1 Ts = 3 × 750 = 2250 μm⋅K. 
(c) The net radiative heat flux to the surface is 

 ( ) 4
rad b s sq G E T G Tα ε α ε σ′′ = − = −  

 2
radq 0.720 2500 W / m′′ = ×  

  ( )48 2 4 20.756 5.67 10 W / m K 750K 11,763W / m .−− × × ⋅ = −   < 



PROBLEM 12.73 
 
KNOWN: Diffuse glass at Tg  = 750 K with prescribed spectral radiative properties being heated in a 
large oven having walls with emissivity of  0.75 and 1800 K. 
 
FIND: (a) Total transmissivity r, total reflectivity ρ, and total emissivity ε  of the glass; Net radiative heat 
flux to the glass, (b) rad,inq′′ ; and (c) Compute and plot rad,inq′′  as a function of glass temperatures for the 

range 500 ≤ Tg ≤ 800 K for oven wall temperatures of  Tw  = 1500, 1800 and 2000 K. 
 
SCHEMATIC: 

 
ASSUMPTIONS: (1) Glass is of uniform temperature,  (2) Glass is diffuse,  (3) Furnace walls large 
compared to the glass;  εw plays no role, (4) Negligible convection.  
 
ANALYSIS: (a) From knowledge of the spectral transmittance,τw,  and spectral reflectivity, ρλ , the 
following radiation properties are evaluated:  
 
Total transmissivity, τ:  For the irradiation from the furnace walls, Gλ = Eλ,b (λ, Tw ).  Hence 
 

 ( ) ( )
4

,b w w 1 0 T0
E ,T d T F 0.9 0.25 0.225λ λ λ λτ τ λ λ σ τ

∞
−= ≈ = × =∫ . < 

 
where λT = 1.6 μm × 1800 K = 2880 μm⋅K ≈ 2898 μm⋅K giving  F(0-λT) ≈ 0.25. 
  
Total reflectivity, ρ:  With Gλ = Eλ,b (λ,Tw),  Tw = 1800 K, and F0 − λT = 0.25, 
 

 ( ) ( )( ) ( )1 20 T 0 TF 1 F 0.05 0.25 0.5 1 0.25 0.388λ λλ λρ ρ ρ− −≈ + − = × + − =  < 
 
Total absorptivity, α :  To perform the energy balance later, we’ll need α.  Employ the conservation 
expression,  
 1 1 0.388 0.225 0.387α ρ τ= − − = − − = . 
Emissivity, ε: Based upon surface temperature Tg = 750 K, for 
 0 TT 1.6 m 750K 1200 m K, F 0.002λλ μ μ −= × = ⋅ ≈ . 

Hence for λ > 1.6 μm,                ε ≈ ελ ≈ 0.5. < 
 
(b) Performing an energy balance on the glass, the net radiative heat flux by radiation into the glass is,   
 

Continued... 



PROBLEM 12.73 (Cont.) 

 net,in in outq E E′′ ′′ ′′= −  
 
 ( )( )net,in b gq 2 G E Tα ε′′ = −  
 
where G = 4

wTσ  
 

 ( ) ( )4 4
net,inq 2 0.387 1800K 0.5 750Kσ σ′′ = −⎡ ⎤

⎢ ⎥⎣ ⎦
 

 
 2

net,inq 442.8 kW m′′ = . 
 

 

 

(b) Using the foregoing equations in the IHT Workspace along with the IHT Radiation Tool, Band 
Emission Factor, the net radiative heat flux, rad,inq′′ , was computed and plotted as a function of Tg for 
selected wall temperatures Tw .   
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As the glass temperature increases, the rate of emission increases so we’d expect the net radiative heat 
rate into the glass to decrease.  Note that the decrease is not very significant.  The effect of increased wall 
temperature is to increase the irradiation and, hence the absorbed irradiation to the surface and the net 
radiative flux increase. 
 
 



PROBLEM 12.74  
KNOWN:  Material with prescribed radiative properties covering the peep hole of a furnace and 
exposed to surroundings on the outer surface.  
FIND:  Steady-state temperature of the cover, Ts; heat loss from furnace. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Cover is isothermal, no gradient, (2) Surroundings of the outer surface are 
large compared to cover, (3) Cover is insulated from its mount on furnace wall, (4) Negligible 
convection on interior surface. 
 
PROPERTIES:  Cover material (given):  For irradiation from the furnace interior:  τf = 0.8, ρf = 0;  
For room temperature emission:  τ = 0, ε = 0.8.  
ANALYSIS:  Perform an energy balance identifying the modes of heat transfer, 
 
 ( ) ( )in out f f sur sur b s sE E 0 G G 2 E T h T T 0.α α ε ∞− = + − − − =& &   (1) 
 
Recognize that   4 4

f sur surfG T G T .σ σ= =    (2,3) 
 
From Eq. 12.63, it follows that  f f f1 1 0.8 0.0 0.2.α τ ρ= − − = − − =    (4) 
 
Since the irradiation Gsur will have nearly the same spectral distribution as the emissive power of the 
cover, Eb (Ts), and since Gsur is diffuse irradiation, 
 
 sur 0.8.α ε= =          (5) 
 
This reasoning follows from Eqs. 12.69 and 12.70.  Substituting Eqs. (2-5) into Eq. (1) and using 
numerical values, 
 

 ( )48 2 8 4 20.2 5.67 10 450 273 W / m 0.8 5.67 10 300 W / m− −× × + + × × ×          (2-5) 

   ( )8 4 2 2
s s2 0.8 5.67 10 T W / m 50 W / m K T 300 K 0−− × × × − ⋅ − =  < 

 
 8 4

s s s9.072 10 T 50T 18, 466 or T 344K.−× + = =  
 
The heat loss from the furnace (see energy balance schematic) is 
 

 ( ) ( ) ( )
2

f ,loss s f f f f b s f f f b s
Dq A G G E T G E T
4

πα τ ε α τ ε⎡ ⎤ ⎡ ⎤= + − = + −⎣ ⎦ ⎣ ⎦  
 

 ( ) ( )( )2 4
f ,lossq 0.050m / 4 0.8 0.2 723Kπ ⎡= +⎢⎣

 

   ( )4 8 2 40.8 344K 5.67 10 W / m K 29.2 W.−⎤− × ⋅ =⎥⎦
   < 



PROBLEM 12.75  
KNOWN:  Window with prescribed τλ and ρλ mounted on cooled vacuum chamber passing radiation 
from a solar simulator.  
FIND:  (a) Solar transmissivity of the window material, (b) State-state temperature reached by 
window with simulator operating, (c) Net radiation heat transfer to chamber.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Diffuse behavior of window material, (3) Chamber 
and room surroundings large compared to window, (4) Solar simulator flux has spectral distribution of 
5800K blackbody, (5) Window insulated from its mount, (6) Window is isothermal at Tw. 
 
ANALYSIS:  (a) Using Eq. 12.61 and recognizing that Gλ,S ~ Eb,λ (λ, 5800K), 

 ( ) ( ) ( ) ( )
1.9

S 1 ,b b 1 0 1.9 m 0 0.38 m0.38
E ,5800K d / E 5800K F F .λ μ μτ τ λ λ τ → →

⎡ ⎤= = −⎢ ⎥⎣ ⎦∫  

From Table 12.1 at λT = 1.9 × 5800 = 11,020 μm⋅K, F(0 → λ) = 0.932; at λT = 0.38 × 5800 μm⋅K = 
2,204 μm⋅K, F(0 → λ) = 0.101; hence 

 [ ]S 0.90 0.932 0.101 0.748.τ = − =        < 

Recognizing that later we’ll need αS, use Eq. 12.58 to find ρS 

 ( ) ( ) ( ) ( )S 1 2 30 0.38 m 0 1.9 m 0 0.38 m 0 1.9 mF F F 1 Fμ μ μ μρ ρ ρ ρ→ → → →
⎡ ⎤ ⎡ ⎤= + − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 [ ] [ ]S 0.15 0.101 0.05 0.932 0.101 0.15 1 0.932 0.067ρ = × + − + − =  

 S S S1 1 0.067 0.748 0.185.α ρ τ= − − = − − =     
(b) Perform an energy balance on the window. 
 
 S S w c w sur convG q q q 0α − −′′ ′′ ′′− − − =  
 

 ( ) ( ) ( )4 4 4 4
S S w c w sur wG T T T T h T T 0.α εσ εσ ∞− − − − − − =  

 
Recognize that ρλ (λ > 1.9) = 0.15 and that ε ≈ 1 – 0.15 = 0.85 since Tw will be near 300K.  
Substituting numerical values, find by trial and error, 
 

( )2 4 4 4 4 2
w w0.185 3000 W / m 0.85 2T 298 77 K 28 W / m K T 298 K 0⎡ ⎤× − × − − − ⋅ − =⎢ ⎥⎣ ⎦

σ  
 
 wT 302.6K 29.6 C.= = °         < 
 
(c) The net radiation transfer per unit area of the window to the vacuum chamber, excluding the 
transmitted simulated solar flux is 

( )4 4 8 2 4 4 4 4 2
w c w cq T T 0.85 5.67 10 W / m K 302.6 77 K 402 W / m .εσ −
−′′ = − = × × ⋅ − =⎡ ⎤

⎣ ⎦  < 



PROBLEM 12.76 
 
KNOWN:  Reading and emissivity of a thermocouple (TC) located in a large duct to measure gas stream 
temperature.  Duct wall temperature and emissivity; convection coefficient. 
 
FIND:  (a) Gas temperature, T∞ ,  (b) Effect of convection coefficient on measurement error. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions,  (2) Negligible heat loss from TC sensing junction to 
support,  (3) Duct wall much larger than TC,  (4) TC surface is diffuse-gray. 
 
ANALYSIS:  (a) Performing an energy balance on the thermocouple, it follows that  
 w s convq q 0−′′ ′′− = . 
Hence, 

 4 4
s w s s(T T ) h (T T ) 0ε σ ∞− − − = . 

Solving for T∞  with Ts = 180oC,  

 4 4s
s w sT T (T T )

h
ε σ

∞ = − −  

 ( )
8 2 4

4 4 4
2

0.6(5.67 10 W m K )
T (180 273)K [450 273] [180 273] K

125 W m K

−

∞
× ⋅

= + − + − +
⋅

 

 T 453 K 62.9 K 390 K 117 C∞ = − = = o .      < 
(b)  Using the IHT First Law model for an Isothermal Solid Sphere to solve the foregoing energy balance 
for Ts, with T∞= 125oC, the measurement error, defined as ΔT = Ts − T∞ , was determined and is plotted as 
a function of h . 

0 200 400 600 800 1000

Convection coefficient, hbar(W/m^2.K)

0

50

100

150

200

250

300

M
ea

su
re

m
en

t e
rr

or
, d

el
ta

(C
)

  
The measurement error is enormous (ΔT ≈ 270oC) for h  = 10 W/m2⋅K, but decreases with increasing h .  
However, even for h  = 1000 W/m2⋅K, the error (ΔT ≈ 8°C) is not negligible.  Such errors must always be 
considered when measuring a gas temperature in surroundings whose temperature differs significantly 
from that of the gas. 

Continued... 



 
PROBLEM 12.76 (Cont.) 

 
COMMENTS:  (1) Because the duct wall surface area is much larger than that of the thermocouple, its 
emissivity is not a factor.  (2) For such a situation, a shield about the thermocouple would reduce the 
influence of the hot duct wall on the indicated TC temperature.  A low emissivity thermocouple coating 
would also help. 
 



PROBLEM 12.77 
 
KNOWN:  Diameter and emissivity of a horizontal thermocouple (TC) sheath located in a large room.  
Air and wall temperatures.  
FIND:  (a) Temperature indicated by the TC,  (b) Effect of emissivity on measurement error. 
 
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Room walls approximate isothermal, large surroundings,  (2) Room air is 
quiescent,  (3) TC approximates horizontal cylinder,  (4) No conduction losses,  (5) TC surface is opaque, 
diffuse and gray.  
PROPERTIES:  Table A-4,  Air (assume Ts = 25 oC,  Tf = (Ts + T∞)/2 ≈ 296 K, 1 atm): 

6 2 6 2
f15.53 10 m s, k 0.026 W m K, 22.0 10 m s, Pr 0.708, 1 Tν α β− −= × = ⋅ = × = = . 

 
ANALYSIS:  (a) Perform an energy balance on the thermocouple considering convection and radiation 
processes.  On a unit area basis, with conv sq h(T T ),∞′′ = −  
 in outE E 0− =& &  
 b s sG E (T ) h(T T ) 0α ε ∞− − − = .                                                    (1) 
Since the surroundings are isothermal and large compared to the thermocouple, G = Eb(Tsur).  For the 
gray-diffuse surface, α = ε.  Using the Stefan-Boltzmann law, Eb = σT4,  Eq. (1) becomes 

 4 4
sur s s(T T ) h(T T ) 0εσ ∞− − − = .                                                                                               (2) 

Using the Churchill-Chu correlation for a horizontal cylinder, estimate h  due to free convection. 

 

( )

2
1/ 6 3
DD D8/ 279 /16

hD 0.387Ra g TD
Nu 0.60 , Ra

k
1 0.559 Pr

β
να
Δ

= = + =

+

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪⎡ ⎤

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 .                            (3,4) 

To evaluate RaD and DNu , assume Ts = 25oC, giving 

 
2 3

D 6 2 6 2
9.8 m s (1 296 K)(25 20)K(0.004m)

Ra 31.0
15.53 10 m s 22.0 10 m s− −

−
= =

× × ×
 

 

( )

2
1/ 6

2
8 / 279 /16

0.026 W m K 0.387(31.0)
h 0.60 8.89 W m K

0.004m
1 0.559 0.708

⋅
= + = ⋅

+

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪⎡ ⎤

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 .                     (5) 

With ε = 0.4, the energy balance, Eq. (2), becomes 

          8 2 4 4 4 4 2
s s0.4 5.67 10 W m K [(30 273) T ]K 8.89 W m K[T (20 273)]K 0−× × ⋅ + − − ⋅ − + =        (6) 

where all temperatures are in kelvin units.  By trial-and-error, find  

 Ts ≈ 22.2oC   < 
Continued... 



 
PROBLEM 12.77 (Cont.) 

 
(b)  The thermocouple measurement error is defined as ΔT =Ts − T∞   and is a consequence of radiation 
exchange with the surroundings.  Using the IHT First Law Model for an Isothermal Solid Cylinder with 
the appropriate Correlations and Properties Toolpads to solve the foregoing  energy balance for Ts, the 
measurement error was determined as a function of the emissivity. 
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The measurement error decreases with decreasing ε, and hence a reduction in net radiation  transfer from 
the surroundings.  However, even for ε = 0.1, the error (ΔT  ≈ 1oC) is not negligible. 
 
COMMENT: A trial-and-error solution accounting for the effect of temperature-dependent properties 
and various values of h yields Ts = 22.1°C  ( h =7.85 W/m2·K). 



PROBLEM 12.78 
 
KNOWN:  Temperature sensor imbedded in a diffuse, gray tube of emissivity 0.8 positioned within a 
room with walls and ambient air at 30 and 20 oC, respectively.  Convection coefficient is 5 W m K2⋅ . 
 
FIND:  (a) Temperature of sensor for prescribed conditions,  (b) Effect of surface emissivity and using a 
fan to induce air flow over the tube. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Room walls (surroundings) much larger than tube,  (2) Tube is diffuse, gray 
surface,  (3) No losses from tube by conduction,  (4) Steady-state conditions,  (5) Sensor measures 
temperature of tube surface. 
 
ANALYSIS:  (a) Performing an energy balance on the tube, in outE E 0− =& & .  Hence, rad convq q 0′′ ′′− = , 

or 4 4
t w t t(T T ) h(T T ) 0∞− − − =ε σ .  With h = 5 W m K2⋅  and εt = 0.8, the energy balance becomes 

 

 ( ) [ ]48 2 4 4 4 2
t t0.8 5.67 10 W m K 30 273 T K 5 W m K T (20 273) K−× × ⋅ + − = ⋅ − +⎡ ⎤

⎢ ⎥⎣ ⎦
 

 

 [ ]8 4 4
t t4.5360 10 303 T 5 T 293−× − = −⎡ ⎤

⎣ ⎦         

which yields Tt = 298 K = 25oC. < 
 
(b) Using the IHT First Law Model, the following results were determined. 
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The sensor temperature exceeds the air temperature due to radiation absorption, which must be balanced 
by convection heat transfer.  Hence, the excess temperature tT T∞− , may be reduced by increasing h or 
by decreasing αt, which equals εt for a diffuse-gray surface, and hence the absorbed radiation. 
 
COMMENTS:  A fan will increase the air velocity over the sensor and thereby increase the convection 
heat transfer coefficient.  Hence, the sensor will indicate a temperature closer to T∞ . 



PROBLEM 12.79 
 
KNOWN:  Diffuse-gray sphere is placed in large oven with known wall temperature and experiences 
convection process. 
 
FIND: (a) Net heat transfer rate to the sphere when its temperature is 300 K, (b) Steady-state temperature 
of the sphere, (c) Time required for the sphere, initially at 300 K, to come within 20 K of the steady-state 
temperature, and (d) Elapsed time of part (c) as a function of the convection coefficient for 10 ≤ h ≤ 25 
W/ m2⋅K for emissivities 0.2, 0.4  and 0.8. 
 
SCHEMATIC: 

  
ASSUMPTIONS: (1) Sphere surface is diffuse-gray, (2) Sphere area is much smaller than the oven wall 
area, (3) Sphere surface is isothermal. 
 
PROPERTIES: Sphere  (Given) :  α = 7.25 × 10-5 m2 /s, k = 185 W/m⋅K. 
 
ANALYSIS: (a) From an energy balance on the sphere find  
 
 net in outq q q= −  
 
 net s conv sq GA q EAα= + −  
 
 ( )4 4

net o s s s s sq T A hA T T T Aασ εσ∞= + − − . (1)  
Note that the irradiation to the sphere is the emissive power of a blackbody at the temperature of the oven 
walls.  This follows since the oven walls are isothermal and have a much larger area than the sphere area.  
Substituting numerical values, noting that α = ε since the surface is diffuse-gray and that As = πD2 , find 
 

 ( )
4 48 2

netq 0.8 5.67 10 W m K 600K−= × × ⋅
⎡
⎢
⎣

215 W m K+ ⋅ ( )400 300 K× −         

                                        − × × ⋅ ×− −0 8 5 67 10 300 30 108 2 4 4 3 2
. . W m K K ma f c hπ  

 [ ]netq 16.6 4.2 1.0 W 19.8 W= + − = . (1) < 
 
(b) For steady-state conditions, qnet in the energy balance of  Eq. (1) will be zero, 

 ( )4 4
o s s ss ss s0 T A hA T T T Aασ εσ∞= + − −  (2) 

 
Substitute numerical values and find the steady-state temperature as 

 ssT 538.2K=  < 
 

Continued... 



 
PROBLEM 12.79 (Cont.) 

 
(c) Using the  IHT Lumped Capacitance Model  considering convection and radiation processes, the 
temperature- time history of the sphere, initially at Ts (0) = Ti = 300 K, can be determined.  The elapsed 
time required to reach  
 
 ( ) ( )s oT t 538.2 20 K 518.2K= − =  
 
was found as  

 ot 855s 14.3min= =  < 
 
(d) Using the IHT model of part (c), the elapsed time for the sphere to reach within 20 K of its steady-
state temperature, tf , as a function of the convection coefficient for selected emissivities is plotted below. 
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For a fixed convection coefficient, tf increases with decreasing ε since the radiant heat transfer into the 
sphere decreases with decreasing emissivity.  For a given emissivity, the tf decreases with increasing h 
since the convection heat rate increases with increasing h.  However, the effect is much more significant 
with lower values of emissivity. 
 
COMMENTS: (1) Why is tf  more strongly dependent on h for a lower sphere emissivity?  Hint: 
Compare the relative heat rates by convection and radiation processes.  (2) The steady-state temperature, 
Tss , as a function of the convection coefficient for selected  emmissivities  calculated using (2) is plotted 
below.  Are these results consistent with the above plot of tf vs h ? 
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PROBLEM 12.80  
KNOWN:  Thermograph with spectral response in 9 to 12 μm region views a target of area 200mm2 
with solid angle 0.001 sr in a normal direction.  
FIND:  (a) For a black surface at 60°C, the emissive power in 9 – 12 μm spectral band, (b) Radiant 
power (W), received by thermograph when viewing black target at 60°C, (c) Radiant power (W) 
received by thermograph when viewing a gray, diffuse target having ε = 0.7 and considering the 
surroundings at Tsur = 23°C. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Wall is diffuse, (2) Surroundings are black with Tsur = 23°C. 
 
ANALYSIS:  (a) Emissive power in spectral range 9 to 12 μm for a 60°C black surface is 
 
 ( ) ( ) ( )t b bE E 9 12 m E F 0 12 m F 0 9 mμ μ μ⎡ ⎤≡ − = → − −⎣ ⎦  
 
where ( ) 4

b s sE T T .σ=   From Table 12.1: 
 
 ( ) ( )2 sT 12 60 273 4000 m K, F 0 12 m 0.481= × + ≈ − =λ μ μ  
 
 ( ) ( )1 sT 9 60 273 3000 m K, F 0 9 m 0.273.λ μ μ= × + ≈ − =  
 
Hence 

 ( ) [ ]48 2 4 4 2
tE 5.667 10 W / m K 60 273 K 0.481 0.273 145 W / m .−= × ⋅ × + − =  < 

 
(b) The radiant power, qb (W), received by the thermograph from a black target is determined as 
 
        

 t
b s 1

Eq A cosθ ω
π

= ⋅ ⋅  

 
 
where  Et = emissive power in 9 – 12 μm spectral region, part (a) result 
  As = target area viewed by thermograph, 200mm2 (2 × 10-4 m2) 

ω  = solid angle thermograph aperture subtends when viewed 
 from the target, 0.001 sr 

  θ  = angle between target area normal and view direction, 0°. 
 
Hence, 

 ( )
2

4 2
b

145 W / mq 2 10 m cos 0 0.001 sr 9.23 W.
sr

−= × × × °× = μ
π

   < 

 
          Continued … 



PROBLEM 12.80 (Cont.) 
 
(c) When the target is a gray, diffuse emitter, ε = 0.7, the thermograph will receive emitted power from 
the target and reflected irradiation resulting from the surroundings at Tsur = 23°C.  Schematically: 
 

 
 
The power is expressed as 

 ( ) ( )e r b r s 1 0 12 m 0 9 mq q q q I A cos F Fμ με θ ω → →
⎡ ⎤= + = + ⋅ ⋅ −⎢ ⎥⎣ ⎦

 
 
where 
 qb = radiant power from black surface, part (b) result 
 F(0 - λ) = band emission fraction for Tsur = 23°C; using Table 12.1 
 λ2 Tsur = 12 × (23 + 273) = 3552 μm⋅K, ( )20F 0.394λ− =  

 λ1 Tsur = 9 × (23 + 273) = 2664 μm⋅K, ( )10F 0.197λ− =  

 Ir = reflected intensity, which because of diffuse nature of surface 

 ( ) ( )b sur
r

E TG
I 1 .ρ ε

π π
= = −  

 
Hence 

 ( ) ( )48 2 45.667 10 W / m K 273 23 K
q 0.7 9.23 W 1 0.7

sr
μ

π

−× ⋅ × +
= × + −  

   ( ) [ ]4 22 10 m cos 0 0.001 sr 0.394 0.197−× × × °× −  
 
 q 6.46 W 1.64 W 8.10 W.μ μ μ= + =        < 
 
COMMENTS:  (1) Comparing the results of parts (a) and (b), note that the power to the thermograph 
is slightly less for the gray surface with ε = 0.7.  From part (b) see that the effect of the irradiation is 
substantial; that is, 1.64/8.10 ≈ 20% of the power received by the thermograph is due to reflected 
irradiation.  Ignoring such effects leads to misinterpretation of temperature measurements using 
thermography. (2) Many thermography devices have a spectral response in the 3 to 5 μm wavelength 
region as well as 9 – 12 μm. 



PROBLEM 12.81  
KNOWN:  Radiation thermometer (RT) viewing a steel billet being heated in a furnace.  
FIND:  Temperature of the billet when the RT indicates 1160K.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Billet is diffuse-gray, (2) Billet is small object in large enclosure, (3) Furnace 
behaves as isothermal, large enclosure, (4) RT is a radiometer sensitive to total (rather than a 
prescribed spectral band) radiation and is calibrated to correctly indicate the temperature of a black 
body, (5) RT receives radiant power originating from the target area on the billet.  
ANALYSIS:  The radiant power reaching the radiation thermometer (RT) is proportional to the 
radiosity of the billet.  For the diffuse-gray billet within the large enclosure (furnace), the radiosity is 
 
 ( ) ( ) ( ) ( )b b b wJ E T G E T 1 E Tε ρ ε ε= + = + −  
 
 ( )4 4

wJ T 1 Tε σ ε σ= + −         (1) 
 
where α = ε, G = Eb (Tw) and Eb = σ T4.  When viewing the billet, the RT indicates Ta = 1100K, 
referred to as the apparent temperature of the billet.  That is, the RT indicates the billet is a blackbody 
at Ta for which the radiosity will be 
 
 ( ) 4

b a a aE T J T .σ= =          (2) 
 
Recognizing that Ja = J, set Eqs. (1) and (2) equal to one another and solve for T, the billet true 
temperature. 
 

 
1/ 4

4 4
a w

1 1T T T .ε
ε ε

−⎡ ⎤= −⎢ ⎥⎣ ⎦
 

 
Substituting numerical values, find 
 

 ( ) ( )
1/ 4

4 41 1 0.8T 1160K 1500K 999K.
0.8 0.8

−⎡ ⎤= − =⎢ ⎥⎣ ⎦
     < 

 
COMMENTS:  (1) The effect of the reflected wall irradiation from the billet is to cause the RT to 
indicate a temperature higher than the true temperature. 
 
(2) What temperature would the RT indicate when viewing the furnace wall assuming the wall 
emissivity were 0.85? 
 
(3) What temperature would the RT indicate if the RT were sensitive to spectral radiation at 0.65 μm 
instead of total radiation?  Hint:  in Eqs. (1) and (2) replace the emissive power terms with spectral 
intensity.  Answer:  1365K. 



PROBLEM 12.82  
KNOWN:  Irradiation and temperature of a small surface.  
FIND:  Rate at which radiation is received by a detector due to emission and reflection from the 
surface.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Opaque, diffuse-gray surface behavior, (2) As and Ad may be approximated as 
differential areas.  
ANALYSIS:  Radiation intercepted by the detector is due to emission and reflection from the surface, 
and from the definition of the intensity, it may be expressed as 
 
 s d e r sq I A cos .θ ω− += Δ  
 
The solid angle intercepted by Ad with respect to a point on As is 
 

 6d
2

A 10 sr.
r

ω −Δ = =  

 
Since the surface is diffuse it follows from Eq. 12.27 that 
 

 e r
JI
π+ =  

 
where, since the surface is opaque and gray (ε = α = 1 - ρ), 
 
 ( )bJ E G E 1 G.ρ ε ε= + = + −  
 
Substituting for Eb from Eq. 12.32 
 

 ( ) ( )44 8
s 2 4 2

W WJ T 1 G 0.7 5.67 10 500K 0.3 1500
m K m

ε σ ε −= + − = × × + ×
⋅

 

 
or 

 ( ) 2 2J 2481 450 W / m 2931W / m .= + =  
 
Hence 

 
2

2
e r

2931 W / mI 933W / m sr
srπ+ = = ⋅  

 
and 

 ( )2 4 2 6 8
s dq 933 W / m sr 10 m 0.866 10 sr 8.08 10 W.− − −
− = ⋅ × = ×    < 



PROBLEM 12.83  
KNOWN:  Small, diffuse, gray block with ε = 0.92 at 35°C is located within a large oven whose walls 
are at 175°C with ε = 0.85.  
FIND:  Radiant power reaching detector when viewing (a) a deep hole in the block and (b) an area on 
the block’s surface.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Block is isothermal, diffuse, gray and small compared to the enclosure, (2) 
Oven is isothermal enclosure.  
ANALYSIS:  (a) The small, deep hole in the isothermal block approximates a blackbody at Ts.  The 
radiant power to the detector can be determined from Eq. 12.11 written in the form: 

 
4
s

e t t t t
Tq I A Aσω ω
π

= ⋅ ⋅ = ⋅ ⋅  

 ( )
( )23 2

48
2

3 10 m1 Wq 5.67 10 35 273 0.001 sr 1.15 W
sr 4m

π
μ

π

−
−

×
⎡ ⎤= × × + × × =⎢ ⎥⎣ ⎦

 < 

where 2
t tA D / 4.π=   Note that the hole diameter must be greater than 3mm diameter. 

 
(b) When the detector views an area on the surface of the block, the radiant power reaching the 
detector will be due to emission and reflected irradiation originating from the enclosure walls.  In 
terms of the radiosity, Section 12.3.4, we can write using Eq. 12.23, 

 e r t t t t
Jq I A A .ω ω
π+= ⋅ ⋅ = ⋅ ⋅  

Since the surface is diffuse and gray, the radiosity can be expressed as 
 
 ( ) ( ) ( ) ( )b s b s b surJ E T G E T 1 E Tε ρ ε ε= + = + −  
 
recognizing that ρ = 1 - ε and G = Eb (Tsur).  The radiant power is 
 

 ( ) ( ) ( )b s b sur t t
1q E T 1 E T Aε ε ω
π
⎡ ⎤= + − ⋅ ⋅⎣ ⎦  

 

( ) ( ) ( )4 48 8 21q 0.92 5.67 10 35 273 1 0.92 5.67 10 175 273 W / m
srπ

− −⎡ ⎤= × × + + − × × + ×⎢ ⎥⎣ ⎦
 

  
( )23 23 10 m

0.001 sr 1.47 W.
4

π
μ

−×
× =      < 

 
COMMENTS:  The effect of reflected irradiation when ε < 1 is important for objects in enclosures.  
The practical application is one of measuring temperature by radiation from objects within furnaces. 



PROBLEM 12.84  
KNOWN:  Diffuse, gray opaque disk (1) coaxial with a ring-shaped disk (2), both with prescribed 
temperatures and emissivities.  Cooled detector disk (3), also coaxially positioned at a prescribed 
location.  
FIND:  Rate at which radiation is incident on the detector due to emission and reflection from A1. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) A1 is diffuse-gray, (2) A2 is black, (3) A1 and A3 << R2, the distance of 
separation, (4) Δr << ri, such that A2 ≈ 2 π ri Δr, and (5) Backside of A2 is insulated. 
 
ANALYSIS:  The radiant power leaving A1 intercepted by A3 is of the form 
 ( )1 3 1 1 1 3 1q J / A cosπ θ ω→ −= ⋅  

where for this configuration of A1 and A3, 

 ( )21 3 1 3 3 A B 30 A cos / L L 0 .θ ω θ θ−= ° = + = °  
Hence, 

 ( ) ( ) ( )2 4
1 3 1 1 3 A B 1 1 b 1 1 1q J / A A / L L J G E T G T .π ρ ε ρ εσ→ = ⋅ + = + = +  

The irradiation on A1 due to emission from A2, G1, is   
 ( )1 2 1 1 2 2 2 1 2 1G q / A I A cos / Aθ ω→ −′= = ⋅ ⋅  
where 

 2
1 2 1 1A cos / Rω θ− ′=  

is constant over the surface A2.  From geometry, 
 
 ( ) ( )1 1

1 2 i Atan r r / 2 / L tan 0.500 0.005 /1.000 26.8θ θ − −′ ′ ⎡ ⎤ ⎡ ⎤= = + Δ = + = °⎣ ⎦ ⎣ ⎦  
 
 A 1R L / cos 1 m / cos 26.8 1.12m.θ ′= = ° =  
 
Hence, 

 ( ) ( )24 2
1 2 1 12G T / A cos 26.8 A cos 26.8 / 1.12m / A 360.2 W / mσ π ⎡ ⎤= °⋅ ° =⎢ ⎥⎣ ⎦

 

using A2 = 2πriΔr = 3.142 × 10-2 m2 and 
 

 ( ) ( )42 8 2 4 2
1J 1 0.3 360.2 W / m 0.3 5.67 10 W / m K 400 K 687.7 W / m .−= − × + × × ⋅ =  

 
Hence the radiant power is 
 

 ( ) ( ) ( )
22 22 9

1 3q 687.7 W / m / 0.010 m / 4 / 1 m 1 m 337.6 10 W.π π −
→

⎡ ⎤= + = ×⎢ ⎥⎣ ⎦
 < 



PROBLEM 12.85 
 
KNOWN:  Infrared thermograph with a 3- to 5-micrometer spectral bandpass views a metal plate 
maintained at Ts = 327°C having four diffuse, gray coatings of different emissivities.  Surroundings at Tsur 
= 87°C. 
 
FIND:  (a) Expression for the output signal, So, in terms of the responsivity, R (μV⋅m2/W), the black 
coating  (εo = 1) emissive power and appropriate band emission fractions; assuming R = 1 μV⋅m2/W, 
evaluate So(V); (b) Expression for the output signal, Sc, in terms of the responsivity R, the blackbody 
emissive power of the coating, the blackbody emissive power of the surroundings, the coating emissivity, 
εc, and appropriate band emission fractions; (c) Thermograph signals, Sc (μV), when viewing with 
emissivities of 0.8, 0.5 and 0.2 assuming R = 1 μV⋅m2/W; and (d) Apparent temperatures which the 
device will indicate based upon the signals found in part (c) for each of the three coatings. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Plate has uniform temperature, (2) Surroundings are isothermal and large 
compared to the plate, and (3) Coatings are diffuse and gray so that ε = α and ρ = 1 - ε. 
 
ANALYSIS:  (a) When viewing the black coating (εo = 1), the scanner output signal can be expressed as 
 
 ( ) ( )1 2 so b s,TS RF E Tλ λ−=  (1) 
 
where R is the responsivity (μV⋅m2/W), Eb(Ts) is the blackbody emissive power at Ts and ( )1 2 s,TF λ λ−  is 

the fraction of the spectral band between λ1 and λ2 in the spectrum for a blackbody at Ts,  
 ( ) ( ) ( )1 2 s 2 s 1 s,T 0 ,T 0 ,TF F Fλ λ λ λ− − −= −  (2) 
 
where the band fractions Eq. 12.35 are evaluated using Table 12.1 with λ1Ts = 3 μm (327 + 273)K = 1800 
μm K⋅  (F0 – λ1 = 0.0393) and  λ2Ts = 5 μm (327 + 273) = 3000 μm K⋅  (F0 – λ2 = 0.2732).  Substituting 
numerical values with R = 1 μV⋅m2/W, find 
 

 [ ] ( )
4 42 8 2

oS 1 V m W 0.2732 0.0393 5.67 10 W m K 600Kμ −= ⋅ − × ⋅  

 oS 1718 Vμ=  < 
 
(b) When viewing one of the coatings (εc < εo  = 1), the output signal as illustrated in the schematic above 
will be affected by the emission and reflected irradiation from the surroundings, 
 
 ( ) ( ) ( ){ }1 2 s 1 2 surc c b s c c,T ,TS R F E T F Gλ λ λ λε ρ− −= +  (3) 
 
where the reflected irradiation parameters are 

Continued... 
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PROBLEM 12.85 (Cont.) 

 
 4

c c c sur1 G Tρ ε σ= − =  (4,5) 
 
and the related band fractions are 
 ( ) ( ) ( )1 2 sur 2 sur 1 sur,T 0 ,T 0 ,TF F Fλ λ λ λ− − −= −  (6) 

Combining Eqs. (2-6) above, the scanner output signal when viewing a coating is 

 ( ) ( ) ( ) ( ) ( ){ }2 s 1 s 2 sur 2 sur sur
4 4

c c s c0 T 0 T 0 T 0 TS R F F T F F 1 Tλ λ λ λε σ ε σ− − − −= − + − −⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦  (7) 

(c) Substituting numerical values into Eq. (7), find 

 [ ] ( ) [ ]( ) ( ){ }4 42
c c cS 1 V m W 0.2732 0.0393 600K 0.0393 0.0010 1 360Kμ ε σ ε σ= ⋅ − + − −  

 
where for λ2Tsur = 5 μm × 360 K = 1800 μm⋅K, ( )2 sur0 TF λ−  = 0.0393 and λ1Tsur = 3 μm × 360 K = 1080 

μm⋅K, ( )1 sur0 TF λ− = 0.0010.  For εc = 0.80, find 

 ( ) { }2 2
c cS 0.8 1 V m W 1375 7.295 W m 1382 Vε μ μ= = ⋅ + =  < 

 ( ) { }2 2
c cS 0.5 1 V m W 859.4 18.238 W m 878 Vε μ μ= = ⋅ + =  < 

 ( ) { }2 2
c cS 0.2 1 V m W 343.8 29.180 W m 373 Vε μ μ= = ⋅ + =  < 

 
(d) The thermograph calibrated against a black surface (ε1 = 1) interprets the radiation reaching the 
detector by emission and reflected radiation from a coating target (εc < εo ) as that from a blackbody at an 
apparent temperature Ta. That is, 

 ( ) ( )1 2 ac b a,TS RF E Tλ λ−=  ( ) ( )2 a 1 a
4
a0 T 0 TR F F Tλ λ σ− −= −⎡ ⎤

⎣ ⎦  (8) 

For each of the coatings in part (c), solving Eq. (8) using the IHT workspace with the Radiation Tool, 
Band Emission Factor, the following results were obtained, 
 

εc Sc (μV) Ta (K) Ta - Ts (K) 
0.8 1382 579.3 -20.7 
0.5 878 539.2 -60.8 
0.2 373 476.7 -123.3 

 
COMMENTS:  (1) From part (c) results for Sc, note that the contribution of the reflected irradiation 
becomes relatively more significant with lower values of εc.  
(2) From part (d) results for the apparent temperature, note that the error, (T - Ta), becomes larger with 
decreasing εc.  By rewriting Eq. (8) to include the emissivity of the coating, 

 ( ) ( )2 a 1 a
4

c c a0 T 0 TS R F F Tλ λ ε σ− −′ = −⎡ ⎤
⎣ ⎦  

The apparent temperature aT′  will be influenced only by the reflected irradiation.  The results correcting 
only for the emissivity, εc, are 
 

εc 0.8 0.5 0.2 
′T Ka b g  600.5 602.2 608.5 

a sT T (K)′ −  +0.5 +2.2 +8.5 
 



PROBLEM 12.86 
 

 
KNOWN: Spectral range of a CCD device used for infrared temperature measurement, 
thickness of quartz window, transmissivity of polyethylene sheet, emissivity of painted aluminum 
billet, temperatures of the billet, window and surroundings. 
 
FIND: (a) Temperature indicated by the CCD device when quartz window is used, (b) 
Temperature indicated by the CCD device when polyethylene window is used. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Large surroundings, (2) Diffuse surfaces, (3) Radiative properties do not 
vary in the spectral range of the CCD device, (4) Reflection from bottom of window is negligible. 
 
ANALYSIS: (a) In the spectral range of the CCD detector, 
 

 
CCD,9 12 w al (0 12 m) (0 9 m) w (0 12 m) (0 9 m)

w (0 12 m) (0 9 m) w al (0 12 m) (0 9 m)

G E F F E F F

                G F F G F F

− − μ − μ − μ − μ

− μ − μ − μ − μ

⎡ ⎤ ⎡ ⎤= τ − + −⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤+ ρ − + τ ρ −⎣ ⎦ ⎣ ⎦

  (1) 

 
From Figure 12.23, τw ≈ 0 in the spectral range (9 μm ≤ λ ≤ 12 μm). Hence, Equation 1 becomes 
 
  4 4

CCD,9 12 (0 12 m) (0 9 m) w w w surG F F T T− − μ − μ⎡ ⎤ ⎡ ⎤= − ε σ + ρ σ⎣ ⎦ ⎣ ⎦  

 
Since αw + ρw = 1 and αw = εw for a diffuse surface that is at the same temperature at the 
surroundings (see Equation 12.36) it follows that 

 
  4 4

CCD,9 12 (0 12 m) (0 9 m) sur (0 12 m) (0 9 m) dG F F T F F T− − μ − μ − μ − μ⎡ ⎤ ⎡ ⎤= − σ = − σ⎣ ⎦ ⎣ ⎦  

where Td is the temperature indicated by the detector. Hence, Td = Tsur = 23°C.  < 
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Aluminum billet:   Tal = 50ºC, ε = 0.96

ρalGEal

Quartz Window (6 mm)
or
Polyethylene Sheet (130 μm)
Tw = 23°C

GCCD

τwEal

Ew

ρwG

τwρalG

Tsur = 25°C

CCD

Aluminum billet:   Tal = 50ºC, ε = 0.96

ρalGEal

Quartz Window (6 mm)
or
Polyethylene Sheet (130 μm)
Tw = 23°C

GCCD

τwEal

Ew

ρwG

τwρalG

τwEal

Ew

ρwG

τwρalG

Tsur = 25°C

CCD



PROBLEM 12.86 (Cont.) 
 
 

(b) With the polyethylene sheet as the window and an aluminum temperature of Tal = 50°C + 273 
K = 323 K,  
 
 

4 4
CCD,9 12 w al al (0 12 m 323K) (0 9 m 323K) w w (0 12 m 300K) (0 9 m 300K)

4 4
w sur (0 12 m 300K) (0 9 m 300K) w al sur (0 12 m 300K) (0 9 m 300K)

G T F F T F F

                  T F F T F F

− − μ ⋅ − μ ⋅ − μ ⋅ − μ ⋅

− μ ⋅ − μ ⋅ − μ ⋅ − μ ⋅

⎡ ⎤ ⎡ ⎤= τ ε σ − + ε σ −⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤+ ρ σ − + τ ρ σ −⎣ ⎦ ⎣ ⎦

 

 
For the window, αw + ρw + τw = 1. Since αλ,w = ελ,w for the diffuse surface and since Tw = Tsur, αw 
= εw as evident in Equation 12.43. Hence, 
 

d d

4 4
CCD,9 12 (0 12 m T ) (0 9 m T ) d w al al (0 12 m 323K) (0 9 m 323K)

4 4
sur w (0 12 m 300K) (0 9 m 300K) w al sur (0 12 m 300K) (0 9 m 300K)

G F F T T F F

                 T (1 ) F F (1 ) T F F

− − μ ⋅ − μ ⋅ − μ ⋅ − μ ⋅

− μ ⋅ − μ ⋅ − μ ⋅ − μ ⋅

⎡ ⎤ ⎡ ⎤= − σ = τ ε σ −⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤+ σ − τ − + τ − ε σ −⎣ ⎦ ⎣ ⎦

 
or 
 

d d

1/ 44 4
w al al (0 12 m 323K) (0 9 m 323K) w al sur (0 12 m 300K) (0 9 m 300K)

d
(0 12 m T ) (0 9 m T )

T F F (1 )T F F
T

F F
− μ ⋅ − μ ⋅ − μ ⋅ − μ ⋅

− μ ⋅ − μ ⋅

⎡ ⎤⎡ ⎤ ⎡ ⎤τ ε − + − τ ε −⎣ ⎦ ⎣ ⎦⎢ ⎥=
⎡ ⎤⎢ ⎥−⎣ ⎦⎣ ⎦

 

 
Substituting values, 
 

[ ] [ ]
d d

1/ 4
4 4

d
(0 12 m T ) (0 9 m T )

0.78 0.96 (323K) 0.4576 0.2521 (1 0.78 0.96) (300K) 0.4036 0.2055
T

F F− μ ⋅ − μ ⋅

⎡ ⎤× × − + − × × −⎢ ⎥=
⎡ ⎤⎢ ⎥−⎣ ⎦⎣ ⎦

 

 
A trial-and-error solution, or solution using IHT yields 
 

    Td = 317.6 K = 44.6°C     < 
 
 
COMMENTS: (1) Materials that are transparent in the visible spectrum, such as quartz, are 
often opaque in the infrared part of the spectrum. The quartz window does not allow the warm 
billet to be viewed by the CCD device. (2) This analysis could be extended to calibrate the CCD 
device so that the indicated temperature is identical to the actual temperature.  



PROBLEM 12.87 
 

 
KNOWN: Diameter, emissivity and temperature of a spherical object. Aperture areas, locations, 
and spectral transmissivity of the optics of two detectors. Surroundings temperature and 
irradiation detected at two times. 
 
FIND: Velocity of the object, location and time at which the object will strike the y = 0 plane. 
 
SCHEMATIC: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Diffuse object, (2) Object travels in a straight line, (3) Object is located 
above y = 2 m. 
 
ANALYSIS: We begin by analyzing the situation at time t = 0. For Detector A, the irradiation 
that is detected, Gd,A, is composed of irradiation from the surroundings, Gsur, and irradiation from 
the object, Gobj. Hence, Gd,A = Gsur,d,A + Gobj,d,A. The irradiation from the surroundings that is 
detected is 
 

 sur,d,A b (0 2.5 m) b (0 2.5 m)

8 2 4 4 4 5 3 2

G I F E (300K)F

            5.67 10 W / m K 300 K 1.2 10 0.9 4.96 10 W / m

− μ λ − μ λ

− − −

= π τ = τ

= × ⋅ × × × × = ×
 

 
Therefore, Gobj,d,A = 5.06 × 10-3 W/m2 – 4.96 × 10-3 W/m2 = 100 × 10-6 W/m2. Proceeding as in 
Example 12.1, 
  

2
obj,d,A obj obj obj A A A A (0 2.5 m)G I A cos A cos / A r F − μ λ⎡ ⎤= θ θ × τ⎣ ⎦  

 
Since the projected area of the sphere is a circle, 2

obj obj objA cos D / 4θ = π . In addition, 
4

obj obj objI T / 4= ε σ . Therefore, 
Continued… 
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6 2 8 2 4 4 3 2 2
A A100 10 W / m 0.95 5.67 10 W / m K (600K) (9 10 m) cos 0.01375 0.9 / 4r− − −⎡ ⎤× = × × ⋅ × × × × θ × ×⎣ ⎦

 
Simplifying the preceding expression results in 
 

 3 2A
2
A

cos 57.14 10 m
r

− −θ
= ×        (1) 

We also note that 
 
 xobj,1 = rAsinθA, yobj,1 = rAcosθA       (2,3) 
 
where xobj,1 and yobj,1 are the x- and y-locations of the object. For Detector B, Gd,B = Gsur,d,B + 
Gobj,d,B where Gsur,d,B = Gsur,d,A = 4.96 × 10-3 W/m2.  Therefore, Gobj,d,B = 5.00 × 10-3 W/m2 – 4.96 × 
10-3 W/m2 = 40 × 10-6 W/m2. As for Detector A, 
 

2
obj,d,B obj obj obj B B B B (0 2.5 m)G I A cos A cos / A r F − μ λ⎡ ⎤= θ θ × τ⎣ ⎦  

Therefore, 
 

6 2 8 2 4 4 3 2 2
B B40 10 W / m 0.95 5.67 10 W / m K (600K) (9 10 m) cos 0.01375 0.9 / 4r− − −⎡ ⎤× = × × ⋅ × × × × θ × ×⎣ ⎦

 
Simplifying the preceding expression results in 
 

 3 2B
2
B

cos 22.86 10 m
r

− −θ
= ×        (4) 

where 
 
 xobj,1 = rBsinθB + 5m,  yobj,1 = rBcosθB      (5,6) 
 
Equations 1 through 3 may be solved simultaneously to find all possible positions of the object at 
t = 0, as determined from Detector A. Equations 4 through 6 may be solved simultaneously to 
find all possible positions of the object at t = 0, as determined from Detector B. These results are 
plotted below in the first graph. Note that there are two possible locations. Since we know the 
object is located above y = 2 m, the object is located at the single position shown, which 
corresponds to xobj = 1.078 m, yobj = 3.965 m.       
 
Now, consider t = 4 ms. The analysis proceeds as for t = 0, resulting in 
 

3 2A
2
A

cos 28.57 10 m
r

− −θ
= ×        (7) 

 xobj,2 = rAsinθA, yobj,2 = rAcosθA       (8,9) 
 

3 2B
2
B

cos 51.43 10 m
r

− −θ
= ×        (10) 

Continued… 



 PROBLEM 12.87 (Cont.) 
 

 
xobj,2 = rBsinθB + 5 m,  yobj,2 = rBcosθB      (11,12) 

 
Equations 7 through 9 may be solved simultaneously to find all possible positions of the object at 
t = 4 ms as determined from Detector A. Equations 10 through 12 may be solved to find all 
possible positions at t = 4 ms, as determined from Detector B. The two possible positions are 
shown in the second plot below. Since the object is located above y = 2 m, the object is at the 
single position shown, which is xobj,2 = 3.360 m, yobj,2 = 3.903 m.     
 
The velocity components of the object are 
 

  
( ) ( )obj,2 obj,1

x 3

x x 3.360 m 1.078 m
v 571 m /s

t 4 10  s−

− −
= = =

Δ ×
   < 

 

  
( ) ( )obj,2 obj,1

y 3

y y 3.903 m 3.965 m
v 15.5 m /s

t 4 10  s−

− −
= = = −

Δ ×
  < 

 
The object’s time of flight is f obj,1 yt y / v 3.965 m /15.5 m /s 0.256 s= = = and the object will 

travel a distance of d = vxtf = 570.5 m × 0.256 s = 146 m.     < 
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COMMENTS: (1) This is known as an “inverse” problem. Multiple solutions exist to such 
problems. (2) Use of a third detector would allow one to determine the object’s position in three-
dimensional space. 
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PROBLEM 12.88 
 
KNOWN:  Sample at Ts = 700 K with ring-shaped cold shield viewed normally by a radiation detector. 
 
FIND: (a) Shield temperature, Tsh, required so that its emitted radiation is 1% of the total radiant power 
received by the detector, and (b) Compute and plot Tsh as a function of the sample emissivity for the range 
0.05 ≤ ε ≤ 0.35 subject to the parametric constraint that the radiation emitted from the cold shield is 0.05, 
1 or 1.5% of the total radiation received by the detector. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Sample is diffuse and gray, (2) Cold shield is black, and (3) 2 2 2

d s t tA , D , D L<< . 
 
ANALYSIS:  (a) The radiant power intercepted by the detector from within the target area is 
 d s d sh dq q q→ →= +  
The contribution from the sample is 

 s s,e s s d s sq d I A cos 0θ ω θ−→ = Δ = o  

 4
s,e s b s sI E Tε π ε σ π= =  

 d d d
d s d2 2

t t

A cos A
0

L L

θ
ω θ−Δ = = = o  

 4 2
s d s s s d tq T A A Lε σ π→ =  (1) 

  
The  contribution from the ring-shaped cold shield is  
 
 sh d sh,e sh sh d shq I A cosθ ω→ −= Δ  
 
 4

sh,e b shI E Tπ σ π= =  
 
and, from the geometry of the shield -detector,  

 ( )2 2
sh t sA D D

4
π

= −  

 ( )
1 22 2

sh t tcos L D 2 Lθ = =⎡ ⎤
⎢ ⎥⎣ ⎦

 

Continued... 



 
PROBLEM 12.88 (Cont.) 

 
where   ( )s tD D D 2= +  
 

 d d
d sh d sh2

A cos
cos cos

R

θ
ω θ θ−Δ = =  

 

where    
1 22 2

tR L D= +⎡ ⎤
⎣ ⎦  

 

 

( ) ( )

2
4
sh t d

sh d sh 1 2 2 22 2 s t ts t t

T L A
q A

(D D ) 4 L(D D ) 4 L

σ
π→ =

+ ++ +

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥⎡ ⎤ ⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

 (2) 

 
The requirement that the emitted radiation from the cold shield is 1% of the total radiation intercepted by 
the detector is expressed as  
 

 sh d sh d

tot sh d s d

q q
0.01

q q q
− −

− −
= =

+
 (3) 

 
By evaluating Eq. (3) using Eqs. (1) and (3), find 

 shT 134 K=  < 
 
(b) Using the foregoing equations in the IHT workspace, the required shield temperature for qsh - d/qtot = 
0.5, 1 or 1.5% was computed and plotted as a function of the sample emissivity.   
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As the shield emission-to-total radiant power ratio decreases ( from 1.5 to 0.5% ) , the required shield 
temperature decreases.  The required shield temperature increases with increasing sample emissivity for a 
fixed ratio. 



PROBLEM 12.89 
 
KNOWN: Wavelengths associated with a two-color pyrometer. 
 
FIND: The ratio of intensities emitted by the surface at nominal wavelength of λ = 5 μm and Δλ 
= 0.1, 0.5 and 1 μm. 
 
ASSUMPTIONS: Surface is hot relative to the surroundings so that reflection is negligible 
relative to emission. 
 
ANALYSIS: The spectral intensity emitted by the surface is 
 

   
[ ]

2
o

,e ,b 5
o

2hcI I ( ,T)
exp(hc / kt) 1

λ
λ λ λ

ε
= ε λ =

λ λ −
 

 
Assuming the spectral emissivity is independent of wavelength over Δλ, the intensity ratio, R, is 
 

   [ ]
[ ]

5
o

5
o

exp(hc / kT) 1
R

( ) exp(hc /( )kT) 1
λ λ −

=
λ + Δλ λ + Δλ −

 

 
with h = 6.626 × 10-34 J⋅s, k = 1.381 × 10-23 J/K, co = 2.998 × 108 m/s, λ = 5 μm and Δλ = 0.1, 0.5 
and 1.0 μm, the variation of R over the range 500 K ≤ T ≤ 1000 K is shown below. 
 

Intensity Ratio vs. Surface Temperature (Lambda = 5 micron)

500 600 700 800 900 1000

Temperature (K)

0.6

0.7

0.8

0.9

1

1.1

In
te

ns
ity

 R
at

io

DelLambda = 0.1
DelLambda = 0.5
DelLambda = 1.0     

  
As Δλ increases, the ratio of intensities exhibits higher sensitivity to the surface temperature. 
However, a tradeoff exists since the assumption of uniform spectral emissivity over Δλ becomes 
less robust as the difference between λ1 and λ2 becomes large. 
 
COMMENTS: (1) The pyrometer will also detect the reflection from the surface. If the surface 
reflectivity is large, or if the surface is cold relative to the surroundings, care must be made when 
interpreting the detector’s output. (2) Care should be taken if the surface emissivity exhibits 
highly spectral behavior. (3) The intensity ratio is greater than unity at relatively low 
temperatures and less than unity at higher temperatures. Can you explain why?  



 
PROBLEM 12.90 

 
KNOWN:  Two wavelength values associated with a two-color pyrometer.  Ratio of detected 
radiation from stainless steel. 
 
FIND:  Temperature of stainless steel. 
 
ASSUMPTIONS:  (1) Surface is hot relative to the surroundings so that reflection is negligible 
relative to emission, (2) Wien’s law holds, (3) Emissivity does not vary greatly over the wavelength 
range associated with the pyrometer. 
 
ANALYSIS:   From Problem 12.27, Wien’s law is  
 

 1 2
, 5 expb

C CE
Tλ λ λ

⎛ ⎞≈ −⎜ ⎟
⎝ ⎠

 

 
The detected radiation flux is equal to the radiation flux emitted from the steel surface, since reflection 
has been assumed negligible.  The ratio of intensities is equal to the ratio of emissive power (since Iλ = 
πEλ).  Thus, 
 

 1 1 1

2 2 2

5
1 , 2 2

5
2 , 1 1 2

1 1exp 2.15b

b

I E E C
I E E T
λ λ λ

λ λ λ

ε λ
ε λ λ λ

⎡ ⎤⎛ ⎞
= = = − − =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 

 
where the assumption ε1 ≈ ε2 has been used.  Solving for T, 
 

42 1
2 55

1
5
2

1 1 1 1
0.63 m 0.65 m1.439 10  m K 762 K

0.65 mln 2.15 ln 2.15
0.63 m

T C
λ λ μ μ

μ
λ μ
λ μ

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= = × ⋅ =
⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

  < 

 
COMMENTS:  Comparing Eq. 12.30 to Wien’s law, it can be seen that Wien’s law is accurate 
provided that exp(C2/λT) >> 1.  For the conditions of this problem, exp(C2/λ1T) = 4 ×1012 and Wien’s 
law is highly accurate. 
 
 



PROBLEM 12.91 
 
KNOWN:  Painted plate located inside a large enclosure being heated by an infrared lamp bank. 
 
FIND:  (a) Lamp irradiation required to maintain plot at Ts = 140oC for the prescribed convection and 
enclosure irradiation conditions, (b) Compute and plot the lamp irradiation, Glamp, required as a function 
of the plate temperature, Ts, for the range 100 ≤ Ts ≤ 300 oC and for convection coefficients of h = 15, 20 
and 30 W/m2⋅K,  and  (c) Compute and plot the air stream temperature, T∞ , required to maintain the plate 
at 140oC as a function of the convection coefficient h for the range  10 ≤ h ≤ 30 W/m2⋅K with a lamp 
irradiation Glamp = 3000 W/m2. 
 
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Steady-state conditions,  (2) No losses on backside of plate. 
 
ANALYSIS:  (a) Perform an energy balance on the plate, per unit area, 
 
 in outE E 0− =& &                                                                                                                           (1) 
 
 wall wall lamp lamp conv sG G q E 0α α ′′⋅ + − − =                                                                             (2) 
 
where the emissive power of the surface and convective fluxes are 

 4
s s b s s sE E (T ) Tε ε σ= = ⋅           conv sq h(T T )∞′′ = −                                                              (3,4) 

 
Substituting values, find the lamp irradiation 
 2 2

lamp0.7 450 W m 0.6 G 20 W m K(413 300) K× + × − ⋅ −  

               8 2 4 40.8 5.67 10 W m K (413 K) 0−− × × ⋅ =  (5) 

 Glamp  =  5441 W/m2      < 
 
(b)  Using the foregoing equations in the IHT workspace, the irradiation, Glamp, required to maintain the 
plate temperature in the range 100 ≤ Ts ≤ 300 oC for selected convection coefficients was computed.  The 
results are plotted below. 
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As expected, to maintain the plate at higher temperatures, the lamp irradiation must be increased.  At any 
plate operating temperature condition, the lamp irradiation must be increased if the convection coefficient 
increases.  With forced convection (say, h ≥ 20 W/m2⋅K) of the airstream at 27oC, excessive irradiation 
levels are required to maintain the plate above the cure temperature of 140oC. 
 
(c) Using the IHT model developed for part (b), the airstream temperature, T∞ , required to maintain the 
plate at Ts = 140oC as a function of the convection coefficient with Glamp = 3000 W/m2⋅K was computed 
and the results are plotted below. 

10 20 30

Convection coefficient, h (W/m^2.K)

60

80

100

120

A
ir 

te
m

pe
ra

tu
re

, T
in

f (
C

)

 
As the convection coefficient increases, for example by increasing the airstream velocity over the plate, 
the required air temperature must increase.  Give a physical explanation for why this is so. 
 
COMMENTS:  (1) For a spectrally selective surface, we should expect the absorptivity to depend upon 
the spectral distribution of the source and α ≠ ε. 
 
(2) Note the new terms used in this problem; use your Glossary, Section 12.10 to reinforce their meaning. 



PROBLEM 12.92  
KNOWN:  Small sample of reflectivity, ρλ, and diameter, D, is irradiated with an isothermal 
enclosure at Tf.  
FIND:  (a) Absorptivity, α, of the sample with prescribed ρλ, (b) Emissivity, ε, of the sample, (c) Heat 
removed by coolant to the sample, (d) Explanation of why system provides a measure of ρλ. 
 
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Sample is diffuse and opaque, (2) Furnace is an isothermal enclosure with area 
much larger than the sample, (3) Aperture of furnace is small. 
ANALYSIS:  (a) The absorptivity, α, follows from Eq. 12.48, where the irradiation on the sample is 
G = Eb (Tf) and αλ = 1 - ρλ. 

 ( ) ( ) ( ),b b0 0
G d / G 1 E ,1000K d / E 1000Kλ λ λ λα α λ ρ λ λ

∞ ∞
= = −∫ ∫  

 ( ) ( ) ( ) ( )1 1,1 ,20 01 F 1 1 F .λ λλ λα ρ ρ→ →
⎡ ⎤= − + − −⎢ ⎥⎣ ⎦

 

Using Table 12.1 for λ1 Tf = 4 × 1000 = 4000 μm⋅K, F(0-λ) = 0.481 giving 

 ( ) ( ) ( )1 0.2 0.481 1 0.8 1 0.481 0.49.= − × + − × − =α      < 

(b) The emissivity, ε, follows from Table 12.1 with ελ = αλ = 1 - ρλ since the sample is diffuse. 

 ( ) ( ) ( ) ( )s b s ,b b0
E T / E T E ,300K d / E 300Kλ λε ε λ λ

∞
= = ∫  

 ( ) ( ) ( ) ( )1 1,1 ,20 01 F 1 1 F .λ λλ λε ρ ρ− →
⎡ ⎤= − + − −⎢ ⎥⎣ ⎦

 

Using Table 12.1 for λ1 Ts = 4 × 300 = 1200 μm⋅K, F(0-λ) = 0.002 giving 
 ( ) ( ) ( )1 0.2 0.002 1 0.8 1 0.002 0.20.ε = − × + − × − =  
(c) Performing an energy balance on the sample, the    
heat removal rate by the cooling water is 
 ( )cool s conv b sq A G q E Tα ε′′⎡ ⎤= + −⎣ ⎦  

where  ( ) ( )b f bG E T E 1000K= =  

  ( ) 2
conv f s sq h T T A D / 4π′′ = − =  

 ( )( ) ( )2 48 2 4
coolq / 4 0.03m 0.49 5.67 10 W / m K 1000Kπ −⎡= × × ⋅ ×⎢⎣

 

 ( ) ( )42 8 2 410 W / m K 1000 300 K 0.20 5.67 10 W / m K 300K 24.5 W.−+ ⋅ − − × × ⋅ × =⎤⎥⎦
 < 

(d) Assume that reflection makes the dominant contribution to the radiosity of the sample.  When 
viewing in the direction A, the spectral radiant power is proportional to ρλ Gλ.  In direction B, the 
spectral radiant power is proportional to Eλ,b (Tf).  Noting that Gλ = Eλ,b (Tf), the ratio gives ρλ. 



PROBLEM 12.93 
 
KNOWN:  Small, opaque surface initially at 1200 K with prescribed αλ distribution placed in a large 
enclosure at 2400 K. 
 
FIND:  (a)  Total, hemispherical absorptivity of the sample surface,  (b) Total, hemispherical emissivity,   
(c) α and ε after long time has elapsed,  (d) Variation of sample temperature with time. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Surface is diffusely radiated. (2) Enclosure is much larger than surface and at a 
uniform temperature. 
 
PROPERTIES:  Table A.1, Tungsten (T ≈ 1800 K):  ρ = 19,300 kg/m3,  cp = 163 J/kg⋅K, k ≈ 102 
W/m⋅K. 
 
ANALYSIS:  (a) The total, hemispherical absorptivity follows from Eq. 12.52, where ( ),b surG E Tλ λ= .  
That is, the irradiation corresponds to the spectral emissive power of a blackbody at the enclosure 
temperature and is independent of the enclosure emissivity. 

 ( ) ( ),b sur b sur0 0 0
G d G d E , T d E Tλ λ λ λ λα α λ λ α λ λ

∞ ∞ ∞
= =∫ ∫ ∫  

 

 ( ) ( )2 m 4 4
1 ,b sur sur 2 ,b sur sur0 2 m

E ,T d T E , T d T
μ

λ λμ
α α λ λ σ α λ λ σ

∞
= +∫ ∫  

 1 (0 2 m) 2 (0 2 m)F 1 F 0.1 0.6076 0.8[1 0.6076] 0.375μ μα α α→ →= + − = × + − =⎡ ⎤⎣ ⎦  < 
 
where at  (0 2 m)T 2 2400 4800 m K, F 0.6076μλ μ →= × = ⋅ =  from Table 12.1. 
 
(b) The total, hemispherical emissivity follows from Eq. 12.43, 

 ,b s ,b s0 0
E ( , T ) d E ( , T )dλ λ λε ε λ λ λ λ

∞ ∞
= ∫ ∫ . 

Since the surface is diffuse, λ λε α=  and the integral can be expressed as 

 
2 m 4 4

1 ,b s s 2 ,b s s0 2 m
E ( ,T ) d T E ( , T ) d T

μ
λ λμ

ε α λ λ σ α λ λ σ
∞

= +∫ ∫  

 1 (0 2 m) 2 (0 2 m)F 1 F 0.1 0.1403 0.8[1 0.1403] 0.702μ με α α→ →= + − = × + − =⎡ ⎤⎣ ⎦  < 

where at λT  =  2 × 1200  =  2400 μm ⋅ K,  find (0 2 m)F 0.1403μ→ =  from Table 12.1. 
 
(c) After a long period of time, the surface will be at the temperature of the enclosure.  This condition of 
thermal equilibrium is described by Kirchoff’s law, for which  

 ε = α = 0.375. < 
Continued... 



 
PROBLEM 12.93 (Cont.) 

 
(d) Using the IHT Lumped Capacitance Model, the energy balance relation is of the form 
 

 p s b
dT

c A [ G (T)E (T)]
dt

ρ α ε∀ = −  
 
where T = Ts,  3D 6π∀ = ,  2

sA Dπ=  and  4
surG Tσ= .  Integrating over time in increments of Δt = 

0.5s and using the Radiation Toolpad to determine ε(t), 
the following results are obtained. 
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The temperature of the specimen increases rapidly with time and achieves a value of 2399 K within t ≈ 
47s.  The emissivity decreases with increasing time, approaching the absorptivity as T approaches Tsur.  
COMMENTS:  (1) Recognize that α always depends upon the spectral irradiation distribution, which, in 
this case, corresponds to emission from a blackbody at the temperature of the enclosure.   
 
(2) With 2 2 3 2

r sur sur surh (T T )(T T ) 0.375 4T 1176 W m K= + + ≈ = ⋅εσ σ , r oBi h (r /3) k=  
2(1176 W m K)= ⋅ 1 667. 310 m 102 W m K 0.0192 1−× ⋅ = << , use of the lumped capacitance model is 

justified. 
 



PROBLEM 12.94 
 
KNOWN:  Diameter and initial temperature of copper rod.  Wall and gas temperature. 
 
FIND:  (a) Expression for initial rate of change of rod temperature, (b) Initial rate for prescribed 
conditions, (c) Transient response of rod temperature.  
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Applicability of lumped capacitance approximation, (2) Furnace approximates a 
blackbody cavity, (3) Thin film is diffuse and has negligible thermal resistance, (4) Properties of nitrogen 
approximate those of air (Part c).  
PROPERTIES:  Table A.1, copper (T = 300 K):  cp = 385 J/kg⋅K, ρ = 8933 kg/m3, k = 401 W/m⋅K.  
Table A.4, nitrogen (p = 1 atm, Tf = 900 K):  ν = 100.3 × 10-6 m2/s, α = 139 × 10-6 m2/s, k = 0.0597 
W/m⋅K, Pr = 0.721. 
 
ANALYSIS:  (a) Applying conservation of energy at an instant of time to a control surface about the 
cylinder, in out stE E E− =& & & , where energy inflow is due to natural convection  and radiation from the 
furnace wall and energy outflow is due to emission.  Hence, for a unit cylinder length, 

 
2

conv rad,net p
D dT

q q c
4 dt

ρπ
+ =  

where 
 ( )( )convq h D T Tπ ∞= −  

 ( ) ( ) ( )[ ]rad,net b b w bq D G E D E T E Tπ α ε π α ε= − = −  
Hence, at t = 0 (T = Ti), 
 ) ( ) ( ) ( ) ( )[ ]p i b w b iidT dt 4 c D h T T E T E Tρ α ε∞= − + −  

(b) With 
( ) ( )( )( )33 2

i
D 12 4 2

g T T D 9.8 m s 1 900 K 1200 K 0.01m
Ra 937

100.3 139 10 m s

β
αν
∞

−
−

= = =
× ×

, the Churchill-Chu 

correlation of Chapter 9 yields 

 

( )

2
1/ 6
DD 8/ 279 /16

0.387Ra
Nu 0.60 2.58

1 0.559 Pr
= + =

+

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪⎡ ⎤

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

 

 
( )D 20.0597 W m K 2.58Nu

h k 15.4 W m K
D 0.01m

⋅
= = = ⋅  

With T = Ti = 300 K, λT = 600 μm⋅K yields F(0→λ) = 0, in which case ( ) ( )1 0 2 0F 1 F 0.4λ λε ε ε→ →= + − =⎡ ⎤⎣ ⎦ .  

With T = Tw = 1500 K, λT = 3000 K yields F(0→λ) = 0.273.  Hence, with α ελ λ= , α = ε1F(0→λ) + ε2[1 - 
F(0→λ)] = 0.9(0.273) + 0.4(1 - 0.273) = 0.537.  It follows that 

Continued... 
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 ( )2i

3

dT 4 W
15.4 1500 300 K

kg Jdt m K8933 385 0.01m
kg Km

= −
⋅

⋅

⎡⎞
⎟ ⎢⎛ ⎞⎠ ⎣

⎜ ⎟
⎝ ⎠

 

                           ( ) ( )4 44 8
2 4 2 4
W W

0.537 5.67 10 1500 K 0.4 5.67 10 300 K
m K m K

− −+ × × − × ×
⋅ ⋅

⎤
⎥
⎦

 

 ) [ ]4 2 2
idT dt 1.163 10 m K J 18, 480 154,140 180 W m 20 K s−= × ⋅ + − =  < 

 
Defining a pseudo radiation coefficient as hr = (αG - εEb)/(Tw - Ti) = (153,960 W/m2)/1200 K = 128.3 
W/m2⋅K, Bi = (h + hr)(D/4)/k = 143.7 W/m2⋅K (0.0025 m)/401 W/m⋅K = 0.0009.  Hence, the lumped 
capacitance approximation is appropriate. 
 
(c) Using the IHT Lumped Capacitance Model with the Correlations, Radiation and Properties (copper 
and air) Toolpads, the transient response of the rod was computed for 300 ≤ T < 1200 K, where the upper 
limit was determined by the temperature range of the copper property table. 
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The rate of change of the rod temperature, dT/dt, decreases with increasing temperature, in accordance 
with a reduction in the convective and net radiative heating rates.  Note, however, that even at T ≈ 1200 
K, αG, which is fixed, is large relative to convq′′  and εEb and dT/dt is still significant. 



PROBLEM 12.95  
KNOWN:  Temperatures of furnace wall and top and bottom surfaces of a planar sample.  
Dimensions and emissivity of sample.  
FIND:  (a) Sample thermal conductivity, (b) Validity of assuming uniform bottom surface 
temperature.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in sample, (3) 
Constant k, (4) Diffuse-gray surface, (5) Irradiation equal to blackbody emission at 1400K. 
 
PROPERTIES:  Table A-6, Water coolant (300K):  cp,c = 4179 J/kg⋅K 
 
ANALYSIS:  (a) From energy balance at top surface, 
 
 ( )cond s s cG E q k T T / Lα ′′− = = −  
 
where 4 4

s s w sE T , G T ,ε σ σ α ε= = =  giving 
 
 ( )4 4

s w s s s s cT T k T T / L.ε σ ε σ− = −  
 
Solving for the thermal conductivity and substituting numerical values, find 
 

 ( )4 4s
s w s

s c

Lk T T
T T
ε σ

= −
−

 

 

 
( ) ( ) ( )

8 2 4 4 4
s

0.85 0.015m 5.67 10 W / m Kk 1400K 1000K
1000 300 K

−× × × ⋅ ⎡ ⎤= −⎢ ⎥⎣ ⎦−
 

 
 sk 2.93 W / m K.= ⋅          < 
 
(b) Non-uniformity of bottom surface temperature depends   
on coolant temperature rise.  From the energy balance 
 
 ( ) 2

c p,c cq m c T G E Wα= Δ = −&  
 

 8 2 4 4
cT 0.85 5.67 10 W / m K 1400− ⎡Δ = × × ⋅ ⎢⎣

 

   ( )24 41000 K 0.10m / 0.1kg / s 4179 J / kg K⎤− × ⋅⎥⎦
 

 
 cT 3.3K.Δ =           < 
 
The variation in Tc (~ 3K) is small compared to (Ts – Tc) ≈ 700K.  Hence it is not large enough to 
introduce significant error in the k determination. 



PROBLEM 12.96 
 
KNOWN:  Thicknesses and thermal conductivities of a ceramic/metal composite.  Emissivity of ceramic 
surface.  Temperatures of vacuum chamber wall and substrate lower surface.  Receiving area of radiation 
detector, distance of detector from sample, and sample surface area viewed by detector.  
FIND:  (a) Ceramic top surface temperature and heat flux, (b) Rate at which radiation emitted by the 
ceramic is intercepted by detector, (c) Effect of an interfacial (ceramic/substrate) contact resistance on 
sample top and bottom surface temperatures.  
SCHEMATIC: 

 
ASSUMPTIONS:  (1) One-dimensional, steady-state conduction in sample, (2) Constant properties, (3) 
Chamber forms a blackbody enclosure at Tw, (4) Ceramic surface is diffuse/gray, (5) Negligible interface 
contact resistance for part (a). 
 
PROPERTIES:  Ceramic:  kc = 6 W/m⋅K, εc = 0.8.  Substrate:  ks = 25 W/m⋅K. 
 
ANALYSIS:  (a) From an energy balance at the exposed ceramic surface, cond radq q′′ ′′= , or 

 
( ) ( ) ( )4 41 2

c 2 w
s s c c

T T
T T

L k L k
ε σ

−
= −

+
 

 

 ( )8 2 4 4 4 42
2

1500 K T
0.8 5.67 10 W m K T 90 K

0.008 m 0.0005 m
25 W m K 6 W m K

−−
= × × ⋅ −

+
⋅ ⋅

 

 
 6 8 4

2 23.72 10 2479T 4.54 10 T 2.98−× − = × −  

 8 4 6
2 24.54 10 T 2479T 3.72 10−× + = ×  

Solving, we obtain 

 T2 = 1425 K < 

 
( ) ( )

( ) 5 21 2
h 4 2s s c c

1500 1425 KT T
q 1.87 10 W m

L k L k 4.033 10 m K W−
−−′′ = = = ×

+ × ⋅
 < 

 
(b) Since the ceramic surface is diffuse, the total intensity of radiation emitted in all directions is Ie = 
εcEb(Ts)/π.  Hence, the rate at which emitted radiation is intercepted by the detector is 

 ( ) ( )2
e c d s dc em dq I A A L −− = Δ  

 ( )
( )48 2 4

4 2 5 5
c em d

0.8 5.67 10 W m K 1425 K
q 10 m 10 sr 5.95 10 W

srπ

−
− − −

−
× × ⋅

= × × = ×  
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(c) With the development of an interfacial thermal contact resistance and fixed values of hq′′  and Tw, (i) 

T2 remains the same (its value is determined by the requirement that ( )4 4
h c 2 wq T Tε σ′′ = − , while (ii) T1 

increases (its value is determined by the requirement that ( )h 1 2 totq T T R′′ ′′= − , where totR′′  = [(Ls/ks) + 

t,cR′′  + (Lc/kc)]; if hq′′  and T2 are fixed, T1 must increase with increasing totR′′ ). 
 
COMMENTS:  The detector will also see radiation which is reflected from the ceramic.  The 

corresponding radiation rate is qc(reflection)-d = 2
c c c d s dG A A Lρ −Δ  = 0.2 σ(90 K)4 × 10-4 m2 × (10-5 sr) = 

7.44 × 10-10 W.  Hence, reflection is negligible. 



PROBLEM 12.97  
KNOWN:  Wafer heated by ion beam source within large process-gas chamber with walls at uniform 
temperature; radiometer views a 5 × 5 mm target on the wafer.  Black panel mounted in place of wafer 
in a pre-production test of the equipment. 
 
FIND:  (a) Radiant power (μW) received by the radiometer when the black panel temperature is Tbp = 
800 K and (b) Temperature of the wafer, Tw, when the ion beam source is adjusted so that the radiant 
power received by the radiometer is the same as that of part (a) 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Chamber represents large, isothermal 
surroundings, (3) Wafer is opaque, diffuse-gray, and (4) Target area << square of distance between 
target and radiometer objective. 
 
ANALYSIS:  (a) The radiant power leaving the black-panel target and reaching the radiometer as 
illustrated in the schematic below is 

 q E T  A  cos bp rad b,bp bp t t rad t− −= ⋅e j /π θ ωΔ      (1) 

where θt = 0° and the solid angle the radiometer subtends with respect to the target follows from Eq. 
12.7, 

 Δω
π π

rad t
n

2
o
2

2
dA

r

 D

r

 m

 m
 sr−

−= = = = ×
/ . /

.
.

4 0 025 4

0500
1964 10

2

2
3e j b g

b g
 

With E Tb,bp bp
4= σ ,  find 

 q  W / m K  K  srbp rad
2 4

−
−= × ⋅L

NM
O
QP567 10 8008 4. /b g π  

   × × °× ×0 005 2.  m cos 30 1.964 10  sr-3b g  

 q  Wbp rad− = 314 μ          < 

 

 
 

          Continued … 



PROBLEM 12.97 (Cont.) 
 
(b) With the wafer mounted, the ion beam source is adjusted until the radiometer receives the same 
radiant power as with part (a) for the black panel.  The power reaching the radiometer is expressed in 
terms of the wafer radiosity, 
 
 q J  A  cos w rad w t t rad t− −= ⋅/π θ ωΔ       (2) 
 
Since q qw rad bp rad− −=  (see Eq. (1)), recognize that 

 
 J E Tw b,bp bp= e j          (3) 

 
where the radiosity is 
 
 J E T G E T E Tw w b,w w w w w b,w w w b ch= + = + −ε ρ ε εb g b g b g b g1    (4) 
 
and Gw is equal to the blackbody emissive power at Tch.  Using Eqs. (3) and (4) and substituting 
numerical values, find 
 

 σ ε σ ε σT T Tbp
4

w w
4

w ch
4= + −1b g  

 

 800 0 7 0 3 4004 4 K  T  Kw
4b g b g= +. .  

 

 T  Kw = 871           < 
 
COMMENTS:  (1) Explain why Tw is higher than 800 K, the temperature of the black panel, when 
the radiometer receives the same radiant power for both situations. 
 
(2) If the chamber walls were cold relative to the wafer, say near liquid nitrogen temperature, Tch = 80 
K, and the test repeated with the same indicated radiometer power, is the wafer temperature higher or 
lower than 871 K? 
 
(3) If the chamber walls were maintained at 800 K, and the test repeated with the same indicated 
radiometer power, what is the wafer temperature? 
 



PROBLEM 12.98 
 
KNOWN: Spectral emissivity of fire brick wall used to construct brick oven.  Magnitude and 
distribution of irradiation on wall.  Temperature and heat transfer coefficient of gases adjacent to 
wall.  Wall thickness and thermal conductivity. 
 
FIND: Wall interior surface temperature if heat loss through wall is negligible.  Wall interior 
surface temperature if wall is insulated and exterior surface temperature of insulation is 300 K. 
 
SCHEMATIC: 

                
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Brick wall is opaque and diffuse, (2) Spectral distribution of irradiation 
reaching brick wall approximates that due to emission from a blackbody at 2000 K. 
 
PROPERTIES: Fire brick wall (given in Example 12.10):  ελ ≈ 0.1, λ < 1.5 µm, ελ ≈ 0.5, 1.5 
µm ≤ λ < 10 µm, ελ ≈ 0.8, λ ≥ 10 µm; α = 0.395 (for irradiation with spectral distribution 
proportional to blackbody at 2000 K). 
 
ANALYSIS: Neglecting heat transfer through the wall, an energy balance on the wall can be 
written, 
 
 in out convE E G qE 0′′− = − − =& & α  

G 0s sE(T ) h(T T )− − =∞−α                (1) 
 
From Example 12.10, we know that the absorptivity to irradiation having the spectral distribution 
of a blackbody at 2000 K is α = 0.395.  Now we must find the emissive power of the wall from 
Table 12.1 and Eq. 12.43, 
 

s s b s ,b s 1 2 30
E(T ) (T )E (T ) ( )E ( ,T )d I I I

∞
λ λ= ε = ε λ λ λ = + +∫            

where 
1.5 m

1 ,b s (0 1.5 m) b s0
10 m

2 ,b s (1.5 m 10 m) b s1.5 m

3 ,b s (10 m ) b s10 m

I 0.1 E ( ,T )d 0.1F E (T )

I 0.5 E ( ,T )d 0.5F E (T )

I 0.8 E ( ,T )d 0.8F E (T )

μ
λ → μ

μ
λ μ → μμ

∞
λ μ →∞μ

= λ λ =

= λ λ =

= λ λ =

∫

∫

∫
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Brick, 
kb = 1.0 W/m⋅K 

Insulation, 
ki = 0.05 W/m⋅K 

Lb = 0.1 m Li = 0.1 m 

G = 50,000 W/m2 

Furnace 
T = 500 K 
h = 25 W/m2⋅K 

Ts,o = 300 K 



PROBLEM 12.98 (Cont.) 
 
Thus, 

( ) ( )s (0 1.5 m) (0 10 m) (0 1.5 m) (0 10 m) b sE(T ) 0.1F 0.5 F F 0.8 1 F E (T )→ μ → μ → μ → μ= + − + −⎡ ⎤⎣ ⎦       (2) 

Eqs. (1) and (2) are two equations in the two unknowns, Ts and E(Ts), where each of the F’s also 
depends on Ts (from Table 12.1).  A numerical solution is required.  An IHT code to solve this 
problem is shown in the Comments section.  The solution is 

 Ts = 796 K                  < 
With conduction through the wall, the energy balance becomes 
 

in out conv condE E G q qE 0′′ ′′− = − − − =& & α  
G 0s s s s,o totE(T ) h(T T ) (T T ) / R− − =∞ ′′− − −α             (3) 

where 
2

tot b b i iR L / k L / k 0.1 m /1.0 W / m K 0.1 m / 0.05 W / m K 2.1 m K / W′′ = + = ⋅ + ⋅ = ⋅  
Eqs. (2) and (3) can once again be solved using IHT, to find 

 Ts = 793 K                  < 
 
COMMENTS: (1) If the conduction heat flux is included, the surface temperature drops by 
only 3 K.  (2) The IHT code to solve the problem is shown below.  Note that if Eq. (1) or (3) is 
used directly, the code does not converge to a solution for Ts.  Instead, the code is set up to 
calculate a variable “qnet” that is the net heat flux at the surface, and Ts is varied until qnet is 
approximately zero. 
 
//Energy balance on inner surface 
/* To effect convergence, calculate qnet as a function of Ts, and "Explore" Ts to find value for which qnet = 
0. */ 
qnet = alpha*G - E - h*(Ts - Tinf) - qcond  
Ts = 500 
 
//Calculate qcond. Select from two options below. 
qcond = (Ts - Tso)/Rtot 
//qcond = 0 
 
//Calculate E(Ts). 
lambda1 = 1.5 
lambda2 = 10 
/* The blackbody band emission factor, Figure 12.14 and Table 12.1, is */ 
FLT1 = F_lambda_T(lambda1,Ts)    // Eq 12.34 
FLT2 = F_lambda_T(lambda2,Ts)    // Eq 12.34 
// where units are lambda (micrometers, mum) and T (K) 
E = (0.1*FLT1 + 0.5*(FLT2 - FLT1) + 0.8*(1-FLT2))*Eb 
Eb = sigma*Ts^4 
sigma = 5.67e-8 
 
//Inputs 
alpha = 0.395 
G = 50000 
h = 25 
Tinf = 500 
Tso = 300 
Rtot = 0.1/1.0 + 0.1/0.05 
 



PROBLEM 12.99 
 
KNOWN: Laser-materials-processing apparatus.  Spectrally selective sample heated to the operating 
temperature Ts = 2000 K by laser irradiation ( 0.5 μm ), Glaser, experiences convection with an inert gas 
and radiation exchange with the enclosure. 
 
FIND: (a) Total emissivity of the sample, ε ; (b) Total absorptivity of the sample, α, for irradiation from 
the enclosure; (c) Laser irradiation required to maintain the sample at Ts = 2000 K by performing an 
energy balance on the sample; (d) Sketch of the sample emissivity  during the cool-down process when 
the laser and inert gas flow are deactivated; identify key features including the emissivity for the final 
condition (t →∞ ); and (e) Time-to-cool the sample from the operating condition at Ts  (0) = 2000 K to a 
safe-to-touch temperature of Ts (t) = 40°C; use the lumped capacitance method and include the effects of 
convection with inert gas (T∞  = 300 K , h = 50 W/ m2⋅K) as well as radiation exchange Tenc = T∞ . 
 
SCHEMATIC:  

 
 
ASSUMPTIONS:  (1) Enclosure is isothermal and large compared to the sample, (2) Sample is opaque 
and diffuse, but spectrally selective, so that ελ  = αλ,  (3) Sample is isothermal. 
 
PROPERTIES:  Sample (Given) ρ = 3900 kg/m3,  cp = 760 J/kg , k = 45 W/m⋅K. 
 
ANALYSIS:  (a) The total emissivity of the sample, ε, at Ts = 2000 K follows from Eq. 12.43 which can 
be expressed in terms of the band emission factor, F(0-λ,T)  Eq. 12.34, 
 
 ( ) ( )1 s 1 s1 20 T 0 TF 1 Fλ λε ε ε− −= + −⎡ ⎤

⎣ ⎦  (1) 

 [ ]0.8 0.7378 0.2 1 0.7378 0.643ε = × + − =  < 
 
where from Table 12.1, with λ1Ts = 3μm × 2000 K = 6000 μm⋅K, F(0-λT) = 0.7378. 
 
(b) The total absorptivity of the sample, α, for irradiation from the enclosure at Tenc = 300 K, is 
 
 ( ) ( )1 enc 1 enc1 20 T 0 TF 1 Fλ λα ε ε− −= + −⎡ ⎤

⎣ ⎦  (2) 

 [ ]0.8 0 0.2 1 0 0.200α = × + − =  < 
 
where, from Table 12.1, with λ1Tenc = 3 μm × 300 K = 900 μm⋅K, F(0-λT) =0. 
 

Continued... 
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(c) The energy balance on the sample, on a per unit area 
basis, as shown in the schematic at the right is 
 
 in outE E 0− =& &  
 
 ( )las laser b s cvG 2 G 2 E T q 0α α ε ′′+ + − − =  
 
 ( )4 4

las laser enc s sG 2 T 2 T 2h T T 0∞+ − − − =α ασ εσ  (3) 
 

 
Recognizing that αlas(0.5 μm) = 0.8, and substituting numerical values find, 
 

 ( )
4 48 2

laser0.8 G 2 0.200 5.67 10 W m K 300 K−× + × × × ⋅  
 

 ( )
4 48 22 0.643 5.67 10 W m K 2000 K−− × × × ⋅ ( )22 50 W m K 2000 500 K 0− × ⋅ − =  

 

 6 5 2
laser0.8 G 184.6 1.167 10 1.500 10 W m× = − + × + ×⎡ ⎤

⎣ ⎦  

 2
laserG 1646 kW m=  < 

 
(d) During the cool-down process, the total 
emissivity ε will decrease as the temperature 
decreases, Ts (t).  In the limit, t → ∞, the sample 
will reach that of the enclosure, Ts (∞) = Tenc  for 
which ε = α = 0.200. 
 
(e) Using the IHT Lumped Capacitance Model 
considering radiation exchange (Tenc = 300 K) 
and convection ( T∞ = 300 K, h = 50 W/m2⋅K) 
and evaluating the emissivity using Eq. (1) with 
the Radiation Tool, Band Emission Factors, the 
temperature-time history was determined and the 
time-to-cool to T(t) = 40°C was found as 

 

 
 
 

 t 119 s=  < 
COMMENTS: (1) From the IHT model used for part (e), the emissivity as a function of cooling time and sample 
temperature were computed and are plotted below.  Compare these results to your sketch of part (c). 
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PROBLEM 12.99 (Cont.) 

(2) The IHT workspace model to perform the lumped capacitance analysis with variable emissivity is 
shown below. 
 

// Lumped Capacitance Model - convection and emission/irradiation radiation processes: 
/* Conservation of energy requirement on the control volume, CV.  */  
Edotin - Edotout = Edotst 
Edotin = As * ( + Gabs) 
Edotout = As * ( + q''cv + E ) 
Edotst = rho * vol * cp * Der(T,t) 
T_C = T - 273 
// Absorbed irradiation from large surroundings on CS 
Gabs = alpha * G 
G =  sigma * Tsur^4 
sigma = 5.67e-8    // Stefan-Boltzmann constant, W/m^2·K^4 
// Emissive power of CS 
E = eps * Eb 
Eb = sigma * T^4 
//sigma = 5.67e-8    // Stefan-Boltzmann constant, W/m^2·K^4 
//Convection heat flux for control surface CS 
q''cv = h * ( T - Tinf ) 
/* The independent variables for this system and their assigned numerical values are */ 
As =     2 * 1           // surface area, m^2; unit area, top and bottom surfaces 
vol =  1 * w              // vol, m^3 
w = 0.001  // sample thickness, m 
rho =   3900            // density, kg/m^3 
cp =   760              // specific heat, J/kg·K 
// Convection heat flux, CS 
h =    50            // convection coefficient, W/m^2·K 
Tinf =  300          // fluid temperature, K 
// Emission, CS 
//eps =   0.5         // emissivity; value used to test the model initially 
// Irradiation from large surroundings, CS 
alpha = 0.200         // absorptivity; from Part (b); remains constant during cool-down 
Tsur =   300       // surroundings temperature, K 
 
// Radiation Tool - Band emission factor: 
eps = eps1 * FL1T  + eps2 * ( 1 - FL1T ) 
/* The blackbody band emission factor, Figure 12.12 and Table 12.1, is */ 
FL1T = F_lambda_T(lambda1,T)    // Eq 12.34 
// where units are lambda (micrometers, mum) and T (K) 
lambda1 = 3 // wavelength, mum 
eps1 = 0.8 // spectral emissivity; for lambda < lambda1 

 eps2 = 0.2 // spectral emissivity; for lambda > lambda1 
 



PROBLEM 12.100 
 
KNOWN:  Cross flow of air over a cylinder placed within a large furnace. 
 
FIND:  (a) Steady-state temperature of the cylinder when it is diffuse and gray with ε = 0.5,  (b) Steady-
state temperature when surface has spectral properties shown below,  (c) Steady-state temperature of the 
diffuse, gray cylinder if air flow is parallel to the cylindrical axis,  (d) Effect of air velocity on cylinder 
temperature for conditions of part (a).  
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Cylinder is isothermal, (2) Furnace walls are isothermal and very large in area 
compared to the cylinder, (3) Steady-state conditions.  
PROPERTIES:  Table A.4,  Air (Tf ≈ 600 K):  6 252.69 10 m sν −= × ,  k = 46.9 × 10-3 W/m⋅K,  Pr = 
0.685. 
 
ANALYSIS:  (a) When the cylinder surface is gray and diffuse with ε = 0.5, the energy balance is of the 
form, rad convq q 0′′ ′′− = .  Hence, 

 4 4
sur s s(T T ) h(T T ) 0εσ ∞− − − = . 

The heat transfer coefficient, h ,  can be estimated from the Churchill-Bernstein correlation of Chapter 7, 

 

( )

4 / 55 /81/ 2 1/ 3
D DD 1/ 42 / 3

0.62 Re Pr Re
Nu (h D k) 0.3 1

282, 000
1 0.4 Pr

= = + +

+

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎡ ⎤ ⎣ ⎦

⎢ ⎥⎣ ⎦

 

where 3 6 2
DRe V D 3m s 30 10 m 52.69 10 m s 1710.ν − −= = × × × =   Hence, 

 DNu 20.8=  

 3 3 2h 20.8 46.9 10 W m K 30 10 m 32.5 W m K− −= × × ⋅ × = ⋅ . 
Using this value of h  in the energy balance expression, we obtain 

 8 4 4 2 2
s s0.5 5.67 10 (1000 T ) W m 32.5 W m K(T 400) K 0−× × − − ⋅ − =  

which yields Ts ≈ 839 K. < 
 
(b) When the cylinder has the spectrally selective behavior, the energy balance is written as 
 b s convG E (T ) q 0α ε ′′− − =  

where G = Eb (Tsur).  With  
0

G d Gλ λα α λ
∞

= ∫ , 

 ( )(0 3 m) (0 3 m)0.1 F 0.5 1 F 0.1 0.273 0.5(1 0.273) 0.391→ →= × + × − = × + − =μ μα  

where, using Table 12.1 with λT = 3 ×1000 = 3000 μm⋅K,  F( )0 3→ = 0.273.  Assuming Ts  is such that 
emission in the spectral region λ < 3 μm is negligible, the energy balance becomes 

Continued... 
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8 4 2 8 4 2 2

s s0.391 5.67 10 1000 W m 0.5 5.67 10 T W m 32.5 W m K(T 400) K 0− −× × × − × × × − ⋅ − =  

which yields Ts ≈ 770 K. < 
 
Note that, for λT = 3 × 770 = 2310 μm⋅K,  (0 )F λ→  ≈ 0.11;  hence the assumption of ε = 0.5 is acceptable.  

Note that the value of h  based upon Tf = 600 K is also acceptable. 
 
(c) When the cylinder is diffuse-gray with air flow in the longitudinal direction, the characteristic length 
for convection is different.  Assume conditions can be modeled as flow over a flat plate of L = 150 mm.   
With 
 
 3 6 2

LRe V L 3m s 150 10 m 52.69 10 m s 8540ν − −= = × × × =  
  
 1/ 2 1/ 3 1/ 2 1/ 3

L LNu (hL k) 0.664 Re Pr 0.664(8540) 0.685 54.1= = = =  
  
 2h 54.1 0.0469 W m K 0.150 m 16.9 W m K= × ⋅ = ⋅ . 
 
The energy balance now becomes  
 
 8 2 4 4 4 4 2

s s0.5 5.667 10 W m K (1000 T )K 16.9 W m K(T 400)K 0−× × ⋅ − − ⋅ − =  

which yields Ts ≈ 850 K. < 
 
(b) Using the IHT First Law Model with the Correlations and Properties Toolpads, the effect of velocity 
may be determined and the results are as follows: 
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Since the convection coefficient increases with increasing V (from 18.5 to 90.6 W/m2⋅K for 1 ≤ V ≤ 20 
m/s), the cylinder temperature decreases, since a smaller value of (Ts − T∞ ) is needed to dissipate the 
absorbed irradiation by convection.  
 
COMMENTS:  The cylinder temperature exceeds the air temperature due to absorption of the incident 
radiation.  The cylinder temperature would approach T∞  as h → ∞   and/or  α → 0.  If  α → 0 and h  has 
a small to moderate value, would Ts be larger than, equal to, or less than T∞ ?  Why? 



PROBLEM 12.101  
KNOWN:  Instrumentation pod, initially at 87°C, on a conveyor system passes through a large 
vacuum brazing furnace.  Inner surface of pod surrounded by a mass of phase-change material (PCM).  
Outer surface with special diffuse, opaque coating of ελ.  Electronics in pod dissipate 50 W. 
 
FIND:  How long before all the PCM changes to the liquid state?  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Surface area of furnace walls much larger than that of pod, (2) No convection, 
(3) No heat transfer to pod from conveyor, (4) Pod coating is diffuse, opaque, (5) Initially pod internal 
temperature is uniform at Tpcm = 87°C and remains so during time interval Δtm, (6) Surface area 
provided is that exposed to walls. 
 
PROPERTIES:  Phase-change material, PCM (given):  Fusion temperature, Tf = 87°C, hfg = 25 
kJ/kg.  
ANALYSIS:  Perform an energy balance on the pod for an interval of time Δtm which corresponds to 
the time for which the PCM changes from solid to liquid state, 
 
 in out genE E E E− + = Δ     

 ( )b s e m fgG E A P t Mhα ε⎡ ⎤− + Δ =⎣ ⎦  
 
where Pe is the electrical power dissipation 
rate, M is the mass of PCM, and hfg is the 
heat of fusion of PCM. 
 
Irradiation: G = σTw = 5.67 × 10-8 W/m2⋅K4(1200 K)4 = 117,573 W/m2 
 

Emissive power: Eb = ( )44 2
mT 87 273 952 W / mσ σ= + =  

 
Emissivity: ε = ε1F(0-λT) + ε2(1-F(0-λT))  λT = 5 × 360 = 1800 μm⋅K 
  ε = 0.05 × 0.0393 + 0.9 (1 – 0.0393) F0-λT = 0.0393  (Table 12.1) 
  ε = 0.867 
Absorptivity: α = α1 F(0-λT) + α2(1 –F(0-λT))  λT = 5 × 1200 = 6000 μm⋅K 
  α = 0.05 × 0.7378 + 0.9 (1 – 0.7378) F0-λT = 0.7378  (Table 12.1) 
  α = 0.273 
 
Substituting numerical values into the energy balance, find, 
 

( ) 2 2 3
m0.273 117,573 0.867 952 W / m 0.040 m 50 W t 1.6kg 25 10 J / kg⎡ ⎤× − × × + Δ = × ×⎢ ⎥⎣ ⎦

 

 mt 32.5 s 0.54 min.Δ = =        < 



PROBLEM 12.102 
 
KNOWN:  Temperatures of furnace and surroundings separated by ceramic plate.  Maximum allowable 
temperature and spectral absorptivity of plate. 
 
FIND:  (a) Minimum value of air-side convection coefficient, ho,  (b) Effect of ho on plate temperature. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Diffuse surface,  (2) Negligible temperature gradients in plate,  (3) Negligible 
inside convection,  (4) Furnace and surroundings act as blackbodies. 
 
ANALYSIS:  (a) From a surface energy balance on the plate, w w sur sur convG G 2E qα α ′′+ = + .  Hence, 

4 4 4
w w sur sur s o sT T 2 T h (T T )α σ α σ εσ ∞+ = + − . 

 

 
4 4 4

w w sur sur s
o

s

T T 2 T
h

(T T )
α σ α σ εσ

∞

+ −
=

−
 

 
Evaluating the absorptivities and emissivity, 
 

 w b w b w (0 3 m) (0 3 m)0 0
G d G E (T ) E (T )d 0.3F 0.8 1 Fλ λ λ λ μ μα α λ α λ

∞ ∞
− −= = = + −⎡ ⎤⎣ ⎦∫ ∫  

 
With wT 3 m 2400 K 7200 m Kλ μ μ= × = ⋅ , Table 12.1 (0 3 m)F 0.819μ−→ = .  Hence,  
 
 w 0.3 0.819 0.8(1 0.819) 0.391α = × + − =  
 
Since Tsur = 300 K, irradiation from the surroundings is at wavelengths well above 3 μm.  Hence, 
 

 sur b sur b sur0
E (T ) E (T )d 0.800λ λα α λ

∞
= ≈∫ . 

 

The emissivity is b s b s (0 3 m) (0 3 m)0
E (T ) E (T )d 0.3F 0.8 1 Fλ λ μ με ε λ

∞
− −= = + −⎡ ⎤⎣ ⎦∫ .  With 

sT 5400 m Kλ μ= ⋅ , Table 12.1 (0 3 m)F 0.680μ−→ = .   Hence, ε = 0.3 × 0.68 + 0.8(1 − 0.68)  =  0.460. 
 
For the maximum allowable value of Ts = 1800 K, it follows that 
 

 
8 4 8 4 8 4

o
0.391 5.67 10 (2400) 0.8 5.67 10 (300) 2 0.46 5.67 10 (1800)

h
(1800 300)

− − −× × + × × − × × ×
=

−
 

 

 
5 2 5

2
o

7.335 10 3.674 10 5.476 10
h 126 W m K

1500
× + × − ×

= = ⋅ .    < 

 
(b) Using the IHT First Law Model with the Radiation Toolpad, parametric calculations were performed 
to determine the effect of ho. 
 

Continued... 
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With increasing ho, and hence enhanced convection heat transfer at the outer surface, the plate 
temperature is reduced. 
 

COMMENTS:  (1) The surface is not gray.  (2) The required value of 2
oh 126 W m K≥ ⋅  is well within 

the range of air cooling. 
 
 



PROBLEM 12.103 
 
KNOWN:  Spectral radiative properties of thin coating applied to long circular copper rods of prescribed 
diameter and initial temperature.  Wall and atmosphere conditions of furnace in which rods are inserted. 
 
FIND:  (a) Emissivity and absorptivity of the coated rods when their temperature is Ts = 300 K, (b) Initial 
rate of change of their temperature, dTs/dt, (c) Emissivity and absorptivity when they reach steady-state 
temperature, and (d) Time required for the rods, initially at Ts = 300 K, to reach 1000 K. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Rod temperature is uniform, (2) Nitrogen is quiescent, (3) Constant properties, (4) 
Diffuse, opaque surface coating, (5) Furnace walls form a blackbody cavity about the cylinders, G = 
Eb(Tf), (6) Negligible end effects. 
 
PROPERTIES:  Table A.1, Copper (300 K):  ρ = 8933 kg/m3, cp = 385 J/kg⋅K, k = 401 W/m⋅K;  Table 
A.4, Nitrogen (Tf = 800 K, 1 atm):  ν = 82.9 × 10-6 m2/s, k = 0.0548 W/m⋅K, α = 116 × 10-6 m2/s, Pr = 
0.715, β = (Tf)-1 = 1.25 × 10-3 K-1. 
 
ANALYSIS:  (a) The total emissivity of the copper rod, ε, at Ts = 300 K follows from Eq. 12.43 which 
can be expressed in terms of the band emission factor, F(0 - λT), Eq. 12.34, 
 
 ( ) ( )[ ]1 1 s 2 1 sF 0 T 1 F 0 Tε ε λ ε λ= − + − −  (1) 

 [ ]0.4 0.0021 0.8 1 0.0021 0.799ε = × + − =  < 
 
where, from Table 12.1, with λ1Ts = 4 μm × 300 K = 1200 μm⋅K, F(0 - λT) = 0.0021.  The total 
absorptivity, α, for irradiation for the furnace walls at Tf = 1300 K, is 
 ( ) ( )[ ]1 1 f 2 1 fF 0 T 1 F 0 Tα ε λ ε λ= − + − −  (2) 

 [ ]0.4 0.6590 0.8 1 0.6590 0.536α = × + − =  < 
where, from Table 12.1, with λ1Tf = 4 μm × 1300 K = 5200 K, F(0 - λT) = 0.6590. 
 
(b) From an energy balance on a control volume about the rod, 

 ( ) ( ) ( )[ ]2
st p in out sE c D 4 L dT dt E E DL G h T T Eρ π π α ∞= = − = + − −& & &  

 ( ) 4
s s s pdT dt 4 G h T T T c Dα εσ ρ∞= + − −⎡ ⎤

⎣ ⎦ . (3) 
 
With 

 
( ) ( ) ( )32 3 13

s
D 6 2 6 2

9.8 m s 1.25 10 K 1000 K 0.01mg T T D
Ra 1274

82.9 10 m s 116 10 m s

β
να

− −
∞

− −

×−
= = =

× × ×
 (4) 

 
The Churchill-Chu correlation of Chapter 9 gives 
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( )

( )

2
1/ 6

2
8 / 279 /16

0.387 12740.0548
h 0.60 15.1W m K

0.01m
1 0.559 0.715

= + = ⋅

+

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪⎡ ⎤

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 (5) 

 
With values of ε and α from part (a), the rate of temperature change with time is 
 

( ) ( )8 2 4 2 8 24 4

s 3

4 0.53 5.67 10 W m K 1300 K 15.1W m K 1000 K 0.8 5.67 10 W m K 300 K
dT dt

8933 kg m 385 J kg K 0.01m

− −× × ⋅ × + ⋅ × − × × ⋅ ×
=

× ⋅ ×

⎡ ⎤
⎣ ⎦  

 [ ]4
sdT dt 1.16 10 85,829 15,100 3767 K s 11.7 K s−= × + − = . < 

 
(c) Under steady-state conditions, Ts = T∞  = Tf = 1300 K.  For this situation, ε = α, hence 

 0.536ε α= =  < 
(d) The time required for the rods, initially at Ts(0) = 300 K, to reach 1000 K can be determined using the 
lumped capacitance method. Using the IHT Lumped Capacitance Model, considering convection, 
irradiation and emission processes; the Correlations Tool, Free Convection, Horizontal Cylinder; 
Radiation Tool, Band Emission Fractions; and a user-generated Lookup Table Function for the nitrogen 
thermophysical properties, find 

 Ts(to) = 1000 K                   to = 81.8 s < 
COMMENTS:  (1) To determine the validity of the lumped capacitance method to this heating process, 
evaluate the approximate Biot number, Bi = hD k  = 15 W/m2⋅K × 0.010 m/401 W/m⋅K = 0.0004.  Since 
Bi << 0.1, the method is appropriate. 
 
(2) The IHT workspace with the model used for part (c) is shown below. 
 

// Lumped Capacitance Model - irradiation, emission, convection 
/* Conservation of energy requirement on the control volume, CV.  */  
Edotin - Edotout = Edotst 
Edotin = As * ( + Gabs) 
Edotout = As * ( + q''cv + E ) 
Edotst = rho * vol * cp * Der(Ts,t) 
//Convection heat flux for control surface CS 
q''cv = h * ( Ts - Tinf ) 
// Emissive power of CS 
E = eps * Eb 
Eb = sigma * Ts^4 
sigma = 5.67e-8    // Stefan-Boltzmann constant, W/m^2·K^4 
// Absorbed irradiation from large surroundings on CS 
Gabs = alpha * G 
G = sigma * Tf^4 
/* The independent variables for this system and their assigned numerical values are */ 
As =    pi * D * 1        // surface area, m^2 
vol =    pi * D^2 / 4 * 1             // vol, m^3 
rho =    8933            // density, kg/m^3 
cp =     433             // specific heat, J/kg·K; evaluated at 800 K 
// Convection heat flux, CS 
//h =                // convection coefficient, W/m^2·K 
Tinf =    1300        // fluid temperature, K 
// Emission, CS 
//eps =            // emissivity 
// Irradiation from large surroundings, CS 
//alpha =         // absorptivity 
Tf =   1300       // surroundings temperature, K 
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// Radiative Properties Tool - Band Emission Fraction 
eps = eps1 * FL1Ts + eps2 * (1 - FL1Ts) 
/* The blackbody band emission factor, Figure 12.14 and Table 12.1, is */ 
FL1Ts = F_lambda_T(lambda1,Ts)      // Eq 12.34 
// where units are lambda (micrometers, mum) and T (K) 
alpha = eps1 * FL1Tf  + eps2 * (1- FL1Tf) 
/* The blackbody band emission factor, Figure 12.14 and Table 12.1, is */ 
FL1Tf = F_lambda_T(lambda1,Tf)      // Eq 12.34 
 
// Assigned Variables: 
D = 0.010  // Cylinder diameter, m 
eps1 = 0.4 // Spectral emissivity for lambda < lambda1 
eps2 = 0.8 // Spectral emissivity for lambda > lambda1 
lambda1 = 4 // Wavelength, mum 
 
// Correlations Tool - Free Convection, Cylinder, Horizontal: 
NuDbar = NuD_bar_FC_HC(RaD,Pr)       // Eq 9.34 
NuDbar = h * D / k 
RaD = g * beta * deltaT * D^3 / (nu * alphan)       //Eq 9.25 
deltaT = abs(Ts - Tinf) 
g = 9.8     // gravitational constant, m/s^2 
// Evaluate properties at the film temperature, Tf.  
Tff =Tfluid_avg(Tinf,Ts) 
 
// Properties Tool - Nitrogen: Lookup Table Function "nitrog" 
nu = lookupval (nitrog, 1, Tff, 2) 
k = lookupval (nitrog, 1, Tff, 3) 
alphan =  lookupval (nitrog, 1, Tff, 4) 
Pr = lookupval (nitrog, 1, Tff, 5) 
beta = 1 / Tff 
/* Lookup table function, nitrog; from Table A.4 1 atm): 
Columns: T(K), nu(m^2/s), k(W/m.K), alpha(m^2/s), Pr 
300 1.586E-5  0.0259 2.21E-5 0.716 
350 2.078E-5  0.0293 2.92E-5 0.711 
400 2.616E-5  0.0327 3.71E-5 0.704 
450 3.201E-5  0.0358 4.56E-5 0.703 
500 3.824E-5  0.0389 5.47E-5 0.7 
550 4.17E-5  0.0417 6.39E-5 0.702 
600 5.179E-5  0.0446 7.39E-5 0.701 
700 6.671E-5  0.0499 9.44E-5 0.706 
800 8.29E-5  0.0548 0.000116 0.715 
900 0.0001003 0.0597 0.000139 0.721 
1000 0.0001187 0.0647 0.000165 0.721    */ 

 



PROBLEM 12.104 
 
KNOWN:  Large combination convection-radiation oven heating a cylindrical product of a prescribed 
spectral emissivity.  
FIND:  (a) Initial heat transfer rate to the product when first placed in oven at 300 K,  (b) Steady-state 
temperature of the product,  (c) Time to achieve a temperature within 50oC of the steady-state 
temperature.  
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Cylinder is opaque-diffuse,  (2) Oven walls are very large compared to the 
product,  (3) Cylinder end effects are negligible,  (4) λε  is dependent of temperature. 
 
PROPERTIES:  Table A-4, Air (Tf = 525 K,  1 atm):   6 242.2 10 m s, k 0.0423 W m Kν −= × = ⋅ ,   

Pr = 0.684; (Tf = 850 K (assumed),  1 atm):  6 293.8 10 m sν −= × ,  k = 0.0596 W/m⋅K,  Pr = 0.716. 
 
ANALYSIS:  (a) The net heat rate to the product is net s conv bq A (q G E )α ε′′= + − , or  

 4
netq DL[h(T T) G T ]π α εσ∞= − + −                                                                                        (1) 

Evaluating properties at Tf = 525 K,  6 2
DRe VD 5 m s 0.025 m 42.2 10 m s 2960ν −= = × × = ,  and the 

Churchill-Bernstein correlation of Chapter 7 yields 

 

4 / 55 / 81/ 2 1/ 3
D DD 2 / 3 1/ 4

hD 0.62 Re Pr Re
Nu 0.3 1 27.5

k 282, 000[1 (0.4 Pr) ]
= = + + =

+

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

Hence, 

 20.0423 W m K
h 27.5 46.5 W m K

0.025m
⋅

= × = ⋅ . 

The total, hemispherical emissivity of the diffuse, spectrally selective surface follows from Eq. 12.43, 
4

s ,b s 1 (0 4 m) 2 (0 4 m)0
( , T )E T F (1 F )λ λ μ με ε λ σ ε ε

∞
→ →= = + −∫ ,  where  λT = 4 μm × 300 K = 1200 

μm⋅K  and (0 T)F 0.002λ− =  (Table 12.1).  Hence,  ε = 0.8 × 0.002 + 0.2 (1 − 0.002)  =  0.201. 
 
The absorptivity is for irradiation from the oven walls which, because they are large and isothermal, 
behave as a black surface at 1000 K.  From Eq. 12.52, with ,bG Eλ λ=  (λ, 1000 K)  and  λ λα ε= , 

 1 (0 4 m) 2 (0 4 m)F (1 F ) 0.8 0.481 0.2(1 0.481) 0.489μ μα ε ε→ →= + − = × + − =  

where, for λT = 4 × 1000 = 4000 μm⋅K from Table 12.1, (0 T)F λ−  = 0.481.  From Eq. (1) the net initial 

heat rate is 2 4 4 4
netq 0.025m 0.2 m[46.5 W m K(750 300) K 0.489 (1000) K 0.201 (300 K) ]π σ σ= × × ⋅ − + −  

Continued... 
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 q = 763 W.               <  
 
(b) For the steady-state condition, the net heat rate will be zero, and the energy balance yields, 
 
 40 h (T T) G Tα εσ∞= − + −                                                                                                    (2) 
 
Evaluating properties at an assumed film temperature of Tf = 850 K,  ReD = VD/ν = 5 m/s × 0.025   
m/93.8 × 10-6 m2/s = 1333, and the Churchill-Bernstein correlation yields DNu 18.6= .  Hence, h  = 18.6 
(0.0596 W/m ⋅ K)/0.025 m = 44.3 W/m2 ⋅ K.  Since irradiation from the oven walls is fixed, the 
absorptivity is unchanged, in which case α = 0.489.  However, the emissivity depends on the product 
temperature.  Assuming T = 950 K, we obtain 
 
 1 (0 4 m) 2 (0 4 m)F (1 F ) 0.8 0.443 0.2(1 0.443) 0.466μ με ε ε→ →= + − = × + − =  
 
where for λT = 4 × 950 = 3800 μm⋅K,  0 TF 0.443λ− = , from Table 12.1.  Substituting values into Eq. (2) 
with σ = 5.67 × 10-8 W/m2⋅K4,   
 
 0 = 44.3 (750 − T) + 0.489 σ (1000 K)4 − 0.466 σ T4. 

A trial-and-error solution yields T ≈ 930 K. <  
 
(c) Using the IHT Lumped Capacitance Model with the Correlations, Properties (for copper and air) and 
Radiation Toolpads, the transient response of the cylinder was computed and the time to reach T = 880 K 
is  

 t  ≈ 537 s. < 
 
COMMENTS:  Note that h  is relatively insensitive to T, while ε is not.  At T = 930 K, ε = 0.456. 
 



PROBLEM 12.105  
KNOWN:  Workpiece, initially at 25°C, to be annealed at a temperature above 725°C for a period of 
5 minutes and then cooled; furnace wall temperature and convection conditions; cooling surroundings 
and convection conditions. 
 
FIND:  (a) Emissivity and absorptivity of the workpiece at 25°C when it is placed in the furnace, (b) 
Net heat rate per unit area into the workpiece for this initial condition; change in temperature with 
time, dT/dt, for the workpiece; (c) Calculate the time for the workpiece to cool from 750°C to a safe-
to-touch temperature of 40°C if the cool surroundings and cooling air temperature are 25°C and the 
convection coefficient is 100 W/m2⋅K. 
 
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Workpiece is opaque and diffuse, (2) Spectral emissivity is independent of 
temperature, and (3) Furnace and cooling environment are large isothermal surroundings. 
 
ANALYSIS:  (a) Using Eqs. 12.43 and 12.52, ε and α can be determined using band-emission factors, 
Eq. 12.34 and 12.35. 
 
Emissivity, workpiece at 25°C 

 ε ε ελ λ λ λ= ⋅ + −− −1 2 1F F0 T 0 Tb g b ge j  
 ε = × × + × − × =− −0 3 16 10 08 1 16 10 085 5. . . . .e j      < 

where F(0-λT) is determined from Table 12.1 with λT = 2.5 μm × 298 K = 745 μm⋅K. 
 
Absorptivity, furnace temperature Tf = 750°C 

 α ε ελ λ λ= ⋅ + ⋅ −− −1 2 1F F0 , T 0 , Tb g b ge j  
 α = × + × − =0 3 0174 08 1 0174 0 713. . . . .b g       < 

where F(0 - λT) is determined with λT = 2.5 μm × 1023 K = 2557.5 μm⋅K. 
 
(b) For the initial condition, T(0) = Ti, the energy balance shown schematically below is written in 
terms of the net heat rate in, 
 

          Continued … 
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 & & & & &′′ − ′′ = ′′ ′′ = ′′ − ′′E E E and q E Ein out st net,in in out  
 
 ′′ = ′′ − +q q  E T E Tnet,in cv b i b f2 ε αb g b g  
 
where G = Eb (Tf).  Substituting numerical values, 
 

 ′′ = − − +∞q  h T T T Tnet,in i i
4

f
42 b g εσ ασ  

 

 ′′ = ⋅ − − × × ⋅L
NMq  100 W / m K 750 25 K 0.8 5.67 10  W / m K  Knet,in

2 -8 2 42 298 4b g b g  

   + × × ⋅ O
QP

−0 713 567 10 8 4. .  W / m K  1023 K2 4 b g  
 
 ′′ = × =q  kW / m  kW / mnet,in

2 22 116 4 233.       < 
 
Considering the energy storage term, 
 

 & ′′ = F
HG
I
KJ = ′′E cL dT

dt
qst

i
net,inρ  

 

 
dT
dt

q
cL

 kW / m

2700 kg / m  J / kg K 0.010 m
 K / s

i

net,in 2

3
I
KJ =

′′
=

× ⋅ ×
=

ρ
233

885
9 75.   < 

 

 
 
 
 
(c) The energy balance of Part (b), using the lumped capacitance method with the IHT DER (T,t) 
function, has the form, 
 

 2 h T T T T cL DER T, t4
f
4

∞ − − + =b g b gεσ ασ ρ  
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The time to cool the workpiece from 750°C to the safe-to-touch temperature of 40°C can be 
determined using the IHT code in the Comments.  The cooling conditions are T∞ = 25°C and h = 100 
W/m2⋅K with Tsur = 25°C.  The emissivity is still evaluated as in the Comments, but the absorptivity, 
which depends upon the surrounding temperature, is α = 0.80.  From the results in the IHT workspace, 
find 
 

 T t C when t  sc cb g = =40 413o      < 
 
       
 
COMMENTS: (1) With the relation for ε of Part (a) in the IHT workspace, and using the Radiation | 
Band Emission tool, ε as a function of workpiece temperature is calculated and plotted below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As expected, ε decreases with increasing T, and when T = Tf = 750°C, ε = α = 0.713.  Why is that so? 
 
(2) The IHT code to obtain the heating time, including emissivity as a function of the workpiece 
temperature, Part (b), is shown below, complete except for the input variables. 
 
 /* Analysis.  The radiative properties and net heat flux in are calculated when the workpiece is 

just inserted into the furnace.  The workpiece experiences emission, absorbed irradiation and 
convection processes.  See Help | Solver | Intrinsic Functions for information on DER(T, t). */ 

 
 /* Results - conditions at t = 186 s, Ts C - 725 C 
 FL1T T_C Tf L Tf_C Tinf_C eps1 eps2 h k 
  lambda1 rho t T 
 0.1607 725.1 1023 0.01 750 750 0.3 0.8 100 165 
  2.5 2700 186 998.1 */ 
 
 // Energy Balance 
 2 * ( h * (Tinf - T) + alpha * G - eps * sigma * T^4) = rho * cp * L * DER(T,t) 
 sigma = 5.67e-8 
 G = sigma * Tf^4 
 
 // Emissivity and absorptivity 
 eps = FL1T * eps1 + (1 - FL1T) * eps2 
 FL1T = F_lambda_T(lambda1, T) // Eq 12.34 
 alpha = 0.713 
 
 // Temperature conversions 
 T_C = T - 273  // For customary units, graphical output 
 Tf_C = Tf - 273 
 Tinf_C = Tinf - 273 

Workpiece emissivity as a function of its  temperature
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PROBLEM 12.106  
KNOWN:  For the semiconductor silicon, the spectral distribution of absorptivity, αλ, at selected 
temperatures.  High-intensity, tungsten halogen lamps having spectral distribution approximating that 
of a blackbody at 2800 K. 
 
FIND:  (a) 1%-limits of the spectral band that includes 98% of the blackbody radiation corresponding 
to the spectral distribution of the lamps; spectral region for which you need to know the spectral 
absorptivity; (b) Sketch the variation of the total absorptivity as a function of silicon temperature; 
explain key features; (c) Calculate the total absorptivity at 400, 600 and 900°C for the lamp 
irradiation; explain results and the temperature dependence; Calculate the total emissivity of the wafer 
at 600 and 900°C; explain results and the temperature dependence; and (d) Irradiation on the upper 
surface required to maintain the wafer at 600°C in a vacuum chamber with walls at 20°C.  Use the 
Look-up Table and Integral Functions of IHT to perform the necessary integrations.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Silicon is a diffuse emitter, (2) Chamber is large, isothermal surroundings for 
the wafer, (3) Wafer is isothermal.  
ANALYSIS:  (a) From Eqs. 12.28 and 12.29, using Table 12.1 for the band emission factors, F(0 - λT), 
equal to 0.01 and 0.99 are: 
 ( ) 10 1 TF 0.01 at T 1437 m Kλ λ μ→ ⋅ = ⋅ = ⋅  

 ( ) 20 2 TF 0.99 at T 23,324 m Kλ λ μ→ ⋅ = ⋅ = ⋅  

So that we have λ1 and λ2 limits for several temperatures, the following values are tabulated. 
 
 T(°C)  T(K)  λ1(μm)  λ2(μm) 

   -  2800    0.51    8.33     < 
 400    673    2.14    34.7 
 600    873    1.65    26.7 
 900  1173    1.23    19.9  
For the 2800 K blackbody lamp irradiation, we need to know the spectral absorptivity over the spectral 
range 0.51 to 8.33 μm in order to include 98% of the radiation.  
(b) The spectral absorptivity is calculated from Eq. 12.52 in which the spectral distribution of the lamp 
irradiation Gλ is proportional to the blackbody spectral emissive power E T,bλ λ,b g  at the 
temperature of lamps, Tl  = 2800 K. 

 α
α λ

λ

α λ

σ
λ λ

λ

λ λ
l

l

=
z
z

=
z∞

∞

∞G d

G d

 E  2800 K

T
0

0

,b0
4

,b g
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For 2800 K, the peak of the blackbody curve is at 1 μm; the limits of integration for 98% coverage are 
0.5 to 8.3 μm according to part (a) results.  Note that αλ increases at all wavelengths with temperature, 
until around 900°C where the behavior is gray.  Hence, we’d expect the total absorptivity of the wafer 
for lamp irradiation to appear as shown in the graph below. 
 

 
 
At 900°C, since the wafer is gray, we expect α l  = αλ ≈ 0.68.  Near room temperature, since αλ ≈ 0 

beyond the band edge, α l  is dependent upon αλ in the spectral region below and slightly beyond the 
peak.  From the blackbody tables, the band emission fraction to the short-wavelength side of the peak 
is 0.25.  Hence, estimate α l  ≈ 0.68 × 0.25 = 0.17 at these low temperatures.  The increase of α l  with 
temperature is at first moderate, since the longer wavelength region is less significant than is the 
shorter region.  As temperature increases, the αλ closer to the peak begin to change more noticeably, 
explaining the greater dependence of α l  on temperature. 
 
(c) The integration of part (b) can be performed numerically using the IHT INTEGRAL function and 
specifying the spectral absorptivity in a Lookup Table file (*.lut).  The code is shown in the Comments 
(1) and the results are: 

 Tw(°C)  400  600  900 

   α l   0.30  0.59  0.68    < 

The total emissivity can be calculated from Eq. 12.36, recognizing that ελ = αλ and that for silicon 
temperatures of 600 and 900°C, the 1% limits for the spectral integration are 1.65 - 26.7 μm and 1.23 - 
19.9 μm, respectively.  The integration is performed in the same manner as described above; see 
Comments (2). 
  T(°C)  600  900 

    ε  0.66  0.68      < 
 
As the silicon temperature increases, the peak of the corresponding blackbody emissive power shifts to 
shorter wavelengths.  In general, this will reduce ε.  However, this reduction is offset by the 
dependence of ελ on temperature, which is quite strong.  As the temperature increases, ελ increases 
significantly. 
 
(d) From an energy balance on the silicon wafer with irradiation on the upper surface as shown in the 
schematic below, calculate the irradiation required to maintain the wafer at 600°C. 
 
 & &′′ − ′′ = − − =E E G  E  T  E  Tin out b w sur b sur0 2 0α ε αl l b g b g  
 
Recognize that αsur corresponds to the spectral distribution of Eλ,b (Tsur); that is, upon αλ for long 
wavelengths (λmax ≈ 10 μm).  We assume αsur ≈ 0.1, and with Tsur = 20°C, find 

Continued … 
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4 4 4 40.59G 2 0.66(600 273) K 0.1(20 273) K 0σ ⎡ ⎤− + − + =⎣ ⎦l  

G  kW / m2
l = 735.          < 

 
where E T T  and 5.67 10  W / m Kb

4 -8 2 4b g = = × ⋅σ σ .  
 

 
 
COMMENTS:  (1) The IHT code to obtain the total absorptivity for the lamp irradiation, α l  for a 
wafer temperature of 400°C is shown below.  Similar look-up tables were written for the spectral 
absorptivity for 600 and 800°C. 
 
 /* Results; integration for total absorptivity of lamp irradiation 
 T = 400 C; find abs_t = 0.30 
 lLb absL abs_t C1 C2 T sigma lambda 
 1773 0.45 0.3012 3.742E8 1.439E4 2800 5.67E-8 10 */ 
 
 // Input variables 
 T = 2800  // Lamp blackbody distribution 
 
 // Total absorptivity integral, Eq. 12.52 
 abs_t = pi * integral (lLsi, lambda) / (sigma * T^4)  // See Help | Solver 
 sigma = 5.67e-8 
 
 // Blackbody spectral intensity, Tools | Radiation 
 /* From Planck’s law, the blackbody spectral intensity is */ 
 lLsi = absL * lLb 
 lLb = l_lambda_b(lambda, T, C1, C2) // Eq. 12.29 
 // where units are lLb(W/m^2.sr.mum), lambda (mum) and T (K) with 
 C1 = 3.7420e8 // First radiation constant, W⋅mum^4/m^2 
 C2 = 1.4388e4 // Second radiation constant, mum⋅K 
 // and (mum) represents (micrometers). 
 
 // Spectral absorptivity function 
 absL = LOOKUPVAL(abs_400, 1, lambda, 2) // Silicon spectral data at 400 C 
 //absL = LOOKUPVAL(abs_600, 1, lambda, 2) // Silicon spectral data at 600 C 
 //absL = LOOKUPVAL(abs_900, 1, lambda, 2) // Silicon spectral data at 900 C 
 
 // Lookup table values for Si spectral data at 600 C 
 /* The table file name is abs_400.lut, with 2 columns and 10 rows 
 0.5 0.68 
 1.2 0.68 
 1.3 0.025 
 2 0.05 
 3 0.1 
 4 0.17 
 5 0.22 
 6 0.28 
 8 0.37 
 10 0.45 */ 
 
(2) The IHT code to obtain the total emissivity for a wafer temperature of 600°C has the same 
organization as for obtaining the total absorptivity.  We perform the integration, however, with the 
blackbody spectral emissivity evaluated at the wafer temperature (rather than the lamp temperature).  
The same look-up file for the spectral absorptivity created in the IHT code above can be used. 



PROBLEM 12.107 
 
KNOWN:  Solar irradiation of 1100 W/m2 incident on a flat roof surface of prescribed solar absorptivity 
and emissivity; air temperature and convection heat transfer coefficient. 
 
FIND:  (a) Roof surface temperature,  (b) Effect of absorptivity, emissivity and convection coefficient on 
temperature.  
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions,  (2) Back-side of plate is perfectly insulated,  (3) 
Negligible irradiation to plate by atmospheric (sky) emission.  
ANALYSIS:  (a)  Performing a surface energy balance on the exposed side of the plate, 

 S S conv b sG q E (T ) 0α ε′′− − =                   4
S S s sG h (T T ) T 0α εσ∞− − − =  

Substituting numerical values and using absolute temperatures, 

 8 2 4 4
s s2 2

W W
0.6 1100 25 (T 300)K 0.2(5.67 10 W m K )T 0

m m K
−× − − − × ⋅ =

⋅
 

Regrouping , 8 4
s s8160 25T 1.1340 10 T−= + × , and performing a trial-and-error solution,  

 Ts = 321.5 K = 48.5oC. < 
(b)  Using the IHT First Law Model for a plane wall, the following results were obtained. 
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eps = 0.2, alphaS = 0.6
eps = 0.8, alphaS = 0.6
eps = 0.8, alphaS = 0.2   

Irrespective of the value of h , T decreases with increasing ε (due to increased emission) and decreasing 
αS (due to reduced absorption of solar energy).  For moderate to large αS and/or small ε (net radiation 
transfer to the surface) T decreases with increasing h  due to enhanced cooling by convection.  However, 
for small αS and large ε, emission exceeds absorption, dictating convection heat transfer to the surface 
and hence T T< ∞ .  With increasing  h , T T→ ∞ , irrespective of the values of αS and ε. 
 
COMMENTS:  To minimize the roof temperature, the value of ε/αS should be maximized. 



PROBLEM 12.108 
 
 
KNOWN:  Solar flux above Earth’s atmosphere.  Distance of Earth, Venus, and Mars from the sun.  
Measured average temperatures of planets. 
 
FIND:  Planet temperatures neglecting atmospheric radiation effects and assuming gray behavior.  
Planet most affected by radiation transfer through its atmosphere. 
 
SCHEMATIC:   
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Planets are at constant distance from sun, (3) 
Atmosphere has no effect on radiation heat transfer, (4) Planets have gray surfaces, (5) Negligible 
radiation from space. 
  
ANALYSIS:  The energy balance for each planet is between absorbed solar radiation and emitted 
radiation.  The appropriate area for the intercepted solar radiation is the projected area Ap = πR2, where 
R is the planet’s radius, thus 
 

rad,abs S pq G Aα=  
 
Radiation is emitted from the entire surface area of the planet, As = 4πR2, therefore the emitted 
radiation is 
 

4
rad,emit s sq T Aεσ=  

 
The energy balance becomes 

rad,abs rad,emit

42 2

0

4 0sS

q q

G TR Rα εσπ π

− =

− =
 

 
With gray surface behavior, α = ε, we find 
 

1/ 4

4
S

s

G
T

σ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
The solar irradiation is different for each planet because they are at different distances from the sun.  
At a distance Rs from the sun, the solar radiation qsolar passes through the spherical area 24 sRπ ,  
resulting in a solar heat flux 

2
solar / 4S sG q Rπ=  

    Continued...  
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Thus, knowing the solar irradiation for Earth, GS,E, we can find the solar irradiation for Venus and 
Mars: 
 

, ,

, ,

2 2 2 11 2 11 2 2
, ,

2 2 2 11 2 11 2 2
, ,

/ 1368 W/m (1.50  10 m) /(1.08  10 m) 2640 W/m

/ 1368 W/m (1.50  10 m) /(2.30  10 m) 580 W/m
S V S E

S M S E

S E S V

S E S M

G G

G G

R R

R R

= = × × × =

= = × × × =
 

 
 

Finally, the planet temperatures can be calculated: 
 

,
,

1/ 41/ 4 2

8 2 45.67 10
1368 W/m 279 K

4 4 W/m K
S E

s E

G
T

σ −× ×

⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⋅⎝ ⎠ ⎝ ⎠
   < 

 
Similarly, 
 

Ts,V  = 329 K,     Ts,M  = 225 K       < 
 
 
The calculated temperatures are compared with the measured average temperatures in the chart: 
 

Planet LS-p, m pT , K Tcalc, K 
Venus 1.08 × 1011 735 329 
Earth 1.50 × 1011 287 279 
Mars 2.30 × 1011 227 225 

 
The biggest discrepancy is for Venus, which has a very dense atmosphere and significant radiation 

absorption, emission and scattering phenomena.       < 
 
 
 



PROBLEM 12.109  
KNOWN:  Cavity with window whose outer surface experiences convection and radiation.  
FIND:  Temperature of the window and power required to maintain cavity at prescribed temperature.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Cavity behaves as a blackbody, (3) Solar spectral 
distribution is that of a blackbody at 5800K, (4) Window is isothermal, (5) Negligible convection on 
lower surface of window. 
 
PROPERTIES:  Window material:  0.2 ≤ λ ≤ 4 μm, τλ = 0.9, ρλ = 0, hence αλ = 1 - τλ = 0.1; 4 μm < 
λ, τλ = 0, α = ε = 0.95, diffuse-gray, opaque. 
 
ANALYSIS:  To determine the window temperature, perform an energy balance on the window, 
 in outE E 0− =& &  

 [ ] ( )sur sur S S b conv c c bupper lowerG G E q G E T 0.α α ε α ε′′ ⎡ ⎤+ − − + − =⎣ ⎦   (1) 

Calculate the absorptivities for various irradiation conditions using Eq. 12.52, 

 
0 0

G d / G dλ λ λα α λ λ
∞ ∞

= ∫ ∫         (2) 

where G(λ) is the spectral distribution of the irradiation. 
 
Surroundings, αsur:  Gsur = Eb (Tsur) = 4

surTσ  

 ( ) ( ) ( )sur 0 4 m 0 0.2 m 0 4 m0.1 F F 0.95 1 Fμ μ μα → → →
⎡ ⎤ ⎡ ⎤= − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

where from Table 12.1, with T = Tsur = (25 + 273)K = 298K, 
 ( )0 TT 0.2 m 298K 59.6 m K, F 0.000λλ μ μ −= × = ⋅ =  

 ( )0 TT 4 m 298K 1192 m K, F 0.002λλ μ μ −= × = ⋅ =  

 [ ] [ ]sur 0.1 0.002 0.000 0.95 1 0.002 0.948.α = − + − =     (3) 

Solar, αS: GS ~ Eb (5800K) 

 ( ) ( ) ( )S 0 4 m 0 0.2 m 0 4 m0.1 F F 0.95 1 Fμ μ μα → → →
⎡ ⎤ ⎡ ⎤= − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

where from Table 12.1, with T = 5800K, 
  ( )0 TT 0.2 m 5800K 1160 m K, F 0.002λλ μ μ −= × = ⋅ =  

  ( )0 TT 4 m 5800K 23,200 m K, F 0.990λλ μ μ −= × = ⋅ =  

 [ ] [ ]S 0.1 0.990 0.002 0.95 1 0.990 0.108.α = − + − =     (4) 
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Cavity, αc: Gc = Eb(Tc) = 4

cTσ  

 ( ) ( ) ( )c 0 4 m 0 0.2 m 0 4 m0.1 F F 0.95 1 Fμ μ μα → → →
⎡ ⎤ ⎡ ⎤= − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

where from Table 12.1 with Tc = 250°C = 523K, 
  0 TT 0.2 m 523K 104.6 m K, F 0.000λλ μ μ →= × = ⋅ =  
  0 TT 4 m 523K 2092 m K F 0.082λλ μ μ →= × = ⋅ =  

 [ ] [ ]c 0.1 0.082 0.000 0.95 1 0.082 0.880.α = − + − =      (5) 
 
To determine the emissivity of the window, we need to know its temperature.  However, we know that 
T will be less than Tc and the long wavelength behavior will dominate.  That is, 
 ( )4 m 0.95.λε ε λ μ≈ > =         (6) 
With these radiative properties now known, the energy equation, Eq. (1) can now be evaluated using 

convq′′  = h(T - T∞) with all temperatures in kelvin units. 

 ( ) ( )4 2 4 20.948 298K 0.108 800 W / m 0.95 T 10 W / m K T 298Kσ σ× + × − × − ⋅ −  

       ( )4 40.880 523K 0.95 T 0σ σ+ − × =  

 7 41.077 10 T 10T 7223 0.−× + − =  
 
Using a trial-and-error approach, find the window temperature as 

 T 413K 139 C.= = °         < 
 
To determine the power required to maintain the cavity 
at Tc = 250°C, perform an energy balance on the cavity. 
 
 in outE E 0− =& &  
 

( ) ( ) ( )[ ]p c b c S S b b cq A E T G E T E T 0.ρ τ ε+ + + − =  
 
For simplicity, we have assumed the window opaque to 
irradiation from the surroundings.  It follows that 
 

 
 
 

 S S S1 1 0 0.108 0.892τ ρ α= − − = − − =  
 
 1 1 1 0.95 0.05.ρ α ε= − = − = − =  
 
Hence, the power required to maintain the cavity, when Ac = (π/4)D2, is 

 4 4 4
p c c c s sq A T T G Tσ ρσ τ εσ⎡ ⎤= − − −⎢ ⎥⎣ ⎦

 
 

( ) ( ) ( ) ( )2 4 4 42
pq 0.050m 523K 0.05 523K 0.892 800 W / m 0.95 412K

4
π σ σ σ⎡ ⎤= − − × −⎢ ⎥⎣ ⎦

 

 pq 3.47W.=           < 
 
COMMENTS:  Note that the assumed value of ε = 0.95 is not fully satisfied.  With T = 412K, we 
would expect ε = 0.929.  Hence, an iteration may be appropriate. 



PROBLEM 12.110  
KNOWN:  Features of an evacuated tube solar collector.  
FIND:  Ideal surface spectral characteristics.  
SCHEMATIC:   
 

 
 
ANALYSIS:  The outer tube should be transparent to the incident solar radiation, which is 
concentrated in the spectral region λ ≤ 3μm, but it should be opaque and highly reflective to radiation 
emitted by the outer surface of the inner tube, which is concentrated in the spectral region above 3μm.  
Accordingly, ideal spectral characteristics for the outer tube are 
 

 
 
Note that large ρλ is desirable for the outer, as well as the inner, surface of the outer tube.  If the 
surface is diffuse, a large value of ρλ yields a small value of ελ = αλ = 1 - ρλ.  Hence losses due to 
emission from the outer surface to the surroundings would be negligible. 
 
The opaque outer surface of the inner tube should absorb all of the incident solar radiation (λ ≤ 3μm) 
and emit little or no radiation, which would be in the spectral region λ > 3μm.  Accordingly, assuming 
diffuse surface behavior, ideal spectral characteristics are: 
 

 
 



PROBLEM 12.111  
KNOWN:  Plate exposed to solar flux with prescribed solar absorptivity and emissivity;  convection 
and surrounding conditions also prescribed.  
FIND:  Steady-state temperature of the plate.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Plate is small compared to surroundings, (3) 
Backside of plate is perfectly insulated, (4) Diffuse behavior.  
ANALYSIS:  Perform a surface energy balance on the top surface of the plate. 
 in outE E 0− =& &  
 
 ( )S S sur conv b sG G q E T 0α α ε′′+ − − =  

Note that the effect of the surroundings is to provide an irradiation, Gsur, on the plate; since the 
spectral distribution of Gsur and Eλ,b (Ts) are nearly the same, according to Kirchoff’s law, α = ε.  

Recognizing that Gsur = 4
surTσ  and using Newton’s law of cooling, the energy balance is 

 
 ( )4 4

S S sur s sG T h T T T 0.α εσ ε σ∞+ − − − ⋅ =  
 
Substituting numerical values, 
 

 ( )42 8 2 40.9 900 W / m 0.1 5.67 10 W / m K 17 273 K−× + × × ⋅ × +  

  ( ) ( )2 8 2 4 4
s s20W / m K T 290 K 0.1 5.67 10 W / m K T 0−− ⋅ − − × ⋅ =  

 
 2 9 4

s s6650 W / m 20 T 5.67 10 T .−= + ×  
 
From a trial-and-error solution, find 
 
 sT 329.2 K.=           < 
 
COMMENTS:  (1) When performing an analysis with both convection and radiation processes 
present, all temperatures must be expressed in absolute units (K). 
 
(2) Note also that the terms α Gsur - ε Eb (Ts) could be expressed as a radiation exchange term, written 
as 
 

 ( )4 4
rad sur sq q / A T T .εσ′′ = = −  

 
The conditions for application of this relation were met and are namely:  surroundings much larger 
than surface, diffuse surface, and spectral distributions of irradiation and emission are similar (or the 
surface is gray). 



PROBLEM 12.112  
KNOWN:  Directional distribution of αθ for a horizontal, opaque, gray surface exposed to direct and 
diffuse irradiation.  
FIND:  (a) Absorptivity to direct radiation at 45° and to diffuse radiation, and (b) Equilibrium 
temperature for specified direct and diffuse irradiation components.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Opaque, gray surface behavior, (3) Negligible 
convection at top surface and perfectly insulated back surface.  
ANALYSIS:  (a) From knowledge of αθ (θ) – see graph above – it is evident that the absorptivity of 
the surface to the direct radiation (45°) is 

 ( )dir 45 0.8.θα α= ° =         < 
The absorptivity to the diffuse radiation is the hemispherical absorptivity given by Eq. 12.50.  
Dropping the λ subscript, 

 ( )/ 2
dir 0

2 cos sin d
π

θα α θ θ θ θ= ∫        (1) 

 
/ 3

0

/ 22 2
dir

/ 3

sin sin2 0.8 0.1
2 2

π
π

π

θ θα
⎡ ⎤
⎢ ⎥= +⎢ ⎥
⎢ ⎥⎣ ⎦

 

 dir 0.625.α =           < 
(b) Performing a surface energy balance, 
 in outE E 0′′ ′′− =& &  

 4
dir dir dif dif sG G T 0.α α εσ+ − =        (2) 

 
The total, hemispherical emissivity may be obtained from Eq. 12.42 where again the subscript may be 
deleted.  Since this equation is of precisely the same form as Eq. 12.50 – see Eq. (1) above – and since 
αθ = εθ, it follows that 
 
 dif 0.625ε α= =  
 
and from Eq. (2), find 

 
( ) 2

4 10 4
s s8 2 4

0.8 600 0.625 100 W / m
T 1.53 10 K , T 352 K.

0.625 5.67 10 W / m K−
× + ×

= = × =
× × ⋅

  < 

 
COMMENTS:  In assuming gray surface behavior, spectral effects are not present, and total and 
spectral properties are identical.  However, the surface is not diffuse and hence hemispherical and 
directional properties differ. 



PROBLEM 12.113  
KNOWN:  Plate temperature and spectral and directional dependence of its absorptivity.  Direction 
and magnitude of solar flux.  
FIND:  (a) Expression for total absorptivity, (b) Expression for total emissivity, (c) Net radiant flux, 
(d) Effect of cut-off wavelength associated with directional dependence of the absorptivity.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Diffuse component of solar flux is negligible, (2) Spectral distribution of solar 
radiation may be approximated as that from a blackbody at 5800 K, (3) Properties are independent of 
azimuthal angle φ.  
ANALYSIS:  (a) For λ < λc and θ = 45°, αλ = α1 cosθ = 0.707 α1.  From Eq. 12.53 the total 
absorptivity is then 
 

 
( ) ( )c

c
,b,b0

S 1 2
b b

E ,5800 K dE ,5800 K d
0.707

E E

λ
λλ λ

λ λλ λ
α α α

∞⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪ ⎪ ⎪= +⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎪ ⎪⎩ ⎭

∫∫
 

 

 ( ) ( )c cS 1 20 00.707 F 1 Fλ λα α α→ →
⎡ ⎤= + −⎢ ⎥⎣ ⎦

      < 
 
For the prescribed value of λc, λcT = 11,600 μm⋅K and, from Table 12.1, F(0→λc) = 0.941.  Hence, 

 ( )S 0.707 0.93 0.941 0.25 1 0.941 0.619 0.015 0.634α = × × + − = + =    < 

(b) With ελ,θ = αλ,o, Eq 12.42 may be used to obtain ελ for λ < λc. 

 ( )
/ 2

0

3/ 2 2
1 1 10

cos 2,T 2 cos sin d 2
3 3

ππ
λ

θε λ α θ θ θ α α= = − =∫  

From Eq. 12.43, 

 
( ) ( )c

c
,b p,b p0

1 2
b b

E ,T dE ,T d
0.667

E E

λ
λλ λ

λ λλ λ
ε α α

∞

= +
∫∫

 

 

 ( ) ( )c c1 20 00.667 F 1 Fλ λε α α→ −
⎡ ⎤= + −⎢ ⎥⎣ ⎦

      < 
 
For λc = 2 μm and Tp = 333 K, λcT = 666 μm⋅K and, from Table 12.1, F(0-λc) = 0.  Hence, 

 2 0.25ε α= =           < 
 

          Continued … 



PROBLEM 12.113 (Cont.) 
 

(c)  ( )44 2 8 2 4
net S S pq q T 634 W / m 0.25 5.67 10 W / m K 333 Kα εσ −′′ ′′= − = − × × ⋅  

 

 2
netq 460 W / m′′ =          < 

 
(d) Using the foregoing model with the Radiation/Band Emission Factor option of IHT, the following 
results were obtained for αS and ε.  The absorptivity increases with increasing λc, as more of the 
incident solar radiation falls within the region of α1 > α2.  Note, however, the limit at λ ≈ 3 μm, 
beyond which there is little change in αS.  The emissivity also increases with increasing λc, as more of 
the emitted radiation is at wavelengths for which ε1 = α1 > ε2 = α2.  However, the surface temperature 
is low, and even for λc = 5 μm, there is little emission at λ < λc.  Hence, ε only increases from 0.25 to 
0.26 as λc increases from 0.7 to 5.0 μm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The net heat flux increases from 276 W/m2 at λc = 2 μm to a maximum of 477 W/m2 at λc = 4.2 μm 
and then decreases to 474 W/m2 at λc = 5 μm.  The existence of a maximum is due to the upper limit 
on the value of αS and the increase in ε with λc. 
 
COMMENTS:  Spectrally and directionally selective coatings may be used to enhance the 
performance of solar collectors. 
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PROBLEM 12.114  
KNOWN:  Spectral distribution of αλ for two roof coatings. 
 
FIND:  Preferred coating for summer and winter use.  Ideal spectral distribution of αλ. 
 
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Opaque, diffuse surface behavior, (2) Negligible convection effects and heat 
transfer from bottom of roof, negligible atmospheric irradiation, (3) Steady-state conditions.  
ANALYSIS:  From an energy balance on the roof surface 
 

 4
s S ST G .ε σ α=  

 
Hence 
 

 
1/ 4

S S
s

GT .α
ε σ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
Solar irradiation is concentrated in the spectral region λ < 4μm, while surface emission is concentrated 
in the region λ > 4μm.  Hence, with αλ = ελ 
 
 Coating A: αS ≈ 0.8, ε ≈ 0.8 
 
 Coating B: αS ≈ 0.6, ε ≈ 0.2. 
 
Since (αS/ε)A = 1 < (αS/ε)B = 3, Coating A would result in the lower roof temperature and is preferred 
for summer use.  In contrast, Coating B is preferred for winter use.  The ideal coating is one which 
minimizes (αS/ε) in the summer and maximizes it in the winter. 
 

 
 



PROBLEM 12.115  
KNOWN:  Shallow pan of water exposed to night desert air and sky conditions.  
FIND:  Whether water will freeze.  
SCHEMATIC:   

 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Bottom of pan is well insulated, (3) Water surface 

is diffuse-gray, (4) Sky provides blackbody irradiation, Gatm = 4
skyT .σ  

 
PROPERTIES:  Table A-11, Water (300 K):  ε = 0.96.  
ANALYSIS:  To estimate the water surface temperature for these conditions, begin by performing an 
energy balance on the pan of water considering convection and radiation processes. 
 
 in outE E 0′′ ′′− =& &  
 
 ( )atm b sG E h T T 0α ε ∞− − − =  
 

 ( ) ( )4 4
s sskyT T h T T 0.ε σ ∞− − − =  

 
Note that, from Eq. 12.73, 4

atm skyG Tσ=  and from Assumption 3, α = ε.  Substituting numerical 

values, with all temperatures in kelvin units, the energy balance is 
 

 ( ) ( )48 4 4
s s2 4 2

W W0.96 5.67 10 40 273 T K 5 T 20 273 K 0
m K m K

− ⎡ ⎤ ⎡ ⎤× × − + − − − + =⎣ ⎦⎢ ⎥⎣ ⎦⋅ ⋅
 

 

 [ ]8 4 4
s s5.443 10 233 T 5 T 293 0.− ⎡ ⎤× − − − =⎢ ⎥⎣ ⎦

 
 
Using a trial-and-error approach, find the water surface temperature, 
 
 sT 268.5 K.=           < 
 
Since Ts < 273 K, it follows that the water surface will freeze under the prescribed air and sky 
conditions.  
COMMENTS:  If the heat transfer coefficient were to increase as a consequence of wind, freezing 
might not occur.  Verify that for the given T∞ and Tsky, that if h  increases by more than 40%, 
freezing cannot occur. 

αGatm



PROBLEM 12.116 
 
KNOWN:  Environmental conditions associated with a corn leaf, evaporative fluxes in rural and 
urban settings due to differences in ambient CO2 concentrations, absorptivity and emissivity values. 
 
FIND:  Leaf temperature for high (urban) and low (rural) ambient CO2 concentrations. 
 
SCHEMATIC: 

h = 35 W/m2·K
T∞ = 25°Cn"H2O,v

Tgrd = 20°C

αSGS
αskyGsky

αgrdGgrd

E

E

q"conv
Tsky = 0°C 

mH2O,l
.

 
PROPERTIES: (Given) hfg = 2400 kJ/kg. 
 
ASSUMPTIONS:  (1) Steady state conditions, (2) Ground and sky represent large surroundings, (3) 
Negligible irradiation from other leaves, (4) α = ε for radiation at long wavelengths, (5) Evaporation 
flux on top and bottom of leaf. 
 
ANALYSIS: Performing an energy balance on the leaf on a per unit area basis, 
 
 

2

4 4 4
sky sky grd grd fg2 ( ) 2 2s s H OG T T h T T T n hα α σ α σ εσ∞ ′′+ + = − + +  

 
Substituting values for the lower CO2 environment, high evaporation rate (rural) case, 
 

( )

2 8 2 4 4 4 8 2 4 4 4

2

8 2 4 4 4 6 2 3

0.76 600W/m 0.97 5.67 10 W/m K (273 0) K 0.97 5.67 10 W/m K (273 20) K

2 35W/m K 273 25 K

2 0.97 5.67 10 W/m K ( ) K 2 50 10 kg/m s 2400 10 J/kg

T

T

− −

− −

× + × × ⋅ × + + × × ⋅ × +
=

⎡ ⎤× ⋅ × − +⎣ ⎦

+ × × × ⋅ × + × × ⋅ × ×
 

which yields T =  298.7 K = 25.7°C              < 

Substituting 
2H On′′ = 5 × 10-6 kg/s for the low evaporation (urban) case yields T = 301.4 K = 28.4°C     <                        

 
COMMENTS:  (1) Carbon dioxide levels in urban areas can easily be more than three times greater 
than in rural communities due to, primarily, fossil fuel combustion corresponding to high traffic 
density. The sensitivity of the leaf temperature to the local CO2 concentration is significant. (2) 
Reduced leaf evaporation rates associated with the higher CO2 concentration makes corn and other so-
called C4 photosynthesis plants more drought-tolerant in urban areas. See, for example, Wall et al., 
“Elevated Atmospheric CO2 Improved Sorghum Plant Water Status by Ameliorating the Adverse 
Effects of Drought,” New Phytologist, Vol. 152, pp. 231 – 248, 2001. (3) Higher rates of respiratory 
ailments in urban versus rural communities have been attributed to increased pollen production by 
plants such as ragweed in cities. The increased pollen production is associated with the increased 
drought tolerance of ragweed due to elevated CO2 levels. See L.H. Ziska et al., “Cities as Harbingers 
of Climate Change: Common Ragweed, Urbanization, and Public Health,” Journal of Allergy and 
Clinical Immunology, Vol. 111, pp. 290 - 295, 2003.  



PROBLEM 12.117  
KNOWN:  Thermal conductivity, spectral absorptivity and inner and outer surface conditions for wall 
of central solar receiver.  
FIND:  Minimum wall thickness needed to prevent thermal failure.  Collector efficiency.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Outer surface is opaque and diffuse, (3) Spectral 
distribution of solar radiation corresponds to blackbody emission at 5800 K.  
ANALYSIS:  From an energy balance at the outer surface, in outE E ,=& &  

 ( ) ( ) ( )
s,o ,i4

S S sur sur s,o o s,o ,o
i

T T
q G T h T T

L / k 1/ h
α α εσ ∞

∞
−

′′ + = + − +
+

 

Since radiation from the surroundings is in the far infrared, αsur = 0.2.  From Table 12.1, λT = (3 μm × 
5800 K) = 17,400 μm⋅K, find F(0→3μm) = 0.979.  Hence, 

( )
( ) ( ) ( ) ( )

,b0
s 1 20 3 m 3

b

E 5800 K d
F F 0.9 0.979 0.2 0.021 0.885.

E
λ λ

μ
α λ

α α α

∞

→ →∞= = + = + =
∫

 

From Table 12.1, λT = (3 μm × 1000 K) = 3000 μm⋅K, find F(0→3μm) = 0.273. Hence, 

( )
( ) ( ) ( ) ( )

,bo
s 1 20 3 3

b

E 1000 K d
F F 0.9 0.273 0.2 0.727 0.391.

E
λ λε λ

ε ε ε

∞

→ →∞= = + = + =
∫

 

Substituting numerical values in the energy balance, find 
 

( ) ( ) ( )2 8 2 4 8 2 44 40.885 80, 000 W / m 0.2 5.67 10 W / m K 300 K 0.391 5.67 10 W / m K 1000 K− −+ × × ⋅ = × × ⋅  

 ( ) ( ) ( ) ( )2 225 W / m K 700 K 300 K / L /15 W / m K 1/1000 W / m K⎡ ⎤+ ⋅ + ⋅ + ⋅⎢ ⎥⎣ ⎦
 

 L 0.129 m.=           < 
 
The corresponding collector efficiency is 

 
( ) ( )

s,o ,iuse
S

S i

T Tq / q
q L / k 1/ h

η ∞⎡ ⎤−′′
′′= = ⎢ ⎥′′ +⎢ ⎥⎣ ⎦

 

( ) ( )
2

2
300 K

/ 80,000 W / m 0.391 or 39.1%.
0.129 m /15 W / m K 0.001 m K / W

η = =
⋅ + ⋅

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  < 

 
COMMENTS:  The collector efficiency could be increased and the outer surface temperature reduced 
by decreasing the value of L. 



PROBLEM 12.118 
 
KNOWN:  Dimensions, spectral absorptivity, and temperature of solar receiver.  Solar irradiation and 
ambient temperature. 
 
FIND:  (a) Rate of energy collection q and collector efficiency η, (b) Effect of receiver temperature on q 
and η. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state, (2) Uniform irradiaton, (3) Opaque, diffuse surface. 
 
PROPERTIES:  Table A.4, air (Tf = 550 K):  ν = 45.6 × 10-6 m2/s, k = 0.0439 W/m⋅K, α = 66.7 × 10-6 
m2/s, Pr = 0.683. 
 
ANALYSIS:  (a) The rate of heat transfer to the receiver is q = ( )s S S convA G E qα ′′− − , or 

 ( )4
S S s sq DL G T h T Tπ α εσ ∞= − − −⎡ ⎤

⎣ ⎦  

For λT = 3 μm × 5800 K = 17,400, F(0→λ) = 0.979.  Hence, 

 ( ) ( )( ) ( )S 1 20 0F 1 F 0.9 0.979 0.2 0.021 0.885λ λα α α→ →= + − = × + =  

For λT = 3 μm × 800 K = 2400 μm⋅K, F(0→λ) = 0.140.  Hence, 

 ( ) ( )( ) ( )1 20 0F 1 F 0.9 0.140 0.2 0.860 0.298λ λε ε ε→ →= + − = × + = . 

With RaL = gβ(Ts - T∞ )L3/αν = 9.8 m/s2(1/550 K)(500 K)(12 m)3/66.7 × 10-6 m2/s × 45.6 × 10-6 m2/s = 
5.06 × 1012, Eq. 9.26 yields 

 

( )

2
1/ 6
LL 8 / 279 /16

0.387Ra
Nu 0.825 1867

1 0.492 Pr
= + =

+

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪⎡ ⎤

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

 

 2
L

k 0.0439 W m K
h Nu 1867 6.83 W m K

L 12 m
⋅

= = = ⋅  

Hence, 
 

( ) ( ) ( )2 8 2 4 24q 7 m 12 m 0.885 80, 000 W m 0.298 5.67 10 W m K 800 K 6.83 W m K 500 Kπ −= × × − × × ⋅ − ⋅⎡ ⎤
⎣ ⎦  

 ( )2 2 7q 263.9 m 70,800 6,920 3415 W m 1.60 10 W= − − = ×  < 
 
The collector efficiency is η = q/AsGS.  Hence 

 
( )

7

2 2
1.60 10 W

0.758
263.9 m 80, 000 W m

η
×

= =  < 

  Continued … 



PROBLEM 12.118 (Cont.) 
 
(b) The IHT Correlations, Properties and Radiation Toolpads were used to obtain the following results. 
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Losses due to emission and convection increase with increasing Ts, thereby reducing q and η. 
 
COMMENTS:  The increase in radiation emission is due to the increase in Ts, as well as to the effect of 
Ts on ε, which increases from 0.228 to 0.391 as Ts increases from 600 to 1000 K. 
 
 



PROBLEM 12.119  
KNOWN:  Flat plate exposed to night sky and in ambient air at Tair = 15°C with a relative humidity 
of 70%.  Radiation from the atmosphere or sky estimated as a fraction of the blackbody radiation 
corresponding to the near-ground air temperature, Gsky = εsky σ Tair, and for a clear night, εsky = 
0.741 + 0.0062 Tdp where Tdp is the dew point temperature (°C).  Convection coefficient estimated by 

correlation, h W / m K T2 1/3⋅ =e j 125. Δ  where ΔT is the plate-to-air temperature difference (K). 
 
FIND:  Whether dew will form on the plate if the surface is (a) clean metal with εm = 0.23 and (b) 
painted with εp = 0.85. 
 
SCHEMATIC:   
 

 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Surfaces are diffuse, gray, and (3) Backside of 
plate is well insulated. 
 
PROPERTIES:  Psychrometric charts (Air), Tdp = 9.4°C for dry bulb temperature 15°C and relative 
humidity 70%. 
 
ANALYSIS:  From the schematic above, the energy balance on the plate is 
 
 & &′′ − ′′ =E Ein out 0  
 

 "
sky atm cv ( ) 0b sG q E Tα ε+ − =  

 

 ε σ εσ0 741 0 0062 125 04 3. . . /+FH IKL
NM

O
QP + − − = T C   T T T  W / m T  W / mdp air

4
air s

2
s
4 2oe j b g  

 
where Gatm = εsky σ Tair, εsky = 0.741 + 0.062 Tdp (°C); Tdp has units (°C); and, other temperatures in 
kelvins.  Since the surface is diffuse-gray, αsky = ε. 
 
(a) Clean metallic surface, εm = 0.23 
 

 0 23 0 741 0 0062 15 273 4. . .+FH IK +L
NM

O
QP T C Kdp

4oe j b gσ  

   + − − =125 0 23 0
4 3 4. .

/
 289 T  W / m   T  W / ms,m

2
s,m

2d i σ  
 
 T  K = 9.7 Cs,m = 282 7. o         < 
 
(b) Painted surface, εp = 0.85   Ts,p = 278.5 K = 5.5°C    < 
 
COMMENTS:  For the painted surface, εp = 0.85, find that Ts < Tdp, so we expect dew formation.  
For the clean, metallic surface, Ts > Tdp, so we do not expect dew formation. 

 
GatmGatm



PROBLEM 12.120  
KNOWN:  Glass sheet, used on greenhouse roof, is subjected to solar flux, GS, atmospheric emission, 
Gatm, and interior surface emission, Gi, as well as to convection processes. 
 
FIND:  (a) Appropriate energy balance for a unit area of the glass, (b) Temperature of the greenhouse 
ambient air, T∞,i, for prescribed conditions. 
 
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Glass is at a uniform temperature, Tg, (2) Steady-state conditions. 
 
PROPERTIES:  Glass: τλ = 1 for λ ≤ 1μm;  τλ = 0 and αλ = 1 for λ > 1 μm. 
 
ANALYSIS:  (a) Performing an energy balance on the glass sheet with in outE E 0− =& &  and 
considering two convection processes, emission and three absorbed irradiation terms, find 
 
 ( ) ( ) 4

S S atm atm o ,o g i i i ,i g gG G h T T G h T T 2 T 0α α α ε σ∞ ∞+ + − + + − − =  (1) 
 
where  αS = solar absorptivity for absorption of Gλ,S ~ Eλ,b (λ, 5800K) 
  αatm = αi = absorptivity of long wavelength irradiation (λ >> 1 μm) ≈ 1 
  ε = αλ for λ >> 1 μm, emissivity for long wavelength emission ≈ 1 
 
(b) For the prescribed conditions, T∞,i can be evaluated from Eq. (1).  As noted above, αatm = αi = 1 
and ε = 1.  The solar absorptivity of the glass follows from Eq. 12.53 where Gλ,S ~ Eλ,b (λ, 5800K), 
 

 ( ) ( )S ,S s ,b b0 0
G d / G E ,5800K d / E 5800Kλ λ λ λα α λ α λ λ

∞ ∞
= =∫ ∫  

 

 ( ) ( ) [ ]S 1 20 1 m 0 1 mF 1 F 0 0.720 1.0 1 0.720 0.28.μ μα α α→ →
⎡ ⎤= + − = × + − =⎢ ⎥⎣ ⎦

 
 
Note that from Table 12.1 for λT = 1 μm × 5800K = 5800 μm⋅K, F(0 - λ) = 0.720.  Substituting 
numerical values into Eq. (1), 
 
 ( )2 2 2 20.28 1100 W / m 1 250 W / m 55 W / m K 24 27 K 1 440 W / m× + × + ⋅ − + × +  

  ( ) ( )42 8 2 4
,i10 W / m K T 27 K 2 1 5.67 10 W / m K 27 273 K 0−

∞⋅ − − × × × ⋅ + =  
 
find that 
 
 ,iT 35.5 C.∞ = °          < 



PROBLEM 12.121 
 
KNOWN:  Plate temperature and spectral absorptivity of coating. 
 
FIND:  (a) Solar irradiation, (b) Effect of solar irradiation on plate temperature, total absorptivity, and 
total emissivity. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state, (2) Opaque, diffuse surface, (3) Isothermal plate, (4) Negligible 
radiation from surroundings. 
 
ANALYSIS:  (a) Performing an energy balance on the plate, 2αSGS - 2E = 0 and 
 
 4

S SG T 0α εσ− =  
 
For λT = 4.5 μm × 2000 K = 9000 μm⋅K, Table 12.1 yields F(o→λ) = 0.890.  Hence, 
 
 ( ) ( )( ) ( )1 20 oF 1 F 0.95 0.890 0.03 1 0.890 0.849λ λε ε ε→ →= + − = × + − =  
 
For λT = 4.5 μm × 5800 K = 26,100, F(o→λ) = 0.993.  Hence, 
 
 ( ) ( )( )S 1 20 0F 1 F 0.95 0.993 0.03 0.007 0.944λ λα α α→ →= + − = × + × =  
 
Hence, 

 ( ) ( ) ( )44 8 2 4 5 2
S SG T 0.849 0.944 5.67 10 W m K 2000 K 8.16 10 W mε α σ −= = × ⋅ = ×  < 

 
(b) Using the IHT First Law Model and the Radiation Toolpad, the following results were obtained. 
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The required solar irradiation increases with T to the fourth power.  Since αS is determined by the spectral 
distribution of solar radiation, its value is fixed.  However, with increasing T, the spectral distribution of 
emission is shifted to lower wavelengths, thereby increasing the value of ε. 
 



PROBLEM 12.122 
 
KNOWN:  Dimensions and construction of truck roof.  Roof interior surface temperature.  Truck speed, 
ambient air temperature, and solar irradiation. 
 
FIND:  (a) Preferred roof coating,  (b) Roof surface temperature,  (c) Heat load through roof,  (d) Effect 
of velocity on surface temperature and heat load. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Turbulent boundary layer development over entire roof,  (2) Constant properties,  
(3) Negligible atmospheric (sky) irradiation,  (4) Negligible contact resistance. 
 
PROPERTIES:  Table A.4, Air (Ts,o ≈ 300 K, 1 atm):  6 215 10 m sν −= × , k 0.026 W m K= ⋅ ,   
Pr = 0.71. 
 
ANALYSIS:  (a) To minimize heat transfer through the roof, minimize solar absorption relative to 

surface emission.  Hence, use zinc oxide white for which  αS = 0.16 and  ε = 0.93. (Table A.12) < 
 
(b) Performing an energy balance on the outer surface of the roof, S S conv condG q E q 0α ′′ ′′+ − − = , it 
follows that 

  4
S S s,o s,o s,o s,iG h(T T ) T (k t)(T T )α εσ∞+ − = + −   

 
where it is assumed that convection is from the air to the roof.  With an analysis based upon the content of 
Chapter 7 
 

 7
L 6 2

VL 30 m s(5 m)
Re 10

15 10 m sν −
= = =

×
 

 
 4 / 5 1/ 3 7 4 / 5 1/ 3

L LNu 0.037 Re Pr 0.037(10 ) (0.71) 13,141= = =  
 
 2

Lh Nu (k L) 13,141(0.026 W m K/5 m 68.3 W m K= = ⋅ = ⋅ . 
 
Substituting numerical values in the energy balance and solving by trial-and-error, we obtain 

 Ts,o = 295.2 K. < 
 
(c)  The heat load through the roof is  

 2
s s,o s,iq (kA t)(T T ) (0.05 W m K 10 m 0.025 m)35.2 K 704 W= − = ⋅ × = . < 

 
(d) Using the IHT First Law Model with the Correlations and Properties Toolpads, the following results 
are obtained. 
 
 
 

Continued... 



PROBLEM 12.122 (Cont.) 
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The surface temperature and heat load decrease with decreasing V due to a reduction in the convection 
heat transfer coefficient and hence convection heat transfer from the air. 
 
COMMENTS:  The heat load would increase with increasing αS/ε. 



PROBLEM 12.123  
KNOWN:  Sky, ground, and ambient air temperatures.  Grape of prescribed diameter and properties.  
FIND:  (a) General expression for rate of change of grape temperature, (b) Whether grapes will freeze 
in quiescent air, (c) Whether grapes will freeze for a prescribed air speed.  
SCHEMATIC:   

 
 
 
 
 
 
ASSUMPTIONS:  (1) Negligible temperature gradients in grape, (2) Uniform blackbody irradiation 
over top and bottom hemispheres, (3) Properties of grape are those of water at 273 K, (4) Properties of 
air are constant at values for T∞, (5) Negligible buoyancy for V = 1 m/s. 
 
PROPERTIES:  Table A-6, Water (273 K):  cp = 4217 J/kg⋅K, ρ = 1000 kg/m3; Table A-4, Air (273 
K, 1 atm):  ν = 13.49 × 10-6 m2/s, k = 0.0241 W/m⋅K, α = 18.9 × 10-6 m2/s, Pr = 0.714, β = 3.66 × 10-

3 K-1. 
 
ANALYSIS:  (a) Performing an energy balance for a control surface about the grape, 

 ( ) ( )
3 2g 2 2st

g p g g ea atm
dTdE D Dc h D T T G G E D .

dt 6 dt 2
π πρ π π⋅ ∞= = − + + −  

where Gatm = 4
skyTσ= . Hence, the rate of temperature change with time is 

( ) ( )( )g 4 4 4
g ea g gskyg p g

dT 6 h T T T T / 2 T .
dt c D

σ ε
ρ ∞

⋅

⎡ ⎤= − + + −⎢ ⎥⎣ ⎦
   < 

(b) The grape freezes if dTg/dt < 0 when Tg =  Tfp = 268 K.  With 

 
( ) ( ) ( )32 3 13

g
D 6 6 4 2

9.8 m / s 3.66 10 K 5K 0.015 mg T T D
Ra 2374

18.9 10 13.49 10 m / s

β

αν

− −
∞

− −

×−
= = =

× × ×
 

using Eq. 9.35 find 

 
( )

( )
D

1/ 4

4 / 99 /16

0.589 2374
Nu 2 5.17

1 0.469 / Pr
= + =

⎡ ⎤+⎢ ⎥⎣ ⎦

 

 
 ( ) ( ) ( )D

2h k / D Nu 0.0241 W / m K / 0.015 m 5.17 8.31 W / m K.⎡ ⎤= = ⋅ = ⋅⎣ ⎦  

Hence, the rate of temperature change is 
 

 
( ) ( )

( )g 2
3

dT 6 8.31 W / m K 5 K
dt 1000 kg / m 4217 J / kg K 0.015 m

⎡= ⋅⎢⎣⋅
 

   ( )8 2 4 4 4 4 45.67 10 W / m K 273 235 / 2 268 K− ⎡ ⎤+ × ⋅ + −⎢ ⎥⎣ ⎦
 

 
          Continued … 
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PROBLEM 12.123 (Cont.) 
 

 [ ]g 5 2 2 4dT
9.49 10 K m / J 41.55 48.56 W / m 6.66 10 K / s

dt
− −= × ⋅ − = − ×   < 

 
and since dTg/dt < 0, the grape will freeze. 
 
(c) For V = 1 m/s, 
 

 
( )

D 6 2
1 m / s 0.015 mVDRe 1112.

13.49 10 m / sν −
= = =

×
 

 
Hence with (μ/μs)

1/4 = 1 and from an analysis based upon the content of Chapter 7, 
 

 ( )D
1/ 2 2 / 3 0.4
D DNu 2 0.4Re 0.06Re Pr 19.3= + + =  

 

 D
2k 0.0241h Nu 21.8 31 W / m K.

D 0.015
= = = ⋅  

 
Hence the rate of temperature change with time is 
 

 ( )g 5 2 2 2dT
9.49 10 K m / J 31 W / m K 5 K 48.56 W / m 0.016 K / s

dt
− ⎡ ⎤= × ⋅ ⋅ − = −⎢ ⎥⎣ ⎦

 
 
and since dTg/dt < 0 and g gc b

dT / dt dT / dt> , the grape will  freeze sooner than in part (b). < 
 
COMMENTS:  With GrD = RaD/Pr = 3325 and 2

D DGr / Re 0.0027,=  the assumption of negligible 
buoyancy for V = 1 m/s is reasonable. 



PROBLEM 12.124  
KNOWN:  Metal disk exposed to environmental conditions and placed in good contact with the earth.  
FIND:  (a) Fraction of direct solar irradiation absorbed, (b) Emissivity of the disk, (c) Average free 
convection coefficient of the disk upper surface, (d) Steady-state temperature of the disk (confirm the 
value 340 K).  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Disk is diffuse, (3) Disk is isothermal, (4) 
Negligible contact resistance between disk and earth, (5) Solar irradiance has spectral distribution of 
Eλ,b (λ, 5800 K). 
 
PROPERTIES:  Table A-4, Air (1 atm, Tf = (Ts + T∞)/2 = (340 + 300) K/2 = 320 K):  ν = 17.90 × 
10-6 m2/s, k = 0.0278 W/m⋅K, α = 25.5 × 10-6 m2/s, Pr = 0.704. 
 
ANALYSIS:  (a) The solar absorptivity follows from Eq. 12.53 with Gλ,S α Eλ,b (λ, 5800 K), and αλ 
= ελ, since the disk surface is diffuse. 
 

 ( ) ( )S ,b b0
E , 5800 K / E 5800 Kλ λα α λ

∞
= ∫  

 

 ( ) ( )( )S 1 20 1 m 0 1 mF 1 f .μ μα ε ε→ →= + −  
 
From Table 12.1 with 
 
 ( )0 TT 1 m 5800 K 5800 m K find F 0.720λλ μ μ →= × = ⋅ =  
 
giving 
 
 ( )S 0.9 0.720 0.2 1 0.720 0.704.α = × + − =       < 
 
Note this value is appropriate for diffuse or direct solar irradiation since the surface is diffuse. 
 
(b) The emissivity of the disk depends upon the surface temperature Ts which we believe to be 340 K.  
(See part (d)).  From Eq. 12.43, 
 

 ( ) ( ),b s b s0
E , T / E Tλ λε ε λ

∞
= ∫  

 

 ( ) ( )( )1 20 1 m 0 1 mF 1 Fμ με ε ε→ →= + −  

 
          Continued … 



PROBLEM 12.124 (Cont.) 
 
From Table 12.1 with 
 
 ( )0 TT 1 m 340 K 340 m K find F 0.000λλ μ μ →= × = ⋅ =  
 
giving 
 
 ( )0.9 0.000 0.2 1 0.000 0.20.ε = × + − =       < 
 
(c) The disk is a hot surface facing upwards for which the free convection correlation of Eq. 9.30 is 
appropriate.  Evaluating properties at Tf = (Ts + T∞)/2 = 320 K, 
 
 3

L sRa g TL / where L A / P D / 4β να= Δ = =  
 

( )( ) ( )2 6 2 6 2 63
LRa 9.8 m / s 1/ 320 K 340 300 K 0.4 m / 4 /17.90 10 m / s 25.5 10 m / s 2.684 10− −= − × × × = ×  

 
 L

1/ 4 4 7
LLNu hL / k 0.54 Ra 10 Ra 10= = ≤ ≤  

 

 ( ) ( )1/ 46 2h 0.0278 W / m K / 0.4 m / 4 0.54 3.042 10 6.07 W / m K.= ⋅ × × = ⋅  < 

 
(d) To determine the steady-state temperature, perform 
an energy balance on the disk. 
 
 in out stE E E− =& & &  
 
( )S s,d atm b conv s condG G E q A q 0.α α ε ′′+ − − − =  
 
Since Gatm is predominately long wavelength radiation, it 
follows that α = ε.  The conduction heat rate between the 
disk and the earth is 
 

 
 
 

 
 ( ) ( )( )cond s ea s eaq kS T T k 2D T T= − = −  
 
where S, the conduction shape factor, is that of an isothermal disk on a semi-infinite medium, Table 
4.1.  Substituting numerical values, with As = πD2/4, 
 

( )42 4
s0.704 745 W / m 0.20 280 K 0.20 Tσ σ× + −⎡

⎢⎣
 

 ( ) ( ) ( )( )22
s s6.07 W / m K T 300 K 0.4 m 4 0.52 W / m K 2 0.4 m T 280 K 0/− ⋅ − − ⋅ × − =⎤

⎦π  
 

( ) ( )9 4
s s s65.908 W 8.759 W 1.425 10 T 0.763 T 300 0.416 T 280 0.−+ − × − − − − =  

 
By trial-and-error, find 
 
 sT 340 K.≈           < 
 
so indeed the assumed value of 340 K was proper.  
COMMENTS:  Note why it is not necessary for this situation to distinguish between direct and 
diffuse irradiation.  Why does αsky = ε? 

αGatm 



PROBLEM 12.125  
KNOWN:  Shed roof of weathered galvanized sheet metal exposed to solar insolation on a cool, clear 
spring day with ambient air at - 10°C and convection coefficient estimated by the empirical correlation 

h  T1/3= 10. Δ  (W/m2⋅K with temperature units of kelvins). 
 
FIND:  Temperature of the roof, Ts, (a) assuming the backside is well insulated, and (b) assuming the 
backside is exposed to ambient air with the same convection coefficient relation and experiences 
radiation exchange with the ground, also at the ambient air temperature.  Comment on whether the 
roof will be a comfortable place for the neighborhood cat to snooze for these conditions. 
 
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) The roof surface is diffuse, spectrally selective, (3) 
Sheet metal is thin with negligible thermal resistance, and (3) Roof is a small object compared to the 
large isothermal surroundings represented by the sky and the ground. 
 
ANALYSIS:  (a) For the backside-insulated condition, the energy balance, represented schematically 
below, is 
 
 & &′′ − ′′ =E Ein out 0  
 
 α α εsky b sky S S cv b s E T G q  E Te j b g+ − ′′ − = 0  
 

 α σ α εσsky sky
4

S S s s
4T G T T T+ − − − =∞10 04 3. /b g  

 
With α εsky =  (see Comment 2) and σ = × ⋅−5 67 10 8. , W / m K2 4  find Ts. 
 

0 65 10 283 0 65 04 4 3. . ./ 233 K  W / m  + 0.8 600 W / m T  K  W / m   T2 2
s

2
s
4σ σb g b g× − − − =  

 
 sT 328.2 K 55.2 C= = o         < 
 
 

 
 
 

          Continued … 



PROBLEM 12.125 (Cont.) 
 
(b) With the backside exposed to convection with the ambient air and radiation exchange with the 
ground, the energy balance, represented schematically above, is 
 
 α α α εsky b sky grd b grd S S cv b sE T E T G q  E Te j e j b g+ + − ′′ − =2 2 0  

 
Substituting numerical values, recognizing that Tgrd = T∞, and αgrd = ε (see Comment 2), find Ts. 
 

 0 65 0 65 0 8 6004 4. . . 233 K  W / m  283 K W / m  W / m2 2 2σ σb g b g+ + ×  

   − × − − × =2 10 283 2 0 65 04 3. ./ T  K  W / m   Ts
2

s
4b g σ  

 

 sT 308.9 K  35.9 C= = o         < 
 
COMMENTS:  (1) For the insulated-backside condition, the cat would find the roof too hot 
remembering that 43°C represents a safe-to-touch temperature.  For the exposed-backside condition, 
the cat would find the roof comfortable, certainly compared to an area not exposed to the solar 
insolation (that is, exposed only to the ambient air through convection). 
 
(2) For this spectrally selective surface, the absorptivity for the sky irradiation is equal to the 
emissivity, αsky = ε, since the sky irradiation and surface emission have the same approximate spectral 
regions.  The same reasoning applies for the absorptivity of the ground irradiation, αgrd = ε. 
 



PROBLEM 12.126  
KNOWN:  Amplifier operating and environmental conditions.  
FIND:  (a) Power generation when Ts = 58°C with diffuse coating ε = 0.5, (b) Diffuse coating from among 
three (A, B, C) which will give greatest reduction in Ts, and (c) Surface temperature for the conditions with 
coating chosen in part (b).  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Environmental conditions remain the same with all surface coatings, (2) 
Coatings A, B, C are opaque, diffuse.  
ANALYSIS:  (a) Performing an energy balance 
on the amplifier’s exposed surface, 

in outE E 0,− =& &  we find 
 

 
 

 [ ]e s S S atm b convP A G Gatm E q 0α α ε ′′+ + − − =  

 ( )4 4
e s s s S S atm skyP A T h T T G Tεσ α α σ∞= + − − −⎡ ⎤

⎣ ⎦  

( ) ( ) ( )4 42 2
eP 0.13 0.13 m 0.5 331 15 331 300 0.5 800 0.5 253 W / mσ σ= × × + − − × − ×⎡ ⎤

⎢ ⎥⎣ ⎦
 

 [ ]2 2
eP 0.0169 m 0.5 680.6 465 0.5 800 0.5 232.3 W / m 4.887 W.= × + − × − × =   < 

(b) From above, recognize that we seek a coating with low αS and high ε to decrease Ts.  Further, recognize that 

αS is determined by values of αλ = ελ for λ < 3 μm and ε by values of ελ for λ > 3 μm.  Find approximate 
values as 
    Coating   A  B  C 
       ε  0.5 0.3 0.6 
      αS  0.8 0.3 0.2 
    αS/ε  1.6  1 0.333 
Note also that αatm ≈ ε.  We conclude that coating C is likely to give the lowest Ts since its αS/ε is substantially 
lower than for B and C.  While αatm for C is twice that of B, because Gatm is nearly 25% that of GS, we expect 
coating C to give the lowest Ts.  
(c) With the values of αS, αatm and ε for coating C from part (b), rewrite the energy balance as 

 ( )4 4
e s S S sky s sP / A G T T h T T 0atmα α σ εσ ∞+ + − − − =  

( ) ( )2 2 2 4
s s4.887 W / 0.13 m 0.2 800 W / m 0.6 232.3 W / m 0.6 T 15 T 300 0σ+ × + × − × − − =  

Using trial-and-error, find Ts = 316.5 K = 43.5°C.       < 
COMMENTS:  (1) Using coatings A and B, find Ts = 71 and 54°C, respectively.  (2) For more precise values 

of αS, αsky and ε, use Ts = 43.5°C.  For example, at λTs = 3 × (43.5 + 273) = 950 μm⋅K, F0-λT = 0.000 while at 

λTsolar = 3 × 5800 = 17,400 μm⋅K, F0-λT ≈ 0.98; we conclude little effect will be seen. 

Gatm 



PROBLEM 12.127  
KNOWN:  Opaque, spectrally-selective horizontal plate with electrical heater on backside is exposed 
to convection, solar irradiation and sky irradiation.  
FIND:  Electrical power required to maintain plate at 60°C.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Plate is opaque, diffuse and uniform, (2) No heat lost out the backside of 
heater.  
ANALYSIS:  From an energy balance on    
the plate-heater system, per unit area basis, 
 in outE E 0′′ ′′− =& &  
 elec S S atmq G Gα α′′ + +  

  ( )b s convE T q 0ε ′′− − =  

where ( )4 4
sky b s conv sG T , E T , and q h T T .atm σ σ ∞′′= = = −   The solar absorptivity is 

( ) ( )S ,S ,S ,b ,b0 0 0 0
G d / G d E , 5800 K d / E , 5800 K dλ λ λ λ λ λα α λ λ α λ λ λ λ

∞ ∞ ∞ ∞
= =∫ ∫ ∫ ∫  

where Gλ,S ~ Eλ,b (λ, 5800 K).  Noting that αλ = 1 - ρλ, 
 

 ( ) ( ) ( ) ( )( )S 0 2 m 0 2 m1 0.2 F 1 0.7 1 Fμ μα − −= − + − −  
 
where at λT = 2 μm × 5800 K = 11,600 μm⋅K, find from Table 12.1, F(0-λT) = 0.941, 
 ( )S 0.80 0.941 0.3 1 0.941 0.771.α = × + − =  
The total, hemispherical emissivity is 

 ( ) ( ) ( ) ( )( )0 2 m 0 2 m1 0.2 F 1 0.7 1 F .μ με − −= − + − −  

At λT = 2 μm × 333 K = 666 K, find F(0-λT) ≈ 0.000; hence ε = 0.30.  The total, hemispherical 
absorptivity for sky irradiation is α = ε = 0.30 since the surface is gray for this emission and 
irradiation process.  Substituting numerical values, 

 ( )4 4
elec s s S S skyq T h T T G Tεσ α ασ∞′′ = + − − −  

 

( ) ( ) ( )4 42 2
elecq 0.30 333 K 10 W / m K 60 20 C 0.771 600 W / m 0.30 233 Kσ σ′′ = × + ⋅ − ° − × − ×  

 
2 2 2 2 2

elecq 209.2 W / m 400.0 W / m 462.6 W / m 50.1 W / m 96.5 W / m .′′ = + − − =  < 
 
COMMENTS:  (1) Note carefully why αsky = ε for the sky irradiation. 

Gatm



PROBLEM 12.128  
KNOWN:  Chord length and spectral emissivity of wing.  Ambient air temperature, sky temperature and 
solar irradiation for ground and in-flight conditions.  Flight speed.  
FIND:  Temperature of top surface of wing for (a) ground and (b) in-flight conditions.  
SCHEMATIC:   

  
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state, (2) Negligible heat transfer from back of wing surface, (3) Diffuse 
surface behavior, (4) Negligible solar radiation for λ > 3 μm (αS = αλ ≤ 3 μm = ελ ≤ 3 μm = 0.6), (5) 
Negligible sky radiation and surface emission for λ ≤ 3 μm (αsky = αλ > 3 μm = ελ > 3 μm = 0.3 = ε), (6) 
Quiescent air for ground condition, (7) Air foil may be approximated as a flat plate, (8) Negligible 
viscous heating in boundary layer for in-flight condition, (9) The wing span W is much larger than the 
chord length Lc, (10) In-flight transition Reynolds number is 5 × 105. 
 
PROPERTIES:  Part (a).  Table A-4, air (Tf ≈ 325 K): ν = 1.84 × 10-5 m2/s, α = 2.62 × 10-5 m2/s, k = 
0.0282 W/m⋅K, β = 0.00307.  Part (b).  Given: ρ = 0.470 kg/m3, μ = 1.50 × 10-5 N⋅s/m2, k = 0.021 
W/m⋅K, Pr = 0.72.  
ANALYSIS:  For both ground and in-flight conditions, a surface energy balance yields 

 ( )4
sky sky S S s sG G T h T Tα α εσ ∞+ = + −       (1) 

where sky 0.3α ε= =  , and S 0.6.α =  
 
(a) For the ground condition, h  may be evaluated from Eq. 9.30 or 9.31, where L = As/P = Lc × W/2 (Lc 
+ W) ≈ Lc/2 = 2m and RaL = gβ (Ts - T∞) L3/να.  Using the IHT software to solve Eq. (1) and accounting 
for the effect of temperature-dependent properties, the surface temperature is 

 sT 350.6 K 77.6 C= = °         < 

where RaL = 2.52 × 1010 and h  = 6.2 W/m2⋅K.  Heat transfer from the surface by emission and 
convection is 257.0 and 313.6 W/m2, respectively. 
 
(b) For the in-flight condition, ReL = ρu∞Lc/μ = 0.470 kg/m3 × 200 m/s × 4m/1.50 × 10-5 N⋅s/m2 = 2.51 × 
107.  For mixed, laminar/turbulent boundary layer conditions (Chapter 7) and a transition Reynolds 
number of Rex,c = 5 × 105. 

 ( )L
4 / 5 1/ 3
LNu 0.037 Re 871 Pr 26,800= − =  

 2
L

k 0.021W / m K 26,800
h Nu 141 W / m K

L 4m

⋅ ×
= = = ⋅  

Substituting into Eq. (1), a trial-and-error solution yields 

 sT 237.7 K 35.3 C= = − °         < 

Heat transfer from the surface by emission and convection is now 54.3 and 657.6 W/m2, respectively. 
 
COMMENTS:  The temperature of the wing is strongly influenced by the convection heat transfer 
coefficient, and the large coefficient associated with flight yields a surface temperature that is within 5°C 
of the air temperature. 
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PROBLEM 12.129  
KNOWN:  Spectrally selective and gray surfaces in earth orbit are exposed to solar irradiation, GS, in 
a direction 30° from the normal to the surfaces.  
FIND:  Equilibrium temperature of each plate.  
SCHEMATIC:   

 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Plates are at uniform temperature, (2) Surroundings are at 0K, (3) Steady-state 
conditions, (4) Solar irradiation has spectral distribution of Eλ,b(λ, 5800K), (5) Back side of plate is 
insulated.  
ANALYSIS:  Noting that the solar irradiation is directional (at 30° from the normal), the radiation 
balance has the form 
 ( )S S b sG cos E T 0.α θ ε− =         (1) 

Using Eb (Ts) = 4
sTσ  and solving for Ts, find 

 ( ) ( ) 1/ 4
s S ST / G cos / .α ε θ σ⎡ ⎤= ⎣ ⎦        (2) 

For the gray surface, αS = ε = αλ and the temperature is independent of the magnitude of the 
absorptivity. 

 

1/ 42
s 8 2 4

0.95 1368 W / m cos 30T 380 K.
0.95 5.67 10 W / m K−

⎛ ⎞× °
= × =⎜ ⎟
⎜ ⎟× ⋅⎝ ⎠

     < 

For the selective surface, αS = 0.95 since nearly all the solar spectral power is in the region λ < 3μm.  
The value of ε depends upon the surface temperature Ts and would be determined by the relation. 

 ( ) ( )s s0 T 0 T0.95 F 0.05 1 Fλ λε → →
⎡ ⎤= + −⎢ ⎥⎣ ⎦

      (3) 

where λ = 3μm and Ts is as yet unknown.  To find Ts, a trial-and-error procedure as follows will be 
used:  (1) assume a value of Ts, (2) using Eq. (3), calculate ε with the aid of Table 12.1 evaluating 
F(0→λT) at λTs = 3μm⋅Ts, (3) with this value of ε, calculate Ts from Eq. (2) and compare with assumed 
value of Ts.  The results of the iterations are: 
 
  Ts(K), assumed value    633    700    666    650    655 
  ε, from Eq. (3)  0.098 0.125 0.110 0.104 0.106 
  Ts(K), from Eq. (2)    656    629    650    659    656 
 
Hence, for the coating, Ts ≈ 656K.        < 
 
COMMENTS:  Note the role of the ratio αs/ε in determining the equilibrium temperature of an 
isolated plate exposed to solar irradiation in space.  This is an important property of the surface in 
spacecraft thermal design and analysis. 

Gs = 1368 W/m2



PROBLEM 12.130  
KNOWN:  Spectral distribution of coating on satellite surface.  Irradiation from earth and sun.  
FIND:  (a) Steady-state temperature of satellite on dark side of earth, (b) Steady-state temperature on 
bright side.  
SCHEMATIC:   
 

 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Opaque, diffuse-gray surface behavior, (3) 
Spectral distributions of earth and solar emission may be approximated as those of blackbodies at 
280K and 5800K, respectively, (4) Satellite temperature is less than 500K.  
ANALYSIS:  Performing an energy balance on the satellite, 
 
 in outE E 0− =& &  
 

 ( ) ( ) ( )2 2 4 2
E E S S sG D / 4 G D / 4 T D 0α π α π ε σ π+ − =  

 

 
1/ 4

E E S S
s

G GT .
4

α α
ε σ

⎛ ⎞+
= ⎜ ⎟
⎝ ⎠

 

 
From Table 12.1, with 98% of radiation below 3μm for λT = 17,400μm⋅K, 
 
 S 0.6.α ≅  
 
With 98% of radiation above 3μm for λT = 3μm × 500K = 1500μm⋅K, 
 
 E0.3 0.3.ε α≈ ≈  
 
(a) On dark side, 
 

 

1/ 41/ 4 2
E E

s 8 2 4
G 0.3 340 W / mT

4 4 0.3 5.67 10 W / m K

α
ε σ −

⎛ ⎞⎛ ⎞ ×⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎝ ⎠ × × × ⋅⎝ ⎠
 

 
 sT 197 K.=           < 
 
(b) On bright side, 
 

 

1/ 41/ 4 2 2
E E S S

s 8 2 4
G G 0.3 340 W / m 0.6 1368W / mT

4 4 0.3 5.67 10 W / m K
α α

ε σ −

⎛ ⎞⎛ ⎞+ × + ×
= = ⎜ ⎟⎜ ⎟ ⎜ ⎟× × × ⋅⎝ ⎠ ⎝ ⎠

 

 
 sT 341K.=           < 

GS = 1368 W/m2



PROBLEM 12.131  
KNOWN:  Radiative properties and operating conditions of a space radiator.  
FIND:  Equilibrium temperature of the radiator.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible irradiation due to earth emission.  
ANALYSIS:  From a surface energy balance, in outE E 0.′′ ′′− =& &  
 
 dis S Sq G E 0.α′′ + − =  
 
Hence 
 

 
1/ 4

dis S S
s

q GT α
ε σ

′′⎛ ⎞+
= ⎜ ⎟
⎝ ⎠

 

 

 

1/ 42 2
s 8 2 4

1500 W / m 0.5 1000 W / mT
0.95 5.67 10 W / m K−

⎛ ⎞+ ×⎜ ⎟=
⎜ ⎟× × ⋅⎝ ⎠

 

 
or 
 
 sT 439K.=           < 
 
COMMENTS:  Passive thermal control of spacecraft is practiced by using surface coatings with 
desirable values of αS and ε. 



PROBLEM 12.132  
KNOWN:  Spherical satellite exposed to solar irradiation of 1368 m2; surface is to be coated with a 
checker pattern of evaporated aluminum film, (fraction, F) and white zinc-oxide paint (1 - F). 
 
FIND:  The fraction F for the checker pattern required to maintain the satellite at 300 K. 
 
SCHEMATIC:   
 

 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Satellite is isothermal, and (3) No internal power 
dissipation. 
 
ANALYSIS:  Perform an energy balance on the satellite, as illustrated in the schematic, identifying 
absorbed solar irradiation on the projected area, Ap, and emission from the spherical area As. 
 
 in out 0E E+ =& &  
 
 F F  G  A F F  E  T  AS,f S,p S p f p b s s⋅ + − ⋅ − ⋅ + − ⋅ =α α ε ε1 1 0b ge j b ge j b g  

 
where A  D A  D E T  and 5.67 10  W / m Kp

2
s

2
b

4 -8 2 4= = = = × ⋅π π σ σ/ , , .4   Substituting 

numerical values, find F. 
 

( )
( )

2
40.09 1 ) 0.22 1368 W/m

0.03 1 0.85 (300K) 0
4

F F
F F σ

⎡ ⎤× + − × ×⎣ ⎦ ⎡ ⎤− × + − × × × =⎣ ⎦  

 
 

  F = 0.94         < 
 
COMMENTS:  (1) If the thermal control engineer desired to maintain the spacecraft at 325 K, would 
the fraction F (aluminum film) be increased or decreased?  Verify your opinion with a calculation. 
 
(2) If the internal power dissipation per unit surface area is 150 W/m2, what fraction F will maintain 
the satellite at 300 K? 
 

 GS = 1368 W/m2



PROBLEM 12.133 
 
KNOWN:  Inner and outer radii, spectral reflectivity, and thickness of an annular fin.  Base temperature 
and solar irradiation.  
FIND:  (a) Rate of heat dissipation if ηf  = 1, (b) Differential equation governing radial temperature 
distribution in fin if ηf  < 1. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state, (2) One-dimensional radial conduction, (3) Adiabatic tip and bottom 
surface, (4) Opaque, diffuse surface ( 1 ,λ λ λ λα ρ ε α= − = ). 
 
ANALYSIS:  (a) If ηf = 1, T(r) = Tb = 400 K across the entire fin and 

 ( )[ ] 2
f b b S S oq E T G rε α π= −  

With λT = 2 μm × 5800 K = 11,600 μm⋅K, F(0→2μm) = 0.941.  Hence αS = α1 ( )0 2 mF μ→  + 

α2 ( )0 2 m1 F μ→−⎡ ⎤
⎣ ⎦  = 0.2 × 0.941 + 0.9 × 0.059 = 0.241.  With λT = 2 μm × 400 K = 800 μm⋅K, 

( )0 2 mF μ→  = 0 and ε = 0.9.  Hence, for GS = 0, 

 ( ) ( )4 28 2 4
fq 0.9 5.67 10 W m K 400 K 0.5 m 1026 Wπ−= × × ⋅ =  < 

and for GS = 1000 W/m2, 

 ( ) ( ) ( )22
fq 1026 W 0.241 1000 W m 0.5 m 1026 189 W 837 Wπ= − = − =  < 

(b) Performing an energy balance on a differential element extending from r to r+dr, we obtain 
 ( ) ( )r S S r drq G 2 rdr q E 2 rdr 0α π π++ − − =  
where 
 ( )rq k dT dr 2 rtπ= −           and           ( )r dr r rq q dq dr dr+ = + . 
Hence, 
 ( ) ( )[ ] ( )S SG 2 rdr d k dT dr 2 rt dr E 2 rdr 0α π π π− − − =  

 
2

S S2
d T dT

2 rtk 2 tk G 2 r E2 r 0
drdr

π π α π π+ + − =  

 
2

4
S S2

d T 1 dT
kt G T 0

r drdr
α εσ+ + − =

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 < 

COMMENTS:  The radiator should be constructed of a light weight, high thermal conductivity material 
(aluminum). 



PROBLEM 12.134  
KNOWN:  Rectangular plate, with prescribed geometry and thermal properties, for use as a radiator in 
a spacecraft application.  Radiator exposed to solar radiation on upper surface, and to deep space on 
both surfaces.  
FIND:  Using a computer-based, finite-difference method with a space increment of 0.1 m, find the tip 
temperature, TL, and rate of heat rejection, qf, when the base temperature is maintained at 80°C for the 
cases: (a) when exposed to the sun, (b) on the dark side of the earth, not exposed to the sun; and (c) 
when the thermal conductivity is extremely large.  Compare the case (c)  results with those obtained 
from a hand calculation assuming the radiator is at a uniform temperature. 
 
SCHEMATIC:   
 

 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (b) Plate-radiator behaves as an extended surface with 
one-dimensional conduction, and (c) Radiating tip condition.  
ANALYSIS:  The finite-difference network with 10 nodes and a space increment Δx = 0.1 m is shown 
in the schematic below.  The finite-difference equations (FDEs) are derived for an interior node (nodes 
01 - 09) and the tip node (10).  The energy balances are represented also in the schematic below where 
qa and qb represent conduction heat rates, qS represents the absorbed solar radiation, and qrad 
represents the radiation exchange with outer space. 
 

 
 
Interior node 04 
 & &E Ein out− = 0  
 q q q qa b S rad+ + + = 0  
 kA  T T kA  T Tc 03 04 c 05 04− + −b g b g/ /Δ Δx x  

   + − =α ε σS S sur
4

04
4 G  P / 2 x + P x  T Tb g e jΔ Δ 0  

where P = 2W and Ac = W⋅t. 
 
Tip node 10   
 q q q qa S rad,1 rad,2+ + + = 0  

 kA  T T x G  P / 2  x / 2c 09 10 S S− +b g b g b g/ Δ Δα  

   + − + − =ε σ ε σ A  T T P x / 2 T Tc sur
4

10
4

sur
4

04
4e j b g e jΔ 0  

 
          Continued … 

 GS = 1368 W/m2



PROBLEM 12.134 (Cont.) 
 
Heat rejection, qf.  From an energy balance on the base node 00, 
 q q q qf 01 S rad+ + + = 0  
 q kA  T T x G P / 2  x / 2f c 01 00 S S+ − +b g b g b g/ Δ Δα  

   ( ) ( )4 4
sur 00P x/2 T T 0ε σ+ Δ − =  

The foregoing nodal equations and the heat rate expression were entered into the IHT workspace to 
obtain solutions for the three cases.  See Comment 2 for the IHT code, and Comment 1 for code 
validation remarks. 
 

Case  k(W/m⋅K) GS(W/m2) TL(°C)  qf(W)  
 
   a    300    1368    30.9   2746   < 

   b    300       0    -7.6   4720   < 

   c  1 × 1010      0    80.0   9565   < 
 
 
Case (c) using the IHT code with k = 1 × 1010 W/m⋅K corresponds to the condition of the plate at the 
uniform temperature of the base; that is T(x) = Tb.  For this condition, the heat rejection from the 
upper and lower surfaces and the tip area can be calculated as 

 q T T  P L Af,u b
4

sur
4

c= − ⋅ +εσ e j  

 

 
( ) [ ]4 4 2 2

f,uq  = 0.9 80 + 273 4 W/m 12 + 6 0.012 m

       = 9674 W

σ ⎡ ⎤− ×⎢ ⎥⎣ ⎦  

 
Note that the heat rejection rate for the uniform plate is in excellent agreement with the result of the 
FDE analysis when the thermal conductivity is made extremely large.  We have confidence that the 
code is properly handling the conduction and radiation processes; but, we have not exercised the 
portion of the code dealing with the absorbed irradiation.  What analytical solution/model could you 
use to validate this portion of the code? 
 
COMMENTS:  (1) The IHT code with the 10-nodal FDEs for the temperature distribution and the 
heat rejection rate is as follows. 
 
//Properties and dimensions 
 
W = 6    //m 
t = 12/1000   //m 
k = 300    //thermal conductivity (W/m-K) 
eps = 0.90   //emissivity 
absS = 0.45   //solar absorptivity 
//Conditions 
Tsur = 4    // (K) 
T00 = 80 + 273   // (K)                                         
GS = 1368   // (W/m^2) 
Ac = t*W   //cross sectional area (m^2) 
P = 2*W    //perimeter (m) 
deltax = 0.1   // (m)                                          
sigma=5.67e-8       
 
 

Continued... 



 
 

PROBLEM 12.134 (Cont.) 
 
 
//Interior nodes, 01 to 09 
k*Ac*(T00-T01)/deltax+k*Ac*(T02-T01)/deltax+absS*GS*P/2*deltax+eps*P*deltax*sigma*(Tsur^4-T01^4)=0 
 
k*Ac*(T01-T02)/deltax+k*Ac*(T03-T02)/deltax+absS*GS*P/2*deltax+eps*P*deltax*sigma*(Tsur^4-T02^4)=0 
 
k*Ac*(T02-T03)/deltax+k*Ac*(T04-T03)/deltax+absS*GS*P/2*deltax+eps*P*deltax*sigma*(Tsur^4-T03^4)=0 
 
k*Ac*(T03-T04)/deltax+k*Ac*(T05-T04)/deltax+absS*GS*P/2*deltax+eps*P*deltax*sigma*(Tsur^4-T04^4)=0 
 
k*Ac*(T04-T05)/deltax+k*Ac*(T06-T05)/deltax+absS*GS*P/2*deltax+eps*P*deltax*sigma*(Tsur^4-T05^4)=0 
 
k*Ac*(T05-T06)/deltax+k*Ac*(T07-T06)/deltax+absS*GS*P/2*deltax+eps*P*deltax*sigma*(Tsur^4-T06^4)=0 
 
k*Ac*(T06-T07)/deltax+k*Ac*(T08-T07)/deltax+absS*GS*P/2*deltax+eps*P*deltax*sigma*(Tsur^4-T07^4)=0 
 
k*Ac*(T07-T08)/deltax+k*Ac*(T09-T08)/deltax+absS*GS*P/2*deltax+eps*P*deltax*sigma*(Tsur^4-T08^4)=0 
 
k*Ac*(T08-T09)/deltax+k*Ac*(T10-T09)/deltax+absS*GS*P/2*deltax+eps*P*deltax*sigma*(Tsur^4-T09^4)=0 
 
//Tip node, 10 
 
//k*Ac*(T09-T10)/deltax+absS*GS*(P/2)*(deltax/2)+eps*(P*deltax/2 + Ac)*sigma*(Tsur^4-T10^4)=0 
 
TLC = T10-273 
 
//Rejection heat rate, energy balance on base node 
 
qf+k*Ac*(T01-T00)/deltax+absS*GS*(P/2)*(deltax/2)+eps*(P*deltax/2)*sigma*(Tsur^4-T00^4)=0 
 
//Check 
 
qfu = eps*sigma*((80 + 273)^4 - 4^4)*(P*1+Ac)                     
 
(2) To determine the validity of the one-dimensional, extended surface analysis, calculate the Biot 
number estimating the linearized radiation coefficient based upon the uniform plate condition, Tb = 
80°C. 
 
 Bi h t / 2 krad= b g /  
 

 h T T  T T T  W / m Krad b sur b
2

sur
2

b
3 2= + + ≈ = ⋅εσ εσb g e j 2 25.  

 

 Bi 2.25 W / m K 0.012 m / 2  W / m K2= ⋅ ⋅ = × −b g / .300 4 5 10 5  
 
Since Bi << 0.1, the assumption of one-dimensional conduction is appropriate. 
 



PROBLEM 12.135  
KNOWN:  Directional absorptivity of a plate exposed to solar radiation on one side.  
FIND:  (a) Ratio of normal absorptivity to hemispherical emissivity, (b) Equilibrium temperature of 
plate at 0° and 75° orientation relative to sun’s rays.  
SCHEMATIC:   

 
 
 
 
 
 
ASSUMPTIONS:  (1) Surface is gray, (2) Properties are independent of φ.  
ANALYSIS:  (a) From the prescribed αθ (θ), αn = 0.9.  Since the surface is gray, εθ = αθ.  Hence 
from Eq. 12.42, which applies for total as well as spectral properties. 
 

 
/ 3

0

/ 22 2/ 2
0

/ 3

sin sin2 cos sin d 2 0.9 0.1
2 2

π π
π

θ
π

θ θε ε θ θ θ
⎡ ⎤
⎢ ⎥= = +⎢ ⎥
⎢ ⎥⎣ ⎦

∫  

 
 ( ) ( )2 0.9 0.375 0.1 0.5 0.375 0.70.ε ⎡ ⎤= + − =⎣ ⎦  
 
Hence 

 n 0.9 1.286.
0.7

α
ε

= =  
 
(b) Performing an energy balance on the plate, 
 
 4

s sq cos 2 T 0θα θ ε σ′′ − =  
 
or 

 
1/ 4

s sT q cos .
2
θα θ
ε σ

⎡ ⎤
′′= ⎢ ⎥

⎣ ⎦
 

 
Hence for θ = 0°, αθ = 0.9 and cosθ = 1, 
 

 
1/ 4

s 8
0.9T 1368 353K.

2 0.7 5.67 10−
⎡ ⎤

= × =⎢ ⎥
× × ×⎣ ⎦

     < 

 
For θ = 75°, αθ = 0.1 and cosθ = 0.259 
 

 
1/ 4

s 8
0.1T 1368 0.259 145K.

2 0.7 5.67 10−
⎡ ⎤

= × × =⎢ ⎥
× × ×⎣ ⎦

    < 

 
COMMENTS:  Since the surface is not diffuse, its absorptivity depends on the directional 
distribution of the incident radiation. 

qS = 1368 W/m2“



PROBLEM 12.136  
KNOWN:  Transmissivity of cover plate and spectral absorptivity of absorber plate for a solar 
collector.  
FIND:  Absorption rate for prescribed solar flux and preferred absorber plate coating.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Solar irradiation of absorber plate retains spectral distribution of blackbody at 
5800K, (2) Coatings are diffuse.  
ANALYSIS:  At the absorber plate we wish to maximize solar radiation absorption and minimize 
losses due to emission.  The solar radiation is concentrated in the spectral region λ < 4μm, and for a 
representative plate temperature of T ≤ 350K, emission from the plate is concentrated in the spectral 
region λ > 4μm.  Hence, 
 
 Coating A is vastly superior.        < 
 
With Gλ,S ~ Eλ,b (5800K), it follows from Eq. 12.53 
 
 ( ) ( )A 0 4 m 4 m .0.85 F 0.05 Fμ μα − −∞≈ +  
 
From Table 12.1, λT = 4μm × 5800K = 23,200μm⋅K, 
 
 ( )0 4 mF 0.99.μ− ≈  
 
Hence 
 
 ( ) ( )A 0.85 0.99 0.05 1 0.99 0.85.α = + − ≈  
 
With GS = 1000 W/m2 and τ = 0.84 (Ex. 12.9), the absorbed solar flux is 
 

 ( ) ( )2
S,abs A SG G 0.85 0.84 1000 W / m= = ×α τ  

 
 2

S,absG 714 W / m .=         < 
 
COMMENTS:  Since the absorber plate emits in the infrared (λ > 4μm), its emissivity is εA ≈ 0.05.  
Hence (α/ε)A = 17.  A large value of α/ε is desirable for solar absorbers. 



PROBLEM 12.137 
 

 
KNOWN: Irradiation of satellite from earth and sun. Two emissivities associated with the 
satellite. 
 
FIND: (a) Steady-state satellite temperature when satellite is on bright side of earth for αE/αs > 1 
and αE/αs < 1, (b) Steady-state satellite temperature when satellite is on dark side of earth for 
αE/αs > 1 and αE/αs < 1, (c) Scheme to minimize temperature variations of the satellite. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Steady-state conditions, (2) Opaque, diffuse gray behavior. 
 
ANALYSIS: Performing an energy balance on the satellite, it follows that in outE E=& &  or 
 
 2 2 4 2 4 2

E E s s E sat s satG ( D / 4) G ( D / 4) T ( D / 2) T ( D / 2) 0α π + α π − ε σ π − ε σ π =  
or 

  
1/ 4

E E s s
sat

E s

G GT
2( )

⎡ ⎤α + α
= ⎢ ⎥ε + ε σ⎣ ⎦

 

 
(a) Bright Side of Earth (Gs = 1368 W/m2).  
 
For αE = εE = α2 = 0.3, αs = εs = α1 = 0.6 , 
 

  
1/ 42 2

sat 8 2 4
0.3 340W / m 0.6 1353W / mT 308K

2 (0.3 0.6) 5.67 10 W / m K−

⎡ ⎤× + ×
= =⎢ ⎥

× + × × ⋅⎣ ⎦
  < 

 
For αE = εE = α1 = 0.6, αs = εs = α2 = 0.3 , 
 

  
1/ 42 2

sat 8 2 4
0.6 340W / m 0.3 1353W / mT 279K

2 (0.6 0.3) 5.67 10 W / m K−

⎡ ⎤× + ×
= =⎢ ⎥

× + × × ⋅⎣ ⎦
  < 

 
(b) Dark Side of Earth (Gs = 0 W/m2). 

 
For αE = εE = α1 = 0.6, αs = εs = α2 = 0.3, 

Continued… 
 

Earth

GE = 340 W/m2

Satellite
Tsat
α1 = 0.6
α2 = 0.3

αsαE

Gs = 1353 W/m2

Earth

GE = 340 W/m2

Satellite
Tsat
α1 = 0.6
α2 = 0.3

αsαE

Gs = 1353 W/m2GS = 1368 W/m2



PROBLEM 12.137 (Cont.) 
 

 
 

1/ 42

sat 8 2 4
0.6 340W / mT 211K

2 (0.6 0.3) 5.67 10 W / m K−

⎡ ⎤×
= =⎢ ⎥

× + × × ⋅⎣ ⎦
  < 

 
 
For αE = εE = α2 = 0.3, αs = εs = α1 = 0.6 , 
 

  
1/ 42

sat 8 2 4
0.3 340W / mT 178K

2 (0.3 0.6) 5.67 10 W / m K−

⎡ ⎤×
= =⎢ ⎥

× + × × ⋅⎣ ⎦
  < 

 
(c) To minimize the temperature variations of the satellite, we would have the high emissivity 
coating always facing earth. 
 
COMMENTS: If the entire satellite were covered with either coating, the temperatures on the 
bright and dark sides of earth would be Ts = 294 K and 197 K, respectively. Use of the two 
emissivity coatings reduces temperature variations from 294 K – 197 K = 97 K to 278 K – 211 K 
= 67 K. 
 



PROBLEM 12.138  
KNOWN:  Space capsule fired from earth orbit platform in direction of sun.  
FIND:  (a) Differential equation predicting capsule temperature as a function of time, (b) Position of 
capsule relative to sun when it reaches its destruction temperature.  
SCHEMATIC:   
 

 
 
 
 

 
 
 
 
ASSUMPTIONS:  (1) Capsule behaves as lumped capacitance system, (2) Capsule surface is black, 
(3) Temperature of surroundings approximates absolute zero, (4) Capsule velocity is constant.  
ANALYSIS:  (a) To find the temperature as a function of time, perform an energy balance on the 
capsule considering absorbed solar irradiation and emission, 

 ( ) ( )2 4 2 3
in out st SE E E G R T 4 R c 4 / 3 R dT / dt .π σ π ρ π− = ⋅ − ⋅ =& & &   (1) 

Note the use of the projected capsule area (πR2) and the surface area (4πR2).  The solar irradiation will 
increase with decreasing radius (distance toward the sun) as 

 ( ) ( ) ( )( ) ( )( )2 22
S S,e e S,e e e S,e eG r G r / r G r / r Vt G 1/ 1 Vt / r= = − = −   (2) 

where re is the distance of earth orbit from the sun and r = re – Vt.  Hence, Eq. (1) becomes 

 
( )

S,e 4
2

e

GdT 3 T .
dt cR 4 1 Vt / r

σ
ρ

⎡ ⎤
⎢ ⎥= −
⎢ ⎥−⎣ ⎦

 

The rate of temperature change is 

 
( ) ( )

2
4

26 3 3 11

dT 3 1368 W / m T
dt 4 10 J / m K 1.5m 4 1 16 10 m / s t /1.5 10 m

σ

⎡ ⎤
⎢ ⎥

= −⎢ ⎥
× ⋅ × ⎢ ⎥− × × ×⎢ ⎥⎣ ⎦

 

 ( ) 24 7 14 4dT 1.691 10 1 1.067 10 t 2.835 10 T
dt

−− − −= × − × − ×  

where T[K] and t(s).  For the initial condition, t = 0, with T = 20°C = 293K, 
 

 ( ) 5dT 0 3.9 10 K / s.
dt

−= − ×         < 
 
That is, the capsule will cool for a period of time and then begin to heat. 
 
(b) The differential equation cannot be explicitly solved for temperature as a function of time.  Using a 
numerical method with a time increment of Δt = 5 × 105s, find 
 
 ( ) 6T t 150 C 423 K at t 5.5 10 s.= ° = ≈ ×     < 
 
Note that in this period of time the capsule traveled (re – r) = Vt = 16 × 103 m/s × 5.5 × 106 = 1.472 × 
1010 m.  That is, r = 1.353 × 1011 m. 

GS,e = 1368 W/m2



PROBLEM 12.139 
 
 
KNOWN:  Solar irradiation of coated aluminum. Spectral absorptivities above and below cutoff 
wavelength. Cutoff wavelength under normal conditions. 
 
 
FIND:  (a) Equilibrium temperature for normal conditions with λc = 0.15 μm. (b) Value of λc that will 
maximize surface temperature.  
 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady state conditions. (2) Solar irradiation approximated as that from a 
blackbody at T = 5800 K. 
 
ANALYSIS: (a) For the control surface shown in the schematic in outE E=& &  or Gs = J or  

4
s s sG Tα = εσ . Therefore, 

    
1/ 4

s s
s

GT α⎡ ⎤= ⎢ ⎥εσ⎣ ⎦
       (1) 

 
 
The solar irradiation is approximated as that of a blackbody at 5800 K. From Table 12.1, 

c(0 ) (0 0.15 m)F F 0−λ − μ= ≈ . Therefore, 
 

[ ]
c cs ,1 (0 ) ,2 (0 )F 1 F 0.98 0  0.05 1 0 0.05λ −λ λ −λ⎡ ⎤α = α + α − = × + × − =⎣ ⎦     

 
The surface emissivity may be expressed as

c s c s,1 (0 T ) ,2 (0 T )F 1 Fλ −λ ⋅ λ −λ ⋅⎡ ⎤ε = α + α −⎣ ⎦    (2) 

 
where the variable 

c s(0 T )F −λ ⋅ is the fraction of blackbody radiation in the band between 0 μm·K and 

λcTs.  Combining Equations 1 and 2 yields 
 

Continued… 
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PROBLEM 12.139 (Cont.) 

 
 

 

{ }c s c s

1/4
2

s 8 2 4
(0 T ) (0 T )

0.05 1368 W / mT
0.98 F 0.05 1 F 5.67 10  W / m K−

−λ ⋅ −λ ⋅

⎡ ⎤
×⎢ ⎥=

⎢ ⎥⎡ ⎤× + × − × × ⋅⎣ ⎦⎣ ⎦

 

 

which may be solved by trial-and-error (since 
c s(0 T )F −λ ⋅ is a function of Ts) to yield Ts = 394.1 K. < 

 
Equations 1 and 2 may be solved by trial-and-error to yield a maximum surface temperature of Ts = 

797 K at a cutoff wavelength of λc = 1.50 μm.       < 
      
 
COMMENTS:  (1) The small value of λc that exists under normal conditions, coupled with the 
relatively low surface temperature, yields a surface emissivity of 0.05. (2) The emissivity and 
absorptivity associated with the surface temperature of Ts = 797 K are ε = 0.052 and α = 0.869, 
respectively. (3) The variation of the surface temperature with the cutoff wavelength is shown in the 
plot below. Manipulation of the cutoff wavelength is an effective approach for achieving desired 
thermal performance. 
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PROBLEM 12.140 
 

 
KNOWN: Irradiation from the sun and earth on a spherical satellite. Spectral absorptivities of 
the satellite surface below and above a cutoff wavelength. 
 
FIND: (a) Cutoff wavelength to minimize satellite temperature on bright side of earth, 
corresponding satellite temperature on dark side of earth, (b) Cutoff wavelength to maximize 
satellite temperature on dark side of earth, corresponding satellite temperature on bright side of 
earth.  
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Steady-state conditions, (2) Opaque, diffuse satellite surface. 
 
ANALYSIS: Performing an energy balance on the satellite, it follows that in outE E=& &  or 
 
 2 2 4 2

E E s s sG ( D / 4) G ( D / 4) T ( D ) 0α π + α π − εσ π =  
or 

   
1/ 4

E E s s
s

G GT
4

α + α⎡ ⎤= ⎢ ⎥εσ⎣ ⎦
     (1) 

 
(a) Bright Side of Earth, Minimize Ts. 
 
For earth irradiation being approximated as that of a blackbody at 280 K,  
 
  

c cE ,1 (0 280K) ,2 (0 280K)F 1 Fλ −λ ⋅ λ −λ ⋅⎡ ⎤α = α + α −⎣ ⎦     (2) 

 
For solar irradiation being approximated as that of a blackbody at 5800K, 
 
  

c cs ,1 (0 5800K) ,2 (0 5800K)F 1 Fλ −λ ⋅ λ −λ ⋅⎡ ⎤α = α + α −⎣ ⎦     (3) 

 
The satellite emissivity is, with ελ = αλ, 

c s c s,1 (0 T ) ,2 (0 T )F 1 Fλ −λ ⋅ λ −λ ⋅⎡ ⎤ε = α + α −⎣ ⎦   (4) 

 
Equations 1 through 4 may be solved using various λc yielding a minimum satellite temperature 

of Ts = 295 K for λc = 0 or ∞.         < 
Continued… 
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PROBLEM 12.140 (Cont.) 
 

 
(a) Dark Side of Earth, Maximize Ts. 
 
For the satellite on the dark side of earth with a spectrally-selective coating, Equation 1 becomes 

1/ 4
E E

s
GT

4
α⎡ ⎤= ⎢ ⎥εσ⎣ ⎦

      (5) 

Equations 2 through 5 may be solved using various λc, yielding a maximum satellite temperature 

of Ts = 205 K at λc = 13.57 μm.         < 
The corresponding values of αE, αs and ε are 0.4330, 0.5999 and 0.3672, respectively. 
 
When the satellite is on the bright side with λc = 13.57 μm, the satellite temperature may be found 
by solving Equations 1 through 4 yielding a temperature of Ts = 310.4 K. The corresponding 

values of αE, αs and ε are 0.4330, 0.5999 and 0.4554, respectively.   < 
 
COMMENT: In part (a) of the problem the satellite temperature is very sensitive to the cutoff 
wavelength of λc = 0 when the satellite is on the bright side of earth. This is because of the 
presence of a significant amount of solar irradiation at relatively short wavelengths.  
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For part (b) of the problem, the dark side satellite temperature is relatively insensitive to the 
cutoff wavelength because of the similar spectral distributions of the earth irradiation and the 
satellite emission. In contrast, however, the temperature of the satellite on the bright side of earth 
is much more sensitive to the cutoff wavelength because of the presence of significant irradiation 
from the sun at short wavelengths.  
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PROBLEM 12.141  
KNOWN:  Solar panel mounted on a spacecraft of area 1 m2 having a solar-to-electrical power 
conversion efficiency of 12% with specified radiative properties. 
 
FIND:  (a) Steady-state temperature of the solar panel and electrical power produced with solar 
irradiation of 1500 W/m2, (b) Steady-state temperature if the panel were a thin plate (no solar cells) 
with the same radiative properties and for the same prescribed conditions, and (c) Temperature of the 
solar panel 1500 s after the spacecraft is eclipsed by a planet; thermal capacity of the panel per unit 
area is 9000 J/m2⋅K. 
 
SCHEMATIC:   
 

  
ASSUMPTIONS:  (1) Solar panel and thin plate are isothermal, (2) Solar irradiation is normal to the 
panel upper surface, and (3) Panel has unobstructed view of deep space at 0 K. 
 
ANALYSIS:  (a) The energy balance on the solar panel is represented in the schematic below and has 
the form 
 & &E Ein out− = 0  

 α ε εS S p a b b sp p elecG A  E  T A P⋅ − + ⋅ − =b g e j 0      (1) 

where Eb (T) = σT4, σ = 5.67 × 10-8 W/m2⋅K4, and the electrical power produced is 
 P e G Aelec S p= ⋅ ⋅          (2) 

 P  W / m 1 m  Welec
2 2= × × =012 1500 180.       < 

Substituting numerical values into Eq. (1), find 

 08 1500 08 0 7 1 180. . .× × − + × − W / m 1 m T  m  W = 02 2
sp
4 2b gσ  

 T  K = 57.9 Csp = 330 9. o         < 
 

  
(b) The energy balance for the thin plate shown in the schematic above follows from Eq. (1) with     
Pelec = 0 yielding 

 08 1500 08 0 7 1 0. . .× × − + × = W / m /m T  m2 2
p
4 2b gσ      (3) 

 T  K 71.7 Cp = =344 7. o         < 

          Continued … 



PROBLEM 12.141 (Cont.) 
 
(c) Using the lumped capacitance method, the energy balance on the solar panel as illustrated in the 
schematic below has the form 
 & & &E E Ein out st− =  

 ( ) sp4
a b sp p p

dT
T A TC A

dt
ε ε σ ′′− + ⋅ = ⋅       (4) 

where the thermal capacity per unit area is TC Mc / A  J / m K.p
2′′ = = ⋅e j 9000  

 
Eq. 5.18 provides the solution to this differential equation in terms of t = t (Ti, Tsp).  Alternatively, use 
Eq. (4) in the IHT workspace (see Comment 4 below) to find  
 
 T  s  K 30.4 Csp 1500 242 6b g = = −. o        < 

 

  
COMMENTS:  (1) For part (a), the energy balance could be written as 
 & & &E E Ein out g− + = 0  

where the energy generation term represents the conversion process from thermal energy to electrical 
energy.  That is, 
 &E e G Ag S p= − ⋅ ⋅  

(2) The steady-state temperature for the thin plate, part (b), is higher than for the solar panel, part (a).  
This is to be expected since, for the solar panel, some of the absorbed solar irradiation (thermal 
energy) is converted to electrical power. 
 
(3) To justify use of the lumped capacitance method for the transient analysis, we need to know the 
effective thermal conductivity or internal thermal resistance of the solar panel. 
 
(4) Selected portions of the IHT code using the Models Lumped | Capacitance tool to perform the 
transient analysis based upon Eq. (4) are shown below. 
 
  // Energy balance, Model | Lumped Capacitance 
  / * Conservation of energy requirement on the control volume, CV. * / 
  Edotin - Edotout = Edotst 
  Edotin = 0 
  Edotout = Ap * (+q”rad) 

 Edostat = rhovolcp * Ap * Der(T,t) 
  // rhovolcp = rho * vol * cp // thermal capacitance per unit area, J/m^2⋅K 
 
  // Radiation exchange between Cs and large surroundings 
  q”rad = (eps_a + eps_b) * sigma * (T^4 - Tsur^4) 
  sigma = 5.67e-8    // Stefan-Boltzmann constant, W/m^2⋅K^4 
 
  // Initial condition 
  // Ti = 57.93 + 273 = 330.9  // From part (a), steady-state condition 
  T_C = T - 273 
 
(5) The solar flux exceeds the solar constant value of 1368 W/m2. Hence the spacecraft is closer to the 
sun than is earth. 



PROBLEM 12.142  
KNOWN:  Effective sky temperature and convection heat transfer coefficient associated with a thin 
layer of water.  
FIND:  Lowest air temperature for which the water will not freeze (without and with evaporation).  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Bottom of water is adiabatic, (3) Heat and mass 
transfer analogy is applicable, (4) Air is dry. 
 
PROPERTIES:  Table A-4, Air (273 K, 1 atm):  ρ = 1.287 kg/m3,  cp = 1.01 kJ/kg⋅K,  ν = 13.49 × 
10-6 m2/s, Pr = 0.72; Table A-6, Saturated vapor (Ts = 273 K): ρA = 4.8 × 10-3 kg/m3, hfg = 2502 
kJ/kg; Table A-8, Vapor-air (298 K): DAB ≈ 0.36 × 10-4 m2/s, Sc = ν/DAB = 0.52. 
 
ANALYSIS:  Without evaporation, the surface heat loss by radiation must be balanced by heat gain 
due to convection.  An energy balance gives 
 

 ( ) ( )4 4
conv rad s s s skyq q or h T T T T .ε σ∞′′ ′′= − = −  

 
At freezing, Ts = 273 K.  Hence 
 

( )
8 2 4

4 4 4 4 4s
s s sky 2

5.67 10 W / m K
T T T T 273 K 274 243 K 4.69 C.

h 25 W / m K

ε σ −

∞
× ⋅

= + − = + − = °
⋅

⎡ ⎤
⎣ ⎦  < 

 
With evaporation, the surface energy balance is now 
 

( ) ( ) ( )4 4
conv evap rad s m A,sat s A, fg s s skyq q q or h T T h T h T T .ρ ρ ε σ∞ ∞⎡ ⎤′′ ′′ ′′= + − = − + −⎣ ⎦  

 ( ) ( )4 4sm
s A,sat s fg s sky

hT T T h T T .
h h

ε σρ∞ = + + −  
 
Substituting from Eq. 6.60, with n ≈ 0.33, 

( ) ( )

( )

1 10.67 0.67
m p p

13 0.67

4 3

h / h c Le c Sc / Pr

1.287 kg / m 1010 J / kg K 0.52 / 0.72

9.57 10 m K / J,

       

       

ρ ρ
− −

−

−

= =

= × ⋅

= × ⋅

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦  

4 3 3 3 6T 273 K 9.57 10 m K / J 4.8 10 kg / m 2.5 10 J / kg 4.69 K 16.2 C.− −
∞ = + × ⋅ × × × × + = °  < 

 
COMMENTS:  The existence of clear, cold skies and dry air will allow water to freeze for ambient 
air temperatures well above 0°C (due to radiative and evaporative cooling effects, respectively).  The 
lowest air temperature for which the water will not freeze increases with decreasing φ∞, decreasing 
Tsky and decreasing h. 



PROBLEM 12.143  
KNOWN:  Temperature and environmental conditions associated with a shallow layer of water.  
FIND:  Whether water temperature will increase or decrease with time.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Water layer is well mixed (uniform temperature), (2) All non-reflected 
radiation is absorbed by water, (3) Bottom is adiabatic, (4) Heat and mass transfer analogy is 
applicable, (5) Perfect gas behavior for water vapor. 
 
PROPERTIES:  Table A-4, Air (T = 300 K, 1 atm):  ρa = 1.161 kg/m3, cp,a = 1007 J/kg⋅K, Pr = 
0.707; Table A-6, Water (T = 300 K, 1 atm): ρw = 997 kg/m3, cp,w = 4179 J/kg⋅K; Vapor (T = 300 K, 
1 atm): ρA,sat = 0.0256 kg/m3, hfg = 2.438 × 106 J/kg; Table A-8, Water vapor-air (T = 300 K, 1 atm): 
DAB ≈ 0.26 × 10-4 m2/s; with νa = 15.89 × 10-6 m2/s from Table A-4, Sc = νa/DAB = 0.61. 
 
ANALYSIS:  Performing an energy balance on a control volume about the water, 
 ( )st S,abs A,abs evapE G G E q A′′= + − −&  
 

( )
( ) ( ) ( )w p,w w 4

s S A A w m fg A,sat A,
d c LAT

1 G 1 G T h h A
dt

ρ
ρ ρ εσ ρ ρ ∞⎡ ⎤= − + − − − −⎢ ⎥⎣ ⎦

 

or, with T∞ = Tw, ρA,∞ = φ∞ρA,sat and 

 ( ) ( ) ( )4w
w p,w s S A A w m fg A,sat

dTc L 1 G 1 G T h h 1 .
dt

ρ ρ ρ εσ φ ρ∞= − + − − − −  

From Eq. 6.60, with a value of n = 1/3, 
 

( )
( )

( )

2 / 32

m 1 n 1 n 2 / 33
a p,a a p,a

25 W / m K 0.707h h
h 0.0236 m / s.

c Le c Sc / Pr 1.161kg / m 1007 J / kg K 0.61ρ ρ− −
⋅

= = = =
× ⋅

 

 
Hence 

 ( ) ( ) ( )48w
w p,w

dTc L 1 0.3 600 1 0 300 0.97 5.67 10 300
dt

ρ −= − + − − × ×  

    ( )60.0236 2.438 10 1 0.5 0.0256− × × −  

 ( ) 2 2w
w p,w

dTc L 420 300 445 736 W / m 461 W / m .
dt

ρ = + − − = −  

Hence the water will cool.         < 
 
COMMENTS:  (1) Since Tw = T∞ for the prescribed conditions, there is no convection of sensible 
energy.  However, as the water cools, there will be convection heat transfer from the air.  (2) If L = 
1m, (dTw/dt) = -461/(997 × 4179 × 1) = -1.11 × 10-4 K/s. 



PROBLEM 12.144  
KNOWN:  Environmental conditions for a metal roof with and without a water film.  
FIND:  Roof surface temperature (a) without the film, (b) with the film.  
SCHEMATIC:   

 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Diffuse-gray surface behavior in the infrared (for 
the metal, αsky = ε = 0.3; for the water, αsky = ε = 0.9), (3) Adiabatic roof bottom, (4) Perfect gas 
behavior for vapor. 
 
PROPERTIES:  Table A-4, Air (T ≈ 300 K): ρ = 1.16 kg/m3, cp = 1007 J/kg⋅K, α = 22.5 × 10-6 m2/s; 
Table A-6, Water vapor (T ≈ 303 K):  νg = 32.4 m3/kg or ρA,sat = 0.031 kg/m3; Table A-8, Water 
vapor-air (T = 298 K): DAB = 0.26 × 10-4 m2/s. 
 
ANALYSIS:  (a) From an energy balance on the metal roof 
 S S sky atm convG G E qα α ′′+ = +  

 ( ) ( )42 8 2 40.5 700 W / m 0.3 5.67 10 W / m K 263 K−+ × × ⋅  

  ( ) ( )8 2 4 4 2
s s0.3 5.67 10 W / m K T 20 W / m K T 303 K−= × × ⋅ + ⋅ −  

 ( )2 8 4
s s431 W / m 1.70 10 T 20 T 303 .−= × + −       < 

From a trial-and-error solution, Ts = 316.1 K = 43.1°C. 
 
(b) From an energy balance on the water film, 
 S S sky atm conv evapG G E q qα α ′′ ′′+ = + +  

( ) ( ) ( )42 8 2 4 8 2 4 4
s0.8 700 W / m 0.9 5.67 10 W / m K 263 K 0.9 5.67 10 W / m K T− −+ × × ⋅ = × × ⋅  

 ( ) ( )( )2 3
s m A,sat s fg20 W / m K T 303 h T 0.65 0.031 kg / m h .ρ+ ⋅ − + − ×  

From Eq. 6.60, assuming n = 0.33, 

m 0.67
p

h
h

c Leρ
= =  

       
( ) ( )

2

0.67 0.673 4 4p AB

h 20 W / m K
0.019 m / s.

c / D 1.16 kg / m 1007 J / kg K 0.225 10 / 0.260 10ρ α − −

⋅
= =

× ⋅ × ×

 

 ( ) ( )2 8 4
s s A,sat s fg804 W / m 5.10 10 T 20 T 303 0.019 T 0.020 h .ρ− ⎡ ⎤= × + − + −⎣ ⎦  

From a trial-and-error solution, obtaining ρA,sat (Ts) and hfg from Table A-6 for each assumed value of 
Ts, it follows that 

 sT 302.2 K 29.2 C.= = °         < 

COMMENTS:  (1) The film is an effective coolant, reducing Ts by 13.9°C.  (2) With the film E ≈ 425 
W/m2, convq′′  ≈ -16 W/m2 and evapq′′  ≈ 428 W/m2. 

Gatm



PROBLEM 12.145  
KNOWN:  Solar, sky and ground irradiation of a wet towel.  Towel dimensions, emissivity and solar 
absorptivity.  Temperature, relative humidity and convection heat transfer coefficient associated with 
air flow over the towel.  
FIND:  Temperature of towel and evaporation rate.  
SCHEMATIC:   

  
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state, (2) Diffuse-gray surface behavior of towel in the infrared (αsky = 
αg = ε = 0.96), (3) Perfect gas behavior for vapor.  
PROPERTIES:  Table A-4, Air (T ≈ 300 K):  ρ = 1.16 kg/m3, cp = 1007 J/kg⋅K, α = 0.225 × 10-4 
m2/s; Table A-6, Water vapor (T∞ = 300 K):  ρA,sat = 0.0256 kg/m3; Table A-8, Water vapor/air (T = 
298 K):  DAB = 0.26 × 10-4 m2/s.  
ANALYSIS:  From an energy balance on the towel, it follows that 
 S S sky atm g g evap convG 2 G 2 G 2E 2q 2qα α α ′′ ′′+ + = + +  

2 2 20.65 900W / m 2 0.96 200 W / m 2 0.96 250 W / m× + × × + × ×  

( )4
s A fg s2 0.96 T 2n h 2h T Tσ ∞′′= × + + −     (1) 

where ( ) ( )A m A,sat s A,satn h T Tρ φ ρ∞ ∞⎡ ⎤′′ = −⎣ ⎦  

From the heat and mass transfer analogy, Eq. 6.60, with an assumed exponent of n = 1/3, 

 
( ) ( )

2
m 2/3 2 / 3

3p AB

h 20 W / m Kh 0.0189 m / s
0.225c / D 1.16 kg / m 1007 J / kg K
0.260

ρ α

⋅
= = =

⎛ ⎞⋅ ⎜ ⎟
⎝ ⎠

 

From a trial-and-error solution, we find that for Ts = 298 K, ρA,sat = 0.0226 kg/m3, hfg = 2.442 × 106 
J/kg and An′′  = 1.380 × 10-4 kg/s⋅m2.  Substituting into Eq. (1), 

 ( ) ( )42 8 2 4585 384 480 W / m 2 0.96 5.67 10 W / m K 298 K−+ + = × × × ⋅  

    4 2 62 1.380 10 kg / s m 2.442 10 J / kg−+ × × ⋅ × ×  

    ( )22 20 W / m K 2 K+ × ⋅ −  

 ( )2 2 21449 W / m 859 674 80 W / m 1453W / m= + − =  
The equality is satisfied to a good approximation, in which case 

 sT 298 K 25 C≈ = °          < 

and ( ) ( )2 4 2 4
A s An 2A n 2 1.50 0.75 m 1.38 10 kg / s m 3.11 10 kg / s− −′′= = × × ⋅ = ×  < 

COMMENTS:  Note that the temperature of the air exceeds that of the towel, in which case 
convection heat transfer is to the towel.  Reduction of the towel’s temperature below that of the air is 
due to the evaporative cooling effect. 

 

GatmGatm



PROBLEM 12.146 
 
KNOWN:  Wet paper towel experiencing forced convection heat and mass transfer and irradiation from 
radiant lamps.  Prescribed convection parameters including wet and dry bulb temperature of the air 
stream, Twb and T∞ , average heat and mass transfer coefficients, h  and mh .  Towel temperature Ts. 
 
FIND:  (a) Vapor densities, ρA s,  and ρA,∞ ; the evaporation rate nA (kg/s); and the net rate of radiation 
transfer to the towel qrad (W); and (b) Emissive power E, the irradiation G, and the radiosity J, using the 
results from part (a). 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible heat loss from the bottom side of the towel, 
(3) Uniform irradiation on the towel, and (4) Water surface is diffuse, gray. 
 
PROPERTIES:  Table A.6, Water (Ts = 310 K):  hfg = 2414 kJ/kg. 
 
ANALYSIS:  (a) Since Twb = T∞ , the free stream contains water vapor at its saturation condition.  The 
water vapor at the surface is saturated since it is in equilibrium with the liquid in the towel.  From Table 
A.6, 

T (K) vg (m3/kg) ρg (kg/m3) 
T∞  = 290 69.7 A,ρ ∞  = 1.435 × 10-2 
Ts = 310 22.93 A,sρ  = 4.361 × 10-2 

Using the mass transfer convection rate equation, the water evaporation rate from the towel is 

       ( )A m s A,s A,n h A ρ ρ ∞= − ( ) ( ) 2 3 620.027 m s 0.0925 m 4.361 1.435 10 kg m 6.76 10 kg s− −= − × = ×  < 
 
To determine the net radiation heat rate radq′′ , perform an 
energy balance on the water film, 
 in outE E 0− =& &       rad cv evapq q q 0− − =  

 
 rad cv evapq q q= + ( )s s s A fgh A T T n h∞= − +  

and substituting numerical values find 

 ( ) ( )22 6 3
radq 28.7 W m K 0.0925 m 310 290 K 6.76 10 kg s 2414 10 J kg−= ⋅ − + × × ×  

 ( )radq 4.91 16.32 W 21.2 W= + =  < 
(b) The radiation parameters for the towel surface are now evaluated.  The emissive power is 

 ( ) ( )44 8 2 4 2
b s sE E T T 0.96 5.67 10 W m K 310 K 502.7 W mε εσ −= = = × × ⋅ =  < 

To determine the irradiation G, recognize that the net radiation heat rate can be expressed as, 

 ( )rad sq G E Aα= −      ( ) ( )2221.2 W 0.96G 502.7 W m 0.0925 m= − ×    G = 3105 W/m2 < 
where α = ε since the water surface is diffuse, gray.  From the definition of the radiosity, 

 ( )[ ] 2 2J E G 502.7 1 0.96 3105 W m 626.9 W mρ= + = + − × =  < 

where ρ = 1 - α = 1 - ε. 
COMMENTS:  An alternate method to evaluate J is to recognize that radq′′  = G - J. 



PROBLEM 13.1  
KNOWN:  Various geometric shapes involving two areas A1 and A2. 
FIND:  Shape factors, F12 and F21, for each configuration. 
ASSUMPTIONS:  Surfaces are diffuse. 
ANALYSIS:  The analysis is not to make use of tables or charts.  The approach involves use of the 
reciprocity relation, Eq. 13.3, and summation rule, Eq. 13.4.  Recognize that reciprocity applies to two 
surfaces; summation applies to an enclosure.  Certain shape factors will be identified by inspection.  
Note L is the length normal to page. 
 
(a) Long duct (L): 

 
 

By inspection, 12F 1.0=      < 
 

By reciprocity, 
( )

1
21 12

2

A 2 RL 4
F F 1.0 0.424

A 3 / 4 2 RL 3π π
= = × = =

⋅
 < 

 

(b) Small sphere, A1, under concentric hemisphere, A2, where A2 = 2A 

 
 

Summation rule  11 12 13F F F 1+ + =  

But F12 = F13 by symmetry, hence F12 = 0.50   < 

By reciprocity,  1 1
21 12

2 1

A A
F F 0.5 0.25.

A 2A
= = × =   < 

 
(c) Long duct (L): 

 
 

By inspection,  12F 1.0=      

By reciprocity,  1
21 12

2

A 2RL 2
F F 1.0 0.637

A RLπ π
= = × = =  < 

Summation rule, 22 21F 1 F 1 0.64 0.363.= − = − =   < 
 

(d) Long inclined plates (L): 

 
 

Summation rule, 11 12 13F F F 1+ + =  

But F12 = F13 by symmetry, hence F12 = 0.50   < 

By reciprocity,  
( )

1
21 12 1/ 22

A 20L
F F 0.5 0.707.

A 10 2 L
= = × =  < 

 
(e) Sphere lying on infinite plane 

 
 

Summation rule, F11 + F12 + F13 = 1 

But F12 = F13 by symmetry, hence F12 = 0.5   < 

By reciprocity,  1
21 12

2

A
F F 0

A
= →  since 2A .→∞  < 

 
          Continued … 



PROBLEM 13.1 (Cont.) 
 
(f) Hemisphere over a disc of diameter D/2; find also F22 and F23. 

 
 

By inspection, F12 = 1.0      < 
Summation rule for surface A3 is written as 
 31 32 33F F F 1.+ + =   Hence, 32F 1.0.=  
 
 

By reciprocity,  3
23 32

2

AF F
A

=  

 

   
( )22 2

23
D / 2D DF / 1.0 0.375.

4 4 2
ππ π⎧ ⎫⎡ ⎤⎪ ⎪⎢ ⎥= − =⎨ ⎬

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

 

By reciprocity,  
2 2

1
21 12

2

A D DF F / 1.0 0.125.
A 4 2 2

π π⎧ ⎫⎪ ⎪⎡ ⎤= = × =⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭
   < 

 
Summation rule for A2,  21 22 23F F F 1 or+ + =  
 
    22 21 23F 1 F F 1 0.125 0.375 0.5.= − − = − − =    < 
 
Note that by inspection you can deduce F22 = 0.5 
 
(g) Long open channel (L): 

 

Summation rule for A1 
  11 12 13F F F 0+ + =  
 
 

but F12 = F13 by symmetry, hence F12 = 0.50.       < 
 

By reciprocity,  
( )

1
21 12

2

A 2 L 4
F F 0.50 0.637.

A 2 1 / 4 Lπ π
×

= = = × =
×

 

 
COMMENTS:  (1) Note that the summation rule is applied to an enclosure.  To complete the 
enclosure, it was necessary in several cases to define a third surface which was shown by dashed lines. 
 
(2) Recognize that the solutions follow a systematic procedure; in many instances it is possible to 
deduce a shape factor by inspection. 



PROBLEM 13.2  
KNOWN:  Geometry of semi-circular, rectangular and V grooves.  
FIND:  (a) View factors of grooves with respect to surroundings, (b) View factor for sides of V 
groove, (c) View factor for sides of rectangular groove.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Diffuse surfaces, (2) Negligible end effects, “long grooves”.  
ANALYSIS:  (a) Consider a unit length of each groove and represent the surroundings by a 
hypothetical surface (dashed line).  
Semi-Circular Groove: 

 
( )

2
21 12 21

1

A WF 1; F F 1
A W / 2π

= = = ×  

    12F 2 / .π=        < 
Rectangular Groove: 

 ( ) ( ) ( )
4

4 1,2,3 1,2,3 4 4 1,2,3
1 2 3

A WF 1; F F 1
A A A H W H

= = = ×
+ + + +

 

    ( ) ( )1,2,3 4F W / W 2H .= +      < 

V Groove: 

 ( ) ( ) ( )
3

3 1,2 1,2 3 3 1,2
1 2

A WF 1; F F W / 2 W / 2A A
sin sinθ θ

= = =
+ +

 

    ( )1,2 3F sin .θ=  

(b) From Eqs. 13.3 and 13.4, 3
12 13 31

1

AF 1 F 1 F .
A

= − = −  

 
From Symmetry,  31F 1/ 2.=  
 

Hence, 
( )12 12

W 1F 1 or F 1 sin .
W / 2 / sin 2

θ
θ

= − × = −    < 

 
(c) From Fig. 13.4, with X/L = H/W =2 and Y/L → ∞, 

 12F 0.62.≈           < 
 
COMMENTS:  (1) Note that for the V groove, F13 = F23 = F(1,2)3 = sinθ, (2) In part (c), Fig. 13.4 
could also be used with Y/L = 2 and X/L = ∞.  However, obtaining the limit of Fij as X/L → ∞ from 
the figure is somewhat uncertain. 



PROBLEM 13.3  
KNOWN:  Two arrangements (a) circular disk and coaxial, ring shaped disk, and (b) circular disk and 
coaxial, right-circular cone.  
FIND:  Derive expressions for the view factor F12 for the arrangements (a) and (b) in terms of the 
areas A1 and A2, and any appropriate hypothetical surface area, as well as the view factor for coaxial 
parallel disks (Table 13.2, Figure 13.5).  For the disk-cone arrangement, sketch the variation of F12 
with θ for  0 ≤ θ ≤ π/2, and explain the key features.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  Diffuse surfaces with uniform radiosities.  
ANALYSIS:  (a) Define the hypothetical surface A3, a co-planar disk inside the ring of A1.  Using the 
additive view factor relation, Eq. 13.5, 
 A  F A  F A  F1,3 1,3 1 12 3 32b g b g = +  

 F
A

 A  F A  F12
1

1,3 1,3 3 32= −
1
b g b g        < 

where the parenthesis denote a composite surface.  All the Fij on the right-hand side can be evaluated 
using Fig. 13.5. 
 
(b) Define the hypothetical surface A3, the disk at the bottom of the cone.  The radiant power leaving 
A2 that is intercepted by A1 can be expressed as 
 F F21 23=           (1) 

That is, the same power also intercepts the disk at the bottom of the cone, A3.  From reciprocity, 
 A  F A  F1 12 2 21=          (2) 
and using Eq. (1), 

 F A
A

 F12
2
1

23=          < 

The variation of F12 as a function of θ is shown below for the disk-cone arrangement.  In the limit 
when θ → π/2, the cone approaches a disk of area A3.  That is, 
 F  / 2 F12 13θ π→ =b g  

When θ → 0, the cone area A2 diminishes so that 
 F  012 θ → =b g 0  

 
 



PROBLEM 13.4  
KNOWN:  Right circular cone and right-circular cylinder of same diameter D and length L positioned 
coaxially a distance Lo from the circular disk A1; hypothetical area corresponding to the openings 
identified as A3. 
 
FIND:  (a) Show that F21 = (A1/A2) F13 and F22 = 1 - (A3/A2), where F13 is the view factor between 
two, coaxial parallel disks (Table 13.2), for both arrangements, (b) Calculate F21 and F22 for L = Lo = 
50 mm and D1 = D3 = 50 mm; compare magnitudes and explain similarities and differences, and (c) 
Magnitudes of F21 and F22 as L increases and all other parameters remain the same; sketch and explain 
key features of their variation with L.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Diffuse surfaces with uniform radiosities, and (2) Inner base and lateral 
surfaces of the cylinder treated as a single surface, A2. 
 
ANALYSIS:  (a) For both configurations, 
 
 F F13 12=           (1) 
 
since the radiant power leaving A1 that is intercepted by A3 is likewise intercepted by A2.  Applying 
reciprocity between A1 and A2, 
 
 A  F A  F1 12 2 21=          (2) 
 
Substituting from Eq. (1), into Eq. (2), solving for F21, find 

 F  A A F A A F21 1 2 12 1 2 13= =/ /b g b g        < 

Treating the cone and cylinder as two-surface enclosures, the summation rule for A2 is 
 F F22 23+ = 1          (3) 

Apply reciprocity between A2 and A3, solve Eq. (3) to find 
 F F A A F22 23 3 2 32= − = −1 1 /b g  

and since F32 = 1, find 
 
 F A A22 3 2= −1 /          < 
 
          Continued … 



PROBLEM 13.4 (Cont.) 
 
(b) For the specified values of L, Lo, D1 and D2, the view factors are calculated and tabulated below.  
Relations for the areas are: 
 

Disk-cone: A  D A  D L D A  D1 1
2

2 3
2

3 3 3
2= = +FH IK =π π π/ / / /

/
4 2 2 42 1 2

b g  
 
Disk-cylinder: A  D A  D  D L A  D1 1

2
2 3

2
3 3 3

2= = + =π π π π/ / /4 4 4  
 
The view factor F13 is evaluated from Table 13.2, coaxial parallel disks (Fig. 13.5); find F13 = 0.1716. 
 
      F21     F22 
 Disk-cone  0.0767   0.553 
 Disk-cylinder  0.0343   0.800 
 
It follows that F21 is greater for the disk-cone (a) than for the cylinder-cone (b).  That is, for (a), 
surface A2 sees more of A1 and less of itself than for (b).  Notice that F22 is greater for (b) than (a); 
this is a consequence of A2,b > A2,a. 
 
(c) Using the foregoing equations in the IHT workspace, the variation of the view factors F21 and F22 
with L were calculated and are graphed below. 
 

Right-circular cone and disk

0 40 80 120 160 200

Cone height, L(mm)

0

0.2

0.4

0.6

0.8

1

Fi
j

F21
F22  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Note that for both configurations, when L = 0, find that F21 = F13 = 0.1716, the value obtained for 
coaxial parallel disks.  As L increases, find that F22 → 1; that is, the interior of both the cone and 
cylinder see mostly each other.  Notice that the changes in both F21 and F22 with increasing L are 
greater for the disk-cylinder; F21 decreases while F22 increases. 
 
COMMENTS:  From the results of part (b), why isn’t the sum of F21 and F22 equal to unity? 
 
 

Right-circular cylinder and disk, Lo = D = 50 mm
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PROBLEM 13.5  
KNOWN:  Two parallel, coaxial, ring-shaped disks.  
FIND:  Show that the view factor F12 can be expressed as 
 

 F
A

A  F A  F A F F12
1

1,3 1,3 3 3 2,4 4 4 1,3 43= − − −
1

2 4b g b gb g b g b ge j{ },  

 
where all the Fig on the right-hand side of the equation can be evaluated from Figure 13.5 (see Table 
13.2) for coaxial parallel disks.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  Diffuse surfaces with uniform radiosities.  
ANALYSIS:  Using the additive rule, Eq. 13.5, where the parenthesis denote a composite surface, 
 
 F F F1 2,4 12 14b g = +  
 
 F F F12 1 2,4 14= −b g          (1) 
 
Relation for F1(2,4):  Using the additive rule 
 
  √    √ 

A  F A  F A  F1,3 1,3 1 1 2,4 3 3 2,4b g b gb g b g b g2 4, = +       (2) 
 
where the check mark denotes a Fij that can be evaluated using Fig. 13.5 for coaxial parallel disks. 
 
Relation for F14:  Apply reciprocity 
 
 A  F A  F1 14 4 41=          (3) 
 
and using the additive rule involving F41, 
 
   √ 

A  F A  F F1 14 4 4 1,3 43= −b g         (4) 
 
Relation for F12:  Substituting Eqs. (2) and (4) into Eq. (1), 
 

 F
A

A  F A  F A  F F12
1

1,3 1,3 3 3 2,4 4 4 1,3 43= − − −
1

2 4b g b gb g b g b ge j{ },    < 

 
COMMENTS:  (1) The Fij on the right-hand side can be evaluated using Fig. 13.5. 
 
(2) To check the validity of the result, substitute numerical values and test the behavior at special 
limits.  For example, as A3, A4 → 0, the expression reduces to the identity F12 ≡ F12. 
 



4 m

A1θ = 30°

(d) Semi-circle and plate

A2 

4 m

PROBLEM 13.6 
  
KNOWN:  Dimensions of four geometrical arrangements. 
FIND:  View factors using “crossed-strings” method; compare with appropriate graphs and analytical 
expressions. 
 
SCHEMATIC: 

 
  (a) Parallel plates   (b) Perpendicular plates with common edge 
 
 
 
 

 
 
 
 
 
 
ASSUMPTIONS:  Plates infinite in extent in direction normal to page.  
ANALYSIS:  The crossed-strings method is applicable to 
surfaces of infinite extent in one direction having an 
unobstructed view of one another. 
 
 ( ) ( ) ( )[ ]12 1F 1/ 2w ac bd ad bc .= + − +  

 
 

 
(a) Parallel plates:  From the schematic, the edge and diagonal distances are 

 ( )1/ 22 2
1ac bd w L bc ad L.= = + = =  

With w1 as the width of the plate, find 

 ( ) ( ) ( ) ( )
1/ 2 1/ 22 2 2 2

12 1
1

1 1
F 2 w L 2 L 2 4 1 m 2 1 m 0.781.

2w 2 4 m
= + − = + − =

×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  < 

Using Fig. 13.4 with X/L = 4/1 = 4 and Y/L = ∞, find F12 ≈ 0.80.  Also, using the first relation of Table 
13.1, 
 

 ( ) ( )
1/ 2 1/ 22 2

ij i j i j iF W W 4 W W 4 / 2 W= + + − − +
⎧ ⎫⎡ ⎤ ⎡ ⎤⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭

 

where wi = wj = w1 and W = w/L = 4/1 = 4, find 

 ( ) ( )
1/ 2 1/ 22 2

12F 4 4 4 4 4 4 / 2 4 0.781.= + + − − + × =
⎧ ⎫⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭

 

Continued... 
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PROBLEM 13.6 (Cont.) 
 
(b) Perpendicular plates with a common edge:  From the schematic, the edge and diagonal distances are 

 ( )2 2
1 1ac w bd L ad w L bc 0.= = = + =  

With w1 as the width of the horizontal plates, find 

 ( ) ( ) ( )1/ 22 2
12 1 1 1F 1 / 2w 2 w L w L 0= + − + +

⎡ ⎛ ⎞⎤
⎜ ⎟⎢ ⎥⎣ ⎝ ⎠⎦

 

 ( ) ( ) ( )1/ 22 2
12F 1 / 2 4 m 4 1 m 4 1 m 0 0.110.= × + − + + =

⎡ ⎛ ⎞⎤
⎜ ⎟⎢ ⎥⎣ ⎝ ⎠⎦

     < 

From the third relation of Table 13.1, with wi = w1 = 4 m and wj = L = 1 m, find 

 ( ) ( )
1/ 22

ij j i j iF 1 w / w 1 w / w / 2= + − +
⎧ ⎫⎡ ⎤⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

 

 ( ) ( )
1/ 22

12F 1 1/ 4 1 1/ 4 / 2 0.110.= + − + =
⎧ ⎫⎡ ⎤⎨ ⎬⎣ ⎦⎩ ⎭

 

(c) Plates at an angle to one another.  From the schematic below, the edge and diagonal distances can be 
calculated as follows: 

 

h = 4sin30°, w = 8 – 4cos30°, ac = 2 2h +w = 4.96 m 
By symmetry, bd = ac = 4.96 m 
bc = 2(4sin15°) = 2.07 m 
ad = 2(8sin15°) = 4.14 m 
 
 
 
 
 

We find 
  

( ) ( ) ( )[ ]12F 1 / 8 4.96 4.96 4.14 2.07 .0.463= + − + =      < 
 
The same result can be found using the second and fourth view factors in Table 13.1, along with 
Equations 13.5 and 13.6. 
 

From Eq. 13.5 with i = 3 and j representing  
 the combination (24),  
 

F3-(24) = F32 + F34.   
 
Then from Table 13.1 4th entry,  

 
F3-(24) = (w3+w24–bd)/2w3 = (4+8–4.96)/8 = 0.880 

 
Continued... 
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PROBLEM 13.6 (Cont.) 
 
 
From Table 13.1, 2nd entry, F34 = 1–sin(30°/2) = 0.741.  Thus F32 = 0.880–0.741 = 0.139.  Using Eq. 13.5 
again, with i representing the combination of (13) and j representing the combination (24),  
 

F(13)-(24) = F(13)-2 + F(13)-4 
 
F(13)-4 can be found using reciprocity, namely F(13)-4 = A4F4-(13)/A13 = A4F3-(24)/A13 = 0.5F3-(24) = 0.440.  
Then from Table 13.1, 2nd entry, it can be seen that F(13)-(24) = F34 = 0.741.  Thus,  

 
F(13)-2 = F(13)-(24) – F(13)-4 = 0.301 

 
Finally, from Eq. 13.6, with i = 2 and j representing the combination (13), 
 

A13F(13)-2 = A1F12 + A3F32 
 
Therefore, 

F12 = (A13F(13)-2 – A3F32)/A1 = (8×0.301 – 4×0.139)/4 = 0.463. 
 
(d) Semi-circle and plate at angle to each other.   
 

The edge and diagonal distances are 
 
ac = 8 m, bc = 0 m, ad = 2(8sin15°) = 4.14 m, bd = 8 m 
 
We find 
 

( ) ( ) ( )[ ]12F 1 / 16 8 8 4.14 0 .0.741= + − + =  

 < 
 
 

 
 
The same result can be found using view factor relations in Table 13.1.  Since radiation traveling from 1 
to 2 must pass through 3, F12 = F13.  From Table 13.1, 2nd entry, 
 

F12 = 1–sin(30°/2) = 0.741 
 
COMMENTS: (1) Hottel’s method can be a significant time-saver. (2) The application of Hottel’s 
method to cases where the view is obstructed between the two surfaces is discussed in Siegel, R., J.R. 
Howell, and M.P. Menguc, Thermal Radiation Heat Transfer, 5th ed., CRC Press, Taylor & Francis 
Group, New York, 2010 and in Modest, M.F., Radiative Heat Transfer, 2nd ed., Academic Press, San 
Diego, 2003. 
 
 
 
 

1 

2 

3 

d 

b,c a 



PROBLEM 13.7  
KNOWN:  Right-circular cylinder of diameter D, length L and the areas A1, A2, and A3 representing 
the base, inner lateral and top surfaces, respectively.  
FIND:  (a) Show that the view factor between the base of the cylinder and the inner lateral surface has 
the form 
 

 F  H 1 H H12
2= + −

L
NM

O
QP

2
1 2

e j
/

 

 
where H = L/D, and (b) Show that the view factor for the inner lateral surface to itself has the form 
 

 F 1 H 1 H22
2= + − +e j

1 2/
 

 
SCHEMATIC:   

 
 
ASSUMPTIONS:  Diffuse surfaces with uniform radiosities.  
ANALYSIS:  (a) Relation for F12, base-to-inner lateral surface.  Apply the summation rule to A1, 
noting that F11 = 0 
 
 F F F11 12 13+ + = 1  
 
 F F12 13= −1           (1) 
 
From Table 13.2, Fig. 13.5, with i = 1, j = 3, 
 

 F  S S D D13
2

3 1= − −LNM
O
QP

RS|T|
UV|W|

1
2

4 2 1 2
/

/
b g       (2) 

 

 S 1 1 R

R R
 H3

2

1
2 2

2= +
+

= + = +
1 2 4 2        (3) 

 
where R1 = R3 = R = D/2L and H = L/D.  Combining Eqs. (2) and (3) with Eq. (1), find after some 
manipulation 
 

          Continued … 



PROBLEM 13.7 (Cont.) 
 

 F  H  H12
2 2= − + − + −
L
NM

O
QP

R
S|
T|

U
V|
W|

1 1
2

4 2 4 2 4
2 1 2

e j
/

 

 

 F  H 1 H H12
2= + −

L
NM

O
QP

2
1 2

e j
/

        (4) 

 
(b) Relation for F22, inner lateral surface.  Apply summation rule on A2, recognizing that F23 = F21, 
 
 F F F F  F21 22 23 22 21+ + = = −1 1 2      (5) 
 
Apply reciprocity between A1 and A2, 
 
 F A A  F21 1 2 12= /b g          (6) 
 
and substituting into Eq. (5), and using area expressions 
 

 F  A
A

 F  D
4 L

F
 H

F22
1
2

12 12 12= − = − = −1 2 1 2 1 1
2

     (7) 

 
where A1 = πD2/4 and A2 = πDL. 
 
Substituting from Eq. (4) for F12, find 
 

 F
 H

 H 1 H H H 1 H22
2 2= − + −

L
NM

O
QP
= + − +1 1

2
2 1

1 2 1 2
e j e j

/ /
    < 

 



PROBLEM 13.8  
KNOWN:  Arrangement of plane parallel rectangles.  
FIND:  Show that the view factor between A1 and A2 can be expressed as 
 

 F
 A

A  F A  F A  F12
1

1,4 1,4 1 13 4 42= − −
1

2 2 3b g b gb g,  

 
where all Fij on the right-hand side of the equation can be evaluated from Fig. 13.4 (see Table 13.2) 
for aligned parallel rectangles.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  Diffuse surfaces with uniform radiosity.  
ANALYSIS:  Using the additive rule where the parenthesis denote a composite surface, 
 

 ( ) ( )( )
* * *

1 13 1 12 4 43 4 421,4 1,4 2,3A F A  F A  F A  F A  F= + + +     (1) 

 
where the asterisk (*) denotes that the Fij can be evaluated using the relation of Figure 13.4.  Now, 
find suitable relation for F43.  By symmetry, 
 
 F F43 21=           (2) 
 
and from reciprocity between A1 and A2, 
 

 F A
A

F21
1
2

12=           (3) 

 
Multiply Eq. (2) by A4 and substitute Eq. (3), with A4 = A2, 
 

 A  F A  F A A
A  

F A  F4 43 4 21 4
1
2

12 1 12= = =       (4) 

 
Substituting for A4 F43 from Eq. (4) into Eq. (1), and rearranging, 
 

 ( ) ( )( )
* * *

12 1 13 4 421,4 1,4 2,3
1

1F A  F A  F A  F
2 A

⎡ ⎤= − −⎢ ⎥⎣ ⎦
     < 



PROBLEM 13.9  
KNOWN:  Two perpendicular rectangles not having a common edge.  
FIND:  (a) Shape factor, F12, and (b) Compute and plot F12 as a function of Zb for 0.05 ≤ Zb ≤ 0.4 m; 
compare results with the view factor obtained from the two-dimensional relation for perpendicular 
plates with a common edge, Table 13.1.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) All surfaces are diffuse, (2) Plane formed by A1 + A3 is perpendicular to plane 
of A2. 
 
ANALYSIS:  (a) Introducing the hypothetical surface A3, we can write 
 ( ) 23 212 3,1F F F .= +          (1) 

Using Fig. 13.6, applicable to perpendicular rectangles with a common edge, find 

 23 a b
Y 0.3 Z 0.2

F 0.19 : with Y 0.3, X 0.5, Z Z Z 0.2, and 0.6, 0.4
X 0.5 X 0.5

= = = = − = = = = =  

 ( )2 3,1 a
Y 0.3 Z 0.4

F 0.25 : with Y 0.3, X 0.5, Z 0.4, and 0.6, 0.8
X 0.5 X 0.5

= = = = = = = =  

Hence from Eq. (1) 
 ( )21 232 3.1F F F 0.25 0.19 0.06= − = − =  

By reciprocity, 

 
2

2
12 21 21

A 0.5 0.3mF F 0.06 0.09
A 0.5 0.2m

×
= = × =

×
        (2)  < 

(b) Using the IHT Tool – View Factors for Perpendicular Rectangles with a Common Edge and Eqs. 
(1,2) above, F12 was computed as a function of Zb.  Also shown on the plot below is the view factor 
F(3,1)2 for the limiting case Zb → Za. 
 

 



PROBLEM 13.10  
KNOWN:  Arrangement of perpendicular surfaces without a common edge.  
FIND:  (a) A relation for the view factor F14 and (b) The value of F14 for prescribed dimensions. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Diffuse surfaces.  
ANALYSIS:  (a) To determine F14, it is convenient to define the hypothetical surfaces A2 and A3.  
From Eq. 13.6, 
 ( ) ( )( ) ( ) ( )1 2 1 21,2 3,4 1 3,4 2 3,4A A F A F A F+ = +  
 
where F(1,2)(3,4) and F2(3,4) may be obtained from Fig. 13.6.  Substituting for A1 F1(3,4) from Eq. 13.5 
and combining expressions, find 
 ( )1 1 13 1 141 3,4A F A F A F= +  
 

 ( ) ( )( ) ( )14 1 2 1 13 21,2 3,4 2 3,4
1

1
F A A F A F A F .

A
= + − −⎡ ⎤

⎣ ⎦  

Substituting for A1 F13 from Eq. 13.6, which may be expressed as 
 ( ) ( )1 2 1 13 2 231,2 3A A F A F A F .+ = +  

The desired relation is then 

 ( ) ( )( ) ( ) ( ) ( )14 1 2 2 23 1 2 21,2 3,4 1,2 3 2 3,4
1

1
F A A F A F A A F A F .

A
= + + − + −⎡ ⎤

⎣ ⎦   < 

(b) For the prescribed dimensions and using Fig. 13.6, find these view factors: 

Surfaces (1,2)(3,4) ( ) ( ) ( )( )
3 41 2

1,2 3,4
L LL L

Y / X 1, Z / X 1.45, F 0.22
W W

++
= = = = =  

Surfaces 23  ( ) ( ) 32
23

LL
Y / X 0.5, Z / X 1, F 0.28

W W
= = = = =  

Surfaces (1,2)3  ( ) ( ) ( )
31 2

1,2 3
LL L

Y / X 1, Z / X 1, F 0.20
W W
+

= = = = =  

Surfaces 2(3,4)  ( ) ( ) ( )
3 42

2 3,4
L LL

Y / X 0.5, Z / X 1.5, F 0.31
W W

+
= = = = =  

Using the relation above, find 

 
( )

( ) ( ) ( ) ( )[ ]14 1 2 2 1 2 2
1

1
F WL WL 0.22 WL 0.28 WL WL 0.20 WL 0.31

WL
= + + − + −  

 ( ) ( ) ( ) ( )[ ]14F 2 0.22 1 0.28 2 0.20 1 0.31 0.01.= + − − =      < 



PROBLEM 13.11  
KNOWN:  Arrangements of rectangles.  
FIND:  The shape factors, F12. 
 
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Diffuse surface behavior.  
ANALYSIS:  (a) Define the hypothetical surfaces shown in the sketch as A3 and A4.  From the 
additive view factor rule, Eq. 13.6, we can write 

 ( ) ( )( )1,3 2,4 14 321 12 1 3 3 341,3A F A F A F A F A F
√ √ √

= + + +      (1) 

Note carefully which factors can be evaluated from Fig. 13.6 for perpendicular rectangles with a 
common edge.  (See √).  It follows from symmetry that 
 1 12 4 43A F A F .=          (2) 
Using reciprocity, 
 1 12 3 344 43 3 34, then A F A F .A F A F ==       (3) 

Solving Eq. (1) for F12 and substituting Eq. (3) for A3F34, find that 

 ( ) ( )( )12 1 14 3 321,3 1,3 2,4
1

1
F A F A F A F .

2A
= − −⎡ ⎤

⎣ ⎦      (4) 

 
Evaluate the view factors from Fig. 13.6: 
 

 Fij     Y/X     Z/X    Fij 
 

      (1,3) (2,4)  
6

0.67
9
=  

6
0.67

9
=  0.23 

 

   14  
6

1
6
=   

6
1

6
=   0.20 

 

   32  
6

2
3
=   

6
2

3
=   0.14 

 
Substituting numerical values into Eq. (4) yields 
 

 
( )

( ) ( ) ( )2 2 2
12 2

1
F 6 9 m 0.23 6 6 m 0.20 6 3 m 0.14

2 6 6 m
= × × − × × − × ×

× ×
⎡ ⎤
⎣ ⎦

 

 
 12F 0.038.=           < 
 

          Continued … 



PROBLEM 13.11 (Cont.) 
 
(b) Define the hypothetical surface A3 and divide A2 into two sections, A2A and A2B.  From the 
additive view factor rule, Eq. 13.6, we can write 

 ( ) ( ) ( )1,3 2 3 2B1,3 1 12 3 33 2AA F A F A F A F .
√ √

= + +       (5) 

Note that the view factors checked can be evaluated from Fig. 13.4 for aligned, parallel rectangles.  To 
evaluate F3(2A), we first recognize a relationship involving F(24)1 will eventually be required.  Using 
the additive rule again, 

 ( )( ) ( ) ( )2A 12A 2A 2A2A 1,3 2A 3A F A F A F .
√

= +       (6) 
 
Note that from symmetry considerations, 
 ( )( )2A 1 122A 1,3A F A F=         (7) 
 
and using reciprocity, Eq. 13.3, note that 
 ( )2A 2A3 3 3 2AA F A F .=         (8) 
 
Substituting for A3F3(2A) from Eq. (8), Eq. (5) becomes 
 

 ( ) ( ) ( ) ( )1,3 2 3 2B1 12 2A 31,3 2AA F A F A F A F .3
√ √

= + +  
 
Substituting for A2A F(2A)3 from Eq. (6) using also Eq. (7) for A2A F(2A)(1,3) find that 

 ( ) ( ) ( ) ( )1,3 2 2A 11 12 1 12 2A1,3A F A F A F A F 3 2B3A F
√ √ √

= + −
⎛ ⎞

+⎜ ⎟⎜ ⎟
⎝ ⎠

    (9) 

 
and solving for F12, noting that A1 = A2A and A(1,3) = A2 

 ( ) ( ) ( )1,3 2 2A 1 3 2B12 2 2A 3
1

1
F A F A F A F .

2A

√ √ √
= + −

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

     (10) 

Evaluate the view factors from Fig. 13.4: 
 

   Fij  X/L  Y/L  Fij 
 

  (1,3) 2  
1

1
1
=   

1.5
1.5

1
=  0.25 

  (2A)1  
1

1
1
=   

0.5
0.5

1
=  0.11 

  3(2B)  
1

1
1
=   

1
1

1
=   0.20 

Substituting numerical values into Eq. (10) yields 
 

 
( )

( ) ( ) ( )2 2 2
12 2

1
F 1.5 1.0 m 0.25 0.5 1 m 0.11 1 1 m 0.20

2 0.5 1 m
= × × + × × − × ×

×
⎡ ⎤
⎣ ⎦  

 
 12F 0.23.=           < 



PROBLEM 13.12 
 

KNOWN: Parallel plate geometry. 
 
FIND: (a) The view factor F12 using the results of Figure 13.4, (b) F12 using the first case of 
Table 13.1, (c) F12 using Hottel’s crossed-string method, (d) F12 using the second case of Table 
13.1, (e) F12 for w = L = 2 m using Figure 13.4. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (a) Two-dimensional system, (b) Diffuse, gray surfaces. 
 
ANALYSIS: (a) Using Figure 13.4, X/L = 1m/ 1m = 1, Y/L → ∞, F12 = 0.41  < 
 
(b) For case 1 of Table 13.1, W1 = W2 = 1m/1m = 1 and 
 

1/ 22 1/ 2

12

2 +4 4
F  = 0.414

2

⎡ ⎤ −⎣ ⎦ =      < 

 
(c) From Problem 13.6, 
 

12
1 1 mF 2 2 m 0.414

2 1 m cos(45 )
⎡ ⎤

= × − =⎢ ⎥× °⎣ ⎦
    < 

 
(d) For case 2 of Table 13.1, w = 1m, α = 90°, F13 = 1 – sin(45°) = 0.293. By symmetry, F14 = 
0.293 and by the summation rule, 
 

  F12 = 1 – F13 – F14 = 1 – 2 × 0.293 = 0.414    < 
 

(e) Using Figure 13.4, X/L = 2m/2m = 1, Y/L → ∞, F12 = 0.41    < 
 
 
COMMENTS: For most radiation heat transfer problems involving enclosures composed of 
diffuse gray surfaces, there are many alternative approaches that may be used to determine the 
appropriate view factors. It is highly unlikely that the view factors will be evaluated the same way 
by different individuals when solving a radiation heat transfer problem. 
 

A4

A2

A1

A3 L = 1 m

w = 1 m
ab

c d

A4

A2

A1

A3 L = 1 m

w = 1 m
ab

c d



PROBLEM 13.13  
KNOWN:  Parallel plates of infinite extent (1,2) having aligned opposite edges.  
FIND:  View factor F12 by using (a) appropriate view factor relations and results for opposing parallel 
plates and (b) Hottel’s string method described in Problem 13.6.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Parallel planes of infinite extent normal to page and (2) Diffuse surfaces with 
uniform radiosity.  
ANALYSIS:  From symmetry consideration (F12 = F14) and Eq. 13.5, it follows that 

 ( ) ( )12 131 2,3,4F 1/ 2 F F= −⎡ ⎤
⎣ ⎦  

where A3 and A4 have been defined for convenience in the analysis.  Each of these view factors can be 
evaluated by the first relation of Table 13.1 for parallel plates with midlines connected 
perpendicularly. 
 
F13: 1 1 2 2W w / L 2 W w / L 2= = = =  

( ) ( ) ( ) ( )
1/ 2 1/ 2 1/ 2 1/ 22 2 2 2

1 2 2 1
13

1

W W 4 W W 4 2 2 4 2 2 4
F 0.618

2W 2 2

+ + − − + + + − − +
= = =

×

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

 
F1(2,3,4): ( )1 1 22,3,4W w / L 2 W 3w / L 6= = = =  

  ( )
( ) ( )

1/ 2 1/ 22 2

1 2,3,4

2 6 4 6 2 4
F 0.944.

2 2

+ + − − +
= =

×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  

 
Hence, find ( )[ ]12F 1/ 2 0.944 0.618 0.163.= − =       < 
 
(b) Using Hottel’s string method, 
 
 ( ) ( ) ( )[ ]12 1F 1/ 2w ac bd ad bc= + − +  

  ( )1/ 22ac 1 4 4.123= + =  

  bd 1=  
 

 
 

  ( )1/ 22 2ad 1 2 2.236= + =  

  bc ad 2.236= =  
and substituting numerical values find 

 ( ) ( ) ( )[ ]12F 1/ 2 2 4.123 1 2.236 2.236 0.163.= × + − + =      < 
COMMENTS:  Remember that Hottel’s string method is applicable only to surfaces that are of 
infinite extent in one direction and have unobstructed views of one another. 



PROBLEM 13.14  
KNOWN:  Two small diffuse surfaces, A1 and A2, on the inside of a spherical enclosure of radius R. 
 
FIND:  Expression for the view factor F12 in terms of A2 and R by two methods: (a) Beginning with 
the expression Fij = qij/Ai Ji and (b) Using the view factor integral, Eq. 13.1. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Surfaces A1 and A2 are diffuse and (2) A1 and A2 << R2. 
 
ANALYSIS:  (a) The view factor is defined as the fraction of radiation leaving Ai which is intercepted 
by surface j and, from Section 13.1.1, can be expressed as 

 ij
ij

i i

q
F

A J
=           (1) 

From Eq. 12.11, the radiation leaving intercepted by A1 and A2 on the spherical surface is 
 ( )1 2 1 1 1 2 1q J / A cosπ θ ω→ −= ⋅ ⋅        (2) 

where the solid angle A2 subtends with respect to A1 is 

 2,n 2 2
2 1 2 2

A A cos

r r

θω − = =         (3) 

From the schematic above, 
 1 2 1cos cos r 2R cosθ θ θ= =        (4,5) 
Hence, the view factor is 

 
( ) 2

1 1 1 2 2 1 2
ij 21 1

J / A cos A cos / 4R cos AF
A J 4 R

π θ θ θ

π

⋅
= =     < 

(b) The view factor integral, Eq. 13.1, for the small areas A1 and A2 is 

 
1 2

1 2 1 2 2
12 1 22 2A A1

1 cos cos cos cos AF dA dA
A r r

θ θ θ θ

π π
= =∫ ∫  

 
and from Eqs. (4,5) above, 

 2
12 2

AF
4 Rπ

=           < 

COMMENTS:  Recognize the importance of the second assumption.  We require that A1, A2, << R2 
so that the areas can be considered as of differential extent, A1 = dA1, and A2 = dA2. It may be shown, 
however, that due to the unique geometry of a sphere, F12 = A2/(4πR2) even when the areas are not 
small. See M.F. Modest, Radiation Heat Transfer, 2nd edition, Academic Press, San Diego, 2003. 



PROBLEM 13.15  
KNOWN:  Disk A1, located coaxially, but tilted 30° of the normal, from the diffuse-gray, ring-shaped disk A2.  
Surroundings at 400 K.  
FIND:  Irradiation on A1, G1, due to the radiation from A2. 
 
SCHEMATIC:   

  
ASSUMPTIONS:  (1) A2 is diffuse-gray surface, (2) Uniform radiosity over A2, (3) The surroundings are large 
with respect to A1 and A2. 
 
ANALYSIS:  The irradiation on A1 is 
 ( )1 21 1 21 2 2 1G q / A F J A / A= = ⋅        (1) 

where J2 is the radiosity from A2 evaluated as 

 ( )4 4
2 2 b,2 2 2 2 2 2 surJ E G T 1 Tε ρ ε σ ε σ= + = + −  

 ( ) ( ) ( )4 48 2 4 8 2 4
2J 0.7 5.67 10 W / m K 600 K 1 0.7 5.67 10 W / m K 400 K− −= × × ⋅ + − × ⋅  

 2
2J 5144 436 5580 W / m .= + =        (2) 

Using the view factor relation of Eq. 13.8, evaluate view factors between 1A ,′  the normal projection of A1, and 

A3 as 

 
( )

( ) ( )

22
6i

1 3 2 2 2 2
i

0.004 mD
F 4.00 10

D 4L 0.004 m 4 1 m
−

′ = = = ×
+ +

 

and between 1A′  and (A2 + A3) as 

 ( )
( )

( ) ( )

22
5o

1 23 2 2 2 2
o

0.012D
F 3.60 10

D 4L 0.012 4 1 m
−

′ = = = ×
+ +

 

giving  ( )
5 6 5

1 2 1 31 23F F F 3.60 10 4.00 10 3.20 10 .− − −
′ ′′= − = × − × = ×  

 
From the reciprocity relation it follows that 

 ( ) ( )5
21 1 1 2 2 1 1 2 1 2 1 1 2F A F / A A cos / A F 3.20 10 cos A / A .θ θ−
′ ′ ′′= = = ×    (3) 

By inspection we note that all the radiation striking 1A′  will also intercept A1; that is 
 21 21F F .′=           (4) 

Hence, substituting for Eqs. (3) and (4) for F21 into Eq. (1), find 

 ( )( )5 5
1 1 2 2 2 1 1 2G 3.20 10 cos A / A J A / A 3.20 10 cos J1θ θ− −= × × × = × ⋅   (5) 

 ( )5 2 2
1G 3.20 10 cos 30 5580 W / m 27.7 W / m .μ−= × ° × =     < 

 
COMMENTS:  (1) Note from Eq. (5) that G1 ~ cosθ1 such that G1is a maximum when A1 is normal to disk 
A2. 



PROBLEM 13.16  
KNOWN:  Heat flux gage positioned normal to a blackbody furnace.  Cover of furnace is at 350 K 
while surroundings are at 300 K.  
FIND:  (a) Irradiation on gage, Gg, considering only emission from the furnace aperture and (b) 
Irradiation considering radiation from the cover and aperture.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Furnace aperture approximates blackbody, (2) Shield is opaque, diffuse and 
gray with uniform temperature, (3) Shield has uniform radiosity, (4) Ag << R2, so that ωg-f = Ag/R2, 
(5) Surroundings are large, uniform at 300 K.  
ANALYSIS:  (a) The irradiation on the gage due only to aperture emission is 

 ( )
4 gf

g f g g e,f f f g f g f g2

AT
G q / A I A cos / A A / A

R

σ
θ ω

π− −= = ⋅ ⋅ = ⋅ ⋅  

( )
( )

( )( )
48 2 44

2 2f
g f2 2

5.67 10 W / m K 1000 KT
G A / 4 0.005 m 354.4 mW / m .

R 1 m

σ
π

π π

−× ⋅
= = × =  < 

(b) The irradiation on the gage due to radiation from the aperture (a) and cover (c) is 

 c g c c
g g,a

g

F J A
G G

A
− ⋅

= +  

where Fc-g and the cover radiosity are 

 ( ) ( )
2 gc

c g g c g c c c b c c c2 2 cc

AD
F F A / A J E T G

A4R D
ε ρ− −= ≈ ⋅ = +

+
 

 
but ( )c b surG E T=  and ( ) ( )4 4 2

c c c c c c c sur1 1 , J T 1 T 170.2 387.4 W / m .ρ α ε ε σ ε σ= − = − = + − = +   
Hence, the irradiation is 

 ( )
2 g 4 4c

g g,a c c c sur c2 2g cc

AD1
G G T 1 T A

A A4R D
ε σ ε σ= + ⋅ + −

+

⎛ ⎞
⎡ ⎤⎜ ⎟ ⎣ ⎦⎜ ⎟

⎝ ⎠
 

 

 ( ) ( ) ( )
2

4 42 2
g 2 2

0.10
G 354.4 mW / m 0.2 350 1 0.2 300 W / m

4 1 0.10
σ σ= + × + − ×

× +

⎛ ⎞ ⎡ ⎤⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠
 

 
 2 2 2 2

gG 354.4 mW / m 424.4 mW / m 916.2 mW / m 1, 695 mW / m .= + + =  
 
COMMENTS:  (1) Note we have assumed Af << Ac so that effect of the aperture is negligible.  (2) In 
part (b), the irradiation due to radiosity from the shield can be written also as Gg,c = qc-g/Ag = 
(Jc/π)⋅Ac⋅ωg-c/Ag where ωg-c = Ag/R2.  This is an excellent approximation since Ac << R2. 



PROBLEM 13.17  
KNOWN:  Temperature and diameters of a circular ice rink and a hemispherical dome.  
FIND:  Net rate of heat transfer to the ice due to radiation exchange with the dome.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Blackbody behavior for dome and ice. (2) Surfaces have uniform irradiation 
and radiosity.  
ANALYSIS:  From Eq. 13.13,  
 

 ( )4 4
21 2 21 2 1q A F T Tσ= −  

 

From reciprocity, A2 F21 = A1 F12 = ( )2
1D / 4 1π  

 

 ( )( )2 2
2 21A F / 4 25 m 1 491 m .π= =  

 
Hence 
 

 ( ) ( ) ( )4 42 8 2 4
21q 491 m 5.67 10 W / m K 288 K 273 K− ⎡ ⎤= × ⋅ −⎢ ⎥⎣ ⎦

 
 
 4

21q 3.69 10 W.= ×          < 
 
COMMENTS:  (1) If the air temperature, T∞, exceeds T1, there will also be heat transfer by 
convection to the ice.  The radiation and convection transfer to the ice determine the heat load which 
must be handled by the cooling system. (2) Because they are isothermal and black, the two surfaces 
have uniform radiosity. Do you expect them each to be uniformly irradiated? Would non-uniform 
irradiation of either surface affect the answer? 



PROBLEM 13.18  
KNOWN:  Surface temperature of a semi-circular drying oven.  
FIND:  Drying rate per unit length of oven.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Blackbody behavior for furnace wall and water, (2) Convection effects are 
negligible and bottom is insulated, (3) Uniform surface irradiation and radiosity. 
 
PROPERTIES:  Table A-6, Water (325 K):  6

fgh 2.378 10 J / kg.= ×  
 
ANALYSIS:  Applying a surface energy balance, 
 
 12 evap fgq q m h= = &  
 
where it is assumed that the net radiation heat transfer to the water is balanced by the evaporative heat 
loss. From Eq. 13.13,  
 

 ( )4 4
12 1 12 1 2q A F T T .σ= −  

 
From inspection and the reciprocity relation, 
 

 
( )

2
12 21

1

A D LF F 1 0.637.
A D / 2 Lπ

⋅
= = × =

⋅
 

 
Hence 

 
( )4 4

1 2
12

fg

T Tm Dm F
L 2 h

π σ
−

′ = =
&

&  

 

 
( ) ( ) ( )4 4

8
2 4 6

1 m 1200 K 325 KWm 0.637 5.67 10
2 m K 2.378 10 J / kg

− −
′ = × × ×

⋅ ×
&

π
 

or 

 m 0.0492 kg / s m.′ = ⋅&          < 
 
COMMENTS:  (1) Air flow through the oven is needed to remove the water vapor.  The water 
surface temperature, T2, is determined by a balance between radiation heat transfer to the water and 
the convection of latent and sensible energy from the water. (2) Because the surfaces are black and 
isothermal, they have uniform radiosity.  



PROBLEM 13.19  
KNOWN:  Arrangement of three black surfaces with prescribed geometries and surface temperatures.  
FIND:  (a) View factor F13, (b) Net radiation heat transfer from A1 to A3. 
 
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Interior surfaces behave as blackbodies, (2) A2 >> A1, (3) Surfaces are 
uniformly irradiated and have uniform radiosities.  
ANALYSIS:  (a) Define the enclosure as the interior of the cylindrical form and identify A4.  
Applying the view factor summation rule, Eq. 13.4, 
 
 11 12 13 14F F F F 1.+ + + =         (1) 
 
Note that F11 = 0 and F14 = 0.  From Eq. 13.8, 
 

 
( )

( ) ( )

22
12 2 2 2 2

3mDF 0.36.
D 4L 3m 4 2m

= = =
+ +

      (2) 

 
From Eqs. (1) and (2), 
 
 13 12F 1 F 1 0.36 0.64.= − = − =        < 
 
(b) From Eq. 13.13,  
 

 ( )4 4
13 1 13 1 3q A F T Tσ= −  

 

 ( )2 8 2 4 4 4 4
13q 0.05m 0.64 5.67 10 W / m K 1000 500 K 1700 W.−= × × × ⋅ − =  < 

 
COMMENTS:  (1) Note that the summation rule, Eq. 13.4, applies to an enclosure; that is, the total 
region above the surface must be considered. (2) Because the surfaces are black and isothermal, their 
radiosities are uniform. Is the irradiation of each surface uniform? 



PROBLEM 13.20  
KNOWN:  Furnace diameter and temperature.  Dimensions and temperature of suspended part.  
FIND:  Net rate of radiation transfer per unit length to the part.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) All surfaces may be approximated as blackbodies. (2) Uniform surface 
irradiation and radiosity.  
ANALYSIS:  From symmetry considerations, it is convenient to treat the system as a three-surface 
enclosure consisting of the inner surfaces of the vee (1), the outer surfaces of the vee (2) and the 
furnace wall (3).  The net rate of radiation heat transfer to the part is then 
 

 ( ) ( )4 4 4 4
w,p 3 31 w p 3 32 w pq A F T T A F T T′ ′ ′= − + −σ σ  

 
From reciprocity, 
 
 3 31 1 13A F A F 2L 0.5 1m′ ′= = × =  
 
where surface 3 may be represented by the dashed line and, from symmetry, F13 = 0.5.  Also, 
 
 3 32 2 23A F A F 2L 1 2m′ ′= = × =  
 
Hence, 
 

 ( ) ( )8 2 4 4 4 4 5
w,pq 1 2 m 5.67 10 W / m K 1000 300 K 1.69 10 W / m−′ = + × × ⋅ − = ×  < 

 
COMMENTS:  (1) With all surfaces approximated as blackbodies, the result is independent of the 
tube diameter. (2) Note that F11 = 0.5. (3) Because the surfaces are approximated as blackbodies and 
are isothermal they have uniform radiosity. The irradiation of the surfaces is, however, non-uniform. 
Will this affect the answer? 
 



PROBLEM 13.21  
KNOWN:  Coaxial, parallel black plates with surroundings.  Lower plate (A2) maintained at 
prescribed temperature T2 while electrical power is supplied to upper plate (A1). 
 
FIND:  Temperature of the upper plate T1. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Plates are black surfaces of uniform temperature. (2) Backside of heater on A1 
insulated. (3) Uniform surface irradiation and radiosity.  
ANALYSIS:  The net radiation heat rate leaving Ai is 

 ( ) ( )
N

4 4 4 4
e ij 1 12 1 2 1 13 1 3

j 1
P q A F T T A F T Tσ σ

=
= = − + −∑  

 

 ( ) ( )4 4 4 4
e 1 12 1 2 13 1 surP A F T T F T Tσ= − + −⎡ ⎤

⎢ ⎥⎣ ⎦
      (1) 

From Fig. 13.5 for coaxial disks (see Table 13.2), 
 1 1 2 2R r / L 0.10 m / 0.20 m 0.5 R r / L 0.20 m / 0.20 m 1.0= = = = = =  
 

 
( )

2 2
2

2 2
1

1 R 1 1
S 1 1 9.0

R 0.5

+ +
= + = + =  

 

 ( ) ( )
1/ 2 1/ 22 22 2

12 2 1
1 1

F S S 4 r / r 9 9 4 0.2 / 0.1 0.469.
2 2

= − − = − − =
⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

 

 
From the summation rule for the enclosure A1, A2 and A3 where the last area represents the 
surroundings with T3 = Tsur, 12 13 13 12F F 1 and F 1 F 1 0.469 0.531.+ = = − = − =  
 
Substituting numerical values into Eq. (1), with 2 2 2

1 1A D / 4 3.142 10 m ,π −= = ×  

 ( )2 2 8 2 4 4 4 4
117.5 W 3.142 10 m 5.67 10 W / m K 0.469 T 500 K− −= × × × ⋅ −⎡

⎢⎣
 

   ( )4 4 4
10.531 T 300 K+ − ⎤

⎥⎦
 

 ( ) ( )9 4 4 4 4
1 19.823 10 0.469 T 500 0.531 T 300× = − + −  

we find that 1T 456 K.=          < 
 
COMMENTS:  (1) Note that if the upper plate were adiabatic, T1 = 427 K. (2) Would you expect the 
surfaces to experience uniform irradiation? If the heater were constructed of a low thermal 
conductivity material, temperature gradients would likely develop in the radial direction. If this were 
the case, the heater surface would no longer be isothermal, and would no longer have a uniform 
radiosity. A more detailed analysis involving more radiation surface might be warranted in practice. 



PROBLEM 13.22  
KNOWN:  Dimensions and separation distance of coaxial, parallel black plates.  Temperatures of 
lower plate and surroundings.  Electrical power supplied to upper plate.  
FIND:  Temperature of the upper plate for circular and square plates and dependence on separation 
distance.  
SCHEMATIC:   

0 < L < 1 m

Pe = 17.5 W

Heater

A1, D1 = 0.20 m, T1

A2 = A1, T2 = 500 K

Tsur = 300 K

 
 
ASSUMPTIONS:  (1) Plates are black surfaces of uniform temperature. (2) Backside of heater on A1 
insulated. (3) Surfaces have uniform irradiation and radiosity.  
ANALYSIS:  The net radiation heat rate leaving Ai is 

 ( ) ( )
N

4 4 4 4
e ij 1 12 1 2 1 13 1 3

j 1
P q A F T T A F T Tσ σ

=
= = − + −∑  

 

 ( ) ( )4 4 4 4
e 1 12 1 2 13 1 surP A F T T F T Tσ= − + −⎡ ⎤

⎢ ⎥⎣ ⎦
      (1) 

From Table 13.2 for coaxial disks (or Fig. 13.5), 
 
 1 2R R r / L 0.10 m / 0.20 m 0.5= = ==  
 

 
( )

( )

22
2

2 2
1

1 0.51 R
S 1 1 6

R 0.5

++
= + = + =  

 

 ( )
1/2 1/222 2

12 2 1
1 1

F S S 4 r / r 6 4 0.172.
2 2

6= − − = − − =
⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤⎨ ⎬ ⎨ ⎬⎣ ⎦⎣ ⎦ ⎩ ⎭⎩ ⎭

 

 
From the summation rule for the enclosure A1, A2, and A3 where the last area represents the 
surroundings with T3 = Tsur,  
 12 13 13 12F F 1 F 1 F 1 0.172 0.828.+ = = − = − =  
 
From Eq. (1), with 2 2 2

1 1A D / 4 3.142 10 m ,π −= = ×  

e

1

1/4
P 4 4

12 2 13 surA
1

12 13

F T F T
T

F F
σ

⎡ ⎤⎛ ⎞
+ +⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥=
⎢ ⎥+
⎢ ⎥
⎣ ⎦

     (2) 

Continued… 



PROBLEM 13.22 (Cont.) 
 

2 2 8 2 4

1/4
17.5 W 4 4 4 4

3.142 10 m 5.67 10 W / m K
1

0.172 500  K 0.828 300  K
T

1

− −× × × ⋅

⎡ ⎤⎛ ⎞
+ × + ×⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

  

1T 406 K.=            < 
 
For the coaxial squares, X = (π/4)1/2D = 0.177 m.  Then F12 is found from Table 13.2 for aligned 
rectangles (or Fig. 13.4), 
 
 X / L 0.177 m / 0.20 m 0.886X Y= = ==  
 
  

1/2
2 1/2

12
2 22 1 1F ln X(1 X ) X X .2 2 2 1/2πX

(1 X ) X2 tan 2 tan 0.170
1 2X (1 X )

− −= +
⎧ ⎫⎡ ⎤ ⎡ ⎤+⎪ ⎪+ − =⎢ ⎥ ⎢ ⎥⎨ ⎬

+ +⎢ ⎥⎢ ⎥⎪ ⎪⎣ ⎦⎣ ⎦⎩ ⎭

 

 
Then, 
 
 12 13 13 12F F 1 F 1 F 1 0.170 0.830.+ = = − = − =  
 
Finally, from Eq. (2) 
 

2 2 8 2 4

1/4
17.5 W 4 4 4 4

3.142 10 m 5.67 10 W / m K
1

0.170 500  K 0.830 300  K
T

1

− −× × × ⋅

⎡ ⎤⎛ ⎞
+ × + ×⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

1T 406 K.=            < 
 

Continued… 



PROBLEM 13.22 (Cont.) 
 
Results were generated for 0 < L ≤ 1 m using IHT and are shown below.  The results for the circular 
disks and aligned squares are plotted together and are virtually indistinguishable. 
 

L (m)
10.80.60.40.20

T1
 (K

)

520

480

440

400

360

   < 
 
 
COMMENTS: (1) For either geometry, as the plates approach one another the cooling effect of the 
surroundings vanishes, and the temperature of plate 1 adjusts to adhere to an energy balance between 

the power supplied by the heater and the heat loss to plate 2 at 500 K.  That is, ( )e 1
4 4P A 1 2T Tσ= − , 

resulting in T1 = 519 K. (2) As the plates become far apart, the effect of plate 2 on plate 1 vanishes.  
The temperature of plate 1 adjusts to adhere to an energy balance between the power supplied by the 

heater and the heat loss to the cool surroundings. That is, ( )e 1
4 4P A 1 2T Tσ= − , resulting in T1 = 366 

K. (3)The shape factors for the two geometries are nearly the same and therefore the temperature of 
plate 1 is almost the same for either geometry. (4) The surfaces are not uniformly irradiated. If the 
heater were constructed of low thermal conductivity material, it may experience a spatial temperature 
distribution. As such, it would no longer be isothermal and would no longer have a uniform radiosity. 
A more detailed analysis involving many radiation surfaces may be warranted in practice. 



PROBLEM 13.23  
KNOWN:  Tubular heater radiates like blackbody at 1000 K.  
FIND:  (a) Radiant power from the heater surface, As, intercepted by a disc, A1, at a prescribed 
location qs→1; irradiation on the disk, G1; and (b) Compute and plot qs→1 and G1 as a function of the 
separation distance L1 for the range 0 ≤ L1 ≤ 200 mm for disk diameters D1 = 25, and 50 and 100 mm. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Heater surface behaves as blackbody with uniform temperature. (2) Surfaces 
have uniform radiosity and irradiation.  
ANALYSIS:  (a) The radiant power leaving the inner surface of the tubular heater that is intercepted 
by the disk is 
 ( )2 1 2 b2 21q A E F→ =          (1) 
 
where the heater is surface 2 and the disk is surface 1.  It follows from the reciprocity rule, Eq. 13.3, that 

 1
21 12

2

A
F F .

A
=           (2) 

 
Define now the hypothetical disks, A3 and A4, located at the ends of the tubular heater.  By inspection, 
it follows that 
 14 12 13 12 13F F F or F F F14= + = −      
  (3) 
where F14 and F13 may be determined from Fig. 13.5.  Substituting numerical values, with D3 = D4 = 
D2, 

 31 2 i
13

i 1 1 2

D / 2L L L 200 r 100 / 2
F 0.08 with 8 0.25

r D / 2 50 / 2 L L L 200⋅

+
= = = = = = =

+
 

 

 j1 4
14

i 1 1

rL L 100 D / 2 100 / 2
F 0.20 with 4 0.5

r D / 2 50 / 2 L L 100
= = = = = = =  

 
Substituting Eq. (3) into Eq. (2) and then into Eq. (1), the result is 
 ( )2 1 1 14 13 b2q A F F E→ = −  
 

( ) ( ) ( )
2 43 2 8 2 4

2 1q 50 10 m / 4 0.20 0.08 5.67 10 W / m K 1000 K 13.4Wπ − −
→ = × − × × ⋅ =

⎡ ⎤
⎢ ⎥
⎣ ⎦

 < 

 
where 4

b2 sE T .σ=   The irradiation G1 originating from emission leaving the heater surface is 

 
( )

2s 1
1 21

q 13.4 W
G 6825 W / m .

A 0.050 m / 4π
→= = =           (4) < 

 
          Continued … 



PROBLEM 13.23 (Cont.) 
 
(b) Using the foregoing equations in IHT along with the Radiation Tool-View Factors for Coaxial 
Parallel Disks, G1 and qs→1 were computed as a function of L1 for selected values of D1.  The results 
are plotted below. 
 
 

 
 
In the upper left-hand plot, G1 decreases with increasing separation distance.  For a given separation 
distance, the irradiation decreases with increasing diameter.  With values of D1 = 25 and 50 mm, the 
irradiation values are only slightly different, which diminishes as L1 increases.  In the upper right-hand 
plot, the radiant power from the heater surface reaching the disk, qs→2, decreases with increasing L1 
and decreasing D1.  Note that while G1 is nearly the same for D1 = 25 and 50 mm, their respective 
qs→2 values are quite different.  Why is this so? 
 
Comment. Since the tube surface is assumed to be black and isothermal, it will have uniform radiosity 
distributions. However, its irradiation is not uniform. Will the nonuniformity of the irradiation affect 
the answer?  



PROBLEM 13.24  
KNOWN:  Circular plate (A1) maintained at 600 K positioned coaxially with a conical shape (A2) 
whose backside is insulated.  Plate and cone are black surfaces and located in large, insulated 
enclosure at 300 K.  
FIND:  (a) Temperature of the conical surface T2 and (b) Electric power required to maintain plate at 
600 K.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Plate and cone are black, (3) Cone behaves as 
insulated, reradiating surface, (4) Surroundings are large compared to plate and cone, (5) Uniform 
irradiation and radiosity.  
ANALYSIS:  (a) Recognizing that the plate, cone, and surroundings from a three-(black) surface 
enclosure, perform a radiation balance on the cone. 

 ( ) ( )4 4 4 4
2 23 21 2 23 2 3 2 21 2 1q 0 q q A F T T A F T Tσ σ= = + = − + −  

where the view factor F21 can be determined from the coaxial parallel disks relation (Table 13.2 or 

Fig. 13.5) with Ri = ri/L=250/500 = 0.5, Rj = 0.5, S = 1 + ( )2 2
j i1 R / R 1+ = + (1 + 0.52)/0.52 = 6.00, 

and noting 2 1 21F F ,′ =  

 ( ) ( )
1/ 2 1/ 22 22 2

21 j iF 0.5 S S 4 r / r 0.5 6 6 4 0.5 / 0.5 0.172.= − − = − − =
⎧ ⎫ ⎧ ⎫⎪ ⎪⎡ ⎤ ⎡ ⎤⎨ ⎬ ⎨ ⎬⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎩ ⎭⎪ ⎪⎩ ⎭

 

 
For the enclosure, the summation rule provides, 2 3 2 1F 1 F 1 0.172 0.828.′ ′= − = − =   Hence, 

 ( ) ( )4 4 4 4
2 20.828 T 300 0 0.172 T 600− = + −  

 
 2T 413 K.=           < 
 
(b) The power required to maintain the plate at T2 follows from a radiation balance, 
 

 ( ) ( )4 4 4 4
1 12 13 1 12 1 2 1 13 1 3q q q A F T T A F T Tσ σ= + = − + −  

 
where 12 2 2 1 1 21 13 12F A F / A F 0.172 and F 1 F 0.828,′ ′= = = = − =  
 

 ( ) ( ) ( )2 2 4 4 4 4 4 4
1q 0.5 / 4 m 0.172 600 413 K 0.828 600 300 Kπ σ= − + −⎡ ⎤

⎢ ⎥⎣ ⎦
 

 1q 1312 W.=           < 
 
Comment: Because the surfaces are black and isothermal, they each are characterized by a uniform 
radiosity. Will the non-uniformity of the irradiation of the surfaces affect the answer? 



PROBLEM 13.25  
KNOWN:  Conical and cylindrical furnaces (A2) as illustrated and dimensioned in Problem 13.4 
supplied with power of 50 W.  Workpiece (A1) with insulated backside located in large room at 300 
K.  
FIND:  Temperature of the workpiece, T1, and the temperature of the inner surfaces of the furnaces, 
T2.  Use expressions for the view factors F21 and F22 given in the statement for Problem 13.4. 
 
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Diffuse, black surfaces with uniform radiosities, (2) Backside of workpiece is 
perfectly insulated, (3) Inner base and lateral surfaces of the cylindrical furnace treated as single 
surface, (4) Negligible convection heat transfer, (5) Room behaves as large, isothermal surroundings.  
ANALYSIS:  Considering the furnace surface (A2), the workpiece (A1) and the surroundings (As) as 
an enclosure, the net radiation transfer from A1 and A2 follows from Eq. 13.13, 

Workpiece q A  F  E E A  F  E E1 1 12 b1 b2 1 1s b1 bs= = − + −0 b g b g    (1) 

Furnace q  W A  F  E E A  F  E E2 2 21 b2 b1 2 2s b2 bs= = − + −50 b g b g   (2) 

where Eb = σ T4 and σ = 5.67 × 10-8 W/m2⋅K4.  From summation rules on A1 and A2, the view factors 
F1s and F2s can be evaluated.  Using reciprocity, F12 can be evaluated. 
 F F F F F F A A F1s 12 2s 21 22 12 2 1 21= − = − − =1 1 /b g  

The expressions for F21 and F22 are provided in the schematic.  With A  D1 1
2= π / 4  the A2 are: 

Cone Cylinder: / : /
/

A  D / 2 L D A  D  D L2 3
2

3 2 3
2

3= +FH IK = +π π π2 42 1 2
b g  

Examine Eqs (1) and (2) and recognize that there are two unknowns, T1 and T2, and the equations 
must be solved simultaneously.  Using the foregoing equations in the IHT workspace, the results are 

 T  K T  K1 2= =544 828       < 

COMMENTS:  (1) From the IHT analysis, the relevant view factors are: F12 = 0.1716; F1s = 0.8284; 
Cone: F21 = 0.07673, F22 = 0.5528; Cylinder: F21 = 0.03431, F22 =0.80. (2) That both furnace 
configurations provided identical results may not, at first, be intuitively obvious.  Since both furnaces 
(A2) are black, they can be represented by the hypothetical black area A3 (the opening of the 
furnaces).  As such, the analysis is for an enclosure with the workpiece (A1), the furnace represented 
by the disk A3 (at T2), and the surroundings.  As an exercise, perform this analysis to confirm the 
above results. (3) Since the surfaces are assumed to be black and isothermal, their radiosities are 
uniform. The irradiation of the surfaces is not uniform. This may lead to non-uniform temperature 
distributions in the workpiece in a real application. 



PROBLEM 13.26  
KNOWN:  Furnace constructed in three sections: insulated circular (2) and cylindrical (3) sections, as 
well as, an intermediate cylindrical section (1) with imbedded electrical resistance heaters.  Cylindrical 
sections (1,3) are of equal length.  
FIND:  (a) Electrical power required to maintain the heated section at T1 = 1000 K if all the surfaces 
are black, (b) Temperatures of the insulated sections, T2 and T3, and (c) Compute and plot q1, T2 and 
T3 as functions of the length-to-diameter ratio, with 1 ≤ L/D ≤ 5 and D = 100 mm. 
 
SCHEMATIC:   

 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) All surfaces are black, (2) Areas (1, 2, 3) are isothermal. (3) Uniform surface 
radiosity and irradiation.  
ANALYSIS:  (a) To complete the enclosure representing the furnace, define the hypothetical surface 
A4 as the opening at 0 K with unity emissivity.  For each of the enclosure surfaces 1, 2, and 3, the 
energy balances following Eq. 13.13 are 
 ( ) ( ) ( )1 1 12 b1 b2 1 13 b1 b3 1 14 b1 b4q A F E E A F E E A F E E= − + − + −    (1) 
 
 ( ) ( ) ( )2 21 b2 b1 2 23 b2 b3 2 24 b2 b40 A F E E A F E E A F E E= − + − + −    (2) 
 
 ( ) ( ) ( )3 31 b3 b1 3 32 b3 b2 3 34 b3 b40 A F E E A F E E A F E E= − + − + −    (3) 
where the emissive powers are 

 4 4 4
b1 1 b2 2 b3 3 b4E T E T E T E 0σ σ σ= = = =          (4 – 7) 

For this four surface enclosure, there are N2 = 16 view factors and N (N – 1)/2 = 4 × 3/2 = 6 must be 
directly determined (by inspection or formulas) and the remainder can be evaluated from the 
summation rule and reciprocity relation.  By inspection, 
 22 44F 0 F 0= =               (8,9) 

From the coaxial parallel disk relation, Table 13.2, find F24 

( )
( )

22
4

2 2
2

1 0.2501 R
S 1 1 18.00

R 0.250

++
= + = + =  

2 2 4 4R r / L 0.050 m / 0.200 m 0.250 R r / L 0.250= = = = =  

 ( )
1/ 222

24 4 2F 0.5 S S 4 r / r= − −
⎧ ⎫⎡ ⎤⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

 

 ( )
1/ 222

24F 0.5 18.00 18.00 4 1 0.0557= − − =
⎧ ⎫⎡ ⎤⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

     (10) 

Consider the three-surface enclosure 1 2 2′− −  and find F11 as beginning with the summation rule, 
 

          Continued … 

´

Tsur = 0 K

´́

Tsur = 0 K



PROBLEM 13.26 (Cont.) 
 
 11 12 12F 1 F F ′= − −          (11) 
 
where, from symmetry, 12 12F F ,′=  and using reciprocity, 
 

 ( ) ( )2
12 2 21 1 23 21F A F / A D / 4 F / DL / 2 DF / 2Lπ π= = =     (12) 

 
and from the summation rule on A2 
 

21 22F 1 F 1 0.172 0.828′= − = − = ,       (13) 
 
Using the coaxial parallel disk relation, Table 13.2, to find 22 'F ,  
 

 
2 2
2

2 2
2

1 R 1 0.50
S 1 1 6.000

R 0.50
′+ +

= + = + =  

 
 ( )2 2 2R r / L 0.050 m / 0.200 / 2 m 0.500 R 0.500′= = = =  
 

 ( )
1/ 222

22 2 2F 0.5 S S 4 r / r′ ′= − −
⎧ ⎫⎡ ⎤⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

 

 

 ( )
1/ 222

22F 0.5 6 6 4 1 0.1716′ = − − =
⎧ ⎫⎡ ⎤⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

 

 
Evaluating F12 from Eq. (12), find 
 
 12F 0.100 m 0.828 / 2 0.200 m 0.2071= × × =  
 
and evaluating F11 from Eq. (11), find 
 
 11 12F 1 2 F 1 2 0.207 0.586= − × = − × =  
 
From symmetry, recognize that F33 = F11 and F43 = F21.  To this point we have directly determined 
six view factors (underlined in the matrix below) and the remaining Fij can be evaluated from the 
summation rules and appropriate reciprocity relations.  The view factors written in matrix form, [Fij] 
are. 
 
  0.5858  0.2071  0.1781  0.02896 
  0.8284  0  0.1158  0.05573 
  0.1781  0.02896 0.5858  0.2071 
  0.1158  0.05573 0.8284  0 
 
Knowing all the required view factors, the energy balances and the emissive powers, Eqs. (4-6), can be 
solved simultaneously to obtain: 
 
 4 2 4 2

1 b2 b3q 255 W E 5.02 10 W / m E 2.79 10 W / m= = × = ×  < 
 
 2 3T 970 K T 837.5 K= =         < 
 

          Continued … 



PROBLEM 13.26 (Cont.) 
 
(b) Using the energy balances, Eqs. (1-3), along with the IHT Radiation Tool, View Factors, Coaxial 
parallel disks, a model was developed to calculate q1, T2, and T3 as a function of length L for fixed 
diameter D = 100 m.  The results are plotted below. 
 

 
 
For fixed diameter, as the overall length increases, the power required to maintain the heated section at 
T1 = 1000 K decreases.  This follows since the furnace opening area is a smaller fraction of the 
enclosure surface area as L increases.  As L increases, the bottom surface temperature T2 increases as 
L increases and, in the limit, will approach that of the heated section, T1 = 1000 K.  As L increases, the 
temperature of the insulated cylindrical section, T3, increases, but only slightly.  The limiting value 
occurs when Eb3 = 0.5 × Eb1 for which T3 → 840 K.  Why is that so? 
 
COMMENT: If the electrical heating is uniformly distributed, the temperature of the heated section 
will not be uniform. In practice, a more detailed analysis involving more radiation surfaces might be 
warranted. 



PROBLEM 13.27  
KNOWN:  Dimensions and temperature of a rectangular fin array radiating to deep space.  
FIND:  Expression for rate of radiation transfer per unit length from a unit section of the array.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Surfaces may be approximated as blackbodies, (2) Surfaces are isothermal, (3) 
Length of array (normal to page) is much larger than W and L.  
ANALYSIS:  Deep space may be represented by the hypothetical surface 3A ,′  which acts as a 
blackbody at absolute zero temperature.  The net rate of radiation heat transfer to this surface is 
therefore equivalent to the rate of heat rejection by a unit section of the array. 
 

 ( ) ( )4 4 4 4
3 1 13 2 231 3 2 3q A F T T A F T Tσ σ′ ′ ′= − + −  

 
With 2 23 3 32 1 12A F A F A F ,′ ′ ′= =  1 2T T T= =  and 3T 0,=  
 

 ( ) 4 4
3 1 13 12q A F F T W Tσ σ′ ′= + =        < 

 
Radiation from a unit section of the array corresponds to emission from the base.  Hence, if blackbody 
behavior can, indeed, be maintained, the fins do nothing to enhance heat rejection.  
COMMENTS:  (1) The foregoing result should come as no surprise since the surfaces of the unit 
section form an isothermal blackbody cavity for which emission is proportional to the area of the 
opening.  (2) Because surfaces 1 and 2 have the same temperature, the problem could be treated as a 
two-surface enclosure consisting of the combined (1, 2) and 3.  It follows that ( ) ( )3 1,2 3 1,2q q A′ ′ ′= =  

( ) ( )
4 4 4

31,2 3 3 1,2F T A F T W T ,σ σ σ′= =  (3) If blackbody behavior cannot be achieved 

( )1 2, 1 ,ε ε <  enhancement would be afforded by the fins. 

 



PROBLEM 13.28 
 
KNOWN:  Geometry of furnace.  Total power.  Heat flux is uniform.  Temperature of surroundings. 
 
FIND:  Temperature of four surfaces.  
 
SCHEMATIC:  
 

L = 0.15 m

D = 0.05 m

Insulation

Tsur = 300 K

A1, T1

A2, T2

A3, T3

A4, T4

A5, T5 = Tsur = 300 K

A″

A´

 
 
ASSUMPTIONS:  (1) Interior surfaces behave as blackbodies with uniform temperature, radiosity, and 
irradiation. (2) Heat transfer by convection is negligible. (3) Backs of electrically-heated surfaces are 
adiabatic. 
 
ANALYSIS:   With a total heat loss of q = 1522 W, the heat flux is 
 

2
2 2

1522 W 59,630 W/m
/ 4 (0.05 m) / 4 0.05 m 0.15 m

qq
D DLπ π π π

′′ = = =
+ + × ×

 

 
The view factors from the surroundings to the furnace surfaces were found in Example 13.3, but it will be 
a little easier here to work with the view factors from the furnace surfaces to the surroundings: 
 

 

5 51
15 51

1
2

5 52 52
25 52

2

5 53
35 53

3

5 54
45 54

4

0.0263

( / 4) 3 3 0.05 m 0.0294 0.00735
/ 3 4 4 0.15 m

3 3 0.05 m 0.1163 0.0291
4 4 0.15 m
3 3 0.05 m 0.828 0.207
4 4 0.15 m

A FF F
A

A F D F DF F
A DL L

A F DF F
A L

A F DF F
A L

π
π

= = =

×
= = = = =

×
×

= = = =
×
×

= = = =
×
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PROBLEM 13.28 (Cont.) 

 
As in Example 13.3, the electric power delivered to each surface balances the corresponding radiation 
loss.  Equations (1)-(4) from Example 13.3 can be solved for the temperatures of each surface. 
Recognizing that q1/A1 = q2/A2 = q3/A3 = q4/A4 = q′′ , we find 
 

1/41/4 1/4 2
4 4 4 41

1 5 5 8 2 4
1 15 15

59,630 W/m 300  K 2515 K
0.0263 5.67 10  W/m K

q qT T T
A F Fσ σ −

⎛ ⎞⎛ ⎞ ⎛ ⎞′′
= + = + = + =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟× × ⋅⎝ ⎠ ⎝ ⎠ ⎝ ⎠

< 

 
1/41/4 2

4 4 4
2 5 8 2 4

25

59,630 W/m 300  K 3459 K
0.00735 5.67 10  W/m K

qT T
F σ −

⎛ ⎞⎛ ⎞′′
= + = + =⎜ ⎟⎜ ⎟ ⎜ ⎟× × ⋅⎝ ⎠ ⎝ ⎠

      < 

1/ 41/ 4 2
4 4 4

3 5 8 2 4
35

59,630 W/m 300  K 2452 K
0.0291 5.67 10  W/m K

qT T
F σ −

⎛ ⎞⎛ ⎞′′
= + = + =⎜ ⎟⎜ ⎟ ⎜ ⎟× × ⋅⎝ ⎠ ⎝ ⎠

       < 

1/41/4 2
4 4 4

4 5 8 2 4
45

59,630 W/m 300  K 1502 K
0.207 5.67 10  W/m K

qT T
F σ −

⎛ ⎞⎛ ⎞′′
= + = + =⎜ ⎟⎜ ⎟ ⎜ ⎟× × ⋅⎝ ⎠ ⎝ ⎠

       < 

 
 
COMMENTS:  (1) The hottest surface is surface 2, which has the smallest view factor from itself to the 
surroundings.  (2) The large variation in temperature between the four surfaces suggests that the actual 
temperature of each surface would also vary substantially, invalidating the assumptions of uniform 
radiosity and irradiation.  A more accurate analysis could be performed by following the methodology of 
Comment 3 of Example 13.3. 
 
 



PROBLEM 13.29  
KNOWN:  Dimensions and temperatures of side and bottom walls in a cylindrical cavity.  
FIND:  Emissive power of the cavity.  
SCHEMATIC:   

 
 
 
ASSUMPTIONS:  (1) Blackbody behavior for surfaces 1 and 2. (2) Uniform surface radiosity and 
irradiation distributions.  
ANALYSIS:  The emissive power is defined as 
 
 3 3E q / A=  
 
where 
 
 3 1 13 b1 2 23 b2q A F E A F E .= +  
 
From symmetry, F23 = F21, and from reciprocity, F21 = (A1/A2) F12.  With F12 = 1 – F13, it follows 
that 
 
 ( ) ( )3 1 13 b1 1 13 b2 1 b2 1 13 b1 b2q A F E A 1 F E A E A F E E .= + − = + −  
 
Hence, with A1 = A3, 
 

 ( ) ( )4 4 43
b2 13 b1 b2 132 1 2

3

qE E F E E T F T T .
A

σ σ= = + − = + −  

 
From Fig. 13.5, with (L/ri) = 4 and (rj/L) = 0.25, F13 ≈ 0.05.  Hence 
 
 

( )8 2 4 4 4 8 2 4 4 4 4E 5.67 10 W / m K (700 )K 0.05 5.67 10 W / m K 1000 700 K− −= × ⋅ + × × ⋅ −  
 
 4 2 4 2E 1.36 10 W / m 0.22 10 W / m= × + ×  
 
 4 2E 1.58 10 W / m .= ×         < 
 
COMMENT: (1) The surfaces will not experience uniform irradiation. Will this affect the 
answer? 



PROBLEM 13.30  
KNOWN:  Aligned, parallel discs with prescribed geometry and orientation.  
FIND:  Net radiative heat exchange between the discs.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Surfaces behave as blackbodies, (2) A1 << A2. 
 
ANALYSIS:  From Eq. 13.13 

 ( )4 4
12 1 12 1 2q A F T T .σ= −  

The view factor can be determined from Eq. 13.8 which is appropriate for a small disc, aligned and 
parallel to a much larger disc. 

 
2
j

ij 2 2
j

D
F

D 4L
=

+
 

where Dj is the diameter of the larger disk and L is the distance of separation.  It follows that 
 12 1o 1iF F F 0.00990 0.00559 0.00431= − = − =  
where 

 ( ) ( )4 2 2 2 2 2 2 2
1o o oF D / D 4L 0.2 m / 0.2 m 4 1 m 0.00990= + = + × =  

 

 ( ) ( )2 2 2 2 2 2 2
1i i iF D / D 4L 0.15 m / 0.15 m 4 1 m 0.00559.= + = + × =  

 
The net radiation exchange is then 

 
( ) ( )

2
8 4 4 4

12 2 4
0.03m W

q 0.00431 5.67 10 500 1000 K 0.162 W.
4 m K

π −= × × × − = −
⋅

 

 
COMMENTS:  F12 can be approximated using solid angle concepts if Do << L.  That is, the view 
factor for A1 to Ao (whose diameter is Do) is 
 

 
2 2 2

o 1 o o o
1o 2 2

A / L D D
F .

4 L 4L

ω π
π π π
−≈ = = =  

Numerically, F1o = 0.0100 and it follows 2 2
1i iF D / 4L 0.00563.≈ =   This gives F12 = 0.00437.  An 

analytical expression can be obtained from Example 13.1 by replacing the lower limit of integration by 
Di/2, giving 
 

 ( ) ( )2 2 2 2 2
12 o iF L 1/ D / 4 L 1/ D / 4 L 0.00431.= − + + + =⎡ ⎤

⎢ ⎥⎣ ⎦
 



PROBLEM 13.31  
KNOWN:  Two black, plane discs, one being solid, the other ring-shaped.  
FIND:  Net radiative heat exchange between the two surfaces.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Discs are parallel and coaxial, (2) Discs are black, diffuse surfaces, (3) 
Convection effects are not being considered.  
ANALYSIS:  From Eq. 13.13 
 

 ( )4 4
12 1 12 1 2q A F T Tσ= −  

 
The view factor F12 can be determined from Fig. 13.5 after some manipulation.  Define these two 
hypothetical surfaces; 
 

 
2
o

3
D

A ,
4

π
=  located co-planar with A2, but a solid surface 

 

 
2
i

4
D

A ,
4

π
=  located co-planar with A2, representing the missing center. 

 
From view factor relations and Fig. 13.5, it follows that 
 
 12 13 14F F F 0.62 0.20 0.42= − = − =  
 

F14: j
14

i

r 40 / 2 L 20
1, 0.5, F 0.20

L 20 r 80 / 2
= = = = =  

 

F13: j
13

i

r 80 / 2 L 20
2, 0.5, F 0.62.

L 20 r 80 / 2
= = = = =  

 
Hence 
 

 ( ) ( )2 2 8 2 4 4 4 4
12q 0.80 / 4 m 0.42 5.67 10 W / m K 300 1000 Kπ −= × × × ⋅ −  

 
 12q 11.87 kW.= −          < 
 
Assuming negligible radiation exchange with the surroundings, the negative sign implies that q1 = -
11.87 kW and q2 = +11.87 kW. 



PROBLEM 13.32  
KNOWN:  Radiometer viewing a small target area (1), A1, with a solid angle ω = 0.0008 sr.  Target 
has an area A1 = 0.004 m2 and is diffuse, gray with emissivity ε = 0.8.  The target is heated by a ring-
shaped disc heater (2) which is black and operates at T2 = 1000 K. 
 
FIND:  (a) Expression for the radiant power leaving the target which is collected by the radiometer in 
terms of the target radiosity, J1, and relevant geometric parameters; (b) Expression for the target 
radiosity in terms of its irradiation, emissive power and appropriate radiative properties; (c) 
Expression for the irradiation on the target, G1, due to emission from the heater in terms of the heater 
emissive power, the heater area and an appropriate view factor; numerically evaluate G1; and (d) 
Determine the radiant power collected by the radiometer using the foregoing expressions and results.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Target is diffuse, gray, (2) Target area is small compared to the square of the 
separation distance between the sample and the radiometer, and (3) Negligible irradiation from the 
surroundings onto the target area.  
ANALYSIS:  (a) From Eq. 12.27 with I1 = I1,e+r = J1/π, the radiant power leaving the target collected 
by the radiometer is, from Eq. 12.11 

 1
1 rad 1 1 rad 1

J
q A cosθ ω

π→ −=        <    (1) 

where θ1 = 0° and ωrad-1 is the solid angle the radiometer subtends with respect to the target area. 
 
(b) From Eq. 12.4, the radiosity is the sum of the emissive power plus the reflected irradiation. 

 ( )1 1 1 b,1 1J E G E 1 Gρ ε ε= + = + −       <    (2) 

where 4
b1 1E Tσ=  and ρ = 1 - ε since the target is diffuse, gray (α = ε). 

 
(c) The irradiation onto G1 due to emission from the heater area A2 is 

 2 1
1

1

q
G

A
→=  

where q2→1 is the radiant power leaving A2 which is intercepted by A1 and can be written as 
 2 1 2 21 b2q A F E→ =          (3) 

where 4
b2 2E T .σ=   F21 is the fraction of radiant power leaving A2 which is intercepted by A1.  The 

view factor F12 can be written as 
          Continued … 



PROBLEM 13.32 (Cont.) 
 
 12 1 oF F F F 0.5 0.2 0.31 i 12−= − = − =−  
 
where from Eq. 13.8, 
 

 
( )

2 2
o

1 o 2 2 22
o

D 0.5
F 0.5

D 4L 0.5 4 0.25
− = = =

+ +
      (3) 

 

 
( )

2 2
i

1 i 2 2 22
1

D 0.25
F 0.2

D 4L 0.25 4 0.25
− = = =

+ +
 

 
and from the reciprocity rule, 
 

 
( )

2
1 12

21 2 2 22

A F 0.0004m 0.3
F 0.000815

A / 4 0.5 0.25 mπ

×
= = =

−
 

 
Substituting numerical values into Eq. (3), find 
 

 
( ) ( )42 2 2 8 2 4

1 2

/ 4 0.5 0.25 m 0.000815 5.67 10 W / m K 1000 K
G

0.0004 m

π −− × × × ⋅
=  

 
 2

1G 17, 013W / m=          < 
 
(d) Substituting numerical values into Eq. (1), the radiant power leaving the target collected by the 
radiometer is 
 

 ( )2 2
1 radq 6238 W / m / sr 0.0004 m 1 0.0008sr 635 Wπ μ→ = × × × =    < 

 
where the radiosity, J1, is evaluated using Eq. (2) and G1. 
 

 ( ) ( )48 2 4 2J 0.8 5.67 10 W / m K 500 K 1 0.8 17, 013 W / m1
−= × × ⋅ × + − ×  

 
 ( ) 2 2J 2835 3403 W / m 6238 W / m1 = + =       < 
 
COMMENTS:  (1) Note that the emitted and reflected irradiation components of the radiosity, J1, are 
of the same magnitude. 
 
(2) Suppose the surroundings were at room temperature, Tsur = 300 K.  Would the reflected irradiation 
due to the surroundings contribute significantly to the radiant power collected by the radiometer?  
Justify your conclusion. 



PROBLEM 13.33  
KNOWN:  Thin-walled, black conical cavity with opening D = 10 mm and depth of L = 12 mm that is 
well insulated from its surroundings.  Temperature of meter housing and surroundings is 25.0°C.  
FIND:  Radiant flux of laser beam, Go (W/m2), incident on the cavity when the fine-wire 
thermocouple indicates a temperature rise of 10.1°C.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Cavity surface is black and perfectly insulated from its mounting material in 
the meter, (2) Negligible convection heat transfer from the cavity surface, and (3) Surroundings are 
large, isothermal.  
ANALYSIS:  Perform an energy balance on the walls of the cavity considering absorption of the laser 
irradiation, absorption from the surroundings and emission. 
 
 & &E Ein out− = 0  
 
 A  G A  G A  E  To o o sur o b c+ − =b g 0  
 
where Ao = π D2/4 represents the opening of the cavity.  All of the radiation entering or leaving the 
cavity passes through this hypothetical surface.  Hence, we can treat the cavity as a black disk at Tc.  
Since Gsur = Eb (Tsur), and Eb = σ T4 with σ = 5.67 × 10-8 W/m2⋅K4, the energy balance has the form 
 

 G K Ko
4 4+ + − + + =σ σ25 0 273 25 0 101 273 04 4. . .b g b g  

 

 G  W / mo
2= 638.          < 

 



PROBLEM 13.34  
KNOWN:  Electrically heated sample maintained at Ts = 500 K with diffuse, spectrally selective 
coating.  Sample is irradiated by a furnace located coaxial to the sample at a prescribed distance.  
Furnace has isothermal walls at Tf = 3000 K with εf = 0.7 and an aperture of 25 mm diameter.  Sample 
experiences convection with ambient air at T∞ = 300 K and h = 20 W/m2⋅K.  The surroundings of the 
sample are large with a uniform temperature Tsur = 300 K.  A radiation detector sensitive to only 
power in the spectral region 3 to 5 μm is positioned at a prescribed location relative to the sample.  
FIND:  (a) Electrical power, Pe, required to maintain the sample at Ts = 500 K, and (b) Radiant power 
incident on the detector within the spectral region 3 to 5 μm considering both emission and reflected 
irradiation from the sample.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state condition, (2) Furnace is large, isothermal enclosure with small 
aperture and radiates as a blackbody, (3) Sample coating is diffuse, spectrally selective, (4) Sample 
and detector areas are small compared to their separation distance squared, (5) Surroundings are large, 
isothermal.  
ANALYSIS:  (a) Perform an energy balance on the sample mount, which experiences electrical power 
dissipation, convection with ambient air, absorbed irradiation from the furnace, absorbed irradiation 
from the surroundings and emission, 
 in outE E 0− =& &  
 

( ) ( )[ ]e s f sur sur b s sP h T T G G E T A 0f∞+ − − + + − =α α ε    
(1) 
 
where ( ) 4

b s sE T Tσ=  and 2
s sA D / 4.π=   

 
 
Irradiations on the sample:  The irradiation from the furnace aperture onto the sample can be written 
as 

 
4

f fs b,ff s f fs f
f

s s s

A F Eq A F T
G

A A A
σ→= = =        (2) 

 
where 2

f fA D / 4π=  and 2
s sA D / 4.π=   The view factor between the furnace aperture and sample 

follows from the relation for coaxial parallel disks, Table 13.2, 
 

f f sf s s sfR r / L 0.0125 m / 0.750 m 0.01667 R r / L 0.0100 m / 0.750 m 0.01333= = = = = =  

 
2 2
s

2 2
f

1 R 1 0.01333
S 1 1 3600.2

R 0.01667

+ +
= + = + =  

 
          Continued … 



PROBLEM 13.34 (Cont.) 
 

( ) ( )
1/ 2 1/ 22 22 2

sf s fF 0.5 S S 4 r / r 0.5 3600 3600 4 0.05 / 0.0625 0.000178= − − = − − =
⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

 

 
Hence the irradiation from the furnace is 

 
( ) ( )

( )
2 48 2 4

2
f 2

0.025 m / 4 0.000178 5.67 10 W / m K 3000 K
G 1277 W / m

20.020 m / 4

π

π

−× × × ⋅
= =  

 
The irradiation from the surroundings which are large compared to the sample is 

 ( )44 8 2 2
sur surG T 5.67 10 W / m K 300K 459 W / mσ −= = × ⋅ =  

 
Emissivity of the Sample: The total hemispherical emissivity in terms of the spectral distribution can 
be written following Eq. 12.43 and Eq. 12.34, 

 ( ) ( ) ( )1 s 1 s
4

,b s 1 20 T 0 T0
E T d / T F 1 Fλ λ λ λε ε λ σ ε ε

∞
− −= = + −⎡ ⎤

⎣ ⎦∫  
 
 [ ]0.8 0.066728 0.2 1 0.066728 0.240ε = × + − =  
 
where, from Table 12.1, with ( )1 s 0 TT 4 m 500 K 2000 m K, F 0.066728.λλ μ μ −= × = ⋅ =  
 
Absorptivity of the Sample: The total hemispherical absorptivity due to irradiation from the furnace 
follows from Eq. 12.52 and Eq. 12.34, 

 ( ) ( ) [ ]1 f 1 ff 1 20 T 0 TF 1 F 0.8 0.945098 0.2 1 0.945098 0.767λ λα ε ε− −= + − = × + − =⎡ ⎤
⎣ ⎦  

 
where, from Table 12.1, with ( )1 f 0 TT 4 m 3000 K 12, 000 m K, F 0.945098.λλ μ μ −= × = ⋅ =   The 

total hemispherical absorptivity due to irradiation from the surroundings is 

 ( ) ( ) [ ]1 sur 1 sursur 1 20 T 0 TF 1 F 0.8 0.00234 0.2 1 0.002134 0.201λ λα ε ε− −= + − = × + − =⎡ ⎤
⎣ ⎦  

where, from Table 12.1, with ( )1 sur 0 TT 4 m 300 K 1200 m K, F 0.002134.λλ μ μ −= × = ⋅ =  
 
Evaluating the Energy Balance: Substituting numerical values into Eq. (1), 

 ( )e
2 2P 20 W / m K 500 300 K 0.767 1277 W / m= ⎡+ ⋅ − − ×⎢⎣

 

 

 ( ) ( )42 8 2 4 20.201 459 W / m 0.240 5.67 10 W / m K 500 K 4 / (0.02m)−− × + × × ⋅ × ×⎤
⎥⎦

π  

 eP 1.256 W 0.308 W 0.029 W 0.267 W 1.19 W= − − + =     < 
 
(b) The radiant power leaving the sample which is incident on the detector and within the spectral 
region, Δλ = 3 to 5μm, follows from Eq. 12.11 with Eq. 12.34, 

 ( ) 2
s d, s, f ,ref , sur,ref , s s d d sdq E G G 1/ A cos A cos / Lλ λ λ λ π θ θ− Δ Δ Δ Δ= + + ⋅⎡ ⎤⎣ ⎦  

where θs = 45° and θd = 0°.  The emitted component is 

 ( )5 m
s, ,b ,b s3

E E T
μ

λ λ λεΔ = ∫  
 
 ( ) ( ) ( ) ( ){ }s s s s

4
s, 1 2 s0 4 m,T 0 3 m,T 0 5 m,T 0 4 m,TE F F F F Tλ μ μ μ με ε σΔ − − − −= − + −⎡ ⎡ ⎤

⎣ ⎣ ⎦  

          Continued … 



PROBLEM 13.34 (Cont.) 
 

 [ ] [ ]{ } ( )4 2
s,E 0.8 0.066728 0.013754 0.2 0.16169 0.066728 500K 217.5 W / mλ σΔ = − + − =  

 
where, from Table 12.1, ( )s0 3 m,TF 0.013754μ− =  at T 3 m 500 K 1500 m K;λ μ μ= × = ⋅  

( )s0 4 m,TF 0.066728μ− =  at 4 m 500 K 2000 m K;λ μ μ= × = ⋅  and ( )s0 5 m,TF μ−  = 0.16169 at λT = 

5μm × 500 K = 2500 μm⋅K. 
 
The reflected irradiation from the furnace component is 

 ( )5 m
f ,ref , f ,3

G 1 G d
μ

λ λ λε λΔ = −∫  

where Gf,λ ≈ Eλ,b(Tf), using band emission factors, 
 

( ) ( ) ( ) ( ) ( ) ( ){ }f f f ff ,ref , 2 f0 4 m,T 0 3 m,T 0 5 m,T 0 4 m,TG 1 F F 1 F F Gλ μ μ μ με εΔ − − − −= − − + − −⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦  

 
[ ] [ ]{ } 2 2

f ,ref ,G 0.2 0.9451 0.8900 0.8 0.9700 0.9451 1277W / m 39.51W / mλΔ = − + − =  
 
where, from Table 12.1, ( )f0 3 m,TF 0.8900μ− =  at λTf = 3 μm × 3000 K = 9000 μm⋅K; 

( )f0 4 m,TF 0.9451μ− =  at λTf = 4 μm × 3000 K = 12,000 μm⋅K; and, ( )f0 5 m,TF 0.9700μ− =  at λTf = 

5 μm × 3000 K = 15,000 μm⋅K. 
 
The reflected irradiation from the surroundings component is 

 ( )5 m
sur,ref , ref ,3

G 1 G d
μ

λ λ λε λΔ = −∫  

where Gref,λ ≈ Eλ (Tsur), using band emission factors, 

 ( ) ( ) ( ){ sur sursur,ref , 1 0 4 m,T 0 3 m,TG 1 F Fλ μ μεΔ − −= − −⎡ ⎤
⎣ ⎦  

    ( ) ( ) ( )sur sur2 sur0 5 m,T 0 4 m,T1 F F Gμ με − −+ − −⎡ ⎤
⎣ ⎦  

[ ] [ ]{ } 2 2
sur,ref ,G 0.2 0.002134 0.0001685 0.8 0.013754 0.002134 459 W / m 4.44 W / mλΔ = − − − =  

 
where, from Table 12.1, ( )sur0 3 m,TF 0.0001685μ− =  at λTsur = 3 μm ×⋅300 K = 900 μm⋅K; 

( )sur
0.0021340 4 m,TF μ =−  at λTsur = 4 μm × 300 K = 1200 μm⋅K; and ( )sur0 5 m,TF μ−  = 0.013754 at 

λTsur = 5 μm ×300 K=1500 μm⋅K.  Returning to Eq. (3), find 

 [ ] ( ) ( )2
sd,

2q 217.5 39.51 4.44 W / m 1/ 0.020 m / 4Δ = + + ⎡ ⎤
⎢ ⎥⎣ ⎦λ π π  

    ( )25 2cos 45 8 10 m cos 0 / 1 m 1.48 Wμ−°× × × ° =   < 
 
COMMENTS:  (1) Note that Ffs is small, since Af, As << 2

sfL .   As such, we could have evaluated 

qf→s using Eq. 12.6 and found 

 
( )2

b,f f s sf 2
f

s

E / A A / L
G 1276 W / m

A

π
= =  

(2) Recognize in the analysis for part (b), Eq. (3), the role of the band emission factors in calculating 
the fraction of total radiant power for the emitted and reflected irradiation components. 



PROBLEM 13.35  
KNOWN:  Water-cooled heat flux gage exposed to radiant source, convection process and 
surroundings.  
FIND:  (a) Net radiation exchange between heater and gage, (b) Net transfer of radiation to the gauge 
per unit area of the gage, (c) Net heat transfer to the gage per unit area of gage, (d) Heat flux indicated 
by gage described in Problem 3.98.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Heater and gauge are parallel, coaxial discs having blackbody behavior, (2) Ag 
<< Ah, (3) Surroundings are large compared to Ah and Ag. 
 
ANALYSIS:  (a) The net radiation exchange between the heater and the gage, both with blackbody 
behavior, is  

 ( ) ( )4 4 4
h g h hg h g g gh h

4q A F T T A F T T .g− = − = −σ σ  

Note the use of reciprocity, Eq. 13.3, for the view factors.  From Eq. 13.8, 

 ( ) ( ) ( )22 2 2 2 2 2 2
gh h hF D / 4L D 0.2m / 4 0.5 m 0.2 m 0.0385.= + = × + =  

( )2 2 8 2 4 4 4 4
h gq 0.01 m / 4 0.0385 5.67 10 W / m K 800 290 K 69.0 mW.π −
− = × × × ⋅ − =⎡ ⎤

⎣ ⎦
 < 

 
(b) The net radiation to the gage per unit area will involve exchange with the heater and the 
surroundings.  
 net,rad g g h g g sur g gq q / A q / A q / A .− −′′ = − = +  

The net exchange with the surroundings is 

 ( ) ( )4 4 4
sur g sur sur g sur g g sur sur g

4q A F T T A F T T .g− − −= − = −σ σ  

( )
( ) ( )

3
8 2 4 4 4 4 2

net,rad 2
69.0 10 W

q 1 0.0385 5.67 10 W / m K 300 290 K 934.5 W / m .
0.01m / 4π

−
−×′′ = + − × ⋅ − =  < 

 
(c) The net heat transfer rate to the gage per unit area of 
the gage follows from the surface energy balance 
 
 net,in net,rad convq q q′′ ′′ ′′= +  

 ( )2 2
net,inq 934.5 W / m 15W / m K 300 290 K′′ = + ⋅ −  

  
 

 2
net,inq 1085 W / m .′′ =          < 

 
(d) The heat flux gage described in Problem 3.98 would experience a net heat flux to the surface of 

1085 W/m2.  The irradiation to the gage from the heater is Gg = qh→g/Ag = Fgh 4
hTσ  = 894 W/m2.  

Since the gage responds to net heat flux, there would be a systematic error in sensing irradiation from 
the heater. 



PROBLEM 13.36  
KNOWN:  Long cylindrical heating element located a given distance above an insulated wall exposed 
to cool surroundings.  Diameter and temperature of heating element.  Surroundings temperature.  
FIND: (a) Maximum temperature attained by wall. (b) Plot the wall temperature over the range –100 
mm ≤ x ≤ 100 mm.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Insulated wall, (3) Negligible conduction in wall, 
(4) All surfaces are black.  
ANALYSIS:  (a) We begin with a general analysis for 
the temperature at any point x. Consider an elemental 
area dAo at point x.  Since the wall is insulated and 
conduction is negligible, the net radiation leaving dAo is 
zero.  From Eq. 13.14 (divided by Ai), 

 ( ) ( )4 4 4 4
o o,h o,sur o,h o h o,sur o surq q q F T T F T T 0′′ ′′ ′′= + = σ − + σ − =     (1) 

where Fo,sur = 1 – Fo,h and Fo,h can be found from the relation for a cylinder and parallel rectangle, 
Table 13.1, with s2 = x and s1 = s2 + δ, in the limit as δ →0.  From a Taylor series expansion, 
 

1 12 2
20 2

s s / Llim tan tan
L L 1 (s / L)

− −
δ→

+ δ δ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ +

 

Thus, 

 
s sr r / L r / L1 11 2F tan tano,h 2 2s s L L 1 (s / L) 1 (x / L)1 2 2

⎡ ⎤δ⎡ ⎤− − ⎢ ⎥= − = =⎢ ⎥− δ ⎢ ⎥⎣ ⎦ + +⎣ ⎦
  (2) 

 
Rearranging Eq. (1) and substituting numerical values, find 

 ( )
1/ 44 4T F T 1 F To o,h o,h surh

⎡ ⎤= + −⎢ ⎥⎣ ⎦
       (3) 

The maximum value of To will occur at x = 0, where Fo,h = r/L = 10/40 = 0.25.  Thus, 
 

 ( ) ( )
1/ 44 4T 0.25 700 K (1 0.25) 300 K 507 Ko,max

⎡ ⎤= + − =⎢ ⎥⎣ ⎦
   < 

(b) Eq. (3) can be evaluated with Eq. (2) for Fo,h, over the range –100 mm ≤ x ≤ 100 mm.  The results 
are shown below. 
 
 
 
 

Continued… 
 



PROBLEM 13.36 (Cont.) 
 

Surface Temperature vs. Horizontal Distance
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COMMENTS:  (1) Note the importance of the assumptions that the wall is insulated and conduction 
is negligible.  (2) In calculating Fo,h we are finding the view factor for a small area or point.  As an 
alternative to using  a Taylor series expansion, the value can be found by evaluating the view factor 
from the equation in Table 13.1 for progressively smaller values of s1 – s2 until the value converges. 
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PROBLEM 13.37  
KNOWN:  Diameter and pitch of in-line tubes occupying evacuated space between parallel plates of 
prescribed temperature.  Temperature and flowrate m&  of water through the tubes.  
FIND:  (a) Tube surface temperature Ts for m&  = 0.20 kg/s, (b) Effect of m&  on Ts.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Surfaces behave as blackbodies, (2) Negligible tube wall conduction 
resistance, (3) Fully-developed tube flow.  
PROPERTIES:  Table A-6, water (Tm = 300 K): μ = 855 × 10-6 N⋅s/m2, k = 0.613 W/m⋅K, Pr = 5.83. 
 
ANALYSIS:  (a) Performing an energy balance on a single tube, it follows that qps = qconv, or 

 ( ) ( )4 4
p ps p s s s mA F T T hA T Tσ − = −  

From Table 13.1 and D/S = 0.75, the view factor is 

 
1/ 21/ 2 2 22

1
ps 2

D D S D
F 1 1 tan 0.881

S S D

− −
= − − + =

⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦ ⎝ ⎠
 

With ( ) ( ) 6 2
DRe 4m / D 4 0.20 kg / s / 0.015 m 855 10 N s / m 19,856,π μ π −= = × ⋅ =&  fully-developed 

turbulent flow may be assumed, in which case Eq. 8.60 yields 

( ) ( )( ) ( )4 / 5 0.44 / 5 0.4 2
D

k 0.613 W / m K
h 0.023Re Pr 0.023 19,856 5.83 5220 W / m K

D 0.015 m
⋅

= = = ⋅  

Hence, with (Ap/As) = 2S/πD = 0.849, 

 ( ) ( )( )
8 2 4

ps p 4 4 4 4
s m p s p s2s

F A 0.881 5.67 10 W / m K
T T T T 0.849 T T

h A 5220 W / m K

σ −× × ⋅
− = − = −

⋅
 

With Tm = 300 K and Tp = 1000 K, a trial-and-error solution yields 

 sT 308 K=           < 
(b) Using the Correlations and Radiation Toolpads of IHT to evaluate the convection coefficient and 
view factor, respectively, the following results were obtained.  

  
The decrease in Ts with increasing m&  is due to an increase in h and hence a reduction in the convection 
resistance.  
COMMENTS:  Due to the large value of h, Ts << Tp. 



PROBLEM 13.38  
KNOWN:  Insulated wall exposed to a row of regularly spaced cylindrical heating elements.  
FIND:  Required operating temperature of the heating elements for the prescribed conditions.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Upper and lower walls are isothermal and infinite, (2) Lower wall is insulated, 
(3) All surfaces are black, (4) Steady-state conditions.  
ANALYSIS:  Perform an energy balance on the insulated wall considering convection and radiation. 
 
 in out 1 convE E q q 0′′ ′′ ′′ ′′− = − − =& &  
 
where 1q′′  is the net radiation leaving the insulated 
wall per unit area. We know that 
 

 ( ) ( )4 4 4 4
1 1e 12 1e 1 e 12 1 2q q q F T T F T Tσ σ′′ ′′ ′′= + = − + −   

 
 
where F12 = 1 – F1e.  Using Newton’s law of cooling for convq′′  solve for Te, 
 

 
( ) ( ) ( )4 4 4 41e

e 1 1 2 1
1e 1e

1 F h 1
T T T T T T .

F Fσ ∞
−

= + − + −
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
The view factor between the insulated wall and the tube row follows from the relation for an infinite 
plane and row of cylinders, Table 13.1, 

 

1/ 2 1/ 22 2 2
1

1e 2
D D s D

F 1 1 tan
S S D

− −
= − − +

⎡ ⎤ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎝ ⎠⎣ ⎦
 

 

 

1/ 2 1/ 22 2 2
1

1e 2
10 10 20 10

F 1 1 tan 0.658.
20 20 10

− −
= − − + =

⎡ ⎤ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎝ ⎠⎣ ⎦
 

 
Substituting numerical values, find 
 

( ) ( ) ( )
2

44 4 4 4
e 8 2 4

1 0.658 200 W / m K 1
T 500 K 500 300 K 500 450 K

0.658 0.6585.67 10 W / m K−
− ⋅

+ − + × −
× ⋅

⎡ ⎤= ⎢ ⎥⎣ ⎦
 

 
 eT 774 K.=           < 
 
COMMENTS:  Always express temperatures in kelvins when considering convection and radiation 
terms in an energy balance.  Why is F1e independent of the distance between the row of tubes and the 
wall? 



PROBLEM 13.39  
KNOWN:  Surface radiative properties, diameter and initial temperature of a copper rod placed in an evacuated 
oven of prescribed surface temperature.  
FIND:  (a) Initial heating rate, (b) Time th required to heat rod to 1000 K, (c) Effect of convection on heating 
time.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Copper may be treated as a lumped capacitance, (b) Radiation exchange between rod and 
oven may be approximated as blackbody exchange.  
PROPERTIES:  Table A-1, Copper (300 K): ρ = 8933 kg/m3, cp = 385 J/kg⋅K, k = 401 W/m⋅K. 
 
ANALYSIS:  (a) Performing an energy balance on a unit length of the rod, in stE E ,=& &  or 

 
2

p p
dT D dT

q Mc 1 c
dt 4 dt

π
ρ= = ×
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

Neglecting convection, q = qrad = A2 F21 ( )4 4
surT Tσ −  = A1 F12 ( )4 4

surT T ,σ −  where A1 = πD × 1 and 

F12 =1.  It follows that 

 
( )

( )
( )4 4 4 4

sur sur

2 pp

D T T 4 T TdT

dt DcD / 4 c

σπ σ

ρρ π

− −
= =        (1) 

 
( ) ( )

( )

8 2 44 4

3i

4 1650 K 300 K 5.67 10 W / m KdT
48.8 K / s.

dt 8933 kg / m 0.01m 385 J / kg K

−− × ⋅
= =

⋅

⎡ ⎤
⎞ ⎣ ⎦
⎟
⎠

   < 

(b) Using the IHT Lumped Capacitance Model to numerically integrate Eq. (2), we obtain 

 st 15.0 s=           < 

(c) With convection, q = qrad + qconv = A1 F12 ( )4 4
surT Tσ −  + hA1 (T∞ - T), and the energy balance becomes 

 
( ) ( )

4 4
sur

p p

4 T T 4h T TdT

dt Dc Dc

σ

ρ ρ
∞

− −
= +  

Performing the numerical integration for the three values of h, we obtain 
  h (W/m2⋅K):   10  100  500 
  th (s):  14.6  12.0  6.8 
 
COMMENTS:  With an initial value of hrad,i = ( )4 4

surT Tσ − /(Tsur – T) = 311 W/m2⋅K, Bi = hrad (D/4)/k = 

0.002 and the lumped capacitance assumption is justified for parts (a) and (b).  With h = 500 W/m2
⋅K and h + 

hr,i = 811 W/m⋅K in part (c), Bi = 0.005 and the lumped capacitance approximation is also valid. 



PROBLEM 13.40  
KNOWN:  Long, inclined black surfaces maintained at prescribed temperatures.  
FIND:  (a) Net radiation exchange between the two surfaces per unit length, (b) Net radiation transfer 
to surface A2 with black, insulated surface positioned as shown below; determine temperature of this 
surface.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Surfaces behave as blackbodies, (2) Surfaces are very long in direction normal 
to page.  
ANALYSIS:  (a) The net radiation exchange between two black surfaces is 

 ( )4 4
12 1 12 1 2q A F T Tσ= −  

Noting that A1 = width×length ( )l  and that from symmetry, F12 = 0.5, find 

 ( )8 2 4 4 4 412
12

q
q 0.1 m 0.5 5.67 10 W / m K 1000 800 K 1680 W / m.−′ = = × × × ⋅ − =

l
 <

 
 

 

(b) From Eq. 13.14,  
 

  ( ) ( )' 4 4 4 43 3 3
3 31 3 1 32 3 2 0q A Aq F T T F T Tσ σ= = − + − =

l l l
 

 

Since F31 = F32,    ( ) ( )1/ 4 1/ 44 4 4
3 1

4T T T / 2 1000 800 / 2 K 916 K.2= + = + =⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

                           < 
 
Also from Eq. 13.14,  
 

  
( ) ( )

( )

' 4 4 4 42 2 2
2 21 2 1 23 2 3

-8 2 4 4 4 4 4     = 0.1 0.5 5.67 10  W/m K 2 800 1000 916 K 2508 W/m

q A Aq F T T F T Tσ σ= = − + −

× × × ⋅ × × − − = −

l l l      < 

 



PROBLEM 13.41 
 

 
KNOWN: Position of long cylindrical-shaped product conveyed in an oven with non-uniform 
wall temperatures. Product diameter, temperature of surroundings and panel heaters. 
 
FIND: (a) Radiation incident upon the product, per unit length at product locations x = 0.5 m 
and x = 1.0 m for α = 0, (b) Radiation incident upon the product, per unit length, at product 
locations of x = 0.5 m and x = 1.0 m for α = π/15. 
 
SCHEMATIC: 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Two-dimensional system, (2) Steady-state conditions, (3) Blackbody 
behavior, (4) Large surroundings. 
 
ANALYSIS: 
 
Consider the cylinder and parallel rectangle arrangement of Table 13.1. We note that 
 

1 11 2
ij

1 2

r s sF tan tan
s s L L

− −⎡ ⎤= −⎢ ⎥− ⎣ ⎦
 

 
and by reciprocity 
 

i ij 1 2 ij
ji

j

A F (s s )F
F

A 2 r
−

= =
π

 

Therefore, 
 

1 11 2
ji

1 s sF tan tan
2 L L

− −⎡ ⎤= +⎢ ⎥π ⎣ ⎦
     (1) 

Continued… 

Product, D = 10 mm, Surface 1

L = 2 m

α a = 20 mm

b = 40 mm

x

L = 2 m

T2 = 500 K

T3 = 300 K

Surface 3b

Surface 3a

Surface
3c

Surface 2a

Surface 2b

β = L(1-cosα)

γ = Lsinα
Product, D = 10 mm, Surface 1

L = 2 m

α a = 20 mm

b = 40 mm

x

L = 2 m

T2 = 500 K

T3 = 300 K

Surface 3b

Surface 3a

Surface
3c

Surface 2a

Surface 2b

β = L(1-cosα)

γ = Lsinα



PROBLEM 13.41 (Cont.) 
 
 
(a) For α = 0, 
 

1 1
13a

1 a (b a)F tan tan
2 x x

− −⎡ ⎤− −⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎢ ⎥π ⎝ ⎠ ⎝ ⎠⎣ ⎦
 

 
where s1 = a and s2 = -(b - a). For x = 0.5 m, 
 

1 1
13a

1 0.02 (0.04 0.02F tan tan 0.0127
2 0.5 0.5

− −⎡ ⎤− −⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟⎢ ⎥π ⎝ ⎠ ⎝ ⎠⎣ ⎦
 

 
For x = 1.0 m, 

1 1
13a

1 0.02 (0.04 0.02F tan tan 0.0064
2 1.0 1.0

− −⎡ ⎤− −⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟⎢ ⎥π ⎝ ⎠ ⎝ ⎠⎣ ⎦
 

 
Since A3b = 0 for α = 0, F13b = 0. 
 
For F13c we note that s1 = a and s2 = -(b – a). Therefore, 
 

1 1
13c

1 a (b a)F tan tan
2 L x L x

− −⎡ ⎤− −⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎢ ⎥π − −⎝ ⎠ ⎝ ⎠⎣ ⎦
 

 
For x = 0.5 m, 
 
 

1 1
13c

1 0.02 (0.04 0.02F tan tan 0.0042
2 1.5 1.5

− −⎡ ⎤− −⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟⎢ ⎥π ⎝ ⎠ ⎝ ⎠⎣ ⎦
 

 
For x = 1.0 m, 
 

1 1
13c

1 0.02 (0.04 0.02F tan tan 0.0064
2 1.0 1.0

− −⎡ ⎤− −⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟⎢ ⎥π ⎝ ⎠ ⎝ ⎠⎣ ⎦
 

 
Noting that F13 = F13a + F13b + F13c, we find for x = 0.5 m, F13 = 0.0127 + 0 + 0.0042 = 0.0169. 
Likewise for x = 1.0 m, F13 = 0.0064 + 0 + 0.0064 = 0.0128. The radiation incident upon the 
product is 4 4

in 21 31 2 21 1 3 31 3q q q A F T A F T= + = σ + σ . Noting that A2F21 = A1F12 = A1(1 – F13) and A1 
= πDL, the preceding expression becomes 
 

' 4 4
in in 2 13 3 13q q / L D T (1 F ) T F⎡ ⎤= = π σ − +⎣ ⎦     (2) 

 
For x = 0.5 m, 

Continued… 
 



PROBLEM 13.41 (Cont.) 
 
 

( )4' 8 4
in 2 4

Wq 0.01m 5.67 10 500K (1 0.0169) (300K) 0.0169
m K

− ⎡ ⎤= π × × × × × − + ×⎢ ⎥⎣ ⎦⋅
= 109.7 W/m < 

 
For x = 1.0 m, 

( )4' 8 4
in 2 4

Wq 0.01m 5.67 10 500K (1 0.0128) (300K) 0.0128
m K

− ⎡ ⎤= π × × × × × − + ×⎢ ⎥⎣ ⎦⋅
= 110.1 W/m < 

 
(b) For α = π/15, 
 

1 1
13a

1 a (b a)F tan tan
2 x x

− −⎡ ⎤+ γ − −⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎢ ⎥π ⎝ ⎠ ⎝ ⎠⎣ ⎦
 

 
where γ = Lsinα, s1 = a + Lsinα and s2 = -(b-a). 
 
For x = 0.5 m, 
 

1 1
13a

1 0.02 2sin( /15) (0.04 0.02F tan tan 0.1205
2 0.5 0.5

− −⎡ ⎤+ π − −⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟⎢ ⎥π ⎝ ⎠ ⎝ ⎠⎣ ⎦
 

 
Likewise, for x = 1.0 m, F13a = 0.0686. 
 
From Eq. (1), 
 

  1 1
13b

1 xF tan tan
2 a a

− −⎡ ⎤⎛ ⎞ ⎛ ⎞β
= −⎢ ⎥⎜ ⎟ ⎜ ⎟π + γ + γ⎝ ⎠ ⎝ ⎠⎣ ⎦

 

 
where β = L(1 – cosα). 
 
For x = 0.5 m, 
 

1 1
13b

1 0.5 0.5 2(1 cos( /15))F tan tan
2 0.02 2sin( /15) 0.02 2sin( /15)

− −⎡ ⎤⎛ ⎞ ⎛ ⎞− − π
= −⎢ ⎥⎜ ⎟ ⎜ ⎟π + π + π⎝ ⎠ ⎝ ⎠⎣ ⎦

= 0.0072 

 
Likewise, for x = 1.0 m, F13b = 0.0026. The values of F13c are the same as in part (a). 
 
For x = 0.5 m, F13 = F13a + F13b + F13c = 0.1205 + 0.0072 + 0.0042 = 0.1319. Likewise, for x = 1.0 
m, F13 = 0.0686 + 0.0026 + 0.0064 = 0.0776. 
 
Using Eq. (2) for x = 0.5 m, 
 

' 8 4 4
in 2 4

Wq 0.01m 5.67 10 (500K) (1 0.1319) (300K) 0.1319 98.5W / m
m K

− ⎡ ⎤= π × × × × − + × =⎣ ⎦⋅
 < 

                                                                                                                        Continued… 



PROBLEM 13.41 (Cont.) 
 
 
Likewise for x = 1.0 m, 
 

' 8 4 4
in 2 4

Wq 0.01m 5.67 10 (500K) (1 0.0776) (300K) 0.0776 103.8W / m
m K

− ⎡ ⎤= π × × × × − + × =⎣ ⎦⋅
 < 

 
 

 
 
COMMENTS: (1) For the α = 0 case, the irradiation of the product at x = 0.5 m is 99.6 % of 
the irradiation at x = 1 m, where the irradiation is maximized. The influence of the oven openings 
is very small in the central portion of the oven. (2) Modifying the tilt angle of the upper panel 
heater is effective in controlling the radiative heating of the product. However, convection 
heating and/or cooling of the product will also be affected by the change in the oven geometry.  
 



PROBLEM 13.42  
KNOWN:  Two horizontal, very large parallel plates with prescribed surface conditions and 
temperatures.  
FIND:  (a) Irradiation to the top plate, G1, (b) Radiosity of the top plate, J1, (c) Radiosity of the lower 
plate, J2, (d) Net radiative exchange between the plates per unit area of the plates. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Plates are sufficiently large to form a two surface enclosure and (2) Surfaces 
are diffuse-gray and have uniform radiation and radiosity distributions.  
ANALYSIS:  (a) The irradiation to the upper plate is defined 
as the radiant flux incident on that surface.  The irradiation to 
the upper plate G1 is comprised of flux emitted by surface 2 
and reflected flux emitted by surface 1. 
 
 ( )4 4

1 2 b2 2 b1 2 2 2 1G E E T 1 Tε ρ ε σ ε σ= + = + −  

 
 

 

 ( ) ( ) ( )4 48 2 4 8 2 4
1G 0.8 5.67 10 W / m K 500 K 1 0.8 5.67 10 W / m K 1000 K− −= × × ⋅ + − × × ⋅  

 
 2 2 2

1G 2835 W / m 11,340 W / m 14,175 W / m .= + =      < 
 
(b) The radiosity is defined as the radiant flux leaving the surface by emission and reflection.  For the 
blackbody surface 1, it follows that 

 ( )44 8 2 4 2
1 b1 1J E T 5.67 10 W / m K 1000 K 56, 700 W / m .σ −= = = × ⋅ =    < 

 
(c) The radiosity of surface 2 is then, 
 2 2 b2 2 2J E G .ε ρ= +  
 
Since the upper plate is a blackbody, it follows that G2 = Eb1 and 

 ( )4 4 2
2 2 b1 2 b1 2 2 2 1J E E T 1 1 T 14,175 W / m .ε ρ ε σ ε σ= + = + − =     < 

 
Note that J2 = G1.  That is, the radiant flux leaving surface 2 (J2) is incident upon surface 1 (G1). 
 
(d) The net radiation heat exchange per unit area can be found by three relations. 

 ( ) 2 2
1 1 1q J G 56, 700 14,175 W / m 42,525 W / m′′ = − = − =  

 ( ) 2 2
12 1 2q J J 56,700 14,175 W / m 42,525 W / m′′ = − = − =     < 

 
The exchange relation, Eq. 13.24, is also appropriate with ε1 = 1, 
 1 2 12q q q′′ ′′ ′′= − =  

 ( ) ( )4 4 8 2 4 4 4 4 2
1 2 1 2q T T 0.8 5.67 10 W / m K 1000 500 K 42,525 W / m .ε σ −′′ = − = × × ⋅ − =  

COMMENT: Since the plates are large, the assumption of uniform irradiation and radiosity 
distributions is excellent. 



PROBLEM 13.43  
KNOWN:  Dimensions and temperature of a flat-bottomed hole.  
FIND:  (a) Radiant power leaving the opening, (b) Effective emissivity of the cavity, εe, (c) Limit of 
εe as depth of hole increases. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Hypothetical surface A2 is a blackbody at 0 K, (2) Cavity surface is isothermal, 
opaque and diffuse-gray with uniform radiosity and irradiation distributions.  
ANALYSIS:  Approximating A2 as a blackbody at 0 K implies that all of the radiation incident on A2 
from the cavity results (directly or indirectly) from emission by the walls and escapes to the 
surroundings.  It follows that for A2, ε2 = 1 and J2 = Eb2 =0. 
 
(a) From the thermal circuit, the rate of radiation loss through the hole (A2) is 

 ( ) 1 2
1 b1 b2

1 1 1 12 2 2

1 1 1
q E E / .

A A F A
ε ε

ε ε
− −

= − + +
⎡ ⎤
⎢ ⎥
⎣ ⎦

      (1) 

 
Noting that F21 = 1 and A1 F12 = A2 F21, also that 

 ( ) ( )( )2 4 2
1A D / 4 DL D D / 4 L 0.006 m 0.006 m / 4 0.024 m 4.807 10 mπ π π π −= + = + = + = ×  

 

 ( )22 5 2
2A D / 4 0.006 m / 4 2.827 10 m .π π −= = = ×  

 
Substituting numerical values with Eb = σT4, find 

 ( )8 2 4 4 4
1 4 2 5 2

1 0.8 1
q 5.67 10 W / m K 1000 0 K / 0

0.8 4.807 10 m 2.827 10 m
−

− −
−

= × ⋅ − + +
× × ×

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
 1q 1.580 W.=           < 
 
(b) The effective emissivity, εe, of the cavity is defined as the ratio of the radiant power leaving the 
cavity to that from a blackbody having the same area of the cavity opening and at the temperature of 
the inner surfaces of the cavity.  For the cavity above, 
 

 1
e 4

2 1

q

A T
ε

σ
=  

 

 ( )( )45 2 8 2 4
e 1.580 W / 2.827 10 m 5.67 10 W / m K 1000 K 0.986.ε − −= × × ⋅ =   < 

 
(c) As the depth of the hole increases, the term (1 - ε1)/ε1 A1 goes to zero such that the remaining term 
in the denominator of Eq. (1) is 1/A1 F12 = 1/A2 F21.  That is, as L increases, q1 → A2 F21 Eb1.  This 
implies that εe → 1 as L increases.  For L/D = 10, one would expect εe = 0.999 or better. 



PROBLEM 13.44 
 
 
KNOWN: Temperatures and emissivity of glass surfaces. 
 
FIND:  Heat flux through the window for case 1: ε1 = ε2 = 0.95, case 2: ε1 = ε2 = 0.05, and case 3: ε1 = 
0.05, ε2 = 0.95. 
 
 
SCHEMATIC: 
 

 
 
 
 
 

 
 
 
ASSUMPTIONS:  (1) Diffuse-gray surfaces with uniform radiosity and irradiation distributions, (2) 
Infinite parallel glass surfaces. 
  
ANALYSIS:   For case 1, the net radiation heat flux between the glass sheets is  
 

  
( ) ( )4 4 8 2 4 4 4

1 2" 2

1 2

5.67 10 W/m K 293K 263K
133 W/m1 1 1 11 1

0.95 0.95

rad

T T
q

σ

ε ε

−− × ⋅ −
= = =

+ − + −
 < 

 
Likewise, for case 2: ε1 = ε2 = 0.05, "

radq =  3.76 W/m2,      < 
 
and for case 3: ε1 = 0.05, ε2 = 0.95, "

radq =  7.31 W/m2.      < 
 

COMMENTS:  The reduction associated with case 2 is [(133 – 3.76)/133] × 100 = 97 % while the 
reduction associated with case 3 is 94.5%. Both cases 2 and 3 provide a significant reduction in the 
heat flux relative to the uncoated glass of case 1. The decision to specify single- or double-surface 
coating depends on the cost of applying the low-emissivity coating. 

Evacuated Gap
Glass, T1 ,ε1

Glass, T2 , ε2



PROBLEM 13.45  
KNOWN:  Long V-groove machined in an isothermal block.  
FIND:  Radiant flux leaving the groove to the surroundings and effective emissivity.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Groove surface is diffuse-gray with uniform irradiation and radiosity 
distributions, (2) Groove is infinitely long, (3) Block is isothermal.  
ANALYSIS:  Define the hypothetical surface A2 with T2 = 0 K.  The net radiation leaving A1, q1, 
will pass to the surroundings.  From the two surface enclosure analysis, Eq. 13.23, 

 
( )4 4

1 2
1 2

1 2

1 1 1 12 2 2

T T
q q

1 1 1
A A F A

σ

ε ε
ε ε

−
= − =

− −
+ +

 

Recognize that ε2 = 1 and that from reciprocity, A1 F12 = A2 F21 where F21 = 1.  Hence, 
 

 
( )4 4

1 21
1 22

1 1

T Tq
1 AA 1

A

σ

ε
ε

−
=

−
+

 

 
With A2/A1 = 2l  tan20°/ ( )2 / cos 20°l  = sin20°, find 
 
  

 

 
( )

( )

8 2 4 4 4
2

1
5.67 10 W / m K 1000 0 K

q 46.17 kW / m .
1 0.6

sin 20 1
0.6

−× ⋅ −
′′ = =

−
× ° +

      < 

 
The effective emissivity of the groove follows from the definition given in Problem 13.43 as the ratio 
of the radiant power leaving the cavity to that from a blackbody having the area of the cavity opening 
and at the same temperature as the cavity surface.  For the present situation, 
 

 
( ) ( )

3 2
1 1

e 4 48 2 4b 1 1

q q 46.17 10 W / m
0.814.

E T T 5.67 10 W / m K 1000 K−

′′ ′′ ×
= = = =

× ⋅
ε

σ
   < 

 
COMMENTS:  (1) Note the use of the hypothetical surface defined as black at 0 K.  This surface 
does not emit and absorbs all radiation on it; hence, is the radiant power to the surroundings. (2) 
Neither the irradiation or radiosity distributions are uniform. How will this affect your predictions? 



PROBLEM 13.46 
 

 
KNOWN: Approximate wave geometry, hemispherical emissivity of water, ε = 0.96. 
 
FIND: (a) Effective emissivity of the water surface for α = 3π/4, (b) Plot of the effective 
emissivity normalized by the hemispherical emissivity of water, εeff/ε, over the range π/2 ≤ α ≤ 
π/. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Two-dimensional system, (2) Diffuse, gray surfaces. 
 
ANALYSIS: (a) The effective emissivity is defined by the relation 
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From the schematic we see that A2/A1 = sin(α/2) and F21 = 1. Therefore, F12 = A2F21/A1 = sin(α/2) 
and the expression for the effective emissivity is 
 

eff
2 1 2 1

1 1 1 12 1

1 1 1 0.963A (1 ) A sin( / 2)(1 ) sin(3 /8)(1 0.96)1 1
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ε ε
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(b) The dependence of the normalized effective emissivity to the wave angle is shown in the plot 
below. 
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PROBLEM 13.46 (Cont.) 
 
 

 
 

Normalized Effective Emissivity vs. Wave Structure

90 100 110 120 130 140 150 160 170 180

Wave Angle (degrees)

0.99

1

1.01

1.02
ee

ff/
e

 
 

 
 
 
 
Comment: Although water exhibits nearly black behavior, and the sensitivity of the effective 
emissivity to the wave structure is small, the heat balance of the earth could be affected by 
approximately 1% depending on the sea roughness. These types of difficult-to-measure effects 
have lead to debate on issues related to earth’s energy balance. 
 



PROBLEM 13.47  
KNOWN:  Cavities formed by a cone, cylinder, and sphere having the same opening size (d) and 
major dimension (L) with prescribed wall emissivity.  
FIND:  (a) View factor between the inner surface of each cavity and the opening of the cavity; (b) 
Effective emissivity of each cavity as defined in Problem 13.43, if the walls are diffuse-gray with εw; 
and (c) Compute and plot εe as a function of the major dimension-to-opening size ratio, L/d, over the 
range from 1 to 10 for wall emissivities of εw = 0.5, 0.7, and 0.9. 
 
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Diffuse-gray surfaces, (2) Uniform radiosity over the surfaces.  
ANALYSIS:  (a) Using the summation rule and reciprocity, determine the view factor F12 for each of 
the cavities considered as a two-surface enclosure. 
 
Cone: 21 22 21 21F F F 0 1 F 1+ = + = =  

 ( ) ( ) ( ) ( ) ( )
1/ 2 1/ 22 22 2

12 2 21 1F A F / A d / 4 / d / 2 L d / 2 1/ 2 L / d 1/ 4π π
−

= = + = +⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 < 
 
Cylinder: 21F 1=  

 ( ) ( )2 2
12 2 21 1 2 1

1F A F / A A / A d / 4 / dL d / 4 1 4L / dπ π π −= = = + = +⎡ ⎤
⎣ ⎦   < 

Sphere: 21F 1=  

 ( ) ( )2 2 2 2 2
12 2 21 1 2 1

1
F A F / A A / A d / 4 / D d / 4 4D / d 1 .π π π

−
= = = − = −⎡ ⎤

⎣ ⎦   < 

(b) The effective emissivity of the cavity is defined as 
 eff 12 cq / qε =  
 
where 4

c 2 1q A Tσ=  which presumes the opening is a black surface at T1 and for the two-surface 
enclosure, 
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since T2 = 0K and ε2 = 1.  Hence, since A2/A1 = F12 for all the cavities, with ε1 = εw 
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          Continued … 



PROBLEM 13.47 (Cont.) 
 

Cylinder: [ ] ( ){ }eff
11 w w1 4L / d 1 / 1ε ε ε−= + − +       (2)  < 

Sphere:  ( )eff
12 21/ w w4D / d 1 1 / 1ε ε ε
−

= − − +
⎧ ⎫⎡ ⎤⎨ ⎬⎣ ⎦⎩ ⎭

      (3)  < 

(c) Using the IHT Workspace with eqs. (1,2,3), the effective emissivity was computed as a function of 
L/d (cone, cylinder and sphere) for selected wall emissivities.  The results are plotted below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Fig. 1, εeff is shown as a function of L/d for εw = 0.7.  For larger L/d, the sphere has the highest εeff 
and the cone the lowest.  Figures 2, 3 and 4 illustrate the εeff vs. L/d for each of the cavity types.  As 
expected, εeff increases with increasing wall emissivity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Note that for the spherical cavity, with L/d ≥ 5, εeff > 0.98 even with εw as low as 0.5.  This feature 
makes the use of spherical cavities for high performance radiometry applications attractive since εeff is 
not very sensitive to εw. 
 
COMMENTS:  In Fig. 1, comparing εeff for the three cavity types, can you give a physical 
explanation for the results? 

Fig. 1 Cone, cylinder, sphere cavities, eps = 0.7
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Fig 2 Conical cavity

1 2 3 4 5 6 7 8 9 10

L/d

0.7

0.8

0.9

1

ep
se

ff

epsw = 0.5
epsw = 0.7
epsw = 0.9

Fig 3 Cylindrical cavity
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Fig 4 Spherical cavity
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PROBLEM 13.48 
 
KNOWN:  Dimensions of attic. Emissivity of aluminum foil and of surfaces prior to application of 
the foil . 
 
FIND:  (a) Reduction of radiation heat transfer from the hot roof to the attic floor if foil is installed on 
the bottom of the roof, (b) Reduction in radiation heat load if foil is installed on the top of the attic 
floor, (c) Reduction if foiled is installed on both the attic floor and bottom of roof. 
 
SCHEMATIC: 

Attic

L1 = 10 m

A1, ε1, T1

A2, ε2, T2 θ = 30°

 
 

ASSUMPTIONS:  (1) Diffuse-gray surfaces of uniform radiosity and irradiation, (2) Temperatures of 
surfaces are unaffected by surface treatment, (3) Two-dimensional configuration. 
  
ANALYSIS:   From Eqn. 13.23 we know that the ratio of the radiation heat load after installation of 
the foil to the radiation heat load prior to the installation of the foil is 
 

1 2

1 1 12 2 1 1 1 12 2 2

1 1 1 1 1 1o o

o o
R

A A F A A A F A
ε ε ε ε

ε ε ε ε
⎡ ⎤ ⎡ ⎤− − − −

= + + + +⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

    (1) 

 
On a per-unit depth basis, A1 = 10 m2 and A2 = 10 m2/cos(30°) = 11.55 m2, while from inspection, F12 
= 1. 
 
(a) ε1 = 0.85, ε2 = 0.07. Evaluation of Eqn. (1) yields R = 0.105.     < 
 
(b) ε1 = 0.07, ε2 = 0.85. Evaluation of Eqn. (1) yields R = 0.092.     < 
 
(c) ε1 = ε2 = 0.07. Evaluation of Eqn. (1) yields R = 0.052.     < 

 
COMMENTS:  (1) The reduction in the radiation heat load is least when the foil is installed on the 
bottom of the attic roof only.  The surface formed by the attic roof is relatively large compared to 
Surface 1. As the roof becomes more steeply pitched, A2 will increase and will eventually form a large 
surroundings. Installing foil on the roof, as its area becomes much larger, will become more 
ineffective. (2) The reduction is most significant when both surfaces are covered with foil, as 
expected. (3) Over time, the foil installed on the floor may become covered with a layer of dust, 
reducing the effectiveness of the foil installation on that surface. 



PROBLEM 13.49  
KNOWN:  Long, thin-walled horizontal tube with radiation shield having an air gap of 10 mm.  
Emissivities and temperatures of surfaces are prescribed.  
FIND:  Radiant heat transfer from the tube per unit length.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Tube and shield are very long, (2) Surfaces at uniform temperatures, (3) 
Surfaces are diffuse-gray.  
ANALYSIS:  The long tube and shield form a two surface enclosure, and since the surfaces are 
diffuse-gray, the radiant heat transfer from the tube, according to Eq. 13.23, is 
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By inspection, F12 = 1.  Note that 
 
 1 1 2 2A D and A Dπ π= =l l  
 
where l  is the length of the tube and shield.  Dividing Eq. (1) by l , find the heat rate per unit length, 
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+ +
     < 

 
COMMENTS:  Recognize that convective heat transfer would be important in this annular air gap.  
Suitable correlations to estimate the heat transfer coefficient are given in Chapter 9. 



PROBLEM 13.50 
 

 
KNOWN: Dimensions and temperature of an anodized aluminum sheet radiating to deep space. 
 
FIND: (a) Net radiation from both sides of a 200 mm × 200 mm sheet, (b) Net radiation from the 
sheet with 3-mm diameter holes spaced 5 mm apart, (c) Net radiation from the sheet with 3-mm, 
flat-bottomed diameter holes of depth 2 mm, spaced 5 mm apart, (d) Ratio of net heat transfer to 
sheet mass for the three configurations. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: Diffuse, gray behavior. 
 
PROPERTIES: Table A.11, anodized aluminum: (T = 300 K): ε = 0.82. Table A.1 aluminum 
(T = 300 K): ρ = 2702 kg/m3. 
 
ANALYSIS: (a) For 2 sides, 
 

 4 8 4
s 2 4

WE 2Lw T 2 0.2m 0.2m 0.82 5.67 10 (300K) 30.13 W
m K

−= εσ = × × × × × × =
⋅

  < 

 
(b) The number of holes is N = Lw/s2 where s = 5 mm is the hole spacing. Therefore, N = (0.2 m 
× 0.2 m)/(0.005 m)2 = 1600. The sheet area occupied by holes is Ah = NπD2/4 = 1600 × π × 
(0.003m)2/4 = 11.31 × 10-3 m2. The emission from the entire sheet is E = NEh + Es. 
 
The emission from the flat sheet area is 4

s h sE 2(Lw A ) T= − εσ , or 
 

3 2 8 4
s 2 4

WE 2 (0.2m 0.2m 11.31 10 m ) 0.82 5.67 10 (300K) 21.61 W
m K

− −= × × − × × × × × =
⋅

   

 
Now, consider one hole. From the coaxial parallel disk results of Table 13.2,  
 

( )1/ 22
23
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From the summation rule and reciprocity, 
Continued… 
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PROBLEM 13.50 (Cont.) 
 

 
F21 = 1 – F23 and F12 = (1 – F23)A2/A1 = (1 – F23)D/4t = (1 – 0.0762) × 3/(4 × 5) = 0.139. 
Therefore, F1-(23) = 0.277 and the emission from one hole is 
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Therefore, E = 21.61 W + 1600 × 5.65 × 10-3 W = 30.65 W    < 
 
(c) We shall treat the sides and bottom of the cavity as one surface with F21 = 1. For one opening, 
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Eh = 3.063 × 10-3 W.  Therefore for both sides of the sheet,  
 

E = 21.61 W + 1600 × 2 × 3.063 × 10-3 W = 31.41 W       < 
 
(d) The mass of the sheet in part (a) is Ma = Lwtρ = 0.2m × 0.2m × 0.005m × 2702 kg/m3 = 0.540 
kg. For part (b), Mb = (Lwt - NπD2t/4)ρ = (0.2m × 0.2m × 0.005m – 1600 × π × (0.003m)2 × 
0.005m/4) × 2702 kg/m3 = 0.387 kg. For part (c), Mc = (Lwt – NπD2(t – w)/4)ρ = (0.2m × 0.2m × 
0.005m – 1600 × π × (0.003m)2 × (0.004m)/4) × 2702 kg/m3 = 0.418 kg. 
 
Therefore, the ratios of the net radiation heat transfer to mass, R, for the three parts of the 
problem are: 
 
Part (a): R = E/Ma = 30.13 W/0.540 kg = 55.8 W/kg. 
Part (b): R = E/Mb = 30.65 W/0.387 kg = 79.2 W/kg. 

Part (c): R = E/Mc = 31.41 W/0.418 kg = 75.1 W/kg.     < 
 
 
COMMENTS: (1) Boring holes in the sheet results in increased heat transfer rates and reduced 
mass. If a specific heat loss is required, the size of the sheets with the bored holes could be 
reduced slightly, leading to reduction in the mass of the bored aluminum sheet. (2) Holes that are 
bored completely through the sheet may lead to large conduction resistance along the sheet and, 
in turn, spatial temperature variations on the aluminum sheet. Since the two alternative designs 
involving holes are characterized by nearly the same emission-to-mass ratio, the third option 
might be preferred. 
 



PROBLEM 13.51  
KNOWN:  Temperature, emissivity and dimensions of a rectangular fin array radiating to deep space.  
FIND:  (a) Rate of radiation transfer per unit length from a unit section to space, (b) Effect of 
emissivity on heat rejection.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Diffuse/gray surface behavior, (2) Length of array (normal to page) is much 
larger than W and L, (3) Isothermal surfaces.  
ANALYSIS:  (a) Since the sides and base of the U-section have the same temperature and emissivity, 
they can be treated as a single surface and the U-section becomes a two-surface enclosure.  Deep space 
may be represented by the hypothetical surface 3A ,′  which acts as a blackbody at absolute zero 

temperature.  From Eq. 13.23, with T1 = T2 = T and ε1 = ε2 = ε, 
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(b) For ε = 0.7 emission from the base of the U-section is 4
b 1q A Tε σ′ ′=  0.7 0.025m= ×  

( )48 2 45.67 10 W / m K 325 K 11.1 W / m.−× × ⋅ =   The effect of ε on ( )1,2 3q′  and bq′  is shown as 

follows. 
 

          Continued … 



PROBLEM 13.51 (Cont.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The effect of the fins on heat transfer enhancement increases with decreasing emissivity.  
COMMENTS:  Note that, if the surfaces behaved as blackbodies (ε1 = ε2 = 1.0), the U-section 
becomes a blackbody cavity for which heat rejection is simply 3A′  Eb (T) = bq .′   Hence, it is no 
surprise that the ( )b 1,2 3q q′ ′→  as ε → 1 in the foregoing figure.  For ε = 1, no enhancement is 

provided by the fins. 
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PROBLEM 13.52  
KNOWN:  Power dissipation of electronic device and thermal resistance associated with attachment 
to inner wall of a cubical container.  Emissivity of outer surface of container and wall temperature of 
service bay.  
FIND:  Temperatures of cubical container and device.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state, (2) Device and container are isothermal, (3) Heat transfer from 
the container is exclusively by radiation exchange with bay (small surface in a large enclosure), (4) 
Container surface may be approximated as diffuse/gray.  
ANALYSIS:  From Eq. 13.27 
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With ( )d s,c tq T T / R ,= −  

 

 d t s,cT q R T 50 W 0.1K / W 66.4 C 71.4 C= + = × + ° = °     < 
 
COMMENTS:  If the temperature of the device is too large to insure reliable operation, it may be 
reduced by increasing cε  or W. 
 



PROBLEM 13.53  
KNOWN:  Long electrical conductor with known heat dissipation is cooled by a concentric tube 
arrangement.  
FIND:  Surface temperature of the conductor.  
SCHEMATIC:   
 

 
 

 
ASSUMPTIONS:  (1) Surfaces are diffuse-gray, (2) Conductor and cooling tube are concentric and 
very long, (3) Space between surfaces is evacuated.  
ANALYSIS:  The heat transfer by radiation exchange between the conductor and the concentric, 
cooled cylinder is given by Eq. 13.25.  For a unit length, 
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where 1 1A 2 r .π= ⋅l   Solving for T1 and substituting numerical values, find 
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 ( ) [ ]{ }1/ 44 9 4
1T 300 K 3.368 10 K 1.667 0.00222= + × +      (2) 

 
 1T 342.3 K 69 C.= = °          < 
 
COMMENTS:  (1) Note that Eq. (1) implies that F12 = 1.  From Eq. (2) by comparison of the second 
term in the brackets involving ε2, note that the influence of ε2 is small.  This follows since r1 << r2. 



PROBLEM 13.54  
KNOWN:  Temperatures and emissivities of spherical surfaces which form an enclosure.  
FIND:  Evaporation rate of oxygen stored in inner container.  
SCHEMATIC:   
 

 
 
PROPERTIES:  Oxygen (given):  hfg = 2.13 × 105 J/kg. 
 
ASSUMPTIONS:  (1) Opaque, diffuse-gray surfaces, (2) Evacuated space between surfaces, (3) 
Negligible heat transfer along vent and support assembly.  
ANALYSIS:  From an energy balance on the inner container, the net radiation heat transfer to the 
container may be equated to the evaporative heat loss 
 
 oi fgq mh .= &  

 
Substituting from Eq. 13.26, where qoi = - qio and Fio = 1 
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 4m 1.14 10 kg / s.−= ×&          < 
 
COMMENTS:  This loss could be reduced by insulating the outer surface of the outer container 
and/or by inserting a radiation shield between the containers. 



PROBLEM 13.55  
KNOWN:  Emissivities, diameters and temperatures of concentric spheres.  
FIND:  (a) Radiation transfer rate for black surfaces.  (b) Radiation transfer rate for diffuse-gray surfaces, 
(c) Effects of increasing the diameter and assuming blackbody behavior for the outer sphere.  (d) Effect of 
emissivities on net radiation exchange.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Blackbody or diffuse-gray surface behavior.  
ANALYSIS:  (a) Assuming blackbody behavior, it follows that qij = AiFij(Ji - Jj) where Ji = σ 4

iT  and Jj = 

σ 4
iT . Therefore, 
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(b) For diffuse-gray surface behavior, it follows from Eq. 13.26 
 

( ) ( )24 4 8 2 4 4 4 4
1 1 2

12 2 2
2 1

1 2 2

A T T 5.67 10 W / m K 0.8 m 400 300 K
q 191 W.

1 1 0.05 0.41 1 r
0.5 0.05 0.6r

σ π

ε
ε ε

−− × ⋅ −
= = =

−− ++

⎡ ⎤
⎣ ⎦

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 < 

 
(c) With D2 = 20 m, it follows that 
 

 
( ) ( ) ( )2 4 48 2

12 2

5.67 10 W / m K 0.8 m 400 K 300 K
q 983 W.

1 1 0.05 0.4
0.5 0.05 10

π−× ⋅ −
= =

−
+

⎡ ⎤
⎢ ⎥⎣ ⎦

⎛ ⎞
⎜ ⎟
⎝ ⎠

  < 

 
With ε2 = 1, instead of 0.05, Eq. 13.21 reduces  
 

( ) ( ) ( ) ( )2 4 44 4 8 2 4
12 1 1 1 2q A T T 5.67 10 W / m K 0.8 m 0.5 400 K 300 K 998 W.σ ε π−= − = × ⋅ − =⎡ ⎤

⎢ ⎥⎣ ⎦
   < 
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PROBLEM 13.55 (Cont.) 
 
(d) Using the  IHT Radiation Tool Pad, the following results were obtained 
 

 
 
Net radiation exchange increases with ε1 and ε2, and the trends are due to increases in emission from and 
absorption by surfaces 1 and 2, respectively.  
COMMENTS:  From part (c) it is evident that the actual surface emissivity of a large enclosure has a 
small effect on radiation exchange with small surfaces in the enclosure.  Working with ε2 = 1.0 instead of 
ε2 = 0.05, the value of q12 is increased by only (998 – 983)/983 = 1.5%.  In contrast, from the results of 
(d) it is evident that the surface emissivity ε2 of a small enclosure has a large effect on radiation exchange 
with interior objects, which increases with increasing ε1. 



PROBLEM 13.56  
KNOWN:  Two radiation shields positioned in the evacuated space between two infinite, parallel 
planes.  
FIND:  Steady-state temperature of the shields.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) All surfaces are diffuse-gray and (2) All surfaces are parallel and of infinite 
extent.  
ANALYSIS:  The planes and shields can be represented by a thermal circuit from which it follows 
that 
 

 
( ) ( ) ( ) ( )4 4 4 4 4 4 4 4

1 2 1 s1 s1 s2 s2 2
1 2

1 2 3 1 2 3

T T T T T T T T
q q .

R R R R R R

σ σ σ σ− − − −
′′ ′′= − = = = =

′′ ′′ ′′ ′′ ′′ ′′+ +
 

 

Since all the emissivities involved are equal, 1
1 2 3

1 12

AR 1 R R ,
A F

′′ ′′ ′′= = = =  so that 

 

 ( ) ( )( )4 4 4 4 4 4 41
s1 1 1 2 1 1 2

1 2 3

RT T T T T 1/ 3 T T
R R R

′′
= − − = − −

′′ ′′ ′′+ +
 

 

 ( ) ( )( )44 4 4 4
1ss1T 600 K 1/ 3 600 325 K T 548 K= − − =    < 

 

 ( ) ( )( )4 4 4 4 4 4 43
s2 2 1 2 2 1 2

1 2 3

RT T T T T 1/ 3 T T
R R R

′′
= + − = + −

′′ ′′ ′′+ +
 

 

 ( ) ( )( )44 4 4 4
s2s2T 325 K 1/ 3 600 325 K T 474 K.= + − =    < 



PROBLEM 13.57  
KNOWN:  Two large, infinite parallel plates that are diffuse-gray with temperatures and emissivities 
of T1 and ε1 and T2 and ε2. 
 
FIND:  Show that the ratio of the radiation transfer rate with multiple shields, N, of emissivity εs to 
that with no shields, N = 0, is 
 

 
q
q N 2 /
12,N

12,0 s
=

+ −
+ − + −

1 1 1
1 1 1 1

1 2
1 2

/ /
/ /

ε ε
ε ε ε

 

 
where q12,N and q12,0 represent the radiation heat rate with N and N = 0 shields, respectively. 
 
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Plane infinite planes with diffuse-gray surfaces and uniform radiosities, and (2) 
Shield has negligible thermal conduction resistance.  
ANALYSIS:  Representing the parallel plates by the resistance network shown above for the “no-
shield” condition, N = 0, with F12 = 1, the heat rate per unit area follows from Eq. 13.24 (see also Fig. 
13.11) as 
 

 ′′ =
−

+ −
q E E

1/12,0
b1 b2
1ε ε1 12/

        (1) 

 
With the addition of each shield as shown in the schematic above, three resistance elements are added 
to the network: two surface resistances, (1 - εs)/εs, and one space resistance, 1/Fij = 1.  Hence, for the 
“N - shield” condition, 
 

 ′′ =
−

+ − + − +
q E E

1/ N 2 112,N
b1 b2

1 s sε ε ε ε1 1 12/ /b g      (2) 

 
The ratio of the heat rates is obtained by dividing Eq. (2) by Eq. (1), 
 

 
′′

=
+ −

+ − + −

q
q N 2 /
12,N

12,0 s

1 1 1
1 1 1 1

1 2
1 2

/ /
/ /

ε ε
ε ε ε

      < 

 
COMMENTS:  Can you derive an expression to determine the temperature difference across pairs of 
the N-shields? 



PROBLEM 13.58  
KNOWN:  Emissivities of two large, parallel surfaces.  
FIND:  Heat shield emissivity needed to reduce radiation transfer by a factor of 10.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (a) Diffuse-gray surface behavior, (b) Negligible conduction resistance for shield, 
(c) Same emissivity on opposite sides of shield.  
ANALYSIS:  For this arrangement, F13 = F32 = 1. 
 
Without (wo) the shield, it follows from Eq. 13.24, 
 

 ( )
( )4 4

1 1 2
12 wo

1 2

A T T
q .1 1 1

σ

ε ε

−
=

+ −
 

 
With (w) the shield it follows from Eq. 13.28, 
 

 ( )
( )4 4

1 1 2
12 w

1 2 3

A T T
q .1 1 2 2

σ

ε ε ε

−
=

+ + −
 

 
Hence, the heat rate ratio is 
 

 
( )
( )

12 w 1 2
12 wo

1 2 3 3

1 1 1 11 1q 0.8 0.80.1 .1 1 2 1 1 2q 2 2
0.8 0.8

ε ε

ε ε ε ε

+ − + −
= = =

+ + − + + −
 

 
Solving, find 
 
 3 0.138.ε =           < 
 
COMMENTS:  The foregoing result is independent of T1 and T2.  It is only necessary that the 
temperatures be maintained at fixed values, irrespective of whether or not the shield is in place. 



PROBLEM 13.59  
KNOWN:  Surface emissivities of a radiation shield inserted between parallel plates of prescribed 
temperatures and emissivities.  
FIND:  (a) Effect of shield orientation on radiation transfer, (b) Effect of shield orientation on shield 
temperature.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Diffuse-gray surface behavior, (2) Shield is isothermal.  
ANALYSIS:  (a) On a unit area basis, the network representation of the system is 
 

 
 
Hence the total radiation resistance, 
 

 s s1 2
1 s s 2

1 1 21 1R 1 1
2

ε εε ε
ε ε ε ε

− −− −
= + + + + +  

 
is independent of orientation.  Since q = (Eb1 – Eb2)/R, the heat transfer rate is independent of 
orientation. 
 
(b) Considering that portion of the circuit between Eb1 and Ebs, it follows that 
 

 
( )

( )b1 bs s s
s

1 s ss
1

E E 1 1 2q , where f or .1 21 f

ε εεε ε εε
ε

− − −
= =

−
+ +

 

 
Hence, 
 

 ( )1
bs b1 s

1

1E E 1 f q.ε ε
ε

⎡ ⎤−
= − + +⎢ ⎥

⎣ ⎦
 

 
It follows that, since Ebs increases with decreasing f(εs) and (1 - 2εs)/2εs < (1 - εs)/εs, Ebs is larger 

when the high emissivity (2εs) side faces plate 1.  Hence Ts is larger for case (b).   < 



PROBLEM 13.60  
KNOWN:  End of propellant tank with radiation shield is subjected to solar irradiation in space 
environment.  
FIND:  (a) Temperature of the shield, Ts, and (b) Heat flux to the tank, ( )2

1q W / m .′′  
 
SCHEMATIC:   

  
ASSUMPTIONS:  (1) All surfaces are diffuse-gray, (2) View factor between shield and tank is unity, 
Fst = 1, (3) Space surroundings are black at 0 K, (4) Resistance of shield for conduction is negligible. 
 
ANALYSIS:  (a) Perform a radiation balance on the shield.  From the schematic, 

  
 ( )S S 1 b s stG E T q 0α ε ′′− − =         (1) 
 
where stq′′  is the net heat exchange between the shield and the tank.  Considering these two surfaces as 
large, parallel planes, from Eq. 13.24, 

 ( ) [ ]4 4
st s t 2 1q T T / 1/ 1/ 1 .σ ε ε′′ = − + −        (2) 

Substituting stq′′  from Eq. (2) into Eq. (1), find 

 ( ) [ ]4 4 4
s s 1 s s 2 t1G T T T / 1/ 1/ 1 0.α ε σ σ ε ε− − − + − =  

 
Solving for Ts, find 

 
[ ]

[ ]( )

1/ 44
S S t 2 t

s
1 2 t

G T / 1/ 1/ 1
T .

1/ 1/ 1/ 1
α σ ε ε
σ ε ε ε

⎡ ⎤+ + −
⎢ ⎥=

+ + −⎢ ⎥⎣ ⎦
 

 
Since the shield is diffuse-gray, αS = ε1 and then 
 

 
( ) [ ]
[ ]( )

1/ 442 4
s

0.05 1250 W / m 100 K / 1/ 0.05 1/ 0.1 1
T 338 K.

0.05 1/ 1/ 0.05 1/ 0.1 1
σ

σ

⎡ ⎤× + + −⎢ ⎥= =
⎢ ⎥+ + −
⎣ ⎦

  < 

 
(b) The heat flux to the tank can be determined from Eq. (2), 
 

 ( ) [ ]8 2 4 4 4 4 2
stq 5.67 10 W / m K 338 100 K / 1/ 0.05 1/ 0.1 1 25.3W / m .−′′ = × ⋅ − + − =  < 



PROBLEM 13.61  
KNOWN:  Black panel at 77 K in large vacuum chamber at 300 K with radiation shield having ε = 
0.05.  
FIND:  Net heat transfer by radiation to the panel.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Chamber is large compared to shield, (2) Shape factor between shield and plate 
is unity, (3) Shield is diffuse-gray, (4) Shield is thin, negligible thermal conduction resistance.  
ANALYSIS: The arrangement lends itself to a network representation following Figs. 13.10 and 
13.11. 
 

 
 
Noting that F2s = Fs1 = 1, and that A2F2s = AsFs2, the heat rate is 
 

 ( ) ( )4 s
1 b2 b1 i 12

s s s s

11 1q E E / R T T 4 / 2 .
A A A

εσ
ε

⎡ ⎤⎛ ⎞−
= − Σ = − + +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 

 
Recognizing that As = A1 and multiplying numerator and denominator by A1 gives 
 

 ( )4 s
1 1 2 1

s

1q A T T 2 2 .εσ
ε

⎡ ⎤⎛ ⎞−
= − +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 

 
Substituting numerical values, find 
 

 ( )
2 2

8 2 4 4 4 4
1

0.1 m 1 0.05q 5.67 10 W / m K 300 77 K / 2 2
4 0.05

π − ⎡ ⎤−⎛ ⎞= × × ⋅ − + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

 
 1q 89.8mW.=           < 
 
COMMENTS:  In using the network representation, be sure to designate direction of the net heat rate.  
In this situation, we have shown q1 as the net rate into the surface A1.  The temperature of the shield, 
Ts = 253 K, follows from the relation 

 ( ) s
1 bs b1

s s 1 s1

1 1q E E / .
A A F
ε

ε
⎡ ⎤−

= − +⎢ ⎥
⎣ ⎦

 



PROBLEM 13.62  
KNOWN:  Dense cryogenic piping array located close to furnace wall.  
FIND:  Number of radiation shields, N, to be installed such that the temperature of the shield closest 
to the array, Ts,N, is less than 30°C. 
 
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) The ice-covered dense piping array approximates a plane surface, (2) Piping 
array and furnace wall can be represented by infinite parallel plates, (3) Surfaces are diffuse-gray, and 
(4) Convection effects are negligible.  
ANALYSIS:  Treating the piping array and furnace wall as infinite parallel plates, the net heat rate by 
radiation exchange with N shields of identical emissivity, εs, on both sides follows from extending the 
network of Fig. 13.12 to account for the resistances of N shields.  (See Problem 13.57)  For each 
shield added, two surface resistances and one space resistance are added, 
 

 q
 T T A

1/ N 2 /
fp

f
4

p
4

f

f p s
=

−

+ − + −

σ

ε ε ε

e j
1 1 1/

      (1) 

 
where σ = 5.67 × 10-8 W/m2⋅K4.  The requirement that the N-th shield (next to the piping array) has a 
temperature Ts,N ≤ 30°C will be satisfied when 
 

 
( )s,N p f

fp
s p

T 4 T 4 A
q

1/ 1/ 1

σ

ε ε

−
≤

⎡ ⎤+ −⎣ ⎦
        (2) 

 
Using the foregoing equations in the IHT workspace, find that Ts,N = 30°C when N = 8.60.  So that 
Ts,N is less than 30°C, the number of shields required is 
 

 N 9=            < 
 
COMMENTS:  Note that when N = 0, Eq. (1) reduces to the case of two parallel plates.  Show for the 
case with one shield, N = 1, that Eq. (1) is identical to Eq. 13.28. 
 



PROBLEM 13.63  
KNOWN:  Concentric tube arrangement with diffuse-gray surfaces.  
FIND:  (a) Heat gain by the cryogenic fluid per unit length of the inner tube (W/m), (b) Change in 
heat gain if diffuse-gray shield with εs = 0.02 is inserted midway between inner and outer surfaces. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Surfaces are diffuse-gray, (2) Space between tubes is evacuated.  
ANALYSIS:  (a) For the no shield case, the thermal 
circuit is shown at right.  It follows that the net heat gain 
per unit tube length is 
 
 
 

 
 

( )oi o i
1 bo bi

o i io i i

q 1 1 1q E E /
L D D F D

ε ε
επ π ε π
⎡ ⎤− −′− = = − + +⎢ ⎥
⎣ ⎦

 

 
where A = πDL.  Note that Fio = 1 and Eb = σT4 giving 
 

( )8 2 4 4 4 4 1
1 3 3 3

1 0.05 1 1 0.02
q 5.67 10 W / m K 300 77 K / m

0.05 50 10 20 10 1 0.02 20 10π π π

− −

− − −

− −
′− = × ⋅ − + +

× × × × × ×

⎡ ⎤
⎢ ⎥⎣ ⎦

 

 

[ ]2 1
1q 457 W / m / 121.0 15.9 779.8 m 0.501 W / m.−′− = + + =     < 

 
(b) For the with shield case, the thermal circuit will include three additional resistances. 
 

  
From the network, it follows that ( )i bo bi tq E E / R .− = − Σ   With Fis = Fso = 1, find 

 
( )2 1

i 3 3
2 1 0.021

q 457 W / m / 121.0 15.9 779.8 m
35 10 1 0.02 35 10π π

−
− −

−
′− = + + + +

× × ×

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 [ ]2 1
iq 457 W / m / 121.0 9.1 891.3 15.9 779.8 m 0.251W / m.−′− = + + + + =  

 
The change (percentage) in heat gain per unit length of the tube as a result of inserting the radiation 
shield is 

 
( )i,s i,ns

i,ns

q q 0.251 0.501 W / m
100 100 49%.

q 0.501W / m

′ ′− −
× = × = −

′
    < 



PROBLEM 13.64  
KNOWN:  Heated tube with radiation shield whose exterior surface is exposed to convection and 
radiation processes.  
FIND:  Operating temperature for the tube under the prescribed conditions.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) No convection in space between tube and shield, 
(3) Surroundings are large compared to the shield and are isothermal, (4) Tube and shield are infinitely 
long, (5) Surfaces are diffuse-gray, (6) Shield is isothermal.  
ANALYSIS:  Perform an energy balance on the shield. 
 
 in outE E 0− =& &  
 
 12 conv radq q q 0− − =  

 
  

 
where q12 is the net radiation exchange between the tube and inner surface of the shield, which from 
Eq. 13.25 is, 

 
( )4 4

1 1 2
12

2,i 1
1 2,i 2

A T T
q 11 D

D

σ

ε
ε ε

−
− =

−
+

 

Using appropriate rate equations for qconv and qrad, the energy balance is 

 
( )

( ) ( )
4 4

1 1 2 4 4
2 2 2,o 2 sur22,i 1

2,i 2

A T T
hA T T A T T 01 D1

D

σ
ε σε

ε

∞
−

− − − − =
−

+
 

 
where ε1 = 1.  Substituting numerical values, with A1/A2 = D1/D2, and solving for T1, 

 
( ) ( )

( )( ) ( )
8 2 4 4 4 4

1 2
20 / 60 5.67 10 W / m K T 315 K

10 W / m K 315 300 K
1 1 0.01/ 0.01 20 / 60

−× × ⋅ −
− ⋅ −

+ −
 

   ( )8 2 4 4 4 40.1 5.67 10 W / m K 315 290 K 0−− × × ⋅ − =  

 1T 745 K 472 C.= = °          < 
 
COMMENTS:  Note that all temperatures are expressed in kelvins.  This is a necessary practice when 
dealing with radiation and convection modes. 



PROBLEM 13.65  
KNOWN:  Cylindrical-shaped, three surface enclosure with lateral surface insulated.  
FIND:  Temperatures of the lower plate T1 and insulated side surface T3. 
 
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Surfaces have uniform radiosity or emissive power, (2) Upper and insulated 
surfaces are diffuse-gray, (3) Negligible convection.  
ANALYSIS:  Find the temperature of the lower plate T1 from Eq. 13.30 

 
( )

( ) ( ) ( )[ ] ( )

4 4
1 2

1 11
1 1 1 1 12 1 13 2 23 2 2 2

T T
q .

1 / A A F 1/ A F 1/ A F 1 / A

σ

ε ε ε ε
−−

−
=

− + + + + −⎡ ⎤
⎢ ⎥⎣ ⎦

 (1) 

From Table 13.2 for parallel coaxial disks, 
 1 1 2 2R r / L 0.1/ 0.2 0.5 R r / L 0.1/ 0.2 0.5= = = = = =  

 ( ) ( )2 2 2 2
2 1S 1 1 R / R 1 1 0.5 / 0.5 6.0= + + = + + =  

 ( ) ( )
1/ 2 1/ 22 22 2

12 2 1F 1/ 2 S S 4 r / r 1/ 2 6 6 4 0.5 / 0.5 0.172.= − − = − − =
⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

 

Using the summation rule for the enclosure, F13 = 1 – F12 = 1 – 0.172 = 0.828, and from symmetry, 
F23 = F13.  With A1 = A2 = πD2/4 = π(0.2 m)2/4 = 0.03142 m2 and substituting numerical values into 
Eq. (1), obtain 

 
( )

( ) ( )[ ] ( )

2 8 2 4 4 4 4
1

11

0.03142 m 5.67 10 W / m K T 473 K
10, 000 W

0 0.172 1/ 0.828 1/ 0.172 1 0.8 / 0.8

−

−−

× × ⋅ −
=

+ + + + −⎡ ⎤
⎢ ⎥⎣ ⎦

 

 ( )9 4 4
1 110, 000 4.540 10 T 473 T 1225 K.= × − =     < 

The temperature of the insulated side surface can be determined from the radiation balance, Eq. 13.31, 
with A1 = A2, 

 1 3 3 2

13 23

J J J J
0

1/ F 1/ F
− −

− =          (2) 

where 4
1 1J Tσ=  and J2 can be evaluated from Eq. 13.19, 
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PROBLEM 13.65 (Cont.) 
 

 
( )

( )
( ) ( )

48 2 4
2b2 2

2
2 2 2

5.67 10 W / m K 473 K JE J
q 10, 000 W

21 / A 1 0.8 / 0.8 0.03142mε ε

−× ⋅ −−
= − =

− − ×
 

 
find J2 = 82,405 W/m2.  Substituting numerical values into Eq. (2), 
 

 
( )48 2 4 2

3 35.67 10 W / m K 1225 K J J 82, 405 W / m
0

1/ 0.172 1/ 0.172

−× ⋅ − −
− =  

 
find J3 = 105,043 W/m2.  Hence, for this insulated, re-radiating (adiabatic) surface, 
 

 4 2
b3 3 3E T 105, 043 W / m T 1167 K.σ= = =      < 



PROBLEM 13.66  
KNOWN:  Furnace in the form of a truncated conical section, floor (1) maintained at T1 = 1000 K by 

providing a heat flux ′′ =q  W / m ;1,in
22200  lateral wall (3) perfectly insulated; radiative properties 

of all surfaces specified.  
FIND:  (a) Temperature of the upper surface, T2, and of the lateral wall T3, and (b) T2 and T3 if all the 
furnace surfaces are black instead of diffuse-gray, with all other conditions remain unchanged.  
Explain effect of ε2 on your results. 
 
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Furnace is a three-surface, diffuse-gray enclosure, (2) Surfaces have uniform 
radiosities, (3) Lateral surface is adiabatic, and (4) Negligible convection effects.  
ANALYSIS:  For the three-surface enclosure, write the radiation surface energy balances, Eq. 13.21, 
to find the radiosities of the three surfaces. 
 

 
( )

b,1 1 1 31 2
1 1 1 1 12 1 13

E J J JJ J
1 /  A 1/A  F 1/A  Fε ε

− −−
= +

−
      (1) 

 

 
E J

 A
J J
A  F

J J
1/ A  F

b,2 2

2
2 1

2 21
2 3

2 23

−

−
=

−
+

−
1 12 2ε εb g / /

      (2) 

 

 
E J

 A
J J

1/ A F
J J

1/ A  F
b,3 3

3
3 1

3 31
3 2

3 32

−

−
=

−
+

−
1 3 3ε εb g /       (3) 

 
where the blackbody emissive powers are of the form Eb = σ T4 with σ = 5.67 × 10-8 W/m2⋅K4.  From 
Eq. 13.19, the net radiation leaving A1 is 
 

 q
E J

 A1
b,1 1

1
=

−

−1 1 1ε εb g /          (4) 

 

 q q A   W / m 0.040 m  W1 1,in 1
2= ′′ ⋅ = × =2200 4 2 762π b g / .  
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PROBLEM 13.66 (Cont.) 
 
Since the lateral surface is adiabatic, 
 

 q
E J

 A3
b,3 3

3
=

−

−
=

1
0

3 3ε εb g /         (5) 

 
from which we recognize Eb,3 = J3, but will find that as an outcome of the analysis.  For the enclosure, 
N = 3, there are N2 = 9 view factors, for which N (N - 1)/2 = 3 must be directly determined.  
Calculations for the Fij are summarized in Comments. 
 
With the foregoing five relations, we can determine the five unknowns:  J1, J2, J3, Eb,2, and Eb,3.  The 
temperatures T2 and T3 will be evaluated from the relation Eb = σ T4.  Using this analysis approach 
with the relations in the IHT workspace, the results for (a) the diffuse-gray surfaces and (b) black 

surfaces are tabulated below.             < 
 
   J1 (kW/m2) J2 (kW/m2) J3 (kW/m2) T2 (K)  T3 (K) 
 
(a) Diffuse-gray     55.76     45.30     53.48     896     986 
 
(b) Black     56.70     46.24     54.42     950     990  
COMMENTS:  (1) From the tabulated results, it follows that the temperatures of the lateral and top 
surfaces will be higher when the surfaces are black, rather than diffuse-gray as specified. 
 
(2) From Eq. (5) for the net heat radiation leaving the lateral surface, A3, the rate is zero since the wall 
is adiabatic.  The consequences are that the blackbody emissive power and the radiosity are equal, and 
that the emissivity of the surface has no effect in the analysis.  That is, this surface emits and absorbs 
at the same rate; the net is zero. 
 
(3) For the enclosure, N = 3, there are N2 = 9 view factors, for which  
 
 N N 1− = × =b g / /2 3 2 2 3  
 
must be directly determined.  We used the IHT Tools | Radiation | View Factors Relations model that 
sets up the summation rules and reciprocity relations for the N surfaces.  The user is required to 
specify the 3 Fij that must be determined directly; by inspection, F11 = F22 =0; and F12 can be 
evaluated using the parallel coaxial disk relation, Table 13.2 (Fig. 13.5).  This model is also provided 
in IHT to simplify the calculation task.  The results of the view factor analysis are: 
 
 F F12 13= =0 03348 0 9665. .  
 
 F F21 23= =01339 08661. .  
 
(4) An alternative method of solution for part (a) is to treat the enclosure of part (a) as described in 
Section 13.3.5.  For part (b), the black enclosure analysis is described in Section 13.2.  We chose to 
use the direct approach, Section 13.3.2, to develop a general 3-surface enclosure code in IHT that can 
also handle black surfaces (caution: use ε = 0.999, not 1.000). 
 



PROBLEM 13.67  
KNOWN:  Parallel, aligned discs located in a large room; one disk is insulated, the other is at a 
prescribed temperature.  
FIND:  Temperature of the insulated disc.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Surfaces are diffuse-gray, (2) Surroundings are large, with uniform 
temperature, behaving as a blackbody, (3) Negligible convection.  
ANALYSIS:  From an energy balance on surface A2, 

 2 32 1
2

2 21 2 23

J JJ Jq 0 .
1/ A F 1/ A F

−−
= = +        (1) 

Note that q2 = 0 since the surface is adiabatic.  Since A3 is a blackbody, J3 = Eb3 = 4
3T ;σ  since A2 is 

adiabatic, J2 = Eb2 = 4
2T .σ   From Fig. 13.5 and the summation rule for surface A1, find 

 

 j
12 13 12

i

r 0.2 L 0.1F 0.62 with 2 and 0.5, F 1 F 1 0.62 0.38.
L 0.1 r 0.2

= = = = = = − = − =  

 
Hence, Eq. (1) with J3 = 5.67 × 10-8 × 3004 W/m2 becomes 
 

 
2

2 1 2
1 2

2 2

J J J 459.3W / m 0 0.62J 1.00J 174.5
1/ A 0.62 1/ A 0.38

− −
+ = − + =

× ×
  (2,3) 

 
The radiation balance on surface A1 with Eb3 = 5.67 × 10-8 × 5004 W/m2 becomes 
 

 
( )

b1 1 1 31 2
1 1 1 1 12 1 13

E J J JJ J
1 / A 1/ A F 1/ A Fε ε

− −−
= +

−
       (4) 

 

 
( )

1 1 2 1
1 2

1 1 1

3543.8 J J J J 459.3 2.50J 0.62J 5490.2
1 0.6 / 0.6A 1/ A 0.62 1/ A 0.38

− − −
= + − =

− × ×
 (5,6) 

 
Solve Eqs. (3) and (6) to find J2 = 1815 W/m2 and since Eb2 = J2, 
 

 

1/ 41/ 4 2
b2

2 8 2 4
E 1815 W / mT 423 K.

5.67 10 W / m Kσ −

⎛ ⎞⎛ ⎞ ⎜ ⎟= = =⎜ ⎟ ⎜ ⎟⎝ ⎠ × ⋅⎝ ⎠
    < 

 
COMMENTS:  A network representation would help to visualize the exchange relations.  However, it 
is useful to approach the problem by recognizing there are two unknowns in the problem:  J1 and J2; 
hence two radiation balances must be written.  Note also the significance of J2 = Eb2 and J3 = Eb3. 



PROBLEM 13.68  
KNOWN:  Thermal conditions in oven used to cure strip coatings.  
FIND:  Electrical power requirement.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Diffuse-gray surfaces, (2) Furnace wall is reradiating, (3) Negligible end 
effects.  
ANALYSIS:  The net radiant power leaving the heater surface per unit length is 

 

( ) ( )

b1 b2
1

1 2
11 1 2 21 12 1 1R 2 2R

E Eq 1 1 1
A AA F 1/ A F 1/ A F

ε ε
ε ε−

−′ =
− −

+ +
′ ′′ ′⎡ ⎤+ +⎣ ⎦

 

where ( ) ( )1 2 1 2A D 0.02 m 0.0628m and A 2 s s 0.08m.π π′ ′= = = = − =   The view factor 
between the heater and one of the strips is 

 1 1 1 11 2
21

1 2

D / 2 s s 0.01 0.06 0.02F tan tan tan tan 0.10
s s L L 0.04 0.08 0.08

− − − −⎡ ⎤ ⎡ ⎤= − = − =⎢ ⎥ ⎢ ⎥− ⎣ ⎦ ⎣ ⎦
 

and using the view factor relations find 
 ( )1 12 2 21 12A F A F 0.08 m 0.10 0.008 m F 0.080 / 0.0628 0.10 0.127′ ′= = × = = =  
 
 1R 12 2R 21F 1 F 1 0.127 0.873 F 1 F 1 0.10 0.90.= − = − = = − = − =  
 
Hence, with 4

bE T ,σ=  

 
( ) ( )

( ) ( )[ ]

4 48

1

1

5.67 10 1700 600
q

1 0.9 1 1 0.4
0.9 0.0628 0.4 0.080.008 0.0628 0.873 1/ 0.08 0.901/

−

−

× −
′ =

− −
+ +

× ×+ × + ×

⎡ ⎤
⎢ ⎥⎣ ⎦  

 

 
5

1
4.66 10q 10,100 W / m.

1.77 25.56 18.75
×′ = =

+ +
      < 

 
COMMENTS:  The radiosities for A1 and A2 follow from Eq. 13.19, 

 ( ) 5 2
1 b1 1 1 1 1J E 1 q / A 4.56 10 W / mε ε′ ′= − − = ×  

 ( ) 5 2
2 b2 2 1 2 2J E 1 q / A 1.97 10 W / m .ε ε′ ′= + − = ×  

From Eq. 13.31, find JR and hence TR as 
 ( ) ( )1 R R 20.0628 0.873 J J 0.08 0.90 J J 0× − − × − =  

 5 2 4
R RRJ 3.08 10 W / m T T 1527 K.σ= × = =  



PROBLEM 13.69 
 
KNOWN:  Dimensions, temperature and emissivity of cylindrical product. Temperature and 
emissivity of infrared panel heater. 
 
FIND:  (a) Radiative flux delivered to the product and panel heat flux for a spacing of s = 100 mm and 
a product length of L = 1 m, (b) Plot of the heat flux experienced by the product, and the panel heater 
heat flux over the range 50 mm ≤ s ≤ 250 mm. 
 
 
SCHEMATIC: 
 

 
 
 
 
 

 
 
 
 
 
 
ASSUMPTIONS:  (1) Diffuse-gray surfaces, (2) Negligible convection heat transfer. 
  
ANALYSIS: (a) For the unit cell indicated in the schematic, A1 = A3 = AR = s and A2 = πD. From Eq. 
13.30,  
 

  

( ) ( )

1 2
1 2

1 2
1

1 1 2 21 12 1 1 2 2

1 1 1

1/ 1/

b b

R R

E Eq q

A AA F A F A F

ε ε
ε ε−

−
= − =

− −
+ +

⎡ ⎤+ +⎣ ⎦

 

 
Substituting the Stefan-Boltzmann equation and expressions for the unit surface areas, and dividing by 
A2 and using reciprocity in the form A2F2R = ARFR2, the preceding expression may be written as 
 
 

( ) ( )

4 4
2 1

2
1 2

1
1 212 1 2

(1 ) 1

1/ 1 /R R

T Tq D D
s sF sF sF

σ σ
ε π π ε
ε ε−

−′′ =
− −

+ +
⎡ ⎤+ +⎣ ⎦

  (1) 

 
The view factors are evaluated using the expression given in Table 13.1, 
 

1/ 2 1/ 22 2 2
1

2 12 2
50 50 100 501 1 tan 0.657

100 100 50RF F −
⎡ ⎤⎡ ⎤ ⎛ ⎞−⎛ ⎞ ⎛ ⎞ ⎢ ⎥= = − − + =⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎝ ⎠⎣ ⎦ ⎣ ⎦

  (2) 

 
and F1R = 1 − F12 = 1 – 0.657 = 0.343.         (3) 
 
Substituting into Eq. 1 yields 
 

Continued… 
 

D = 50 mm

s = 100 mm
Tp = T1 = 800 K
εp = ε1 = 0.85

Surface R:
Tray

Surface 1:
Panel heater

Surface 2:
Product
Ti = 300 K
εb = 0.92



PROBLEM 13.69 (Cont.) 
 

( )

( ) ( )

8 2 4 4 4

2

1

5.67 10 W/m K 300K 800K
(1 0.85) 0.05m 0.05m 1 0.92

0.85 0.10m 0.920.10m 0.657 1/ 0.10m 0.343 1/ 0.10m 0.657

q π π

−

−

× ⋅ × −
′′ =

− × × × −
+ +

× ⎡ ⎤× + × + ×⎣ ⎦

 

 

     = − 10,616 W/m2            < 
 
The panel heat flux is found by noting that  
 

 1 2 1 2q q q sL q DLπ′′ ′′= − = = −   or  1 2 2 2
W 0.05m W10,616 16,680

0.10mm m
Dq q
s

π π ×′′ ′′= − = × =   < 
 
(b)  Using IHT, the radiation heat flux from the panel and the radiation heat flux to the product, as a 
function of the product spacing, s, is shown below. This was obtained by solving Eqs. 1 – 3 
simultaneously.  At small product spacing, the heat flux from the panel must be large in order to 
deliver radiation to the larger product surface area per unit width of the oven. At large product spacing, 
the product heat flux becomes large as more of the product is exposed to direct irradiation from the 
panel. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
COMMENTS:  (1) The product may be heated by a batch or a continuous process. (2) For a batch 
process, the product temperature would increase with time, with a faster increase in temperature 
associated with large product spacing. Of course, a smaller amount of total mass would be processed 
per unit time as the spacing is increased. Would an optimal product spacing, to maximize the product 
that is produced per unit time, exist? (3) For a continuous process, for example, if the product were 
placed on a reradiating conveyor tray, individual product would be heated faster at larger product 
spacing, but the amount of product that could be processed per unit time decreases with increased 
product spacing (for a given conveyor speed). Hence, a tradeoff would exist during continuous 
processing between the increased heating and decreased productivity as the product spacing is 
increased. Would an optimal product spacing, to maximize product throughput, exist?  

 Panel and Product Heat Fluxes vs Product Spacing
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PROBLEM 13.70  
KNOWN:  Surface temperature and emissivity of molten alloy and distance of surface from top of 
container.  Container diameter.  
FIND:  Net rate of radiation heat transfer from surface of melt.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Opaque, diffuse, gray behavior for surface of melt, (2) Large surroundings 
may be represented by a hypothetical surface of temperature T = Tsur and ε = 1, (3) Negligible 
convection at exposed side wall, (4) Adiabatic side wall.  
ANALYSIS:  With negligible convection at an adiabatic side wall, the surface may be treated as 
reradiating.  Hence, from Eq. 13.30, with A1 = A2, 
 

 
( )

( ) ( )

1 b1 b2
1

1 2
11 212 1R 2R

A E E
q 1 1 1

F 1/ F 1/ F

ε ε
ε ε−

−
=

− −
+ +

⎡ ⎤+ +⎣ ⎦

 

 

With ( )i jR R D / 2 / L 1.25= = =  and ( )2 2
j iS 1 1 R / R 2.640,⎡ ⎤= + + =⎢ ⎥⎣ ⎦

 Table 13.2 yields 

 

 ( )
1/ 222

12 2 1
1F S S 4 r / r 0.458
2
⎧ ⎫⎪ ⎪⎡ ⎤= − − =⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭

 

 
Hence, 
 

1R 2R 12F F 1 F 0.542= = − =  and  
 

( ) ( )
( )

2 8 2 4 4 4 4

1

1

0.25m 5.67 10 W / m K 900 300 K
q 3295 W1 0.55 1 0

0.55 0.458 3.69

−

−

× × ⋅ −
= =

−
+ +

+

π
  < 



PROBLEM 13.71  
KNOWN:  Long hemi-cylindrical shaped furnace comprised of three zones.  
FIND:  (a) Heat rate per unit length of the furnace which must be supplied by the gas burners and (b) 
Temperature of the insulating brick.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Surfaces are opaque, diffuse-gray or black, (2) Surfaces have uniform 
temperatures and radiosities, (3) Surface 3 is perfectly insulated, (4) Negligible convection, (5) 
Steady-state conditions.  
ANALYSIS:  (a) From an energy balance on the ceramic plate, the power required by the burner is 

burners 1q q ,′ ′=  the net radiation leaving A1; hence 

 ( ) ( ) ( )1 1 12 1 2 1 13 1 3 1 13 1 3q A F J J A F J J 0 A F J J′ = − + − = + −     (1) 
 
since F12 = 0.  Note that J2 = Eb2 = 4

2Tσ  and that J1 and J3 are unknown.  Hence, we need to write 
two radiation balances. 
 

A1: 
( ) ( )b1 1

1 1 13 1 3
1 1 1

E J q 0 A F J J
1 / A

− ′= = + −
−ε ε

      (2) 

 
A3: ( ) ( )3 31 3 1 3 32 3 b20 A F J J A F J E= − + −  
 

 1 b2
3

J EJ
2
+

=           (3) 
 
since F31 = F23.  Substituting Eq. (3) into (2), find 
 ( ) ( ) ( )1 1 1371,589 J / 1 0.85 / 0.85 1 J J 3,544 / 2⎡ ⎤− − = − +⎣ ⎦  
 
 2 2

1 3J 341,748W / m J 172,646 W / m= =  
 
using 4 2

b1 1E T 371,589 W / mσ= =  and 4 2
b2 2E T 3544 W / m .σ= =   Substituting into Eq. (1), find 

 ( ) 2
1q 1 m 1 341,748 172,646 W / m 169 kW / m.′ = × − =     < 

 
(b) The temperature of the insulating brick, acting as a reradiating surface, is 

 4
3 b3 3J E Tσ= =  

 

 ( ) ( )1/ 41/ 4 2 8 2 4
3 3T J / 172,646 W / m / 5.67 10 W / m K 1320 K.σ −= = × ⋅ =  < 



PROBLEM 13.72  
KNOWN:  Steam producing still heated by radiation.  
FIND:  (a) Factor by which the vapor production could be increased if the cylindrical side of the 
heater were insulated rather than open to the surroundings, and (b) Compute and plot the net heat rate 
of radiation transfer to the still, as a function of the separation distance L for the range 15 ≤ L ≤ 100 
mm for heater temperatures of 600, 800, 1000°C considering the cylindrical sides to be insulated.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Still and heater surfaces are black, (2) Surroundings are isothermal and large 
compared to still heater surfaces, (3) Insulation is diffuse-gray, (4) Negligible convection.  
ANALYSIS:  (a) The vapor production will be proportional to the net radiation exchange to the still.  
For the case when the sides are open (o) to the surroundings, the net radiation exchange leaving A2 is 
from Eq. 13.14. 

 ( ) ( )4 4 4 4
2,o 21 2s 2 21 2 2s sur2 1 2q q q A F T T A F T Tσ σ= + = − + −  

 
where F2s = 1 – F21 and F21 follows from Fig. 13.5 with L/ri = 100/100 = 1, rj/L = 100/100 = 1. 
 
 21F 0.38=  
 
With 2

2A D / 4,π=  find 

( ) ( ) ( )( ){ }
2

8 2 4 4 4 4 4 4 4
2,o

0.200m
q 5.67 10 W / m K 0.38 373 1273 K 1 0.38 373 300 K

4

π −= × × ⋅ − + − −  

 2,oq 1752 W. without insulation= −      < 
 
With the cylindrical side insulated (i), a three-surface, re-radiating enclosure is formed.  Eq. 13.30 can 
be used to evaluate q2,i and with ε2 = ε1 = 1, the relation is 

( )

( ) ( )[ ]

[ ]{ } ( )
44

2 1 1
2,i 1 12 1R 2R

1
1 12 1 1R 2 2R

T T
4 4q A F 1/ F 1/ F 2 11

A F 1/ A F 1/ A F

T T
σ

σ−

−

−
= = + +

+ +

−  

 
Recall F12 = 0.38 and F1R = 1 – F12 = 1 – 0.38 = 0.62, giving 

 
( ) [ ]{ } ( )

2
1 8 2 4 4 4

2,i
0.200 m

q 0.38 1/ 0.62 1/ 0.62 5.67 10 W / m K 373 1273 K
4

− −= + + × ⋅ −
π

 
 
 2,iq 3204 W. with insulation= −      < 

          Continued … 



PROBLEM 13.72 (Cont.) 
 
Hence, the vapor production rate is increased by a factor 
 

 
)
)

2 insul
2 open

q 3204 W 1.83
q 1752 W

= =  

 

That is, the vapor production is increased by 83%.      < 
 
(b) The IHT Radiation Tool – Radiation Exchange Analysis for the Three-Surface Enclosure with a 
reradiating surface can be used directly to compute the net heat rate to the still, q1 = q2, as a function 
of the separation distance L for selected heater temperatures T1.  The results are plotted below. 
 

 
 
Note that the heat rate for all values of T1 decreases as expected with increasing separation distances, 
but not markedly.  For any separation distance, increasing the heater temperature greatly influences the 
heat rate.  For example, at L = 50 mm, increasing T1 from 600 to 800 K, causes a nearly 6 fold 
increase in the heat rate.  But increasing T1 from 800 to 1000 K causes only a 2 fold increase in the 
heat rate.  
COMMENTS:  When assigning the emissivity variables (ε1, ε2, ε3) in the IHT model mentioned 
above, set ε = 0.999, rather than 1.0, to avoid a “division by zero” error message.  You could also call 
up the Radiation Tool, View Factor Coaxial Parallel Disk to calculate F12. 



PROBLEM 13.73  
KNOWN:  Furnace with cylindrical heater and re-radiating, insulated walls. 
FIND:  (a) Power required to maintain steady-state conditions, (b) Temperature of wall area. 
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Surfaces are diffuse-gray, (2) Furnace is of length l  where l  >> w, (3) 
Convection is negligible, (4) A1 << A2. 
ANALYSIS:  (a) Consider the furnace as a three surface enclosure with the walls, AR, represented as 
a re-radiating surface.  The power that must be supplied to the heater is determined by Eq. 13.30. 

 
( )

( ) ( ) ( )[ ] ( )

4 4
1 2

1 11
1 1 1 1 12 1 1R 2 2R 2 2 2

T T
q

1 / A A F 1/ A F 1/ A F 1 / A

σ

ε ε ε ε
−−

−
=

− + + + + −⎡ ⎤
⎢ ⎥⎣ ⎦

 

Note that A1 = πd l  and A2 = w l .  By inspection and the summation rule, find F12 = 60°/360° = 
0.167, F1R = 1 – F12 = 1 – 0.167 = 0.833, and F2R ≈ 1.  With 1 1q q / ,′ = l  

( )
( ) ( )( ) ( ) ( )

8 2 4 4 4 4

1 113 3

5.67 10 W / m K 1500 500 K
q

0 10 10 m 0.167 1/ 10 10 m 0.83 1/1m 1 1 0.6 / 0.6 1 mπ π

−

−−− −

× ⋅ −
′ =

+ × × + × × + × + − ×
⎡ ⎤⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦

 

 1q 8518 W / m.′ =          < 
 (b) To determine the wall temperature, apply the radiation balance, Eq. 13.31, 

 
( ) ( ) ( ) ( )

1 R R 2 1 R R 2
31 1R 2 2R

J J J J J J J J
or .

1/ A F 1/ A F 1/1m 11/ 10 10 m 0.833π −
− − − −

= =
×× ×

 

 ( )4
R R 1 2J T J 38.21J / 39.21.σ= = +        (1) 

Since A1 is a blackbody, J1 = Eb1 = 4
1T .σ   To determine J2, use Eq. 13.19.  Noting that 1 2q q ,′ ′= −  

find 
 ( ) ( ) ( )2 b2 2 2 2 2 2 b2 2 2 2 2q E J / 1 / A or J E q 1 / Aε ε ε ε= − − = − −  

 ( ) ( )( )
( )

48 2 4 2
2

8518 W / m 1 0.6
J 5.67 10 W / m K 500 K 9222 W / m .

0.6 1m
− − −

= × ⋅ − =  

Substituting this value for J2 into Eq. (1), the wall temperature can be calculated. 

 ( )( )48 2 4 2 2
RJ 5.67 10 W / m K 1500K 38.21 9222 W / m / 39.21 16,308 W / m−= × ⋅ + × =  

 ( ) ( )1/ 41/ 4 2 8 2 4
R RT J / 16,308 W / m / 5.67 10 W / m K 732 K.σ −= = × ⋅ =   < 

COMMENTS:  Considering the entire wall as a single re-radiating surface may be a poor assumption 
since JR is not likely to be uniform over this large an area.  It would be appropriate to consider several 
isothermal zones for improved accuracy. 



PROBLEM 13.74 
 

 
KNOWN: Dimensions, temperature and emissivity of radiant heating tubes, temperature and 
emissivity of heated material, location of reradiating surface. 
 
FIND: Net radiative heat flux to the heated material. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
ASSUMPTIONS: Diffuse, gray behavior. 
 
ANALYSIS: Treating the tubes as a single surface, the heat transfer rate from Surface 1 to 
Surface 2 is given by 
 

( ) ( )

b1 b2
1 2

1 2
1

1 1 2 21 12 1 1R 2 2R

E Eq q 1 1 1
A AA F 1/ A F 1/ A F

−

−
= − =

− ε − ε+ +
ε ε⎡ ⎤+ +⎣ ⎦

 

 
Utilizing the reciprocity relationship, incorporating the Stefan-Boltzmann law, and dividing by 
area A2, 
 

 ( )
( ) ( )

4 4
" " 1 2
1 2

1 2 2 2
1

1 1 2 22 21 R R1 2 2R

(T T )q q
1 A A 1

A AA F 1/ A F 1/ A F
−

σ −
= − =

− ε − ε
+ +

ε ε⎡ ⎤+ +⎣ ⎦

  (1) 

 
From Table 13.1 for the infinite plane and row of cylinders, 
 

1/ 2 1/ 22 2 2
1

12 2
D D s DF 1 1 tan
s s D

−
⎡ ⎤⎡ ⎤ ⎛ ⎞−⎛ ⎞ ⎛ ⎞ ⎢ ⎥= − − +⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 

 

 
1/ 2 1/ 22 2 2

1
21 R12

0.02 0.02 0.05 0.02F 1 1 tan 0.5472 F
0.05 0.05 0.02

−
⎡ ⎤⎡ ⎤ ⎛ ⎞−⎛ ⎞ ⎛ ⎞ ⎢ ⎥= − − + = =⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 

 
Therefore, F2R = 1 – 0.5472 = 0.4528. 

Continued… 

D = 0.02 m

s = 0.05 m

T2 = 500 K
ε2= 0.26

T1 = 1000 K
ε1 = 0.87

Reradiating
surface

q”net

D = 0.02 m

s = 0.05 m

T2 = 500 K
ε2= 0.26

T1 = 1000 K
ε1 = 0.87

Reradiating
surface

D = 0.02 m

s = 0.05 m

T2 = 500 K
ε2= 0.26

T1 = 1000 K
ε1 = 0.87

Reradiating
surface

q”net



PROBLEM 13.74 (Cont.) 
 

 
For a unit cell as shown in the schematic, A2 = s, A1 = πD, and AR = s. Therefore Eq. (1) is 
written as, 
 

( )
( )

( ) ( )
( )

4 4
1 2" "

1 2
1 2

1
1 221 R1 2R

T T
q q

1 s 1s
D sF 1/ sF 1/ sF

−

σ −
= − =

− ε − ε
+ +

ε π ε⎡ ⎤+ +⎣ ⎦

 

 
or 
 

( ) ( )
( )

( ) ( )
( )

4 48
2 4" "

1 2

1

W5.67 10 1000K 500K
m Kq q

1 0.87 0.05 1 0.260.05
0.87 0.02 0.260.05 0.5472 1/ 0.05 0.5472 1/ 0.05 0.4528

−

−

⎡ ⎤× −⎢ ⎥⎣ ⎦⋅= − =
− × −

+ +
×π× ⎡ ⎤× + × + ×⎣ ⎦

 
 

" " 2
1 2q q 12,590 W/m= − =        < 

 
 
 
COMMENT: The heat flux is independent of the separation distance between the heater and the 
material. Does this make sense to you? 
 



PROBLEM 13.75  
KNOWN:  Very long, triangular duct with walls that are diffuse-gray.  
FIND:  (a) Net radiation transfer from surface A1 per unit length of duct, (b) The temperature of the 
insulated surface, (c) Influence of ε3 on the results; comment on exactness of results. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Surfaces are diffuse-gray, (2) Duct is very long; end effects negligible.  
ANALYSIS:  (a) The duct approximates a three-surface enclosure for which the third surface (A3) is 
re-radiating.  Using Eq. 13.30 with A3 = AR, the net exchange is 

 ( )
( )

( )
b1 b2

1 2
1 2

11 1 2 21 12 1 1R 2 2R

E E
q q

1 11
A AA F 1/ A F 1/ A F −

−
= − =

− −
+ +

+ +

ε ε
ε ε

   (1) 

From symmetry, F12 = F1R = F2R = 0.5.  With A1 = A2 = w⋅ ,l  where l  is the length normal to the 
page and w = 1 m, 
 ( )1 1 1 1q q / q / A w′ = =l  
 

 
( )

( )
( )

( )
2

1

1

56,700 13,614 W / m 1m
q 9874 W / m.

1 0.33 1 0.51
0.33 0.50.5 1/ 0.5 1/ 0.5 −

− ×
′ = =

− −
+ +

+ +

   < 

(b) From a radiation balance on AR, 

 
( ) ( )

b3 1 b3 2 1 2
R 3 b31 1

3 31 3 32

E J E J J J
q q 0 or E .

2A F A F− −
− − +

= = = + =    (2) 

To evaluate J1 and J2, use Eq. 13.19, 

 
( )

( )

( )

2
1

ii
i b,i

i i 2
2

1 0.33
J 56, 700 9874 36,653 W / m

0.331q
J E

A 1 0.5
J 13, 614 9874 23, 488 W / m

0.5

ε
ε

−
= − =

−
= −

−
= − −

⎧
⎪⎪
⎨
⎪ =⎪⎩

 

From Eq. (2), now find 

 ( ) [ ]( ) ( )

( )

1/ 4
2

1/ 41/ 4
3 b3 1 2 8 2 4

36, 653 23, 488 W / m
T E / J J / 2 853 K.

2 5.67 10 W / m K
σ σ

−

+
= = + = =

× ⋅

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 < 

(c) Since A3 is adiabatic or re-radiating, J3 = Eb3.  Therefore, the value of ε3 is of no influence on the 
radiation exchange or on T3.  In using Eq. (1), we require uniform radiosity over the surfaces.  This 
requirement is not met near the corners.  For best results we should subdivide the areas such that they 
represent regions of uniform radiosity.  Of course, the analysis then becomes much more complicated. 



PROBLEM 13.76  
KNOWN:  Dimensions for aligned rectangular heater and coated plate.  Temperatures of heater, plate 
and large surroundings.  
FIND:  (a) Electric power required to operate heater, (b) Heater power required if reradiating 
sidewalls are added, (c) Effect of coating emissivity and electric power.  
SCHEMATIC:    

  
ASSUMPTIONS:  (1) Steady-state, (2) Blackbody behavior for surfaces and surroundings (Parts (a) 
and (b)).  
ANALYSIS:  (a) For ε1 = ε2 = 1, the net radiation leaving A1 is 
 

 ( ) ( )4 4 4
elec 1 1 12 1 1 1sur 1 sur

4q q A F T T A F T T .2σ σ= = − + −  
 
From Fig. 13.4, with Y/L = 1/0.5 = 2 and X/L = 2/0.5 = 4, the view factors are F12 ≈ 0.5 and Fsur ≈ 1 – 
0.5 = 0.5.  Hence, 
 

( ) ( ) ( )2 8 2 4 4 4
elecq 2m 0.5 5.67 10 W / m K 700 K 400 K−= × × ⋅ −⎡ ⎤

⎣ ⎦  

     ( ) ( ) ( ) ( )2 8 2 4 42m 0.5 5.67 10 W / m K 700 K 300 K 12,162 13,154 W 25, 316 W.4−+ × × ⋅ − = + =⎡ ⎤
⎣ ⎦  < 

 
(b) With the reradiating walls, the net radiation leaving A1 is qelec = q1 = q12.  From Eq. 13.30 with ε1 
= ε2 = 1 and A1 = A2, 
 

 ( ) ( ) ( )[ ]{ }14 4
elec 1 1 2 12 1R 2Rq A T T F 1/ F 1/ Fσ −= − + +  

 

( ) ( ) ( ) ( ) ( )[ ]{ }14 42 8 2 4
elecq 2 m 5.67 10 W / m K 700 K 400 K 0.5 1/ 0.5 1/ 0.5 −−= × ⋅ − × + +⎡ ⎤

⎢ ⎥⎣ ⎦
 

 
 elecq 18, 243W.=          < 
 
(c) Separately using the IHT Radiation Tool Pad for a three-surface enclosure, with one surface 
reradiating, and to perform a radiation exchange analysis for a three-surface enclosure, with one 
surface corresponding to large surroundings, the following results were obtained. 
 

          Continued … 
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In both cases, the required heater power decreases with decreasing ε2, and the trend is attributed to a 
reduction in α2 = ε2 and hence to a reduction in the rate at which radiant energy must be absorbed by 
the surface to maintain the prescribed temperature.  
COMMENTS:  With the reradiating walls in part (b), it follows from Eq. 13.31 that 
 
 ( ) ( )R bR 1 2 b1 b2J E J J / 2 E E / 2.= = + = +  
 
Hence, TR = 604 K.  The reduction in qelec resulting from use of the walls is due to the enhancement 
of radiation to the heater, which, in turn, is due to the presence of the high temperature walls. 



PROBLEM 13.77  
KNOWN:  Configuration and operating conditions of a furnace.  Initial temperature and emissivity of 
steel plate to be treated.  
FIND:  (a) Heater temperature, (b) Sidewall temperature.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Opaque, diffuse-gray surface behavior, (3) 
Negligible convection, (4) Sidewalls are re-radiating.  
ANALYSIS:  (a) From Eq. 13.30 

 

( ) ( )

5b1 b2
1

1 2
11 11 1 2 2

1 12 1 1R 2 2R

E E
q 1.5 10 W

1 1 1
A A

A F A F A F

ε ε
ε ε−− −

−
= = ×

− −
+ +

+ +⎡ ⎤
⎢ ⎥⎣ ⎦

 

Note that A1 = A2 = 4 m2 and Eb2 = 4
2Tσ  = 5.67 × 10-8 W/m2⋅K4 (300 K)4 = 459 W/m2.  From Fig. 

13.4, with X/L = Y/L = 1, F12 = 0.2; hence F1R = 1 – F12 = 0.8, and F2R = F1R = 0.8. With (1-ε1)/ε1 = 
0.25 and (1 - ε2)/ε2 = 1.5, find 

 

[ ]

2 25
b1 b1

2
1

E 459 W / m E 459 W / m1.5 10 W
1 3.4174m 0.25 1.5

0.2 1.25 1.25 −

− −×
= =

+ +
+ +

 

 5 2 2 5 2 4
b1 1E 1.28 10 W / m 459 W / m 1.29 10 W / m Tσ= × + = × =  

 ( )1/ 45 2 8 2 4
1T 1.29 10 W / m / 5.67 10 W / m K 1228 K.−= × × ⋅ =  

(b) From Eq. 13.31, it follows that, with A1F1R = A2F2R, 

 ( )4
R R 1 2J T J J / 2σ= = +  

From Eq. 13.19, 
( ) 5

5 21
1 b1 1 21 1

1 0.2 1.5 10 W
J E q 1.29 10 W / m

A 0.8 4m

ε
ε
− × ×

= − = × −
×

 

 5 2
1J 1.196 10 W / m .= ×  

With q2 = q1 = - 1.5 × 105 W, 

 
( ) 2 5 4 22

2 b2 2 22 2

1 0.6
J E q 459 W / m 1.5 10 W 5.67 10 W / m

A 0.4 4m

ε
ε
−

= − = + × = ×
×

 

 
1/ 45 2 4 2

R 8 2 4
1.196 10 W / m 5.67 10 W / m

T 1117 K.
2 5.67 10 W / m K−
× + ×

= =
× × ⋅

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

    < 

COMMENTS:  (1) The above results are approximate, since the process is actually transient. (2) T1 
and TR will increase with time as T2 increases. 



PROBLEM 13.78  
KNOWN:  Dimensions, surface radiative properties, and operating conditions of an electrical furnace.  
FIND:  (a) Equivalent radiation circuit, (b) Furnace power requirement and temperature of a heated 
plate.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Opaque, diffuse-gray surfaces, (3) Negligible plate 
temperature gradients, (4) Back surfaces of heater are adiabatic, (5) Convection effects are negligible.  
ANALYSIS:  (a) Since there is symmetry about the plate, only one-half (top or bottom) of the system 
need be considered.  Moreover, the plate must be adiabatic, thereby playing the role of a re-radiating 
surface. 

                           < 
 
(b) Note that A1 = A3 = 4 m2 and A2 = (0.5 m × 2 m)4 = 4 m2.  From Fig. 13.4, with X/L = Y/L = 4, 
F13 = 0.62.  Hence 
 12 13 32 12F 1 F 0.38, and F F 0.38.= − = = =  
 
It follows that 

 ( ) 2
1 12A F 4 0.38 1.52 m= =  

 ( ) ( )2 2 2
1 13 1 1 1A F 4 0.62 2.48m , 1 / A 0.1/ 3.6 m 0.0278mε ε −= = − = =  

 ( ) ( )2 2 2
3 32 2 2 2A F 4 0.38 1.52 m , 1 / A 0.7 /1.2 m 0.583m .ε ε −= = − = =  

Also, 

 ( )44 8 2 4 2
b1 1E T 5.67 10 W / m K 800 K 23, 224 W / m ,σ −= = × ⋅ =  

 ( )44 8 2 4 2
b2 2E T 5.67 10 W / m K 400 K 1452 W / m .σ −= = × ⋅ =  

 
The system forms a three-surface enclosure, with one surface re-radiating.  Hence the net radiation 
transfer from a single heater is, from Eq. 13.30, 

 

[ ]

b1 b2
1

1 2
11 1 2 21 12 1 13 3 32

E Eq 1 1 1
A AA F 1/ A F 1/ A F

ε ε
ε ε−

−
=

− −
+ +

+ +
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( )

( )

2
1 2

23, 224 1452 W / m
q 21.4 kW.

0.0278 0.4061 0.583 m−
−

= =
+ +

 

 
The furnace power requirement is therefore qelec = 2q1 = 43.8 kW, with    < 
 

 
( )

b1 1
1

1 1 1

E Jq .
1 / Aε ε

−
=

−
 

 
where 

 2 21
1 b1 1

1 1

1J E q 23,224 W / m 21,400 W 0.0278m
A
ε

ε
−−

= − = − ×  

 
 2

1J 22,679 W / m .=  
Also, 

 ( )2 22
2 b2 2

2 2

1J E q 1,452 W / m 21,400 W 0.583m
A
ε

ε
−−

= − = − − ×  

 
 2

2J 13,928W / m .=  
From Eq. 13.31, 

 1 3 3 2
1 13 3 32

J J J J
1/ A F 1/ A F

− −
=  

 

 1 3 3 32
3 2 1 13

J J A F 1.52 0.613
J J A F 2.48
−

= = =
−

 

 
 2

3 1 21.613J J 0.613J 22,629 8537 31,166 W / m= + = + =  
 
 2

3J 19,321W / m=  
 
Since J3 = Eb3, 

 ( ) ( )1/ 41/ 4 8
3 b3T E / 19,321/ 5.67 10 764 K.σ −= = × =     < 

 
COMMENTS:  (1) To reduce qelec, the sidewall temperature T2, should be increased by insulating it 
from the surroundings.  (2) The problem must be solved by simultaneously determining J1, J2 and J3 
from the radiation balances of the form 
 

 
( ) ( ) ( )b1 1

1 12 1 2 1 13 1 3
1 1 1

E J A F J J A F J J
1 / Aε ε

−
= − + −

−
 

 

 
( ) ( ) ( )b2 2

2 21 2 1 2 23 2 3
2 2 2

E J A F J J A F J J
1 / Aε ε

−
= − + −

−
 

 
 ( ) ( )1 13 3 1 2 23 3 20 A F J J A F J J .= − + −  



PROBLEM 13.79  
KNOWN:  Geometry and surface temperatures and emissivities of a solar collector.  
FIND:  Net rate of radiation transfer to cover plate due to exchange with the absorber plates.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Isothermal surfaces with uniform radiosity, (2) Absorber plates behave as 
blackbodies, (3) Cover plate is diffuse-gray and opaque to thermal radiation exchange with absorber 
plates, (4) Duct end effects are negligible.  
ANALYSIS:  Applying Eq. 13.21 to the cover plate, it follows that 
 

 
( )

( ) ( )
N 1 j1 1

b1 1 1 12 1 2 1 13 1 311 1 1 1j 1 i ij

J J1 1E J A F J J A F J J .
A AA F

ε ε
ε ε−

=

−− −
⎡ ⎤− = = − + −⎣ ⎦∑  

 
From symmetry, F12 = F13 = 0.5.  Also, J2 = Eb2 and J3 = Eb3.  Hence 
 
 ( )b1 1 1 b2 b3E J 0.0556 2J E E− = − −  

or with 4
bE T ,σ=  

 
 ( )1 b1 b2 b31.111J E 0.0556 E E= + +  
 

 ( ) ( ) ( ) ( )4 4 48 2 8 2
11.111J 5.67 10 298 W / m 0.0556 5.67 10 333 343 W / m− − ⎡ ⎤= × + × +⎢ ⎥⎣ ⎦

 
 
 2

1J 476.64 W / m=  
 
From Eq. 13.19 the net rate of radiation transfer from the cover plate is then 
 

 
( )

( )
( ) ( ) ( )

48
b1 1

1
1 1 1

5.67 10 298 476.64E Jq 265.5 W.
1 / A 1 0.9 / 0.9ε ε

−× −−
= = = −

− −
l

l
 

 
The net rate of radiation transfer to the cover plate per unit length is then 
 
 ( )1 1q q / 266 W / m.′ = =l         < 
 
COMMENTS:  Solar radiation effects are not relevant to the foregoing problem.  All such radiation 
transmitted by the cover plate is completely absorbed by the absorber plate. 



PROBLEM 13.80 
KNOWN:  Dimensions of cylinder and piston, mass of air contained in the cylinder, emissivity of 
surfaces, bottom surface temperature and surroundings temperature, density of piston material. 
 
FIND:  Distance between bottom of piston and bottom of cylinder and temperature of the piston for T1 
= 300, 450 and 600 K. 
 
SCHEMATIC: 

Lb

Lt

δ = 10 mm

L = 100 mm

Tsur = 300 K  Piston
Tp, ρp = 8000 kg/m3, ε = 0.3

Air

Heated surface
T1 = 300 K, 450 K, 600 K, ε = 0.3 

Dp = 50 mm  

Ma
= 75 × 10-6 kg

ε = 0.3

 
ASSUMPTIONS:  (1) Diffuse-gray surfaces with uniform radiosity and irradiation, (2) Negligible 
convection heat transfer, (3) Ideal gas behavior, (4) Frictionless, isothermal piston, (5) Air temperature 
is average of bottom surface temperature and piston temperature, (6) Low thermal conductivity 
material is re-radiating. 
  
ANALYSIS:   The position and temperature of the piston are governed by energy and force balances 
that are applied to a control volume surrounding the piston. 
 
 
 
 
 
 
 
 
 
Treating the air as an ideal gas,  
 

( / )a a a aP V M T= R M      (1) 
 

 
where 1( ) / 2a pT T T= + . The force balance yields 
 
   2

atm atm( / 4)a p p pp M g p D g pρ π δ= + = +     (2) 
 
At steady state,  
 

qt = qb        (3) 
Continued… 
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PROBLEM 13.80 (Cont.) 
 
where the heat rates are determined by evaluating the radiation heat transfer in two enclosures; one 
enclosure formed by three surfaces below the piston (bottom of cylinder, bottom of piston and 
reradiating side wall) and the second enclosure formed by three surfaces above the piston (top of 
piston, hypothetical surface at the top of the cylinder and reradiating side wall). 
 
Using Eq. 13.30 for the bottom enclosure, 
 

( ) ( )

1

1
1

1 1 1 1 1 1

11 1

1/ 1/

b bp
b

p

p pp Rb p p Rb

E E
q

AA A F A F A F

εε
εε −

− − −

−
=

−− + +
⎡ ⎤+ +⎣ ⎦

   (4) 

 
while for the top enclosure, 
 

( ) ( )

sur

sur
1

sur sursur sur sur

1 1 1

1/ 1/

bp b
t

p

p p p p p p Rt p

E E
q

AA A F A F A F

ε ε
εε −

− − −

−
=

− −
+ +

⎡ ⎤+ +⎣ ⎦

  (5) 

 
The three emissive powers are 
 
   4 4 4

1 1 sur sur;      ;      b bp p bE T E T E Tσ σ σ= = =           (6a,b,c) 
 
The surface areas are 
 
   2

1 sur / 4p pA A A Dπ= = =            (7a,b,c) 
 
while the gas volume is 
 
   V = (π 2

pD /4)Lb        (8) 
 
The universal gas constant is R = 8315 J/kmol⋅K and the molecular weight of the air is M = 28.97 
kg/kmol. 
 
View factors for use in Eqs. 4 and 5 are evaluated using the expressions for coaxial parallel disks in 
Table 13.2.  For the bottom enclosure,  
 

Rib = Rjb = D/(2Lb), Sb = 1 + (1 + 2
jbR )/ 2

ibR , F1-p = 0.5(Sb - [ 2
bS -4]1/2),  

F1 - Rb = 1 – F1 – p, Fp – Rb = F1 – Rb.       (9a,b,c,d,e,f) 
 
For the top enclosure, 
 
  

Rit = Rjt = D/(2Lt), St = 1 + (1 + 2
jtR )/ 2

itR , Fp-sur = 0.5(St - [ 2
tS - 4]1/2),  

Fp - Rt = 1 – Fp - sur, Fsur - p = Fp - sur                            (10a,b,c,d,e,f) 
 

The lengths are related by 
Continued… 
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Lb + Lt + δ = L         (11) 

 
Simultaneous solution of Eqs. 1 through 11 yields the following results, presented in tabular form. 

 
 

Input Variable Results     View Factors    ____        
 
T1 (K)  Lb (mm) Tp (K) qb(W)  F1 - Rb F1 - p Fp - Rb Fp - Rt Fp - sur Fsur- p 
 
300   0.033  300 0  - - - - - - 
 
450  0.045  389.2 0.32  0.804 0.196 0.804 0.799 0.201 0.201 
 
600  0.059  488 1.26  0.865 0.135 0.865 0.691 0.309 0.309 

 
 
 
COMMENTS:  As the temperature of the bottom surface increases, the gas temperature increases 
leading to expansion of the air and increased Lb. To solve Eqs. 1 through 11 requires a potentially 
tedious trial-and-error solution. The tedium is reduced significantly by using IHT. One approach is to 
guess values of Lb (or Lt) and solve the equations until qb = qt.  In doing so, one discovers that multiple 
solutions exist, but the second solution is unrealistic since piston temperatures are outside the range T1 
> Tp > Tsur.  



PROBLEM 13.81  
KNOWN:  Cylindrical peep-hole of diameter D through a furnace wall of thickness L.  Temperatures 
prescribed for the furnace interior and surroundings outside the furnace.  
FIND:  Heat loss by radiation through the peep-hole.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Furnace interior and exterior surroundings are 
large, isothermal surroundings for the peep-hole openings, (3) Furnace refractory wall is adiabatic and 
diffuse-gray with uniform radiosity.  
ANALYSIS:  The open-ends of the cylindrical peep-hole (A1 and A2) and the cylindrical lateral 
surface of the refractory material (AR) form a diffuse-gray, three-surface enclosure.  The hypothetical 
areas A1 and A2 behave as black surfaces at the respective temperatures of the large surroundings to 
which they are exposed.  Since Ar is adiabatic, it behaves as a re-radiating surface, and its emissivity 
has no effect on the analysis.  From Eq. 13.30, the net radiation leaving A1 passes through the 
enclosure into the outer surroundings. 

 q q E E
1-

 A  F A  F A  F  A

1 2
b1 b2

1
1 1 12 1 1R 2 2R 2

= − =
−

+
+ +

+
−

−
ε

ε
ε

ε
1

1 1

1

1
1

2
2A / /b g b g

 

Since ε1 = ε2 = 1, and with Eb = σ T4 where σ = 5.67 × 10-8 W/m2⋅K4, 

 q A  F 1/ A  F A  F T T1 1 12 1 1R 2 2R 1
4

2
4= + +RST

UVW −−b g b g e j1 1/ σ  

where A1 = A2 = π D2/4.  The view factor F12 can be determined from Table 13.2 (Fig. 13.5) for the 
coaxial parallel disks (R1 = R2 = 125/(2 × 250) = 0.25 and S = 17.063) as 
 F12 0 05573= .  

From the summation rule on A1, with F11 = 0, 
 F F F12 1R11 1+ + =  
 F F1R 12= − = − =1 1 0 05573 0 9443. .  
and from symmetry of the enclosure, 
 
 F F2R 1R= = 0 9443.  
 
Substituting numerical values into the rate equation, find the heat loss by radiation through the peep-
hole to the exterior surroundings as 
 
 q q  Wloss 1= = 1046          < 
 
COMMENTS:  If you held your hand 50 mm from the exterior opening of the peep-hole, how would 
that feel?  It is standard, safe practice to use optical protection when viewing the interiors of high 
temperature furnaces as used in petrochemical, metals processing and power generation operations. 



PROBLEM 13.82  
KNOWN:  Composite wall comprised of two large plates separated by sheets of refractory insulation 
of thermal conductivity k = 0.05 W/m⋅K; gaps between the sheets of width w = 10 mm, located at 1 - 
m spacing, allow radiation transfer between the plates.  
FIND:  (a) Heat loss by radiation through the gap per unit length of the composite wall (normal to the 
page), and (b) fraction of the total heat loss through the wall that is due to radiation transfer through 
the gap.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Surfaces are diffuse-gray with uniform radiosities, 
(3) Refractory insulation surface in the gap is adiabatic, and (4) Heat flow through the wall is one-
dimensional between the plates in the direction of the gap centerline, (5) Negligible contact resistance, 
(6) Negligible free convection in gap. 
 
PROPERTIES: Air (T = 490 K): k = 0.040 W/m·K.  
ANALYSIS:  (a) The gap of thickness w and infinite extent normal to the page can be represented by 
a diffuse-gray, three-surface enclosure formed by the plates A1 and A2 and the refractory walls, AR.  
Since AR is adiabatic, it behaves as a re-radiating surface, and its emissivity has no effect on the 
analysis.  From Eq. 13.30, the net radiation leaving the plate A1 passes through the gap into plate A2. 
 

 q q E E
1-

 A A  F A  F A  F  A

1 2
b1 b2

1
1 1 1 12 1 1R 2 2R 2

= − =
−

+
+ +

+
−

−
ε

ε
ε

ε
1

1 1

1
1

2
2/ /b g b g

 

 
where Eb = σ T4 with σ = 5.67 × 10-8 W/m2⋅K4 and A1 = A2 = w ⋅l , but making l  = 1 m to obtain 
′q  W / m1 b g.  

 
The view factor F12 can be determined from Table 13.2 (Fig. 13.4) for aligned parallel rectangles 
where X X / L= = ∞  since X→∞  and Y Y / L W / L 10 / 50 0.2= = = =  giving 
 
 F12 = 0 09902.  
 
From the summation rule on A1, with F11 = 0, 
 
 F F F F F11 12 1R 1R 12+ + = = − = − =1 1 1 0 09902 0 901. .  
 
 
and from symmetry of the enclosure, 
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F F2R 1R= = 0 901. . 
 
Substituting numerical values into the rate equation, find the heat loss through the gap due to radiation 
as 
 
 ′ = ′ =q q W / mrad 1 37          < 
 
(b) The conduction heat rate per unit length (normal to the page) for a 1 - m section is 
 

 
( ) ( )

cond cond, ins cond, air
400 35 K

0.05 W/m K 1 m 0.1m
0.050 mm

(400 35)K                                                0.04W / m K 0.01m
0.050mm

q q q
−

= ⋅ × −

−
+ ⋅ ×

′ ′ ′= +
 

 
 condq 361.4 W / m 2.92 W / m 364 W/m′ = + =  
 
The fraction of the total heat transfer through the 1 - m section due to radiation is 
 

 rad rad

tot cond rad

q q 37 9.2%
q q q 364 37
′ ′

= = =
′ ′ + +

      < 

 
We conclude that if the installation process for the sheet insulation can be accomplished with a smaller 
gap, there is an opportunity to reduce the cost of operating the furnace. 
 
 



PROBLEM 13.83  
KNOWN:  Diameter, temperature and emissivity of a heated disk.  Diameter and emissivity of a 
hemispherical radiation shield.  View factor of shield with respect to a coaxial disk of prescribed 
diameter, emissivity and temperature.  
FIND:  (a) Equivalent circuit, (b) Net heat rate from the hot disk.  
SCHEMATIC:   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Surfaces may be approximated as diffuse/gray, (2) Surface 4 is reradiating, (3) 
Negligible convection.  
ANALYSIS:  (a) The equivalent circuit is shown in the schematic.  Since surface 4 is treated as 
reradiating, the net transfer of radiation from surface 1 is equal to the net transfer of radiation to 
surface 3 (q1 = -q3). 
 
(b) From the thermal circuit, the desired heat rate may be expressed as 

 

( )

b1 b3
1 1

21 1
2 23

1 1 1 12 2 2 3 3
2 24 3 34

E Eq

2 11 1 1 1A F 1 1A A F A A
A F A F

εε ε
ε ε ε

−
−

=
⎡ ⎤
⎢ ⎥−− −⎢ ⎥+ + + + +
⎢ ⎥+
⎢ ⎥⎣ ⎦

 

where A1 = A3 = 2
1D / 4π  = π(0.05 m)2/4 = 1.963 × 10-3 m2, A2 = 2

1D / 2π  = 2A1 = 3.925 × 10-3 m2, 

F12 = 1, and F24 = 1 – F23 = 0.7.  With F34 = 1 – F32 = 1 – F23(A2/A3) = 1 – 0.3(2) = 0.4, it follows 
that 
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PROBLEM 13.83 (Cont.) 
 

 
( )

( )

4 4
1 1 3

1 1

2 31 1 2
23

1 11 12 2 2 1 3
2 24 3 34

A T T
q

2 1 11 A A1 1F A AF A A
A F A F

−

−
=

⎡ ⎤
⎢ ⎥− −− ⎢ ⎥+ + + + +
⎢ ⎥+
⎢ ⎥⎣ ⎦

σ

ε εε
ε ε ε

 

 
 

 
( ) ( )4 4 4 4

1 11 3 1 3
1 1

A T T A T T
q

0.667 1 49 1.098 1.5
10.667 1 49 0.6 1.51 1

1.4 0.4

σ σ

−

− −
= =

+ + + +⎡ ⎤
⎢ ⎥

+ + + + +⎢ ⎥
⎢ ⎥+
⎣ ⎦

 

 

 ( ) ( )3 2 8 2 4 4 4 4
1q 0.0188 1.963 10 m 5.67 10 W / m K 900 400 K− −= × × ⋅ −  

 

 1q 1.32 W=           < 
 
COMMENTS:  Radiation transfer from 1 to 3 is impeded and enhanced, respectively, by the radiation 
shield and the reradiating walls.  However, the dominant contribution to the total radiative resistance is 
made by the shield. 



PROBLEM 13.84  
KNOWN:  Cylindrical cavity with prescribed geometry, wall emissivity, and temperature.  Temperature 
of surroundings.  
FIND:  (a) Net radiation heat transfer from the cavity treating the bottom and sidewall as one surface.  (b)  
Net radiation heat transfer from the cavity treating the bottom and sidewall as two separate surfaces.  
SCHEMATIC: 
 

 
 
 
ASSUMPTIONS:  (1) Cavity interior surfaces are diffuse-gray, (2) Surroundings are much larger than 
the cavity opening A3. 
 
ANALYSIS:  (a) We begin by finding the relevant areas and view factors. 

3 2
1

2A A D 7.85 10 m3 / 4 −= = ×= π  
2 2

2A DL 1.57 10 mπ −= = ×  
2 2

c 1 2A A A 2.36 10 m−= ×= +  
 
From Table 13.2, Coaxial Parallel Disks, with r1/L = 0.050/0.050 = 1 and r3/L = 1, find 

13 31F F 0.382= =  
Then,    32 12F F 1 F 0.61813= = − =  

21 23 12 2F F A F / A 0.3091= = =  
The shape factor from the combined surfaces 1 and 2 to the surroundings is 

 3 2 2 2F F A F / A 7.85 10 m 1/ 2.36 10 m 0.333c s 12 3 3 3 12 12
− −= = = × × × =− − −  

The combined surface Ac exchanges radiation with the large surroundings.  The net radiation heat transfer 
from the cavity is given by Eq. 13.23 with A2 in that equation representing the surroundings, such that A2 
→∞, and the equation reduces to 

( ) ( )8 2 4 4 4 4 2 24 4T Tc sur c
qA

c
c c s

5.67 10  W / m K 1500 300 K 2.36 10  mA

1 1 1 0.6 1
F 0.6 0.333

− −−
=

−

× ⋅ − × ×σ
=

− ε −
+ +

ε

 

qA 1842 W=                   < 
(b) Considering surfaces 1 and 2 separately, the heat transfer from the cavity to the surroundings can be 
found as the heat transfer reaching hypothetical surface 3 (the cavity opening), that is, qB = –q3, which 
from Eq. 13.20 is, 
 ( ) ( )3 3 31 3 1 3 32 3 2q A F J J A F J J .= − + −               (1) 

 
Continued… 

 

Tc = 1500 K 
εc = 0.6 



PROBLEM 13.84 (Cont.) 
 

As noted in Example 13.4, openings of enclosures that exchange radiation with large surroundings may 
be treated as hypothetical, nonreflecting black surfaces (ε3 = 1) whose temperature is equal to that of the 
surroundings, T3 = Tsur.  With ε3 = 1, J3 = Eb3.  However, J1 and J2 are unknown and must be obtained 
from the radiation balances, Eq. 13.21, 

 
( ) ( )

N
bi i i i

1i i i j 1 i ij

E J J J
1 / A A F

−
=

− −
=

− ε ε
∑         (2) 

Note also, Eb1 = Eb2 = 4
1Tσ  = σ(1500K)4 = 287,044 W/m2 and J3 = Eb3 = 4

3Tσ  = 459.3 W/m2. 

A1: 
( ) ( ) ( )

b1 1 1 2 1 3
1 11 1 1 1 12 1 13

E J J J J J
1 / A A F A F− −

− − −
= +

− ε ε
 

 
( ) ( ) ( )

1 1 2 1
1 21 1

287,044 J J J J 459.3
2.5J 0.618J 430,741

1 0.6 / 0.6 0.618 0.382− −
− − −

= + − =
−

  (3) 

A2: 
( ) ( ) ( )

b2 2 2 1 2 3
1 12 2 2 2 21 2 23

E J J J J J
1 / A A F A F− −

− − −
= +

− ε ε
 

 
( ) ( ) ( )

2 2 1 2
1 21 1

287,044 J J J J 459.3
0.309J 2.118J 430,708

1 0.6 / 0.6 0.309 0.309− −
− − −

= + − + =
−

  (4) 

Solving Eqs. (3) and (4) simultaneously, find J1 = 230,491 W/m2 and J2 = 234,654 W/m2, and from Eq. 
(1), find 

( ) ( )[ ]3 2 2
Bq 7.854 10 m 0.382 459.3 230,491 0.618 459.3 234,654 W / m−= × − + −  

qB = 1840 W                < 
 
(c) The equations for shape factors were entered into the IHT workspace, along with Eqs. (1), (3), and (4).  
The resulting plot is shown below. 
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PROBLEM 13.84 (Cont.) 
 

COMMENTS: The difference between the two different methods for calculating heat transfer rates is 
less than 1% over the entire range of L.  When we treat the sides and bottom as one surface, we are 
assuming that the radiosity is the same for these two surfaces.  This is exactly true when the shape factor 
between each of those surfaces and the environment is the same, as it is for L around 0.075 m (see 
below).  But from the graphs we see that even when the shape factors and radiosities are not very close 
for the two surfaces, the net heat transfer rate can still be accurately approximated by treating both 
surfaces as one. 
 
 
 
 
 

J1
J2

L (m)
0.10.080.060.040.02

J 
(W

/m̂
2)

255,000
250,000
245,000
240,000
235,000
230,000
225,000
220,000
215,000
210,000
205,000
200,000
195,000
190,000
185,000

F13
F23

L (m)
0.10.090.080.070.060.050.040.030.020.01

F

0.9
0.85
0.8

0.75
0.7

0.65
0.6

0.55
0.5

0.45
0.4

0.35
0.3

0.25
0.2



PROBLEM 13.85  
KNOWN:  Circular furnace with prescribed temperatures and emissivities of the lateral and end 
surfaces.  
FIND:  Net radiative heat transfer from each surface.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Surfaces are isothermal and diffuse-gray.  
ANALYSIS:  To calculate the net radiation heat transfer from each surface, we need to determine its 
radiosity.  First, evaluate terms that will be required. 
 4 2 2 2

b1 1 1 2 12 21E T 1452 W / m A A D / 4 0.07069 m F F 0.17σ π= = = = = = =  

 4 2 2
b2 2 3 23 13E T 3544 W / m A DL 0.2827 m F F 0.83σ π= = = = = =  

 4 2
b3 3E T 23, 224 W / mσ= =  

The view factor F12 results from Fig. 13.5 with L/ri = 2 and rj/L = 0.5.  The radiation balances using 
Eq. 13.21, omitting units for convenience, are: 

 ( ) ( ) ( )1
1 1 2 1 3

1452 J
A : 0.07069 0.17 J J 0.07069 0.83 J J

1 0.4
0.4 0.07069

−
= × − + × −

−

×

 

    1 2 32.500J 0.2550J 1.2450J 1452− + + = −    (1) 

 ( ) ( ) ( )2
2 2 1 2 3

3544 J
A : 0.07069 0.17 J J 0.07069 0.83 J J

1 0.5
0.5 0.07069

−
= × − + × −

−

×

 

    1 2 30.1700J 2.0000J 0.8300J 3544− − + = −    (2) 

 ( ) ( ) ( )3
3 3 1 3 2

23, 224 J
A : 0.07069 0.83 J J 0.07069 0.83 J J

1 0.8
0.8 0.2827

−
= × − + × −

−

×

 

    1 2 30.05189J 0.05189J 1.1037J 23, 224+ − = −    (3) 
Solving Eqs. (1) – (3) simultaneously, find 

 2 2 2
1 2 3J 12,877 W / m J 12,086 W / m J 22, 216 W / m .= = =  

Using Eq. 13.20, the net radiation heat transfer for each surface follows: 

 ( )
N

i i ij i j
j 1

q A F J J
=

= −∑  

( ) ( )1 1A : q 0.07069 0.17 12,877 12, 086 W 0.07069 0.83 12,877 22, 216 W 538 W= × − + × − = −  < 

( ) ( )2 2A : q 0.07069 0.17 12, 086 12,877 W 0.07069 0.83 12,086 22, 216 W 603 W= × − + × − = −  < 

( ) ( )3 3A : q 0.07069 0.83 22, 216 12,877 W 0.07069 0.83 22, 216 12, 086 W 1141W= × − + × − =  < 
 
COMMENTS:  Note that Σqi = 0.  Also, note that J2 < J1 despite the fact that T2 > T1; note the role 
emissivity plays in explaining this. 



PROBLEM 13.86 
 
KNOWN: Temperatures of two large parallel plates and desired radiation heat flux between 
them.   
 
FIND: (a) If plate emissivities are uniform and equal, show that required emissivity is 0.5.  (b) If 
plates are painted with checkerboard patterns having two different emissivities with an average 
value of 0.5, will heat flux be the desired value? 
 
SCHEMATIC: 

                
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Surfaces are diffuse, (2) Plates are effectively infinite (no radiation 
exchange with surroundings), (3) Plate temperatures are uniform. 
 
ANALYSIS: (a) The heat flux between two infinite parallel plates is given by Eq. 13.24.  With  
ε1 = ε2 = 0.5, we find 
 

4 4 8 2 4 4 4 4
21 2

12
(T T ) 5.67 10  W / m K (400 300 )Kq 331 W/m
2 / 1 2 / 0.5 1

−σ − × ⋅ −′′ = = =
ε − −

     (1) 

 

Thus, to a very close approximation, the required emissivity of the plates is 0.5.           < 
(b) With the checkerboard pattern, we can identify four different surfaces:  the high emissivity 
region on the top surface (1h), the low emissivity region on the top surface (1l ), the high 
emissivity region on the bottom surface (2h), and the low emissivity region on the bottom surface 
( 2l ).  The view factors can be found by inspection.  The view factor between a region on the top 
plate and a region on the bottom plate is 0.5, that is, 
 

1h 2h 1h 2 1 2h 1 2

2h 1h 2h 1 2 2h 2 2

F 0.5,      F 0.5,      F 0.5,      F 0.5
F 0.5,      F 0.5,      F 0.5,      F 0.5

− − − −

− − − −

= = = =
= = = =

l l l l

l l l l
  

 
and all other view factors (from a region on one plate to a region on the same plate) are zero. We 
proceed to write Eq. 13.21 at all four surfaces, recognizing that all regions have the same area, 
  
 

 
 

Continued… 
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T1 = 400 K 
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PROBLEM 13.86 (Cont.) 
 

b1 1h 1h 2h 1h 2
h h

b1 1 1 2h 1 2

b2 2h 2h 1h 2h 1
h h

b2 2 2 1h 2 1

E J J J J J
(1 ) / 1/ 0.5 1/ 0.5
E J J J J J

(1 ) / 1/ 0.5 1/ 0.5
E J J J J J

(1 ) / 1/ 0.5 1/ 0.5
E J J J J J
(1 ) / 1/ 0.5 1/ 0.5

− − −
= +

− ε ε
− − −

= +
− ε ε

− − −
= +

− ε ε
− − −

= +
− ε ε

l

l l l l

l l

l

l l l l

l l

 

 
Proceeding with the algebra required to solve these four simultaneous equations results in 
 

[ ]

[ ]

[ ]

[ ]

h
1h h b1 b2 b1

1 b1 b2 b1

h
2h h b2 b1 b2

2 b2 b1 b2

1J E E (1 )E
2

1J E E (1 )E
2
1J E E (1 )E
2

1J E E (1 )E
2

− ε
= ε + + − ε

− ε
− ε

= ε + + − ε
− ε
− ε

= ε + + − ε
− ε
− ε

= ε + + − ε
− ε

l
l l

l
l l

 

where 1 2( ) / 2ε = ε + ε .  Then the net radiation heat flux between the two plates can be 
expressed as, net 1h h 1 tot 1h 1q (q A q A ) / A 0.5(q q )′′ ′′ ′′ ′′ ′′= + = +l l l , and making use of Eq. 13.20 
for the heat fluxes, we find, 
 

[ ] [ ]{ }
[ ]

net 1h 2h 1h 2 1 2h 1 2

1h 1 2h 2

q 0.5 0.5(J J ) 0.5(J J ) 0.5(J J ) 0.5(J J )

0.5 (J J ) (J J )

′′ = − + − + − + −

= + − +
l l l l

l l

 

 
After much manipulation, this reduces to 
 

b1 b2
net

E Eq
2 / 1

−′′ =
ε −

                (2) 

 
Comparing Eqs. (1) and (2), we see that the checkerboard pattern with an average emissivity ε  
will result in the same heat flux as uniform emissivity plates with emissivity ε = ε . 
 

With average emissivity of 0.5, the checkerboard pattern will yield the desired heat flux.          < 
 
COMMENTS: An alternative to this tedious algebraic proof would be to use IHT to solve the 
four surface enclosure problem and show numerically that average emissivities of 0.5 yield the 
desired heat flux. 



PROBLEM 13.87 
 
KNOWN:  Temperature of large enclosure.  Areas and emissivity of two convex objects in enclosure, 
and view factor between them.  Power supplied to object 2.  Temperature of object 1. 
 
FIND:  Heating or cooling rate for object 1.  Temperature of object 2.  
 
SCHEMATIC: 

T3 = 300 K

Object 1
cooled by circulating fluid
A1 = 0.2 m2

ε1 = 0.2
T1 = 200 K
q1 = ?

Object 2
heated electrically
A2 = 0.2 m2

ε2 = 0.2
q2 = 400 W
T2 = ?

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Objects are gray and diffuse, (3) Large enclosure 
behaves as blackbody, (4) Each surface experiences uniform irradiation and radiosity. 
 
ANALYSIS:  We are given F12 = 0.2.  Since object 1 is convex, it does not see itself, and F13 = 1 – F12 
= 0.8.  The areas of the two objects are the same, therefore from reciprocity F21 = F12 = 0.2.  Finally, 
since object 2 is convex, F23 = 1 – F21 = 0.8. 
 
The enclosure is assumed to be large enough to behave as a blackbody, therefore: 
 
 4 8 2 4 4 4 2

3 3 3 5.67 10  W / m K 300  K 459.3 W / mbJ E Tσ −= = = × ⋅ × =  
 
Equation 13.21 can be written at surface 1 where the temperature is known: 
 

 1 1 1 2 1 3

1 1 1 1 12 1 13(1 ) / 1 / 1 /
bE J J J J J

A A F A Fε ε
− − −

= +
−

 (1) 

 
The power is known at surface 2, q2 = 400 W, so we write Equation 13.22: 
 

 2 1 2 3
2

2 21 2 231 / 1 /
J J J Jq

A F A F
− −

= +  (2) 

 
Substituting values into Eqs. (1) and (2) gives 
 

 
2 2 2

1 1 1 2 1 3
2 2

2 1 2 3

0.05 m ( ) 0.04 m ( ) 0.16 m ( )

400 W 0.04 m ( ) 0.16 m ( )
bE J J J J J

J J J J

− = − + −

= − + −
 

 
where 4 8 2 4 4 4 2

1 1 5.67 10  W / m K 200  K 90.72 W / mbE Tσ −= = × ⋅ × =  and J3 is given above.  Solving 
these two simultaneous equations yields 

Continued... 



 
PROBLEM 13.87 (Cont.) 

 
 

J1 = 713.7 W/m2, J2 = 2510 W/m2 

 

The net rate of radiation leaving object 1 is given by Equation 13.19: 
 

2 2 21 1
1

1 1 1

0.05 m (90.72 W/m 713.7 W/m ) 31.1 W
(1 ) /

bE Jq
Aε ε

−
= = − = −

−
   < 

 
There is a net rate of radiation heat transfer to object 1 of 31.1 W, which must be removed from object 

1 by the coolant.            < 
 
The temperature of object 2 can be found by solving Equation 13.19 for Eb2: 
 

2 22
2 2 2 2

2 2

1 1 0.22510 W / m 400 W 10,510 W / m
0.2 0.2 mbE J q

A
ε

ε
− −

= + = + =
×

 

 

Then with 4
2 2bE Tσ=  we find T2 = 656 K.       < 

 
COMMENTS:  (1) If the objects were concave, additional information would have to be known about 
their shapes in order to determine the appropriate view factors. (2) The objects would clearly 
experience non-uniform irradiation and radiosity. A more detailed analysis would need to be 
performed in order to determine whether the non-uniform radiation fluxes would affect the answers. 
As for concave objects, a more detailed analysis of the convex objects would necessitate information 
regarding the shape of the objects. (3) The coolant must have a freezing point less than 200 K.   
 
 



PROBLEM 13.88  
KNOWN:  Four surface enclosure with all sides of equal area; temperatures of three surfaces are 
specified while the fourth is re-radiating.  
FIND:  Temperature of the re-radiating surface A4. 
 
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Surfaces are diffuse-gray, (2) Surfaces have uniform radiosities.  
ANALYSIS:  To determine the temperature of the re-radiating surface A4, it is necessary to recognize 

that J4 = Eb4 = 4
4Tσ  and that the Ji (i = 1 to 4) values must be evaluated by simultaneously solving four 

radiation balances of the form, Eq. 13.21, 

 
( ) ( )

N i jbi i
1i i i j 1 i ij

J jE J
1 / A A Fε ε −

=

−−
=

−
∑  

For simplicity, set A1 = A2 = A3 = A4 = 1 m2 and from symmetry, it follows that all view factors will be 

Fij = 1/3.  The necessary emissive powers are of the form Ebi = 4
1T .σ  

 
Eb1 = σ(700 K)4 = 13,614 W/m2,     Eb2 = σ(500 K)4 = 3544 W/m2,     Eb3 = σ(300 K)4 = 459 W/m2. 
 
The radiation balances are: 

A1:  
( )

( ) ( ) ( )1
1 2 1 3 1 4

13, 614 J 1 1 1
J J J J J J 1 2 3 4

1 0.7 / 0.7 3 3 3
1.42857J 0.14826J 0.14826J 0.14826J 13, 614;

−
= − + − + −

−
− + + + = −  

A2:  
( )

( ) ( ) ( )2
2 1 2 3 2 4 1 2 3 4

3544 J 1 1 1
J J J J J J 0.33333J 2.00000J 0.33333J 0.33333J 3544

1 0.5 / 0.5 3 3 3

−
= − + − + − − + + = −

−
 

A3:  
( )

( ) ( ) ( )3
3 1 3 2 3 4 1 2 3 4

459 J 1 1 1
J J J J J J 0.77778J 0.77778J 3.33333J 0.77778J 459

1 0.3 / 0.3 3 3 3

−
= − + − + − + − + = −

−
 

A4:  ( ) ( ) ( )4 1 4 2 4 3 1 2 3 4
1 1 1

0 J J J J J J 0.33333J 0.33333J 0.33333J 1.00000J 0
3 3 3

= − + − + − + + − =  
 
Solving this system of equations simultaneously, find 
 

J1 = 11,572 W/m2, J2 = 6031 W/m2, J3 = 6088 W/m2, J4 = 7897 W/m2. 
 
Since the radiosity and emissive power of the re-radiating surface are equal, 

 4
4 4T J /σ=  

 ( )1/ 42 8 2 4
4T 7897 W / m / 5.67 10 W / m K 611 K.−= × ⋅ =     < 

 
COMMENTS:  Note the values of the radiosities; are their relative values what you would have 

expected?  Is the value of T4 reasonable? 



PROBLEM 13.89  
KNOWN:  A room with electrical heaters embedded in ceiling and floor; one wall is exposed to the 
outdoor environment while the other three walls are to be considered as insulated.  
FIND:  Net radiation heat transfer from each surface.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Diffuse-gray surfaces, (2) Surfaces are isothermal and irradiated uniformly, (3) 
Negligible convection effects, (4) A5 = A5A + A5B. 
 
ANALYSIS:  To determine the net radiation heat transfer from each surface, find the surface 
radiosities using Eq. 13.20. 

 ( )
5

i i ij i j
j 1

q A F J J
=

= −∑          (1) 

To determine the value of Ji, energy balances must be written for each of the five surfaces.  For 
surfaces 1, 2, and 3, the form is given by Eq. 13.21. 

 
( ) ( )

5 i jbi i
1i i i j 1 i ij

J JE J
i 1, 2, and 3.

1 / A A Fε ε −
=

−−
= =

−
∑      (2) 

For the insulated or adiabatic surfaces, Eq. 13.22 is appropriate with qi = 0; that is 

 
( )

N i j
i 1

j 1 i ij

J J
q 0 i 4 and 5.

A F
−

=

−
= = =∑       (3) 

In order to write the energy balances by Eq. (2) and (3), we will need to know view factors.  Using 
Fig. 13.4 (parallel rectangles) or Fig. 13.5 (perpendicular rectangles) find: 
  F12 = F21 = 0.39 X/L = 10/4 = 2.5, Y/L = 6/4 = 1.5 
  F13 = F14 = 0.19 Z/X = 4/10 = 0.4, Y/X = 6/10 = 0.6 
  F34 = F43 = 0.19 X/L = 10/6 = 1.66, Y/L = 4/6 = 0.67 
  F24 = F13 = 0.19 Z/X = 4/10 = 0.4, Y/X = 6/10 = 0.6 
Note the use of symmetry in the above relations.  Using reciprocity, find, 

 2 2 1
32 23 13 31 13

3 3 3

A A 60 A 60
F F F 0.19 0.285; F F 0.19 0.285

A A 40 A 40
= = = × = = = × =  

 31
51 15 53 35

5 5

AA 60 40
F F 0.23 0.288; F F 0.25 0.208.

A 48 A 48
= = × = = = × =  

From the summation view factor relation, 
 15 12 13 14F 1 F F F 1 0.39 0.19 0.19 0.23= − − − = − − − =  
 35 31 32 34F 1 F F F 1 0.285 0.285 0.19 0.24= − − − = − − − =  

          Continued … 



PROBLEM 13.89 (Cont.) 
 
Using Eq. (2), now write the energy balances for surfaces 1, 2, and 3.  (Note Eb = σT4). 

 1 3 1 51 1 2 1 4J J J J544.2 J J J J J
1 0.8 / 0.8 60 1/ 60 0.39 1/ 60 0.19 1/ 60 0.19 1/ 60 0.23

− −− − −
= + + +

− × × × × ×
 

  -1.2500J1 + 0.0975J2 + 0.0475J3 + 0.570J5 = − 544.2    (4) 
 

 2 3 2 52 2 1 2 4J J J J617.2 J J J J J
1 0.9 / 0.9 60 1/ 60 0.39 1/ 60 0.19 1/ 60 0.19 1/ 60 0.23

− −− − −
= + + +

− × × × × ×
 

  +0.0433J1 – 1.111J2 + 0.02111J3 + 0.02111J4 + 0.02556J5 = − 617.2  (5) 
 

 3 1 3 2 3 4 3 5390.1 J J J J J J J J J3
1 0.7 / 0.7 40 1/ 40 0.285 1/ 40 0.285 1/ 40 0.19 1/ 40 0.24

− − − − −
= + + +

− × × × × ×
 

  +0.1221J1 + 0.1221J2 – 1.4284J3 + 0.08143J4 + 0.1028J5 = − 390.1  (6) 
Using Eq. (3), now write the energy balances for surfaces 4 and 5 noting q4 = q5 = 0. 

 4 3 4 54 1 4 2 J J J JJ J J J
0

1/ 40 0.285 1/ 40 0.285 1/ 40 0.19 1/ 40 0.24
− −− −

= + + +
× × × ×

 

  0.285J1 + 0.285J2 + 0.19J3 – 1.0J4 + 0.24J5 = 0     (7) 
 

 5 1 5 2 5 3 5 4J J J J J J J J
0

1/ 48 0.288 1/ 48 0.288 1/ 48 0.208 1/ 48 0.208
− − − −

= + + +
× × × ×

 

  0.288J1 + 0.288J2 + 0.208J3 + 0.208J4 – 0.992J5 = 0    (8) 
 
Note that Eqs. (4) – (8) represent a set of simultaneous equations which can be written in matrix 
notation. That is, [A] [J] = [C] with 

1.250 0.0975 0.0475 0.0475 0.0575 544.2 545
0.0433 1.111 0.02111 0.02111 0.02556 617.2

A 0.1221 0.1221 1.4284 0.08143 0.1028 C 390.1 J
0.285 0.285 0.190 1.000 0.240 0
0.288 0.288 0.208 0.208 0.992 0

− −
− −

= − = − =
−

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

2

.1
607.9
441.5 W / m
542.3
5410

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
where the Ji were found using IHT.  The net radiation heat transfer from each of the surfaces can now 
be evaluated using Eq. (1). 
 
q1 = A1F12(J1 – J2) + A1F13(J1 – J3) + A1F14(J1 – J4) + A1F15(J1 – J5) 
 q1 = 60 m2[0.39(545.1 – 607.9) 
 
        +0.19(545.1 – 441.5) + 0.19(545.1 – 542.3) + 0.23(545.1 – 541.0)] W/m2 = - 200 W < 
 q2 = 60 m2[0.39(607.9 – 545.1) 
 
        +0.19(607.9 – 441.5) + 0.19(607.9 – 542.3) + 0.23(607.9 – 541.0) W/m2 = 5037 W < 
 
 q3 = 40 m2[0.285(441.5 – 545.1) + 0.285(441.5 – 607.9) 

        +0.19(441.5 – 542.3) + 0.24(441.5 – 541.0)] W/m2 = - 4,799 W   < 

Since A4 and A5 are insulated (adiabatic), q4 = q5 = 0.      < 
 
COMMENTS:  (1) Note that the sum of q1 + q2 + q3 = + 38 W; this indicates a precision of less than 
1% resulted from the solution of the equations.  (2) The net radiation for the ceiling, A1, is into the 
surface.  Recognize that the embedded heaters function to offset heat losses to the room air by 
convection. 



PROBLEM 13.90  
KNOWN:  Cylindrical furnace of diameter D = 90 mm and overall length L = 180 mm.  Heating 
elements maintain the refractory liming (ε  = 0.8) of section (1), L1 = 135 mm, at T1 = 800°C.  The 
bottom (2) and upper (3) sections are refractory lined, but are insulated.  Furnace operates in a 
spacecraft environment.  
FIND:  Power required to maintain the furnace operating conditions with the surroundings at 23°C.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) All surfaces are diffuse gray, (2) Uniform radiosity over the sections 1, 2, and 
3, and (3) Negligible convection effects.  
ANALYSIS:  By defining the furnace opening as the hypothetical area A4, the furnace can be 
represented as a four-surface enclosure as illustrated above.  The power required to maintain A1 at T1 
is q1, the net radiation leaving A1.  To obtain q1 following the methodology of Section 13.3.2, we 
must determine the radiosity at all surfaces by simultaneously solving the radiation energy balance 
equations for each surface which will be of the form, Eqs. 13.20 or 13.21. 

 
( )

N j jbi i
1

i i i i ijj 1

J JE J
q

1 / A 1/ A Fε ε =

−−
= =

−
∑        (1,2) 

Since ε4 = 1, J4 = Eb4, so we only need to perform three energy balances, for A1, A2, and A3, 
respectively 

A1: 
( )

b1 1 1 31 2 1 4

1 1 1 1 12 1 13 1 14

E J J JJ J J J
1 / A 1/ A F 1/ A F 1/ A Fε ε

− −− −
= + +

−
     (3) 

A2: 2 32 1 2 4

2 21 2 23 2 24

J JJ J J J
0

1/ A F 1/ A F 1/ A F
−− −

= + +        (4) 

A3: 3 1 3 2 3 4

3 31 3 32 3 34

J J J J J J
0

1/ A F 1/ A F 1/ A F
− − −

= + +        (5) 

Note that q2 = q3 = 0 since the surfaces are insulated (adiabatic).  Recognize that in the above equation 
set, there are three equations and three unknowns: J1, J2, and J3.  From knowledge of J1, q1 can be 
determined using Eq. (1).  Next we need to evaluate the view factors.  There are N2 = 42 = 16 view 
factors and N(N – 1)/2 = 6 must be independently evaluated, while the remaining can be determined 
by the summation rule and appropriate reciprocity relations.  The six independently determined Fij are: 
 
By inspection:  (1)  F22 = 0  (2)  F44 = 0 
 
Coaxial parallel disks: From Fig. 13.5 or Table 13.5, 

          Continued … 
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 ( )
1/ 222

24 4 2F 0.5 S S 4 r / r= − −
⎧ ⎫⎡ ⎤⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

 

(3) ( )
1/ 222

24F 0.5 18 18 4 1 0.05573= − − =
⎧ ⎫⎡ ⎤⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

 

2 2
4

2 2 4 42 2
2

1 R 1 0.250
S 1 1 18.00 R r / L 45 /180 0.250 R r / L 0.250

R 0.250

+ +
= + = + = = = = = =  

Enclosure 1-2-2′: from the summation rule for A2, 
(4) F21 = 1 – F22’ = 1 – 0.09167 = 0.9083 
where F22′ can be evaluated from the coaxial parallel disk relation, Table 13.5.  For these surfaces, R2 
= r2/L1 = 45/135 = 0.333, R2′ = r2/L1 = 0.333, and S = 11.00.  From the summation rule for A1, 
(5) F11 = 1 – F12 – F12′ = 1 – 0.1514 – 0.1514 = 0.6972 
and by symmetry F12 = F12′ and using reciprocity 
 ( )( )[ ]12 2 21 1F A F / A 0.090m 2 / 4 0.9083 / 0.090m 0.135m 0.1514π π= = × × × =  

Enclosure  2′ -3-4:  from the summation rule for A4, 
(6) F43 = 1 – F42′ - F44 = 1 – 0.3820 – 0 = 0.6180 
where F44 = 0 and using the coaxial parallel disk relation from Table 13.5, with R4 = r4/L2 = 45/45 = 
1, R2′ = r2/L2 = 1, and S = 3. 
 
The View Factors:  Using summation rules and appropriate reciprocity relations, the remaining 10 
view factors can be evaluated.  Written in matrix form, the Fij are 
  0.6972*  0.1514  0.09704  0.05438 
  0.9083*  0*  0.03597  0.05573* 
  0.2911   0.01798 0.3819   0.3090 
  0.3262    0.05573 0.6180*  0* 
The Fij shown with an asterisk were independently determined. 
 
From knowledge of the relevant view factors, the energy balances, Eqs. (3, 4, 5), can be solved 
simultaneously to obtain the radiosities, 

 2 2 2
1 2 3J 73,084 W / m J 67,723W / m J 36,609 W / m= = =  

The net heat rate leaving A1 can be evaluated using Eq. (1) written as 

 
( )

( )
( )

2
b1 1

1 21 1 1

75,159 73, 084 W / mE J
q 317 W

1 / A 1 0.8 / 0.8 0.03817 mε ε
−−

= = =
− − ×

    < 

where Eb1 = 4
1Tσ  = σ(800 + 273K)4 = 75,159 W/m2 and A1 = πDL1 = π × 0.090m × 0.135m = 

0.03817 m2. 
 
COMMENTS:  (1) Recognize the importance of defining the furnace opening as the hypothetical area 
A4 which completes the four-surface enclosure representing the furnace.  The temperature of A4 is that 
of the surroundings and its emissivity is unity since it absorbs all radiation incident on it.  (2) To 
obtain the view factor matrix, we used the IHT Tool, Radiation, View Factor Relations, which permits 
you to specify the independently determined Fij and the tool will calculate the remaining ones. 



PROBLEM 13.91 
 
KNOWN:  Dimensions of furnace.  Emissivity of surfaces.  Temperatures of furnace walls and 
surroundings. 
 
FIND:  Rate of radiation heat transfer to surroundings.  
 
SCHEMATIC: 

Tsur = T3 = 20°C

L = 1 m 

T2 = 375°C
ε2 = 0.85

T1 = 375°C
ε1 = 0.85

 
 
ASSUMPTIONS:  (1) Surfaces are gray and diffuse, (2) Surroundings behave as blackbody, (3) Outer 
surface of furnace is adiabatic, (4) Each identified surface has uniform irradiation and radiosity. 
 
ANALYSIS:  The surrounding room is assumed to be large enough to behave as a blackbody, 
therefore: 
 
 4 8 2 4 4 4 2

3 3 3 5.67 10  W / m K (20 273)  K 417.9 W / mbJ E Tσ −= = = × ⋅ × + =  
 
The temperature of the oven surfaces is known, therefore we can write Equation 13.21 for surfaces 1 
and 2.   
 

 1 1 1 2 1 3

1 1 1 1 12 1 13(1 ) / 1 / 1 /
bE J J J J J

A A F A Fε ε
− − −

= +
−

 (1) 

 

 

2 2 2 1 2 3

2 2 2 2 21 2 23(1 ) / 1 / 1 /
bE J J J J J

A A F A Fε ε
− − −

= +
−  (2) 

 
The view factor from the oven door (1) to the interior walls of the furnace (2) is the same as from the 
oven door to the furnace opening.  From Table 13.2, 3rd entry, with X = Y = Z = 1 m, we find H = W = 
1 and F12 = 0.2. Then F13 = 1 – F12 = 0.8.  From reciprocity, F21 = A1F12/A2 = F12/5 = 0.04.   

 
The view factor from the interior of the furnace (2) to the surroundings (3) can be found from the 
following reasoning.  The radiation which leaves the interior and reaches either the oven door or the 
surroundings must have passed through the opening, so it will be useful to know the view factor F2o, 
where subscript o represents the opening.  We know that Fo2 = 1, therefore from reciprocity, F2o = 
AoFo2/A2 = 1/5 = 0.2.  The radiation that leaves through the opening must go either to the oven door or 
the surroundings, therefore F2o = F21 + F23.  Finally then, F23 = F2o – F21 = 0.16. Substituting numbers 
into Eqs. (1) and (2) gives 

 
 

Continued… 
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2 2 2 2

1 1 1 2 1
2 2 2 2

2 2 2 1 2

5.67 m ( ) 0.2 m ( ) 0.8 m ( 417.9 W/m )

28.3 m ( ) 0.2 m ( ) 0.8 m ( 417.9 W/m )
b

b

E J J J J

E J J J J

− = − + −

− = − + −
 

 
where 4 8 2 4 4 4 2

1 2 1 5.67 10  W / m K (375 273)  K 9997 W / mb bE E Tσ −= = = × ⋅ × + = .  Solving these two 
simultaneous equations yields 
 

J1 = 8840 W/m2, J2 = 9728 W/m2 
 
Then the radiation heat transfer to the room can be found by summing the contributions from surfaces 
1 and 2: 
 

room 3 1 13 1 3 2 23 2 3( ) ( )q q A F J J A F J J= − = − + −  

        2 2 2 2 2 2 40.8 m (8840 W / m 417.9 W / m ) 0.8 m (9728 W / m 417.9 W / m ) 1.42 10  W= − + − = ×  < 
 
COMMENTS:  Subdividing the surfaces into smaller regions in order to more closely satisfy the 
assumption of uniform irradiation and radiosity would provide a more accurate answer. 
 
 



PROBLEM 13.92  
KNOWN:  Observation cabin located in a hot-strip mill directly over the line; cabin floor (f) exposed 
to steel strip (ss) at Tss = 920°C and to mill surroundings at Tsur = 80°C. 
 
FIND:  Coolant system heat removal rate required to maintain the cabin floor at Tf = 50°C for the 
following conditions:  (a) when the floor is directly exposed to the steel strip and (b) when a radiation 
shield (s) εs = 0.10 is installed between the floor and the strip. 
 
SCHEMATIC:   
 

  
ASSUMPTIONS:  (1) Cabin floor (f) or shield (s), steel strip (ss), and mill surroundings (sur) form a 
three-surface, diffuse-gray enclosure, (2) Surfaces with uniform radiosities, (3) Mill surroundings are 
isothermal, black, (4) Floor-shield configuration treated as infinite parallel planes, and (5) Negligible 
convection heat transfer to the cabin floor.  
ANALYSIS:  A gray-diffuse, three-surface enclosure is formed by the cabin floor (f) (or radiation 
shield, s), steel strip (ss), and the mill surroundings (sur).  The heat removal rate required to maintain 
the cabin floor at Tf = 50°C is equal to - qf (or, -qs), where qf or qs is the net radiation leaving the floor 
or shield.  The schematic below represents the details of the surface energy balance on the floor and 
shield for the conditions without the shield (floor exposed) and with the shield (floor shielded from 
strip). 
 

  
(a) Without the shield.  Radiation surface energy balances, Eq. 13.21, are written for the floor (f) and 
steel strip (ss) surfaces to determine their radiosities. 

 
E J

1  A
J J

1/ A  F
J E

1/ A  F
b,f f

f f f
f ss

f f ss

f b,sur

f f sur

−

−
=

−
+

−

− −ε εb g /      (1) 

 
E J

1  A
J J

1/ A  F
J E

1/ A  F
b,ss ss

ss ss ss
ss f
ss ss f

ss b,sur

ss ss-sur

−

−
=

−
+

−

−ε εb g /      (2) 

 
Since the surroundings (sur) are black, Jsur = Eb,sur.  The blackbody emissive powers are expressed as 
Eb = σ T4 where σ = 5.67 × 10-8 W/m2⋅K4.  The net radiation leaving the floor, Eq. 13.20, is 
 q A  F J J A  F  J Ef f f ss f ss f f sur f b,sur= − + −− −b g d i      (3) 
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The required view factors for the analysis are contained in the summation rule for the areas Af and 
Ass,  
 F F F Ff ss f sur ss f ss sur− − − −+ = + =1 1     (4,5) 
 
Ff-ss can be evaluated from Fig. 13.4 (Table 13.2) for the aligned parallel rectangles geometry.  By 
symmetry, Fss-f = Ff-ss, and with the summation rule, all the view factors are determined.  Using the 
foregoing relations in the IHT workspace, the following results were obtained: 
 
 F J  W / mf ss f

2
− = =01864 7959.  

 
 F J  kW / mf sur ss

2
− = =08136 97 96. .  

 
and the heat removal rate required of the coolant system (cs) is 
 
 q q   kWcs f= − = 413.          < 
 
(b) With the shield.  Radiation surface energy balances are written for the shield (s) and steel strip (ss) 
to determine their radiosities. 
 

 
E J

1  A
J J

1/ A  F
J E

1/ A  F
b,s s

s s s
s ss

s s ss

s b,sur

s s sur

−

−
=

−
+

−

− −ε εb g /      (6) 

 

 
E J

1  A
J J

1/ A  F
J E

1/ A  F
b,ss ss

ss ss ss
ss s
ss ss s

ss b,sur

ss ss sur

−

−
=

−
+

−

− −ε εb g /      (7) 

 
The net radiation leaving the shield is 
 
 q A  F  J J A  F  J Es ss ss s ss s ss ss sur ss b,sur= − + −− −b g d i     (8) 
 
Since the temperature of the shield is unknown, an additional relation is required.  The heat transfer 
from the shield (s) to the floor (f) - the coolant heat removal rate - is 
 

 − =
−

− −
q

 T T A

1 1/s
s
4

f
4

s

s f

σ

ε ε

e j
1/

        (9) 

 
where the floor-shield configuration is that of infinite parallel planes, Eq. 13.24.  Using the foregoing 
relations in the IHT workspace, with appropriate view factors from part (a), the following results were 
obtained 
 
 J   kW / m J   kW / m T Cs

2
ss

2
s= = =1813 98 20 377. . o  

 
and the heat removal rate required of the coolant system is 
 
 q q   kWcs s= − = 655.          < 
 
COMMENTS:  The effect of the shield is to reduce the coolant system heat rate by a factor of nearly 
seven.  Maintaining the integrity of the reflecting shield (εs = 0.10) operating at nearly 400°C in the 
mill environment to prevent corrosion or oxidation may be necessary. 
 



PROBLEM 13.93 
 
KNOWN:  Dimensions of furnace and sphere.  Emissivity of surfaces.  Power supplied to floor of 
furnace.  Temperature of other five walls.  Sphere temperature. 
 
FIND:  (a) View factors F12, F13, F21, F31, F23, F32, and F33. (b) Temperature of floor.  Net rate of 
radiation heat transfer leaving sphere.  Whether the sphere is under steady-state conditions. 
 
SCHEMATIC: 

L = 0.1 m

Bottom heating: P2 = 400 W

L

Radiation
surface 2:
floor
T2, ε2 = 0.4

Radiation
surface 3:
remaining 
interior
walls, T3 = 400 K,
ε3 = 0.4

Radiation
surface 1:
sphere, D = 30 mm, 
T1 = 420 K ε1= 0.4

L

 
ASSUMPTIONS: (1) Surfaces are gray and diffuse, (2) Each identified surface has uniform 
irradiation and radiosity, (3) Outer surface of furnace floor is insulated and all power supplied to 
heater leaves as radiation into furnace (no storage), (4) Convection can be neglected. 
 
ANALYSIS:   (a) Due to symmetry, the view factor from the sphere to each of the six furnace walls 

must be equal, therefore F12 = 1/6 and F13 = 5/6.        < 
From reciprocity, 

   

( )2
1 12

21 2
2

0.03 m
    0.0471

6 (0.1 m)
A FF

A
π

= = =
×      < 

 
( )2

1 13
31 2

3

5 0.03 m
    0.0471

6 5 (0.1 m)
A FF

A
π

= = =
× ×

    < 

 

Since surface 2 does not see itself, F21 + F23 = 1, therefore F23 = 1 – F21 = 0.953.     < 
From reciprocity, 

2
2 23

32 2
3

(0.1 m) 0.953    0.191
5 (0.1 m)

A FF
A

×
= = =

×
    < 

 

Finally, F33 = 1 – F31 – F32 = 0.762.         < 
 
(b) Equation 13.21 can be written at surfaces 1 and 3 where temperature is known: 
 
 

 1 1 1 2 1 3

1 1 1 1 12 1 13(1 ) / 1 / 1 /
bE J J J J J

A A F A Fε ε
− − −

= +
−

 (1) 
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 3 3 3 1 3 2

3 3 3 3 31 3 32(1 ) / 1 / 1 /
bE J J J J J

A A F A Fε ε
− − −

= +
−

 (2) 

 
The power is known at surface 2, q2 = P = 400 W, so we write Equation 13.22: 
 

 2 1 2 3
2

2 21 2 231 / 1 /
J J J Jq

A F A F
− −

= +  (3) 

 
Substituting numbers into Eqs. (1) – (3) gives 
 

 

2 2 2
1 1 1 2 1 3

2 2 2
3 3 3 1 3 2

2 2
2 1 2 3

0.00189 m ( ) 0.000471 m ( ) 0.00236 m ( )

0.0333 m ( ) 0.00236 m ( ) 0.00953 m ( )

400 W 0.000471 m ( ) 0.00953 m ( )

b

b

E J J J J J

E J J J J J

J J J J

− = − + −

− = − + −

= − + −

 

 
where 4 8 2 4 4 4 2

1 1 5.67 10  W / m K (420)  K 1764 W / mbE Tσ −= = × ⋅ × =  and 4
3 3bE Tσ= =  

8 2 4 4 4 25.67 10  W / m K (400)  K 1452 W / m−× ⋅ × = .  Solving these three simultaneous equations yields 
 

J1 = 1.24 × 104 W/m2, J2 = 5.28 × 104 W/m2, J3 = 1.29 × 104 W/m2 
 
The temperature of the floor can be found by solving Equation 13.19 for Eb2: 
 

4 2 5 22
2 2 2 2

2 2

1 1 0.45.28 10  W / m 400 W 1.128 10  W / m
0.4 (0.1 m)bE J q

A
ε

ε
− −

= + = × + = ×
×

 

 

Then with 4
2 2bE Tσ=  we find T2 = 1188 K.       < 

The net rate of radiation leaving the sphere surface 1 is given by Equation 13.19: 
 

2 2 4 21 1
1

1 1 1

0.00189 m (1764 W/m 1.24 10  W/m ) 20 W
(1 ) /

bE Jq
Aε ε

−
= = − × = −

−
  < 

 
Since this is negative, heat is reaching the sphere at the rate of 20 W. 
Since the sphere is not being heated or cooled by any mechanism other than radiation, at steady-state 

the net radiation heat transfer rate must be zero.  Since it is not zero, it is not at steady-state.  < 
 
 
COMMENTS:  (1) The bottom surface is very hot. (2) The irradiation and radiosity distributions on 
the spherical object are highly non-uniform. A more accurate treatment would include the effects of 
this non-uniformity by considering many additional radiation surfaces, as well as possible spatial 
temperature distributions within the spherical object. (3) The net heat radiation leaving surface 1 is 
relatively small and could be of the same magnitude as any convection effects. 



PROBLEM 13.94  
KNOWN:  Opaque, diffuse-gray plate with ε1 = 0.8 is at T1 = 400 K at a particular instant.  The 
bottom surface of the plate is subjected to radiative exchange with a furnace.  The top surface is 
subjected to ambient air and large surroundings.  
FIND:  (a) Net radiative heat transfer to the bottom surface of the plate for T1 = 400 K, (b) Change in 
temperature of the plate with time, dT1/dt, and (c) Compute and plot dT1/dt as a function of T1 for the 
range 350 ≤ T1 ≤ 900 K; determine the steady-state temperature of the plate. 
 
SCHEMATIC:   

 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Plate is opaque, diffuse-gray and isothermal, (2) Furnace bottom behaves as a 
blackbody while sides are perfectly insulated, (3) Surroundings are large compared to the plate and 
behave as a blackbody.  
ANALYSIS:  (a) Recognize that the plate (A1), furnace bottom (A2) and furnace side walls (AR) form 
a three-surface enclosure with one surface being re-radiating.  The net radiative heat transfer leaving 
A1 follows from Eq. 13.30 written as 

( )

b1 b2
1

1 2
11 1 2 21 12 1 1R 2 2R

E E
q

1 11
A AA F 1/ A F 1/ A F −

−
=

− −
+ +

++

ε ε
ε ε

    (1) 

From Fig. 13.4 with X/L = 0.2/0.2 = 1 and Y/L = 0.2/0.2 = 1, it follows that F12 = 0.2 and F1R = 1 – 
F12 = 1 – 0.2 = 0.8.  Hence, with F1R = F2R (by symmetry) and ε2 = 1. 

 
( )

( )

8 2 4 4 4 4

1

2 12 2

5.67 10 W / m K 400 1000 K
q 1153W

1 0.8 1

0.8 0.04m 0.04m 0.20 2 / 0.04m 0.8

−

−

× ⋅ −
= = −

−
+

× × + ×

   < 

It follows the net radiative exchange to the plate is, qrad⋅f = 1153 W. 
 
(b) Perform now an energy balance on the plate written as 
 in out stE E E− =& & &  

 1
rad.f conv rad,sur p

dT
q q q Mc

dt
− − =  

 
 

 

 ( ) ( )4 4 1
rad.f 1 1 1 1 sur p

dT
q hA T T A T T Mc .1 dt∞− − − − =ε σ   (2) 

Substituting numerical values and rearranging to obtain dT/dt, find 
          Continued … 
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 ( )2 21dT 1
1153W 25 W / m K 0.04 m 400 300 K

dt 2 kg 900 J / kg K
= + − ⋅ × −

× ⋅
⎡
⎣  

    ( )2 8 2 4 4 4 40.8 0.04m 5.67 10 W / m K 400 300 K−− × × × ⋅ − ⎤
⎥⎦

 < 

 1dT
0.57 K / s.

dt
=  

(c) With Eqs. (1) and (2) in the IHT workspace, dT1/dt was computed and plotted as a function of T1. 
 

 
 
When T1 = 400 K, the condition of part (b), we found dT1/dt = 0.57 K/s which indicates the plate 
temperature is increasing with time.  For T1 = 900 K, dT1/dt is a negative value indicating the plate 
temperature will decrease with time.  The steady-state condition corresponds to dT1/dt = 0 for which 
 
 1,ssT 715 K=          < 
 
COMMENTS:  Using the IHT Radiation Tools – Radiation Exchange Analysis, Three Surface 
Enclosure with Re-radiating Surface and View Factors, Aligned Parallel Rectangle – the above 
analysis can be performed.  A copy of the workspace follows: 
 
 // Energy Balance on the Plate, Equation 2: 
 M * cp * dTdt = - q1 – h * A1 * (T1 – Tinf) – eps1 * A1 * sigma * (T1^4 – Tsur^4) 

 
/* Radiation Tool – Radiation Exchange Analysis, 
Three-Surface Enclosure with Reradiating Surface: */ 
/* For the three-surface enclosure A1, A2 and the reradiating surface AR, the net rate of radiation transfer 
from the surface A1 to surface A2 is */ 
q1 = (Eb1 – Eb2) / ( (1 – eps1) / (eps1 * A1) + 1 / (A1 * F12 + 1/(1/(A1 * F1R) + 1/(A2 * F2R))) + (1 – 
eps2) / (eps2 * A2))  //  Eq 13.30 
/* The net rate of radiation transfer from surface A2 to surface A1 is */ 
q2 = -q1 
/* From a radiation energy balance on AR, */ 
(JR – J1) / (1/(AR * FR1)) + (JR – J2) / (1/(AR *FR2)) = 0 // Eq 13.31 
/* where the radiosities J1 and J2 are determined from the radiation rate equations expressed in terms of 
the surface resistances, Eq 13.22 */ 
q1 = (Eb1 – J1) / ((1 – eps1) / (eps1 * A1)) 
q2 = (Eb2 – J2) / ((1-eps2) / (eps2 * A2)) 
// The blackbody emissive powers for A1 and A2 are 
Eb1 = sigma * T1^4 
Eb2 = sigma * T2^4 
// For the reradiating surface, 
JR = EbR 
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EbR = sigma *TR^4 
sigma = 5.67E-8  // Stefan-Boltzmann constant, W/m^2⋅K^4 
 
// Radiation Tool – View Factor: 
/* The view factor, F12, for aligned parallel rectangles, is */ 
F12 = Fij_APR(Xbar, Ybar) 
// where 
Xbar = X/L 
Ybar = Y/L 
// See Table 13.2 for schematic of this three-dimensional geometry. 
 
// View Factors Relations: 
F1R = 1 – F12 
FR1 = F1R * A1 / AR 
FR2 = FR1 
A1 = X * Y 
A2 = X * Y 
AR = 2 * (X * Z + Y * Z) 
Z = L 
F2R = F1R 
 
// Assigned Variables: 
T1 = 400   // Plate temperature, K 
eps1 = 0.8  // Plate emissivity 
T2 = 1000  // Bottom temperature, K 
eps2 = 0.9999  // Bottom surface emissivity 
X = 0.2   // Plate dimension, m 
Y = 0.2   // Plate dimension, m 
L = 0.2   // Plate separation distance, m 
M = 2   // Mass, kg 
cp = 900   // Specific heat, J/kg.K, 
h = 25   // Convection coefficient, W/m^2.K 
Tinf = 300  // Ambient air temperature, K 
Tsur = 300  // Surroundings temperature, K 

 
 
 



PROBLEM 13.95  
KNOWN:  Tool for processing silicon wafer within a vacuum chamber with cooled walls.  Thin wafer is 
radiatively coupled on its back side to a chuck which is electrically heated.  The top side is irradiated by 
an ion beam flux and experiences convection with the process gas and radioactive exchange with the ion-
beam grid control surface and the chamber walls.  
FIND:  (a) Show control surfaces and all relevant processes on a schematic of the wafer, and (b) Perform 
an energy balance on the wafer and determine the chuck temperature Tc required to maintain the 
prescribed conditions.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Wafer is diffuse, gray, (3) Separation distance 
between the wafer and chuck is much smaller than the wafer and chuck diameters, (4) Negligible 
convection in the gap between the wafer and chuck; convection occurs on the wafer top surface with the 
process gas, (5) Surfaces forming the three-surface enclosure – wafer (εw = 0.8), grid (εg = 1), and 
chamber walls (εc = 1) have uniform radiosity and are diffuse, gray, and (6) the chuck surface is black. 
 
ANALYSIS:  (a) The wafer is shown schematically above in relation to the key components of the tool: 
the ion beam generator, the grid which is used to control the ion beam flux, ibq ,′′  the chuck which aids in 
controlling the wafer temperature and the process gas flowing over the wafer top surface.  The schematic 
below shows the control surfaces on the top and back surfaces of the wafer along with the relevant 
thermal processes: qcv, convection between the wafer and process gas; qa, applied heat source due to 
absorption of the ion beam flux, ib 1,topq ; q ,′′  net radiation leaving the top surface of the wafer (1) which 

is part of the three-surface enclosure – grid (2) and chamber walls (3), and; q1,bac, net radiation leaving 
the backside of the wafer (w) which is part of a two-surface enclosure formed with the chuck (c). 
 

 < 
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(b) Referring to the schematic and the identified thermal processes, the energy balance on the wafer has 
the form, 
 in outE E 0− =& &  
 
 cv a 1,bac 1,topq q q q 0− + − − =         (1) 
 
where each of the processes are evaluated as follows: 
 

Convection with the process gas:  with ( )22 2
wA D / 4 0.200m / 4 0.03142 m ,= = =π π  

 ( ) ( )2 2
cv w w gq hA T T 10 W / m 0.03142m 700 500 K 62.84 W= − = × × − =   (2) 

 
Applied heat source – ion beam: 

 2 2
a ib wq q A 600 W / m 0.03142m 18.85 W′′= = × =      (3) 

 
Net radiation heat rate, back side; enclosure (w,c):  for the two-surface enclosure comprised of the back 
side of the wafer (w) and the chuck, (c), Eq. 13.24, yields 
  

 
( )4 4

w c w
1,bac

T T A
q

1/ w

−
=
σ

ε
        (4) 

 

 
( ) ( )

2 4 4 4
c 9 4 4

1,bac c
0.03142m 700 T K

q 1.069 10 700 T
1/ 0.6

−
× −

= = × −
σ

 
 
Net radiation heat rate, top surface; enclosure (1, 2, 3):  from the surface energy balance on A1, Eq. 
13.19. 

 
( )

b1 1
1,top

1 1 1

E J
q

1 / Aε ε
−

=
−

         (5) 

where ε1 = εw, A1 = Aw, Eb1 = 4
1Tσ  and the radiosity can be evaluated by an enclosure analysis 

following the methodology of Section 13.3.2.  From the energy balance, Eq. 13.21, 

 
( )

b1 1 1 31 2

1 1 12 1 13

E J J JJ J
1 1/ A F 1/ A F1 1/ Aε ε

− −−
= +

−
       (6) 

 
where J2 = Eb2 = 4

gTσ  and J3 = Eb3 = 4
vcTσ  since both surfaces are black (εg = εvc = 1).  The view factor 

F12 can be computed from the relation for coaxial parallel disks, Table 13.5. 

 ( ) ( )
1/ 2 1/ 22 22 2

12 2 1F 0.5 S S 4 r / r 0.5 6.0 6.0 4 1 0.1716= − − = − − =
⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

 

  
2 2
2

2 2
1

1 R 1 0.5
S 1 1 6.00

R 0.5

+ +
= + = + =  
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  1 1 4 4R r / L 100 / 200 0.5 R r / L 0.5= = = = =  
 
The view factor F13 follows from the summation rule applied to A1, 
 
 13 12F 1 F 1 0.1716 0.8284= − = − =  
 
Substituting numerical values into Eq. (6), with T1 = Tw = 700 K, T2 = Tg = 500 K, and T3 = Tvc =     300 
K, find J1, 
 

 
( )

4 44 1 g 1 vc1 1

1 12 13

J T J TT J
1 1/ F 1/ F1 1/ A

σ σσ
ε ε

− −−
= +

−
       (7) 

 
 2

1J 8564 W / m=  
 
Using Eq. (5), find 1,topq  with 4 2

b2 w 1 wE T 13, 614 W / m and A A ,σ= = =  
 

 
( )

( ) ( )
2

1,top
13, 614 8564 W / m

q 238 W
21 0.6 / 0.6 0.03142m

−
= =

− ×
 

 
Evaluating Tc from the energy balance on the wafer, Eq. (1), and substituting appropriate expressions for 
each of the processes, find 
 

 ( )2 9 4 4
c62.84 W / m 18.85W 1.069 10 700 T 238 W 0−− + − × − − =  

 
 cT 842.5 K=           < 
 
From Eq. (4), with Tc = 815 K, the electrical power required to maintain the chuck is 
 

 ( )9 4
c 1,bac

4P q 1.069 10 842.5 700 282 W−= − = × − =  
 
COMMENTS:  Recognize that the method of analysis is centered about an energy balance on the wafer.  
Identifying the processes and representing them on the energy balance schematic, as described in Chapter 
1, is a vital step in developing the strategy for a solution.   



PROBLEM 13.96 
 

 
KNOWN:  Dimensions and temperatures of rotating and stationary disks, air gap spacing between 
disks, rotational speed. Ambient and surroundings temperatures. Correlation for the local Nusselt 
number. Initial painted surfaces and emissivity of exposed base metal on the rotating disk. 
 
FIND:  Total power dissipated from the top surface of the rotating disk for painted and unpainted 
conditions. 
 
SCHEMATIC: 
 

 

g = 2 mm

Rotating disk
Ts = 80°C

ro = 100 mm

Stationary plate, Td = 20°C

Air

Air
T∞ = 20°C

Ω = 150 rad/s

Surface 1
ε1 = 0.98, 0.10

Surface
3

Surface 2
ε2 = 0.98

Tsur = 20°C

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Diffuse-gray surfaces with 
uniform radiosity and irradiation distributions, (4) Large surroundings. 
 
PROPERTIES:  Table A.4, air (T = (80°C + 20°C)/2 = 50°C ≈ 323K): ν = 18.20×10-6 m2/s, k = 
0.0280 W/m⋅K. Table A.11, Parsons black paint, ε = 0.98. 
 

ANALYSIS:   From Problem 6.17, ( )140 0.456 0.478( ) 70 1
o

Go
r r r

h r rNu e Re Re
k

− −= = + . 

Since 2 /rRe r ν= Ω , the local heat transfer coefficient is 
 

  ( )
0.456 0.4782

140 0.044( ) 70 1 G orh r k e r
ν ν

−
− −

⎡ ⎤⎛ ⎞Ω Ω⎛ ⎞⎢ ⎥= + ⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
     

 
The average heat transfer coefficient may be evaluated from 
 

 ( )
0.456 0.4782

140 0.044
2

0

1 2( ) 70 1
o

s

r
G o

s
s oA

k rh h r dA e r r dr
A r

π
ν νπ

−
− −

⎡ ⎤⎛ ⎞Ω Ω⎛ ⎞⎢ ⎥= = + ×⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
∫ ∫  

 
or 
 

 ( )
0.456 0.4782

140 1.956
2

1.022 70 1 G o
o

o

k rh e r
r ν ν

−
−

⎡ ⎤⎛ ⎞Ω Ω⎛ ⎞⎢ ⎥= + ⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
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Substituting values, 
 

( ) ( ) ( )

2

2

0.4562 0.478
1.956140 0.02

6 2 6 2

1.022 0.0280W/m K
(0.100m)

150rad/s 0.100m 150rad/s   70 1 0.100m
18.20 10 m /s 18.20 10 m /s

h

e

−

− ×
− −

× ⋅
=

⎡ ⎤⎛ ⎞× ⎛ ⎞⎢ ⎥⎜ ⎟× + ⎜ ⎟⎢ ⎥⎜ ⎟× ×⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

 

 
or 
 

227.26 W/m Kh = ⋅         
 

The convective heat flux from the top surface of the disk is 
 
  " 2 2

conv ( ) 27.26W/m K (80 20) C 1636W/ms dq h T T= − = ⋅ × − ° =     
 
and the convective heat rate is  
 
  2 2 2

conv " 1636W/m (0.10m) 51.38Woq q rπ π= = × × =  
 
The radiation heat transfer from the rotating disk may be determined by use of Eq. 13.21. 
 
Surfaces 1 and 2: 
 

  
( ) ( )

4 4
1 1 1 2 1 3 2 2 2 1 2 3

1 1 1 1 12 1 13 2 2 1 12 2 23
  ;  

1 / 1/ 1/ 1 / 2 1/ 1/
T J J J J J T J J J J J

A A F A F A A F A F
σ σ
ε ε ε ε

− − − − − −
= + = +

− −
      (1,2) 

 
while for black Surface 3, ( )44 8 2 4 2

3 3 5.67 10 W/m K 20 273K 417.8W/mJ Tσ −= = × ⋅ × + = . Using the 
result for coaxial parallel disks in Table 13.2, R1 = R2 = ro/g = 100mm/2mm = 50, S = 1 + 2501/2500 = 
2.0004, and 
 

 
1/ 22

12 13 12
1 2.0004 2.0004 4 0.9802  ;    1 1 0.9802 0.0198
2

F F F⎧ ⎫⎡ ⎤= − − = = − = − =⎨ ⎬⎣ ⎦⎩ ⎭
 

 
while 2 2 2

1 2 (0.100m) 0.0314 moA A rπ π= = = × = . Substituting values of the view factors, areas, 
emissivities and J3 into Equations (1) and (2), and solving simultaneously yields 
 
    ε1 = 0.98:  J1 = 871.3 W/m2, J2 = 426.8 W/m2  ;  ε1 = 0.10:  J1 = 464.9 W/m2, J2 = 417.9 W/m2   
 
From Eq. 13.19,  
 

     
4 8 2 4 4 2

1 1
1,rad,0.98 2

1 1 1

5.67 10 W/m K (80 273K) 871.3W/m
(1 ) / (1 0.98) /(0.98 0.0314m )

T Jq
A

σ
ε ε

−− × ⋅ × + −
= =

− − ×
= 13.97 W 
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and 
 

    
4 8 2 4 4 2

1 1
1,rad,0.10 2

1 1 1

5.67 10 W/m K (80 273K) 464.9W/m
(1 ) / (1 0.10) /(0.10 0.0314m )

T Jq
A

σ
ε ε

−− × ⋅ × + −
= =

− − ×
= 1.45 W 

 
The total power dissipated from the top surface of the rotating disk is: 
 

 ε1 = 0.98: q = qconv + q1rad,0.98 = 51.38 W + 13.97 W = 65.35 W    < 
  

 ε1 = 0.10: q = qconv + q1rad,0.10 = 51.38 W + 1.45 W = 52.83 W    < 
  
 
COMMENTS:  (1) The influence of the black surroundings is small since the view factors from the 
disks to the surroundings are small, the stationary disk temperature is the same as that of the 
surroundings, and the emissivity of the stationary disk is close to unity. Use of the result for infinite 
parallel surfaces (Equation 13.24) yields heat rates of 13.95 and 1.45 W for the high and low 
emissivity cases, respectively. (2) See Pelle and Harmand, “Heat Transfer Measurements in an Opened 
Rotor-Stator System Air-Gap,” Experimental Thermal and Fluid Science, ‘Vol. 31, pp. 165 – 180, 
2007, for additional discussion. 
 



PROBLEM 13.97  
KNOWN:  Ice rink with prescribed ice, rink air, wall, ceiling and outdoor air conditions.  
FIND:  (a) Temperature of the ceiling, Tc, having an emissivity of 0.05 (highly reflective panels) or 
0.94 (painted panels); determine whether condensation will occur for either or both ceiling panel types 
if the relative humidity of the rink air is 70%, and (b) Calculate and plot the ceiling temperature as a 
function of ceiling insulation thickness for 0.1 ≤ t ≤ 1 m, identify conditions for which condensation 
will occur on the ceiling.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Rink comprised of the ice, walls and ceiling approximates a three-surface, 
diffuse-gray enclosure, (2) Surfaces have uniform radiosities, (3) Ice surface and walls are black, (4) 
Panels are diffuse-gray, and (5) Thermal resistance for convection on the outdoor side of the ceiling is 
negligible compared to the conduction thermal resistance of the ceiling insulation. 
 
PROPERTIES:  Psychrometric chart (Atmospheric pressure; dry bulb temperature, Tdb = T∞,i = 
15°C; relative humidity, RH = 70%):  Dew point temperature, Tdp = 9.4°C. 
 
ANALYSIS:  The energy balance on the ceiling illustrated in the schematic below has the form 
 & &E Ein out− = 0  
 − − − =q q qo conv,c rad,c 0         (1) 
where the rate equations for each process are 
 ( )o c ,o cond cond cq T T / R R t / kA∞= − =     (2,3) 

 q h A  T Tconv,c c c ,i= − ∞d i         (4) 

 q  E  T A  A  F  E  T  A  F  E  Trad,c b c c w wc b w i ic b i= − −ε α αb g b g b g    (5) 

The blackbody emissive powers are Eb = σ T4 where σ = 5.67 × 10-8 W/m2⋅K4.  Since the ceiling 
panels are diffuse-gray, α = ε.  The view factors required of Eq. (5):  determine Fic (ice to ceiling) 
from Table 13.2 (Fig. 13.5) for parallel, coaxial disks 
 Fic = 0 672.  

and Fwc (wall to ceiling) from the summation rule on the ice (i) and the reciprocity rule, 
 F F F F  (symmetry)ic iw iw cw+ = =1  
 F Fcw ic= −1  
 F A A F A A  1 Fwc c w cw c w ic= = − =/ / .b g b g b g 0 410  
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where Ac = π D2/4 and Aw = π DL. 
 
Using the foregoing energy balance, Eq. (1), and the rate equations, Eqs. (2-5), the ceiling temperature 
is calculated using radiative properties for the two panel types, 
 
  Ceiling panel    ε  Tc (°C) 
 
  Reflective  0.05    14.0 

  Paint   0.94      8.6  Tc < Tdp  < 
 
Condensation will occur on the painted panel since Tc < Tdp. 
 

 
 
(b) The equations required of the analysis above were solved using IHT.  The analysis is extended to 
calculate the ceiling temperatures for a range of insulation thickness and the results plotted below. 
 

0 0.2 0.4 0.6 0.8 1

Ceiling insulation thickness, t (m)
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C
ei

lin
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ra

tu
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, T
c 

(C
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Painted ceiling, epsc = 0.94
Reflective panel, epsc = 0.05  

 
For the reflective panel (ε = 0.05), the ceiling surface temperature is considerably above the dew point.  
Therefore, condensation will not occur for the range of insulation thickness shown.  For the painted 
panel (ε = 0.94), the ceiling surface temperature is always below the dew point.  We expect 
condensation to occur for the range of insulation thickness shown.  
COMMENTS:  From the analysis, recognize that the radiative exchange between the ice and the 
ceiling is the dominant process for influencing the ceiling temperature.  With the reflective panel, the 
rate is reduced nearly 20 times that with the painted panel.  With the painted panel ceiling, for most of 
the conditions likely to exist in the rink, condensation will occur. 



PROBLEM 13.98  
KNOWN:  Diameter, temperature and emissivity of boiler tube.  Thermal conductivity and emissivity of 
ash deposit.  Convection coefficient and temperature of gas flow over the tube.  Temperature of 
surroundings.  
FIND:  (a) Rate of heat transfer to tube without ash deposit, (b) Rate of heat transfer with an ash deposit 
of diameter Dd = 0.06 m, (c) Effect of deposit diameter and convection coefficient on heat rate and 
contributions due to convection and radiation.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Diffuse/gray surface behavior, (2) Surroundings form a large enclosure about the 
tube and may be approximated as a blackbody, (3) One-dimensional conduction in ash, (4) Steady-state.  
ANALYSIS:  (a) Without an ash deposit, the heat rate per unit tube length may be calculated directly. 

 ( ) ( )4 4
t t t t sur tq h D T T D T Tπ ε σπ∞′ = − + −  

 
( ) ( ) ( )( )( )2 8 2 4 4 4q 100 W / m K 0.05 m 1800 600 K 0.8 5.67 10 W / m K 0.05 m 1500 600 Kπ π−′ = ⋅ − + × × ⋅ −  

 
 ( )q 18,850 35,150 W / m 54, 000 W / m′ = + =       < 
(b) Performing an energy balance for a control surface about the outer surface of the ash deposit, 

conv rad condq q q ,′ ′ ′+ =  or 

 ( ) ( ) ( )
( )

4 4 d t
d d d d sur d

d t

2 k T T
h D T T D T T

ln D / D
π

π ε σπ∞
−

− + − =  

Hence, canceling π and considering an ash deposit for which Dd = 0.06 m, 

 ( )( ) ( )( )2 8 2 4 4 4 4
d d100 W / m K 0.06 m 1800 T K 0.9 5.67 10 W / m K 0.06 m 1500 T K−⋅ − + × × ⋅ −  

   
( )( )

( )
d2 1 W / m K T 600 K

ln 0.06 / 0.05
⋅ −

=  

A trial-and-error, or IHT solution yields Td ≈ 1346 K, from which it follows that 

 ( ) ( )4 4
d d d d sur dq h D T T D T Tπ ε σπ∞′ = − + −  

( ) ( ) ( ) ( )2 8 2 4 4 4 4q 100 W / m K 0.06 m 1800 1346 K 0.9 5.67 10 W / m K 0.06 m 1500 1346 Kπ π−′ = ⋅ − + × × ⋅ −  
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 ( )q 8560 17,140 W / m 25, 700 W / m′ = + =       < 
 
(c) The foregoing energy balance was entered into the IHT workspace and parametric calculations were 
performed to explore the effects of h  and Dd on the heat rates. 
 

 
 

For Dd = 0.06 m and 210 h 1000 W / m K,≤ ≤ ⋅  the heat rate to the tube, condq ,′  as well as the 
contribution due to convection, convq ,′  increase with increasing h.   However, because the outer surface 

temperature Td also increases with h,  the contribution due to radiation decreases and becomes negative 

(heat transfer from the surface) when Td exceeds 1500 K at 2h 540 W / m K.= ⋅   Both the convection and 

radiation heat rates, and hence the conduction heat rate, increase with decreasing Dd, as Td decreases and 
approaches Tt = 600 K.  However, even for Dd = 0.051 m (a deposit thickness of 0.5 mm), Td = 773 K 
and the ash provides a significant resistance to heat transfer. 
  
COMMENTS:  Boiler operation in an energy efficient manner dictates that ash deposits be removed 
periodically. 



PROBLEM 13.99 
 

 
KNOWN: Two large parallel plates, separation distance and temperature of top plate. Gap 
between plates is filled with atmospheric pressure air, and heat flux from the bottom plate. 
 
FIND: (a) Temperature of the bottom plate and the ratio of the convective to radiative heat 
fluxes for ε1 = ε2 = 0.5, (b) Temperature of the bottom plate and the ratio of the convective to 
radiative heat fluxes for ε1 = ε2 = 0.25 and 0.75. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) One-dimensional heat transfer, (2) Steady-state conditions, (3) Constant 
properties, (4) Diffuse, gray surfaces, (5) Ideal gas behavior. 
 
PROPERTIES: Table A.4, air ( T  = 350 K): k = 0.030 W/m⋅K, α = 2.99 × 10-5 m2/s, ν = 2.092 × 
10-5 m2/s, Pr = 0.70. 
 
ANALYSIS: (a) The heat flux is composed of radiation and convection components,  
 

" " "
rad convq q q= +         (1) 

 
where 
 

 
( )4 4

1 2"
rad

1 2

T T
q 1 1 1

σ −
=

+ −
ε ε

        (2) 

 
and 
 
 ( )"

conv 1 2q h T T= −           (3) 
 
We evaluate h by using the Globe and Dropkin correlation of Chapter 9, 
 

1/3 0.074
L

kh 0.069Ra Pr
L
⎡ ⎤= ⎣ ⎦        (4) 

 
where  

Continued… 
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T1, ε1

T2 = 330 K, ε2

L

Air at 
atmospheric pressure

q” = 250 W/m2



PROBLEM 13.99 (Cont.) 
 

 
3

1 2
L

g (T T )LRa β −
=

να
        (5) 

 
Combining Eqs. (1) through (5) yields 
 

 
( )

( )
4 4 1/3

1 2" 0.0741 2
1 2

1 2

T T g (T T )q 0.069k Pr T T1 1 1

σ − ⎡ ⎤β −⎛ ⎞= + −⎢ ⎥⎜ ⎟να⎝ ⎠⎢ ⎥+ − ⎣ ⎦
ε ε

   (6) 

 
or 
 

( )48 4
12 42

W5.67 10 T 330K
m K250W / m 1 1 1

0.5 0.5

− ⎡ ⎤× × −⎢ ⎥⎣ ⎦⋅=
+ −

 

 

        
( )

1/3

12 0.074
12 2

5 5

m 19.81 T 330 KW 350Ks0.069 0.030 0.70 (T 330)K
m K m m2.092 10 2.99 10

s s
− −

⎡ ⎤⎛ ⎞⎢ ⎥× × −⎜ ⎟
⎢ ⎥⎜ ⎟+ × × × −
⎢ ⎥⋅ ⎜ ⎟× × ×⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

 (7) 

 
 

Equation (7) may be solved iteratively or with IHT to yield T1 = 373 K.   < 
 
In addition,  
 

 
( ) ( )32 6

L 2 2
5 5

m 19.8 373 330 K 0.1m
350KsRa 1.93 10

m m2.092 10 2.99 10
s 2

− −

× × − ×
= = ×

× × ×
 

and 
 

( )1/36 0.074
2

W0.030 Wm Kh 0.069 1.93 10 0.70 2.51
0.10m m K

⎡ ⎤⋅= × × × =⎢ ⎥ ⋅⎣ ⎦
  

( )"
conv 2 2

W Wq 2.52 373 300 K 108
m K m

= × − =
⋅

 

" " "
rad conv 2 2 2

W W Wq q q 250 108 142
m m m

= − = − = ; 
"
conv
"
rad

q 108 0.76
142q

= =    < 
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(b) Substituting ε1 = ε2 = 0.25 into Eq. (6) yields 
 
T1 = 388.4 K, RaL = 2.6 × 106, h = 2.78 W/m2⋅K, "

convq = 162 W/m2, "
radq = 88 W/m2, 

"
conv
"
rad

q 162 1.84
88q

= =          < 

 
(c) Substituting ε1 = ε2 = 0.75 into Eq. (6) yields 
 
T1 = 361.6 K, RaL = 1.4 × 106, h = 2.26 W/m2⋅K, "

convq = 72 W/m2, "
radq = 178 W/m2, 

"
conv
"
rad

q 72 0.40
178q

= =          < 

 
 
 
COMMENT: Note the increase in the temperature difference between the plates as the 
emissivity is reduced. Both the radiation and convection heat fluxes are highly sensitive to the 
plate emissivity. 
 



PROBLEM 13.100  
KNOWN:  Dimensions, emissivities and temperatures of heated and cured surfaces at opposite ends 
of a cylindrical cavity.  External conditions.  
FIND:  Required heater power and outside convection coefficient.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Opaque, diffuse-gray surfaces, (3) Negligible 
convection within cavity, (4) Isothermal disk and heater surfaces, (5) One-dimensional conduction in 
base, (6) Negligible contact resistance between heater and base, (7) Sidewall is reradiating.  
ANALYSIS:  The equivalent circuit is 

  
From an energy balance on the heater surface, q1,elec = q1,cond + q1,rad, 

 ( ) ( )

( ) ( )[ ]

4 4
1 22 1 b

1,elec b
2,i1b

11 1 2,i 21 12 1 1R 2 2R

T TT T
q k D / 4

11 1L
A AA F 1/ A F 1/ A F

σ
π

εε
ε ε−

−−
= +

−−
+ +

+ +

 

where A1 = A2 = πD2/4 = π(0.12 m)2/4 = 0.0113 m2 and from Fig. 13.5, with Lc/r1 = 3.33 and r2/Lc = 
0.3 find F12 = F21 = 0.077; hence, F1R = F2R = 0.923.  The required heater power is 

 
( )2

1,elec
800 300 K

q 20 W / m K 0.0113 m
0.025 m
−

= ⋅ ×  

     
( )

( ) ( )[ ]

2 8 2 4 4 4 4

1

0.0113 m 5.67 10 W / m K 800 400 K

1 0.9 1 1 0.5
0.9 0.50.077 1/ 0.923 1/ 0.923

−

−

× × ⋅ −
+

− −
+ +

+ +

 

 1,elecq 4521 W 82.9 W 4604 W.= + =        < 

An energy balance for the disk yields, ( ) ( )4 4
rad,2 rad,1 o 2 2 2,o 2 2 surq q h A T T A T T ,ε σ∞= = − + −  

( )2 8 2 4 4 4 4
2

o 2

82.9 W 0.9 0.0113 m 5.67 10 W / m K 400 300 K
h 64 W / m K.

0.0113 m 100 K

−− × × × ⋅ −
= = ⋅

×
 < 

 
COMMENTS:  Conduction through the ceramic base represents an enormous system loss.  The base 
should be insulated to greatly reduce this loss and hence the electric power input. 



PROBLEM 13.101 
 
 
KNOWN:  Emissivity of glass sheets. Inside and outside temperatures and convection heat transfer 
coefficients. Type of gas within gap. 
 
FIND:  Heat flux through the window for case 1: ε1 = ε2 = 0.95, case 2: ε1 = ε2 = 0.05, and case 3: ε1 = 
0.05, ε2 = 0.95, with either air or argon between the glass sheets. 
 
 
SCHEMATIC: 
 

 
 
 
 
 

 
 
 
ASSUMPTIONS:  (1) Diffuse-gray surfaces, (2) Infinite parallel glass surfaces, (3) Negligible 
radiation on exterior surfaces, (4) Negligible natural convection in gap. 
 
PROPERTIES: Table A.4, Air (300 K): k = 0.0263 W/m⋅K. Table A.3, Plate Glass (300 K): k = 1.4 
W/m·K. 
  
ANALYSIS: The thermal resistance network is shown below. 
 
 

 
 
 
 
 
 
 
The thermal resistances are as follows. 
 
 ( )" 2 2

,conv, 1/ 1/ 25 W / m K 0.040 m K/Wt o oR h= = ⋅ = ⋅  

( )" 2
,cond, / 0.006 m / 1.4 W / m K 0.0043 m K/Wt gl gR t k= = ⋅ = ⋅  

( )" 2
,cond, / 0.005 m / 0.0263 W / m K 0.190 m K/Wt gs gsR L k= = ⋅ = ⋅  (for air) 

( )" 2
,cond, / 0.005 m / 0.0177 W / m K 0.282 m K/Wt gs gsR L k= = ⋅ = ⋅  (for argon) 

 ( )" 2 2
,conv, 1/ 1/ 7.7 W / m K 0.130 m K/Wt i iR h= = ⋅ = ⋅  

" 1 2
, 2 2

1 2 1 2

1/ 1/ 1
( )( )t radR
T T T T
ε ε

σ
+ −

=
+ +

        (1) 

 
Note that the radiation thermal resistance of Eq. 1 depends on the interior surface temperatures, T1 and 
T2. To avoid a tedious iterative procedure, IHT is used to solve three coupled algebraic equations that 
may be derived by equating the heat flux from Ti to T1, from T1 to T2, and from T2 to To. 
 

Continued… 

Gas-filled gap

t = 6 mm

t = 6 mm

L = 5 mm

To = - 10°C, ho = 25 W/m2·K

Ti = 20°C, hi = 7.7 W/m2·K

T1, ε1

T2, ε2

R´´t,conv,o 

To Ti
q´´

R´´t,cond,gl R´´t,cond,gl R´´t,conv,i 

R´´t,cond,gs 

R´´t,rad T1T2
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From Ti to T1: " "
1 , , , ," ( ) /( )i t conv i t cond glq T T R R= − +      (2) 

From T1 to T2: 1 2 " "
, ,cond,

1 1" ( )
t rad t gs

q T T
R R

⎡ ⎤
= − +⎢ ⎥

⎢ ⎥⎣ ⎦
     (3) 

From T2 to To:  " "
2 , , , ," ( ) /( )o t cond gl t conv oq T T R R= − +      (4) 

 
Solving Eqs. (2) through (3) simultaneously, using the resistance values and expressions provided 
above, yields the following results. 
 

Gas  ε1  ε2  q″ (W/m2) 
________________________________________________   < 

 
air  0.95  0.95  106 

    0.05  0.05  82.3 
    0.05  0.95  83.2 
 

argon  0.95  0.95  97.5 
    0.05  0.05  66.5 
    0.05  0.95  67.7 
 
 
COMMENTS:  (1) Switching the gas from air to argon reduces the heat flux in all cases. (2) 
Applying a low-emissivity coating to the glass reduces the heat flux in all cases. However, coating the 
interior surfaces of both glass sheets provides little benefit beyond that of coating one surface only. (3) 
If the gap between the glass sheets could be evacuated so that conduction in the gas becomes 
negligible, the heat flux through the window would be reduced significantly, to values of 72.6 and 
6.98 and 3.67 W/m2 for the cases 1, 2 and 3, respectively. (4) Natural convection in the gap was 
ignored. Is this a good assumption? (5) Radiation at the external surfaces of the glass sheets was 
ignored. Is this a good assumption? 



PROBLEM 13.102  
KNOWN:  Electrical conductors in the form of parallel plates having one edge mounted to a ceramic 
insulated base.  Plates exposed to large, isothermal surroundings, Tsur.  Operating temperature is T1 = 
500 K.  
FIND:  (a) Electrical power dissipated in a conductor plate per unit length, 1q ,′  considering only 

radiative exchange with the surroundings; temperature of the ceramic insulated base T2; and, (b) 1q′  

and T2 when the surfaces experience convection with an air stream at T∞ = 300 K and a convection 
coefficient of h = 24 W/m2⋅K. 
 
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Conductor surfaces are diffuse, gray, (2) Conductor and ceramic insulated base 
surfaces have uniform temperatures and radiosities, (3) Surroundings are large, isothermal.  
ANALYSIS:  (a) Define the opening between the conductivities as the hypothetical area A3 at the 
temperature of the surroundings, Tsur, with an emissivity ε3 = 1 since all the radiation incident on the 
area will be absorbed.  The conductor (1)-base (2)-opening (3) form a three surface enclosure with one 
surface reradiating (2).  From Eq. 13.30, the net radiation leaving the conductor surface A1 is 

 

( ) ( )[ ]

b1 b3
1

1 3
11 1 3 31 13 1 12 3 32

E E
q

1 1 1
A AA F 1/ A F 1/ A F

ε ε
ε ε−

−
=

− −
+ +

+ +

    (1) 

where 4
b1 1E Tσ=  and 4

b3 3
8 2 4 4 2E T .3J 5.67 10  W/m K (300 K) 459 W / mσ −= = = × ⋅ × =   The 

view factors are evaluated as follows: 
 
F32:  use the relation for two aligned parallel rectangles, Table 13.2 or Fig. 13.4, 
 X X / L w / L 10 / 40 0.25 Y Y / L= = = = = = ∞  
 32F 0.1231=  

F13:  applying reciprocity between A1 and A3, where A1 = 2L l  = 2 × 0.040 ml  = 0.080 l  and A3 = 
w l  = 0.010 l  and l  is the length of the conductors normal to the page, l  >> L or w, 

 3 31
13

1

A F
F 0.010 0.8769 / 0.080 0.1096

A
= = × =l l  

where F31 can be obtained by using the summation rule on A3, 
 31 32F 1 F 1 0.1231 0.8769= − = − =  

F12:  by symmetry  F12 = F13 = 0.1096 
          Continued … 
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Substituting numerical values into Eq. (1), the net radiation leaving the conductor is 

 
( )

( ) ( )[ ]

8 2 4 4 4 4

1

1

5.67 10 W / m K 500 300 K
q

1 0.8 1
0

0.8 0.080 0.080 0.1096 1/ 0.080 0.1096 1/ 0.010 0.123

−

−

× ⋅ −
=

−
+ +

× × + × + ×l l l l

 

 
( )

1 1
3544 459.3 W

q q / 29.5 W / m
3.1250 101.557 0

−
′ = = =

+ +
l       < 

 
From Eq. 13.19,  
  

 
( ) ( )

( ) ( )

' 4
1 1 1 1 1

2 8 2 4 4

J = -  1 / 2

    29.5W/m 1 0.8 / 0.8 2 0.04m 5.67 10 W/m K (500 K)

q L Tε ε σ
−

⎡ ⎤− +⎣ ⎦

⎡ ⎤= − − × × + × ⋅ ×⎣ ⎦
 

                  = 3452 W/m2 
 
and from Eq. 13.31,  
 

 1 1 12 3 3 32
2

1 12 3 32

3452 2 0.040 .1096 459 0.010 0.1231
2 0.040 .1096 0.010 0.1231

J A F J A FJ
A F A F

+ × × × + × ×
= =

+ × × + ×
 = 3060 W/m2 

 
which yields 
 

 
1/ 41/ 4 2

2
2 8 2 4

3060 W/m 482 K
5.67 10  W/m K

JT
σ −

⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟× ⋅⎝ ⎠ ⎝ ⎠
     < 

 
 
(b) Consider now convection processes occurring at the conductor (1) and base (2) surfaces, and 
perform energy balances as illustrated in the schematic below.  

  
Surface 1:  The heat rate from the conductor includes convection and the net radiation heat rates, 

 ( )
( )

b1 1
in cv,1 1 1 1

1 1 1

E J
q q q h A T T

1 / Aε ε∞
−

= + = − +
−

     (2) 

Continued... 
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and the radiosity J1 can be determined from the radiation energy balance, Eq. 13.15, 

 
( )

b1 1 1 31 2

1 1 1 1 12 1 13

E J J JJ J
1 / A 1/ A F 1/ A Fε ε

− −−
= +

−
       (3) 

where 4
3 b3 3J E Tσ= =  since A3 is black. 

 
Surface 2:  Since the surface is insulated (adiabatic), the energy balance has the form 

 ( ) b2 2
cv,2 2 2 2

2 2 2

E J
0 q q hA T T

1 / Aε ε∞
−

= + = − +
−

      (4) 

and the radiosity J2 can be determined from the radiation energy balance, Eq. 13.21, 

 
( )

b2 2 2 32 1

2 2 2 2 21 2 23

E J J JJ J
1 / A 1/ A F 1/ A Fε ε

− −−
= +

−
       (5) 

There are 4 equations, Eqs. (2-5), with 4 unknowns:  J2, J2, T2 and q1.  Substituting numerical values, 
the simultaneous solution to the set yields 

 2 2
1 2 2 inJ 3417 W / m J 1745 W / m T 352 K q 441 W / m′= = = =  < 

 
COMMENTS:  (1) The effect of convection is substantial, increasing the heat removal rate from 
29.5 W to 441 W for the combined modes. (2) With the convection process, the current carrying 
capacity of the conductors can be increased.  Another advantage is that, with the presence of 
convection, the ceramic base operates at a cooler temperature:  352 K vs. 482 K. 



PROBLEM 13.103  
KNOWN:  Surface temperature and spectral radiative properties.  Temperature of ambient air.  Solar 
irradiation or temperature of shield.  
FIND:  (a) Convection heat transfer coefficient when surface is exposed to solar radiation, (b) 
Temperature of shield needed to maintain prescribed surface temperature.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Surface is diffuse (αλ = ελ), (2) Bottom 
of surface is adiabatic, (3) Atmospheric irradiation is 
negligible, 
(4) With shield, convection coefficient is unchanged and 
radiation losses at ends are negligible (two-surface enclosure). 
 

 
 

ANALYSIS:  (a) From a surface energy balance, 

 ( )4
S S s s sG T h T T .α ε σ ∞= + −  

Emission occurs mostly at long wavelengths, hence εs = α2 = 0.3.  However, 

 
( )

( ) ( )
,b0

S 1 20 1 m 1
b

E , 5800 K d
F F

E

λ λ
μ

α λ λ
α α α

∞

− −∞= = +
∫

 

and from Table 12.1 at λT = 5800 μm⋅K, F(0-1μm) = 0.720 and hence, F(1 - ∞) = 0.280 giving 
 0.9 0.72 0.3 0.280 0.732.α = × + × =  
Hence 

 
( ) ( )42 8 2 44

S S s

s

0.732 1200 W / m 0.3 5.67 10 W / m K 320 KG T
h

T T 20 K
α εσ

−

∞

− × × ⋅−
= =

−
 

 2h 35 W / m K.= ⋅          < 

(b) Since the plate emits mostly at long wavelengths, αs = εs = 0.3.  Hence radiation exchange is 
between two diffuse-gray surfaces. 

 
( )

( )
4 4
p s

ps conv s
p s

T T
q q h T T

1/ 1/ 1 ∞

−
′′ ′′= = = −

+ −

σ

ε ε
 

 ( )( )( )4 4
p s p s sT h / T T 1/ 1/ 1 Tσ ε ε∞= − + − +  

 
( ) ( )

2
44

p p8 2 4
35 W / m K 20 K 1 1

T 1 320 K T 484 K.
0.8 0.35.67 10 W / m K−

⋅
= + − + =

× ⋅

⎛ ⎞
⎜ ⎟
⎝ ⎠

 < 

 
COMMENTS:  For Tp = 484 K and λ = 1 μm, λT = 484 μm⋅K and F(0-λ) = 0.000.  Hence assumption 
of αs = 0.3 is excellent. 



PROBLEM 13.104  
KNOWN:  Long uniform rod with volumetric energy generation positioned coaxially within a larger circular tube 
maintained at 500°C.  
FIND:  (a) Center T1(0) and surface T1s temperatures of the rod for evacuated space, (b) T1(0) and T1s for 
airspace, (c) Effect of tube diameter and emissivity on T1(0) and T1s.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) All surfaces are diffuse-gray.  
PROPERTIES:  Table A-4, Air ( T  = 780 K):  ν = 81.5 × 10-6 m2/s, k = 0.0563 W/m⋅K, α = 115.6 × 10-6 m2/s, β 
= 0.00128K-1, Pr = 0.706. 
 
ANALYSIS:  (a) The net heat exchange by radiation between the rod and the tube is 

 
( )

( ) ( )

4 4
1 2

12
1 1 1 1 12 2 2 2

T T
q

1 / D 1/ D F 1 / D

σ

ε ε π π ε ε π

−
′ =

− + + −
     (1) 

and, from an energy balance on the rod, out genE E 0,′ ′− + =& &  or 

 ( )2
12 1q q D / 4 .π′ = &          (2) 

Combining Eqs. (1) and (2) and substituting numerical values, with F12 = 1, we obtain 

 
( )

( ) ( )[ ]( )

4 4
1 2

1 1 1 2 2 1 2

T T4
q

D 1 / 1 1 / D / D

σ

ε ε ε ε

−
=

− + + −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

&  

 
( )

( ) ( )[ ]( )

8 2 4 4 4 4
1s3

3

5.67 10 W / m K T 773 KW 4
20 10

0.050m 1 0.2 / 0.2 1 1 0.2 / 0.2 0.050 / 0.060m

−× ⋅ −
× =

− + + −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

   ( )8 4 4
1s54.4 10 T 773 3W / m−= × −  

 1sT 792 K.=           < 
From Eq. 3.53, the rod center temperature is 

 ( ) ( )21
1 1s

q D / 2
T 0 T

4k
= +
&

 

 ( ) ( )3 3 2

1
20 10 W / m 0.050 m / 2

T 0 792 K 0.21 K 792 K 792.2 K.
4 15 W / m K

×
≈ + = + =

× ⋅
  < 

(b) The convection heat rate is given by Eqs. 9.58 through 9.60. The length scale is Lc = 2[ln(0.06/0.05)]4/3/ 
(0.025 m -3/5 + 0.030 m -3/5)5/3 = 0.0018 m. Assuming a maximum possible value of (Ts1 - T2) = 19 K, Rac = gβ(Ts1 - 
T2)Lc

3/να = 9.8 m/s2(0.00128 K-1)19 K (0.0018 m)3/(81.5 × 10-6 m2/s  × 115.6 × 10-6 m2/s) = 0.142 and keff/k = 
0.386×[0.706/(0.861 + 0.706)]1/4(0.142)1/4 = 0.194. Since keff/k is predicted to be less than unity, conduction occurs 
within the gap.  

          Continued … 
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  Hence, from Eq. 3.32, 

 
( )
( )

( )( )
( )

( )1s 2 1s
cond 1s

2 1

2 k T T 2 0.0563 W / m K T 773 K
q 1.94 T 773

ln r / r ln 30 / 25
π π− ⋅ −

′ = = = −  

The energy balance then becomes  ( )2
1 12 condq D / 4 q q ,π ′ ′= +&  or 

 ( )( )2
1 12 condq 4 / D q qπ ′ ′= +&  

 ( ) ( )4 8 4 4
1s 1s2 10 54.4 10 T 773 988 T 773−× = × − + −⎡ ⎤

⎢ ⎥⎣ ⎦
 

 ( )1s 1T 783 K T 0 783.2 K= =       < 
(c) Entering the foregoing model and the prescribed properties of air into the IHT workspace, the 

parametric calculations were performed for D2 = 0.06 m and D2 = 0.10 m.  For D2 = 1.0 m, cRa∗  > 100 
and heat transfer across the airspace is by free convection, instead of conduction.  In this case, convection 
was evaluated by entering Eqs. 9.58 – 9.60 into the workspace.  The results are plotted as follows. 
 

 
 
The first graph corresponds to the evacuated space, and the surface temperature decreases with increasing 
ε1 = ε2, as well as with D2.  The increased emissivities enhance the effectiveness of emission at surface 1 
and absorption at surface 2, both which have the effect of reducing T1s.  Similarly, with increasing D2, 
more of the radiation emitted from surface 1 is ultimately absorbed at 2 (less of the radiation reflected by 
surface 2 is intercepted by 1).  The second graph reveals the expected effect of a reduction in T1s with 
inclusion of conduction or convection heat transfer across the air.  For small emissivities (ε1 = ε2 < 0.2), 
conduction across the air is significant relative to radiation, and the small conduction resistance 
corresponding to D2 = 0.06 m yields the smallest value of T1s.  However, with increasing ε, 
conduction/convection effects diminish relative to radiation and the trend reverts to one of decreasing T1s 
with increasing D2. 
 
COMMENTS:  For this situation, the temperature variation within the rod is small and independent of 
surface conditions. 



PROBLEM 13.105  
KNOWN:  Side wall and gas temperatures for adjoining semi-cylindrical ducts.  Gas flow convection 
coefficients.  
FIND:  (a) Temperature of intervening wall, (b) Verification of gas temperature on one side.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) All duct surfaces may be approximated as blackbodies, (2) Fully developed 
conditions, (3) Negligible temperature difference across intervening wall, (4) Gases are 
nonparticipating media.  
ANALYSIS:  (a) Applying an energy balance to a control surface about the wall yields 
 in outE E .=& &  

Assuming Tg,1 > Tw > Tg,2, it follows that 
 ( ) ( ) ( ) ( )rad 1 w conv g1 w rad w 2 conv w g2q q q q→ → → →+ = +  

 ( ) ( ) ( ) ( )4 4 4 4
1 1w 1 w w g,1 w w w2 w 2 w w g,2A F T T hA T T A F T T hA T Tσ σ− + − = − + −  

and with 
 1 1w w w1 w w2 wA F A F A F A= = =  
and substituting numerical values, 

 ( ) ( )4 4 4
w w 1 2 g,1 g,22 T 2hT T T h T Tσ σ+ = + + +  

 8 4
w w11.34 10 T 10T 13,900.−× + =  

which yields 

 wT 526 K.≈           < 
 
(b) Applying an energy balance to a control surface about the hot gas (g1) yields 
 
 in outE E=& &  
 
 ( ) ( )1 1 g1 w g1 whA T T hA T T− = −  

or 
 ( )[ ]( )1 g1 g1 wT T D / D / 2 T Tπ− = −  
 
 29 C 29 C.° = °           < 
 
COMMENTS:  Since there is no change in any of the temperatures in the axial direction, this scheme 
simply provides for energy transfer from side wall 1 to side wall 2. 



PROBLEM 13.106   
 
KNOWN:  Dimensions of stainless steel pillar and nominal glass temperatures. Contact resistance 
between pillar and glass. Emissivity of inner glass surfaces. Unit area dimensions. 
 
FIND:  Ratio of conduction to radiation heat transfer through a unit area. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Diffuse-gray surfaces, (4) 
Two-dimensional conduction, (5) Pillar does not affect radiation heat transfer (D/W << 1), (6) 
Radiation heat transfer does not affect conduction in low-emissivity stainless steel pillar. 
 
PROPERTIES: Table A.1, AISI 302 stainless steel (300 K): kp = 15.1 W/m⋅K. Table A.3, plate glass 
(300 K): kg = 1.4 W/m⋅K. 
 
ANALYSIS: The conduction and radiation processes are decoupled. Conduction through the pillar 
results in a depression of the glass temperature in the immediate vicinity of the pillar. This is 
associated with a constriction resistance within each glass sheet. Therefore, the resistance network 
consists of two constriction resistances, two contact resistances, and a conduction resistance through 
the pillar as shown below. 
 
  
 
 
 
 
Using the shape factor for Case 10 of Table 4.1(a), the resistances are: 
 

3
,cons 1/( ) 1/(2 ) 1/(2 0.15 10 m 1.4 W/m K) 2381 K/Wt g gR Sk Dk −= = = × × × ⋅ =  

( )2" 6 2 3
,c , / 1.5 10 m K/W / 0.15 10 m / 4 84.88 K/Wt t c pR R A π− −⎡ ⎤= = × ⋅ × × =⎢ ⎥⎣ ⎦

 

( ) ( )22 3 3
,cond / / / 4 0.4 10  m / 15.1 W/m K 0.15 10  m / 4 1500 K/Wt p p p pR L k A L k Dπ π− −⎡ ⎤= = = × ⋅ × × × =⎢ ⎥⎣ ⎦

 
Therefore, the total resistance is 
 
Rtot = 2(Rt,cons + Rt,c) + Rt,cond = 2 × (2381 K/W + 84.88 K/W) + 1500 K/W = 6430 K/W 
 
and the conduction through an individual pillar is 
 
qcond = (T1 – T2)/Rtot = [20 – (-10)°C]/[6430 K/W] = 4.66 × 10-3 W = 4.66 mW    
 
 
 

Continued… 
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For W = 10 mm, net radiation heat rate between the glass sheets through the unit area is  

 
 

( ) ( ) ( )22 4 4 8 2 4 4 4
1 2 3

rad,10

1 2

0.01 m 5.67 10 W/m K 293K 263K
0.73 10  W1 1 1 11 1

0.95 0.05

W T T
q

σ

ε ε

−
−

− × ⋅ −
= = = ×

+ − + −
= 0.73 mW  

 
Similarly, for W = 20 and 30 mm,  qrad,20 = 2.9 mW  ; qrad,30 =  6.6 mW. Therefore, the ratio of 
conduction to radiation through a unit area is  
 

R = 6.38, 1.59, and 0.709     < 
 
for W = 10, 20 and 30 mm, respectively.        
    
 
COMMENTS: (1) Although the pillars are small, they account for a large amount of the total heat 
transfer through the window, especially for small values of W. (2) The radiation and conduction effects 
become coupled in the immediate vicinity of the pillar. (3) Temperature differences also exist across 
the glass sheets, however these differences are relatively small. For W = 10 mm, and for a glass sheet 
thickness of t = 6 mm, the temperature difference across one sheet of glass may be estimated to be ΔT 
= (qrad,10 + qcond)t/(kgW2) = (0.73 × 10-3 W + 4.66 × 10-3W) × 0.006m/(1.4 W/m⋅K × 0.01 m × 0.01m) = 
0.23 K. (4) Heat transfer through the window can be reduced by increasing the pillar length. However, 
practical limitations exist since sealing the edges of the window in order to maintain a high vacuum 
becomes more difficult as L increases. (5) See Manz, Brunner and Wullschleger, “Triple Vacuum 
Glazing: Heat Transfer and Basic Design Constraints,” Solar Energy, Vol. 80, pp. 1632-1642, 2006 
for more information.  
 
 



PROBLEM 13.107  
KNOWN:  Temperature, dimensions and arrangement of heating elements between two large parallel 
plates, one insulated and the other of prescribed temperature.  Convection coefficients associated with 
elements and bottom surface.  
FIND:  (a) Temperature of gas enclosed by plates, (b) Element electric power requirement, (c) Rate of 
heat transfer to 1 m × 1m section of panel.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Diffuse-gray surfaces, (2) Negligible end effects since the surfaces form an 
enclosure, (3) Gas is nonparticipating, (4) Surface 3 is reradiating with negligible conduction and 
convection.  
ANALYSIS:  (a) Performing an energy balance for a unit control surface about the gas space, 

in outE E 0.− =& &  
 ( ) ( )1 1 m 2 m 2h D T T h s T T 0π − − − =  

 
( ) ( )

( ) ( )

2 2
1 2 2

m 2 21 2

10 W / m K 0.025 m 600 K 2 W / m K 0.05 m 400 Kh DT h sT
T

h D h s 10 W / m K 0.025 m 2 W / m K 0.05 m

ππ
π π

⋅ + ⋅+
= =

+ ⋅ + ⋅
 

 mT 577 K.=           < 
(b) The equivalent thermal circuit is 

  
The energy balance on surface 1 is 
 1,elec 1,conv 1,radq q q′ ′ ′= +  

where 1,radq′  can be evaluated by considering a unit cell of the form 
 

 

 
 ( )1A D 0.025 m 0.0785 mπ π′ = = =  
 2 3A A s 0.05 m′ ′= = =  
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The view factors are: 
 

 ( ) ( ) ( ) 1/ 21/ 22 1 2 2 2
21F 1 1 D / s D / s tan s D / D−= − − + −⎡ ⎤⎡ ⎤

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

 

 [ ] ( )1/ 2 1/ 21
21 31F 1 1 0.25 0.5 tan 4 1 0.658 F−= − − + − = =  

 
 23 21 32F 1 F 0.342 F .= − = =  
 
For the unit cell, 
 
 2 21 21 1 12 3 31 1 13A F sF 0.05 m 0.658 0.0329 m A F A F A F′ ′ ′ ′= = × = = = =  
 
 2 23 23 3 32A F sF 0.05 m 0.342 0.0171 m A F .′ ′= = × = =  
 
Hence, 
 

 
( )

b1 b2
1,rad

equiv 2 2 2

E E
q

R 1 / Aε ε
−′ =

′ ′+ −
 

 

 
( ) ( )

1
equiv 1 12 1 11 13 2 23

1 1
R A F 0.0329 m

1/ A F 1/ A F 0.0329 0.0171
−

− −
′ ′= + = +

′ ′+ +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
 1

equivR 22.6 m .−′ =  
 
Hence 
 

 
( )

( )[ ]

8 2 4 4 4 4

1,rad 1

5.67 10 W / m K 600 400 K
q 138.3 W / m

22.6 1 0.5 / 0.5 0.05 m

−

−

× ⋅ −
′ = =

+ − ×
 

 
 ( ) ( )( )2

1,conv 1 1 mq h D T T 10 W / m K 0.025 m 600 577 K 17.8 W / mπ π′ = − = ⋅ − =  
 
 ( )1,elecq 138.3 17.8 W / m 156 W / m.′ = + =       < 
 
(c) Since all energy added via the heating elements must be transferred to surface 2, 
 
 2 1q q .′ ′=  
 
Hence, since there are 20 elements in a 1 m wide strip, 
 
 ( ) 1,elec2 1m 1mq 20 q 3120 W.× ′= × =        < 
 
COMMENTS:  The bottom panel would have to be cooled (from below) by a heat sink which could 
dissipate 3120 W/m2. 



PROBLEM 13.108  
 

KNOWN: Two large parallel plates, temperature of each plate. Bare plate and paint 
emissivities, thickness of paint layers. 
 
FIND: (a) Radiation heat flux across the gap for ε1 = ε2 = εs = 0.85, (b) Radiation heat flux 
across the gap for ε1 = ε2 = εp = 0.98, (c) Radiation heat flux across the gap when the paint layer 
thickness is L = 2 mm and paint thermal conductivity is k = 0.21 W/m⋅K, (d) Plot of the radiation 
heat flux across the gap as a function of the surface emissivity over the range 0.05 ≤ εs ≤ 0.95. 
Show the heat flux of the painted surface with thin and thick paint layers on the same graph. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) One-dimensional heat transfer, (2) Diffuse, gray surfaces, (3) Negligible 
contact resistance between the plate and the paint. 
 
PROPERTIES: Paint (given): k = 0.21 W/m·K. 
 
ANALYSIS: (a) The radiation heat flux across the gap is 
 

( ) ( )8 4 4 44 4
2 41 2"

rad 2

1 2

W5.67 10 350 300 KT T Wm Kq 289.4 1 1 1 1 m1 1
0.85 0.85

−× × −σ − ⋅= = =
+ − + −

ε ε

      (1) < 

 
(b) With ε1 = ε2 = εp = 0.98, 
 
  

( )8 4 4 4
2 4"

rad 2

W5.67 10 350 300 K Wm Kq 376.2 1 1 m1
0.98 0.98

−× × −
⋅= =
+ −

   < 

 
 
(c) After painting both surfaces, the thermal resistance network is  
 

Continued… 
 

T1 = 350 K, εs = 0.85

T2 = 350 K, εs = 0.85
Ts,1, εp = 0.98

Ts,2, εp = 0.98

L = 2 mm
Paint, k = 0.21 W/m·K

Bare surface Painted surface



PROBLEM 13.108 (Cont.) 
 

 
 

 
 
 
 

( ) ( )p"
1 s,1 s,13

p

W0.21k m Kq T T 350K T
L 2 10 m−

⋅= − = −
×

     (2) 

 

( ) 84 4
2 4s,1 s,2"

p p

W5.67 10T T m Kq 1 1 1 11 1
0.98 0.98

−×σ − ⋅= =
+ − + −

ε ε

     (3) 

 

( ) ( )p"
s,2 2 s,23

p

W0.21k m Kq T T T 300K
L 2 10 m−

⋅= − = −
×

     (4) 

 
Solving Eqs. (2) through (4) simultaneously yields 
 

 Ts,1 = 346.9 K, Ts,2 = 303.1 K, " " "
rad cond 2

Wq q q 328.7
m

= = =    < 

 
(d) Solving Eq. (1) over the range 0.05 ≤ ε ≤ 0.95 yields the following. 
 

Heat Flux With and Without High Emissivity Paint

0 0.2 0.4 0.6 0.8 1

Bare Surface Emissivity

0

100

200

300

400

H
ea

t F
lu

x 
(W

/m
^2

)

No Paint
With Paint, No Conduction Resistance
With Paint, With Conduction Resistance  

 
COMMENTS: (1) The paint is effective in increasing radiation heat transfer across the gap for 
all but very high emissivity bare surfaces. (2) Thick paint layers will result in significant thermal 
conduction resistances which, in turn, reduce heat transfer across the gap. (3) Use of paints is 
usually restricted to relatively low temperatures. (4) Thermal contact resistances may be large if 
flaking or peeling of the paint becomes significant.  

q”

T1
Ts,1 Ts,2 T2

Rt,cond Rt,rad Rt,cond

q”

T1
Ts,1 Ts,2 T2

Rt,cond Rt,rad Rt,cond



PROBLEM 13.109  
KNOWN:  Ceiling temperature of furnace.  Thickness, thermal conductivity, and/or emissivities of 
alternative thermal insulation systems.  Convection coefficient at outer surface and temperature of 
surroundings.  
FIND:  (a) Mathematical model for each system, (b) Temperature of outer surface Ts,o and heat loss 
q′′  for each system and prescribed conditions, (c) Effect of emissivity on Ts,o and q .′′  
 
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state, (2) Diffuse/gray surfaces, (3) Surroundings form a large 
enclosure about the furnace, (4) Radiation in air space corresponds to a two-surface enclosure of large 
parallel plates.  
PROPERTIES:  Table A-4, air (Tf = 730 K):  k = 0.055 W/m⋅K, α = 1.09 × 10-4 m2/s,  ν = 7.62 × 10-

5 m2/s, β = 0.001335 K-1, Pr = 0.702. 
 
ANALYSIS:  (a) To obtain Ts,o and q ,′′  an energy balance must be performed at the outer surface of 
the shield. 
 
Insulation: cond conv,o rad,oq q q q′′ ′′ ′′ ′′= + =  

  
( ) ( ) ( )s,i s,o 4 4

o s,o o s,o sur
T T

k h T T T T
L ∞
−

= − + −ε σ  

Air Space: conv,i rad,i conv,o rad,oq q q q q′′ ′′ ′′ ′′ ′′+ = + =  

  ( ) ( )
( ) ( )

4 4
s,i s,o 4 4

i s,i s,o o s,o o s,o sur

i o

T T
h T T h T T T T

1 1
1

σ
ε σ

ε ε

∞

−
− + = − + −

+ −
 

where Eq. 13.24 has been used to evaluate rad,iq′′  and hi is given by Eq. 9.49 

 L
1/ 3 0.074i
L

h L
Nu 0.069Ra Pr

k
= =  

(b) For the prescribed conditions (εi = εo = 0.5), the following results were obtained. 
 
Insulation: The energy equation becomes 
 

( ) ( ) ( )s,o 2 8 2 4 4 4 4
s,o s,o

0.09 W / m K 900 T K
25 W / m K T 300 K 0.5 5.67 10 W / m K T 300 K

0.025 m
−⋅ −

= ⋅ − + × × ⋅ −  
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PROBLEM 13.109 (Cont.) 
 
and a trial-and-error solution yields 
 
 2

s,oT 366 K q 1920 W / m′′= =       < 
 
Air-Space: The energy equation becomes 
 

( )
( )8 2 4 4 4 4

s,o
i s,o

5.67 10 W / m K 900 T K
h 900 T K

3

−× ⋅ −
− +  

 ( ) ( )2 8 2 4 4 4 4
s,o s,o25 W / m K T 300 K 0.5 5.67 10 W / m K T 300 K−= ⋅ − + × × ⋅ −  

 
where 
 

 1/ 3 0.074
i L

0.055 W / m K
h 0.069 Ra Pr

0.025 m
⋅

=       (1) 

 
and RaL = gβ(Ts,i – Ts,o)L3/αν.  A trial-and-error solution, which includes reevaluation of the air 
properties, yields 
 
 2

s,oT 598 K q 10,849 W / m′′= =       < 
 
The inner and outer heat fluxes are 2 2

conv,i rad,iq 867 W / m , q 9982 W / m ,′′ ′′= =  conv,oq′′  = 7452 

W/m2, and 2
rad,oq 3397 W / m .′′ =  

 
(c) Entering the foregoing models into the IHT workspace, the following results were generated. 
 
Insulation: 
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As expected, the outer surface temperature decreases with increasing εo.  However, the reduction in 
Ts,o is not large since heat transfer from the outer surface is dominated by convection. 
 

 
 
In this case Ts,o increases with increasing εo = εi and the effect is significant.  The effect is due to an 

increase in radiative transfer from the inner surface, with 2
rad,i conv,iq q 1750 W / m′′ ′′= =  for εo = εi = 

0.1 and 2 2
rad,i conv,iq 20,100 W / m q 523 W / m′′ ′′= >> =  for εo = εi = 0.9.  With the increase in Ts,o, 

the total heat flux increases, along with the relative contribution of radiation ( )rad,oq′′  to heat transfer 

from the outer surface.  
COMMENTS:  (1) With no insulation or radiation shield and εi = 0.5, radiation and convection heat 
fluxes from the ceiling are 18,370 and 15,000 W/m2, respectively.  Hence, a significant reduction in 
the heat loss results from use of the insulation or the shield, although the insulation is clearly more 
effective. 
 
(2) Rayleigh numbers associated with free convection in the air space are well below the lower limit of 
applicability of Eq. (1).  Hence, the correlation was used outside its designated range, and the error 
associated with evaluating hi may be large. 
 
(3) The IHT solver had difficulty achieving convergence in the first calculation performed for the 
radiation shield, since the energy balance involves two nonlinear terms due to radiation and one due to 
convection.  To obtain a solution, a fixed value of RaL was prescribed for Eq. (1), while a second 
value of RaL,2 ≡ gβ(Ts,i – Ts,o)L3/αν was computed from the solution.  The prescribed value of RaL 
was replaced by the value of RaL,2 and the calculations were repeated until RaL,2 = RaL. 



PROBLEM 13.110  
KNOWN:  Dimensions of a composite insulation consisting of honeycomb core sandwiched between 
solid slabs.  
FIND:  Total thermal resistance.  
SCHEMATIC:  Because of the repetitive nature of the honeycomb core, the cell sidewalls will be 
adiabatic.  That is, there is no lateral heat transfer from cell to cell, and it suffices to consider the heat 
transfer across a single cell. 

 
 
ASSUMPTIONS:  (1) One-dimensional, steady-state conditions, (2) Equivalent conditions for each 
cell, (3) Constant properties, (4) Diffuse, gray surface behavior. 
 
PROPERTIES:  Table A-3, Particle board (low density):  k1 = 0.078 W/m⋅K; Particle board (high 
density):  k2 = 0.170 W/m⋅K; For both board materials, ε = 0.85; Table A-4, Air ( T  ≈ 7.5°C, 1 atm):  
ν = 14.15 × 10-6 m2/s, k = 0.0247 W/m⋅K, α = 19.9 × 10-6 m2/s, Pr = 0.71, β = 3.57 × 10-3 K-1. 
 
ANALYSIS:  The total resistance of the composite is determined by conduction, convection and 
radiation processes occurring within the honeycomb and by conduction across the inner and outer 
slabs.  The corresponding thermal circuit is shown. 
 

 
 
The total resistance of the composite and equivalent resistance for the honeycomb are 

 ( )1 1 1 1
cond,i eq cond,o eq cond conv rad

hc
R R R R R R R R .− − − −= + + = + +  

The component resistances may be evaluated as follows.  The inner and outer slabs are plane walls, for 
which the thermal resistance is given by Eq. 3.6.  Hence, since L1 = L3 and the slabs are constructed 
from low-density particle board. 
 

( )
1

cond,i cond,o 2 2
1

L 0.0125 m
R R 1603 K / W.

k W 0.078 W / m K 0.01 m
= = = =

⋅
 

 
Similarly, applying Eq. 3.6 to the side walls of the cell 

( ) ( )
2 2

cond,hc 2 22
2 2

L L
R

k W W t k 2Wt t
= =

− − −⎡ ⎤
⎣ ⎦

 

 
( )2

0.050 m
8170 K / W.

0.170 W / m K 2 0.01 m 0.002 m 0.002 m
= =

⋅ × × −⎡ ⎤
⎣ ⎦

             Continued … 

 



PROBLEM 13.110 (Cont.) 
 
From Eq. 3.9 the convection resistance associated with the cellular airspace may be expressed as 

 ( )2conv,hcR 1/ h W t .= −  
The cell forms an enclosure that may be classified as a horizontal cavity heated from below, and the 

appropriate form of the Rayleigh number is ( ) 3
L 1 2 2Ra g T T L / .β αν= −   To evaluate this parameter, 

however, it is necessary to assume a value of the cell temperature difference.  As a first approximation, 
( )1 2T T 15 C 5 C 20 C,− = ° − − ° = °  

 
( )( )( )32 3 1

5
L 6 2 6 2

9.8 m / s 3.57 10 K 20 K 0.05 m
Ra 3.11 10 .

19.9 10 m / s 14.15 10 m / s

− −

− −

×
= = ×

× × ×
 

Applying Eq. 9.49 as a first approximation, it follows that 

( ) ( ) ( )
1/ 31 / 3 0.074 5 20.074

2 L
0.0247 W / m K

h k / L 0.069Ra Pr 0.069 3.11 10 0.71 2.25 W / m K.
0.05 m

⋅
= = × = ⋅

⎡ ⎤⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

The convection resistance is then 

 
( )

conv,hc 22
1

R 6944 K / W.
2.25 W / m K 0.01 m 0.002 m

= =
⋅ −

 

The resistance to heat transfer by radiation may be obtained by first noting that the cell forms a three-
surface enclosure for which the sidewalls are reradiating.  The net radiation heat transfer between the 
end surfaces of the cell is then given by Eq. 13.30.  With ε1 = ε2 = ε and A1 = A2 = (W – t)2, the 
equation reduces to 

 
( ) ( )

( ) ( )[

2 4 4
1 2

rad 1
12 1R 2R 1R 2R

W t T T
q .

2 1/ 1 F F F / F F

σ

ε −

− −
=

− + + +⎡ ⎤⎣ ⎦
 

 
However, with F1R = F2R = (1 – F12), it follows that 
 

 
( ) ( )

( )
( )

( ) ( )2 24 4 4 4
1 2 1 2

rad 12
12

1212
12

W t T T W t T T
q .

1 2
2 11 F1 1 F2 1 F

2 1 F

σ σ

ε
ε

−

− − − −
= =

− +−
+− + +

−

⎛ ⎞⎡ ⎤ ⎜ ⎟⎛ ⎞ ⎢ ⎥ ⎝ ⎠⎜ ⎟
⎝ ⎠ ⎢ ⎥⎣ ⎦

 

 
The view factor F12 may be obtained from Fig. 13.4, where 

 
2

X Y W t 10 mm 2 mm
0.16.

L L L 50 mm
− −

= = = =  

Hence, F12 ≈ 0.01.  Defining the radiation resistance as 

 1 2
rad,hc

rad

T T
R

q
−

=  

 
it follows that 
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( ) ( )

( ) ( )( )
12

rad,hc 2 2 2
1 2 1 2

2 1/ 1 2 / 1 F
R

W t T T T T

ε

σ

− + +
=

− + +
 

where ( ) ( )( )( )4 4 2 2
1 2 1 2 1 2 1 2T T T T T T T T .− = + + −   Accordingly, 

( ) ( ) ( ) ( )
rad,hc 2 2 28 2 4

1 2
2 1

0.85 1 0.01R
0.01 m 0.002 m 5.67 10 W / m K 288 K 268 K 288 268 K−

− +
+

=
− × × ⋅ + +

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤
⎢ ⎥⎣ ⎦

 

 
where, again, it is assumed that T1 = 15°C and T2 = -5°C.  From the above expression, it follows that 

 rad,hc 4
0.353 1.980

R 7471 K / W.
3.123 10−

+
= =

×
 

In summary the component resistances are 
 cond,i cond,oR R 1603 K / W= =  

 cond,hc conv,hc rad,hcR 8170 K / W R 6944 K / W R 7471 K / W.= = =  
The equivalent resistance is then 

 
1

eq
1 1 1

R 2498 K / W
8170 6944 7471

−
= + + =⎛ ⎞
⎜ ⎟
⎝ ⎠

 

and the total resistance is 

 R 1603 2498 1603 5704 K / W.= + + =        < 
 
COMMENTS:  (1) The solution is iterative, since values of T1 and T2 were assumed to calculate 
Rconv,hc and Rrad,hc.  To check the validity of the assumed values, we first obtain the heat transfer rate 
q from the expression 
 

 
( )s,1 s,2 3T T 25 C 10 C

q 6.14 10 W.
R 5704 K / W

−− ° − − °
= = = ×  

 
Hence 

 3
1 s,i cond,iT T qR 25 C 6.14 10 W 1603 K / W 15.2 C−= − = ° − × × = °  

 
 3

2 s,o cond,oT T qR 10 C 6.14 10 W 1603 K / W 0.2 C.−= + = − ° + × × = − °  
 
Using these values of T1 and T2, Rconv,hc and Rrad,hc should be recomputed and the process repeated 
until satisfactory agreement is obtained between the initial and computed values of T1 and T2. 
 
(2) The resistance of a section of low density particle board 75 mm thick (L1 + L2 + L3) of area W2 is 
9615 K/W, which exceeds the total resistance of the composite by approximately 70%.  Accordingly, 
use of the honeycomb structure offers no advantages as an insulating material.  Its effectiveness as an 
insulator could be improved (Req increased) by reducing the wall thickness t to increase Rcond, 
evacuating the cell to increase Rconv, and/or decreasing ε to increase Rrad.  A significant increase in 
Rrad,hc could be achieved by aluminizing the top and bottom surfaces of the cell. 



PROBLEM 13.111  
KNOWN:  Dimensions and surface conditions of a cylindrical thermos bottle filled with hot coffee 
and lying horizontally.  
FIND:  Heat loss.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible heat loss from ends (long infinite 
cylinders), (3) Diffuse-gray surface behavior. 
 
PROPERTIES:  Table A-4, Air (Tf = (T1 + T2)/2 = 328 K, 1 atm):  k = 0.0284 W/m⋅K, ν = 23.74 × 
10-6 m2/s, α = 26.6 × 10-6 m2/s, Pr = 0.703, β = 3.05 × 10-3 K-1. 
 
ANALYSIS:  The heat transfer across the air space is 
 rad convq q q .= +  
From Eq. 13.25 for concentric cylinders 

 
( )( ) ( ) ( )

( )

4 4 8 2 4 2 4 4 4
1 1 2

rad
2 1

1 2 2

D L T T 5.67 10 W / m K 0.07 0.3 m 348 308 K
q

4 3 0.035 / 0.041 1 r
r

σ π π

ε
ε ε

−− × ⋅ × −
= =

+−
+

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 radq 3.20 W.=  
 
The convection heat rate is given by Eqs. 9.58 through 9.60. The length scale is Lc = 
2[ln(0.08/0.07)]4/3/(0.035 m-3/5 + 0.040 m -3/5)5/3 = 0.0016 m. The Rayleigh number is 
 

 
3 2 3 1 3

1 2 c
c 6 2 6 2

g (T T )L 9.8m / s (3.05 10 K )(40K)(0.0016m)Ra 7.85
26.6 10 m / s 23.74 10 m / s

β
να

− −

− −

− ×
= = =

× × ×
 

 
From Eq. 9.59, 
 

 
1/ 4 1/ 4

1/ 4 1/ 4
eff c

Pr 0.703k / k 0.386 Ra 0.386 7.85 0.529
0.861 Pr 0.861 0.703

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
 

 
Since keff/k is predicted to be less than unity, conduction occurs in the gap. From Eq. 3.32 
 

 
( )
( )

( )
( )

1 2
cond

2 1

2 Lk T T 2 0.3 m 0.0284 W / m K 75 35 K
q 16.04 W.

ln r / r ln 0.04 / 0.035
π π− × × ⋅ −

= = =  

 
Hence the total heat loss is 

 rad condq q q 19.24 W.= + =         < 
 
COMMENTS:  (1) End effects could be considered in a more detailed analysis, (2) Conduction losses 
could be eliminated by evacuating the annulus. 



PROBLEM 13.112  
KNOWN:  Temperatures and emissivity of window panes and critical Rayleigh number for onset of 
convection in air space.  
FIND:  (a) The conduction heat flux across the air gap for the optimal spacing, (b) The total heat flux 
for uncoated panes, (c) The total heat flux if one or both of the panes has a low-emissivity coating.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Critical Rayleigh number is RaL,c = 2000, (2) Constant properties, (3) 
Radiation exchange between large (infinite), parallel, diffuse-gray surfaces. 
 
PROPERTIES:  Table A-4, air [T = (T1 + T2)/2 = 1°C = 274 K]:  ν = 13.6 × 10-6 m2/s, k = 0.0242 
W/m⋅K, α = 19.1 × 10-6 m2/s, β = 0.00365 K-1. 
 
ANALYSIS:  (a) With ( ) 3

L,c 1 2 opRa g T T L /β αν= −  
 

 
( ) ( )

1/ 3
1/ 3 12 4 2L,c

op 2 11 2

Ra 19.1 13.6 10 m / s 2000L 0.0070m
g T T 9.8m / s 0.00365 K 42 C

αν
β

−

−

⎡ ⎤
⎡ ⎤ × × ×⎢ ⎥= = =⎢ ⎥ ⎢ ⎥−⎢ ⎥ °⎣ ⎦ ⎢ ⎥⎣ ⎦

 

 
The conduction heat flux is then 
 
 ( ) ( ) 2

cond 1 2 opq k T T / L 0.0242 W / m K 42 C / 0.0070m 145.2 W / m′′ = − = ⋅ ° =  < 
 
(b) For conventional glass (εg = 0.90), Eq. 13.24 yields, 

 
( ) ( )4 4 8 2 4 4 4 4

1 2 2
rad

g

T T 5.67 10 W / m K 295 253 K
q 161.3 W / m2 1.2221

σ

ε

−− × ⋅ −
′′ = = =

−
 

 
and the total heat flux is 
 
 2

tot cond radq q q 306.5 W / m′′ ′′ ′′= + =        < 
 
(c) With only one surface coated, 

 
( )8 2 4 4 4

2
rad

5.67 10 W / m K 295 253
q 19.5 W / m1 1 1

0.90 0.10

−× ⋅ −
′′ = =

+ −
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 2
totq 164.7 W / m′′ =          < 

 
With both surfaces coated, 

 
( )8 2 4 4 4

2
rad

5.67 10 W / m K 295 253
q 10.4 W / m1 1 1

0.10 0.10

−× ⋅ −
′′ = =

+ −
 

 

 2
totq 155.6 W / m′′ =          < 

 
COMMENTS:  Without any coating, radiation makes a large contribution (53%) to the total heat loss.  
With one coated pane, there is a significant reduction (46%) in the total heat loss.  However, the 
benefit of coating both panes is marginal, with only an additional 3% reduction in the total heat loss. 



PROBLEM 13.113  
KNOWN:  Dimensions and emissivity of double pane window.  Thickness of air gap.  Temperatures 
of room and ambient air and the related surroundings.  
FIND:  (a) Temperatures of glass panes and rate of heat transfer through window, (b) Heat rate if gap 
is evacuated.  Heat rate if special coating is applied to window.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state, (2) Negligible glass pane thermal resistance, (3) Constant 
properties, (4) Diffuse-gray surface behavior, (5) Radiation exchange between interior window 
surfaces may be approximated as exchange between infinite parallel plates, (6) Interior and exterior 
surroundings are very large. 
 
PROPERTIES:  Table A-4, Air (p = 1 atm).  Obtained from using IHT to solve for conditions of Part 
(a):  Tf,i = 287.4 K:  νi = 14.8 × 10-6 m2/s, ki = 0.0253 W/m⋅K, αi = 20.8 × 10-6 m2/s, Pri = 0.71, βi = 
0.00348 K-1.  T  = (Ts,i + Ts,o)/2 = 273.7 K:  ν = 13.6 × 10-6 m2/s, k = 0.0242 W/m⋅K, α = 19.0 ×  10-

6 m2/s, Pr = 0.71, β = 0.00365 K-1.  Tf,o = 259.3 K:  νo = 12.3 × 10-6 m2/s, ko = 0.023 W/m⋅K, αo = 
17.1 × 10-6 m2/s, Pro = 0.72, βo = 0.00386 K-1. 
 
ANALYSIS:  (a) The heat flux through the window may be expressed as 
 

 ( ) ( )4 4
rad,i conv,i g i ,i s,isur,i s,iq q q T T h T Tε σ ∞′′ ′′ ′′= + = − + −     (1) 

 

 
( ) ( )

4 4
s,os,i

rad,gap conv,gap gap s,i s,o

g g

T T
q q q h T T1 1 1

σ

ε ε

−
′′ ′′ ′′= + = + −

+ −
   (2) 

 

 ( ) ( )4 4
rad,o conv,o g s,o sur,o o s,o ,oq q q T T h T Tε σ ∞′′ ′′ ′′= + = − + −    (3) 

 
where radiation exchange between the window panes is determined from Eq. 13.24.  The inner and 
outer convection coefficients, ih  and oh ,  are determined from Eq. 9.26, and gaph  is obtained from 

Eq. 9.52. 
 
The foregoing equations may be solved for the three unknowns ( )s,i s,oq , T , T .′′   Using the IHT 

software to effect the solution, we obtain 
 
 s,iT 281.8 K 8.8 C= = °         < 
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 s,oT 265.6 K 7.4 C= = − °         < 
 

 q 91.3 W=           < 
 
(b) If the air space is evacuated ( )gh 0 ,=  we obtain 

 

 s,iT 283.6 K 10.6 C= = °         < 
 

 s,oT 263.8 K 9.2 C= = °         < 
 

 q 75.5 W=           < 
 
If the space is not evacuated but the coating is applied to inner surfaces of the window panes, 
 

 s,iT 285.9 K 12.9 C= = °         < 
 

 s,oT 261.3 K 11.7 C= = − °         < 
 

 q 55.9 W=           < 
 
If the space is evacuated and the coating is applied, 
 

 s,iT 291.7 K 18.7 C= = °         < 
 

 s,oT 254.7 K 18.3 C= = − °         < 
 

 q 9.0 W=           < 
 
COMMENTS:  (1) For the conditions of part (a), the convection and radiation heat fluxes are 
comparable at the inner and outer surfaces of the window, but because of the comparatively small 
convection coefficient, the radiation flux is approximately twice the convection flux across the air gap.  
(2) As the resistance across the air gap is progressively increased (evacuated, coated, evacuated and 
coated), the temperatures of the inner and outer panes increase and decrease, respectively, and the heat 
loss decreases.  (3) Clearly, there are significant energy savings associated with evacuation of the gap 
and application of the coating.  (4) In all cases, solutions were obtained using the temperature-
dependent properties of air provided by the software.  The property values listed in the 
PROPERTIES section of this solution pertain to the conditions of part (a). 



PROBLEM 13.114  
KNOWN:  Absorber and cover plate temperatures and spectral absorptivities for a flat plate solar 
collector.  Collector orientation and solar flux.  
FIND:  (a) Rate of solar radiation absorption per unit area, (b) Heat loss per unit area.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Adiabatic sides and bottom, (3) Cover is 
transparent to solar radiation, (4) Sun emits as a blackbody at 5800 K, (5) Cover and absorber plates 
are diffuse-gray to long wave radiation, (6) Negligible end effects, (7) L << width and length. 
 
PROPERTIES:  Table A-4, Air (T = Ta + Tc)/2 = 321.5 K, 1 atm):  ν = 18.05 × 10-6 m2/s, k = 0.0279 
W/m⋅K, α = 25.7 × 10-6 m2/s. 
 
ANALYSIS:  (a) The absorbed solar irradiation is 
 
 S,abs S,a SG Gα=  
where 

 2
S sG q cos 30 900 0.866 779.4 W / m′′= ° = × =  

 

 
( )

( )
,a ,S ,a ,bo o

S,a
S b

G d E 5800 K d

G E 5800 K

λ λ λ λα λ α λ
α

∞ ∞

= =
∫ ∫

 

 
 ( ) ( )S,a ,a,1 ,a20 2 m 2F F .λ λμα α α→ →∞= +  
 
For λT = 2 μm × 5800 K = 11,600 μm⋅K from Table 12.1, F(0→2λT) = 0.941, find 
 
 ( )S,a 0.9 0.941 0.2 1 0.941 0.859.α = × + × − =  
Hence 

 2
S,absG 0.859 779.4 669 W / m .= × =        < 

 
(b) The heat loss per unit area from the collector is 
 
 loss conv radq q q .′′ ′′ ′′= +  
 
The convection heat flux is 
 
 ( )conv a cq h T T′′ = −  
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and with 
 

 
( ) 3

a c
L

g T T L
Ra

β
αν
−

=  
 

 
( ) ( ) ( )1 32

L 6 2 6 2
9.8 m / s 321.5 K 343 300 K 0.02 m

Ra 22, 604
18.05 10 m / s 25.7 10 m / s

−

− −
× −

= =
× × ×

 

 
find from Eq. 9.54 with 
 
 LH / L 12, , cos 0.5, Ra cos 11,302τ τ τ τ∗> < = =  
 

 
( )

L

1.6 1/ 31708 sin 1081708 11,302
Nu 1 1.44 1 1 1

11,302 11,302 5830
°

= + − − + −
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎛ ⎞⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 

 

 L
2k 0.0279 W / m K

h Nu 2.30 3.21 W / m K.
L 0.02 m

⋅
= = × = ⋅  

 
Hence, the convective heat flux is 
 
 ( )2 2

convq 3.21 W / m K 343 300 K 138.0 W / m .′′ = ⋅ − =  
 
The radiative exchange can be determined from Eq. 13.24 treating the cover and absorber plates as a 
two-surface enclosure, 
 

 
( ) ( ) ( )4 48 2 44 4

a c
rad

a c

5.67 10 W / m K 343 K 300 KT T
q

1/ 1/ 1 1/ 0.2 1/ 0.75 1

σ

ε ε

−× ⋅ −−
′′ = =

+ − + −

⎡ ⎤
⎢ ⎥⎣ ⎦  

 
 2

radq 61.1 W / m .′′ =  
 
Hence, the total heat loss per unit area from the collector 
 
 ( ) 2

lossq 138.0 61.1 199 W / m .′′ = + =        < 
 
COMMENTS:  (1) Non-solar components of radiation transfer are concentrated at long wavelength 
for which αa = εa = 0.2 and αc = εc = 0.75. 
 
(2) The collector efficiency is 
 

 
669.3 199.1

100 70%.
669.3

η
−

= × =  
 
This value is uncharacteristically high due to specification of nearly optimum αa(λ) for absorber. 



PROBLEM 13.115  
KNOWN:  Diameters and temperatures of a heated tube and a radiation shield.  
FIND:  (a) Total heat loss per unit length of tube, (b) Effect of shield diameter on heat rate.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Opaque, diffuse-gray surfaces, (2) Negligible end effects. 
 
PROPERTIES:  Table A-4, Air (Tf = 77.5°C ≈ 350 K): k = 0.030 W/m⋅K, Pr = 0.70, ν = 20.92 × 10-6 
m2/s, α = 29.9 × 10-6 m2/s, β = 0.00286 K-1. 
 
ANALYSIS:  (a) Heat loss from the tube is by radiation and free convection 
 
 rad convq q q′ ′ ′= +  
 

From Eq. 13.25  
( )( )4 4

i oi
rad

o i
i o o

D T T
q

11 r
r

σ π

ε
ε ε

−
′ =

⎛ ⎞−
+ ⎜ ⎟

⎝ ⎠

 

 
or 
 

 
( )( )8 4 4 4

2 4
rad

W5.67 10 0.1m 393 308 K
Wm Kq 30.2

1 0.9 0.05 m
0.8 0.1 0.06

−× × −
⋅′ = =

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

π
 

 
  
The convection heat rate is given by Eqs. 9.58 through 9.60. The length scale is Lc = 
2[ln(0.12/0.10)]4/3/(0.05 m -3/5 + 0.05 m -3/5)5/3 = 0.0036 m. The Rayleigh number is Rac = gβ(Ti - 
To)Lc

3/να = 9.8 m/s2(0.00286 K-1)(120 - 35) K (0.0036 m)3/(20.92 × 10-6 m2/s  × 29.9 × 10-6 m2/s) = 
171.6. Also, keff/k = 0.386×[0.700/(0.861 + 0.700)]1/4(171.6)1/4 = 1.14. Therefore, keff = 1.14 × 0.030 
W/m·K = 0.0343 W/m·K. From Eq. 9.58,  
 

 ' eff i o
conv

i o

2 k (T T ) 2 0.0343W / m K (120 35)Kq 100.5W / m
ln(D / D ) ln(0.12 / 0.10)
π π− × × ⋅ × −

= =  

 

 ( ) W Wq 30.2 100.5 130.7
m m

′ = + =  
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(b) As shown below, both convection and radiation, and hence the total heat rate, increase with 
increasing shield diameter.  In the limit as Do → ∞, the radiation rate approaches that corresponding to 
net transfer between a small surface and large surroundings at To.  The rate is independent of ε. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
COMMENTS:  Designation of a shield temperature is arbitrary.  The temperature depends on the 
nature of the environment external to the shield. 
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PROBLEM 13.116  
KNOWN:  Diameters of heated tube and radiation shield.  Tube surface temperature and temperature 
of ambient air and surroundings.  
FIND:  Temperature of radiation shield and heat loss per unit length of tube.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Opaque, diffuse-gray surfaces, (2) Negligible end effects, (3) Large 
surroundings, (4) Quiescent air, (5) Steady-state. 
 
PROPERTIES:  Determined from use of IHT software for iterative solution.  Air, (Ti + To)/2 = 362.7 
K:  νi = 2.23 × 10-5 m2/s, ki = 0.031 W/m⋅K, αi = 3.20 × 10-5 m2/s, βi = 0.00276 K-1, Pri = 0.698.  Air, 
Tf = 312.7 K:  νo = 1.72 × 10-5 m2/s, ko = 0.027 W/m⋅K, αo = 2.44 × 10-5 m2/s, βo = 0.0032 K-1, Pro = 
0.705.  
ANALYSIS:  From an energy balance on the radiation shield, i oq q′ ′=  or rad,i conv,iq q′ ′+  

rad,o conv,oq q .′ ′= +   Evaluating the inner and outer radiation rates from Eqs. 13.25 and 13.27, 
respectively, and the convection heat rate in the air gap from Eq. 9.58, 
 

 
( ) ( )

( ) ( ) ( )
4 4

i oi eff i o 4 4
o o o sur o o o

o i
i o o

D T T 2 k T T
D T T D h T T

n Do / Di11 D
D

σ π π
σ π ε π

ε
ε ε

∞
− −

+ = − + −
⎛ ⎞−

+ ⎜ ⎟
⎝ ⎠

l
 

 
The convection heat rate is given by Eqs. 9.58 through 9.60. The length scale is Lc = 
2[ln(0.12/0.10)]4/3/(0.05 m -3/5 + 0.05 m -3/5)5/3 = 0.0036 m. The Rayleigh number is Rac = gβi(Ti - 
To)Lc

3/νiαi = 9.8 m/s2(0.00276 K-1)(120 - To) K (0.0036 m)3/(22.3 × 10-6 m2/s  × 32.0 × 10-6 m2/s). 
Also, keff/k = 0.386 × ki ×[Pri/(0.861 + Pri)]1/4(Rac)1/4 = 1.14.  From Eq. 9.34, the convection 
coefficient on the outer surface of the shield is 

 

( )

2
1/ 6

o D
o 8/ 279 /16o

o

0.387 Rakh 0.60
D

1 0.559 / Pr

⎧ ⎫
⎪ ⎪⎪ ⎪= +⎨ ⎬
⎪ ⎪⎡ ⎤+⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 
 
The solution to the energy balance is obtained using the IHT software, and the result is 
 
 oT 332.5 K 59.5 C= = °         < 
 
The corresponding value of the heat loss is 
 
 iq 88.7 W / m′ =          < 
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COMMENTS:  (1) The radiation and convection heat rates are rad,iq 23.7 W / m,′ =  

rad,oq 10.4 W / m,′ =  conv,iq 65.0 W / m,′ =  and conv,oq 78.3 W / m.′ =   Convection is clearly the 

dominant mode of heat transfer.  (2)With a value of To = 59.5°C > 35°C, the heat loss is reduced (88.7 
W/m compared to 130.7 W/m if the shield is at 35°C). 



PROBLEM 13.117  
KNOWN:  Dimensions and inclination angle of a flat-plate solar collector.  Absorber and cover plate 
temperatures and emissivities.  
FIND:  (a) Rate of heat transfer by free convection and radiation, (b) Effect of the absorber plate 
temperature on the heat rates.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Diffuse-gray, opaque surface behavior. 
 
PROPERTIES:  Table A-4, air ( )( )1 2T T T / 2 323 K := + =   ν = 18.2 × 10-6 m2/s, k = 0.028 W/m⋅K, 

α = 25.9 × 10-6 m2/s, Pr = 0.704, β = 0.0031 K-1. 
  
ANALYSIS:  (a) The convection heat rate is 
 
 ( )conv 1 2q hA T T= −  

where A = wH=4 m2 and, with H/L > 12 and τ < τ* = 70 deg, h  is given by Eq. 9.54.  With a 
Rayleigh number of 

 
( ) ( )( )( )32 13

1 2
L 6 2 6 2

9.8 m / s 0.0031 K 40 C 0.03mg T T L
Ra 69, 600

25.9 10 m / s 18.2 10 m / s

β
αν

−

− −

°−
= = =

× × ×
 

 

 
( )

( )
( )L

1/ 31708 0.9231708 0.5 69, 600
Nu 1 1.44 1 1 1

0.5 69, 600 0.5 69, 600 5830
×

= + − − + −
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎝ ⎠⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
 [ ][ ]LNu 1 1.44 0.951 0.955 0.814 3.12= + + =  
 
 ( ) ( )L

2h k / L Nu 0.028 W / m K / 0.03m 3.12 2.91 W / m K= = ⋅ = ⋅  
 

 ( )( )2 2
convq 2.91 W / m K 4 m 70 30 C 466 W= ⋅ − ° =      < 

 
The net rate of radiation exchange is given by Eq. 13.24. 

 
( ) ( ) ( )4 4 2 8 2 4 4 4 4

1 2

1 2

A T T 4 m 5.67 10 W / m K 343 303 K
q 1088 W

1 1 1 1
1 1

0.96 0.92

σ

ε ε

−− × ⋅ −
= = =

+ − + −
 < 

 
(b) The effect of the absorber plate temperature was determined by entering Eq. 9.54 into the IHT 
workspace and using the Properties and Radiation Toolpads. 
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As expected, the convection and radiation losses increase with increasing Ti, with the T4 dependence 
providing a more pronounced increase for the radiation.  
COMMENTS:  To minimize heat losses, it is obviously desirable to operate the absorber plate at the 
lowest possible temperature.  However, requirements for the outlet temperature of the working fluid 
may dictate operation at a low flow rate and hence an elevated plate temperature. 



PROBLEM 13.118  
KNOWN:  Disk heated by an electric furnace on its lower surface and exposed to an environment on 
its upper surface.  
FIND:  (a) Net heat transfer to (or from) the disk qnet,d when Td = 400 K and (b) Compute and plot 
qnet,d as a function of disk temperature for the range 300 ≤ Td ≤ 500 K; determine steady-state 
temperature of the disk.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Disk is isothermal; negligible thermal resistance, 
(3) Surroundings are isothermal and large compared to the disk, (4) Non-black surfaces are gray-
diffuse, (5) Furnace-disk forms a 3-surface enclosure, (6) Negligible convection in furnace, (7) 
Ambient air is quiescent. 
 
PROPERTIES:  Table A-4, Air (Tf = (Td + T∞)/2 = 350 K,1 atm):  ν = 20.92 × 10-6 m2/s, k = 0.30 
W/m⋅K, α = 29.9 × 10-6 m2/s. 
 
ANALYSIS:  (a) Perform an energy balance on the disk identifying: qrad as the net radiation exchange 
between the disk and surroundings; qconv as the convection heat transfer; and q3 as the net radiation 
leaving the disk within the 3-surface enclosure. 
 net,d in out rad conv 3q E E q q q= − = − − −& &       (1) 
Radiation exchange with surroundings:  The rate equation is of the form 

 ( )4 4
rad d,2 d d surq A T Tε σ= −         (2) 

 ( )( ) ( )2 8 2 4 4 4 4
radq 0.8 / 4 0.400 m 5.67 10 W / m K 400 300 K 99.8 W.π −= × ⋅ − =  

Free convection:  The rate equation is of the form 
 ( )conv d dq hA T T∞= −         (3) 
where h  can be estimated by an appropriate convection correlation.  Find first, 
 
 3

LRa g TL /β να= Δ          (4) 

( )( ) ( )32 6 2 6 2
LRa 9.8 m / s 1/ 350 K 400 300 K 0.400 m / 4 / 20.92 10 m / s 29.9 10 m / s− −= − × × ×  

 6
LRa 4.476 10= ×  

where L = Ac/P = D/4.  For the upper surface of a heated plate for which 104 ≤ RaL ≤ 107, Eq. 9.30 is 
the appropriate correlation, 
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 L
1/ 4
LNu hL / k 0.54 Ra= =         (5) 

 ( ) ( )1/ 46 2h 0.030 W / m K / 0.400 m / 4 0.54 4.476 10 7.45 W / m K= ⋅ × × = ⋅  

Hence, from Eq. (3), 

 ( )( ) ( )22
convq 7.45 W / m K / 4 0.400 m 400 300 K 93.6 W.π= ⋅ − =  

Furnace-disk enclosure:  From Eq. 13.20, the net radiation leaving the disk is 

 
( ) ( )

( ) ( )[ ]3 1 3 2
3 3 31 3 1 32 3 21 1

3 31 3 32

J J J J
q A F J J F J J .

A F A F− −

− −
= + = − + −     (6) 

The view factor F32 can be evaluated from the coaxial parallel disks relation of Table 13.1 or from 
Fig. 13.5. 

i iR r / L 200 mm / 200 mm 1,= = =  

j jR r / L 1,= =  

( ) ( )2 2 2 2
j jS 1 1 R / R 1 1 1 1 3= + + = + + =  

 ( ) ( )
1/ 2 1/ 22 22 2

31 j iF 1/ 2 S S 4 r / r 1/ 2 3 3 4 1 0.382.= − − = − − =
⎧ ⎫ ⎧ ⎫⎪ ⎪⎡ ⎤ ⎡ ⎤⎨ ⎬ ⎨ ⎬⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎩ ⎭⎪ ⎪⎩ ⎭

  (7) 

From summation rule, F32 = 1 – F33 – F31 = 0.618 with F33 = 0.  Since surfaces A2 and A3 are black, 

( )44 2
2 b2 2J E T 500 K 3544 W / mσ σ= = = =  

( )44 2
3 b3 3J E T 400 K 1452 W / m .σ σ= = = =  

To determine J1, use Eq. 13.21, the radiation balance equation for A1, noting that F12 = F32 and F13 = 
F31, 

 
( ) ( ) ( )

b1 1 1 31 2
1 11 1 1 1 12 1 13

E J J JJ J
1 / A A F A Fε ε − −

− −−
= +

−
 

 
( ) ( ) ( )

21 1 1
11 1

3544 J J 3544 J 1452
J 3226 W / m .

1 0.6 / 0.6 0.618 0.382− −
− − −

= + =
−

   (8) 

Substituting numerical values in Eq. (6), find 

( )( ) ( ) ( )2 22
3q / 4 0.400 m 0.382 1452 3226 W / m 0.618 1452 3544 W / m 248 W.π= − + − = −⎡ ⎤

⎣ ⎦  

Returning to the overall energy balance, Eq. (1), the net heat transfer to the disk is 

 ( )net,dq 99.8 W 93.6 W 248 W 54.6 W= − − − − = +      < 
That is, there is a net heat transfer rate into the disk. 
 
(b) Using the energy balance, Eq. (1), and the rate equation, Eqs. (2) and (3) with the IHT Radiation 
Tool, Radiation, Exchange Analysis, Radiation surface energy balances and the Correlation Tool, 
Free Convection, Horizontal Plate (Hot surface up), the analysis was performed to obtain qnet,d as a 
function of Td.  The results are plotted below. 
 
The steady-state condition occurs when qnet,d = 0 for which 

 dT 413 K=           < 
          Continued … 
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COMMENTS:  The IHT workspace for the foregoing analysis is shown below. 
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PROBLEM 13.119  
KNOWN:  Radiation shield facing hot wall at Tw = 400 K is backed by an insulating material of 
known thermal conductivity and thickness which is exposed to ambient air and surroundings at 300 K.  
FIND:  (a) Heat loss per unit area from the hot wall, (b) Radiosity of the shield, and (c) Perform a 
parameter sensitivity analysis on the insulation system considering effects of shield reflectivity ρs, 
insulation thermal conductivity k, overall coefficient h, on the heat loss from the hot wall.  
SCHEMATIC:   

 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Wall is black surface of uniform temperature, (2) Shield and wall behave as 
parallel infinite plates, (3) Negligible convection in region between shield and wall, (4) Shield is 
diffuse-gray and very thin, (5) Prescribed coefficient h = 10 W/m2⋅K is for convection and radiation. 
 
ANALYSIS:  (a) Perform an energy balance on the shield to obtain 

w s condq q−′′ ′′=  
But the insulating material and the convection process at the exposed surface can be represented by a 
thermal circuit. 

 
In equation form, using Eq.13.24 for the wall and shield, 

 
( )4 4

w s s
w s

w s

T T T T
q

1/ 1/ 1 L / k 1/ h

σ

ε ε
∞

−

− −′′ = =
+ − +

       (1,2) 

 
( ) ( )

( )

4 4
s s

2

400 T T 300 K
1 1/ 0.05 1 0.025 / 0.016 1/10 m K / W

σ − −
=

+ − + ⋅
 

 sT 350 K.=  

where εs = 1 - ρs.  Hence, 

 
( )

( )
2

w s 2
350 300 K

q 30 W / m .
0.025 / 0.016 1/10 m K / W

−
−

′′ = =
+ ⋅

     < 

          
 
(b) Using the Eqs. (1) and (2) in the IHT workspace, w sq −′′  can be computed and plotted for selected 

ranges of the insulation system variables, ρs, k, and h.  Intuitively we know that w sq −′′  will decrease 

with increasing ρs, decreasing k and decreasing h.  We chose to generate the following family of 
curves plotting w sq −′′  vs. k for selected values of ρs and h. 
 
 

Continued … 
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Considering the base condition with variable k, reducing k by a factor of 3, the heat loss is reduced by 
a factor of 2.  The effect of changing h (4 to 24 W/m2⋅K) has little influence on the heat loss.  
However, the effect of shield reflectivity change is very significant.  With ρs = 0.98, probably the 
upper limit of a practical reflector-type shield, the heat loss is reduced by a factor of two.  To improve 
the performance of the insulation system, it is most advantageous to increase ρs and decrease k. 



PROBLEM 13.120  
KNOWN:  Diameter and surface temperature of a fire tube.  Gas low rate and temperature.  
Emissivity of tube and partition.  
FIND:  (a) Heat transfer per unit tube length, q ,′  without the partition, (b) Partition temperature, Tp, 

and heat rate with the partition, (c) Effect of flow rate and emissivity on q′  and Tp.  Effect of 
emissivity on radiative and convective contributions to q .′  
 
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Fully-developed flow in duct, (2) Diffuse/gray surface behavior, (3) Negligible 
gas radiation. 
 
PROPERTIES:  Table A-4, air (Tm,g = 900 K):  μ = 398 × 10-7 N⋅s/m2, k = 0.062 W/m⋅K, Pr = 0.72; 
air (Ts = 385 K):  μ = 224 × 10-7 N⋅s/m2. 
 
ANALYSIS:  (a) Without the partition, heat transfer to the tube wall is only by convection.  With mg&  

= 0.05 kg/s and ReD = 4 ( ) ( ) 7 2
gm / D 4 0.05 kg / s / 0.07 m 398 10 N s / m 22,850,π μ π −= × ⋅ =&  the 

flow is turbulent.  From Eq. 8.61, 

 ( ) ( ) ( ) ( )0.14 4 / 5 1/ 3 0.144 / 5 1/ 3
D D sNu 0.027 Re Pr / 0.027 22,850 0.72 398 / 224 80.5μ μ= = =  

 2
D

k 0.062 W / m K
h Nu 80.5 71.3 W / m K

D 0.07 m
⋅

= = = ⋅  

 ( ) ( ) ( )2
m,g sq h D T T 71.3 W / m K 0.07 m 900 385 8075 W / mπ π′ = − = ⋅ − =   < 

(b) The temperature of the partition is determined from an energy balance which equates net radiation 
exchange with the tube wall to convection from the gas.  Hence, rad convq q ,′′ ′′=  where from Eq. 13.23, 

 
( )4 4

p s
rad

p ps

p ps s s

T T
q

1 A11
F A

σ

ε ε
ε ε

−
′′ =

− −
+ +

 

where F12 = 1 and Ap/As = D/(πD/2) = 2/π = 0.637.  The flow is now in a noncircular duct for which 
Dh = 4Ac/P = 4(πD2/8)/(πD/2+D) = πD/(π + 2) = 0.611 D = 0.0428 m and 1/ 2m&  = gm / 2&  = 0.025 

kg/s.  Hence, ReD = 1/ 2m& Dh/Acμ = 1/ 2m& Dh/(πD2/8)μ = 8(0.025 kg/s) (0.0428 m)/π(0.07 m)2 398 × 

10-7 N⋅s/m2 = 13,970 and 

 ( ) ( ) ( )4 / 5 1/ 3 0.14
DNu 0.027 13,970 0.72 398 / 224 54.3= =  

 2
D

h

k 0.062 W / m K
h Nu 54.3 78.7 W / m K

D 0.0428 m
⋅

= = = ⋅  

          Continued … 
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Hence, with εs = εp = 0.5 and ( )conv m,gq h T T ,p′′ = −  
 

 
( ) ( )

8 2 4 4 4 4
p 2

p
5.67 10 W / m K T 385 K

78.7 W / m K 900 T K
1 1 0.637

−× ⋅ −
= ⋅ −

+ +
 

 
 8 4

p p21.5 10 T 78.7T 71,302 0−× + − =  
 
Which may be solved to yield 
 
 pT 796 K=           < 
 
The heat rate to one-half of the tube is then 
 

 
( )

( )( )
4 4
p s

1/ 2 ps conv m,g s
p ps

p ps s s

D T T
q q q h D / 2 T T

1 A11
F A

σ
π

ε ε
ε ε

−
′ ′ ′= + = + −

− −
+ +

 

 

( )( )
( )( )

8 2 4 4 4 4
2

1/ 2

0.07 m 5.67 10 W / m K 796.4 385 K
q 78.7 W / m K 0.110 m 900 385 K

2.637

−× ⋅ −
′ = + ⋅ −  

 
 1/ 2q 572 W / m 4458 W / m 5030 W / m′ = + =  
 
The heat rate for the entire tube is 
 
 1/ 2q 2q 10, 060 W / m′ ′= =         < 
 
(c) The foregoing model was entered into the IHT workspace, and parametric calculations were 
performed to obtain the following results. 
 

 
 
Radiation transfer from the partition increases with increasing εp = εs, thereby reducing Tp while 
increasing q .′   Since h increases with increasing pm, T and q′&  also increase with m.&  
 

          Continued … 
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Although the radiative contribution to the heat rate increases with increasing εp = εs, it still remains 
small relative to convection.  
COMMENTS:  Contrasting the heat rate predicted for part (b) with that for part (a), it is clear that use 
of the partition enhances heat transfer to the tube.  However, the effect is due primarily to an increase 
in h and secondarily to the addition of radiation. 



PROBLEM 13.121 
 
KNOWN: Dimensions of horizontal air space separating plates of known temperature. 
Emissivity of end plates and interleaving aluminum sheets. 
 
FIND: (a) Neglecting conduction or convection in the air , determine the heat flux through the 
system, (b) Neglecting convection and radiation, determine the heat flux through the system, (c) 
Heat flux through the system accounting for conduction and radiation, (d) Determine whether 
natural convection is negligible in part (c). 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) One-dimensional heat transfer, (2) Diffuse, gray surfaces, (3) Constant 
properties in each gap, (4) Negligible natural convection. 
 
PROPERTIES: Air: Properties evaluated using IHT. 
 
ANALYSIS: (a) The radiation heat flux across each of the five gaps is 
 

 
( ) ( )48 44 4 22 41 2"

rad,1 2

1 2

W5.67 10 473K TT T m Kq 1 1 1 11 1
0.85 0.07

−

−

⎡ ⎤× −σ − ⎢ ⎥⎣ ⎦⋅= =
+ − + −

ε ε

   (1) 

 

 
( ) 8 4 44 4 2 32 42 3"

rad,2 3

2 3

W5.67 10 T TT T m Kq 1 1 1 11 1
0.07 0.07

−

−

⎡ ⎤× −σ − ⎣ ⎦⋅= =
+ − + −

ε ε

    (2) 

 

 
( ) 8 4 44 4 3 42 43 4"

rad,3 4

3 4

W5.67 10 T TT T m Kq 1 1 1 11 1
0.07 0.07

−

−

⎡ ⎤× −σ − ⎣ ⎦⋅= =
+ − + −

ε ε

    (3) 

Continued… 
 

q"cond, 1-2q“rad, 1-2
1

2

3

4

5

6

Gap A

Gap C

Gap D

Gap E

Gap B

T6 = 50°C, ε6 = 0.85

T1 = 200°C, ε1 = 0.85

ε2 = ε3 = ε4 = ε5 = 0.07

q"cond, 1-2q“rad, 1-2
1

2

3

4

5

6

Gap A

Gap C

Gap D

Gap E

Gap B

T6 = 50°C, ε6 = 0.85

T1 = 200°C, ε1 = 0.85

ε2 = ε3 = ε4 = ε5 = 0.07



  
 PROBLEM 13.121 (Cont.) 

 
 

( ) 8 4 44 4 4 52 44 5"
rad,4 5

4 5

W5.67 10 T TT T m Kq 1 1 1 11 1
0.07 0.07

−

−

⎡ ⎤× −σ − ⎣ ⎦⋅= =
+ − + −

ε ε

    (4) 

 

 
( ) 8 4 44 4 52 45 6"

rad,5 6

5 6

W5.67 10 T (325K)T T m Kq 1 1 1 11 1
0.07 0.85

−

−

⎡ ⎤× −σ − ⎣ ⎦⋅= =
+ − + −

ε ε

   (5) 

 
where 
 
 " " " " " "

rad rad,1 2 rad,2 3 rad,3 4 rad,4 5 rad,5 6q q q q q q− − − − −= = = = =     (6) 
 
Solving Eqns. (1) through (6) simultaneously yields 
 

 T2 = 460.5 K, T3 = 433.5 K, T4 = 400.1 K, T5 = 355.4 K, "
radq = 19.89 W/m2  < 

 
(b) The conduction heat flux across each of the five gaps is 
 

 ( )" A
cond 1 2

kq T T
L

= −         (7) 

 
where kA is the thermal conductivity of air evaluated at A 1 2T (T T ) / 2= + . Likewise, 
 

 ( ) [ ]( )" B
cond,2 3 2 3 B air 2 3

kq T T ;      k k T T / 2
L− = − = +     (8) 

 

 ( ) [ ]( )" C
cond,3 4 3 4 C air 3 4

kq T T ;      k k T T / 2
L− = − = +     (9) 

 

 ( ) [ ]( )" D
cond,4 5 4 5 D air 4 5

kq T T ;      k k T T / 2
L− = − = +     (10) 

 

 ( ) [ ]( )" E
cond,5 6 5 6 E air 5 6

kq T T ;      k k T T / 2
L− = − = +     (11) 

where 
 
 " " " " " "

cond cond,1 2 cond,2 3 cond,3 4 cond,4 5 cond,5 6q q q q q q− − − − −= = = = =    (12) 
 

Continued… 
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Solving Eqns. (7) through (12) simultaneously and using IHT to evaluate kA, kB, kC, kD and kE 
yields 
 

T2 = 446.5 K, T3 = 418.6 K, T4 = 389.1 K, T5 = 357.4 K, "
condq = 100.6 W/m2 < 

 
(c) For each gap, " " "

cond radq q q= + . Hence, 
 
 " " "

1 2 rad,1 2 cond,1 2q q q− − −= +        (13) 
 
 " " "

2 3 rad,2 3 cond,2 3q q q− − −= +        (14) 
 
 " " "

3 4 rad,3 4 cond,3 4q q q− − −= +        (15) 
 
 " " "

4 5 rad,4 5 cond,4 5q q q− − −= +        (16) 
 
 " " "

5 6 rad,5 6 cond,5 6q q q− − −= +        (17) 
 
where " " " " " "

1 2 2 3 3 4 4 5 5 6q q q q q q− − − − −= = = = =       (18) 
 
Solving Eqns. (1) through (5), (8) through (11), and (13) through (18) simultaneously and using 
IHT to evaluate kA, kB, kC, kD and kE yields 

T2 = 450.2 K, T3 = 421.9 K, T4 = 391.2 K, T5 = 357.4 K, "q = 122.1 W/m2  < 
 
(d) The Rayleigh number for gap A is 
 

  ( ) 3
1 2

L,A
g T T L

Ra
β −

=
να

 

where T1 = 473 K and T2 = 450.2 K. Therefore, T (473K 450.2K) / 2 461.1K.= + =  Hence,  
 

 
2 2

-5 -51 1 m m,   = 3.381 10  and =4.931 10
461.1K 2 sT

β = = ν × α ×  

 
from which 

  
( ) 3

2
L,A 2 2

5 5

m 19.81 473K 450.2K 0.01m
461.1KsRa 289.2

m m3.381 10 4.931 10
s s

− −

× − ×
= =

× × ×
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Repeating the calculation for the remaining gaps yields 
 
  RaL,B = 463, RaL,C = 690, RaL,D = 1104, RaL,E = 1747. 
 
The largest Rayleigh number is slightly higher than the critical value of 1703. Therefore, natural 

convection in the gaps is negligible.       < 
 
 
COMMENTS: (1) Ignoring the presence of the air will result in an estimated heat flux that is 
only 16% of the actual value. One must carefully account for conduction or convection effects in 
radiation problems, in particular when the radiation occurs in conjunction with low emissivity 
surfaces. (2) The heat flux for combined radiation and conduction exceeds the sum of the 
individual components acting alone. This is due to the non-linear effects brought about by the 
fourth-power dependence of the radiation heat flux upon temperature and property variations.  (3) 
The foil temperatures vary for the three simulations. Can you explain why different temperatures 
exist for the three cases? 
 
IHT code for solution of part (c) is shown below. 
 

T1 = 200 + 273 
T6 = 50 + 273 
emiss1 = 0.85 
emiss6 = 0.85 
emiss2 = 0.07 
emiss3 = emiss2 
emiss4 = emiss3 
emiss5 = emiss4 
sigma=5.67*10^-8 
 
// Air property functions : From Table A.4 
// Units: T(K); 1 atm pressure 
 
k12 = k_T("Air",T12) // Thermal conductivity, W/m·K 
k23 = k_T("Air",T23) // Thermal conductivity, W/m·K 
k34 = k_T("Air",T34) // Thermal conductivity, W/m·K 
k45 = k_T("Air",T45) // Thermal conductivity, W/m·K 
k56 = k_T("Air",T56) // Thermal conductivity, W/m·K 
T12 = (T1 + T2)/2 
T23 = (T2 + T3)/2 
T34 = (T3 + T4)/2 
T45 = (T4 + T5)/2 
T56 = (T5 + T6)/2 
 
L = 0.01 
 
//March through the gaps 
 
qrad12 = sigma*(T1^4-T2^4)/(1/emiss1+1/emiss2-1) 
qcon12 = k12*(T1-T2)/L 
qtot = qrad12+qcon12 
 
qrad23 = sigma*(T2^4-T3^4)/(1/emiss2+1/emiss3-1) 
qcon23 = k23*(T2-T3)/L 
qtot = qrad23+qcon23 

Continued… 
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qrad34 = sigma*(T3^4-T4^4)/(1/emiss3+1/emiss4-1) 
qcon34 = k34*(T3-T4)/L 
qtot = qrad34+qcon34 
 
qrad45 = sigma*(T4^4-T5^4)/(1/emiss4+1/emiss5-1) 
qcon45 = k45*(T4-T5)/L 
qtot = qrad45+qcon45 
 
qrad56 = sigma*(T5^4-T6^4)/(1/emiss5+1/emiss6-1) 
qcon56 = k56*(T5-T6)/L 
qtot = qrad56+qcon56 
 
//Note that one must input initial temperatures of around 350 K for all values, or else the system of equations 
will not converge. 

 
 
 



PROBLEM 13.122  
KNOWN:  Diameters, temperatures, and emissivities of concentric spheres.  
FIND:  Rate at which nitrogen is vented from the inner sphere.  Effect of radiative properties on 
evaporation rate.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  Diffuse-gray surfaces. 
 
PROPERTIES:  Liquid nitrogen (given):  hfg = 2 × 105 J/kg; Table A-4, Helium ( T  = (Ti + To)/2 = 
180 K, 1 atm):  ν = 51.3 × 10-6 m2/s, k = 0.107 W/m⋅K, α = 76.2 × 10-6 m2/s, Pr = 0.673, β = 
0.00556 K-1. 
 
ANALYSIS:  (a) Performing an energy balance for a control surface about the liquid nitrogen, it 
follows that q = qconv + qrad = fgmh .&   The convection heat rate is given by Eqs. 9.61 through 9.63.  

( ) ( )

4 / 3 4 / 3

i o
s 5/ 3 5/ 31/ 3 7 / 5 7 / 5 1/ 3 7 / 5 7 / 5

i o

1 1 1 1
r r 0.5m 0.55mL 0.0057m

2 r r 2 0.5m 0.55m− − − −

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= = =

+ +
 

 
The Rayleigh number is 
 

 
3 2 1 3

i o s
s 6 2 6 2

g (T T )L 9.8m / s (0.00556K )(77 283)K(0.0057m)Ra 529
51.3 10 m / s 76.2 10 m / s

−

− −

− −
= = =

× × ×
β

να
 

 
From Eq. 9.62,  
 

 
1/ 4 1/ 4

1/ 4 1/ 4eff
s

k Pr 0.6730.74 Ra 0.74 529 2.89
k 0.861 Pr 0.861 0.673

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
 

 
Therefore, keff = 2.89 × 0.107 W/m·K = 0.309 W/m·K. From Eq. 9.61, 
 

 eff i o
conv

i o

4 k (T T ) 4 0.309W / m K (206K)q 4399W
(1/ r ) (1/ r ) (1/ 0.5m) (1/ 0.55m)
π π− × × ⋅ ×

= = =
− −
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From Table 13.21, 

( )
( )( )( )

2 4
1 o

rad oi 2
i o o i o

4D T Ti
q q

1/ 1 / D / D

−
= =

+ −

σπ

ε ε ε
 

 
( ) ( ) ( )

( )( )

28 2 4 4 4 4

2

5.67 10 W / m K 1 m 283 77 K
216 W.

1/ 0.3 0.7 / 0.3 1/1.1

π−× ⋅ −
= =

+
 

           

Hence,  ( ) 5
fgm q / h 4399 216 W / 2 10 J / kg 0.023kg / s.= = + × =&    < 

 
With the cavity evacuated, IHT was used to compute the radiation heat rate as a function of εi = εo. 
 

 
 
Clearly, significant advantage is associated with reducing the emissivities and qrad = 31.8 W for εi = εo 
= 0.05.  
COMMENTS:  The convection heat rate is too large.  It could be reduced by replacing He with a gas 
of smaller k, a cryogenic insulator (Table A.3), or a vacuum.  Radiation effects are second order for 
small values of the emissivity. 



PROBLEM 13.123  
KNOWN:  Dimensions, emissivity and upper temperature limit of coated panel.  Arrangement and 
power dissipation of a radiant heater.  Temperature of surroundings.  
FIND:  (a) Minimum panel-heater separation, neglecting convection, (b) Minimum panel-heater 
separation, including convection.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Top and bottom surfaces of heater and panel, respectively, are adiabatic, (2) 
Bottom and top surfaces of heater and panel, respectively are diffuse-gray, (3) Surroundings form a 
large enclosure about the heater-panel arrangement, (4) Steady-state conditions, (5) Heater power is 
dissipated entirely as radiation (negligible convection), (6) Air is quiescent and convection from panel 
may be approximated as free convection from a horizontal surface, (7) Air is at atmospheric pressure. 
 
PROPERTIES:  Table A-4, Air (Tf = (400 + 298)/2 ≈ 350 K, 1 atm):  ν = 20.9 × 10-6 m2/s, k = 0.03 
W/m⋅K, Pr = 0.700, α = 29.9 × 10-6 m2/s, β = 2.86 × 10-3 K-1. 
 
ANALYSIS:  (a) Neglecting convection effects, the panel constitutes a floating potential for which the 
net radiative transfer must be zero.  That is, the panel behaves as a re-radiating surface for which Eb2 = 
J2.  Hence 

 1 b2 1 b3
1

1 12 1 13

J E J E
q

1/ A F 1/ A F
− −

= +         (1) 

 
and evaluating terms 

 ( )44 8 2 4 2
b2 2E T 5.67 10 W / m K 400 K 1452 W / mσ −= = × ⋅ =  

 

 ( )44 8 2 4 2
b3 3E T 5.67 10 W / m K 298 K 447 W / mσ −= = × ⋅ =  

 
 2

13 12 1F 1 F A 25 m= − =  
find that 

 
( )

1 1
2 12 12

75, 000 W J 1452 J 447
1/ F 1/ 1 F25 m

− −
= +

−
 

 ( ) ( ) ( )2
12 1 1 12 13000 W / m F J 1452 J 447 F J 447= − + − − −  

 1 12J 3447 1005F .= +          (2) 
 
Performing a radiation balance on the panel yields 

 1 b2 b2 b3

1 12 2 23

J E E E
.

1/ A F 1/ A F
− −

=  

 
          Continued … 



PROBLEM 13.123 (Cont.) 
 
With A1 = A2 and F23 = 1 – F12 
 
 ( ) ( )( )1 1 12F J 1452 1 F 1452 447− = − −  
or 
 12 12 1447F F J 1005.= −          (3) 
 
Substituting for J1 from Eq. (2), find 
 
 ( )12 12 12447F F 3447 1005F 1005= + −  
 
 2

12 121005F 3000F 1005 0+ − =  
 
 12F 0.30.=  
 
Hence from Fig. 13.4, with X/L = Y/L and Fij = 0.3, 
 
 X / L 1.45≈  
 
 L 5 m /1.45 3.45 m.≈ =         < 
 
(b) Accounting for convection from the panel, the net radiation transfer is no longer zero at this 
surface and Eb2 ≠ J2.  It then follows that 
 

 1 b31 2
1

1 12 1 13

J EJ J
q

1/ A F 1/ A F
−−

= +         (4) 

 
where, from an energy balance on the panel, 
 

 
( )

( )2 b2
conv,2 2 2

2 2 2

J E
q hA T T .

1 / Aε ε ∞
−

= = −
−

      (5) 

 
With L ≡ As/P = 25 m2/20 m = 1.25 m, 
 

 
( ) ( )( )( )

( )

32 3 13
9s

L 12 4 2

9.8 m / s 2.86 10 K 102 K 1.25 mg T T L
Ra 8.94 10 .

20.9 29.9 10 m / s

β
να

− −
∞

−

×−
= = = ×

×
 

Hence, from Eq. 9.31 

 ( )L

1/ 31/ 3 9
LNu 0.15Ra 0.15 8.94 10 311= = × =  

 

 20.03 W / m K
h 311 k / L 311 7.46 W / m K

1.25 m
⋅

= = = ⋅  

 
 ( )2 2

conv,2q 7.46 W / m K 102 K 761 W / m .′′ = ⋅ =  
 
From Eq. (5) 
 

 22
2 b2 conv,2

2

1 0.7
J E q 1452 761 3228 W / m .

0.3
ε

ε
− ′′= + = + =  
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From Eq. (4), 
 

 
( )

1 1

12 12

75, 000 J 3228 J 447
25 1/ F 1/ 1 F

− −
= +

−
 

 
 ( ) ( )12 1 1 12 13000 F J 3228 J 447 F J 447= − + − − −  
 
 1 12J 3447 2781F .= +          (6) 
 
From an energy balance on the panel, 
 

 
( )

b3 2 2 b21 2
conv,2

1 12 2 23 2 2 2

E J J EJ J
q

1/ A F 1/ A F 1 / Aε ε
− −−

+ = =
−

 

 
 ( ) ( )( )12 1 12F J 3228 1 F 447 3228 761− + − − =  
 

12 1 12F J 447F 3542.− =  
 
Substituting from Eq. (6), 
 
 ( )12 12 12F 3447 2781F 447F 3542+ − =  
 
 2

12 122781F 3000F 3542 0+ − =  
 
 12F 0.71.=  
 
Hence from Fig. 13.4, with X/L = Y/L and Fij = 0.71, 
 
 X / L 5.7=  
 
 L 5 m / 5.7 0.88 m.≈ =          < 
 
 
COMMENTS:  (1) The results are independent of the heater surface radiative properties. (2) 
Convection at the heater surface would reduce the heat rate q1 available for radiation exchange and 
hence reduce the value of L. 



PROBLEM 13.124  
KNOWN:  Diameter and emissivity of rod heater.  Diameter and position of reflector.  Width, 
emissivity, temperature and position of coated panel.  Temperature of air and large surroundings.  
FIND:  (a) Equivalent thermal circuit, (b) System of equations for determining heater and reflector 
temperatures.  Values of temperatures for prescribed conditions, (c) Electrical power needed to operate 
heater.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Diffuse-gray surfaces, (3) Large surroundings act 
as blackbody, (4) Surfaces are infinitely long (negligible end effects), (5) Air is quiescent, (6) 
Negligible convection at reflector, (7) Reflector and panel are perfectly insulated. 
 
PROPERTIES:  Table A-4, Air (Tf = 350 K, 1 atm):  k = 0.03 W/m⋅K, ν = 20.9 × 10-6 m2/s, α = 29.9 
× 10-6 m2/s, Pr = 0.70; (Tf = (1295 + 300)/2 = 800 K):  k = 0.0573 W/m⋅K, ν = 84.9 × 10-6 m2/s, α = 
120 × 10-6 m2/s. 
 
ANALYSIS:  (a) We have assumed blackbody behavior for A1 and A4; hence, J = Eb.  Also, A2 is 
insulated and has negligible convection; hence q = 0 and J2 = Eb2.  The equivalent thermal circuit is: 

  
 
(b) Performing surface energy balances at 1, 2 and 3: 

 b1 b2 b1 3 b1 b4
1 conv,1

1 12 1 13 1 14

E E E J E E
q q

1/ A F 1/ A F 1/ A F
− − −

− = + +      (1) 

 

  b1 b2 3 b2 b4 b2

2 21 2 23 2 24

E E J E E E
0

1/ A F 1/ A F 1/ A F
− − −

= + +      (2) 

 

 
( )

3 b3 b1 3 b2 3 b4 3

3 3 3 3 31 3 32 3 34

J E E J E J E J
1 / A 1/ A F 1/ A F 1/ A Fε ε

− − − −
= + +

−
     (3a) 

where 

 
( )

3 b3
conv,3

3 3 3

J E
q .

1 / Aε ε
−

=
−

        (3b) 

          Continued … 
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Solution procedure with Eb3 and Eb4 known:  Evaluate qconv,3 and use Eq. (3b) to obtain J3; Solve 
Eqs. (2) and (3a) simultaneously for Eb1 and Eb2 and hence T1 and T2; Evaluate qconv,1 and use Eq. 
(1) to obtain q1. 
 
For free convection from a heated, horizontal plate using Eqs. 9.29, 9.25, and 9.31: 
 

 
( )
( )

s
c

W LA W
L 0.5 m

P 2L 2W 2
×

= = ≈ =
+

 

 

 
( ) ( ) ( )( )1 33 2

83 c
L 12 4 2

g T T L 9.8 m / s 350 K 100 K 0.5 m
Ra 5.6 10

20.9 29.9 10 m / s

β
αν

−
∞

−
−

= = = ×
× ×

 

 

 ( )L

1/ 31/ 3 8
LNu 0.15Ra 0.15 5.6 10 123.6= = × =  

 

 L
2

3
c

k 0.03 W / m K 123.6
h Nu 7.42 W / m K.

L 0.5 m
⋅ ×

= = = ⋅  

 
 ( ) 2

conv,3 3 3q h T T 742 W / m .∞′′ = − =  
 
Hence, with 

 ( )44 8 2 4 2
b3 3E T 5.67 10 W / m K 400 K 1451 W / mσ −= = × ⋅ =  

 
using Eq. (3b) find 
 

 [ ]( ) 23
3 b3 conv,3

3 3

1
J E q 1451 0.3 / 0.7 742 1769 W / m .

A
ε

ε
−

= + = + =  

 
View Factors:  From symmetry, it follows that F12 = 0.5.  With θ = tan-1 (W/2)/H = tan-1 (0.5) = 
26.57°, it follows that 
 
 13F 2 / 360 0.148.θ= =  
 
From summation and reciprocity relations, 
 
 14 12 13F 1 F F 0.352= − − =  
 
 ( ) ( )21 1 2 12 1 2 12F A / A F 2D / D F 0.02 0.5 0.01= = = × =  
 
 ( ) ( )( )23 3 2 32 32 31F A / A F 2 / F F .π ′= = −  
 
For X/L = 1, Y/L ≈ ∞, find from Fig. 13.4 that 32F 0.42.′ ≈   Also find, 
 
 ( ) ( )31 1 3 13F A / A F 0.01/1 0.148 0.00465 0.005π= = × = ≈  
 
 ( )( )23F 2 / 0.42 0.005 0.264π= − =  
 
 ( ) ( )22 22 2 2 2 2F 1 F 1 A / A F 1 2 / 0.363π′ ′′≈ − = − = − =  
 
 24 21 22 23F 1 F F F 0.363= − − − =  
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 31 32F 0.005, F 0.415= =  
 34 32F 1 F 1 0.42 0.58.′= − = − =  

With ( )44 8 2 4 2
b4 4E T 5.67 10 W / m K 300 K 459 W / m ,σ −= = × ⋅ =  

 Eq. (3a) → 0.005(Eb1 – 1769) + 0.415(Eb2 – 1769) + 0.58(459 – 1769) = 742 
   0.005Eb1 + 0.415Eb2 = 2245      (4) 
 
 Eq. (2) → 0.01(Eb1 – Eb2) + 0.264(1769 – Eb2) + 0.363(459 – Eb2) = 0 
   0.01Eb1 – 0.637Eb2 + 633.6 = 0.      (5) 
 
Hence, manipulating Eqs. (4) and (5), find 
 
 b2 b1E 0.0157E 994.7= +  
 
 ( )( )b1 b10.005E 0.415 0.0157E 994.7 2245.+ + =  
 

 ( )1/ 42
b1 1 b1E 159,322 W / m T E / 1295 Kσ= = =     < 

 

 ( ) ( )1/ 42
b2 2 b2E 0.0157 159,322 994.7 3496 W / m T E / 498 K.σ= + = = =  < 

 
(c) With T1 = 1295 K, then Tf = (1295 + 300)/2 ≈ 800 K, and using Eq. 9.33 
 

 
( ) ( )( ) ( )33 2

1 1
D 12 4 2

g T T D 9.8 m / s 1/ 800 K 1295 300 K 0.01 m
Ra 1196

120 84.9 10 m / s

β
αν

∞
−

− −
= = =

× ×
 

 

 ( )D
0.1880.188

DNu 0.85Ra 0.85 1196 3.22= = =  
 
 ( ) ( )D

2
1 1h k / D Nu 0.0573 / 0.01 3.22 18.5 W / m K.= = × = ⋅  

 
The convection heat flux is 

 ( ) ( ) 2
conv,1 1 1q h T T 18.5 1295 300 18, 407 W / m ,∞′′ = − = − =  

 
Using Eq. (1), find 
 ( ) ( ) ( )1 conv,1 12 b1 b2 13 b1 3 14 b1 b4q q F E E F E J F E E′′ ′′= + − + − + −  
 
 ( )1q 18, 407 0.5 159,322 3496′′ = + −  
   ( ) ( )0.148 159,322 1769 0.352 159,322 459+ − + −  
 
 ( )1q 18, 407 77,913 23,314 55,920′′ = + + +  
 
 2

1q 18, 407 236,381 254,788 W / m′′ = + =  
 
 ( )1 1 1q D q 0.01 254, 788 8000 W / m.π π′ ′′= = =       < 
 
COMMENTS:  Although convection represents less than 8% of the net radiant transfer from the 
heater, it is equal to the net radiant transfer to the panel.  Since the reflector is a reradiating surface, 
results are independent of its emissivity. 



PROBLEM 13.125  
KNOWN:  Temperature, power dissipation and emissivity of a cylindrical heat source.  Surface 
emissivities of a parabolic reflector.  Temperature of air and surroundings.  
FIND:  (a) Radiation circuit, (b) Net radiation transfer from the heater, (c) Net radiation transfer from 
the heater to the surroundings, (d) Temperature of reflector.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Heater and reflector are in quiescent and infinite 
air, (3) Surroundings are infinitely large, (4) Reflector is thin (isothermal), (5) Diffuse-gray surfaces.  
PROPERTIES:  Table A-4, Air (Tf = 750 K, 1 atm):  ν = 76.37 × 10-6 m2/s, k = 0.0549 W/m⋅K, α = 
109 × 10-6 m2/s, Pr = 0.702. 
 
ANALYSIS:  (a) The thermal circuit is 

  
(b) Energy transfer from the heater is by radiation and free convection.  Hence, 
 1 1 1,convP q q′ ′ ′= +  
where 
 ( )1,conv 1 1q h D T Tπ ∞′ = −  
and 

 
( ) ( ) ( )( )1 33 2

1
D 12 4 2

g T T D 9.8 m / s 750 K 900 K 0.005 m
Ra 176.6.

76.37 109 10 m / s

β
να

−
∞

−
−

= = =
× ×

 

Using the Churchill and Chu correlation of Chapter 9, find 

( )

( )

( )
D

2 2
1/ 61/ 6

D
8 / 27 8 / 279 /16 9 /16

0.387 176.60.387Ra
Nu 0.6 0.6 1.85

1 0.559 / Pr 1 0.559 / 0.702
= + = + =

+ +

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

 

 ( ) ( )D
2h Nu k / D 1.85 0.0549 W / m K / 0.005 m 20.3 W / m K.= = ⋅ = ⋅  
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Hence, 

 ( )( )2
1,convq 20.3 W / m K 0.005 m 1200 300 K 287 W / mπ′ = ⋅ − =  

 1q 1500 W / m 287 W / m 1213 W / m.′ = − =       < 
 
(c) The net radiative heat transfer from the heater to the surroundings is 
 ( ) ( )1 1sur 1 sur1 surq A F J J .′ ′= −  
 
The view factor is 
 ( )1surF 135 / 360 0.375= =  
 
and the radiosities are 

 ( )44 8 2 4 2
sur surJ T 5.67 10 W / m K 300 K 459 W / mσ −= = × ⋅ =  

 

 ( ) ( )48 2 4
1 b1 1 1 1 1J E q 1 A 5.67 10 W / m K 1200 Kε ε −′ ′= − − = × ⋅  

      ( )[ ]1213 W / m 0.2 / 0.8 0.005 mπ−  

 2
1J 98, 268 W / m .=  

Hence 

 ( ) ( ) ( ) 2
1 surq 0.005 m 0.375 98, 268 459 W / m 576 W / m.π′ = − =    < 

 
(d) Perform an energy balance on the reflector, 
 2i 2o 2,convq q q′ ′ ′= +  
 

 
( ) ( ) ( )

( )2i b2 b2 sur
2 2 2

2i 2i 2 2o 2o 2 2 2o sur

J E E J
2h A T T .

1 / A 1 / A 1/ A Fε ε ε ε ∞
− − ′= + −

′ ′ ′− − +
 

 
The radiosity of the reflector is 

 ( )

( )

( )
( )( )

1 2i 2
2i 1

1 1 2i

q 1213 576 W / m
J J 98, 268 W / m

A F 0.005 m 225 / 360π

′ −
= − = −

′
 

 2
2iJ 33,384 W / m .=  

Hence 

 
( )

( )
( )

( ) ( )
( )

8 4 8 4
2 2

2
33,384 5.67 10 T 5.67 10 T 459

2 0.4 T 300
0.9 / 0.1 0.2 m 0.2 / 0.8 0.2 m 1/ 0.2m 1

− −− × × −
= + × −

× × + ×
 

 
 8 4 8 4

2 2 2741.9 0.126 10 T 0.907 10 T 73.4 0.8T 240− −− × = × − + −  
 
 8 4

2 21.033 10 T 0.8T 1005−× + =  
 
which may be solved to yield 

 2T 502 K.=           < 
 
COMMENTS:  Choice of small ε2i and large ε2o insures that most of the radiation from heater is 
reflected to surroundings and reflector temperature remains low. 



PROBLEM 13.126  
KNOWN:  Geometrical conditions associated with tube array.  Tube wall temperature and pressure of 
water flowing through tubes.  Gas inlet velocity and temperature when heat is transferred from 
products of combustion in cross-flow, or temperature of electrically heated plates when heat is 
transferred by radiation from the plates.  
FIND:  (a) Steam production rate for gas flow without heated plates, (b) Steam production rate with 
heated plates and no gas flow, (c) Effects of inserting unheated plates with gas flow.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible gas radiation, (3) Tube and plate 
surfaces may be approximated as blackbodies, (4) Gas outlet temperature is 600 K. 
 
PROPERTIES:  Table A-4, Air ( T  = 900 K, 1 atm):  ρ = 0.387 kg/m3, cp = 1121 J/kg⋅K, ν = 102.9 × 
10-6 m2/s, k = 0.062 W/m⋅K, Pr = 0.720; (T = 400 K): Pr = 0.686; (T = 1200 K): ρ = 0.29 kg/m3; 
Table A-6, Sat. water (2.5 bars):  hfg = 2.18 × 106 J/kg. 
 
ANALYSIS:  (a) With 
 ( )[ ]max T TV S / S D V 20 m / s= − =  
 

 
( )max

D 6 2
20 m / s 0.01 mV D

Re 1944
102.9 10 m / sν −

= = =
×

 

 
and from the Zukauskas correlation of Chapter 7 with C1 = 0.27 and m = 0.63, 

 ( ) ( ) ( )D
0.63 0.36 1/ 4Nu 0.27 1944 0.720 0.720 / 0.686 28.7= =  

 
 2h 0.062 W / m K 28.7 / 0.01 m 178 W / m K.= ⋅ × = ⋅  
The outlet temperature may be evaluated from 

 s m,o

s m,i p T T p

T T hA hN D
exp exp

T T mc VN S c
π

ρ

−
= − = −

−

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠&

 

 

 
2

m,o
3

400 T 178 W / m K 100 0.01 m
exp

400 1200 0.29 kg / m 10 m / s 5 0.02 m 1121 J / kg K

π− ⋅ × × ×
= −

− × × × × ⋅

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
 m,oT 543 K.=  
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With 

 
( ) ( )
( ) ( )

( )
( )

s m,i s m,o
m

s m,i s m,o

T T T T 800 143
T 382 K

ln 800 /143ln T T / T T

− − − − − −
Δ = = = −

− − ⎤⎦
l  

find 

 ( ) ( ) ( )2
mq hA T 178 W / m K 100 0.01 m 1 m 382 Kπ= Δ = ⋅ −l  

 
 q 214 kW.= −  
 
If the water enters and leaves as saturated liquid and vapor, respectively, it follows that –q = m& hfg, 
hence 

 
6

214, 000 W
m 0.098 kg / s.

2.18 10 J / kg
= =

×
&        < 

 
(b) The radiation exchange between the plates and tube walls is 
 

 ( )4 4
p ps p s Tq A F T T 2 Nσ= − ⋅ ⋅⎡ ⎤

⎢ ⎥⎣ ⎦
 

 
where the factor of 2 is due to radiation transfer from two plates.  The view factor and area are 
 

 ( ) ( ) ( ) 1/ 21/ 22 1 2 2 2
psF 1 1 D / S D / S tan S D / D−= − − + −⎡ ⎤⎡ ⎤

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

 
 1

psF 1 0.866 0.5 tan 1.732 1 0.866 0.524−= − + = − +  
 
 psF 0.658=  
 
 2

p L LA N S 1 m 20 0.02 m 1 m 0.40 m .= ⋅ ⋅ = × × =  
 
Hence, 

 ( )2 8 2 4 4 4 4q 5 0.80 m 0.658 5.67 10 W / m K 1200 400 K−= × × × × ⋅ −⎡ ⎤
⎢ ⎥⎣ ⎦

 
 
 q 305, 440 W=  
 
and the steam production rate is 
 

 
6

305, 440 W
m 0.140 kg / s.

2.18 10 J / kg
= =

×
&        < 

 
(c) The plate temperature is determined by an energy balance for which convection to the plate from 
the gas is equal to net radiation transfer from the plate to the tube.  Conditions are complicated by the 
fact that the gas transfers energy to both the plate and the tubes, and its decay is not governed by a 
simple exponential.  Insertion of the plates enhances heat transfer to the tubes and thereby increases 
the steam generation rate.  However, for the prescribed conditions, the effect would be small, since in 
case (a), the heat transfer is already ≈ 80% of the maximum possible transfer. 



PROBLEM 13.127  
KNOWN:  Temperature and emissivity of ceramic plate which is separated from a glass plate of 
equivalent height and width by an air space.  Temperature of air and surroundings on opposite side of 
glass.  Spectral radiative properties of glass.  
FIND:  (a) Transmissivity of glass, (b) Glass temperature Tg and total heat rate qh, (c) Effect of 
external forced convection on Tg and qh. 
 
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Spectral distribution of emission from ceramic approximates that of a 
blackbody, (2) Glass surface is diffuse, (3) Atmospheric air in cavity and ambient, (4) Cavity may be 
approximated as a two-surface enclosure with infinite parallel plates, (5) Glass is isothermal. 
 
PROPERTIES:  Table A-4, air (p = 1 atm):  Evaluated at T  = (Tc + Tg)/2 and Tf = (Tg +T∞)/2 using 
IHT Properties Toolpad.  
ANALYSIS:  (a) The total transmissivity of the glass is 

 ( ) ( ) ( )
2

2 1
1

1.6 m
bo

,b b 0 0
b 0.4 m

E d
E / E d F F

E

λ μ
λ λ

λ λ λ
λ μ

τ λ
τ λ

∞ =

→ →
=

= = = −
∫

∫  

With λ2T = 1600 μm⋅K and λ1T = 400 μm⋅K, respectively, Table 12.1 yields ( )20F 0.0197λ→ =  and 

( )10F 0.0.λ→ =   Hence, 

 0.0197τ =           < 
With so little transmission of radiation from the ceramic, the glass plate may be assumed to be opaque 
to a good approximation.  Since more than 98% of the incident radiation is at wavelengths exceeding 
1.6 μm, for which αλ = 0.9, αg ≈ 0.9.  Also, since Tg < Tc, nearly 100% of emission from the glass is 
at λ > 1.6 μm, for which ελ = αλ = 0.9, εg = 0.9 and the glass may be approximated as a gray surface. 
 
(b) The glass temperature may be obtained from an energy balance of the form conv,i rad,iq q′′ ′′+ =  

conv,o rad,oq q .′′ ′′+   Using Eqs. 13.24 and 13.27 to evaluate rad,iq′′  and rad,oq ,′′  respectively, it follows 
that 

 ( ) ( ) ( ) ( )
4 4
c g 4 4

i c g o g g g sur

c g

T T
h T T h T T T T

1 1
1

σ
ε σ

ε ε

∞

−
− + = − + −

+ −
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where, assuming 4 7

L i o10 Ra 10 , h and h≤ ≤  are given by Eqs. 9.52 and 9.26, respectively, 
 

 ( ) 0.31/ 4 0.012i
i L i

k
h 0.42 Ra Pr H / L

L
−=  

 

 

( )

2
1/ 6

o H
o 8 / 279 /16

o

k 0.387Ra
h 0.825

H
1 0.492 / Pr

= +

+

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪⎡ ⎤

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

 
with RaL = gβi (Tc – Tg)L3/νiαi and RaH = gβo (Tg - T∞) H3/νoαo.  Entering the energy balance into 
the IHT workspace and using the Correlations, Properties and Radiation Toolpads to evaluate the 
convection and radiation terms, the following result is obtained. 
 
 gT 825 K=           < 
 
The corresponding value of qh is 
 
 hq 108 kW=           < 
 
where qconv,i = 3216 W, qrad,i = 104.7 kW, qconvo,o = 15,190 W and qrad,o = 92.8 kW.  The convection 

coefficients are 2 2
i oh 4.6 W / m K and h 7.2 W / m K.= ⋅ = ⋅  

 
(c) For the prescribed range of oh ,  IHT was used to generate the following results. 
 

 
 
With increasing oh ,  the glass is cooled more effectively and Tg must decrease.  With decreasing Tg, 

qconv,i, qrad,i and hence qh must increase.  Note that radiation makes the dominant contribution to heat 
transfer across the airspace.  Although qrad,o decreases with decreasing Tg, the increase in qconv,o 
exceeds the reduction in qrad,o. 



PROBLEM 13.128 
 
KNOWN:  Spectral distribution of the absorption coefficient of pure solid silicon. 
 
FIND:  (a) The total absorption coefficient for pure solid silicon subject to irradiation from a source at 
the melting point temperature of silicon. (b) Estimates of the total transmissivity, total absorptivity and 
total emissivity of a L = 150 μm thick silicon sheet. 
 
ASSUMPTIONS:  (1) Irradiation from large surroundings, (2) Kirchoff’s law assumed to be valid. 
 
PROPERTIES:  Table A-1, Silicon: Tf = 1685 K. 
 
ANALYSIS:   Treating the irradiation from the large surroundings as black, we have 
  

0 0

,0

,1 (0 0.4 m) ,2 (0.4 8 m) ,3 (8 25 m) ,4 (25 m )

( ) ( ) ( ,1685 K)

( ,1685 K)

  

b

b

G d E d

G E d

F F F F

λ λ λ λ

λ

λ μ λ μ λ μ λ μ

κ λ λ κ λ λ λ
κ

λ λ

κ κ κ κ

∞ ∞
,

∞

→ → → →∞

= ≈

= + + +

∫ ∫
∫

 

 
From Table 12.2, F(0 → 0.4μm⋅1685K) ≈ 0, F(0.4μm⋅1685K→8 μm⋅1685K) = 0.955, F(8μm⋅1685K→15μm⋅1685K) = 0.998 – 
0.955 = 0.043, F(15μm⋅1685K→∞) = 1 - 0.998 = 0.002. Therefore, 
 

 ( ) ( ) ( ) ( )8 1 1 2 1 1 110 m 0 0 m 0.955 10 m 0.043 0 m 0.002 4.3 mκ − − − − −= × + × + × + × =  < 

 
(b) The spectral transmissivity is Le λκ

λτ −= which, for L = 150 μm, gives τλ,1  =  0, τλ,2  = 1, τλ,3  =  
0.985, τλ,4  =  1. Hence, 
 

 τ  =  (0 × 0) + (1 × 0.955) + (0.985 × 0.043) + (1× 0.002) = 0.999    < 
 

The total absorptivity is α = 1 – τ = 0.001, and the total emissivity is ε = α = 0.001.  < 
 
 
COMMENTS:  (1) Solid silicon is almost perfectly transparent to irradiation emanating from high 
temperature sources. It is a serious error to treat the solid material as opaque. (2) Liquid silicon can, 
however, be considered to be opaque, except for extremely small thicknesses. (3) Dopants are often 
added to silicon for semiconductor applications in order to tailor the electrical properties of the 
material. The presence of dopants can significantly increase the spectral absorption coefficients over 
the entire spectral range. 



PROBLEM 13.129  
KNOWN:  Conditions associated with a spherical furnace cavity.  
FIND:  Cooling rate needed to maintain furnace wall at a prescribed temperature.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state, (2) Blackbody behavior for furnace wall, (3) N2 is non-radiating. 
 
ANALYSIS:  From an energy balance on a unit surface area of the furnace wall, the cooling rate per 
unit area must equal the absorbed irradiation from the gas (Eg) minus the portion of the wall’s 
emissive power absorbed by the gas 
 
 ( )c g g b sq E E Tα′′ = −  

 4 4
c g g g sq T T .ε σ α σ′′ = −  

Hence, for the entire furnace wall, 

 ( )4 4
c s g g g sq A T T .σ ε α= −  

 
The gas emissivity, εg, follows from the mean beam length of Table 13.4 
 eL 0.65D 0.65 0.5 m 0.325 m 1.066 ft.= = × = =  
 c ep L 0.25 atm 1.066 ft 0.267 ft atm= × = −  

and from Fig. 13.18, find εg = εc = 0.09.  From Eq. 13.42, 

 ( )
0.45

g
g c c c s c e s g

s

T
C T , p L T / T .

T
α α ε= = ×

⎛ ⎞
⎡ ⎤⎜ ⎟ ⎣ ⎦

⎝ ⎠
 

 
With Cc = 1 from Fig. 13.19, 

 ( ) ( )0.45
g c1 1400 / 50 500K, 0.095 ft atmα ε= × −  

 
where, from Fig. 13.18, 
 
 ( )c 500K, 0.095 ft atm 0.067.ε − =  
Hence 

 ( )0.45
g 1 1400 / 500 0.067 0.106α = × =  

 
and the heat rate is 

 ( ) ( ) ( )2 4 48 2 4
cq 0.5 m 5.67 10 W / m K 0.09 1400 K 0.106 500 Kπ −= × ⋅ −⎡ ⎤

⎢ ⎥⎣ ⎦
 

 
 cq 15.1 kW.=           < 



PROBLEM 13.130  
KNOWN:  Diameter and gas pressure, temperature and composition associated with a gas turbine 
combustion chamber.  
FIND:  Net radiative heat flux between the gas and the chamber surface.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Blackbody behavior for chamber surface, (3) 
Remaining species are non-radiating, (4) Chamber may be approximated as an infinitely long tube.  
ANALYSIS:  From Eq. 13.40 the net rate of radiation transfer to the surface is 

 ( ) ( )4 4 4 4
net s g g g s net g g g sq A T T or q D T Tσ ε α π σ ε α′= − = −  

with As = πDL.  From Table 13.4, Le = 0.95D = 0.95 × 0.4 m = 0.380 m = 1.25 ft.  Hence, pwLe = 
pcLe = 0.152 atm × 1.25 ft = 0.187 atm-ft. 
 ( )g wFig.13.16 T 1273 K , 0.069.ε= → ≈  

 ( )g cFig.13.18 T 1273 K , 0.085.ε= → ≈  

( ) ( )( )w c w c w c gFig.13.20 p / p p 0.5, L p p 0.375 ft atm, T 930 C , 0.01.ε+ = + = − ≥ ° → Δ ≥  

From Eq. 13.38, 
 g w c 0.069 0.085 0.01 0.144.ε ε ε ε= + − Δ = + − ≈  

From Eq. 13.41 for the water vapor, 

 ( ) ( )0.45
w w g s w s w c s gC T / T T , p L T / Tα ε= × ⎡ ⎤⎣ ⎦  

 
where from Fig. 13.16 (773 K, 0.114 ft-atm), → εw ≈ 0.083, 
 

 ( )0.45
w 1 1273 / 773 0.083 0.104.α = × =  

 
From Eq. 13.42, using Fig. 13.18 (773 K, 0.114 ft-atm), → εc ≈ 0.08, 
 

 ( )0.45
c 1 1273 / 773 0.08 0.100.α = × =  

 
From Fig. 13.20, the correction factor for water vapor at carbon dioxide mixture, 
 
 ( ) ( )( )w c w e w c gp / p p 0.1, L p p 0.375, T 540 C , 0.004α+ = + = ≈ ° → Δ ≈  
 
and using Eq. 13.43 
 
 g w c 0.104 0.100 0.004 0.200.α α α α= + − Δ = + − ≈  
 
Hence, the heat rate is 
 

 ( ) ( ) ( )4 48 2 4
netq 0.4 m 5.67 10 W / m K 0.144 1273 0.200 773 21.9 kW / m.π −′ = × ⋅ − =⎡ ⎤

⎢ ⎥⎣ ⎦
 < 



PROBLEM 13.131  
KNOWN:  Pressure, temperature and composition of flue gas in a long duct of prescribed diameter.  
FIND:  Net radiative flux to the duct surface.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Duct surface behaves as a blackbody, (3) Other 
gases are non-radiating, (4) Flue may be approximated as an infinitely long tube.  
ANALYSIS:  With As = πDL, it follows from Eq. 13.40 that 

 ( )4 4
net g g g sq D T Tπ σ ε α′ = −  

From Table 13.4, Le = 0.95D = 0.95 × 1 m = 0.95 m = 3.12 ft.  Hence 
 w ep L 0.12 atm 3.12 m 0.312 atm ft= × = −  
 c ep L 0.05 atm 3.12 m 0.156 atm ft.= × = −  

With Tg = 1400 K, Fig. 13.16 → εw = 0.083; Fig. 13.18 → εc = 0.072.  With pw/(pc + pw) = 0.67, 
Le(pw +pc) = 0.468 atm-ft, Tg ≥ 930°C, Fig. 13.20 → Δε = 0.01.  Hence from Eq. 13.38, 
 
 g w c 0.083 0.072 0.01 0.145.ε ε ε ε= + − Δ = + − =  

From Eq. 13.41, 

 ( ) ( )0.45
w w g s w s w e s gC T / T T , p L T / Tα ε= ⎡ ⎤× ⎣ ⎦  

 ( ) ( )0.45
w w1 1400 / 400 wFig. 13.16 400 K, 0.0891 atm ft 0.1α ε ε= × → − =  

 w 0.176.α =  
From Eq. 13.42, 

 ( ) ( )0.45
c c g s c s c e s gC T / T T , p L T / Tα ε= ×  

 ( ) ( )0.45
c c c1 1400 / 400 Fig. 13.18 400 K, 0.0891 atm ft 0.053α ε ε= → − =×  

 c 0.093.α =  

With pw/(pc + pw) = 0.67, Le(pw + pc) = 0.468 atm-ft, Tg ≈ 125°C, Fig. 13.20 gives 
 0.003.αΔ ≈  
 
Hence from Eq. 13.43, 
 g w c 0.176 0.093 0.003 0.266.α α α α= + − Δ = + − =  
 
The heat rate per unit length is 

 ( ) ( ) ( )4 48 2 4
netq 1 m 5.67 10 W / m K 0.145 1400 K 0.266 400 Kπ −′ = × ⋅ −⎡ ⎤

⎢ ⎥⎣ ⎦
 

 netq 98 kW / m.′ =          < 



PROBLEM 13.132  
KNOWN:  Gas mixture of prescribed temperature, pressure and composition between large parallel 
plates of prescribed separation.  
FIND:  Net radiation flux to the plates.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Furnace wall behaves as a blackbody, (3) O2 and 
N2 are non-radiating, (4) Negligible end effects. 
 
ANALYSIS:  The net radiative flux to a plate is 

 ( )4 4
s,1 s s g g g sq G E T 1 Tε σ τ σ′′ = − = − −  

where 4
s g g g sG T E ,ε σ τ= +  4

s sE Tσ=  and ( )g g s1 T .τ α= −   From Table 13.4, Le = 1.8L = 1.8 × 

0.75 m = 1.35 m = 4.43 ft.  Hence pwLe = pcLe = 1.33 atm-ft.  From Figs. 3.16 and 3.18 find εw ≈ 0.22 
and εc ≈ 0.16 for p = 1 atm.  With (pw + p)/2 = 1.15 atm, Fig. 13.17 yields Cw ≈ 1.40 and from Fig. 
13.19, Cc ≈ 1.08.  Hence, the gas emissivities are 
 
 ( ) ( )w w w c c cC 1 atm 1.40 0.22 0.31 C 1 atm 1.08 0.16 0.17.ε ε ε ε= ≈ × = = ≈ × =  
 
From Fig. 13.20 with pw/(pc + pw) = 0.5, Le(pc + pw) = 2.66 atm-ft and Tg > 930°C, Δε ≈ 0.047.  
Hence, from Eq. 13.38, 
 g w c 0.31 0.17 0.047 0.43.ε ε ε ε= + − Δ ≈ + − ≈  
 
To evaluate αg at Ts, use Eq. 13.43 with 

 ( ) ( ) ( ) ( )0.45 0.45
w w g s w s w 2 s g w wC T / T T , p L T / T C 1300 / 500 500, 0.51α ε ε= =  

 ( )0.45
w 1.40 1300 / 500 0.22 0.47α ≈ =  

 ( ) ( ) ( )0.45 0.45
c c cC 1300 / 500 500, 0.51 1.08 1300 / 500 0.11 0.18.α ε= ≈ =  

 
From Fig. 13.20, with Tg ≈ 125°C and Le(pw + pc) = 2.66 atm-ft, Δα = Δε ≈ 0.024.  Hence 
 g w c g g0.47 0.18 0.024 0.63 and 1 0.37.α α α α τ α= + − Δ ≈ + − ≈ = − ≈  
 
Hence, the heat flux from Eq. (1) is 

 ( ) ( )4 48 2 4 8 2 4
s,1q 0.43 5.67 10 W / m K 1300 K 0.63 5.67 10 W / m K 500 K− −′′ = × × ⋅ − × × ⋅  

 2
s,1q 67.4 kW / m .′′ ≈  

The net radiative flux to both plates is then 2
s,2q 134.8 kW / m .′′ ≈     < 



PROBLEM 13.133  
KNOWN:  Flow rate, temperature, pressure and composition of exhaust gas in pipe of prescribed 
diameter.  Velocity and temperature of external coolant.  
FIND:  Pipe wall temperature and heat flux.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) L/D >> 1 (infinitely long pipe), (2) Negligible axial gradient for gas 
temperature, (3) Gas is in fully developed flow, (4) Gas thermophysical properties are those of air, (5) 
Negligible pipe wall thermal resistance, (6) Negligible pipe wall emission. 
 
PROPERTIES:  Table A-4:  Air (Tm = 2000 K, 1 atm):  ρ = 0.174 kg/m3, μ = 689 × 10-7 kg/m⋅s, k = 
0.137 W/m⋅K, Pr = 0.672; Table A-6:  Water (T∞ = 300 K):  ρ = 997 kg/m3, μ = 855 × 10-6 kg/s⋅m, k 
= 0.613 W/m⋅K, Pr = 5.83.  
ANALYSIS:  Performing an energy balance for a control surface about the pipe wall, 
 r c,i c,oq q q′′ ′′ ′′+ =  

 ( ) ( )4
g g i m s o sT h T T h T Tε σ ∞+ − = −  

 
The gas emissivity is 
 g w cε ε ε ε= + Δ−  

where 
 eL 0.95D 0.238 m 0.799 ft= = =  
 c e w ep L p L 0.1 atm 0.238 m 0.0238 atm m 0.0779 atm ft= = × = − = −  
 
and from Fig. 13.16 → εw ≈ 0.017; Fig. 13.18 → εc ≈ 0.031; Fig. 13.20 → Δε ≈ 0.001.  Hence εg = 
0.047.  Estimating the internal flow convection coefficient, find 
 

 
( )

D 7
4 m 4 0.25 kg / s

Re 18, 480
D 0.25 m 689 10 kg / m sπ μ π −

×
= = =

× ⋅

&
 

 
and for turbulent flow, we may use the Dittus-Boelter correlation of Chapter 8, 
 

 ( ) ( )4 / 5 0.34 / 5 0.3
D DNu 0.023Re Pr 0.023 18, 480 0.672 52.9= = =  

 

 2
i D

k 0.137 W / m K
h Nu 52.9 29.0 W / m K.

D 0.25 m
⋅

= = = ⋅  

          Continued … 
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Estimating the external convection coefficient, find 
 

 
3

D 6
VD 997 kg / m 0.3 m / s 0.25 m

Re 87, 456.
855 10 kg / s m

ρ
μ −

× ×
= = =

× ⋅
 

 
Hence, using the Zukauskas correlation of Chapter 7, 
 

 ( )D
1/ 40.6 0.37

D sNu 0.26 Re Pr Pr/ Pr .=  
 
Assuming Pr/Prs ≈ 1, 
 

 ( ) ( )D
0.6 0.37Nu 0.26 87, 456 5.83 461= =  

 
 ( ) ( )D

2
oh Nu k / D 461 0.613 W / m K / 0.25 m 1129 W / m K.= = ⋅ = ⋅  

 
Substituting numerical values in the energy balance, find 
 

 ( ) ( )48 2 4 2
s0.047 5.67 10 W / m K 2000 K 29 W / m K 2000 T K−× × ⋅ + ⋅ −  

 
   ( )2

s1129 W / m K T 300 K= ⋅ −  
 
 sT 380 K.=           < 
 
The heat flux due to convection is 
 
 ( ) ( )2 2

c,i i m sq h T T 29 W / m K 2000 379.4 K 46,997 W / m′′ = − = ⋅ − =  
 
and the total heat flux is 
 
 2

s r c,iq q q 42,638 46,997 89, 640 W / m .′′ ′′ ′′= + = + =      < 
 
COMMENTS:  Contributions of gas radiation and convection to the wall heat flux are approximately 
the same.  Small value of Ts justifies neglecting emission from the pipe wall to the gas.  Prs = 1.62 for 
Ts = 380 → (Pr/Prs)1/4 = 1.38.  Hence the value of oh  should be corrected.  The value would ↑, and 

Ts would ↓. 



PROBLEM 13.134 
 

 
KNOWN:  Flow rate, temperature, pressure and composition of combustion gas that is subsequently 
mixed with saturated steam of known flow rate.  
 
FIND:  Gas emission to a pipe wall with and without steam injection. 
 
ASSUMPTIONS:  (1) Gas thermophysical properties and molecular weight same as air, (2) ideal gas 
mixture. 
 
ANALYSIS:   The mass flow rate without steam injection is 1 0.25 kg/sm =& . The mass flow rate of 
water vapor in the original mixture is 1 1wm m&  where mw1 is the mass fraction of water vapor, 
 

    
1 1 air/

        = 0.1 atm 18 kg/kmol/(1 atm 29 kg/kmol)
        = 0.0621

w w wm p p=
× ×

M M
 

Thus the mass flow rate of the injected steam is 
 
   S 1 w10.5 0.5 0.25 kg/s 0.0621 0.00776 kg/sm m m= = × × =& &  
 
and the total mass flow rate after injection is 2 1 S 0.2578 kg/sm m m= + =& & & . Treating the gases as ideal 
with properties of air, an energy balance on the mixing of the combustion products and injected steam 
yields 
 

1 1 1
1 1 1 2

2

0.25 kg/s 2000 K 0.0076 kg/s 373 K ;  = 1951 K
0.2578 kg/s

g w w
g w w g g

m T m T
m T m T m T T

m
+ × + ×

+ = = =
& &

& & &
&

 

 
The gas emissivity is  g w cε ε ε ε= + − Δ  where Le = 0.95 D = 0.238 m = 0.799 ft. The partial pressures 
of the gases are obtained by accounting for the additional water vapor in the pipe relative to Problem 
13.133. 
 

  1 1
2 2

1

0.5 0.15 0.143 atm
1 0.5 1.05
w w

w w
w

x xp x p p p
x

+
= = = =

+
 

 
where xw2 is the mole fraction of water in the final mixture. Similarly, 
 

  1
2

1

0.1 0.0952 atm
1 0.5 1.05

c
c

w

xp p p
x

= = =
+

 

 
The products of the partial pressures and mean beam lengths are therefore 
 
     0.095 atm 0.799 ft 0.076 atm-ft   ;   0.143 atm 0.799 ft 0.114 atm-ftc e w ep L p L= × = = × =  
 
From Fig. 13.15, εw ≈ 0.025. From Fig. 13.17, εc ≈ 0.034. From Fig. 13.19, Δε ≈ 0.002. Hence, εg = 
0.025 + 0.034 – 0.002 = 0.057 and the emission from the gas to the pipe wall is 
 
 4 8 2 4 4 20.057 5.67 10 W / m K (1951 K) 46,800 W/mg g gE Tε σ −= = × × ⋅ × =   < 
 

Continued... 
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Without injection, the partial pressures are pw = pc = 0.1 atm and the partial pressure – mean beam 
length products are 0.10 atm 0.799 ft 0.080 atm-ft  c e w ep L p L= = × = yielding from Fig. 13.15, εw ≈ 
0.017. From Fig. 13.17, εc ≈ 0.031. From Fig. 13.19, Δε ≈ 0.001. Hence, εg = 0.047 and the emission 
from the gas to the pipe wall is 
 
 4 8 2 4 4 20.047 5.67 10 W / m K (2000 K) 42,600 W/mg g gE Tε σ −= = × × ⋅ × =   < 
 
COMMENTS:  (1) The gas emissivity is increased significantly with steam injection, but the 
temperature of the hot gas is reduced due to mixing with the relatively cool steam. The net effect is a 
modest increase in radiation heat flux to the pipe surface. Injection of a greater amount of steam 
results in even higher gas emissivities, but the effect is offset by even lower gas temperatures. (2) 
Injection of liquid water would further reduce the gas temperature as the latent heat of vaporization of 
the water is accounted for. (3) The results are highly dependent upon the accuracy with which one can 
read the figures in the text. (4) Water vapor properties are taken to be the same as those of air. (5) A 
more detailed analysis would be appropriate if the scheme were to be considered seriously. 



PROBLEM 13.135  
KNOWN:  Flowrate, composition and temperature of flue gas passing through inner tube of an 
annular waste heat boiler.  Boiler dimensions.  Steam pressure.  
FIND:  Rate at which saturated liquid can be converted to saturated vapor, sm .&  
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Inner wall is thin and steam side convection coefficient is very large; hence Ts 
= Tsat(2.455 bar), (2) For calculation of gas radiation, inner tube is assumed infinitely long and gas is 
approximated as isothermal at Tg. 
 
PROPERTIES:  Flue gas (given):  μ = 530 × 10-7 kg/s⋅m, k = 0.091 W/m⋅K, Pr = 0.70; Table A-6, 
Saturated water (2.455 bar):  Ts = 400 K, hfg = 2183 kJ/kg. 
 
ANALYSIS:  The steam generation rate is 
 ( )s fg conv rad fgm q / h q q / h= = +&  

where 

 ( )4 4
rad s g g g sq A T Tσ ε α= −  

with 
 g w c g w c .ε ε ε ε α α α α= + − Δ = + − Δ  

From Table 13.4, find Le = 0.95D = 0.95 m = 3.117 ft.  Hence 
 w ep L 0.2 atm 3.117 ft 0.623 ft atm= × = −  
 c ep L 0.1 atm 3.117 ft 0.312 ft atm.= × = −  

From Fig. 13.16, find εw ≈ 0.13 and Fig. 13.18 find εc ≈ 0.095.  With pw/(pc + pw) = 0.67 and Le(pw + 
pc) = 0.935 ft-atm, from Fig. 13.20 find Δε ≈ 0.036 ≈ Δα.  Hence εg ≈ 0.13 + 0.095 – 0.036 = 0.189.  
Also, with pwLe(Ts/Tg) = 0.2 atm × 0.95 m(400/1400) = 0.178 ft-atm and Ts = 400 K, Fig. 13.16 
yields εw ≈ 0.14.  With pcLe(Ts/Tg) = 0.1 atm × 0.95 m(400/1400) = 0.089 ft-atm and Ts = 400 K, Fig. 
13.18 yields εc ≈ 0.067.  Hence 

 ( ) ( )0.45
w g s w s w e s gT / T T , p L T / Tα ε=  

 ( )0.45
w 1400 / 400 0.14 0.246α = =  

and 

 ( ) ( )0.65
c g s c s c e s gT / T T , p L T / Tα ε=  

          Continued … 



PROBLEM 13.135 (Cont.) 
 

 ( )0.65
c 1400 / 400 0.067 0.151α = =  

 
 g 0.246 0.151 0.036 0.361.α = + − =  
 
Hence 
 

 ( ) ( ) ( )4 48 2 4
radq 1 m 7 m 5.67 10 W / m K 0.189 1400 K 0.361 400 Kπ −= × × ⋅ −⎡ ⎤

⎢ ⎥⎣ ⎦
 

 
 ( )radq 905.3 11.5 kW 893.8 kW.= − =  
 
For convection, 
 
 ( )conv g sq h DL T Tπ= −  
 
with 
 

 D 7
4m 4 2 kg / s

Re 48,047
D 1 m 530 10 kg / s mπ μ π −

×
= = =

× × × ⋅

&
 

 
and assuming fully developed turbulent flow throughout the tube, the Dittus-Boelter correlation of 
Chapter 8 gives 
 

 ( ) ( )D
4 / 5 0.34 / 5 0.3

DNu 0.023Re Pr 0.023 48, 047 0.70 115= = =  
 
 ( ) ( )D

2h k / D Nu 0.091 W / m K /1 m 115 10.5 W / m K.= = ⋅ = ⋅  
 
Hence 
 
 ( ) ( )2

convq 10.5 W / m K 1 m 7 m 1400 400 K 230.1 kWπ= ⋅ − =  
 
and the vapor production rate is 
 

 
( )

s
fg

893.8 230.1 kWq 1123.9 kW
m

h 2183 kJ / kg 2183 kJ / kg
+

= = =&  

 
 sm 0.515 kg / s.=&          < 
 
COMMENTS:  (1) Heat transfer is dominated by radiation, which is typical of heat recovery devices 
having a large gas volume. (2) A more detailed analysis would account for radiation exchange 
involving the ends (upstream and downstream) of the inner tube. (3) Using a representative specific 
heat of cp = 1.2 kJ/kg⋅K, the temperature drop of the gas passing through the tube would be ΔTg = 
1123.9 kW/(2 kg/s × 1.2 kJ/kg⋅K) = 468 K. 



PROBLEM 13.136  
KNOWN:  Wet newsprint moving through a drying oven.  
FIND:  Required evaporation rate, air velocity and oven temperature.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible freestream turbulence, (3) Heat and 
mass transfer analogy applicable, (4) Oven and newsprint surfaces are diffuse gray, (5) Oven end 
effects negligible.  
PROPERTIES:  Table A-6, Water vapor (300 K, 1 atm):  ρsat = 1/vg = 0.0256 kg/m3, hfg = 2438 
kJ/kg; Table A-4, Air (300 K, 1 atm):  ν = 15.89 × 10-6 m2/s; Table A-8, Water vapor-air (300 K, 1 
atm):  DAB = 0.26 × 10-4 m2/s, Sc = ν/DAB = 0.611. 
 
ANALYSIS:  The evaporation rate required to completely dry the newsprint having a water content of 

2
Am 0.02 kg / m′′ =  as it enters the oven (x = L) follows from a species balance on the newsprint. 

 
 A,in A,out stM M M− =& & &  
 
 L 0 A,sM M M 0.− − =& & &  
 
The rate at which moisture enters in the newsprint is 
 L AM m VW′′=&  
hence, 

 
 

 2 3
A,s AM m VW 0.02 kg / m 0.2 m / s 1 m 4 10 kg / s.−′′= = × × = ×&     < 

The required velocity of the airstream through the oven, u∞, can be determined from a convection 
analysis.  From the rate equation, 
 
 ( ) ( )A,s m A,s A, m A,satM h WL h WL 1ρ ρ ρ φ∞ ∞= − = −&  

 ( )m A,s A,sath M / WL 1ρ φ= − ∞&  

 ( )3 3 3
mh 4 10 kg / s /1 m 20 m 0.0256 kg / m 1 0.2 9.77 10 m / s.− −= × × × − = ×  

 
Now determine what flow velocity is required to produce such a coefficient.  Assume flow over a flat 
plate with 

 L
3 4 2

m ABSh h L / D 9.77 10 m / s 20 m / 0.26 10 m / s 7515− −= = × × × =  
          Continued … 
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and, from Section 7.2.1 for laminar flow 

 ( )L

22 1/ 31/ 3 8
LRe Sh / 0.664Sc 7515 / 0.664 0.611 1.78 10 .= = = ×⎡ ⎤⎡ ⎤

⎢ ⎥⎣ ⎦ ⎣ ⎦
 

 
However, since ReL > ReLc = 5 × 105, the flow must be turbulent.  Using the correlation for mixed 
laminar and turbulent flow conditions from Section 7.2.3, find 
 

 L
4 / 5 1/ 3
LRe Sh / Sc 871 / 0.037= +⎡ ⎤

⎣ ⎦  
 

 ( )1/ 34 / 5
LRe 7515 / 0.611 871 / 0.037= +⎡ ⎤

⎢ ⎥⎣ ⎦
 

 
 6

LRe 5.95 10= ×  
 
noting ReL > ReLc.  Recognize that u∗∞  is the velocity relative to the newsprint, 
 
 6 6 2

Lu Re / L 5.95 10 15.89 10 m / s / 20 m 4.73 m / s.ν∗ −
∞ = = × × × =  

 
The air velocity relative to the oven will be, 
 
 ( )u u V 4.73 0.2 m / s 4.53 m / s.∗

∞ ∞= − = − =       < 
 
The temperature required of the oven surface follows 
from an energy balance on the newsprint.  Find 
 
 in outE E 0− =& &  
 
 rad evapq q 0− =  

 
 

where 
 
 3 3

evap A,s fgq M h 4.0 10 kg / s 2438 10 J / kg 9752 W−= = × × × =&  
 
and the radiation exchange is that for a two surface enclosure, Eq. 13.23, 

 
( )

( ) ( )

4 4
1 2

rad
1 1 1 1 12 2 2 2

T T
q .

1 / A 1/ A F 1 / A

σ

ε ε ε ε

−
=

− + + −
 

 
Evaluate, 
 1 2 21 1 12 2 21A / 2 WL, A WL, F 1, and A F A F WLπ= = = = =  

hence, with ε1 = 0.8, 

 ( ) ( )[ ]4 4
rad 1 2q WL T T / 1/ 2 1σ π= − +  

 ( )[ ]4 4
1 2 radT T q 1/ 2 1 / WLπ σ= + +  

 ( ) ( )[ ]44 8 2 4
1T 300 K 9752 W 1/ 2 1 / 5.67 10 W / m K 1 m 20 mπ −= + + × ⋅ × ×  

 1T 367 K.=           < 
 
COMMENTS:  Note that there is no convection heat transfer since T∞ = Ts = 300 K. 



PROBLEM 13.137  
KNOWN:  Configuration of grain dryer.  Emissivities of grain bed and heater surface.  Temperature 
of grain.  
FIND:  (a)Temperature of heater required for specified drying rate, (b) Convection mass transfer 
coefficient required to sustain evaporation, (c) Validity of assuming negligible convection heat 
transfer.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Diffuse/gray surfaces, (2) Oven wall is a reradiating surface, (3) Negligible 
convection heat transfer, (4) Applicability of heat/mass transfer analogy, (5) Air is dry. 
 
PROPERTIES:  Table A-6, saturated water (T = 330 K):  vg = 8.82 m3/kg, hfg = 2.366 × 106 J/kg.  
Table A-4, air (assume T ≈ 300 K):  ρ = 1.614 kg/m3, cp = 1007 J/kg⋅K, α = 22.5 × 10-6 m2/s.  Table 
A-8, H2O(v) – air (T = 298 K):  DAB = 0.26 × 10-4 m2/s. 
 
ANALYSIS:  (a) Neglecting convection, the energy required for evaporation must be supplied by net 
radiation transfer from the heater plate to the grain bed.  Hence, 
 

 ( )( )6
rad evap fgq m h 2.5 kg / h m 2.366 10 J / kg / 3600s / h 1643 W / m′ ′= = ⋅ × =&  

 
where radq′  is given by Eq. 13.30.  With p gA A A ,′ ′ ′= ≡  
 

 
( )

( ) ( )

bp bg g
rad

p g
1p pg pR gR

A E E 1
q

1 1

F 1/ F 1/ F

ε
ε ε

ε −

′ − −
′ = +

−
+

+ +⎡ ⎤⎣ ⎦

 

 
where A′  = R = 1 m, Fpg = 0 and FpR = FgR = 1.  Hence, 
 

 
( ) ( )

4 4
p 8 4 4

rad p
T 320

q 2.40 10 T 320 1643 W / m
0.25 2 0.111

σ
−

−
′ = = × − =

+ +
 

 
 8 4

p2.40 10 T 2518 1643−× − =  
 
 pT 530 K=           < 
 
(b) The evaporation rate is given by Eq. 6.12, and with s A evapA 1 m, n m ,′ ′ ′= = &  and ρA,∞ = 0, 

 
          Continued … 



PROBLEM 13.137 (Cont.) 
 

 
3A g 3A

m
s A,s s

n vn 2.5 kg / h m 1 m
h 8.82 6.13 10 m / s

A A 1m 3600 s kgρ
−′′ ⋅

= = = × × = ×
′ ′

  < 

 
(c) From the heat and mass transfer analogy, Eq. 6.60, 
 
 2 / 3

m ph h c Leρ=  
 
where Le = α/DAB = 22.5/26.0 = 0.865.  Hence 
 

 ( ) ( )2 / 33 3 2h 6.13 10 m / s 1.161kg / m 1007 J / kg K 0.865 6.5 W / m K.−= × ⋅ = ⋅  
 
The corresponding convection heat transfer rate is 
 
 ( ) ( )( )2

conv gq hA T T 6.5 W / m K 1 m 330 300 K 195 W / m∞′ ′= − = ⋅ − =  
 
Since conv radq q ,′ ′<<  the assumption of negligible convection heat transfer is reasonable. 



PROBLEM 13.138  
KNOWN:  Diameters of coaxial cylindrical drum and heater.  Heater emissivity.  Temperature and 
emissivity of pellets covering bottom half of drum.  Convection mass transfer coefficient associated 
with flow of dry air over the pellets.  
FIND:  (a) Evaporation rate per unit length of drum, (b) Surface temperatures of heater and top half of 
drum.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state, (2) Negligible heat transfer from ends of drum, (3) Diffuse-gray 
surface behavior, (4) Negligible heat loss from the drum to the surroundings, (5) Negligible 
convection heat transfer from interior surfaces of the drum, (6) Pellet surface area corresponds to that 
of bottom half of drum. 
 
PROPERTIES  Table A-6, sat. water (T = 325 K):  1

A,sat gρ ν −=  = 0.0904 kg/m3, hfg = 2378 kJ/kg. 
 
ANALYSIS:  (a) The evaporation rate is 
 
 ( ) ( )A m d A,sat p A,n h D / 2 Tπ ρ ρ ∞⎡ ⎤′ = −⎣ ⎦  
 
 ( ) 3

An 0.024 m / s 1m / 2 0.0904 kg / m 0.00341 kg / s mπ′ = × × = ⋅    < 
 
(b) From an energy balance on the surface of the pellets, 
 
 6

p evap A fgq q n h 0.00341 kg / s m 2.378 10 J / kg 8109 W / m′ ′ ′= = = ⋅ × × =   < 
 
where pq′  may be determined from analysis of radiation transfer in a three surface enclosure.  Since 

the top half of the enclosure may be treated as reradiating, net radiation transfer to the pellets may be 
obtained from Eq. 13.30, which takes the form 
 

 

( ) ( )

bh bp
p

ph
1h h p ph hp h hd p pd

E E
q 11 1

A AA F 1/ A F 1/ A F

εε
ε ε−

−
′ =

−−
+ +

′ ′⎡ ⎤′ ′ ′+ +⎣ ⎦

 

 
where hp hd h hF F 0.5, A Dπ′= = =  and p dA D / 2.π′ =  
 
The view factor Fpd may be obtained from the summation rule, 
 
 pd ph ppF 1 F F= − −  

 
          Continued … 



PROBLEM 13.138 (Cont.) 
 

 
where ( ) ( )ph h hp p h dF A F / A D 0.5 / D / 2 0.10π π′ ′= = × =  and 
 

 ( ) ( ) ( )
1/ 22 1

ppF 1 2 / 1 0.1 0.1 sin 0.1 0.360π −⎧ ⎫⎪ ⎪⎡ ⎤= − − + =⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭
 

 
Hence, Fpd = 1 – 0.10 – 0.360 = 0.540, and the expression for the heat rate yields 
 

( )

( ) ( )

4
bh

11 1

E 325 K
8109 W / m 0.25 1 0.053

0.1m 0.5m
0.1m 0.5 0.1m 0.5 0.5m 0.54

σ

π π
π

−− −

−
=

+ +
× ×⎧ ⎫⎪ ⎪⎡ ⎤× + × + ×⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭

 

 
 4 2

bh hE T 35,359 W / mσ= =  
 
 hT 889 K=           < 
 
Applying Eq. 13.19 to surfaces h and p, 
 
 ( ) 2 2 2

h bh h h h hJ E q 1 / A 35,359 W / m 6, 453 W / m 28,906 W / mε ε′ ′= − − = − =  
 
 ( ) 2 2 2

p bp p p p pJ E q 1 / A 633 W / m 272 W / m 905 W / mε ε′ ′= + − = + =  
 
Hence, from 
 

 
( ) ( )

d ph d
1 1

h hd p pd

J JJ J 0
A F A F

− −
−−

− =
′ ′

 

 

 
( ) ( )

2 2
d d

1 1
28,906 W / m J J 905 W / m 0

0.1m 0.5 0.5m 0.54π π− −
− −

− =
× × × ×

 

 
 4 2

d dJ T 24,530 W / mσ= =  
 
 dT 811 K=           < 
 
COMMENTS:  The required value of Th could be reduced by increasing Dh, although care must be 
taken to prevent contact of the plastic with the heater. 
 



PROBLEM 14.1  
KNOWN:  Mixture of O2 and N2 with partial pressures in the ratio 0.21 to 0.79. 
 
FIND:  Mass fraction of each species in the mixture.  
SCHEMATIC:   
 

 
 
 
 

 2O

N2

p 0.21
p 0.79

=  

 
 2O 32 kg / kmol=M  

 
 2N 28 kg / kmol=M  

 

ASSUMPTIONS:  (1) Perfect gas behavior.  
ANALYSIS:  From the definition of the mass fraction, 
 

 i i
i

i
m ρ ρ

ρ ρ
= =

Σ
 

 
Hence, with 
 

 
( )

i i i i
i

i i

p p p .
R T / T T

= = =
ℜ ℜ

M
M

ρ  

 
Hence 
 

 i i
i

i i

p / Tm
p / T

ℜ
=
Σ ℜ
M
M

 

 
or, canceling terms and dividing numerator and denominator by the total pressure p, 
 

 i i
i

i i

xm .
x

=
Σ
M
M

 

 
With the mole fractions as 
 

 2 2O O
0.21x p / p 0.21

0.21 0.79
= = =

+
 

 
 2 2N Nx p / p 0.79,= =  
 
find the mass fractions as 
 

 2O
32 0.21m 0.233

32 0.21 28 0.79
×

= =
× + ×

       < 
 
 2 2N Om 1 m 0.767.= − =         < 



PROBLEM 14.2  
KNOWN:  Mole fraction (or mass fraction) and molecular weight of each species in a mixture of n 
species.  Equal mole fractions (or mass fractions) of O2, N2 and CO2 in a mixture. 
 
FIND:    
SCHEMATIC:   
 

 
 
 
 

2 2 2O N COx x x 0.333= = =  

or 

2 2 2O N COm m m 0.333= = =  

 

2CO 44=M  

2 2O N32, 28= =M M  

 

ASSUMPTIONS:  (1) Perfect gas behavior.  
ANALYSIS:  (a) With 

 i i i i i i
i

i i i i i
i i i

p / R T p / Tm
p / R T p / T

ℜ
= = = =

ℜ∑ ∑ ∑
M

M
ρ ρ
ρ ρ

 

and dividing numerator and denominator by the total pressure p, 

 i i
i

i i
i

xm .
x

=
∑

M
M

         < 

Similarly, 

 
( )
( )
i ii i i

i
i i i i i

i i i

/ Tp R Tx
p R T / T

ℜ
= = =

ℜ∑ ∑ ∑
M

M
ρρ

ρ ρ
 

 
or, dividing numerator and denominator by the total density ρ 

 i i
i

i i
i

m /x .
m /

=
∑

M
M

         < 

(b) With 
 2 2 2 2 2 2O O N N CO COx x x 32 0.333 28 0.333 44 0.333 34.6+ + = × + × + × =M M M  

 2 2 2O N COm 0.31, m 0.27, m 0.42.= = =    < 
 
With 
 2 2 2 2 2 CO2O O N N CO /m / m / m 0.333/ 32 0.333/ 28 0.333/ 44+ + = + +MM M  

 2
2

Om 2.987 10 .−= ×  

find 

 2 2 2O N COx 0.35, x 0.40, x 0.25.= = =     < 



PROBLEM 14.3  
KNOWN:  Partial pressures and temperature for a mixture of CO2 and N2. 
 
FIND:  Molar concentration, mass density, mole fraction and mass fraction of each species.  
SCHEMATIC:   
 

 
 
 
 
 

2 AA CO , 44 kg / kmol→ =M  
 

2 BB N , 28 kg / kmol→ =M  
 
 
 
 
 

ASSUMPTIONS:  (1) Perfect gas behavior.  
ANALYSIS:  From the equation of state for an ideal gas, 

 i
i

pC .
T

=
ℜ

 

Hence, with pA = pB, 

 A B 2 3
1 barC C

8.314 10 m bar / kmol K 298 K−
= =

× ⋅ ⋅ ×
 

 
 3

A BC C 0.040 kmol / m .= =         < 
 
With i i iC ,=Mρ  it follows that 

 3 3
A 44 kg / kmol 0.04 kmol / m 1.78 kg / mρ = × =      < 

 
 3 3

B 28 kg / kmol 0.04 kmol / m 1.13 kg / m .ρ = × =      < 
 
Also, with 
 
 i i i ix C / C= Σ  
 
find 

 A Bx x 0.04 / 0.08 0.5= = =         < 
 
and with 
 i i im /ρ ρ= Σ  
 
find 

 ( )Am 1.78 / 1.78 1.13 0.61= + =        < 
 
 ( )Bm 1.13/ 1.78 1.13 0.39.= + =        < 



He-Xe mixture 
0.75 mole fraction He 
T = 300 K, p = 1 atm 

PROBLEM 14.4 
 
KNOWN: He-Xe mixture containing 0.75 mole fraction of He at 300 K and 1 atm. 
 
FIND: Mass fraction of He and mixture mass density, molar concentration, and molecular 
weight.  Mass of coolant in 10 liters. 
 
SCHEMATIC: 

                
 
 
 
 
ASSUMPTIONS:  Ideal gas mixture. 
 
PROPERTIES: He 4 kg / kmol=M , Xe 131.3 kg / kmol=M  
  
ANALYSIS: The molar concentration of the mixture can be found directly from the ideal gas 
law, in the form 
 

 3
2 3

p 1 atmC 0.0406 kmol / m
T 8.205 10  m atm / kmol K 300 K−= = =

ℜ × ⋅ ⋅ ×
         < 

 
The mass density of one component in a mixture can be related to the mole fraction by combining 
Eqs. 14.11 and 14.1 to yield 
  

i i ix Cρ =M  
 
For He this results in 
 

3 3
He 4 kg / kmol 0.75 0.0406 kmol / m 0.1219 kg / mρ = × × =  

 
Then the total mass density can be found by summing the species mass densities, 
 

[ ]i i i
i i

C x 0.0406 4 kg / kmol 0.75 131.3 kg / kmol 0.25ρ = ρ = = × + ×∑ ∑M   

31.455 kg / mρ =                < 
 
Thus the helium mass fraction is 
 

3
He

He 3
0.1219 kg / mm 0.0837
1.455 kg / m

ρ
= = =

ρ
            < 

 
Finally, the molecular weight of the mixture can be found from 

Continued… 



PROBLEM 14.4 (Cont.) 
 

3

3
1.455 kg / m 35.8 kg / kmol

C 0.0406 kmol / m

ρ
= = =M              < 

 
Finally, the mass corresponding to a 10 liter cooling system capacity would be 

 

M = ρV = 1.455 kg/m3 × 10 liters × 10-3 m3/liter = 0.0146 kg           < 
 
COMMENTS: (1) As you may recall from thermodynamics, the molar concentration of an 
ideal gas is a function only of pressure and temperature, independent of the species. (2) The mass 
fraction of helium is much less than its mole fraction because its molecular weight is so much less 
than that of xenon. 



PROBLEM 14.5  
KNOWN:  Mass diffusion coefficients of two binary mixtures at a given temperature, 298 K.  
FIND:  Mass diffusion coefficients at a different temperature, T = 350 K.  
ASSUMPTIONS:  (a) Ideal gas behavior, (b) Mixtures at 1 atm total pressure. 
 
PROPERTIES:  Table A-8, Ammonia-air binary mixture (298 K), DAB = 0.28 × 10-4 m2/s; 
Hydrogen-air binary mixture (298 K), DAB = 0.41 × 10-4 m2/s. 
 
ANALYSIS:  According to treatment of Section 14.1.4, assuming ideal gas behavior, 
 
 3/ 2

ABD ~ T  
 
where T is in kelvin units.  It follows then, that for 
 

 ( ) ( )3/ 24 2
3 ABNH Air : D 350 K 0.28 10 m / s 350 K / 298 K−− = ×  

 
   ( ) 4 2

ABD 350 K 0.36 10 m / s−= ×      < 
 

 ( ) ( )3/ 24 2
2 ABH Air : D 350 K 0.41 10 m / s 350 / 298−− = ×  

 
   ( ) 4 2

ABD 350 K 0.52 10 m / s−= ×      < 
 
COMMENTS:  Since the H2 molecule is smaller than the NH3 molecule, it follows that 
 
 2 Air 3 AirH NHD D− −>  
 
as indeed the numerical data indicate. 



PROBLEM 14.6 
 

 
KNOWN:  Pressure and temperature. Substance A and Substance B. 
 
FIND:  Plot of DAB versus MA for NH3, H2O, CO2, H2, O2, acetone, benzene and naphthalene in air. 
 
ASSUMPTIONS:  Ideal gas behavior. 
 
PROPERTIES:  Substance A (T, p)  DAB* (m2/s) MA (kg/kmol) 
  
   NH3 (298 K, 1 atm)  0.28 × 10-4 17.03 ** 
   H2O (298 K, 1 atm)  0.26 × 10-4  18.02 ** 
   CO2 (298 K, 1 atm)  0.16 × 10-4 44.01 ** 
   H2 (298 K, 1 atm)  0.41 × 10-4  2.016 ** 
   O2 (298 K, 1 atm)  0.21 × 10-4 32.00 ** 
   Acetone (273 K, 1 atm)  0.11 × 10-4 58.08 *** 
   Benzene (298 K, 1 atm)  0.88 × 10-5 78.11**** 
   Naphthalene (300 K, 1 atm) 0.62 × 10-5 128.16 ***** 
 

* Table A.8 
** Table A.4 
*** J.R. Howell and R.O. Buckius, Fundamentals of Engineering Thermodynamics, 2nd ed., 
McGraw-Hill, 1992. 
**** M.J. Moran and H.N. Shapiro, Fundamentals of Engineering Thermodynamics, 6th ed., 
John Wiley and Sons, Hoboken, 2008. 
***** Problem 6.63 

 
ANALYSIS: The mass diffusivity values must be corrected to account for the temperature and 
pressure dependence. From Table A.8, 1 3/ 2

ABD p T−∝ and the corrected mass diffusivity for NH3 is 
 
 ( ) ( )3/ 24 2 4 2

ABc 0.28 10 m /s 1atm /1.5atm 320K / 298K 0.21 10 m /sD − −= × × × = ×  
 
Repeating the calculation for the other substances yields the following. 
 

Substance A   DABc (m2/s) 
  
   NH3    0.21 × 10-4  
   H2O    0.19 × 10-4   
   CO2   0.12 × 10-4 
   H2    0.30 × 10-4  
   O2    0.16 × 10-4 
   Acetone   0.93 × 10-5  
   Benzene   0.65 × 10-5 
   Naphthalene  0.46 × 10-5 
 
A plot of the corrected mass diffusivities versus molecular weight of Substance A follows. 
 

Continued... 
 
 
 



 
PROBLEM 14.6 (Cont.) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
According to kinetic theory, the mass diffusivity decreases with increasing molecular weight. This 
behavior is readily evident in the plot, and therefore the kinetic theory is consistent with measured 
values.            < 
 
 
COMMENTS: Small molecules can diffuse through the host medium more readily than large 
molecules. 
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PROBLEM 14.7  
KNOWN:  The inner and outer surfaces of an iron cylinder of 100-mm length are exposed to a 
carburizing gas (mixtures of CO and CO2).  Observed experimental data on the variation of the carbon 
composition (weight carbon, %) in the iron at 1000°C as a function of radius.  Carbon flow rate under 
steady-state conditions.  
FIND:  (a) Beginning with Fick’s law, show that d d n rcρ / l b gc h  is a constant if the diffusion 

coefficient,  DC-Fe, is a constant; sketch of the carbon mass density, ρc(r), as function of ln(r) for such 
a diffusion process; (b) Create a graph for the experimental data and determine whether DC-Fe for this 
diffusion process is constant, increases or decreases with increasing mass density; and (c) Using the 
experimental data, calculate and tabulate DC-Fe for selected carbon compositions over the range of the 
experiment.  
SCHEMATIC:   
 

 
 
PROPERTIES:  Iron (1000°C).  ρ = 7730 kg/m3.Experimental observations of carbon composition 
 
 r (mm)  4.49 4.66 4.79 4.91 5.16 5.27 5.40 5.53 
 Wt. C (%) 1.42 1.32 1.20 1.09 0.82 0.65 0.46 0.28 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional, radial diffusion in a stationary 
medium, and (3) Uniform total concentration.  
ANALYSIS:  (a) For the one-dimensional, radial (cylindrical) coordinate system, Fick’s law is 
 

 j D  A d
drA AB r

A= −
ρ

         (1) 

 
where Ar = 2πrL.  For steady-state conditions, jA is constant, and if DAB is constant, the product 
 

 r d
dr

CA
1

ρ
=           (2) 

 
must be a constant.  Using the differential relation dr/r = d (ln r), it follows that 
 

 
d

d ln r
CA

1
ρ
b g =           (3) 

 
so that on a ln(r) plot, ρA is a straight line.  See the graph below for this behavior. 
 
          Continued ... 



PROBLEM 14.7 (Cont.) 
 
(b) To determine whether DC-Fe is a constant for the experimental diffusion process, the data are 
represented on a ln(r) coordinate. 
 

Since the plot is not linear, DC-Fe is not a constant.  From the treatment of part (a), if DAB is not a 
constant, then 
 

 D d
d ln r

CAB
A

2
ρ
b g =  

 
must be constant.  We conclude that DC-Fe will be lower at the radial position where the gradient is 
higher.  Hence, we expect DC-Fe to increase with increasing carbon content. 
 
(c) From a plot of Wt - %C vs. r (not shown), the mass fraction gradient is determined at three 
locations and Fick’s law is used to calculate the diffusion coefficient, 
 

 j A D  
 Wt % C

rc r C Fe= − ⋅ ⋅
−

−ρ
Δ

Δ
b g

 
 
where the mass flow rate is 
 
 j  kg / 100 h 3600 s / h  kg / sc = × = ×− −36 10 1 103 8. b g  
 
and ρ = 7730 kg/m3, density of iron.  The results of this analysis yield, 
 
 Wt - C (%) r (mm)  Δ Wt-C/Δr (%/mm) DC-Fe × 1011 (m2/s) 
 
     1.32  4.66   -0.679   6.51 
   0.955  5.04   -1.08   3.79 
    0.37  5.47   -1.385   2.72 

Wt. carbon distribution - experimental observations
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PROBLEM 14.8  
KNOWN:  Air is enclosed at uniform pressure in a vertical, cylindrical container whose top and 
bottom surfaces are maintained at different temperatures.  
FIND:  (a) Conditions in air when bottom surface is colder than top surface, (b) Conditions when 
bottom surface is hotter than top surface.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Uniform pressure, (2) Perfect gas behavior.  
ANALYSIS:  (a) If T1 > T2, the axial temperature gradient (dT/dx) will result in an axial density 
gradient.  However, since dρ/dx < 0 there will be no buoyancy driven, convective motion of the 
mixture. 
 
There will also be axial species density gradients, 2 2O Nd / dx and d / dx.ρ ρ   However, there is no 

gradient associated with the mass fractions ( )2 2O Ndm / dx 0, dm / dx 0 .= =   Hence, from Fick’s 

law, Eq. 14.12, there is no mass transfer by diffusion. 
 
 
(b) If 1 2T T , d / dx 0ρ< >  and there may be a buoyancy driven, convective motion of the mixture.  
However, 2 2O Ndm / dx 0 and dm / dx 0,= =  and there is still no mass transfer.  Hence, although 

there is motion of each species with the convective motion of the mixture, there is no relative motion 
between species.  
COMMENTS:  The commonly used special case of Fick’s law, 
 

 A
A AB

dj D
dx
ρ

= −  
 
would be inappropriate for this problem since ρ is not uniform.  If applied, this special case indicates 
that mass transfer would occur, thereby providing an incorrect result. 



PROBLEM 14.9 
 
KNOWN: Dimensions of rubber stopper in medicine jar.  Molar concentration of medicine 
vapor at top and bottom surfaces.  Mass diffusivity of medicine vapor in rubber. 
 
FIND: Rate at which medicine vapor exits through the stopper. 
 
SCHEMATIC:   

                
 
 
 
 
 
 
 
 
  
 
ASSUMPTIONS: (1) Glass neck is impermeable to medicine vapor, thus there is negligible 
mass loss out of slanted surface, (2) One-dimensional mass diffusion, (3) Steady state, (4) 
Constant properties, (5) No chemical reaction. 
 
PROPERTIES: Medicine vapor-rubber (given):  DAB = 0.2 × 10-9 m2/s. 
 
ANALYSIS: The analysis follows the “alternative conduction analysis” approach.  For one-
dimensional diffusion in the x-direction, Fick’s Law in molar form, Eq. 14.13, reduces to 
 

* A A
A AB AB

dx dCJ CD D
dx dx

= − = −               (1) 

 
where the total concentration, C , has been assumed constant.  The transfer rate of species A 

through the entire stopper cross-section, AN , can be expressed as *
A A cN J A= , where cA is 

the cross-sectional area.  For steady-state, one-dimensional diffusion with no chemical reaction, 
the species transfer rate must be constant.  We multiply Eq. (1) by cA , separate variables, and 
integrate between the top and bottom of the stopper, as follows 
 

* A
A A c AB c

dCN J A D A
dx

= = −  

A2
A1

L x
A AB A AB A1 A2 AB A10 xc

dxN D dC D (C C ) D C
A

= − = − =∫ ∫           (2) 

The cross-sectional area is given by 
 

2
cA R= π , where 1 2 1R R (R R )x / L= + −  

Continued… 

D1 = 10 mm 

D2 = 20 mm 

L = 20 mm 

CA,2 = 0 

CA,1 = 2 × 10-3 kmol/m3 
x



PROBLEM 14.9 (Cont.) 
 
Thus dx = LdR/(R2 – R1), and Eq. (2) becomes 
 

2
1

R
A AB A12R 2 1

A
AB A1

1 2 2 1

dR LN D C
R RR

N 1 1 L D C
R R R R

=
−π

⎛ ⎞
− =⎜ ⎟π −⎝ ⎠

∫
 

Thus 
 

AB A1 1 2
A

9 2 3 3

D C R RN
L

0.2 10  m / s 2 10  kmol / m 0.005 m 0.01 m
0.02 m

− −

π
=

π× × × × × ×
=

 

15
AN 3.14 10  kmol / s−= ×                 < 

 
COMMENTS: (1) The assumption of constant concentration, C, is excellent because the 
“mixture” of rubber and medicine vapor would be dominated by the rubber. (2) Using the 
properties of water for the medicine, we can estimate how much the liquid would be depleted per 
year.  The molar loss in one year is 3.14 × 10-15 kmol/s × 3.15 × 107 s/yr = 9.9 × 10-8 kmol/yr.  If 
the molecular weight is 18 kg/kmol, the loss would be 1.8 × 10-6 kg/yr.  If the liquid density is 
1000 kg/m3, the volume loss would be 1.8 × 10-9 m3/yr.  For a bottle cross-sectional area of 2 × 
10-3 m2, the liquid level would drop by less than 1 µm per year. 
 



PROBLEM 14.10 
 

 
KNOWN: Evaporation of liquid A into a column containing vapor A and B. Species B cannot 
be absorbed in liquid A. 
 
FIND: The relationship between the ratio of the molar-average velocity to the species velocity of 
species A to the mole fraction of species A. 
 
SCHEMATIC: 
 
 

 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Steady, one-dimensional diffusion, (2) No chemical reactions. 
 
ANALYSIS:  From Section 14.2.2, we know that "

B,xN 0= . From Eq. 14.27, 
"
A,x A A,xN C v=   and  "

B,x B B,x N C v 0= =    or   B,xv 0=    (1) 
 
From Eq. 14.29,    *

x A A,xv x v=      (2) 
 

Therefore    
*
x

A
A,x

v x
v

=      < 

 
The relationship is shown in the graph below. 
 
 

 
 
 
 
 
 
 
 
 
 
 

Continued… 
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PROBLEM 14.10 (Cont.) 
 

 
 
COMMENTS: (1) When the mole fraction of Species A is small and Species B is not in 
motion, the molar-average velocity is dominated by Species B and is negligible compared to the 
non-zero species velocity of A. In other words, the vapor in the column can be treated as a 
stationary medium since, although Species A is in motion, there is very little species A present. 
(2) When the mole fraction of Species A is large, there is very little Species B present, and the 
velocity of the mixture is dominated by the velocity of Species A. Hence, the velocity ratio 
approaches unity as mixture becomes dominated by Species A. 



PROBLEM 14.11  
KNOWN:  Water in an open pan exposed to prescribed ambient conditions.  
FIND:  Evaporation rate considering (a) diffusion only and (b) convective effects.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional diffusion, (3) Constant 
properties, (4) Uniform T and p, (5) Perfect gas behavior. 
 
PROPERTIES:  Table A-8, Water vapor-air (T = 300 K, 1 atm), DAB = 0.26 × 10-4 m2/s; Table A-6, 
Water vapor (T = 300 K, 1 atm), psat = 0.03531 bar, vg = 39.13 m3/kg. 
 
ANALYSIS:  (a) The evaporation rate considering only diffusion follows from Eq. 14.32 simplified 
for a stationary medium.  That is, 

 A
A,x A,x AB

dCN N A D A .
dx

′′= ⋅ = −  

Recognizing that φ ≡ pA/pA,sat = CA/CA,sat, the rate is expressed as 

 ( )A, A,s AB
A,x AB A,sat

C C D AN D A C 1
L L

φ∞
∞

−
= − = −  

( )( ) ( )
4 2 2

8
A,x 3 3

0.26 10 m / s / 4 0.2 m 1
N 1 0.25 1.087 10 kmol / s

80 10 m 39.13 m / kg 18 kg / kmol

π−
−

−

×
= − = ×

× ×
 

where ( )A,s g AC 1/ v= M  with A 18 kg / kmol.=M  
 
(b)The evaporation rate considering convective effects using Eq. 14.40 is 

 AB AL
A,x A,x

A,0

CD A 1 xN N A ln .
L 1 x

−′′= ⋅ =
−

 

Using the perfect gas law, the total concentration of the mixture is 

 ( )2 3 3C p / T 1.0133 bar / 8.314 10 m bar / kmol K 300K 0.04063 kmol / m−= ℜ = × ⋅ ⋅ × =  

where p = 1 atm = 1.0133 bar.  The mole fractions at x = 0 and x = L are 

 A,s
A,0 A,L A,0

p 0.03531 barx 0.0348 x x 0.0087.
p 1.0133 bar

φ∞= = = = =  

 
Hence 

( )( )3 4 2 2
8

A,x 3
0.04063 kmol / m 0.26 10 m / s / 4 0.2 m 1 0.0087

N ln 1.107 10 kmol / s.
1 0.034880 10 m

π−
−

−

× × −
= = ×

−×
 < 

 
COMMENTS:  For this situation, the advective effect is very small but does tend to increase (by 
1.5%) the evaporation rate as expected. 



PROBLEM 14.12  
KNOWN:  Spherical droplet of liquid A and radius ro evaporating into stagnant gas B. 
 
FIND:  Evaporation rate of species A in terms of pA,sat, partial pressure pA(r), the total pressure p and 
other pertinent parameters.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional, radial, species diffusion, (3) 
Constant properties, including total concentration, (4) Droplet and mixer air at uniform pressure and 
temperature, (5) Perfect gas behavior.  
ANALYSIS:  From Eq. 14.32 for a radial spherical coordinate system, the evaporation rate of liquid 
A into a binary gas mixture A + B is 

 A A
A,r AB r A,r

dC CN D A N
dr C

= − +  
 
where Ar = 4πr2 and NA,r = NA, a constant, 

 2A A
A AB

C dCN 1 D 4 r .
C dr

π⎛ ⎞− = − ⋅ ⋅⎜ ⎟
⎝ ⎠

 

 
From perfect gas behavior, A AC p / T= ℜ  and C p / T,= ℜ  

 ( ) 2 A
A A AB

p dpN p p D 4 r
T dr

π− = − ⋅ ⋅
ℜ

 
 
Separating variables, setting definite limits, and integrating 
 

 A,r
o A,ro

r p A
A 2r pAB A

T 1 dr dpN
p 4 D p prπ
ℜ

− =
−∫ ∫  

find that 

 
( )A

A o AB
o A,o

p p rp 1N 4 r D ln
T 1 r / r p p

π
−

=
ℜ − −

      < 

 
where ( )A,o A o A,satp p r p ,= =  the saturation pressure of liquid A at temperature T. 
 
COMMENTS:  Compare the method of solution and result with the content of Section 14.2.2, 
Evaporation in a Column. 



PROBLEM 14.13  
KNOWN:  Clean surface with pure steam has condensate rate of 0.020 kg/m2⋅s for the prescribed 
conditions.  With the presence of stagnant air in the steam, the condensate surface drops from 28°C to 
24°C and the condensate rate is halved.  
FIND:  Partial pressure of air in the air-steam mixture as a function of distance from the condensate 
film.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties including pressure in air-steam 
mixture, (3) Perfect gas behavior.  
PROPERTIES:  Table A-6, Water vapor:  psat (28°C = 301 K) = 0.03767 bar; psat (24°C = 297 K) = 
0.02983 bar;  Table A-8, Water-air (298 K, 1 bar): DAB = 0.26 × 10-4 m2/s. 
 
ANALYSIS:  The partial pressure distribution of the air as a function of distance y can be found from 
the species (A) rate expression, Eq. 14.40, 
 ( ) ( ) ( )A,y AB A,y A,0N CD / y ln 1 x / 1 x .′′ = − −  
 
With B,y A,y B,0 A,0,C p / T, x 1 x and x 1 x= ℜ = − = −  recognizing that xB = pB/p, find 

 ( )B B,0 A,y
AB

Tp y p exp N y
pD

⎛ ⎞ℜ′′= ⋅ ⎜ ⎟
⎝ ⎠

 

 ( ) ( ) ( )B,0 A,0 sat satp p p p 28 C p 24 C 0.03767 0.02983 bar 0.00784 bar.= − = ° − ° = − =  
 
With ( ) 2 4 2

A,yN 0.020 / 2 kg / m s / 29 kg / kmol 3.45 10 kmol / m s,−′′ = − ⋅ = × ⋅  

( )B

2 3
4 2

4 2
8.314 10 m bar / kmol K 299 Kp y 0.0784 bar exp 3.45 10 kmol / m s y

0.03767 bar 6.902 10 m / s

−
−

−

⎛ ⎞× ⋅ ⋅ ×
= × × ⋅⎜ ⎟

⎜ ⎟× ×⎝ ⎠
 

 
 ( ) ( )Bp y 784 kPa exp 0.330y= × −  
 
with pB in [kPa] and y in [mm], where T = 26°C = 299 K, the average temperature of the air-steam 
mixture, and DAB ≈ p-1 T3/2 = 0.26 × 10-4 m2/s (1/0.03767) (299/298)3/2 = 6.902 × 10-4 m2/s.  
Selected values for the pressure are shown below and the distribution is shown above: 
 
    y (mm)    0   5   10  15 
    pB(y) (kPa) 784 151 29.0 5.6 
 
COMMENTS:  To minimize inert gas effects, the usual practice is to pass vapor over the surfaces so 
that the inerts are eventually collected near the outlet region of the condenser.  Our estimate shows that 
the effective region to be swept is approximately 10 mm thick. 



PROBLEM 14.14  
KNOWN:  Column containing liquid phase of water (A) evaporates into the air (B) flowing over the 
mouth of the column.  
FIND:  Evaporation rate of water (kg/h⋅m2) using the known value of the binary diffusion coefficient 
for the water vapor - air mixture.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state, one-dimensional diffusion in the column, (2) Constant properties, 
(3) Uniform temperature and pressure throughout the column, (4) Water vapor exhibits ideal gas 
behavior, and (5) Negligible water vapor in the chamber air. 
 
PROPERTIES:  Table A-6, water (T = 320 K):  psat = 0.1053 bar; Table A-8, water vapor-air (0.25 
atm, 320 K):  Since DAB ~ p-1 T3/2 find 
 

 D  m s 1.00 / 0.25  320 / 298  m sAB
2 2= × = ×− −0 26 10 1157 104 3 2 4. / . //b g b g  

 
ANALYSIS:  From Eq. 14.40, the molar flow rate per unit area is 

 ′′ =
−

−
N C D

L
ln

1 x
1 xA,x

AB A,L

A,0
 

where C is the mixture concentration determined from the ideal gas law as 

 3
2 3

p 0.25 atmC 0.009397 kmol/m
T 8.205 10  m atm/kmol K 320 K−

= = =
× ⋅ ⋅ ×R

 

where 2 38.205 10  m atm/kmol K.−= × ⋅ ⋅R   The mole fractions at x = 0 and x = L are 
 xA,L = 0  (no water vapor in air above column) 
 x p pA,0 A= = =/ . / . .01053 0 25 0 4212  

where pA is the saturation pressure for water at T = 320 K.  Substituting numerical values 

 ′′ =
× × −

−

−
N  kmol / m  m s

0.150 m
ln

1 0
1 0.4212A,x

3 20 009397 1157 10 4. . / b g
b g  

 ′′ = × ⋅−N  kmol / m sA,x
23 964 10 6.  

or, on a mass basis, 
 
 A,x A,x Am N′′ ′′= M  
 
 ′′ = × ⋅ × ×−m  kmol / m s 3600 s / h 18 kg / kmolA,x

23 964 10 6.  
 
 ′′ = ⋅m  kg / m hA,x

20 257.         < 



PROBLEM 14.15  
KNOWN:  Molar concentrations of helium at the inner and outer surfaces of a plastic membrane.  
Diffusion coefficient and membrane thickness.  
FIND:  Molar diffusion flux.  
SCHEMATIC:   
 

 
 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional diffusion in a plane wall, (3) 
Stationary medium, (4) Uniform C = CA + CB. 
 
ANALYSIS:  The molar flux may be obtained from Eq. 14.54, 
 

 ( ) ( )
9 2

3AB
A,x A,1 A,2

D 10 m / sN C C 0.02 0.005 kmol / m
L 0.001 m

−
′′ = − = −  

 
 8 2

A,xN 1.5 10 kmol / s m .−′′ = × ⋅        < 
 
COMMENTS:  The mass flux is 
 
 8 2 8 2

A,x A A,xn N 4 kg / kmol 1.5 10 kmol / s m 6 10 kg / s m .− −′′ ′′= = × × ⋅ = × ⋅M  



PROBLEM 14.16  
KNOWN:  Three-dimensional diffusion of species A in a stationary medium with chemical reactions.  
FIND:  Derive molar form of diffusion equation.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Uniform total molar concentration, (2) Stationary medium.  
ANALYSIS:  The derivation parallels that of Section 14.4.2, except that Eq. 14.43 is applied on a 
molar basis.  That is, 
 
 A,x A,y A,z A,g A,x dx A,y dy A,z dz A,stN N N N N N N N .+ + ++ + + − − − =& &  
 
With 
 

 A,x
A,x dx A,x A,y dy

N
N N dx, N ....

x+ +
∂

= + =
∂

 
 

 ( ) A
A,x AB A,y

CN D dydz , N ....
x

∂
= − =

∂
 

 

 ( ) A
A,g A A,st

CN N dxdydz , N dxdydz
t

∂
= =

∂
& & &  

 
It follows that 
 

 A A A A
AB AB AB A

C C C CD D D N .
x x y y z z t

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + + =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
&   < 

  
COMMENTS:  If DAB is constant, the foregoing result reduces to Eq. 14.48b. 



PROBLEM 14.17  
KNOWN:  Gas (A) diffuses through a cylindrical tube wall (B) and experiences chemical reactions at 
a volumetric rate, AN .&  
 
FIND:  Differential equation which governs molar concentration of gas in plastic.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) One-dimensional radial diffusion, (2) Uniform total molar concentration, (3) 
Stationary medium.  
ANALYSIS:  Dividing the species conservation requirement, Eq. 14.43, by the molecular weight, MA, 
and applying it to a differential control volume of unit length normal to the page, 
 
 A,r A,g A,r dr A,stN N N N++ − =& &  
 
where 
 

 ( ) A
A,r A,r AB

CN 2 r 1 N 2 rD
r

π π ∂′′= ⋅ = −
∂

 
 

 A,r
A,r dr A,r

N
N N dr

r+
∂

= +
∂

 
 

 ( )
( )A

A,g A A,st
C 2 rdr 1

N N 2 r dr 1 N .
t
π

π
⎡ ⎤∂ ⋅⎣ ⎦= − ⋅ ⋅ =

∂
& & &  

 
Hence 
 

 ( ) A A
A AB

C CN 2 rdr 2 D r dr 2 rdr
r r t

π π π∂ ∂ ∂⎛ ⎞− + =⎜ ⎟∂ ∂ ∂⎝ ⎠
&  

 
or 
 

 AB A A
A

D C Cr N .
r r r t

∂ ∂ ∂⎛ ⎞ − =⎜ ⎟∂ ∂ ∂⎝ ⎠
&        < 

 
COMMENTS:  (1) The minus sign in the generation term is necessitated by the fact that the reactions 
deplete the concentration of species A. 
 
(2) From knowledge of ( )AN r, t ,&  the foregoing equation could be solved for CA (r,t). 
 
(3) Note the agreement between the above result and the one-dimensional form of Eq. 14.49 for 
uniform C. 



PROBLEM 14.18  
KNOWN:  One-dimensional, radial diffusion of species A in a stationary, spherical medium with 
chemical reactions.  
FIND:  Derive appropriate form of diffusion equation.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) One-dimensional, radial diffusion, (2) Uniform total molar concentration, (3) 
Stationary medium.  
ANALYSIS:  Dividing the species conservation requirement, Eq. 14.43, by the molecular weight, MA, 
and applying it to the differential control volume, it follows that 
 
 A,r A,g A,r dr A,stN N N N++ − =& &  
 
where 
 

 2 A
A,r AB

CN D 4 r
r

π ∂
= −

∂
 

 

 A,r
A,r dr A,r

N
N N dr

r+
∂

= +
∂

 
 

 ( ) ( )2
A2

A,g A A,st
C 4 r dr

N N 4 r dr , N .
t

π
π

⎡ ⎤∂ ⎢ ⎥⎣ ⎦= =
∂

& & &  
 
Hence 
 

 ( )2 2 2A A
A AB

C CN 4 r dr 4 D r dr 4 r dr
r r t

π π π∂ ∂ ∂⎛ ⎞+ =⎜ ⎟∂ ∂ ∂⎝ ⎠
&  

 
or 
 

 2 A A
AB A2

1 C CD r N .
r r tr

∂ ∂ ∂⎛ ⎞ + =⎜ ⎟∂ ∂ ∂⎝ ⎠
&       < 

 
COMMENTS:  Equation 14.50 reduces to the foregoing result if C is independent of r and variations 
in φ and θ are negligible. 



PROBLEM 14.19  
KNOWN:  Pressure and temperature of hydrogen stored in a spherical steel tank of prescribed 
diameter and thickness.  
FIND:  (a) Initial rate of hydrogen mass loss from the tank, (b) Initial rate of pressure drop in the tank.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) One-dimensional species diffusion in a stationary medium, (2) Uniform total 
molar concentration, C, (3) No chemical reactions.  
ANALYSIS:  (a) From Table 14.1 
 

 
( )( )i

A,o A,L A,o
A,r

m,dif AB o

C C C
N

R 1/ 4 D 1/ r 1/ rπ

−
= =

−
 

 

 
( )

( )

12 2 3
12

A,r
4 0.3 10 m / s 1.5 kmol / m

N 7.35 10 kmol / s
1/ 0.05 m 1/ 0.052 m

π −
−

×
= = ×

−
 

 
or 
 
 12 12

A,r A A,rn N 2 kg / kmol 7.35 10 kmol / s 14.7 10 kg / s.− −= = × × = ×M   < 
 
(b) Applying a species balance to a control volume about the hydrogen, 
 
 A,st A,out A,rM M n= − = −& &  
 

 
( ) 33 3

A A A A A
A,st

A

d V d dp D dpD DM
dt 6 dt 6R T dt 6 T dt

= = = =
ℜ

& Mρ ρ ππ π
 

 
Hence 
 

( )( )3
12A

A,r3 3
A

6 0.08314 m bar / kmol K 300 Kdp 6 T n 14.7 10 kg / s
dt D (0.1m) 2 kg / kmol

−
⋅ ⋅ℜ

= − = − × ×
Mπ π

 

 

 7Adp 3.50 10 bar / s.
dt

−= − ×         < 
 
COMMENTS:  If the spherical shell is appoximated as a plane wall, Na,x = DAB(CA,o) πD2/L = 7.07 
× 10-12 kmol/s.  This result is 4% lower than that associated with the spherical shell calculation. 



PROBLEM 14.20  
KNOWN:  Temperature of atmospheric air and water.  Percentage by volume of oxygen in the air.  
FIND:  (a) Mole and mass fractions of water at the air and water sides of the interface, (b) Mole and 
mass fractions of oxygen in the air and water.  
SCHEMATIC: 

 

Mw = 18, Mair = 29 
 
ASSUMPTIONS:  (1) Perfect gas behavior for air and water vapor, (2) Thermodynamic equilibrium 
at liquid/vapor interface, (3) Dilute concentration of oxygen and other gases in water, (4) Molecular 
weight of air is independent of vapor concentration. 
 
PROPERTIES:  Table A-6, Saturated water (T = 290 K):  pvap = 0.01917 bars.  Table A-9, O2/water, 
H = 37,600 bars.  
ANALYSIS:  (a) Assuming ideal gas behavior, pw,vap = (Nw,vap/V) ℜT and p = (N/V) ℜT, in which 
case 

 ( ) ( )w,vap w,vap airx p / p 0.01917 /1.0133 0.0189= = =     < 

With mw,vap = (ρw,vap/ρair) = (Cw,vap M w/Cair M air) = xw,vap (M w/M air).  Hence, 

 mw,vap = 0.0189 (18/29) = 0.0120       < 
Assuming negligible gas phase concentrations in the liquid, 

 xw,liq = mw,liq = 1         < 
 
(b) Since the partial volume of a gaseous species is proportional to the number of moles of the species, 
its mole fraction is equivalent to its volume fraction.  Hence on the air side of the interface 

 O2,airx 0.205=          < 

( ) ( )2,air 2,air 2O O Om x / 0.205 32 / 29 0.226= = =airM M     < 
 
The mole fraction of O2 in the water is 

 2,liq 2,air
6

O Ox p / H 0.208 bars / 37,600 bars 5.53 10−= = = ×    < 
 
where 2,air 2,airO Op x=  patm = 0.205 × 1.0133 bars = 0.208 bars.  The mass fraction of O2 in the 

water is 

 ( ) ( )2,liq 2,liq 2
6 6

O O 0 wm x / 5.53 10 32 /18 9.83 10− −= = × = ×M M    < 
 
COMMENTS:  There is a large discontinuity in the oxygen content between the air and water sides 
of the interface.  Despite the low concentration of oxygen in the water, it is sufficient to support the 
life of aquatic organisms. 



PROBLEM 14.21  
KNOWN:  Pressure and temperature of hydrogen inside and outside of a circular tube.  Diffusivity 
and solubility of hydrogen in tube wall of prescribed thickness and diameter.  
FIND:  Rate of hydrogen transfer through tube per unit length.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady diffusion in radial direction, (2) Uniform total molar concentration in 
wall, (3) No chemical reactions, (4) Stationary medium.  
ANALYSIS:  The mass transfer rate per unit tube length is 
 

 
( ) ( )

( )
A 1 A 2

A,r
2 1 AB

C r C r
N

ln r / r / 2 D
−

′ =
π

 

 
where from Eq. 14.62, CA,s = Spa, 
 
 ( ) 3 3

A 1 A,1C r Sp 160 kmol / m atm 2 atm 320 kmol / m= = ⋅ × =  
 
 ( ) 3 3

A 2 A,2C r Sp 160 kmol / m atm 0.1 atm 16 kmol / m .= = ⋅ × =  
 
Hence, 
 

 
( )

( )

3 3
A,r 11 2 8 2

320 16 kmol / m 304 kmol / mN
ln 20.5 / 20 / 2 1.8 10 m / s 2.18 10 s / mπ −

−
′ = =

× × ×
 

 
 6

A,rN 1.39 10 kmol / s m.−′ = × ⋅        < 
 
COMMENTS:  If the wall were assumed to be plane, 
 

 
( )

4
8 2

m,dif 11 2AB

L 5 10 mR 2.21 10 s / m
D D 1.8 10 m / s 0.04 mπ π

−

−
×′ = = = ×

×
 

 
which is close to the value of 2.18 × 108 s/m2 for the cylindrical wall. 



PROBLEM 14.22  
KNOWN:  Oxygen pressures on opposite sides of a rubber membrane.  
FIND:  (a) Molar diffusion flux of O2, (b) Molar concentrations of O2 outside the rubber. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) One-dimensional, steady-state conditions, (2) Stationary medium of uniform 
total molar concentration, C = CA + CB, (3) Perfect gas behavior. 
 
PROPERTIES:  Table A-8, Oxygen-rubber (298 K):  DAB = 0.21 × 10-9 m2/s; Table A-10, Oxygen-
rubber (298 K):  S = 3.12 × 10-3 kmol/m3⋅bar. 
 
ANALYSIS:  (a) For the assumed conditions 
 

 
( ) ( )A AA

A,x A,x AB AB
C 0 C LdCN J D D .

dx L
∗ −

′′ = = − =  
 
From Eq. 14.62, 
 
 ( ) 3 3

A A,1C 0 Sp 6.24 10 kmol / m−= = ×  
 
 ( ) 3 3

A A,2C L Sp 3.12 10 kmol / m .−= = ×  
 
Hence 
 

 
( )3 3 3

9 2
A,x

6.24 10 3.12 10 kmol / m
N 0.21 10 m / s

0.0005 m

− −
−

× − ×
′′ = ×  

 
 9 2

A,xN 1.31 10 kmol / s m .−′′ = × ⋅        < 
 
(b) From the perfect gas law 
 

 
( )

A,1 3
A,1 3

p 2 barC 0.0807 kmol / m
T 0.08314 m bar / kmol K 298 K

= = =
ℜ ⋅ ⋅

  < 

 
 3

A,2 A,1C 0.5C 0.0404 kmol / m .= =       < 
 
COMMENTS:  Recognize that the molar concentrations outside the membrane differ from those 
within the membrane; that is, CA,1 ≠ CA(0) and CA,2 ≠ CA(L). 



PROBLEM 14.23  
KNOWN:  Water vapor is transferred through dry wall by diffusion.  
FIND:  The mass diffusion rate through a 0.01 × 3 × 5 m wall.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional species diffusion, (3) 
Homogeneous medium, (4) Constant properties, (5) Uniform total molar concentration, (6) Stationary 
medium with xA << 1, (7) Negligible condensation in the dry wall. 
 
ANALYSIS:  From Eq. 14.42, 
 

 A,1 A,2A A
A,x AB AB AB

C Cdx dCN CD D D .
dx dx L

−
′′ = − = − =  

 
From Eq. 14.62 
 
 3 3

A,1 A,1C Sp 0.15 10 kmol / m−= = ×  
 
 3

A,2 A,2C Sp 0 kmol / m .= =  
 
Hence 
 

 
3 3

9 2 10 2
A

0.15 10 kmol / mN 10 m / s 0.15 10 kmol / s m .
0.01 m

−
− −×′′ = × = × ⋅  

 
Therefore 
 
 ( ) 2 10 2

A A An A N 18 kg / kmol 15 m 0.15 10 kmol / s m−′′= ⋅ = × × × ⋅M  
 
or 
 
 9

An 4.05 10 kg / s.−= ×         < 



PROBLEM 14.24  
KNOWN:  Pressure and temperature of helium in a glass cylinder of 100 mm inside diameter and 5 
mm thickness.  
FIND:  Mass rate of helium loss per unit length.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional radial diffusion through cylinder 
wall, (3) Negligible end losses, (4) Stationary medium, (5) Uniform total molar concentration, (6) 
Negligible helium concentration outside cylinder. 
 
PROPERTIES:  Table A-8, He-SiO2 (298 K):  DAB ≈ 0.4 × 10-13 m2/s; Table A-10, He-SiO2 (298 
K):  S ≈ 0.45 × 10-3 kmol/m3⋅bar. 
 
ANALYSIS:  From Table 14.1, 
 

 
( )

A,S1 A,S2
A,r

2 1 AB

C C
N

ln r / r / 2 Dπ
−

′ =  

 
where, from Eq. 14.62, CA,S = SpA.  Hence 
 
 3 3 3 3

A,S1 A,1C Sp 0.45 10 kmol / m bar 4 bar 1.8 10 kmol / m− −= = × ⋅ × = ×  
 
 A,S2 A,2C SP 0.= =  
 
Hence 
 

 
( ) ( )

3 3
A,r 13 2

1.8 10 kmol / mN
ln 0.055 / 0.050 / 2 0.4 10 m / sπ

−

−
×′ =

×
 

 
 15

A,rN 4.75 10 kmol / s m.−′ = × ⋅  
 
The mass loss is then 
 
 15

A,r A A,rn N 4 kg / kmol 4.75 10 kmol / s m−′ ′= = × × ⋅M  
 
 14

A,rn 1.90 10 kg / s m.−′ = × ⋅         < 



PROBLEM 14.25  
KNOWN:  Temperature and pressure of helium stored in a spherical pyrex container of prescribed 
diameter and wall thickness.  
FIND:  Mass rate of helium loss.  
SCHEMATIC:   

  
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Helium loss by one-dimensional diffusion in radial 
direction through the pyrex, (3) C = CA + CB is independent of r, and xA << 1, (4) Stationary medium. 
 
PROPERTIES:  Table A-8, He-SiO2 (293 K):  DAB = 0.4 × 10-13 m2/s; Table A-10, He-SiO2 (293 
K):  S = 0.45 × 10-3 kmol/m3⋅bar. 
 
ANALYSIS:  From Table 14.1, the molar diffusion rate may be expressed as 

 A,S1 A,S2
A,r

m,dif

C C
N

R
−

=  

where 

( )
12 3

m,dif 13 2AB 1 2

1 1 1 1 1 1R 1.81 10 s / m
4 D r r 0.1m 0.11m4 0.4 10 m / sπ π −

⎛ ⎞ ⎛ ⎞
= − = − = ×⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ×
 

with 

 3 3 3 3
A,S1 AC Sp 0.45 10 kmol / m bar 4 bar 1.80 10 kmol / m− −= = × ⋅ × = ×  

 A,S2C 0=  
find 

 
3 3

15
A,r 12 3

1.80 10 kmol / mN 10 kmol / s.
1.81 10 s / m

−
−×

= =
×

 

Hence 

 15 15
A,r A A,rn N 4 kg / mol 10 kmol / s 4 10 kg / s.− −= = × = ×M    < 

 
COMMENTS:  Since r1 ≈ r2, the spherical shell could have been approximated as a plane wall with L 

= 0.01 m and 2 2
mA 4 r 0.139 m .π≈ =   From Table 14.1, 

 
( )( )

12 3
m,dif 13 2 2AB

L 0.01 mR 1.8 10 s / m
D A 0.4 10 m / s 0.137 m−

= = = ×
×

 and 

 
3 3A,S1 A,S2 15

A,x 12 3m,dif

C C 1.80 10 kmol / mN 10 kmol / s.
R 1.8 10 s / m

−
−− ×

= = =
×

 

Hence the approximation is excellent. 



PROBLEM 14.26 
 

 
KNOWN: Thickness of polymer packaging material, temperature and humidity conditions in 
gas on either side of the material. 
 
FIND: (a) Solubility of the packaging material, (b) Total water vapor transfer rate for a material 
that has 10% of the diffusivity of the material in Example 14.3, (c) Total water vapor transfer rate 
for a material that has 10% the solubility of the material in Example 14.3, (d) Total water vapor 
transfer rate after coating the exterior surface with a thin film to reduce its solubility by a factor of 
9, leaving the interior surface untreated. 
 
SCHEMATIC: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Constant properties and steady-state conditions, (2) Stationary medium. 
 
PROPERTIES: Table A.6, water (T = 295 K): psat = 0.02617 bars. 
 
ANALYSIS: 
 
(a) For the exterior Surface 1, Ap (x 0)=  = 1 A,satpφ  = 0.9 × 0.02617 bars = 0.02355 bars. For the 

interior Surface 2, A 2 A,satp (x L) p= = φ = 0.1 × 0.02617 bars = 0.002617 bars. From Example 
14.3, A,s2 A,sC C (x L)= = = 0.5 × 10-3 kmol/m3 so that 
 

  
A,s2

A

C
S

p (x L)
=

=
=

3 30.5 10 kmol / m
0.002617 bar

−×
= 191 × 10-3 3

kmol
m bar

   < 

 
(b) From Example 14.3, 15

A,x,pN 0.32 10  kmol/s−= × . If the diffusivity is reduced to 10% of its 
original value, 
 

  15 16
A,x A,x,pN 0.1N 0.1 0.32 10 kmol / s 0.32 10 kmol / s− −= = × × = ×  < 

Continued… 

Surface 2

Surface 1

Polymer
material

pA(x = L)

CA,s(x = 0)
= CA,s1

pA(x = 0)

x
L
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T = 295 K
φ2 = 0.1

Exterior

T = 295 K
φ1 = 0.9

CA,s(x = L)
= CA,s2

Surface 2

Surface 1

Polymer
material

pA(x = L)

CA,s(x = 0)
= CA,s1

pA(x = 0)

x
L

Interior

T = 295 K
φ2 = 0.1

Exterior

T = 295 K
φ1 = 0.9

CA,s(x = L)
= CA,s2
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(c) If the solubility is reduced to 10% of its original value at both surfaces, 

4 3
A,s1C 0.5 10 kmol / m−= ×   and 4 3

A,s2C 4.5 10   kmol / m−= × . Hence, 
 

  16
A,x A,x,pN 0.1N 0.32 10   kmol/s−= = ×      < 

 
(d) If the solubility of exterior Surface 1 is reduced by a factor of 9, CA,s1 = CA,s1,p/9 = 4.5 × 10-3 
kmol/m3/9 = 0.5 × 10-3 kmol/m3 = CA,s2. Hence, 
 

  CA,s1 – CA,s2 = 0 and NA,x = 0      < 
 
 
COMMENT: (1) The same value of the solubility may be found in part (a) by 
considering conditions at Surface 1. (2) By manipulating the solubilities of the surfaces 
independently, one may eliminate concentration gradients in the material and, in turn, 
completely eliminate water vapor transfer by diffusion.  Materials that have properties 
designed to change through their thickness in order to promote desired behavior are 
known as functionally-graded materials. 
 



PROBLEM 14.27 
 

 
KNOWN: Dimensions of sphere containing a pharmaceutical product. Mass loss of sphere over 
specified time period, mass diffusivity, external conditions. 
 
FIND: The value of the partition coefficient, K. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Constant properties and steady-state conditions, (2) Stationary medium. 
 
PROPERTIES: Pharmaceutical product (given): ρp = 1250 kg/m3, DAB = 0.2 × 10-11 m2/s,  
 
ANALYSIS:  By the definition of the partition coefficient provided in the problem statement, 
 

p,1 pKρ = ρ  and p,2 p,K ∞ρ = ρ . The mass transfer rate through the polymer is found using the one-
dimensional species diffusion resistance approach 
 

p,1 p,2 p
p,r

m,dif

AB 1 2

K Mn
R t1 1 1

4 D r r

ρ −ρ ρ Δ
= = =

Δ⎛ ⎞
−⎜ ⎟π ⎝ ⎠

 

Hence, 
 

p AB 1 2

M 1 1 1K
t 4 D r r

⎡ ⎤⎛ ⎞Δ
= −⎢ ⎥⎜ ⎟Δ ρ π ⎝ ⎠⎣ ⎦

 

 
6

3 11 2 3 3
8.2 10  kg 1 2 2

7 days 24 h/day 3600 s/h 1250 kg/m 4 0.2 10  m /s 5 10  m 5.1 10  m

−

− − −
⎡ ⎤× ⎛ ⎞= × −⎜ ⎟⎢ ⎥× × × π× × × ×⎝ ⎠⎣ ⎦

  

= 0.0034          < 
 
 

ρp = 1250 kg/m3

ρp,∞ = 0

ρp,1
ρp,2

Do = 5.1 mm

Di = 5 mm

r
Polymer
material

ΔM = 8.3 mg
Δt = 1 week

DAB = 0.2 × 10-11 m2/s

ρp = 1250 kg/m3

ρp,∞ = 0

ρp,1
ρp,2

Do = 5.1 mm

Di = 5 mm

r
Polymer
material

ΔM = 8.3 mg
Δt = 1 week

DAB = 0.2 × 10-11 m2/s



PROBLEM 14.28  
 

 
KNOWN: Dimensions of N =100 closed-end palladium tubes. Hydrogen (H2) pressures and 
temperature on either side of tube wall. Mass diffusivity of atomic hydrogen (H) through the 
palladium, and Sievert’s constant. 
 
FIND: Hourly production rate of pure hydrogen (H2). 
 
SCHEMATIC: 
 
 

 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Constant properties and steady-state conditions, (2) Stationary medium. 
 
PROPERTIES: Hydrogen (H) in palladium, given: DAB = 7 × 10-9 m2/s. 
 
ANALYSIS: The concentration of atomic hydrogen (H) on the outer and inner surfaces of the 
tube are 
 

  1/2 3
H,o 3 1/2

kmolC 1.4 (0.85 15 bar)  = 5.00 kmol/m
m bar

= × ×   

and  
1/2 3

H,i 3 1/2
kmolC 1.4 (6 bar)  = 3.43 kmol/m

m bar
= ×  

  
The one-dimensional species diffusion resistances for the wall and end of one tube are 
 

3 6 3
2 1

m,dif ,w -3 -9 2
AB

ln (0.8 10  m 75 10  m) / 0.8 10  mln(r / r )R
2 LD 2 80 10  m 7 10  m /s

− − −⎡ ⎤× + × ×⎣ ⎦= =
π π× × × ×

= 25.5×106 s/m3 

and 
6

m,dif ,e -9 2 -3 2
AB c

t 75 10  mR  = 
D A 7 10  m /s (0.8 10  m)

−×
=

× ×π× ×
= 5.33 × 109 s/m3 

 

The molar transfer rate of atomic hydrogen (H) in one tube is therefore 
Continued… 
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t = 75 μm
Di = 1.6 mm

Impure hydrogen, H2

T = 600 K, P = 15 bar, xH2 = 0.85

Pure H2
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CH,iCH,o
N = 100 tubes

NH
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t = 75 μm
Di = 1.6 mm
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T = 600 K, P = 15 bar, xH2 = 0.85
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T = 600 K, P = 6 bar

CH,iCH,o
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t = 75 μm
Di = 1.6 mm
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T = 600 K, P = 15 bar, xH2 = 0.85
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T = 600 K, P = 6 bar

CH,iCH,o
N = 100 tubes

NH
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3 3

3 3

kmol kmol
9m m

H 6 9s s
m m

(5.00 3.43) (5.00 3.43) kmolN 61.9 10
s25.5 10 5.33 10

−− −
= + = ×

× ×
 

 
The molar transfer rate of molecular hydrogen (H2) is therefore NH2 = 0.5NH = 30.95  kmol/s 
 
The total production rate, NH2,t, in kg/h is 
 

NH2,t = NH2 × MH2 × N × t = 30.95 kmol/s × 2kg/kmol × 3600 s/h  × 100 tubes = 0.022 kg/h     <  
 
 
Comments: (1) The concentrations of hydrogen (H2) in the gas streams are 0.25 kmol/m3 and 
0.12 kmol/m3, respectively. (2) Palladium and other nanostructured materials, such as carbon 
nanotubes, can store very high concentrations of hydrogen within their atomic matrix. 
 



PROBLEM 14.29  
KNOWN:  Conditions of the exhaust gas passing over a catalytic surface for the removal of NO.  
FIND:  (a) Mole fraction of NO at the catalytic surface, (b) NO removal rate.  
SCHEMATIC:   

 
 

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional species diffusion through the 
film, (3) Effects of bulk motion on NO transfer in the film are negligible (stationary medium), (4) No 
homogeneous reactions of NO within the film, (5) Constant properties, including the total molar 
concentration, C, throughout the film.  
ANALYSIS:  Subject to the above assumptions, the transfer of species A (NO) is governed by 
diffusion in a stationary medium, and the desired results are obtained from Eqs. 14.69 and 14.70.  
Hence 
 

 
( )

A,s
A,s 4 2A,L 1 AB

x 1 0.15x 0.10.
x 1 Lk / D 1 0.001 m 0.05 m / s 10 m / s−

= = =
′′+ + ×

   < 

 
Also 

 
( )

1 A,L
A,s

1 AB

k Cx
N

1 Lk / D
′′

′′ = −
′′+

 

where, from the equation of state for a perfect gas, 
 

 3
2 3

p 1.2 barC 0.0187 kmol / m .
T 8.314 10 m bar / kmol K 773 K−

= = =
ℜ × ⋅ ⋅ ×

 

Hence 

 
( )

3
5 2

A,s 4 2
0.05 m / s 0.0187 kmol / m 0.15N 9.35 10 kmol / s m

1 0.001 m 0.05 m / s 10 m / s
−

−
× ×′′ = − = − × ⋅

+ ×
 

or 

 ( )5 2 3 2
A,S A A,Sn N 30 kg / kmol 9.35 10 kmol / s m 2.80 10 kg / s m .− −′′ ′′= = − × ⋅ = − × ⋅M  

The molar rate of NO removal for the entire surface is then 
 
 5 2 2 6

A,s A,sN N A 9.35 10 kmol / s m 0.02 m 1.87 10 kmol / s− −′′= = − × ⋅ × = − ×  
or 

 5
A,Sn 5.61 10 kg / s.−= − ×         < 

 
COMMENTS:  Because bulk motion is likely to contribute significantly to NO transfer within the 
film, the above results should be viewed as a first approximation. 



PROBLEM 14.30  
KNOWN:  Radius of coal pellets burning in oxygen atmosphere of prescribed pressure and 
temperature.  
FIND:  Oxygen molar consumption rate.  
SCHEMATIC:   

 
 

ASSUMPTIONS:  (1) One-dimensional diffusion in r, (2) Steady-state conditions, (3) Constant 
properties, (4) Perfect gas behavior, (5) Uniform C and T, (6) Stationary medium. 
ANALYSIS:  From Equation 14.57, 

 2 Ad dCr 0
dr dr
⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

 2
A 1 A 1 2dC / dr C / r or C C / r C .= = − +  

The boundary conditions at r → ∞ and r = ro are, respectively, 
 ( )A 2C C C C∞ = → =  

 ( )
o o

A A
A A o AB AB

r r

dx dCN N r CD D
dr dr

′′ ′′= = − = −&  

Hence 

 ( ) 2
1 1 o AB 1 ok C / r C D C / r′′− − + = −  

 ( ) ( )
( ) ( )

2 1
1 1 o AB 1 o 1 1 2

1 o AB o

k Ck C / r D C / r k C or C .
k / r D / r

′′
′′ ′′+ = =

′′ +
 

The oxygen molar consumption rate is 

 ( )
o

A 1
A o AB AB

1 o ABr

dC k CN r D D
dr k r D

′′
′′ = − = −

′′ +
 

where  
( )

3 3
2 3

p 1 atmC 8.405 10 kmol / m .
T 8.205 10 m atm / kmol K 1450 K

−
−

= = = ×
ℜ × ⋅ ⋅

 

Hence, 

( ) ( )
3 3

4 2 4 2
A o 4 4 2

0.1 m / s 8.405 10 kmol / mN r 1.71 10 m / s 5.30 10 kmol / s m
10 1.71 10 m / s

−
− −

− −
× ×′′ = − × = − × ⋅
+ ×

 

 ( ) ( ) ( )22 4 2
A o o A oN r 4 r N r 4 0.001 m 5.30 10 kmol / s mπ π −′′= = × × ⋅  

 ( ) 9
A oN r 6.66 10 kmol / s.−= ×        < 

 
COMMENTS:  The O2 consumption rate would increase with increasing 1k′′  and approach a limiting 
finite value as 1k′′  approaches infinity. 



PROBLEM 14.31  
KNOWN:  Pore geometry in a catalytic reactor.  Concentration of reacting species at pore opening 
and order of catalytic reaction.  
FIND:  (a) Differential equation which determines concentration of reacting species, (b) Distribution 
of reacting species concentration along the pore.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional diffusion in x direction, (3) 
Stationary medium, (4) Uniform total molar concentration, (5) Stationary medium.  
ANALYSIS:  (a) Apply the species conservation requirement to the differential control volume, 

( )A,x 1 A A,x dxN k C D dx N 0,π +′′− − =  where 
 
 ( )A,x dx A,x A,xN N dN / dx dx+ = +  
 
and from Fick’s law 

 
2 2

A A
A,x AB AB

dx D D dCN CD D .
dx 4 4 dx

π π⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

 

Hence 

 ( ) ( )
2 2

A A
1 A AB 1 A2

dN D d Cdx k C D dx D k C D dx 0
dx 4 dx

ππ π′′ ′′− − = − =  

 
2

A 1
A2 AB

d C 4k C 0.
DDdx

′′
− =         < 

 
(b) A solution to the above equation is readily obtained by recognizing that it is of exactly the same 
form as the energy equation for an extended surface of uniform cross section.  Hence for boundary 
conditions of the form 
 
 ( ) ( ) ( )A A,0 AB A 1 Ax LC 0 C , D dC / dx k C L= ′′= − =  
 
the solution must be analogous to that obtained for a fin with a convection tip condition.  With the 
analogous quantities 

 ( ) ( )1/ 2 1/ 2
A 1 ABC T T , m 4k / DD 4h / Dkθ ∞ ′′↔ ≡ − ≡ ↔  

 
 AB 1D k, k h′′↔ ↔  
the solution is, by analogy to Eq. 3.75 

 ( ) ( ) ( ) ( )
( )

1 AB
A

1 AB

cosh m L x k / mD sinh m L x
C x .

cosh mL k / mD sinh mL
′′− + −

=
′′+

    < 

 
COMMENTS:  The total pore reaction rate is – DAB(πD2/4) (dCA/dx)x=0, which can be inferred by 
applying the analogy to Eq. 3.76. 



PROBLEM 14.32  
KNOWN:  Pressure, temperature and mole fraction of CO in auto exhaust.  Diffusion coefficient for 
CO in gas mixture.  Film thickness and reaction rate coefficient for catalytic surface.  
FIND:  (a) Mole fraction of CO at catalytic surface and CO removal rate, (b) Effect of reaction rate 
coefficient on removal rate.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state, (2) One-dimensional species diffusion in film, (3) Negligible 
effect of advection in film (stationary medium), (4) Constant total molar concentration and diffusion 
coefficient in film.  
ANALYSIS:  From Eq. (14.69) the surface molar concentration is 
 

( ) ( ) ( )
A,L

A 4 21 AB

x 0.0012x 0 0.0008
1 Lk / D 1 0.01m 0.005m / s /10 m / s−

= = =
′′+ + ×

   < 

 
With C = p/RT = 1.2 bar/(8.314 × 10-2 m3⋅bar/kmol⋅K × 773 K) = 0.0187 kmol/m3, Eq. (14.70) yields 
a CO molar flux, and hence a CO removal rate, of 
 

 ( ) ( )
1 A,L

A,s A
1 AB

k C x
N N 0

1 Lk / D
′′

′′ ′′= − =
′′+

 

 

 
( )

3
8 2

A,s 4 2
0.005m / s 0.0187 kmol / m 0.0012N 7.48 10 kmol / s m
1 0.01m 0.005m / s /10 m / s

−
−

× ×′′ = = × ⋅
+ ×

  < 

 
If the process is diffusion limited, 1 ABLk / D 1′′ >>  and 
 

3 4 2
AB A,L 7 2

A,s
C D x 0.0187 kmol / m 10 m / s 0.0012

N 2.24 10 kmol / s m
L 0.01m

−
−× ×′′ = = = × ⋅  < 

 
COMMENTS:  If the process is reaction limited, A,s 1N 0as k 0.′′ ′′→ →  



PROBLEM 14.33 
 
KNOWN: Mass flow rate of gas containing palladium (species A), which flows through a tube 
and deposits into pores of tube wall.  Inlet mass concentration of palladium.  Mass transfer 
coefficient between gas and tube surface.  Deposition rate is proportional to mass concentration 
of palladium at tube surface. 
 
FIND: (a) Expression for variation of mean species density of palladium with x.  Expression for 
local deposition rate for tube of diameter D.  (b) Ratio of deposition rates at x = L and x = 0. 
 
SCHEMATIC:   

                
 
 
 
 
 
 
ASSUMPTIONS: (1) Steady state, (2) Constant properties, (3) Constant mass flow rate, (4) 
Negligible leakage of gas through porous walls. 
 
ANALYSIS: (a) Section 8.9 develops the variation of mean species density, ρA,m, for the case in 
which the surface species concentration, ρA,s, is uniform.  Here, however, the surface 
concentration will vary as the mean species density decreases with x.  Under steady-state 
conditions, the mass flux of palladium reaching the surface must equal the mass flux of palladium 
depositing into the pores.  Referring to Equation 8.82, where A,sn′′  is the mass flux from the 
surface, 
 
 A,s m A,s A,m 1 A,sn h ( ) k′′ = ρ −ρ = − ρ  
 
Solving for the surface concentration yields ρA,s = hmρA,m/(hm + k1).  Then substituting this into 
either expression for A,sn′′  yields 
 

1
A,s m A,m m m 1n U ,     U 1/ h 1/ k−′′ = − ρ = +  

 
Comparing this result with Equation 8.82, we see that they are analogous if we replace mh  with 
Um and ρA,s with 0.  Applying the same analogy to Equation 8.86, the distribution of the mean 
species density is 
 

A,m m
A,m,i

(x) U Pexp x
m

ρ ρ⎛ ⎞= −⎜ ⎟ρ ⎝ ⎠&
      (1)      < 

where P is the perimeter, P = πD.  Note that we could have found this same result by expressing 
mass species conservation for species A.  Noting that the rate at which species A is carried 
downstream by the flow is A,mm /ρ ρ& , and assuming ρ to be constant, we have 

Continued… 

x = 0 

Gas 
&m , ρA,m,i  

D 

ρA,m, hm 

′′− = ρA,s 1 A,sn k  

x = L 
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A,m
A,s m A,m

dm n P U P
dx
ρ

′′= = − ρ
ρ
&

 

 
Integrating with respect to x and applying the inlet condition yields the same result as Equation 
(1). 
 
The local deposition rate is 
 

m
A,s m A,m m A,m,i m A,m,i

U P xn U U exp x U exp B
m L
ρ⎛ ⎞ ⎛ ⎞′′− = ρ = ρ − = ρ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠&
  (2)   < 

 
where B = UmρPL/ m& . 
 
(b) The ratio of deposition rates at x = L and x = 0 is 
 

( )ratio of deposition rates exp B= −                   < 
 
COMMENT: From Eq. (2), the deposition rate decreases exponentially with distance x.  
Therefore, as the tube length increases, the deposit thickness at the outlet end will become 
thinner, and the variation in deposit thickness between the inlet and outlet will increase. 
 



PROBLEM 14.34  
KNOWN:  Radius of a spherical organism and molar concentration of oxygen at surface.  Diffusion 
and reaction rate coefficients.  
FIND:  (a) Radial distribution of O2 concentration, (b) Rate of O2 consumption, (c) Molar 
concentration at r = 0.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state, one-dimensional diffusion, (2) Stationary medium, (3) Uniform 
total molar concentration, (4) Constant properties (k0, DAB). 
 
ANALYSIS:  (a) For the prescribed conditions and assumptions, Eq. (14.50) reduces to 
 

 2AB A
02

D d d Cr k 0
dr drr
⎛ ⎞ − =⎜ ⎟
⎝ ⎠

 

 

 
3

2 0A
1

AB

k rd Cr C
dr 3D

= +  

 

 
2

0 1
A 2

AB

k r CC C
6D r

= − +  

 
With the requirement that CA(r) remain finite at r = 0, C1 = 0.  With CA(ro) = CA,o 
 

2
0 o

2 A,o
AB

k rC C
6D

= −  

 

 ( )( )2 2
A A,o 0 AB oC C k / 6D r r= − −        < 

 
Because CA cannot be less than zero at any location within the organism, the right-hand side of the 
foregoing equation must always exceed zero, thereby placing limits on the value of CA,o.  The smallest 
possible value of CA,o is determined from the requirement that CA(0) ≥ 0, in which case 

 ( )2
A,o 0 o ABC k r / 6D≥         < 

(b) Since oxygen consumption occurs at a uniform volumetric rate of k0, the total respiration rate is 

0R k ,= ∀&  or 
 
 ( ) 3

o 0R 4 / 3 r kπ=&          < 
 
          Continued … 
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(c) With r = 0, 
 

 ( ) 2
A A,o 0 o ABC 0 C k r / 6 D= −  

 

 ( ) ( )25 3 4 3 4 8 2
AC 0 5 10 kmol / m 1.2 10 kmol / s m 10 m / 6 10 m / s− − − −= × − × ⋅ ×  

 

 ( ) 5 3
AC 0 3 10 kmol / m−= ×         < 

 
COMMENTS:  (1) The minimum value of CA,o for which a physically realistic solution is possible is 

2 5 3
A,o 0 o ABC k r / 6 D 2 10 kmol / m .−= = ×  

 
(2) The total respiration rate may also be obtained by applying Fick’s law at r = ro, in which case 

( ) ( ) ( )( ) ( )o
2 2 3

A o AB o A r r AB o o AB o o 0R N r D 4 r d C / dr D 4 R k / 6 D 2r 4 / 3 r k .π π π== − = + = =&   

The result agrees with that of part (b). 



PROBLEM 14.35  
KNOWN:  Radius of a spherical organism and molar concentration of oxygen at its surface.  
Diffusion and reaction rate coefficients.  
FIND:  (a) Radial distribution of O2 concentration, (b) Expression for rate of O2 consumption, (c) 
Molar concentration at r = 0 and rate of oxygen consumption for prescribed conditions.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state, one-dimensional diffusion, (2) Stationary medium, (3) Uniform 
total molar concentration, (4) Constant properties (k1, DAB). 
 
ANALYSIS:  (a) For the prescribed conditions and assumptions, Eq. (14.50) reduces to 
 

 2 A
AB 1 A2

1 d d CD r k C 0
dr drr
⎛ ⎞ − =⎜ ⎟
⎝ ⎠

 

 
With y ≡ r CA, d CA/dr = (1/r) dy/dr – y/r2 and 
 

 
2

2 A AB AB
AB2 2 2 2

1 d d C D d dy D d yD r r y r
dr dr dr drr r r dr

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎜ ⎟= − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 
The species equation is then 
 

 
2

1
2 AB

d y k y 0
Ddr

− =  

 
The general solution is of the form 
 

 ( ) ( )1/ 2 1/ 2
1 1 AB 2 1 ABy C sinh k / D r C cosh k / D r= +  

 
or 
 

 ( ) ( )1/ 2 1/ 21 2
A 1 AB 1 AB

C CC sinh k / D r cosh k / D r
r r

= +  
 
Because CA must remain finite at r = 0, C2 = 0.  Hence, with CA (ro) = CA,o, 
 

 
( )

A,o o
1 1/ 2

1 AB o

C r
C

sinh k / D r
=  

 
and 
 
          Continued … 



PROBLEM 14.35 (Cont.) 
 

 
( )
( )

o
1/ 2

r 1 AB
A A,o 1/ 2

1 AB o

sinh k / D r
C C

r sinh k / D r

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
      < 

 
(b) The total O2 consumption rate corresponds to the rate of diffusion at the surface of the organism. 
 

 ( ) ( ) o
2

A o AB o A rR N r D 4 r d C / drπ= − = +&  
 

 ( ) ( )1/ 2 1/ 22
o AB A,o o 1 AB 1 AB o2 oo

1 1R 4 r D C r k / D cot k / D r
rr

π
⎡ ⎤

= − +⎢ ⎥
⎢ ⎥⎣ ⎦

&  

 
 ( )o AB A,oR 4 r D C coth 1π α α= −&        < 
 

where ( )1/ 22
1 o ABk r / D .α ≡  

 

(c) For the prescribed conditions, (k1/DAB)1/2 = (20 s-1 ÷ 10-8 m2/s)1/2 = 44,720 m-1 and α = 4.472. 
 

( )
( ) ( )1/ 2 1/ 25 3 4

101 AB 1 AB
A 3

sinh k / D r sinh k / D r5 10 kmol / m 10 m kmol
C 1.136 10

sinh 4.472 r rm

− −
−× ×

= × = × ×  

 
In the limit of r → 0, the foregoing expression yields 
 
 ( ) 6 3

AC r 0 5.11 10 kmol / m−→ = ×        < 
 
 ( )4 8 2 5 3R 4 10 m 10 m / s 5 10 kmol / m 4.472coth 4.472 1π − − −= × × × × −&  

  152.18 10 kmol / s−= ×   
COMMENTS:  The total respiration rate may also be obtained by integrating the volumetric rate of 

consumption over the volume of the organism.  That is, ( )or 2
A 1 A0

R N d k C r 4 r dr.π= − ∀ =∫ ∫& &  

 



PROBLEM 14.36  
KNOWN:  Combustion at constant temperature and pressure of a hydrogen-oxygen mixture adjacent 
to a metal wall according to the reaction 2H2 + O2 → 2H2O.  Molar concentrations of hydrogen, 
oxygen, and water vapor are 0.10, 0.10 and 0.20 kmol/m3, respectively.  Generation rate of water 
vapor is 0.96 × 10-2 kmol/m3⋅s. 
 
FIND:  (a) Expression for 2HC  as function of distance from wall, plot qualitatively, (b) 2HC  at the 

wall, (c) Sketch also curves for ( ) ( )2 2O H OC x and C x ,  and (d) Molar flux of water at x = 10mm. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional diffusion, (3) Stationary 
medium, (4) Constant properties including pressure and temperature.  
PROPERTIES:  Species binary diffusion coefficient (given, for H2, O2 and H2O):  DAB = 0.6 × 10-5 
m2/s. 
 
ANALYSIS:  (a) The species conservation equation, Eq. 14.48b, and its general solution are 

 ( )
2

A A A
A 1 22 AB AB

d C N N0 C x x C x C .
D 2Ddx

+ = = − + +
& &

   (1,2) 

The boundary condition at the wall must be dCA(0)/dx = 0, such that C1 = 0.  For the species 

hydrogen, evaluate C2 from knowledge of ( )2
3

HC 10 mm 0.10 kmol / m=  and 2 2H H ON N ,= −& &  

according to the chemical reaction.  Hence, 
 

 
( )

( )
2 3

23
25 2

0.96 10 kmol / m s
0.10 kmol / m 0.010 m 0 C

2 0.6 10 m / s

−

−

− × ⋅
= − + +

× ×
 

 
 3

2C 0.02 kmol / m .=  
 
Hence, the hydrogen species concentration distribution is 

 ( ) 2
2

H 2 2
H

AB

N
C x x 0.02 800x 0.02

2D
= − + = +

&
     < 

which is parabolic with zero slope at the wall; see sketch above. 
 
(b) The value of 2HC  at the wall is, 

 ( ) ( )2
3 3

HC 0 0 0.02 kmol / m 0.02 kmol / m .= + =      < 
 
          Continued … 



PROBLEM 14.36 (Cont.) 
 
(c) The concentration distribution for water vapor species will be of the same form, 
 

 ( ) 2
2

H O 2
H O 1 2

AB

N
C x x C x C

2D
= − + +

&
       (3) 

 
With C1 = 0 for the wall condition, find C2 from ( )2H OC 10 mm ,  
 

( )
( )

2 3
3 32

2 25 2

0.96 10 kmol / m
0.20 kmol / m 0.010 m C C 0.28 kmol / m .

2 0.6 10 m / s

−

−

×
= − + =

× ×
 

 
Hence, 2H OC  at the wall is, 
 
 ( )2

3
H O 2C 0 0 0 C 0.28 kmol / m= + + =  

 
and its distribution appears as above.  Recognizing that 2 2O H ON 0.5N ,= −& &  by the same analysis, find 
 
 ( )2

3
OC 0 0.06 kmol / m=  

 
and its shape, also parabolic with zero slope at the wall is shown above. 
 
(d) The molar flux of water vapor at x = 10 mm is given by Fick’s law 
 

 2
2

H O
H O,x AB

dC
N D

dx
′′ = −  

 
and using the concentration distribution of Eq. (3), find 
 

 2
2 2

H O 2
H O,x AB H O

AB

NdN D x N x
dx 2D

⎛ ⎞
′′ = − − = +⎜ ⎟

⎜ ⎟
⎝ ⎠

&
&  

 
and evaluation at the location x = 10 mm, the species flux is 
 

 ( ) ( )2 x
2 3 5 2

H O,N 10 mm 0.96 10 kmol / m s 0.010 m 9.60 10 kmol / m s.− −′′ = + × ⋅ × = × ⋅  < 
 
COMMENTS:  Note that the generation rate of water vapor is a positive quantity.  Whereas for H2 
and O2, species are consumed and hence 2 2H ON and N& &  are negative.  According to the chemical 

reaction one mole of H2 and 0.5 mole of O2 are consumed to generate one mole of H2O.  Therefore, 

2 2H H O H O2 2N N O and N 0.5 N .= − = −& & & &  

 



PROBLEM 14.37  
KNOWN:  Molar concentrations of oxygen at inner and outer surfaces of lung tissue.  Volumetric rate 
of oxygen consumption within the tissue.  
FIND:  (a) Variation of oxygen molar concentration with position in the tissue, (b) Rate of oxygen 
transfer to the blood per unit tissue surface area.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional species transfer by diffusion 
through a plane wall, (3) Homogeneous, stationary medium with uniform total molar concentration 
and constant diffusion coefficient.  
ANALYSIS:  (a) From Eq. 14.71 the appropriate form of the species diffusion equation is 

 
2

A
AB o2

d CD k 0.
dx

− =  

Integrating, 

 ( ) 2o
A o AB 1 A 1 2

AB

kdC / dx k / D x C C x C x C .
2D

= + = + +  

With ( ) ( )A A A AC C 0 at x 0 and C C L at x L,= = = =  
 

 ( ) ( ) ( )A A o
2 A 1

AB

C L C 0 k LC C 0 C .
L 2D
−

= = −  

 
Hence 
 

 ( ) ( ) ( ) ( ) ( )o
A A A A

AB

k xC x x x L C L C 0 C 0 .
2D L

⎡ ⎤= − + − +⎣ ⎦    < 

 
(b) The oxygen assimilation rate per unit area is 
 
 ( ) ( )A,x AB A x LN L D dC / dx =′′ = −  
 

 ( ) ( ) ( )o o AB
A,x AB A A

AB AB

k L k L DN L D C L C 0
D 2D L

⎛ ⎞
′′ ⎡ ⎤= − − − −⎜ ⎟ ⎣ ⎦

⎝ ⎠
 

 

 ( ) ( )o AB
A,x A A

k L DN C 0 C L .
2 L

′′ ⎡ ⎤= − + −⎣ ⎦       < 
 
COMMENTS:  The above model provides a highly approximate and simplified treatment of a 
complicated problem.  The lung tissue is actually heterogeneous and conditions are transient. 



PROBLEM 14.38  
KNOWN:  Ground level flux of NO2 in a stagnant urban atmosphere. 
 
FIND:  (a) Vertical distribution of NO2 molar concentration, (b) Critical ground level flux of NO2, 

A,0,critN .′′  
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional diffusion in a stationary medium, 
(3) Total molar concentration C is uniform, (4) Perfect gas behavior.  
ANALYSIS:  (a) For the prescribed conditions the molar concentration of NO2 is given by Eq. 14.73, 
subject to the following boundary conditions. 

 ( ) A,0A
A

ABx 0

NdCC 0, .
dx D=

′′⎞∞ = = −⎟
⎠

 

 
From the first condition, C1 = 0.  From the second condition, 
 2 A,0 ABmC N / D .′′− = −  
 
Hence 

 ( ) A,0 mx
A

AB

N
C x e

mD
−′′

=         < 

 
where m = (k1/DAB)1/2. 
 

(b) At ground level, ( ) A,0
A

AB

N
C 0 .

mD
′′

=   Hence, from the perfect gas law, 

 

 ( ) ( ) A,0
A A

AB

TN
p 0 C 0 T .

mD
′′ℜ

= ℜ =  

 
Hence, with m = (0.03/0.15 × 10-4)1/2 m-1 = 44.7 m-1. 
 

 
( ) 1 4 2 6AB A crit

A,0,crit 2 3
mD p 0 44.7 m 0.15 10 m / s 2 10 barN

T 8.314 10 m bar / kmol K 300 K

− − −

−
× × × ×′′ = =

ℜ × ⋅ ⋅ ×
 

 
 11 2

A,0,critN 5.38 10 kmol / s m .−′′ = × ⋅       < 
 
COMMENTS:  Because the dispersion of pollutants in the atmosphere is governed strongly by 
convection effects, the above model should be viewed as a first approximation which describes a worst 
case condition. 



PROBLEM 14.39  
KNOWN:  Ground level flux of NO2 in a stagnant urban atmosphere. 
 
FIND:  (a) Governing differential equation and boundary conditions for the molar concentration of 
NO2, (b) Concentration of NO2 at ground level three hours after the beginning of emissions. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) One-dimensional diffusion in a stationary medium, (2) Uniform total molar 
concentration, (3) Constant properties.  
ANALYSIS:  (a) Applying the species conservation requirement, Eq. 14.43, on a molar basis to a unit 
area of the control volume, 

 ( ) A
A,x 1 A A,x dx

CN k C dx N dx.
t+

∂′′ ′′− − =
∂

 
 
With ( ) ( )A,x dx A,x A,x A,x AB AN N N / x dx  and N D C / x ,+′′ ′′ ′′ ′′= + ∂ ∂ = − ∂ ∂  it follows that 

 
2

A A
AB 1 A2

C CD k C .
tx

∂ ∂
− =

∂∂
        < 

Initial Condition: ( )AC x,0 0.=         < 
 

Boundary Conditions: ( )A
AB A,0 A

x 0

CD N , C , t 0.
x =

∂ ⎞ ′′− = ∞ =⎟∂ ⎠
   < 

 
(b) The present problem is analogous to Case (2) of Fig. 5.7 for heat conduction in a semi-infinite 
medium.  Hence by analogy to Eq. 5.62, with AB ABk D and D ,α↔ ↔  
 

 ( )
( )

1/ 2 2 A,0
A A,0 1/ 2AB AB AB AB

N xt x xC x, t 2N exp erfc
D 4D t D 2 D tπ

⎛ ⎞⎛ ⎞ ′′⎛ ⎞ ⎜ ⎟′′ ⎜ ⎟= − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 
At ground level (x = 0) and 3h, 

 ( )
1/ 2

A A,0
AB

tC 0,3h 2N
Dπ

⎛ ⎞
′′= ⎜ ⎟

⎝ ⎠
 

 

( ) ( )( )1/ 211 2 4 2 7 3
AC 0, 3h 2 3 10 kmol / s m 10,800 s / 0.15 10 m / s 9.08 10 kmol / m .π− − −= × ⋅ × × = ×  < 

 
COMMENTS:  The concentration decays rapidly to zero with increasing x, and at x = 100 m it is, for 
all practical purposes, equal to zero. 



PROBLEM 14.40  
KNOWN:  Initial concentration of hydrogen in a sheet of prescribed thickness.  Surface 
concentrations for time t > 0.  
FIND:  Time required for density of hydrogen to reach prescribed value at midplane of sheet.  
SCHEMATIC:   

 
 
 

     CA(x,0) = 3 kmol/m3 = CA,i 
     CA(0,tf) = 1.2 kg/m3/2 kg/kmol 
     CA(0,tf) = 0.6 kmol/m3 = CA 
     CA(20 mm,t) = 0 = CA,s 
 
 
 

ASSUMPTIONS:  (1) One-dimensional diffusion in x, (2) Constant DAB, (3) No internal chemical 
reactions, (4) Uniform total molar concentration, (5) Stationary medium.  
ANALYSIS:  The mass transfer Biot number is Bim = hmL/DAB → ∞. Hence, 1

mBi− = 0. By analogy to 
Equation 5.44, the approximate solution, it follows that 
 
 

 ( ) A A,s2
o 1 m1

A,i A,s

C C 0.6 0.0C exp Fo 0.2
C C 3.0 0.0

∗ − −
≈ − = = =

− −
γ ς  

 
 
Using values of 1 11.57 and C 1.27= =ς  from Table 5.1, it follows that 
 

 ( )2 m1.27exp 1.57 Fo 0.2⎡ ⎤− =⎢ ⎥⎣ ⎦
 

 
from which 
 
 
 mFo 0.75=  
 

Hence, tf = 0.75(0.02m)2/9×10-7 m2/s = 333 s       < 
 
COMMENT: Fom > 0.2. Hence, the approximate, one-term solution is valid. 
 



PROBLEM 14.41  
KNOWN:  Radius and temperature of air bubble in water.  
FIND:  Time to reach 99% of saturated vapor concentration at center.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) One-dimensional radial diffusion of vapor in air, (2) Constant properties, (3) 
Air is initially dry, (4) Stationary medium. 
 
PROPERTIES:  Table A-8, Water vapor-air (300 K): DAB = 0.26 × 10-4 m2/s. 
 
ANALYSIS:  If the one-term approximation to the infinite series solution (Eq. 5.53), 
 
 * 2

0 1 1C exp( Fo)= −θ ζ  
 
is used, it follows that, 
 

 ( ) A A,s2
o 1 m1

A,i A,s

C C 0.99 1C exp Fo 0.01.
C C 0.0 1

∗ − −
≈ − = = =

− −
γ ζ  

 
Using values of 1 1 mC 2.0 and 3.1415 for Bi ,= = →∞ς  it follows that 
 

 ( )2 m m0.01 2.0 exp 3.1415 Fo or Fo 0.54⎡ ⎤= − =⎢ ⎥⎣ ⎦
 

 
Hence, t = FomD2/DAB = 0.54(0.001m)2/0.26 × 10-4 m2/s = 0.02 s    < 
 
COMMENT: Since Fo > 0.2, the approximate solution is valid. 



PROBLEM 14.42 
 
KNOWN:  Radius and temperature of air bubble. 
 
FIND:  (a) Time to reach 95% of the maximum average water vapor concentration, (b) Time to reach 
50% of the maximum average water vapor concentration. 
 
SCHEMATIC: 
 
 

 
 
 

 
 
ASSUMPTIONS:  (1) One-dimensional radial diffusion of vapor in air, (2) Constant properties, (3) 
Air is initially dry, (4) Stationary medium. 
 
PROPERTIES: Table A.8, Water vapor-air (300 K): DAB = 0.26 × 10-4 m2/s. 
 
ANALYSIS:  (a) We may employ the one-term approximation to the infinite series solution (Eq. 
5.55) 
 

[ ] ( )
*

* 2
1 1 1 1 13

1

31 sin( ) cos( )    ;   expo
o

Q C Fo
Qo

θ ζ ζ ζ θ ζ
ζ

= − − = −  

 
By analogy, the preceding equations may be written as 
 

 [ ] ( )
*

A A,s* 2A
1 1 1 1 13

A,max A,i A,s1

31 sin( ) cos( )    ;   expo
o m

C CC C Fo
C C C

γ ζ ζ ζ γ ζ
ζ

−
= − − = = −

−
 

 
Using values of C1 = 2.000 and ζ1 = 3.1415 from Table 5.1 for Bim→ ∞, it follows that 
 

 
[ ]

( )

*
A

3
A,max

A A,s* 2

A,i A,s

30.95 1 sin(3.1415) 3.1415cos(3.1415)    ;
3.1415

        2.0exp 3.1415

o

o m

C
C

C C
Fo

C C

γ

γ

= = − −

−
= = −

−

 

Solving the two equations yields *
oγ = 0.1645, Fom = 0.2531. Since Fom > 0.2, the approximate solution 

is valid. Hence,   
 
 ( )22 4 2 3

AB/ 0.2531 0.001m / 0.26 10 m / s 9.7 10  s = 9.7 msm ot Fo r D − −= = × = ×   < 
 
(b) The time associated with an average water vapor concentration of 50% is expected to be 
significantly shorter than in part (a). Hence, Fom may be less than 0.2 and the one-term approximation 
to the exact solution may not be valid. Therefore, we employ the approximate solution of Section 5.8 
and apply the analogy between heat and mass transfer. 
 

 
Continued… 
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PROBLEM 14.42 (Cont.) 
 
 
From Table 5.2a for Fo < 0.2, 
 

  2
1* 1   ;    

( )
s o

s i o

q r tq Fo
k T T Fo r

α
π

′′
= = − =

−
 

 
Substituting the expression for Fo into the first equation yields 
 

  1/2( ) 1s i o
s

o

k T T rq t
r πα

−− ⎡ ⎤′′ = −⎢ ⎥⎣ ⎦
 

 
We desire an expression for Q/Qo. Hence, 
 

  

2

1/20
3 2

0

4
3 1

(4 / 3) ( )

t

o s t
t o

o o s i o t

r q dt
Q r t dt
Q r c T T r

π
α

παπ ρ
−=

=

′′
⎛ ⎞= = −⎜ ⎟− ⎝ ⎠

∫
∫  

 
or 

1/ 2
2

3 2 o

o o

Q r t t
Q r

α
πα

⎡ ⎤= −⎢ ⎥⎣ ⎦     

2      3 Fo Fo
π

⎡ ⎤= −⎢ ⎥⎣ ⎦

    

 
Applying the analogy between heat and mass transfer,  
 

   
A

A,max

20.50 3 m m
C Fo Fo

C π
⎡ ⎤= = −⎢ ⎥⎣ ⎦

    

 
from which Fom = 0.0305. Hence,  

 
( )22 4 2 3

AB/ 0.0305 0.001m / 0.26 10 m / s 1.17 10  s = 1.17 msm ot Fo r D − −= = × = ×    < 
 

COMMENTS: (1) Use of the approximate solution of Section 5.8 is not valid for part (a) since its use 
yields Fom = 0.366, which does not satisfy the criterion Fom < 0.2. (2) Use of the one-term 
approximation to the exact solution for part (b) yields a mass transfer Fourier number of Fom = 0.0198, 
which does not satisfy the criterion Fom > 0.2.  
 



PROBLEM 14.43  
KNOWN:  Initial carbon content and prescribed surface content for heated steel.  
FIND:  Time required for carbon mole fraction to reach 0.01 at a distance of 1 mm from the surface.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steel may be approximated as a semi-infinite medium, (2) One-dimensional 
diffusion in x, (3) Isothermal conditions, (4) No internal chemical reactions, (5) Uniform total molar 
concentration, (6) Stationary medium.  
ANALYSIS:  Conditions within the steel are governed by the species diffusion equation of the form 

 
2

A A
2 AB

C 1 C
D tx

∂ ∂
=

∂∂
 

 
or, in molar form, 
 

 
2

A A
2 AB

x 1 x .
D tx

∂ ∂
=

∂∂
 

 
The initial and boundary conditions are of the form 
 ( )Ax x,0 0.001=  
 
 ( ) ( )A A,s Ax 0, t x 0.02 x , t 0.001.= = ∞ =  
 
The problem is analogous to that of heat transfer in a semi-infinite medium with constant surface 
temperature, and by analogy to Eq. 5.60, the solution is  

 
( )

( )
A A,s

1/ 2A,i A,s AB

x x, t x xerf
x x 2 D t

⎛ ⎞− ⎜ ⎟=
⎜ ⎟−
⎝ ⎠

 

 
where 

 [ ]5 11 2
ABD 2 10 exp 17,000 /1273 3.17 10 m / s.− −= × − = ×  

 
Hence 

 

( )1/ 211

0.01 0.02 0.001 m0.526 erf
0.001 0.02

2 3.17 10 t−

⎛ ⎞
⎜ ⎟−

= = ⎜ ⎟
− ⎜ ⎟×⎜ ⎟

⎝ ⎠

 

 
where erf w = 0.526 → w ≈ 0.51, 
 

 ( )1/ 2110.51 0.001/ 2 3.17 10 t or t 30,321 s 8.42 h.−= × = =  < 



PROBLEM 14.44  
KNOWN:  Thick plate of pure iron at 1000°C subjected to a carburizing process with sudden 
exposure to a carbon concentration CC,s at the surface. 
 
FIND:  (a) Consider the heat transfer analog to the carburization process; sketch the mass and heat 
transfer systems; explain correspondence between variables; provide analytical solutions to the mass 
and heat transfer situation; (b) Determine the carbon concentration ratio, CC (x, t)/CC,s, at a depth of 1 
mm after 1 hour of carburization; and (c) From the analogy, show that the time dependence of the 

mass flux of carbon into the plate can be expressed as ′′ = −n  D  tC C,s C Feρ π/ ;/b g1 2  also, obtain an 
expression for the mass of carbon per unit area entering the iron plate over the time period t.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) One-dimensional transient diffusion, (2) Thick plate approximates a semi-
infinite medium for the transient mass and heat transfer processes, and (3) Constant properties, (4) 
Stationary medium.  
ANALYSIS:  (a) The analogy between the carburizing mass transfer process in the plate and the heat 
transfer process is illustrated in the schematic above.  The basis for the mass - heat transfer analogy 
stems from the similarity of the conservation of species and energy equations (Eqs. 14.77 and 5.29, 
respectively), the general solution to the equations, and their initial and boundary conditions.  For both 
processes, the plate is a semi-infinite medium with initial distributions, CC (x, t ≤ 0) = CC,i = 0 and T 
(x, t ≤ 0) = Ti, suddenly subjected to a surface potential, CC (0, t > 0) = CC,s and T (0, t > 0) = Ts.  The 
heat transfer situation corresponds to Case 1, Figure 5.7, from which the following relations were 
obtained. 
 
 Heat transfer    Mass transfer 
 Distributions 
 

 ( , ) erf
2

s

i s

T x t T x
T T tα

− ⎛ ⎞
= ⎜ ⎟− ⎝ ⎠

   c c,

c, C-Fe

( , )
erf

0 2
s

s

C x t C x
C D t

⎛ ⎞−
= ⎜ ⎟⎜ ⎟− ⎝ ⎠

 

      or 
       

      c

c, C-Fe

( , ) erfc
2s

C x t x
C D t

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 

 Fluxes 
 

 " ( )( ) s i
s

k T Tq t
tπα

−
=    C-Fe ,"

,
C-Fe

( )
( ) C s

C s
D

n t
D t
ρ

π
=  

 
 
          Continued … 



PROBLEM 14.44 (Cont.) 
 
     
 
(b) Using the concentration distribution expression above, with L = 1 mm, t = 1 h and 
DC-Fe = 3 × 10-11 m2/s, find the concentration ratio, 
 

 
C  1 mm,  1 h

C
erfc 0.001 m

2 3 10  m s 3600 s

C
C,s -11 2

b g
e j

=
× ×

F

H

GGG

I

K

JJJ
=

/
./1 2 0 0314    < 

 
(c) From the species flux expression above, the mass flux of carbon can be written as 
 

 ( )1/ 2"
C,s C,s C Fen  D /  t−= ρ π         < 

 
The mass per unit area entering the plate over the time period follows from the integration of the rate 
expression 
 

     ( ) ( ) ( )
t t

0 0

1/ 2 1/ 2" -1/2
C C,s C,s C-Fe C,s C Fem  t n  dt  D /  t  dt 2  D  t/ρ π ρ π−= = =∫ ∫        < 

 
 
 



PROBLEM 14.45 
 
KNOWN:  Radius of pharmaceutical product, density of the active ingredient, partition coefficient, 
and binary diffusion coefficient of the active ingredient in the gastrointestinal tract. 
 
FIND:  (a) Dosage delivered over 5 hours from a D = 6 mm diameter tablet, (b) Dosage delivered 
over 5 hours from N = 200 small, spherical tablets of the same mass. 
 
SCHEMATIC: 
 
 

 
 
 

 
 
 
ASSUMPTIONS:  (1) One-dimensional radial diffusion of active ingredient, (2) Constant properties, 
(3) Stationary medium, (4) Constant sphere radius. 
 
PROPERTIES: Given: DAB = 0.40 × 10-10 m2/s, K = 3 × 10-2. 
 
ANALYSIS:  (a) The approximate solution of Chapter 5 for external conduction from an isothermal 
sphere and the heat-mass transfer analogy will be used. From Table 5.2a, 
 

1*( ) 1q Fo
Foπ

= +    or,   1
( )

s o o

s

q r r
k T T tπα∞

′′
= +

−
              (1,2) 

 
By analogy, Eq. 2 may be written as 
 

   A,

AB A, A, AB
1

( )
s o o

s

n r r
D D tρ ρ π∞

′′
= +

−
     (3) 

 
Rearranging, 
 

  
( ) ( )AB A, A, AB A, A,

A,
/ s s

s
o

D D
n

rt

π ρ ρ ρ ρ∞ ∞− −
′′ = +  

 
For ρA,∞ = 0, the dosage (for As = 4πro

2) is 
 

 AB A,2 2 1/2
A, AB A,

0

( )
4 4 / ( )

t t
s

o s o s
oo

D
D r n dt r D t dt

r
ρ

π π π ρ −⎡ ⎤
′′= = +⎢ ⎥

⎣ ⎦
∫ ∫  

 
With ρA,s = KρA, the preceding expression yields 
 
   1/ 2

A AB AB4 2 /o oD r K r D t D tπ ρ π⎡ ⎤= +⎣ ⎦     (4) 

 
Continued… 

 
 

ro = 3 mm or 0.513 mm

Medication

ρA,s

Gastrointestinal fluid
CA,∞ = 0, DAB = 0.4 ×10-10 m2/s

, K = 3 × 10-2

ρA = 15 kg/m3



PROBLEM 14.45 (Cont.) 
 
 

Substituting the appropriate values into Eq. 4 results in 
 
 

 
3 10 2

3 2 3
10 2

2 3 10 m 0.4 10 m /s 18000s /4 3 10 m 3 10 15kg/m
0.4 10 m /s 18000s

D ππ
− −

− −
−

⎡ ⎤× × × ×⎢ ⎥= × × × × × ×
⎢ ⎥+ × ×⎣ ⎦

 

 
 D = 60.9 × 10-9 kg = 60.9 × 10-6 g = 60.9 μg      < 
 
(b) For the same initial mass and N = 200 tablets,  
 

 3 3
,1 ,

4 4
3 3o o N

Nr rπ π=   or  1/3 3 1/3
, ,1 / 3 10 m / 200 0.513 mmo N or r N −= = × =  

 
The dosage is D = ND1 where D1 is the dosage for one tablet. Hence, 
 

3 10 2
3 2 3

1 10 2

2 0.513 10 m 0.4 10 m /s 18000s /200 4 0.513 10 m 3 10 15kg/m
0.4 10 m /s 18000s

D ND ππ
− −

− −
−

⎡ ⎤× × × ×⎢ ⎥= = × × × × × × ×
⎢ ⎥+ × ×⎣ ⎦

 
 D = 703 × 10-9 kg = 703 × 10-6 g = 703 μg      < 
 

 
COMMENTS: (1) The dosage is controlled by the tablet size. In this example, the medication dosage 
is increased by over an order of magnitude by replacing the single tablet with the encapsulated, smaller 
diameter spherical tablets. (2) The initial mass of the medication is M = 4/3ρπro

3 = 
4/3×15kg/m3×π×(3×10-3m)3 = 1.696×10-6 kg = 1.696×10-3 g = 1.696 mg = 1696 μg. For the smaller 
tablets, the mass of medication left after 5 hours is 1696 μg – 703 μg = 993 μg. Hence, the tablet 
radius after 5 hours is r5h = 0.513mm×(993/1696)1/3 = 0.429 mm. The assumption of a constant radius 
is marginally valid. 



PROBLEM 14.46  
KNOWN:  Thickness, initial condition and bottom surface condition of a water layer.  
FIND:  (a) Time to reach 25% of saturation at top, (b) Amount of salt transfer in that time, (c) Final 
concentration of salt solution at top and bottom.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) One-dimensional diffusion, (2) Uniform total mass density, (3) Constant DAB, 
(4) Stationary medium.  
ANALYSIS:  (a) With constant ρ and DAB and no homogeneous chemical reactions, Eq. 14.47b 
reduces to 

 
2

A A
2 AB

1 .
D tx

ρ ρ∂ ∂
=

∂∂
 

with the origin of coordinates placed at the top of the layer, the dimensionless mass density is 

 ( ) A A,s A
m

i A,i A,s A,s
x , Fo 1

ρ ργ ργ
γ ρ ρ ρ

∗ ∗ −
= = = −

−
 

Hence, ( )m,10, Fo 1 0.25 0.75.γ ∗ = − =   The initial condition is ( )x ,0 1,γ ∗ ∗ =  and the boundary 

conditions are 

 ( )m
x 0

0 1, Fo 0
x

γ γ
∗

∗
∗

∗
=

∂
= =

∂
 

 
where the condition at x 1∗ =  corresponds to Bim = ∞.  Hence, the mass transfer problem is analogous 
to the heat transfer problem governed by Eq. 5.38 through 5.40.  Assuming applicability of a one-term 
approximation (Fom > 0.2), the solution is analogous to Eq. 5.43. 
 

( ) ( )2
1 m 11C exp Fo cos x .γ ς ς∗ ∗= −  

 
With m 1Bi , / 2 1.571ς π= ∞ = =  rad and, from Table 5.1, C1 ≈ 1.273.  Hence, for x 0,∗ =  

 ( )2 m,10.75 1.273exp 1.571 Fo⎡ ⎤= −⎢ ⎥⎣ ⎦
 

 

 ( ) ( )2m,1Fo ln 0.75 /1.274 / 1.571 0.214.= − =  

Hence, 

 
( )22

8
1 m,1 9 2AB

1 mLt Fo 0.214 1.79 10 s 2071 days.
D 1.2 10 m / s−

= = = × =
×

  < 

          Continued … 



PROBLEM 14.46 (Cont.) 
 

 
(b) The change in the salt mass within the water is 
 

 ( ) ( ) L
A A 1 A,i A A,i A0

M M t M dV A dxρ ρ ρΔ = − = ∫ − = ∫  
 
Hence, 
 

 ( )L
A A,s A A,s0

M / dxρ ρ ρ′′Δ = ∫  
 

 ( )1
A A,s 0

M L 1 dxρ γ ∗ ∗′′Δ = −∫  
 

 ( ) ( )1 2
A A,s 1 m,1 110

M L 1 C exp Fo cos x dx∗ ∗⎡ ⎤′′Δ = − −⎢ ⎥⎣ ⎦∫ρ ς ς  
 

 ( )2
A A,s 1 m,1 1 11M L 1 C exp Fo sin / .⎡ ⎤′′Δ = − −⎢ ⎥⎣ ⎦

ρ ς ς ς  
 
Substituting numerical values, 
 

 ( )
( )2

3
A

1.274exp 1.571 0.214 1
M 380 kg / m 1 m 1

1.571rad

⎡ ⎤⎡ ⎤−⎢ ⎥⎢ ⎥⎣ ⎦′′Δ = −⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
 2

AM 198.3 kg / m .′′Δ =         < 
 
(c) Steady-state conditions correspond to a uniform mass density in the water.  Hence, 
 
 ( ) ( ) 3

A A A0, L, M / L 198.3 kg / m .′′∞ = ∞ = Δ =ρ ρ      < 
 
COMMENTS:  (1) The assumption of constant ρ is weak, since the density of salt water depends 
strongly on the salt composition. 
 
(2) The requirement of Fom > 0.2 for the one-term approximation to be valid is barely satisfied. 



PROBLEM 14.47  
KNOWN:  Temperature distribution expression for a semi-infinite medium, initially at a uniform 

temperature, that is suddenly exposed to an instantaneous amount of energy, ′′Q  J / mo
2e j.   

Analogous situation of a silicon (Si) wafer with a 1-μm layer of phosphorous (P) that is placed in a 
furnace suddenly initiating diffusion of P into Si.  
FIND:  (a) Explain the correspondence between the variables in the analogous temperature and 
concentration distribution expressions, and (b) Determine the mole fraction of P at a depth of 0.1 μm 
in the Si after 30 s.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) One-dimensional, transient diffusion, (2) Wafer approximates a semi-infinite 
medium, (3) Uniform properties, and (4) Diffusion process for Si and P is initiated when the wafer 
reaches the elevated temperature as a consequence of the large temperature dependence of the 
diffusion coefficient, (5) Stationary medium. 
 
PROPERTIES:  Given in statement:  DP-Si = 1.2 × 10-17 m2/s; Mass densities of Si and P: 2000 and 
2300 kg/m3; Molecular weights of Si and P: 30.97 and 28.09 kg/kmol. 
 
ANALYSIS:  (a) For the thermal process illustrated in the schematic, the temperature distribution is 
 

 T x,  t T Q

c t
exp x ti

o 2b g
b g e j− =

′′
−

ρ πα
α1 2 4/ /      (HT) 

 
where Ti is the initial, uniform temperature of the medium.  For the mass transfer process, the P 
concentration has the form 

 C x,  t
M

 D  t
exp x  D  tP

P,o

P Si

2
P Sib g

b g e j=
′′

−
−

−
π 1 2 4/ /     (MT) 

where ′′MP,o  is the molar area density (kmol/m2) of P represented by the film of concentration CP and 

thickness do. 
 
The correspondence between mass and heat transfer variables in the equations HT and MT involves 
the following conditions.  The LHS represents the increase with time of the temperature or 
concentration above the initial uniform distribution.  The initial concentration is zero, so only the CP 
(x, t) appears. On the RHS note the correspondence of the terms in the exponential parenthesis and in 
the denominator.  The thermal diffusivity and diffusion coefficient are directly analogous; this can be 
seen by comparing the MT and HT diffusion equations, Eq. 2.21 and 14.77.  The terms ′′Q co / ρ  and 

′′MP,o  for HT and MT represent the energy and mass instantaneously appearing at the surface.  The 
product ρc is the thermal capacity per unit area and appears in the storage term of the HT diffusion 
equation.  For MT, the “capacity” term is the volume itself. 
          Continued … 



PROBLEM 14.47 (Cont.) 
 
(b) The molar area density (kmol/m2) of P associated with the film of thickness do = 1 μm and 
concentration CP,o is 
 
 ′′ = ⋅ =M C d dP,o P,o o P P oρ / Mb g  
 

 ′′ = × × −M  kg / m  kmol / kg  mP,o
32000 30 97 1 10 6/ .e j  

 

 ′′ = × −M  kmol / mP,o
26 458 10 5.  

 
Substituting numerical values into the MT equation, find 
 

( )
( )

( ) ( )
5 2 2-6 17 2

p 1/ 2-17 2

6.458 10  kmol/mC 0.1 m, 30 s exp 0.1 10  m / 4 1.2 10  m / s 30 s
1.2 10  m / s 30 s

−
−× ⎤μ = − × × × ×

⎦
π× × ×

 

 
 3

pC 1.85 kmol/m=  
 
The mole fraction of P in the Si wafer is 
 
 ( )P P Si P Si Six C / C C / /= = ρ M  
 
 ( )3 3

Px 1.85 kmol/m / 2300 kg/m / 28.09 kmol/kg=  

 

 Px 0.023=          < 
 



PROBLEM 14.48  
KNOWN:  Carbon dioxide concentration at water surface and reaction rate constant.  
FIND:  (a) Differential equation which governs variation with position and time of CO2 concentration 
in water, (b) Appropriate boundary conditions and solution for a deep body of water with negligible 
chemical reactions.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) One-dimensional diffusion in x, (2) Constant properties, including total density 
ρ, (3) Water is stagnant, (4) Stationary medium.  
ANALYSIS:  (a) From Eq. 14.47b, it follows that, for the prescribed conditions, 

 
2

A A
AB 1 A2D k .

tx

ρ ρρ∂ ∂
− =

∂∂
        < 

The first term on the left-hand side represents the net transport of CO2 into a differential control 
volume by diffusion.  The second term represents the rate of CO2 consumption due to chemical 
reactions.  The term on the right-hand side represents the rate of increase of CO2 storage within the 
control volume. 
 
(b) For a deep body of water, appropriate boundary conditions are 
 
 ( )A A,00, tρ ρ=  
 
 ( )A , t 0ρ ∞ =  
 
and, with negligible chemical reactions, the species diffusion equation reduces to 
 

 
2

A A
2 AB

1 .
D tx

ρ ρ∂ ∂
=

∂∂
 

 
With an initial condition, ρA(x,0) ≡ ρA,i = 0, the problem is analogous to that involving heat transfer in 
a semi-infinite medium with constant surface temperature.  By analogy to Eq. 5.60, the species 
concentration is then 
 

 
( )

( )
A A,0

1/ 2A,0 AB

x, t xerf
2 D t

ρ ρ
ρ

⎛ ⎞− ⎜ ⎟=
⎜ ⎟−
⎝ ⎠

 

 

 ( )
( )

A A,0 1/ 2
AB

xx, t erfc .
2 D t

ρ ρ
⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

      < 



PROBLEM 14.49 
 

 
KNOWN: Solubility and diffusivity of oxygen (O2) in polycarbonate. Distance of thin reacting 
film of polymer from DVD surface. Initial O2 distribution. Critical concentration needed to start 
reaction in the thin film. 
 
FIND: Elapsed time before reaction begins in the thin film. 
 
SCHEMATIC: 
 
 

 
 
 
 
 
 
 
ASSUMPTIONS: (1) Constant properties and steady-state conditions, (2) Stationary medium. 
(3) Presence of thin, reacting film does not affect the diffusion process, (4) Semi-infinite media. 
 
PROPERTIES: Oxygen (O2) in polycarbonate, given: DAB = 6.5 × 10-12 m2/s, S = 8.9 × 10-3 

kmol/m3·bar. 
 
ANALYSIS: 
The mole fraction of oxygen in air is 0.21. Therefore, the partial pressure of O2 in the atmosphere is 
 

   02
barP 0.21 atm 1.0133 0.213 bar
atm

= × =  

 
and the surface concentration is 
 

 -3 -3
s O2 3 3

kmol kmolC C(x=0) = SP  = 8.9 10  0.213 bar = 1.89 10  
m bar m

= × × ×
⋅

 

 
Incorporating the heat and mass transfer analogy and using Eq. 5.60, 
 

s

i s AB

C(x, t) C xerf
C C 2 D t

⎛ ⎞−
= ⎜ ⎟⎜ ⎟− ⎝ ⎠

 = 

5 3
33 3

23 123

kmol kmol5 10 1.89 10 0.5 10 mm m erfkmol m0 1.89 10 2 6.5 10 tm s

− −
−

−
−

⎛ ⎞
⎜ ⎟× − × ×⎜ ⎟=
⎜ ⎟− × ⎜ ⎟× ×⎜ ⎟
⎝ ⎠

 

which yields 

    t = 3940 s      < 
COMMENT: The thin film will convert O2 to a product of the reaction. A more detailed 
analysis would include the effects of O2 conversion on the process.  

Polycarbonate
DAB = 6.5 × 10-12 m2/s
S = 8.9 × 10-3 kmol/m3⋅bar

Thin reacting film

x

Atmospheric conditions Cs

Polycarbonate
DAB = 6.5 × 10-12 m2/s
S = 8.9 × 10-3 kmol/m3⋅bar

Thin reacting film

x

Atmospheric conditions Cs



PROBLEM 14.50 
 
KNOWN: DVD with reacting polymer throughout, undergoing first-order homogeneous 
reaction between polymer and oxygen, with reaction rate proportional to oxygen molar 
concentration. 
 
FIND: (a) Governing equations and boundary and initial conditions for oxygen molar 
concentration.  (b) Expression for volume-averaged molar concentration of product of reaction. 
 
SCHEMATIC: 

`                
 
 
 
 
 
ASSUMPTIONS: (1) Constant properties, (2) One-dimensional mass diffusion with 
heterogeneous chemical reaction.  (3) Reaction rate is proportional to molar concentration of 
oxygen. 
  
ANALYSIS:  (a) From Eq. 14.48b for one-dimensional diffusion of species A (oxygen), 
 

2
A A

AB A2
C CD N

t x
∂ ∂

= +
∂ ∂

&  
 
For a first-order reaction that consumes oxygen, we can write A 1 AN k C= −& .  Thus, 

 
2

A A
AB 1 A2

C CD k C
t x

∂ ∂
= −

∂ ∂
   `             < 

 
The boundary conditions express symmetry about the midplane and relate the molar 
concentration at the surface to the partial pressure of oxygen in the environment, pA. 
 

A
A A

x 0

C 0,      C (L, t) Sp
x =

∂
= =

∂
               < 

 
The initial condition expresses that there is no oxygen initially in the DVD before the pouch is 
opened, that is, 
 

 AC (x,0) 0=                   < 
 

(b) Since each mole of oxygen that reacts with the polymer results in p moles of product, we can 
write the following expression for the rate of generation of product: prod A 1 AN pN pk C= − =& & .  

Continued… 
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The volume-averaged molar concentration of product is just the rate of generation integrated over 
time and averaged over the volume.  Thus, 
 

 
t L t L t

prod prod prod 1 AV 0 L 0 0 0
1 1 1C N dtdV N dt(Adx) pk C dtdx
V 2AL L−

= = =∫ ∫ ∫ ∫ ∫ ∫& &  

L t1
prod A0 0

pkC C (x, t)dtdx
L

= ∫ ∫                < 

  



PROBLEM 14.51  
KNOWN:  Sheet material has high, uniform concentration of hydrogen at the end of a process, and is 
then subjected to an air stream with a specified, low concentration of hydrogen.  Mass transfer 
parameters specified include:  convection mass transfer coefficient, hm, and the mass diffusivity and 
solubility of hydrogen (A) in the sheet material (B), DAB and SAB, respectively. 
 
FIND:  (a) The final mass density of hydrogen in the material if the sheet is exposed to the air stream 
for a very long time, ρA,f, (b) Identify and evaluate the parameter that can be used to determine 
whether the transient mass diffusion process in the sheet can be characterized by a uniform 
concentration at any time; Hint: this situation is analogous to the lumped capacitance method for a 
transient heat transfer process; (c) Determine the time required to reduce the hydrogen concentration 
to twice the limiting value calculated in part (a).  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) One-dimensional diffusion, (2) Stationary medium, (3) Constant properties, (4) 
Uniform temperature in air stream and material, and (5) Ideal gas behavior.  
ANALYSIS:  (a) The final content of H2 in the material will depend upon the solubility of H2 (A) in 
the material (B) and its partial pressure in the free stream.  From Eq. 14.62, 
 
 C S  p  kmol / m atm 0.1 atm 16 kmol / mA,f AB A,

3 3= = ⋅ × =∞ 160  
 
 3 3

f A A,f C 2 kg/kmol 16 kmol/m 32 kg/mρ = = × =M     < 
 
(b) The parameters associated with transient diffusion in the material follow from the analogous 
treatment of Section 5.2 (Fig. 5.3) and are represented in the schematic. 
 

 
 
In the material, from Fick’s law, the diffusive flux is 
 
 ′′ = −N D  C C LA,dif AB A,1 A,2d i /        (1) 
 
At the surface, x = L, the rate equation, Eq. 6.8, convective flux of species A is 
 
 ′′ = − ∞N h  C CA,conv m A,s A,d i  
          Continued … 



PROBLEM 14.51 (Cont.)  
and substituting the ideal gas law, Eq. 14.9, and introducing the solubility relation, Eq. 14.62, 
 

 ( )m
A,conv AB A,s AB A,

AB

hN  S  p S  p
S   T ∞

∞
′′ = −

R
 

 

 ( )m
A,conv 2,s A,

AB

hN  C C
S   T ∞

∞
′′ = −

R
       (2) 

 
where CA,∞ = CA,f, the final concentration in the material after exposure to the air stream a long time.  
Considering a surface species flux balance, as shown in the schematic above, with the rate equations 
(1) and (2), 
 

 
( ) ( )AB A,1 A,2 m

A,s A,f
AB

D  C C h  C C
L S   T∞

−
= −

R
 

 

 A,1 A,2 m,difm AB
m

A,s A,f AB m,conv

C C Rh /S   T Bi
C C D / L R

∞ ′′−
= = =

′′−
R       (3) 

 
and introducing resistances to species transfer by diffusion and convection.  Recognize from the 
analogy to heat transfer, Eq. 5.10 and Table 14.2, that when Bim < 0.1, the concentration can be 
characterized as uniform during the transient process.  That is, the diffusion resistance is negligible 
compared to the convection resistance, 
 

 Bi h L
S   T  Dm

m
AB u AB

= <
∞R

01.        (4) 

 

Bi
 m / h 3600 s / h m

160 kmol / m atm 8.205 10 m atm / kmol K 555  K 2.68 10   m s
m 3 -2 3 -8 2=

× ×

⋅ × × ⋅ ⋅ × × ×

15 0 003. .

/
b g

 

 
 Bi   <   0.1m = × −6 60 10 3.  
 
Hence, the mass transfer process can be treated as a nearly uniform concentration situation.  From 
conservation of species on the material with uniform concentration,  

− ′′ = ′′N NA,conv A,st&  
 

 ( )m A
A A,f

AB

h d CC C L 
S   T dt∞

− − =
R

 

 
Integrating, with the initial condition CA (0) = CA,i, find 
 

 A A,f m

A,i A,f AB

C C h  texp
C C L S   T∞

− ⎛ ⎞
= −⎜ ⎟− ⎝ ⎠R

      (5)     < 
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which is similar to the analogous heat transfer relation for the lumped capacitance analysis, Eq. 5.6. 
 

 
 
(c) The time, to, required for the material to reach a concentration twice that of the limiting value,      
CA (To) = 2 CA,f, can be calculated from Eq. (5). 
 

2 1 16

8 205 10 2
− ×

= −
×

× ⋅ × × ⋅ ⋅ ×

F
HG

I
KJ−

b g
b g

 kmol / m

320 -16  kmol / m
exp 1.5 m / h t

0.003 m 160 kmol / m atm  m atm / kmol K 555 K

3

3
o

3 3.
 

 
 ot 42.9 h=           < 



PROBLEM 14.52  
KNOWN:  Hydrogen-removal process described in Problem 14.51, but under conditions for which 
the mass diffusivity of hydrogen gas (A) in the sheet (B) is DAB = 1.8 × 10-11 m2/s (instead of           
2.6 × 10-8 m2/s).  With a smaller DAB, a uniform concentration condition may no longer be assumed to 
exist in the material during the removal process.  
FIND:  (a) The final mass density of hydrogen in the material if the sheet is exposed to the air stream 
for a very long time, ρA,f, (b) Identify and evaluate the parameters that describe the transient mass 
transfer process in the sheet;  Hint: this situation is analogous to that of transient heat conduction in a 
plane wall; (c) Assuming a uniform concentration in the sheet at any time during the removal process, 
determine the time required to reach twice the limiting mass density calculated in part (a); (d) Using 
the analogy developed in part (b), determine the time required to reduce the hydrogen concentration to 
twice the limiting value calculated in part (a); Compare the result with that from part (c).  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) One-dimensional diffusion, (2) Stationary medium, (3) Constant properties, (4) 
Uniform temperature in air stream and material, and (5) Ideal gas behavior.  
ANALYSIS:  (a) The final content of H2 in the material will depend upon the solubility of H2 (A) in 
the material (B) at its partial pressure in the free stream.  From Eq. 14.62, 
 

 C S  p  kmol / m atm 0.1 atm 16 kmol / mA,f AB A,
3 3= = ⋅ × =∞ 160  

 

 ρ f A A,f
3 3 C  kg / kmol 16 kmol / m  kg / m= = × =M 2 32     < 

 
(b) For the plane wall shown in the schematic below, the heat and mass transfer conservation 
equations and their initial and boundary conditions are 
 
 Heat transfer    Mass (Species A) transfer 

 
∂
∂

α ∂

∂

 T
 t

T

 x2=
2

    
∂
∂

∂

∂

 C
 t

D C

 x
A

AB
A
2=

2
 

 
 T x,0 Tib g =     C x CA A,i,0b g =  
 

 
∂
∂
 T
 x

t0 0,b g =     
∂
∂
 C
 x

tA 0 0,b g =  
 

 − = − ∞k  T
 x

L, t h T L, t T∂
∂
b g b g  ( ) ( )A m

AB A f
AB

 C hD L,t C x,t C
 x S  T

∂
⎡ ⎤− = −⎣ ⎦∂  R
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The derivation for the species transport surface boundary condition is developed in the solution for 
Problem 14.51.  The solution to the mass transfer problem is identical to the analogous heat transfer 
problem provided the transport coefficients are represented as 
 

 m AB

AB

h /S   Th
k D
<=>

R         (1) 

 
(c) The uniform concentration transient diffusion process is analogous to the heat transfer lumped-
capacitance process.  From the solution of Problem 14.51, the time to reach twice the limiting 
concentration, CA (to) = 2 CA,f, can be calculated as 
 

 
( )A o A,f m o

A,i A,f AB

C t C h  texp
C C L S   T

− ⎛ ⎞
= −⎜ ⎟− ⎝ ⎠R

      (2) 

 

 t  houro = 42 9.          < 
 
For the present situation, the mass transfer Biot number is 
 

 m
m

AB AB

h  LBi
S   T D

=
R

 

 

 Bi
 m / h / 3600 s / h  m

160 kmol / m atm 8.205 10 m atm / kmol K 555 K 1.8 10 m s
m 3 -2 3 -11 2=

×

⋅ × × ⋅ ⋅ × × ×

15 0 003. .

/
b g

 

 
 Bi  >>  0.1m = 9 5.  
 
and hence the concentration of A within B is not uniform 
 
(d) Invoking the analogy with the heat transfer situation, we can use the one-term series solution, Eq. 
5.43, with Bi Bim <=>  and 
 

 Fo Fo Fo D  t

L
m m

AB
2<=> =      (3) 

 
          Continued … 



PROBLEM 14.52 (Cont.) 
 
With Bim = 9.5, find ζ1 = 1.4219 rad and C1 = 1.2609 from Table 5.1, so that Eq. 5.44 becomes 
 

 
C  t C

C C
C  exp  FoA o A,f

A,i A,f
1 1

2
m

b g e j−

−
= −ς  

 

 
2 1 16

126093
− ×

−
= −

b g
b g e j kmol / m
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 exp 1.4219  Fo

3
2

m.  

 

 Fo  m s t

0.003 m
m

2
o=

× ×
=

−18 10 1571
11

2
. / .
b g

 

 

 ot 218 h=           < 
 
COMMENTS:  (1) Since Bim = 9.5, the uniform concentration assumption is not valid, and we expect 
the analysis to provide a longer time estimate to reach CA(to) = 2 CA,f. 
 
(2) Note that the uniform concentration analysis model of part (c) does not include DAB.  Why is this 
so? 
 



PROBLEM 14.53 
 
KNOWN: Dimensions of polymer sheet.  Temperature and relative humidity of environment.  
Increase in mass of sheet over 24 and 48 hour periods. 
 
FIND: Solubility and mass diffusivity of water vapor in polymer, assuming mass diffusivity is 
greater than 7 × 10-13 m2/s. 
 
SCHEMATIC: 

`                
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Constant properties, (2) One-dimensional mass diffusion, (3) Mass gain 
is solely due to water vapor diffusing into the sheet. 
 
PROPERTIES:  Table A.6, saturated water (T = 300 K), pA,sat = 0.03531 bars, MA = 18 kg/kmol. 
 
ANALYSIS:  The process of diffusion of water vapor (A) in the polymer (B) sheet is governed 
by Eq. 14.77 with boundary and initial conditions given by Eqs. 14.78 through 14.80.  These 
equations can be cast in nondimensional form as in Eqs. 14.83 through 14.86, and the analogy 
with Eqs. 5.37 through 5.40 is apparent (for Bi →∞), with the analogous quantities defined in 
Table 14.2. 
 
Since the mass gained by the polymer sheet is known, it is more convenient to work the problem 
in mass terms.  Making use of Eq. 14.1, we recognize that *γ  defined in Eq. 14.81 can be written 
in the alternative form, 
 

 A A,s A A,s

A,i A,s A,i A,s

C C
*

C C
− ρ −ρ

γ = =
− ρ −ρ

              (1) 

 
Here A,i 0ρ =  since the sheet is initially dry, and A,s A A,s A A,C Sp ∞ρ = =M M ,  or  
 

A,s A A,satS pρ = φM                 (2) 
 
where S is the solubility (see Eq. 14.62).   
 
The mass gained by the polymer sheet is then analogous to the energy transfer, Q, in the heat 
transfer problem.  Specifically, for the mass loss, we can write a sequence of equations analogous 
to Eqs. 5.46 through 5.48, 

Continued… 

T = 300 K 
φi = 0, 
φ = 0.95, t > 0 

Polymer sheet 
A = (100 mm)2 
Δm = 0.012 mg, t = 24 hr 
Δm = 0.016 mg, t = 48 hr

2L = 1 mm 
 



PROBLEM 14.53 (Cont.) 
 
 A A A A A,iMass loss M [M (t) M (0)] [ (x, t) ]dV= Δ = − − = − ρ −ρ∫  

A,o A,i A,sM V( )Δ ≡ ρ −ρ    
and 
 

A A,iA
A,o A,i A,s

[ (x, t) ]M dV 1 (1 *)dV
M V V

ρ −ρΔ
= − = − γ

Δ ρ −ρ∫ ∫  

 
If Fom > 0.2, the solution can be approximated by the first term in the series, and the result for the 
mass loss would be analogous to Eq. 5.49.  To determine if the first term approximation can be 
used, we estimate the mass transfer Fourier number with knowledge that the mass diffusivity is 
greater than 7 × 10-13 m2/s, 
 
 Fom = DABt/L2,     Fom > 7 × 10-13 m2/s × 24 h × 3600 s/h / (0.0005 m)2 = 0.24 
 
Thus the one-term approximation is valid and by analogy to Eqs. 5.49 and 5.44, the 
nondimensional mass loss is given by 
 

 2A 1
1 1 m

A,o 1

M sin1 C exp( Fo )
M
Δ ζ

= − −ζ
Δ ζ

             (3) 

 
or 

2A 1 AB
1 1 2A,s 1

M sin D1 C exp( t)
V L

−Δ ζ
= − −ζ

ρ ζ
             (4) 

 
From Table 5.1 for Bi →∞, we find 1 1.5707 / 2ζ = = π  and 1C 1.2733= .  The quantity 

AM−Δ  is the mass gain at the two stated times.  The unknowns to be determined are DAB and S, 
which appears in ρA,s (see Eq. (2)).  From Eq. (4) evaluated at the two times, we have two 
simultaneous equations which can be solved for the unknowns DAB and ρA,s, namely 
 

-6 2
AB

5 3 2
A,s

0.012 10  kg sin / 2 D1 1.2733exp( 24 h 3600 s/h)
/ 2 410  kg / m (0.0005 m)−

× π π
= − − ×

πρ ×
 

6 2
AB

5 3 2
A,s

0.016 10  kg sin / 2 D1 1.2733exp( 48 h 3600 s/h)
/ 2 410  kg / m (0.0005 m)

−

−
× π π

= − − ×
πρ ×

 

 
There are two solutions to these two equations, 
 
DAB = 1.92 × 10-13 m2/s, ρA,s = 0.003848 kg/m3 
 
or 
DAB = 8.5 × 10-13 m2/s, ρA,s = 0.001976 kg/m3 

Continued… 



PROBLEM 14.53 (Cont.) 
 
Since we expect DAB to be greater than 7 × 10-13 m2/s, we choose the second solution.  Thus, 

DAB = 8.5 × 10-13 m2/s                 < 
 

3
A,s A A,satS / p 0.001976 kg / m /(18 kg/kmol 0.95 0.03531 bars)= ρ φ = × ×M  

3 3S 3.3 10  kmol / m bar−= × ⋅                 < 
 
COMMENTS: The system of equations has two solutions, but one of them would yield a mass 
diffusivity less than 7 × 10-13 m2/s, and is therefore rejected.  That solution also has Fom < 0.2, so 
the solution is not valid.  It does raise the question of whether there is another solution for which 
Fom < 0.2.  If the problem is solved correctly for Fom < 0.2, it can be determined that there is no 
other solution.   



PROBLEM 14.54 
 
KNOWN: Diameter of optical fiber sensor in a hydrogen chamber.  Pressure of hydrogen 
(species A) in environment.  Mass diffusivity and solubility for hydrogen in glass fiber (species 
B). 
 
FIND: (a) Average hydrogen concentration in fiber after 100 hours of operation.  Change in 
refractive index, given that  Δn = (1.6 × 10-3 m3/kmol) × C .  (b) Average hydrogen concentration 
and change in refractive index after 1 and 10 hours of operation. 
 
SCHEMATIC: 

`                
 
 
 
 
 
ASSUMPTIONS: (1) Constant properties, (2) One-dimensional mass diffusion. 
 
PROPERTIES: Hydrogen in vitreous silica fiber (given):  DAB = 2.88 × 10-15 m2/s, S = 4.15 × 
10-3 kmol/m3⋅bar. 
  
ANALYSIS:  (a) This is a problem of transient mass diffusion in a cylinder, analogous to 
transient conduction in a cylinder.  We begin by calculating the mass transfer Fourier number, 
 

2 15 2 6 2
m AB oFo D t / r 2.88 10  m / s 100 h 3600 s / h (50 10  m) 0.415− −= = × × × × =

  
With Fom > 0.2, we can use the first-term approximation to the series solution.  The average 
hydrogen concentration can be found by analogy with the nondimensional energy transfer Q/Qo 
defined in Eq. 5.48, with reference to Table 14.3 for the analogous quantities.  We define 
 

 A A,iA
A,o A,i A,s

(C (x, t) C )M dV 1 (1 *)dV
M C C V V

− −Δ
≡ = − γ

Δ −∫ ∫            (1) 

 
Here the surface concentration, CA,s, is used in place of the environment temperature, T∞, because 
this is a problem of specified surface concentration, modeled by allowing Bim→∞.  By analogy 
with Eq. 5.54,  

 
*

A o
1 1

A,o 1

M 21 J ( )
M

Δ γ
= − ζ

Δ ζ
 

 
where from Eq. 5.52c, the centerline value of the nondimensional molar concentration is 

* 2
o 1 1 mC exp( Fo )γ = −ζ .  From Table 5.1, 1 12.4050,  C 1.6018ζ = = , so *

o 0.145γ = .  From 
Table B.4, 1J (2.4050) 0.52≈ .  Thus, 

Continued… 

D = 100 µm 

Hydrogen, 
pA = 20 bars 



PROBLEM 14.54 (Cont.) 
 

A
A,o

M 2 0.1451 0.52 0.937
M 2.4050

Δ ×
= − × =

Δ
 

 
Referring back to Eq. (1), we can determine the average hydrogen concentration, 

 
A

A A A,i A,s A,i
A,o

dV MC C (x, t) C (C C )
V M

Δ
= = + −

Δ∫  

where CA,i = 0 since the fiber initially contains no hydrogen, and CA,s = SpA = 4.15 × 10-3 
kmol/m3⋅bar × 20 bars = 0.0830 kmol/m3.  Thus, 
 

3 3
AC 0 0.937(.0830 kmol / m 0) 0.0778 kmol / m= + − =             < 

 
The change in refractive index is then 
 

 3 3 3 4n 1.6 10  m / kmol 0.0778 kmol / m 1.24 10− −Δ = × × = ×  
 
(b) For the shorter times, the Fourier number is no longer larger than 0.2, and we must use a 
different approach.  We could use the exact infinite series solution, but it is easier to use the 
solutions provided in Table 5.2a, which are appropriate for uniform surface concentration.  For an 
infinite cylinder, with Lc = ro, 
 

s o s iq* q r / k(T T )′′= −  
 
The analogous quantity is 
 

 *
A A,s o AB A,s A,iN N r / D (C C )′′= −  

 
With knowledge of the molar flux at the surface, A,sN′′ , the average hydrogen concentration can 
be found as follows.  We multiply the flux by the surface area and integrate over time to find how 
much hydrogen has entered the fiber.  Then we divide by the volume to find the average 
concentration.  That is, 
 

 
t to

A A,s A,s20 0oo

2 r 2C N dt N dt
rr

π′′ ′′= × =
π

∫ ∫  

 
Now from Table 5.2a for the interior case, infinite cylinder, with Fom < 0.2, 
 

 *
A A,s o AB A,s A,i m

m

1N N r / D (C C ) 0.50 0.65Fo
Fo

′′= − = − −
π

 

Thus, we have 
 

Continued… 



PROBLEM 14.54 (Cont.) 
 

m

t t
A A,s AB A,s A,i m20 0o mo

Fo
A,s A,i m m0 m

1/ 2
2m

A,s A,i m m

2 2 1C N dt D (C C ) 0.50 0.65Fo dt
r For

12(C C ) 0.50 0.65Fo dFo
Fo

2Fo 0.652(C C ) 0.50Fo Fo
2

⎛ ⎞
′′= = − − −⎜ ⎟⎜ ⎟π⎝ ⎠

⎛ ⎞
= − − −⎜ ⎟⎜ ⎟π⎝ ⎠

⎛ ⎞
= − − −⎜ ⎟

⎜ ⎟π⎝ ⎠

∫ ∫

∫  

 
At 1 hour and 10 hours, Fom = 0.00415 and 0.0415, respectively.  Then with CA,s = 0.0830 
kmol/m3 and CA,i = 0, we find, 
 

For t = 1 hr, 3 5
AC 0.0117 kmol / m ,      n 1.9 10−= Δ = ×             < 

For t = 10 hr, 3 5
AC 0.0346 kmol / m ,      n 5.5 10−= Δ = ×             < 

 
COMMENTS: (1) Hydrogen diffusion into glass optical fibers is highly undesirable because of 
the effects described in the problem statement.  Hermetic coatings are typically applied to the 
fibers to prevent diffusion of hydrogen and other unwanted species into the glass.  (2) At t = 100 

hours, A A,s*
o

A,i A,s

C (0, t) C
0.145

C C
−

γ = =
−

.  This tells us that the centerline concentration is within 

14.5% of reaching the surface concentration.  At the same time, the average molar concentration 
is 93.7% of the surface concentration, i.e. within 6.3% of reaching the surface concentration.  
This is because of the radial geometry, which has greater volume near the surface than near the 
centerline. 
  



PROBLEM 14.55 
 
KNOWN: Diameters of glass optical fiber and acrylate polymer coating.  Mass diffusivity of 
water vapor in the acrylate. 
 
FIND: Whether microcracking would occur within several hot and humid days. 
 
SCHEMATIC: 

`                
 
 
 
 
 
ASSUMPTIONS: (1) One-dimensional mass diffusion.  (2) Use of acrylate properties 
throughout the cylinder is sufficient for estimating the diffusion process in order to answer the 
question. 
 
PROPERTIES: Water vapor in acrylate polymer (given):  DAB = 5.5 × 10-13 m2/s. 
  
ANALYSIS:  We arbitrarily begin by considering a two-day period.  Then the mass transfer 
Fourier number is, 

 2 13 2 6 2
m AB oFo D t / r 5.5 10  m / s 48 h 3600 s / h (125 10  m) 6.1− −= = × × × × =  

Since Fom > 0.2, we can use the one-term approximation, analogous to Eq. 5.49a.  Referring to 
Table 14.3 for the analogies, 
 

 A A,s 2
1 1 m o 1

A,i A,s

C (r, t) C
* C exp( Fo )J ( r*)

C C
−

γ = = −ζ ζ
−

            (1) 

 
where from Table 5.1, as Bi→∞, 1 12.4050,  C 1.6018ζ = = .  At the outer surface of the glass, r* 
= 0.5 and from Table B.4, 0 0J (2.4050 0.5) J (1.2) 0.67× ≈ ≈ .  Thus 
 

2 16* 1.6018exp( 2.4050 6.1) 0.67 5.6 10−γ = − × × = ×  
 
Referring to the definition of γ* in Eq. (1), we see that this very small value means that the 
concentration has essentially already reached the surface concentration.  Therefore, careful 
storage of the optical fiber will not prevent microcracking, since within two days (probably much 

less), the water vapor has penetrated through the acrylate polymer coating.           < 
 
COMMENTS: (1) Equation 5.52 assumes uniform properties throughout the cylinder.  Since 
the glass is impermeable to moisture, the build-up of moisture in the coating would be even more 
rapid than this equation predicts.  (2) The time required for the concentration to be within 5% of 
the surface concentration (γ* = 0.05) is around four hours.  (3) Development of hermetic coatings 
for use in fiber optic and other high technology applications is an ongoing area of research. 
 

Do = 250 µm 
Humid environment 

Di = 125 µm 



PROBLEM 14.56 
 

 
KNOWN: Mass of insect repellent applied to known area of skin. Convective mass transfer 
coefficient, partition coefficient at the ingredient – skin interface, mass diffusivity of the 
ingredient in the skin. 
 
FIND: (a) Initial thickness of the active ingredient, (b) Duration of effective treatment, (c) 
Duration of effective treatment with use of reformulated repellent with a very small partition 
coefficient. 
 
SCHEMATIC: 
 
 

 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) Constant properties and steady-state conditions, (2) Stationary medium. 
(3) Skin is semi-infinite medium. 
 
PROPERTIES: Active Ingredient, given: ρA = 2000 kg/m3, MA= 152 kg/kmol, pA,sat = 1.2 × 10-5 
bars, K (active Ingredient-skin interface) = 0.05, DAB (active ingredient in skin) = 1 ×10-13 m2/s. 
 
ANALYSIS: 
(a) For an active ingredient volume fraction of f = 0.25, the initial thickness of the active 
ingredient is 
 

-3
-6

2A
3

fM 0.25  10  10  kgL(t = 0) =   2.5  10  m = 2.5 mkgA 2000   0.5 m
m

× ×
= = × μ

ρ ×
 < 

 
(b) The duration of the effective treatment is associated with the complete depletion of the active 
ingredient through combined evaporation and absorption. For absorption of the ingredient into the 
skin, the analogy to Eq. 5.61 may be employed to provide 
 

t t t t
AB" "

A,conv A,dif m A,s,c A, A,s,D A,i
A A0 0 0 0

D1 1L(t 0) n dt n dt h ( )dt ( )dt
t∞

⎡ ⎤ ⎡ ⎤
= = ⎢ + ⎥ = ⎢ ρ −ρ + ρ −ρ ⎥

ρ ρ π⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∫ ∫ ∫ ∫  
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PROBLEM 14.56 (Cont.) 

 
Noting that ρA,∞ = ρA,i = 0 and ρA,s,D = KρA, the integrations may be carried out to yield 
 

AB
m A,s,c

A

D K1L(t 0) h ( )t 2 t⎡ ⎤= = ρ +⎣ ⎦ρ π
 

 
 
The surface concentration of the active ingredient is 
 

5
A,sat s 6 3

A,s,c -2 3
A s

p (T ) 1.2 10  bar 71.9 10 kg / m
( / )T (8.314 10  m bar/kmol K/152 kmol/kg) (273 +32)K

−
−×

ρ = = = ×
× ⋅ ⋅ ×R M

 
 
Substituting the values of L(t = 0), ρA,s,c, and the quantities given in the problem statement, the 
preceding equation may be solved to yield 
 

    t = 6130 s or 1.7 h     < 
 
(c) Setting K = 0, the preceding equation may be solved again to yield 
 

    t = 13900 s or 3.9 h     < 
 
 
COMMENT: In part (b), convective losses are 43% of the total loss, while losses due to 
diffusion into the skin are 57%. 



PROBLEM 4S.1  
KNOWN:  Long furnace of refractory brick with prescribed surface temperatures and material 
thermal conductivity.  
FIND:  Shape factor and heat transfer rate per unit length using the flux plot method  
SCHEMATIC:   

 
 
 
 
 
 

ASSUMPTIONS:  (1) Furnace length normal to page, ,l  >> cross-sectional dimensions, (2) Two-
dimensional, steady-state conduction, (3) Constant properties.  
ANALYSIS:  Considering the cross-section, the cross-hatched area represents a symmetrical element.  
Hence, the heat rate for the entire furnace per unit length is  

 ( )1 2
q Sq 4 k T T′ = = −
l l

        (1) 
 
where S is the shape factor for the symmetrical section.  Selecting three temperature increments ( N = 
3), construct the flux plot shown below.  

 
From Equation 4S.7,  M S M 8.5S      or     2.83

N N 3
= = = =

l

l
    < 

 

and from Equation (1),  ( )Wq 4 2.83 1.2 600 60 C 7.34 kW/m.
m K

′ = × × − =
⋅

o  < 
 
COMMENTS:  The shape factor can also be estimated from the relations of Table 4.1.  The 
symmetrical section consists of two plane walls (horizontal and vertical) with an adjoining edge.  
Using the appropriate relations, the numerical values are, in the same order,  

 0.75m 0.5mS 0.54 3.04
0.5m 0.5m

= + + =l l l l  
 
Note that this result compares favorably with the flux plot result of 2.83 .l  



PROBLEM 4S.2  
KNOWN:  Hot pipe embedded eccentrically in a circular system having a prescribed thermal 
conductivity.  
FIND:  The shape factor and heat transfer per unit length for the prescribed surface 
temperatures.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Two-dimensional conduction, (2) Steady-state conditions, (3) Length 
l  >> diametrical dimensions.  
ANALYSIS:  Considering the cross-sectional view of the pipe system, the symmetrical 
section shown above is readily identified.  Selecting four temperature increments (N = 4), 
construct the flux plot shown below.  

  
For the pipe system, the heat rate per unit length is  

 ( ) ( )1 2
q Wq kS T T 0.5 4.26 150 35 C 245 W/m.

m K
′ = = − = × − =

⋅
o

l
   < 

 
COMMENTS:  Note that in the lower, right-hand quadrant of the flux plot, the curvilinear 
squares are irregular.  Further work is required to obtain an improved plot and, hence, obtain a 
more accurate estimate of the shape factor. 



PROBLEM 4S.3 
 
KNOWN:  Structural member with known thermal conductivity subjected to a temperature difference. 
 
FIND:  (a) Temperature at a prescribed point P, (b) Heat transfer per unit length of the strut, (c) Sketch 
the 25, 50 and 75°C isotherms, and (d) Same analysis on the shape but with adiabatic-isothermal 
boundary conditions reversed. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Two-dimensional conduction, (2) Steady-state conditions, (3) Constant properties. 
 
ANALYSIS:  (a) When constructing the flux plot, note that the line of symmetry which passes through  
the point P is an isotherm as shown above.  It follows that 

 ( ) ( ) ( )1 2T P T T 2 100 0 C 2 50 C= + = + =o o . < 
 
(b) The flux plot on the symmetrical section is now constructed to obtain the shape factor from which the 
heat rate is determined.  That is, from Equation 4S.6 and 4S.7, 
 
 ( )1 2q kS T T and S M N= − = l . (1,2) 
 
From the plot of the symmetrical section, 
 
 oS 4.2 4 1.05= =l l . 
 
For the full section of the strut, 
 
 oM M 4.2= =  
 
but N = 2No = 8.  Hence, 
 
 oS S 2 0.53= = l  
 
and with q q′ = l , giving  

 ( )q 75W m K 0.53 100 0 C 3975W m′ = ⋅ × − =o
l . < 

 
(c) The isotherms for T = 50, 75 and 100°C are shown on the flux plot.  The T = 25°C isotherm is 
symmetric with the T = 75°C isotherm. 
 
(d) By reversing the adiabatic and isothermal boundary conditions, the two-dimensional shape appears as 
shown in the sketch below.  The symmetrical element to be flux plotted is the same as for the strut, except 
the symmetry line is now an adiabat. 

Continued... 



PROBLEM 4S.3 (Cont.) 

        
 
From the flux plot, find Mo = 3.4 and No = 4, and from Equation (2) 
 
 o o o oS M N 3.4 4 0.85 S 2S 1.70= = = = =l l l l   
 
and the heat rate per unit length from Equation (1) is 

 ( )q 75W m K 1.70 100 0 C 12,750 W m′ = ⋅ × − =o  < 
 
From the flux plot, estimate that 

 T(P) ≈ 40°C. < 
 
COMMENTS:  (1) By inspection of the shapes for parts (a) and (b), it is obvious that the heat rate for the 
latter will be greater.  The calculations show the heat rate is greater by more than a factor of three. 
 
(2) By comparing the flux plots for the two configurations, and corresponding roles of the adiabats and 
isotherms, would you expect the shape factor for parts (a) to be the reciprocal of part (b)? 



PROBLEM 4S.4  
KNOWN:  Relative dimensions and surface thermal conditions of a V-grooved channel.  
FIND:  Flux plot and shape factor.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Two-dimensional conduction, (2) Steady-state conditions, (3) 
Constant properties.  
ANALYSIS:  With symmetry about the midplane, only one-half of the object need be 
considered as shown below.  
Choosing 6 temperature increments (N = 6), it follows from the plot that M ≈ 7.  Hence from 
Equation 4S.7, the shape factor for the half section is 

 M 7S 1.17 .
N 6

= = =l l l  

For the complete system, the shape factor is then 
 S 2.34 .= l           < 

 



PROBLEM 4S.5 
 
KNOWN:  Long conduit of inner circular cross section and outer surfaces of square cross section. 
 
FIND:  Shape factor and heat rate for the two applications when outer surfaces are insulated or 
maintained at a uniform temperature. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Two-dimensional, steady-state conduction, (2) Constant properties and (3) 
Conduit is very long. 
 
ANALYSIS:  The adiabatic symmetry lines for each of the applications is shown above.  Using the flux 
plot methodology and selecting four temperature increments (N = 4), the flux plots are as shown below. 

 
For the symmetrical sections, S = 2So, where So = M l /N and the heat rate for each application is q = 
2(So/ l )k(T1 - T2).  

Application M N So/ l  q′  (W/m) 
A 10.3 4 2.58 11,588 
B 6.2 4 1.55 6,975 

 
< 

< 
 
COMMENTS:  (1) For application A, most of the heat lanes leave the inner surface (T1) on the upper 
portion. 
 
(2) For application B, most of the heat flow lanes leave the inner surface on the upper portion (that is, 
lanes 1-4).  Because the lower, right-hand corner is insulated, the entire section experiences small heat 
flows (lane 6 + 0.2).  Note the shapes of the isotherms near the right-hand, insulated boundary and that 
they intersect the boundary normally. 



PROBLEM 4S.6  
KNOWN:  Shape and surface conditions of a support column.  
FIND:  (a) Heat transfer rate per unit length.  (b) Height of a rectangular bar of equivalent 
thermal resistance.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1)Steady-state conditions, (2) Negligible three-dimensional conduction 
effects, (3) Constant properties, (4) Adiabatic sides.  
PROPERTIES:  Table A-1, Steel, AISI 1010 (323K):  k = 62.7 W/m⋅K.  
ANALYSIS:  (a) From the flux plot for the  
half section, M ≈ 5 and N ≈ 8.  Hence for the 
full section  

 ( )
( )

1 2

MS 2 1.25
N

q Sk T T
Wq 1.25 62.7 100 0 C

m K

= ≈

= −

′ ≈ × −
⋅

o

l
l

 

 
 q 7.8 kW/m.′ ≈          < 
 
(b)  The rectangular bar provides for one-dimensional heat transfer.  Hence,  

 ( ) ( ) ( )1 2 1 2T T T T
q k A k 0.3

H H
− −

= = l  
 

Hence,  ( ) ( )( )1 2
0.3m 62.7 W/m K 100 C0.3k T T

H 0.24m.
q 7800 W/m

⋅−
= = =

′

o

  < 
 
COMMENTS:  The fact that H < 0.3m is consistent with the requirement that the thermal 
resistance of the trapezoidal column must be less than that of a rectangular bar of the same 
height and top width (because the width of the trapezoidal column increases with increasing 
distance, x, from the top).  Hence, if the rectangular bar is to be of equivalent resistance, it 
must be of smaller height. 

 



PROBLEM 4S.7  
KNOWN:  Hollow prismatic bars fabricated from plain carbon steel, 1m in length with 
prescribed temperature difference.  
FIND:  Shape factors and heat rate per unit length.  
SCHEMATIC:   

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Two-dimensional conduction, (3) 
Constant properties.  
PROPERTIES:  Table A-1, Steel, Plain Carbon (400K), k = 57 W/m⋅K.  
ANALYSIS:  Construct a flux plot on the symmetrical sections (shaded-regions) of each of 
the bars.  

  
The shape factors for the symmetrical sections are,  

 o,A o,B
M 4 M 3.5S 1           S 0.88 .
N 4 N 4

= = = = = =
l l

l l l l  
 
Since each of these sections is ¼ of the bar cross-section, it follows that  
 A BS 4 1 4                  S 4 0.88 3.5 .= × = = × =l l l l      < 
 
The heat rate per unit length is ( )( )1 2q q/ k S/ T T ,′ = = −l l  
 

 ( )A
Wq 57 4 500 300 K 45.6 kW/m

m K
′ = × − =

⋅
     < 

 

 ( )B
Wq 57 3.5 500 300 K 39.9 kW/m.

m K
′ = × − =

⋅
     < 

 



PROBLEM 4S.8 
 
KNOWN:  Two-dimensional, square shapes, 1 m to a side, maintained at uniform temperatures as 
prescribed, perfectly insulated elsewhere. 
 
FIND:  Using the flux plot method, estimate the heat rate per unit length normal to the page if the thermal 
conductivity is 50 W/m⋅K 
 
ASSUMPTIONS:  (1) Steady-state, two-dimensional conduction, (2) Constant properties. 
 
ANALYSIS:  Use the methodology of Section 4S.1 to construct the flux plots to obtain the shape factors 
from which the heat rates can be calculated.  With Figure (a), begin at the lower-left side making the 
isotherms almost equally spaced, since the heat flow will only slightly spread toward the right.   Start 
sketching the adiabats in the vicinity of the T2 surface.  The dashed line represents the adiabat which 
separates the shape into two segments.  Having recognized this feature, it was convenient to identify 
partial heat lanes.  Figure (b) is less difficult to analyze since the isotherm intervals are nearly regular in 
the lower left-hand corner. 
 

    
 
The shape factors are calculated from Equation 4S.7 and the heat rate from Equation 4S.6. 
 

M 0.5 3 0.5 0.5 0.2S
N 6

+ + + +′ = =  M 4.5S 0.90
N 5

′ = = =  
 
S 0.70′ =  
 

( )1 2q kS T T′ ′= −  ( )1 2q kS T T′ ′= −  

( )q 50W m K 0.70 100 0 K 3500W m′ = ⋅ × − =  ( )q 50W m K 0.90 100 0 K 4500W m′ = ⋅ × − =  < 
 
COMMENTS:  Using a finite-element package with a fine mesh, we determined heat rates of 4780 and 
4575 W/m, respectively,  for Figures (a) and (b).  The estimate for the less difficult Figure (b) is within 
2% of the numerical method result.  For Figure (a), our flux plot result was 27% low. 
 



PROBLEM 5S.1

KNOWN: Configuration, initial temperature and charging conditions of a thermal energy storage
unit.

FIND: Time required to achieve 75% of maximum possible energy storage and corresponding
minimum and maximum temperatures.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) Negligible radiation
exchange with surroundings.

ANALYSIS: For the system, find first

2hL 100 W/m K 0.025m
Bi 3.57

k 0.7 W/m K

 
  


indicating that the lumped capacitance method cannot be used.

Groeber chart, Fig. 5S.3: Q/Qo = 0.75

7 2
3

k 0.7 W/m K
4.605 10 m / s

c 1900 kg/m 800 J/kg K





   
 

     

 

22 7 2
2

2 3
2 2

100 W/m K 4.605 10 m / s t sh t
Bi Fo 9.4 10 t

k 0.7 W/m K





  

   


Find Bi
2
Fo  11, and substituting numerical values

-3t 11/9.4 10 1170s.   <
Heisler chart, Fig. 5S.1: Tmin is at x = 0 and Tmax at x = L, with

 

7 2
-1

2 2

t 4.605 10 m / s 1170 s
Fo 0.86 Bi 0.28.

L 0.025m

  
   

From Fig. 5S.1, o 0.33.  Hence,

   o i minT T 0.33 T T 600 C 0.33 575 C 410 C T .           <

From Fig. 5S.2, /o  0.33 at x = L, for which

   x L o maxT T 0.33 T T 600 C 0.33 190 C 537 C T .         
  <

COMMENTS: Comparing masonry (m) with aluminum (Al), see Problem 5.16, (c)Al > (c)m and

kAl > km. Hence, the aluminum can store more energy and can be charged (or discharged) more

quickly.



PROBLEM 5S.2 
 
KNOWN:  Car windshield, initially at a uniform temperature of -20°C, is suddenly exposed on its 
interior surface to the defrost system airstream at 30°C.  The ice layer on the exterior surface acts as an 
insulating layer. 
 
FIND:  What airstream convection coefficient would allow the exterior surface to reach 0°C in 60 s? 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) One-dimensional, transient conduction in the windshield, (2) Constant properties, 
(3) Exterior surface is perfectly insulated. 
 
PROPERTIES: Windshield (Given):  ρ = 2200 kg/m3, cp = 830 J/kg⋅K and  k = 1.2 W/m⋅K. 
 
ANALYSIS:   For the prescribed conditions, from Equations 5.34 and 5.36, 
 

       
( ) ( ) ( )

( )
o

i i i

0,60s T 0,60s T 0 30 C
0.6

T T 20 30 C

θ θ
θ θ

∞

∞

− −
= = = =

− − −

o

o
 

 

 
( )2 23

kt 1.2 W m K 60Fo 1.58
cL 2200kg m 830J kg K 0.005mρ

⋅ ×
= = =

× ⋅ ×
 

 
The single-term series approximation, Eq. 5.44, along with Table 5.1, requires an iterative solution to find 
an appropriate Biot number.  Alternatively, the Heisler charts, Section 5S.1, Figure 5S.1, for the midplane 
temperature could be used to find 
 

 1Bi k hL 2.5− = =  

 2h 1.2 W m K 2.5 0.005m 96 W m K= ⋅ × = ⋅  < 
 
COMMENTS:   Using the IHT, Transient Conduction, Plane Wall Model, the convection coefficient can 
be determined by solving the model with an assumed h and then sweeping over a range of h until the 
T(0,60s) condition is satisfied.  Since the model is based upon multiple terms of the series, the result of h 
= 99 W/m2⋅K is more precise than that found using the chart. 



PROBLEM 5S.3

KNOWN: Inlet and outlet temperatures of steel rods heat treated by passage through an oven.

FIND: Rod speed, V.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional radial conduction (axial conduction is negligible),
(2) Constant properties, (3) Negligible radiation.

PROPERTIES: Table A-1, AISI 1010 Steel  T 600K : k = 48.8 W/mK,  = 7832 kg/m
3
,

cp = 559 J/kgK,  = (k/cp) = 1.1110
-5

m
2
/s.

ANALYSIS: The time needed to traverse the rod through the oven may be found from Figure
5S.4.

 

o
o

i
-1

2o

T T 600 750
0.214

T T 50 750
k 48.8 W/m K

Bi 15.6.
hr 125 W/m K 0.025m

 



 
  

 


  


Hence,

 

2
o

2 5 2
Fo t/r 12.2

t 12.2 0.025m /1.11 10 m / s 687 s.




 

  

The rod velocity is

L 5m
V 0.0073 m/s.

t 687s
  

COMMENTS: (1) Since (h ro/2)/k = 0.032, the lumped capacitance method could have been

used. From Equation 5.5 it follows that t = 675 s.

(2) Radiation effects decrease t and hence increase V, assuming there is net radiant transfer
from the oven walls to the rod.

(3) Since Fo > 0.2, the approximate analytical solution may be used. With Bi = hro/k

=0.0641, Table 5.1 yields 1 0.3549  rad and C1 = 1.0158. Hence from Equation 5.52c

 
12 o

1
1

Fo ln 12.4,
C




  
   

  
which is in good agreement with the graphical result.



PROBLEM 5S.4

KNOWN: Hot dog with prescribed thermophysical properties, initially at 6C, is immersed in
boiling water.

FIND: Time required to bring centerline temperature to 80C.

SCHEMATIC:

ASSUMPTIONS: (1) Hot dog can be treated as infinite cylinder, (2) Constant properties.

ANALYSIS: The Biot number, based upon Equation 5.10, is

 2 -3

c o
100 W/m K 10 10 m/2h L h r / 2

Bi 0.96
k k 0.52 W/m K

 
   


Since Bi > 0.1, a lumped capacitance analysis is not appropriate. Using the Heisler chart, Figure 5S.4
with

2 -3
-1ohr 100W/m K 10 10 m

Bi 1.92 or Bi 0.52
k 0.52 W/m K

  
   



and
   

 
o

o
i i

T 0,t T 80 100 C
0.21

T T 6-100 C









 
   






(1)

find
 

2-3
2
o

2 7 2
o

10 10 mrt
Fo t 0.8 t Fo 0.8 453.5s 7.6 min

r 1.764 10 m / s









        


<

where 3 7 2k/ c 0.52 W/m K/880 kg/m 3350 J/kg K 1.764 10 m / s.        

COMMENTS: (1) Note that Lc = ro/2 when evaluating the Biot number for the lumped capacitance

analysis; however, in the Heisler charts, Bi  hro/k.

(2) The surface temperature of the hot dog follows from use of Figure 5S.5 with r/ro = 1 and Bi
-1

=

0.52; find (1,t)/o  0.45. From Equation (1), note that o = 0.21 i giving

        o o i1, t T r , t T 0.45 0.45 0.21 T T 0.45 0.21 6 100 C 8.9 C           
 

   oT r , t T 8.9 C 100 8.9 C 91.1 C    
 

(3) Since Fo  0.2, the approximate solution for *, Equation 5.52, is valid. From Table 5.1 with Bi =

1.92, find that 1 1.3245  rad and C1 = 1.2334. Rearranging Equation 5.52 and substituting values,

 
 

o 12 2
1

1 1 0.213
Fo ln / C ln 1.00

1.23341.3245 rad




  
    

 

This result leads to a value of t = 9.5 min or 20% higher than that of the graphical method.



PROBLEM 5S.5

KNOWN: Long bar of 70 mm diameter, initially at 90C, is suddenly immersed in a water

bath (T = 40C, h = 20 W/m
2
K).

FIND: (a) Time, tf, that bar should remain in bath in order that, when removed and allowed

to equilibrate while isolated from surroundings, it will have a uniform temperature T(r, ) =
55C.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional radial conduction, (2) Constant properties.

PROPERTIES: Bar (given):  = 2600 kg/m
3
, c = 1030 J/kgK, k = 3.50 W/mK,  = k/c =

1.3110
-6

m
2
/s.

ANALYSIS: Determine first whether conditions are space-wise isothermal

   2
oc h r / 2 20 W/m K 0.035 m/2hL

Bi 0.10
k k 3.50 W/m K


   



and since Bi  0.1, a Heisler solution is appropriate.

(a) Consider an overall energy balance on the bar during the time interval t = tf (the time the

bar is in the bath).

   

 
 

 

in out

final initial f i

f o

f

o i

E E E

0 Q E E Mc T T Mc T T

Q Mc T T Q

55 40 CT TQ
1 1 0.70

Q T T 90 40 C

 







  

      

   


    

 





where Qo is the initial energy in the bar (relative to T; Equation 5.44). With Bi = hro/k =

0.20 and Q/Qo = 0.70, use Figure 5S.6 to find Bi
2
Fo = 0.15; hence Fo = 0.15/Bi

2
= 3.75 and

 22 6 2
f ot Fo r / 3.75 0.035 m /1.31 10 m / s 3507 s.      <

(b) To determine T(ro, tf), use Figures 5S.4 and 5S.5 for (ro,t)/i (Fo = 3.75, Bi
-1

= 5.0) and

o/i (Bi
-1

= 5.0, r/ro = 1, respectively, to find

 
 

 o o
o f i

o i

r , t
T r , t T 40 C 0.25 0.90 90 40 C 51 C.        

  


 
<



PROBLEM 5S.6

KNOWN: An 80 mm sphere, initially at a uniform elevated temperature, is quenched in an

oil bath with prescribed T, h.

FIND: The center temperature of the sphere, T(0,t) at a certain time when the surface

temperature is T(ro,t) = 150C.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional radial conduction, (2) Initial uniform temperature
within sphere, (3) Constant properties, (4) Fo  0.2.

ANALYSIS: Check first to see if the sphere is spacewise isothermal.

  2
oc

c
h r / 3hL 1000 W/m K 0.040m/3

Bi 0.26.
k k 50 W/m K

 
   



Since Bic > 0.1, lumped capacitance method is not appropriate. Recognize that when Fo 

0.2, the time dependence of the temperature at any point within the sphere will be the same as

the center. Using the Heisler chart method, Figure 5S.8 provides the relation between T(ro,t)

and T(0,t). Find first the Biot number,
2

ohr 1000 W/m K 0.040m
Bi 0.80.

k 50 W/m K

 
  



With Bi
-1

= 1/0.80 = 1.25 and r/ro =1, read from Figure 5S.8,

 
 
o

o

T r , t T
0.67.

T 0,t T









 



It follows that

     o
1 1

T 0,t T T r , t T 50 C 150 50 C 199 C.
0.67 0.67

         
  <

COMMENTS: (1) There is sufficient information to evaluate Fo; hence, we require that the
time be sufficiently long after the start of quenching for this solution to be appropriate.

(2)The approximate series solution could also be used to obtain T(0,t). For Bi = 0.80 from
Table 5.1, 1 1.5044  rad. Substituting numerical values, r* = 1,

 
     o

1
o 1

T r , t T 1 1
sin r sin 1.5044 rad 0.663.

T 0,t T 1.5044r




 


 

 


   



It follows that T(0,t) = 201C.



PROBLEM 5S.7

KNOWN: Diameter and initial temperature of hailstone falling through warm air.

FIND: (a) Time, tm, required for outer surface to reach melting point, T(ro,tm) = Tm = 0C,

(b) Centerpoint temperature at that time, (c) Energy transferred to the stone.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional radial conduction, (2) Constant properties.

PROPERTIES: Table A-3, Ice (253K):  = 920 kg/m
3
, k = 2.03 W/mK, cp = 1945 J/kgK;

 = k/cp = 1.13  10
-6

m
2
/s.

ANALYSIS: (a) Calculate the lumped capacitance Biot number,

   2
oh r / 3 250 W/m K 0.0025m/3

Bi 0.103.
k 2.03 W/m K


  


Since Bi > 0.1, use the Heisler charts for which

   o m o m

i i
-1

2o

r , t T r , t T 0 5
0.143

T T 30 5
k 2.03 W/m K

Bi 3.25.
hr 250 W/m K 0.0025m








 
  

  


  
 

From Figure 5S.8, find
 
 
o m

o m

r , t
0.86.

t






It follows that
   

   
o m o m i

i o m o m

t r , t / 0.143
0.17.

r , t / t 0.86

  

  
  

From Figure 5S.7 find Fo  2.1. Hence,

 22
o

m 6 2

2.1 0.0025Fo r
t 12s.

1.13 10 m / s 
  


<

(b) Since (o/i)  0.17, find

   o iT T 0.17 T T 0.17 30 5 6.0 C         

 o mT t 1.0 C.   <

(c) With Bi
2
Fo = (1/3.25)

2
2.1 = 0.2, from Figure 5S.9, find Q/Qo  0.82. From Equation

5.47,

       33
o p iQ Vc 920 kg/m /6 0.005m 1945 J/kg K 35K 4.10 J       

 oQ 0.82 Q 0.82 4.10 J 3.4 J.     <



PROBLEM 5S.8  
 
KNOWN:  Properties, initial temperature, and convection conditions associated with cooling of glass 
beads. 
 
FIND:  (a) Time required to achieve a prescribed center temperature, (b) Effect of convection coefficient 
on center and surface temperature histories. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) One-dimensional conduction in r, (2) Constant properties, (3) Negligible 
radiation, (4) Fo ≥ 0.2. 
 
ANALYSIS:  (a) With h = 400 W/m2⋅K, Bi ≡ h(ro/3)/k = 400 W/m2⋅K(0.0005 m)/1.4 W/m⋅K = 0.143 and 
the lumped capacitance method should not be used.  Instead, use the Heisler charts for which 

 

( )o
i i
-1

2o

T 0, t T 80 15 0.141
T T 477 15
k 1.4 W/m KBi 2.33.

hr 400 W/m K 0.0015 m

θ
θ

∞

∞

− −
= = =

− −
⋅

= = =
⋅ ×

 

 
From Figure 5S.7, find Fo 1.8.≈    

 
( )22

o
3

1.8 0.0015Fo rt 5.1 s.
1.4 W m K /(2200kg m 800J kg K)α

≈ = =
⎡ ⎤⋅ × ⋅⎢ ⎥⎣ ⎦

         < 

From Figure 5S.8,  
( )o

o

r ,t
0.82.

θ
θ

≈  

 
Hence, the corresponding surface temperature is 

 ( ) ( ) ( )o oT r , t T 0.82 T T 15 C 0.82 80 C 15 C 68.3 C∞ ∞≈ + − = + − =o o o o  < 

(b) The effect of h on the surface and center temperatures was determined using the IHT Transient 
Conduction Model for a Sphere. 
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PROBLEM 5S.8 (Cont.) 

 
The cooling rate increases with increasing h, particularly from 100 to 400 W/m2⋅K.  The temperature 
difference between the center and surface decreases with increasing t and, during the early stages of 
solidification, with decreasing h. 
 
COMMENTS:  Temperature gradients in the glass are largest during the early stages of solidification 
and increase with increasing h.  Since thermal stresses increase with increasing temperature gradients, the 
propensity to induce defects due to crack formation in the glass increases with increasing h.  Hence, there 
is a value of h above which product quality would suffer and the process should not be operated. 



PROBLEM 5S.9

KNOWN: Steel (plain carbon) billet of square cross-section initially at a uniform
temperature of 30C is placed in a soaking oven and subjected to a convection heating process
with prescribed temperature and convection coefficient.

FIND: Time required for billet center temperature to reach 600C.

SCHEMATIC:

ASSUMPTIONS: (1) Two-dimensional conduction in x1 and x2 directions, (2) Constant

properties, (3) Heat transfer to billet is by convection only.

PROPERTIES: Table A-1, Steel, plain carbon (T = (30+600)C/2 = 588K =  600K):  =

7854 kg/m
3
, cp = 559 J/kgK, k = 48.0 W/mK,  =k/cp = 1.093  10

-5
m

2
/s.

ANALYSIS: The billet corresponds to Case (e), Figure 5S.11 (infinite rectangular bar).
Hence, the temperature distribution is of the form

     1 2 1 2x , x , t P x , t P x , t  

where P(x,t) denotes the distribution corresponding to the plane wall. Because of symmetry in

the x1 and x2 directions, the P functions are identical. Hence,

   

 

2
o

i i
i i Plane wall o

T T0,0, t 0, t
where T T and L 0.15m.

T 0,t T

 


  






    
    
   

Substituting numerical values, find

     

 

1/ 21/ 2
o

i i

0, t T 0,0,t T 600 750 C
0.46.

T T 30 750 C








   
    

     





Consider now the Heisler chart for the plane wall, Figure 5S.1. For the values

-1o
o 2i

k 48.0 W/m K
0.46 Bi 3.2

hL 100 W/m K 0.15m





 
    

 

find

2

t
t Fo 3.2.

L

   

Hence,

 22

5 2

3.2 0.15 m3.2 L
t 6587 s 1.83 h.

1.093 10 m / s 
   


<



PROBLEM 5S.10

KNOWN: Initial temperature of fire clay brick which is cooled by convection.

FIND: Center and corner temperatures after 50 minutes of cooling.

SCHEMATIC:

ASSUMPTIONS: (1) Homogeneous medium with constant properties, (2) Negligible
radiation effects.

PROPERTIES: Table A-3, Fire clay brick (900K):  = 2050 kg/m
3
, k = 1.0 W/mK, cp =

960 J/kgK.  = 0.51  10
-6

m
2
/s.

ANALYSIS: From Figure 5S.11, the center temperature is given by

 
     1 2 3

i

T 0,0,0,t T
P 0, t P 0, t P 0, t

T T






  



where P P and P1 2 3, must be obtained from Figure 5S.1.

1
1 1 1 2

1

h L t
L 0.03m: Bi 1.50 Fo 1.70

k L


    

2
2 2 2 2

2

h L t
L 0.045m: Bi 2.25 Fo 0.756

k L


    

3
3 3 3 2

3

h L t
L 0.10m: Bi 5.0 Fo 0.153

k L


    

Hence from Figure 5S.1,

     1 2 3P 0, t 0.22 P 0, t 0.50 P 0, t 0.85.  

Hence,
 

i

T 0,0,0,t T
0.22 0.50 0.85 0.094

T T






   



and the center temperature is

   T 0,0,0,t 0.094 1600 313 K 313 K 434 K.    <

Continued …



PROBLEM 5S.10 (Cont.)

The corner temperature is given by

 
     1 2 3

1 2 3
i

T L , L ,L , t T
P L , t P L , t P L , t

T T






  



where

 
 

 1
1 1

o

L , t
P L , t P 0, t , etc.




 

and similar forms can be written for L2 and L3. From Figure 5S.2,

     1 2 3

o o o

L , t L , t L , t
0.55 0.43 0.25.

  

  
  

Hence,

 
 
 

1

2

3

P L , t 0.55 0.22 0.12
P L , t 0.43 0.50 0.22
P L , t 0.85 0.25 0.21

  
  
  

and

 1 2 3

i

T L , L ,L , t T
0.12 0.22 0.21 0.0056

T T






   



or

   1 2 3T L , L ,L , t 0.0056 1600 313 K 313 K.  

The corner temperature is then

 1 2 3T L , L ,L , t 320 K. <

COMMENTS: (1) The foregoing temperatures are overpredicted by ignoring radiation,
which is significant during the early portion of the transient.

(2) Note that, if the time required to reach a certain temperature were to be determined, an
iterative approach would have to be used. The foregoing procedure would be used to compute
the temperature for an assumed value of the time, and the calculation would be repeated until
the specified temperature were obtained.



PROBLEM 5S.11

KNOWN: Cylindrical copper pin, 100 mm long  50 mm diameter, initially at 20C; end faces are
subjected to intense heating, suddenly raising them to 500C; at the same time, the cylindrical surface

is subjected to a convective heating process (T,h).

FIND: (a) Temperature at center point of cylinder after a time of 8 seconds from sudden application
of heat, (b) Consider parameters governing transient diffusion and justify simplifying assumptions
that could be applied to this problem.

SCHEMATIC:

ASSUMPTIONS: (1) Two-dimensional conduction, (2) Constant properties and convection heat
transfer coefficient.

PROPERTIES: Table A-1, Copper, pure   T 500 20 C/2 500K :  


 = 8933 kg/m
3
, c = 407

J/kgK, k = 386 W/mK,  = k/c = 386 W/mK/8933 kg/m
3
 407 J/kgK = 1.064  10

-4
m

2
/s.

ANALYSIS: (1) The pin can be treated as a two-dimensional system comprised of an infinite

cylinder whose surface is exposed to a convection process (T,h) and of a plane wall whose surfaces

are maintained at a constant temperature (Te). This configuration corresponds to the short cylinder,
Case (i) of Figure 5S.11,

 
   

i

r,x,t
C r,t P x,t .




  (1)

For the infinite cylinder, using Figure 5S.4, with

 
 

2
42 -3

3o
2 2-3o

m
1.064 10 8s100 W/m K 25 10 mhr t sBi 6.47 10 and Fo 1.36,

k 385 W/m K r 25 10 m





  

      




find  
 

i cyl

0,8s
C 0,8s 1.




 





(2)

For the infinite plane wall, using Figure 5S.1, with

 

4 2
-1

2 2-3

hL t 1.064 10 m / s 8s
Bi or Bi 0 and Fo 0.34,

k L 50 10 m

  
      



find  
 

i wall

0,8s
P 0,8s 0.5.




 





(3)

Combining Equations (2) and (3) with Eq. (1), find
   

i i

0,0,8s T 0,0,8s T
1 0.5 0.5

T T










   



     iT 0,0,8s T 0.5 T T 500 0.5 20 500 260 C.         <

(b) The parameters controlling transient conduction with convective boundary conditions are the Biot
and Fourier numbers. Since Bi << 0.1 for the cylindrical shape, we can assume radial gradients are
negligible. That is, we need only consider conduction in the x-direction.



PROBLEM 5S.12

KNOWN: Cylindrical-shaped meat roast weighing 2.25 kg, initially at 6C, is placed in an

oven and subjected to convection heating with prescribed (T,h).

FIND: Time required for the center to reach a done temperature of 80C.

SCHEMATIC:

ASSUMPTIONS: (1) Two-dimensional conduction in x and r directions, (2) Uniform and
constant properties, (3) Properties approximated as those of water.

PROPERTIES: Table A-6, Water, liquid   T 80 6 C/2 315K :  


  = 1/vf = 1/1.009 

10
-3

m
3
/kg = 991.1 kg/m

3
, cp,f = 4179 J/kgK, k = 0.634 W/mK,  = k/c = 1.531  10

-7
m

2
/s.

ANALYSIS: The dimensions of the roast are determined from the requirement ro = L and

knowledge of its weight and density,
1/ 31/ 3

2
o o 3

M 2.25 kg
M V 2L r or r L 0.0712m.

2 2 991.1 kg/m
  

 

  
         

    
(1)

The roast corresponds to Case (i), Figure 5S.11, and the temperature distribution may be

expressed as the product of one-dimensional solutions,
 

   
i

T x,r,t T
P x,t C r,t ,

T T






 


where

P(x,t) and C(r,t) are defined by Equations 5S.2 and 5S.3, respectively. For the center of the
cylinder,

   

 i

T 0,0,t T 80 175 C
0.56.

T T 6 175 C





 
 

 




(2)

In terms of the product solutions,

     

i i iwall cylinder

T 0,0,t T T 0,t T T 0,t T
0.56

T T T T T T

  

  

   
   

   
(3)

For each of these shapes, we need to find values of o/i such that their product satisfies

Equation (3). For both shapes,

2
-1oh r hL 15 W/m K 0.0712m

Bi 1.68 or Bi 0.6
k k 0.634 W/m K

 
    



 22 2 7 2 5
oFo t/r t/L 1.53 10 m / s t/ 0.0712m 3.020 10 t.         

Continued …



PROBLEM 5S.12 (Cont.)

A trial-and-error solution is necessary. Begin by assuming a value of Fo; obtain the respective

o/i values from Figures 5S.1 and 5S.4; test whether their product satisfies Equation (3).

Two trials are shown as follows:

Trial Fo t(hrs) o i wall
/  o i cyl

/  o o

i iw cyl

 

 

 
 

 

1 0.4 3.68 0.72 0.50 0.36
2 0.3 2.75 0.78 0.68 0.53

For Trial 2, the product of 0.53 agrees closely with the value of 0.56 from Equation (2).
Hence, it will take approximately 2 ¾ hours to roast the meat.



PROBLEM 5S.13

KNOWN: A long alumina rod, initially at a uniform temperature of 850 K, is suddenly
exposed to a cooler fluid.

FIND: Temperature of the rod after 30 s, at an exposed end, T(0,0,t), and at an axial distance
6mm from the end, T(0, 6 mm, t).

SCHEMATIC:

ASSUMPTIONS: (1) Two-dimensional conduction in (r,x) directions, (2) Constant
properties, (3) Convection coefficient is same on end and cylindrical surfaces.

PROPERTIES: Table A-2, Alumina, polycrystalline aluminum oxide (assume

 T 850 600 K/2 725K):    = 3970 kg/m
3
, c = 1154 J/kgK, k = 12.4 W/mK.

ANALYSIS: First, check if system behaves as a lumped capacitance. Find

   oc h r / 2 500 W/m K 0.010m/2hL
Bi 0.202.

k k 12.4 W/m K


   



Since Bi > 0.1, rod does not behave as spacewise isothermal object. Hence, treat rod as a
semi-infinite cylinder, the multi-dimensional system Case (f), Figure 5S.11.

The product solution can be written as

 
         

i i i

r,x,t r,t x,t
r,x,t C r , t S x , t

  


  
        

Infinite cylinder, C(r*,t*). Using the Heisler charts with r* = r = 0 and
11 2

-1 oh r 500 W/m K 0.01m
Bi 2.48.

k 12.4 W/m K

    
         

Evaluate  = k/c = 2.71  10
-6

m
2
/s, find 2 6 2

oFo t/r 2.71 10 m / s     30s/(0.01m)
2

=

0.812. From the Heisler chart, Figure 5S.4, with Bi
-1

= 2.48 and Fo = 0.812, read C(0,t*) =

(0,t)/i = 0.61.

Continued …



PROBLEM 5S.13 (Cont.)

Semi-infinite medium, S(x*,t*). Recognize this as Case (3), Figure 5.7. From Equation 5.63,
note that the LHS needs to be transformed as follows,

 i

i i i

T T T T T T
1 S x,t .

T T T T T T
 

  

  
  

  

Thus,

 
   

 1/ 22

1/ 2 2 1/ 2

h tx hx h t x
S x,t 1 erfc exp erfc .

k kk2 t 2 t



 

                   
              

Evaluating this expression at the surface (x = 0) and 6 mm from the exposed end, find

   
 

 

22 6 2

2

500 W/m K 2.71 10 m / s 30s
S 0,30s 1 erfc 0 exp 0

12.4 W/m K


   

     
     
  
     

 
1/ 22 -6 2500 W/m K 2.71 10 m / s 30s

erfc 0
12.4 W/m K

  
      

   
   

     

      S 0,30s 1 1 exp 0.1322 erfc 0.3636 0.693.         

Note that Table B.2 was used to evaluate the complementary error function, erfc(w).

 

 
1/ 2-6 2

0.006m
S 6mm,30s 1 erfc

2 2.71 10 m / s 30s

  
  

   
   
   

 
2500 W/m K 0.006m

exp 0.1322 erfc 0.3327 0.3636 0.835.
12.4 W/m K

    
              

The product solution can now be evaluated for each location. At (0,0),

 
     

i

T 0,0,30s T
0,0, t C 0,t S 0,t 0.61 0.693 0.423.

T T
   




     



Hence,      iT 0,0,30s T 0.423 T T 350K 0.423 850 350 K 561 K.        <

At (0,6mm),

     0,6mm,t C 0,t S 6mm,t 0.61 0.835 0.509      

 T 0,6mm,30s 604 K. <

COMMENTS: Note that the temperature at which the properties were evaluated was a good
estimate.



PROBLEM 5S.14

KNOWN: Stainless steel cylinder of Example 5S.1, 80-mm diameter by 60-mm length, initially at

600 K, suddenly quenched in an oil bath at 300 K with h = 500 W/m
2
K. Use the Transient

Conduction, Plane Wall and Cylinder models of IHT to obtain the following solutions.

FIND: (a) Calculate the temperatures T(r,x,t) after 3 min: at the cylinder center, T(0, 0, 3 min), at the

center of a circular face, T(0, L, 3 min), and at the midheight of the side, T(ro, 0, 3 min); compare your
results with those in the example; (b) Calculate and plot temperature histories at the cylinder center,

T(0, 0, t), the mid-height of the side, T(ro, 0, t), for 0  t  10 min; comment on the gradients and what

effect they might have on phase transformations and thermal stresses; and (c) For 0  t  10 min,
calculate and plot the temperature histories at the cylinder center, T(0, 0, t), for convection coefficients

of 500 and 1000 W/m
2
K.

SCHEMATIC:

ASSUMPTIONS: (1) Two-dimensional conduction in r- and x-coordinates, (2) Constant properties.

PROPERTIES: Stainless steel (Example 5S.1):  = 7900 kg/m
3
, c = 526 J/kgK, k = 17.4 W/mK.

ANALYSIS: The following results were obtained using the Transient Conduction models for the
Plane Wall and Cylinder of IHT. Salient portions of the code are provided in the Comments.

(a) Following the methodology for a product solution outlined in Example 5S.1, the following results

were obtained at t = to = 3 min

(r, x, t) P(x, t) C(r, t) T(r, x, t)-IHT T(r, x, t)-Ex
(K) (K)

0, 0, to 0.6357 0.5388 402.7 405

0, L, to 0.4365 0.5388 370.5 372

ro, 0, to 0.6357 0.3273 362.4 365

Continued …



PROBLEM 5S.14 (Cont.)

The temperatures from the one-term series calculations of the Example 5S.1 are systematically higher
than those resulting from the IHT multiple-term series model, which is the more accurate method.

(b) The temperature histories for the center and mid-height of the side locations are shown in the graph
below. Note that at early times, the temperature difference between these locations, and hence the
gradient, is large. Large differences could cause variations in microstructure and hence, mechanical
properties, as well as induce residual thermal stresses.

(c) Effect of doubling the convection coefficient is to increase the quenching rate, but much less than
by a factor of two as can be seen in the graph below.

Quenching with h = 500 W/m^2.K
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COMMENTS: From IHT menu for Transient Conduction | Plane Wall and Cylinder, the models
were combined to solve the product solution. Key portions of the code, less the input variables, are
copied below.

// Plane wall temperature distribution
// The temperature distribution is
T_xtP = T_xt_trans("Plane Wall",xstar,FoP,BiP,Ti,Tinf) // Eq 5.42
// The dimensionless parameters are
xstar = x / L
BiP = h * L / k // Eq 5.9
FoP= alpha * t / L^2 // Eq 5.33
alpha = k/ (rho * cp)
// Dimensionless representation, P(x,t)
P_xt = (T_xtP - Tinf ) / (Ti - Tinf)

// Cylinder temperature distribution
// The temperature distribution T(r,t) is
T_rtC = T_xt_trans("Cylinder",rstar,FoC,BiC,Ti,Tinf) // Eq 5.50
// The dimensionless parameters are
rstar = r / ro
BiC = h * ro / k
FoC= alpha * t / ro^2
// Dimensionless representation, C(r,t)
C_rt= (T_rtC - Tinf ) / (Ti - Tinf)

// Product solution temperature distribution
(T_xrt - Tinf) / (Ti - Tinf) = P_xt * C_rt



PROBLEM 6S.1  
KNOWN:  Two-dimensional flow conditions for which v = 0 and T = T(y).  
FIND:  (a) Verify that u = u(y), (b) Derive the x-momentum equation, (c) Derive the energy equation.  
SCHEMATIC:    

  
  Pressure & shear forces   Energy fluxes 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Incompressible fluid with constant properties, (3) 
Negligible body forces, (4) v = 0, (5) T = T(y) or ∂T/∂x = 0, (6) Thermal energy generation occurs 
only by viscous dissipation.  
ANALYSIS:  (a) From the mass continuity equation, it follows from the prescribed conditions that 
∂u/∂x = 0.  Hence u = u(y).  
(b) From Newton’s second law of motion, xFΣ =  (Rate of increase of fluid momentum)x, 

( ) ( )[ ]{ } ( ) p  
p p dx  dy 1 dy  dx 1  u u  u u dx dy 1  u u dy 1

 x  y  x

∂ ∂ τ ∂
τ τ ρ ρ ρ

∂ ∂ ∂
− + ⋅ + − + + ⋅ = + ⋅ − ⋅

⎡ ⎡ ⎤⎤⎡ ⎡ ⎤⎤
⎢ ⎢ ⎥⎥⎢ ⎢ ⎥⎥⎣ ⎣ ⎦⎦ ⎣ ⎣ ⎦⎦

 

Hence, with ( ) u/  y ,τ μ ∂ ∂=  it follows that 

 ( )
2

2
 p    p u u u 0          .
 x  y  x  x y

∂ ∂ τ ∂ ∂ ∂ρ μ
∂ ∂ ∂ ∂ ∂

⎡ ⎤− + = = =⎣ ⎦     < 

(c) From the conservation of energy requirement and the prescribed conditions, it follows that 
in outE E 0,  or− =& &  

 

 ( ) ( )2   u Tpu  u e u / 2  dy 1 k u dy  dx 1
 y  y

∂ τ∂ρ τ
∂ ∂

⎡ ⎤⎡ ⎤+ + ⋅ + − + + ⋅⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
 

 
( ) ( ) ( ){ }2 2   T   T

     pu pu dx  u e u / 2  u e u / 2  dx  dy 1  u k k  dy  dx 1 0
 x  x  y  y  y
∂ ∂ ∂ ∂ ∂

ρ ρ τ
∂ ∂ ∂ ∂ ∂

− + + + + + ⋅ − − + − ⋅ =
⎡ ⎤⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 

 

or, ( ) ( ) ( )2 u     Tpu  u e u / 2 k 0
 y  x  x  y  y

∂ τ ∂ ∂ ∂ ∂ρ
∂ ∂ ∂ ∂ ∂

⎡ ⎤⎡ ⎤− − + + =⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
 

 

 
2

2
 u   p Tu u k 0.
 y  y  x  y

∂ ∂ τ ∂ ∂τ
∂ ∂ ∂ ∂

+ − + =  

 
Noting that the second and third terms cancel from the momentum equation,  

 
2 2

2
 u Tk 0.
 y  y

∂ ∂μ
∂ ∂

⎡ ⎤⎡ ⎤
+ =⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦
        < 



PROBLEM 6S.2  
KNOWN:  Oil properties, journal and bearing temperatures, and journal speed for a lightly 
loaded journal bearing.  
FIND:  Maximum oil temperature.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1)  Steady-state conditions, (2) Incompressible fluid with constant 
properties, (3) Clearance is much less than journal radius and flow is Couette.  
ANALYSIS:  The temperature distribution corresponds to the result obtained in the text 
Example on Couette flow,  

 
2

2
0

y yT(y) T U .
2k L L
μ ⎡ ⎤⎡ ⎤⎢ ⎥= + − ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

 

 
The position of maximum temperature is obtained from  

 2
2

dT 1 2y0 U
dy 2k L L

μ ⎡ ⎤
= = −⎢ ⎥

⎣ ⎦
 

 
or,  y L/2.=  
 
The temperature is a maximum at this point since 2 2d T/dy 0.<   Hence, 
 

 ( )
2

2
max 0 0

1 1 UT T L/2 T U T
2k 2 4 8k
μ μ⎡ ⎤= = + − = +⎢ ⎥⎣ ⎦

 
 

 ( )2-2
max

10 kg/s m 10m/s
T 40 C

8 0.15 W/m K
⋅

= +
× ⋅

o  
 
 maxT 40.83 C.= o          < 
 
COMMENTS:  Note that Tmax increases with increasing μ and U, decreases with 
increasing k, and is independent of L. 



PROBLEM 6S.3  
KNOWN:  Diameter, clearance, rotational speed and fluid properties of a lightly loaded journal 
bearing.  Temperature of bearing.  
FIND:  (a) Temperature distribution in the fluid, (b) Rate of heat transfer from bearing and operating 
power.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Incompressible fluid with constant properties, (3) 
Couette flow.  
PROPERTIES:  Oil (Given):  ρ = 800 kg/m

3, ν = 10
-5

m
2
/s, k = 0.13 W/m⋅K; μ = ρν = 8 × 10

-3 
kg/s⋅m.  
ANALYSIS:  (a) For Couette flow, the velocity distribution is linear, u(y) = U(y/L), and the energy 
equation and general form of the temperature distribution are 

 
2 2 22

2 1
22

d T du U U Ck           T y y C .
dy L 2k L kdy

μμ μ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − = − = − + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 

Considering the boundary conditions dT/dy)y=L = 0 and T(0) = T0, find C2 = T0 and C1 = μU
2
/L.  

Hence, 

 ( ) ( ) ( )22
0T T U / k y/L 1/ 2 y/L .μ ⎡ ⎤= + −⎢ ⎥⎣ ⎦

      < 

(b) Applying Fourier’s law at y = 0, the rate of heat transfer per unit length to the bearing is 

( ) ( ) ( ) ( )232
3

3
y=0

8 10 kg/s m 14.14 m/sdT U
q k  D  D 75 10 m 1507.5 W/m

dy L 0.25 10 m

μ
π π π

−
−

−
× ⋅

′ = − = − = − × × = −
×

⎤
⎥⎦

 

where the velocity is determined as 
 ( ) ( ) ( )U D/2 0.0375m 3600 rev/min 2  rad/rev / 60 s/min 14.14 m/s.ω π= = × =  
The journal power requirement is 
 ( ) ( )y=L s y=LP F U  D Uτ π′ ′= = ⋅ ⋅  
 
 ( )2 -3 3P 452.5kg/s m 75 10 m 14.14m/s 1507.5kg m/s 1507.5W/mπ′ = ⋅ × × = ⋅ =  < 

where the shear stress at y = L is 

 ( ) ( ) 3 2
s y=L y=L -3

U 14.14 m/s u/  y 8 10 kg/s m 452.5 kg/s m.
L 0.25 10 m

τ μ ∂ ∂ μ − ⎡ ⎤
= = = × ⋅ = ⋅⎢ ⎥

×⎣ ⎦
 

COMMENTS:  Note that q P ,′ ′=  which is consistent with the energy conservation requirement. 



PROBLEM 6S.4  
KNOWN:  Conditions associated with the Couette flow of air or water.  
FIND:  (a) Force and power requirements per unit surface area, (b) Viscous dissipation, (c) Maximum 
fluid temperature.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Fully-developed Couette flow, (2) Incompressible fluid with constant 
properties. 
PROPERTIES:  Table A-4, Air (300K):  μ = 184.6 × 10

-7
N⋅s/m

2, k = 26.3 × 10
-3

W/m⋅K; Table A-6, 

Water (300K):  μ = 855 × 10
-6

N⋅s/m
2, k = 0.613 W/m⋅K. 

ANALYSIS:  (a) The force per unit area is associated with the shear stress.  Hence, with the linear 
velocity profile for Couette flow, ( ) ( )du/dy U/L .τ μ μ= =  

Air:  7 2 2
air

200 m/s184.6 10  N s/m 0.738 N/m
0.005 m

τ −= × ⋅ × =    < 

Water:  6 2 2
water

200 m/s855 10  N s/m 34.2 N/m .
0.005 m

τ −= × ⋅ × =  

With the required power given by P/A = τ ⋅U,  

Air:  ( ) ( )2 2
airP/A 0.738 N/m 200 m/s 147.6 W/m= =     < 

Water:  ( ) ( )2 2
waterP/A 34.2 N/m 200 m/s 6840 W/m .= =  

(b) The viscous dissipation is ( ) ( )2 2du/dy U/L .μ μ μΦ = =   Hence, 

Air:  ( )
2

7 4 3
air 2

N s 200 m/s184.6 10 2.95 10  W/m
0.005 mm

μ − ⋅ ⎡ ⎤Φ = × = ×⎢ ⎥⎣ ⎦
  < 

Water:  ( )
2

6 6 3
water 2

N s 200 m/s855 10 1.37 10 W/m .
0.005 mm

μ − ⋅ ⎡ ⎤Φ = × = ×⎢ ⎥⎣ ⎦
 

(c) From the solution to Part 4 of Example 6S.1, the location of the maximum temperature corresponds 

to ymax = L/2.  Hence, 2
max 0T T U / 8k andμ= +  

Air:  ( ) ( )2-7 2
max air

184.6 10  N s/m 200 m/s
T 27 C 30.5 C

8 0.0263 W/m K
× ⋅

= + =
× ⋅

o o   < 

Water:  ( ) ( )2-6 2
max water

855 10  N s/m 200 m/s
T 27 C 34.0 C.

8 0.613 W/m K
× ⋅

= + =
× ⋅

o o  

COMMENTS:  (1) The viscous dissipation associated with the entire fluid layer, ( )LA ,μΦ  must 

equal the power, P.  (2) Although μ μΦ Φb g b gwater air water air k k>> >>, .   Hence, 

max,water max,airT T .≈  



PROBLEM 6S.5  
KNOWN:  Velocity and temperature difference of plates maintaining Couette flow.  Mean 
temperature of air, water or oil between the plates.  
FIND:  (a) Pr⋅Ec product for each fluid, (b) Pr⋅Ec product for air with plate at sonic velocity.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Couette flow, (3) Air is at 1 atm.  
PROPERTIES:  Table A-4, Air (300K, 1atm), cp = 1007 J/kg⋅K, Pr = 0.707, γ = 1.4, R= 
287.02 J/kg⋅K; Table A-6, Water (300K):  cp = 4179 J/kg⋅K, Pr = 5.83; Table A-5, Engine oil 
(300K), cp = 1909 J/kg⋅K, Pr = 6400. 
 
ANALYSIS:  The product of the Prandtl and Eckert numbers is dimensionless, 

 
( ) ( )

2 2 2 2 2

2 2p

U m / s m / sPr Ec Pr .
c T J/kg K K kg m / s / kg

⋅ = ∩ ∩
Δ ⋅ ⋅

 

 
Substituting numerical values, find  
        Air   Water    Oil   < 
    Pr⋅Ec 0.0028  0.0056  13.41  
(b) For an ideal gas, the speed of sound is 
 ( )1/ 2c  R Tγ=  

where R, the gas constant for air, is Ru/ M  = 8.315 kJ/kmol⋅K/(28.97 kg/kmol) = 287.02 
J/kg⋅K.  Hence, at 300K for air, 

 ( )1/ 2U c 1.4 287.02 J/kg K 300K 347.2 m/s.= = × ⋅ × =  
 
For sonic velocities, it follows that 

 
( )2347.2 m/s

Pr Ec 0.707 3.38.
1007J / kg K 25K

⋅ = =
⋅ ×

      < 
 
COMMENTS:  From the above results it follows that viscous dissipation effects must be 
considered in the high speed flow of gases and in oil flows at moderate speeds.  For Pr⋅Ec to 
be less than 0.1 in air with ΔT = 25°C, U should be <

~
60 m/s. 



PROBLEM 6S.6  
KNOWN:  Couette flow with moving plate isothermal and stationary plate insulated.  
FIND:  Temperature of stationary plate and heat flux at the moving plate.  
SCHEMATIC:  

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Incompressible fluid with constant properties, (3) 
Couette flow.  
ANALYSIS:  The energy equation is given by 

 
22

2
T  u0 k

 y y

∂ ∂μ
∂∂

⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦⎣ ⎦
 

Integrating twice find the general form of the temperature distribution, 

 

( )

2 22
12

2
2

1 2

 T U  T U               y C
k L  y k L y

UT y y C y C .
2k L

∂ μ ∂ μ
∂∂

μ

⎡ ⎤ ⎡ ⎤= − = − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤= − + +⎢ ⎥⎣ ⎦

 

 
Consider the boundary conditions to evaluate the constants, 

 ( ) 2
y=0 1 L 2 L T/  y 0    C 0  and  T L T     C T U .

2k
μ∂ ∂ = → = = → = +  

Hence, the temperature distribution is  

 ( )
22

L
 U yT y T  1 .
2k L

μ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥= + −⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
 

 
The temperature of the lower plate (y = 0) is 

 ( )
2

L
 UT 0 T .
2k

μ⎡ ⎤
= + ⎢ ⎥

⎢ ⎥⎣ ⎦
        < 

The heat flux to the upper plate (y = L) is 

 ( )
2

y=L
 T  Uq  L k .
 y L

∂ μ
∂

′′ = − =        < 

COMMENTS:  The heat flux at the top surface may also be obtained by integrating the viscous 
dissipation over the fluid layer height.  For a control volume about a unit area of the fluid layer,  

 ( ) ( )
L

0

2 2
g out

u  UE E           dy q L           q L .
y L

∂ μμ
∂
⎡ ⎤′′ ′′ ′′ ′′= ∫ = =⎢ ⎥
⎣ ⎦

& &  



PROBLEM 6S.7 
 
KNOWN:  Couette flow with heat transfer.  Lower (insulated) plate moves with speed U and upper plate  
is stationary with prescribed thermal conductivity and thickness.  Outer surface of upper plate maintained 
at constant temperature, Tsp = 40°C. 
 
FIND: (a)  On T-y coordinates, sketch the temperature distribution in the oil and the stationary plate, and 
(b) An expression for the temperature at the lower surface of the oil film, T(0) = To, in terms of the plate 
speed U, the stationary plate parameters (Tsp, ksp, Lsp) and the oil parameters (μ, ko, Lo).  Determine this 
temperature for the prescribed conditions. 
 
SCHEMATIC:  
 

  
ASSUMPTIONS: (1) Steady-state conditions, (2) Fully developed Couette flow and (3) Incompressible 
fluid with constant properties. 
 
ANALYSIS:  (a) The temperature distribution is shown above with these key features:  linear in plate, 
parabolic in oil film, discontinuity in slope at plate-oil interface, and zero gradient at lower plate surface. 
 
(b) From Example 6S.1, the general solution to the conservation equations for the temperature 
distribution in the oil film is 

 ( )
2

2
o 3 4

o o

UT y Ay C y C where A
2k L
μ ⎛ ⎞

= − + + = ⎜ ⎟
⎝ ⎠

 

and the boundary conditions are, 
 

At y = 0, insulated boundary        o

y 0

dT 0
dy =

⎞
=⎟

⎠
;      C3 = 0 

At y = Lo, heat fluxes in oil and plate are equal,     ( ) ( )o o sp oq L q L′′ ′′=  

  
Continued... 



 
PROBLEM 6S.7 (Cont.) 

 

 
( )

( )
o

o

o
oo o spo

y Lo
sp 2y L

sp sp sp o o o 4

dT 2ALT L TdT dyk
dy R

R L k T L AL C
=

=

⎧ ⎞
= −− ⎪ ⎟⎞

− = ⎠⎨⎟
⎠ ⎪ = = − +⎩

 

 

 sp2 o
4 sp o

o sp

LkC T AL 1 2
L k

⎡ ⎤
= + +⎢ ⎥

⎢ ⎥⎣ ⎦
 

 
Hence, the temperature distribution at the lower surface is 
 
 ( )o 4T 0 A 0 C= − ⋅ +  
 

 ( ) sp2 o
o sp

o o sp

LkT 0 T U 1 2
2k L k
μ ⎡ ⎤

= + +⎢ ⎥
⎢ ⎥⎣ ⎦

 < 

 
Substituting numerical values, find 
 

 ( ) ( )
2 2

o
0.799 N s m 0.145 3T 0 40 C 5m s 1 2 116.9 C

2 0.145W m K 5 1.5
⋅ ⎡ ⎤= + + × =⎢ ⎥× ⋅ ⎣ ⎦

o o  < 

 
COMMENTS:  (1) Give a physical explanation about why the maximum temperature occurs at the lower 
surface. 
 
(2)  Sketch the temperature distribution if the upper plate moved with a speed U while the lower plate is 
stationary and all other conditions remain the same. 



PROBLEM 6S.8 
 
KNOWN:  Shaft of diameter 100 mm rotating at 9000 rpm in a journal bearing of 70 mm length.  
Uniform gap of 1 mm separates the shaft and bearing filled with lubricant.  Outer surface of bearing is 
water-cooled and maintained at Twc = 30°C.  
 
FIND:  (a) Viscous dissipation in the lubricant, μΦ(W/m3),  (b) Heat transfer rate from the lubricant, 
assuming no heat  lost through the shaft, and (c) Temperatures of the bearing and shaft, Tb and Ts.  
SCHEMATIC: 

 
 
ASSUMPTIONS: (1) Steady-state conditions, (2) Fully developed Couette flow, (3) Incompressible fluid 
with constant properties, and (4) Negligible heat lost through the shaft. 
 
ANALYSIS:  (a) The viscous dissipation, μΦ, Eq. 6S.20, for Couette flow from Example 6S.1, is 
 

 
22 2

2 7 3du U 47.1m s0.03N s m 6.656 10 W m
dy L 0.001m

μ μ μ
⎛ ⎞⎛ ⎞ ⎛ ⎞Φ = = = ⋅ = ×⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
 < 

 
where the velocity distribution is linear and the tangential velocity of the shaft is 
 
 ( ) ( )U DN 0.100 m 9000 rpm min 60s 47.1m sπ π= = × × = . 
 
(b) The heat transfer rate from the lubricant volume ∀ through the bearing is 

 ( ) ( )7 3q D L 6.65 10 W m 0.100 m 0.001m 0.070 m 1462 Wμ μ π π= Φ ⋅∀ = Φ ⋅ ⋅ = × × × × =l  < 
 
where l = 70 mm is the length of the bearing normal to the page. 
 

 
Continued... 



 
PROBLEM 6S.8 (Cont.) 

 
(c) From Fourier’s law, the heat rate through the bearing material of inner and outer diameters, Di and Do, 
and thermal conductivity kb is, from Eq. (3.32), 
 

 
( )
( )
b b wc

r
o i

2 k T T
q

ln D D
π −

=
l

 

 

 
( )r o i

b wc
b

q ln D D
T T

2 kπ
= +

l
 

 

 
( )

b
1462 W ln 200 100

T 30 C 81.2 C
2 0.070m 45W m Kπ

= + =
× × ⋅

o o  < 

 
To determine the temperature of the shaft, T(0) = Ts, first the temperature distribution must be found 
beginning with the general solution, Example 6S.1, 
 

 ( )
2

2
3 4

UT y y C y C
2k L
μ ⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

 

 
The boundary conditions are, at y = 0, the surface is adiabatic 
 

 3
y 0

dT 0 C 0
dy =

⎞
= =⎟

⎠
 

 
and at y = L, the temperature is that of the bearing, Tb  

 ( )
2

2 2
b 4 4 b

UT L T L 0 C C T U
2k L 2k
μ μ⎛ ⎞= = − + + = +⎜ ⎟
⎝ ⎠

 

 
Hence, the temperature distribution is 
 

 ( )
2

2
b 2

yT y T U 1
2k L

μ ⎛ ⎞
⎜ ⎟= + −
⎜ ⎟
⎝ ⎠

 

 
and the temperature at the shaft, y = 0, is 
 

 ( ) ( )
2 22

s b
0.03N s mT T 0 T U 81.3 C 47.1m s 303 C

2k 2 0.15W m K
μ ⋅

= = + = + =
× ⋅

o o  < 



PROBLEM 6S.9 
 
KNOWN:  Couette flow with heat transfer. 
 
FIND:  (a) Dimensionless form of temperature distribution, (b) Conditions for which top plate is 
adiabatic, (c) Expression for heat transfer to lower plate when top plate is adiabatic. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) incompressible fluid with constant properties, (3) 
Negligible body forces, (4) Couette flow. 
 
ANALYSIS:  (a) From Example 6.4, the temperature distribution is 

 ( )
2

2
0 L 0

y y yT T U T T
2k L L L
μ ⎡ ⎤⎛ ⎞⎢ ⎥= + − + −⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
 

 

 
( )

22
0

L 0 L 0

T T U y y y
T T 2k T T L L L

μ ⎡ ⎤− ⎛ ⎞⎢ ⎥= − +⎜ ⎟− − ⎝ ⎠⎢ ⎥⎣ ⎦
 

or, with 
 ( )0 L 0T T T Tθ ≡ − − ,           y Lη ≡ ,  

 pPr c kμ≡ ,                         ( )2
p L 0Ec U c T T≡ −  

 ( ) ( )2Pr Ec 11 Pr Ec 1
2 2

θ η η η η η⋅ ⎡ ⎤= − + = + ⋅ −⎢ ⎥⎣ ⎦
 (1) < 

 
(b) For there to be zero heat transfer at the top plate, (dT/dy)y=L = 0.  Hence, (dθ/dη)η=1 = 0. 

 ( ) 1
1

d Pr Ec Pr Ec1 2 1 1 0
d 2 2=

=

⎞ ⋅ ⋅
= − + = − + =⎟

⎠ η
η

θ η
η

 

There is no heat transfer at the top plate if, 

 Ec⋅Pr = 2. (2) < 
 
(c) The heat transfer rate to the lower plate (per unit area) is 

 
( )L 0

0
y 0 0

T TdT dq k k
dy L d η

θ
η= =

−
′′ = − = −  

 

 ( )L 0
o 0

T T Pr Ecq k 1 2 1
L 2 ηη

=
− ⋅⎡ ⎤′′ = − − +⎢ ⎥⎣ ⎦

 

 

 ( )L 0
0 L 0

T T Pr Ecq k 1 2k T T L
L 2
− ⋅⎛ ⎞′′ = − + = − −⎜ ⎟

⎝ ⎠
 < 

Continued... 



 
PROBLEM 6S.9 (Cont.) 

 
(d) Using Eq. (1), the dimensionless temperature distribution is plotted as a function of dimensionless 
distance, η = y/L.  When Pr⋅Ec = 0, there is no dissipation and the temperature distribution is linear, so 
that heat transfer is by conduction only.  As Pr ⋅Ec increases, viscous dissipation becomes more 
important.  When Pr⋅Ec = 2, heat transfer to the upper plate is zero.  When Pr⋅Ec > 2, the heat rate is out 
of the oil film at both surfaces. 

 

0 0.25 0.5 0.75 1

eta = y/L

0

0.5

1

1.5

2

th
et

a 
= 

(T
(y

)-
T0

)/(
TL

-T
0)

Pr*Ec = 0, conduction
Pr*Ec = 1
Pr*Ec = 2, adiabatic at y=L
Pr*Ec = 4
Pr*Ec = 10  

 



PROBLEM 6S.10  
KNOWN:  Steady, incompressible, laminar flow between infinite parallel plates at different 
temperatures.  
FIND:  (a) Form of continuity equation, (b) Form of momentum equations and velocity profile.  
Relationship of pressure gradient to maximum velocity, (c) Form of energy equation and temperature 
distribution.  Heat flux at top surface.  
SCHEMATIC:   

 
ASSUMPTIONS:  (1) Two-dimensional flow (no variations in z) between infinite, parallel plates, (2) 
Negligible body forces, (3) No internal energy generation, (4) Incompressible fluid with constant 
properties.  
ANALYSIS:  (a) For two-dimensional, steady conditions, the continuity equation is 

 ( ) ( ) u  v
0.

 x  y
∂ ρ ∂ ρ
∂ ∂

+ =  

Hence, for an incompressible fluid (constant ρ) in parallel flow (v = 0), 

  u 0.
 x

∂
∂

=           < 

The flow is fully developed in the sense that, irrespective of y, u is independent of x.  
(b) With the above result and the prescribed conditions, the momentum equations reduce to 

 
2

2
 p  u  p0           0
 x  y y

∂ ∂ ∂μ
∂ ∂∂

= − + = −        < 

 
Since p is independent of y, ∂p/∂x = dp/dx is independent of y and  

 
2 2

2 2
 u d u dp .

dx y dy

∂μ μ
∂

= =  

 
Since the left-hand side can, at most, depend only on y and the right-hand side is independent of y, 
both sides must equal the same constant C.  That is,  

 
2

2
d u C.
dy

μ =  

 
Hence, the velocity distribution has the form  

 ( ) 2
1 2

Cu y y C y C .
2μ

= + +  
 
Using the boundary conditions to evaluate the constants,  
 ( ) ( )2 1u 0 0          C 0   and   u L 0          C CL/2 .μ= → = = → = −  
          Continued ….. 



PROBLEM 6S.10 (Cont.)  

The velocity profile is  ( ) ( )2Cu y y Ly .
2μ

= −  
 
The profile is symmetric about the midplane, in which case the maximum velocity exists at y = L/2.  
Hence, 

 ( )
2 2

max max
C L L dpu L/2 u           or          u  .
2 4 8 dxμ μ

⎡ ⎤
= = − = −⎢ ⎥

⎢ ⎥⎣ ⎦
   < 

(c) For fully developed thermal conditions, (∂T/∂x) = 0 and temperature depends only on y.  Hence 
with v = 0, ∂u/∂x = 0, and the prescribed assumptions, the energy equation becomes 

 
22

2
 i d T dp du u k u .
 x dx dydy

∂ρ μ
∂

⎡ ⎤
= + + ⎢ ⎥

⎣ ⎦
 

With i = e + p/ρ,  i  e 1 dp  e  e  T  e       where     0.
 x  x dx  x  T  x   x

∂ ∂ ∂ ∂ ∂ ∂ ∂ ρ
∂ ∂ ρ ∂ ∂ ∂ ∂ ρ ∂

= + = + =  
 

Hence, the energy equation becomes  
22

2
d T du0 k .

dydy
μ
⎡ ⎤

= + ⎢ ⎥
⎣ ⎦

    < 

 
With du/dy = (C/2μ) (2y - L), it follows that 

 ( )
2 2

2 2
2

d T C 4y 4Ly L .
4kdy μ

= − − +  

Integrating twice, 

 ( )
2 4 3 2 2

3 4
C y 2Ly L yT y C y C
4k 3 3 2μ

⎡ ⎤
= − − + + +⎢ ⎥

⎢ ⎥⎣ ⎦
 

Using the boundary conditions to evaluate the constants, 

 ( ) ( ) ( )2 3 1 2
2 4 2 1 3

T TC LT 0 T           C T      and     T L T          C .
24k Lμ

−
= → = = → = +  

Hence,  ( ) ( )
2 4 3 2 2 3

2 1 2
y C y 2Ly L y L yT y T  T T .
L 4k 3 3 2 6μ

⎡ ⎤⎡ ⎤= + − − − + −⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
  < 

 
From Fourier’s law, 

 ( ) ( )
2 3

3 3 3
2 1

y=L

 T k C 4 Lq L k T T L 2L L
 y L 4 3 6

∂
∂ μ

⎡ ⎤
′′ = − = − + − + −⎢ ⎥

⎢ ⎥⎣ ⎦
 

 ( ) ( )
2 3

2 1
k C Lq L T T .
L 24μ

′′ = − +         < 

COMMENTS:  The third and second terms on the right-hand sides of the temperature distribution 
and heat flux, respectively, represents the effects of viscous dissipation.  If C is large (due to large μ or 
umax), viscous dissipation is significant.  If C is small, conduction effects dominate. 



PROBLEM 6S.11  
KNOWN:  Steady, incompressible flow of binary mixture between infinite parallel plates 
with different species concentrations.  
FIND:  Form of species continuity equation and concentration distribution.  Species flux at 
upper surface.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Two-dimensional flow, (2) No chemical reactions, (3) Constant 
properties.  
ANALYSIS:  For fully developed conditions, ∂CA/∂x = 0.  Hence with v = 0, the species 
conservation equation reduces to  

 
2

A
2

d C 0.
dy

=           < 

 
Integrating twice, the general form of the species concentration distribution is  
 ( )A 1 2C y C y C .= +  
 
Using appropriate boundary conditions and evaluating the constants,  

 
( )
( ) ( )

A A,2 2 A,2
A A,1 1 A,1 A,2

C 0 C           C =C
C L C           C C C / L,

= →
= → = −

 

 
the concentration distribution is  
 ( ) ( ) ( )A A,2 A,1 A,2C y C y/L  C C .= + −       < 
 
From Fick’s law, the species flux is  

 ( ) A
A AB

y=L

dCN L D
dy

′′ = −  

 

 ( ) ( )AB
A A,2 A,1

DN L C C .
L

′′ = −        < 
 
COMMENTS:  An analogy between heat and mass transfer exists if viscous dissipation is 
negligible.  The energy equation is then d2T/dy2 = 0.  Hence, both heat and species transfer 
are influenced only by diffusion.  Expressions for T(y) and ( )q L′′  are analogous to those for 

CA(y) and ( )AN L .′′  



PROBLEM 6S.12  
KNOWN:  Flow conditions between two parallel plates, across which vapor transfer occurs.  
FIND:  (a) Variation of vapor molar concentration between the plates and mass rate of water 
production per unit area, (b) Heat required to sustain the process.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Fully developed, incompressible flow 
with constant properties, (3) Negligible body forces, (4) No chemical reactions, (5) All work 
interactions, including viscous dissipation, are negligible.  
ANALYSIS:  (a) The flow will be fully developed in terms of the vapor concentration field, 
as well as the velocity and temperature fields.  Hence  

 ( ) ( )A
A A

 C 0          or          C x,y C y .
 x

∂
∂

= =  
 
Also, with ∂CA/∂t = 0, AN 0,=&  v = 0 and constant DAB, the species conservation equation 
reduces to  

 
2

A
2

d C 0.
dy

=  

 
Separating and integrating twice,  
 ( ) ( )A 1 2C y C y C .= +  
 
Applying the boundary conditions,  

 
( )
( )

A A,0 2 A,0
A,0 A,L

A A,L A,L 1 2 1

C 0 C                     C C
C C

C L C                    C C L C           C
L

= → =
−

= → = + = −
 

 
find the species concentration distribution,  
 ( ) ( ) ( )A A,0 A,0 A,LC y C C C  y/L .= − −       < 
 
From Fick’s law, Eq. 6.7, the species transfer rate is  

 A,0 A,LA
A A,s AB AB

y=0

C C CN N D D .
y L

∂
∂

−⎤′′ ′′= = − =⎥
⎦

 

          Continued ….. 



PROBLEM 6S.12 (Cont.)  
Multiplying by the molecular weight of water vapor, MA, the mass rate of water production 
per unit area is  

 A,0 A,L
A A A A AB

C C
n N D .

L
−

′′ ′′= =M M       < 
 
(b) Heat must be supplied to the bottom surface in an amount equal to the latent and sensible 
heat transfer from the surface,  

 
lat sen

A,s fg
y=0

q q q
dTq n  h k .
dy

′′ ′′ ′′= +
⎡ ⎤′′ ′′= + −⎢ ⎥
⎣ ⎦

 

 
The temperature distribution may be obtained by solving the energy equation, which, for the 
prescribed conditions, reduces to  

 
2

2
d T 0.
dy

=  

 
Separating and integrating twice,  
 ( ) 1 2T y C y C .= +  
 
Applying the boundary conditions,  

 ( )
( ) ( )

0 2 0
L 1 1 0

T 0 T                     C T
T L T                   C T T / L

= → =
= → = −  

 
find the temperature distribution,  
 ( ) ( )0 0 LT y T T T y/L.= − −  
 
Hence,  

 ( )0 L

y=0

T TdTk k .
dy L

−⎤
− =⎥

⎦
 

 
Accordingly,  

 
( )A,0 A,L 0 L

A AB fg
C C T T

q D h k .
L L
− −

′′ = +M      < 
 
COMMENTS:  Despite the existence of the flow, species and energy transfer across the air 
are uninfluenced by advection and transfer is only by diffusion.  If the flow were not fully 
developed, advection would have a significant influence on the species concentration and 
temperature fields and hence on the rate of species and energy transfer.  The foregoing results 
would, of course, apply in the case of no air flow.  The physical condition is an example of 
Poiseuille flow with heat and mass transfer. 



PROBLEM 6S.13  
KNOWN:  The conservation equations, Eqs. 6S.24 and 6S.31.  
FIND:  (a) Describe physical significance of terms in these equations, (b) Identify 
approximations and special conditions used to reduce these equations to the boundary layer 
equations, Eqs. 6.29 and 6.30, (c) Identify the conditions under which these two boundary 
layer equations have the same form and, hence, an analogy will exist.  
ANALYSIS:  (a) The energy conservation equation, Eq. 6S.24, has the form 

 
 i  i  T  T  p  p u  v k k u v q.
 x  y  x  x  y  y  x  y

        1a          1b                  2a                     2b                   3                4      5

⎡ ⎤ ⎡ ⎤⎡ ⎤+ = + + + + Φ +⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
&

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ρ ρ μ
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

The terms, as identified, have the following physical significance: 
1. Change of enthalpy (thermal + flow work) advected in x and y directions, < 
2. Change of conduction flux in x and y directions, 
3. Work done by static pressure forces, 
4. Word done by viscous stresses, 
5. Rate of energy generation. 

The species mass conservation equation for a constant total concentration has the form 

 
A A A A

AB AB A
 C C  C  Cu v D D N
 x  y  x  x  y  y

      1a            1b                        2a                            2b             3

⎡ ⎤⎡ ⎤+ = + +⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
&∂ ∂ ∂ ∂∂ ∂

∂ ∂ ∂ ∂ ∂ ∂  

1. Change in species transport due to advection in x and y directions,  < 
2. Change in species transport by diffusion in x and y directions, and 
3. Rate of species generation.  

(b) The special conditions used to reduce the above equations to the boundary layer equations 
are:  constant properties, incompressible flow, non-reacting species ( )AN 0 ,=&  without 

internal heat generation ( )q 0 ,=&  species diffusion has negligible effect on the thermal 
boundary layer, u(∂ p/∂ x) is negligible.  The approximations are,  

Velocity boundary layer u  u  v  vu v          ,  ,  
y  x  y  x

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

⎧
>> >>⎨

⎩
 

Thermal b.1.:  A A T  T  C  C         Concentration b.1.:     .
 y  x  y  x

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

⎧ ⎧
>> >>⎨ ⎨

⎩⎩
 

The resulting simplified boundary layer equations are 

 
2 22

A A A
AB2 2

C  C  C T  T T  uu v           u v D
 x  y c  y  x  y y  y

     1a       1b          2a            3                          1c            1d                    2b

⎡ ⎤
+ = + + =⎢ ⎥

⎣ ⎦

∂ ∂ ∂∂ ∂ ∂ ν ∂α
∂ ∂ ∂ ∂ ∂∂ ∂

 < 

where the terms are:  1.  Advective transport, 2.  Diffusion, and 3.  Viscous dissipation.  
(c) When viscous dissipation effects are negligible, the two boundary layer equations have 
identical form.  If the boundary conditions for each equation are of the same form, an analogy 
between heat and mass (species) transfer exists. 



PROBLEM 6S.14  
KNOWN:  Thickness and inclination of a liquid film.  Mass density of gas in solution at free surface 
of liquid.  
FIND:  (a) Liquid momentum equation and velocity distribution for the x-direction.  Maximum 
velocity, (b) Continuity equation and density distribution of the gas in the liquid, (c) Expression for 
the local Sherwood number, (d) Total gas absorption rate for the film, (e) Mass rate of NH3 removal 
by a water film for prescribed conditions.  
SCHEMATIC:   

        NH3 (A) – Water (B) 
     L = 2m 
     δ = 1 mm 
     D = 0.05m 
     W = πD = 0.157m 
     ρA,o = 25 kg/m3 
     DAB = 2 × 10-9 m2/s 
     φ = 0° 

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) The film is in fully developed, laminar flow, (3) 
Negligible shear stress at the liquid-gas interface, (4) Constant properties, (5) Negligible gas 
concentration at x = 0 and y = δ, (6) No chemical reactions in the liquid, (7) Total mass density is 
constant, (8) Liquid may be approximated as semi-infinite to gas transport.  
PROPERTIES:  Table A-6, Water, liquid (300K):  ρf = 1/vf = 997 kg/m

3, μ = 855 × 10
-6

 N⋅s/m
2
, ν 

= μ/ρf = 0.855 × 10
-6

m
2
/s.  

ANALYSIS: (a) For fully developed flow (v = w = 0, ∂u/∂x = 0), the x-momentum equation is 
 ( ) ( )yx yx0 /  y X     where      u/  y      and     X g cos .∂τ ∂ τ μ ∂ ∂ ρ φ= + = =  
That is, the momentum equation reduces to a balance between gravitational and shear forces.  Hence, 

 ( ) ( )2 2u/  y g cos .μ ∂ ∂ ρ φ= −  

Integrating,   ( ) ( ) 2
1 1 2 u/  y g cos / y C           u g cos /2 y C y C .∂ ∂ φ ν φ ν= − + = − + +  

Applying the boundary conditions, 

 
)

( )

1y=0
2

2

 u/  y 0                              C 0

u 0                                         C g cos  .
2

∂ ∂

δ
δ φ

ν

= → =

= → =
 

Hence,  ( ) ( )
2

22 2g cos g cos  
u y 1 y/

2 2
φ φ δ

δ δ
ν ν

= − = −⎡ ⎤
⎢ ⎥⎣ ⎦

    < 

and the maximum velocity exists at y = 0, 

 ( ) ( )2
maxu u 0 g cos  / 2 .φ δ ν= =        < 

(b) Species transport within the liquid is influenced by diffusion in the y-direction and advection in the 
x-direction.  Hence, the species continuity equation with u assumed equal to umax throughout the 
region of gas penetration is  
          Continued ….. 



PROBLEM 6S.14 (Cont.) 

 
2 2

maxA A A A
AB 2 2 AB

u  
u D            .

 x D  x y  y

∂ρ ∂ ρ ∂ ρ ∂ρ
∂ ∂∂ ∂

= =  

Appropriate boundary conditions are:  ρA(x,0) = ρA,o and ρA(x,∞) = 0 and the entrance condition is:  

ρA(0,y) = 0.  The problem is therefore analogous to transient conduction in a semi-infinite medium 
due to a sudden change in surface temperature.  From Section 5.7, the solution is then 

 
( ) ( )

A A,o
A A,o1/ 2 1/ 2A,o AB max AB max

y y
erf           erfc

0 2 D x/u 2 D x/u

ρ ρ
ρ ρ

ρ

−
= =

−
 < 

(c) The Sherwood number is defined as 

 y=0m,x A,x
x m,x

AB A,o A,o

h x n AB A
Sh      where     h

D

D /  y′′
= ≡ =

−

ρ ρ

∂ρ ∂
 

( ) ( )

1/ 22
max maxA

A,o A,o1/ 2 1/ 2AB ABy=0 AB max y=0

y u u2 1
exp  .

 y 4 D x  D x2 D x/u

∂ρ
ρ ρ

∂ ππ
= − − = −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

 

Hence, 

 
( ) ( )

1/ 2 1/ 21/ 2 1/ 2
max AB max max

m,x x 1/ 2 1/ 2AB AB

u  D u x u x1 1
h      Sh

 x D D

ν

π νπ π
= = =

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 

and with Rex ≡ umax x/ν, 

 ( )1/ 2 1/2 1/2 1/2 1/2
x x xSh 1/  Re  Sc 0.564 Re  Sc .π= =⎡ ⎤

⎢ ⎥⎣ ⎦
    < 

(d)  The total gas absorption rate may be expressed as 
 ( )A m,x A,on h W L ρ= ⋅  
where the average mass transfer convection coefficient is 

 
L

0 0

1/ 2 1/ 2
Lmax AB max AB

m,x m,x 1/2
u  D 4u  D1 1 dx

h h dx .
L L  Lxπ π

= ∫ = ∫ =⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

Hence, the absorption rate per unit width is 

 ( )1/ 2
A max AB A,on / W 4u D L / .π ρ=       < 

(e) From the foregoing results, it follows that the ammonia absorption rate is 

 
1/ 21/ 2 2

max AB AB
A A,o A,o

4u  D  L 4 g cos D L
n  W W .

2
φδ

ρ ρ
π πν

= =
⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 

Substituting numerical values, 

( ) ( )
( )

1/ 222 3 -9 2
3 4

A -6 2

4 9.8 m/s 1 10 m  2 10 m /s 2m
n 0.157m 25 kg/m 6.71 10 kg/s.

2 0.855 10 m / sπ

−
−

× × × ×
= = ×

× ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 < 

COMMENTS:  Note that ρA,o ≠ ρA,∞, where ρA,∞ is the mass density of the gas phase.  The value 

of ρA,o depends upon the pressure of the gas and the solubility of the gas in the liquid. 



PROBLEM 11S.1  
KNOWN:  Operating conditions and surface area of a finned-tube, cross-flow exchanger.  
FIND:  Overall heat transfer coefficient.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Constant properties, (3) Exhaust gas 
properties are those of air. 
 
PROPERTIES:  Table A-6, Water ( )mT 87 C := °  pc 4203 J / kg K;= ⋅  Table A-4, Air 

( )mT 275 C :≈ °  pc 1040 J / kg K.= ⋅  
 
ANALYSIS:  From the energy balance equations 
 
 ( ) ( ) 5

c p,c c,o c,iq m c T T 0.5kg / s 4203J / kg K 150 25 C 2.63 10 W= − = × ⋅ − ° = ×&  
 

 
5

h,o h,i
h p,h

q 2.63 10 WT T 325 C 198.6 C.
m c 2 kg / s 1040 J / kg K

×
= − = ° − = °

× ⋅&
 

 
Hence 
 
 m m m,CFU q / A T where T F T .= Δ Δ = Δl l l  
 
From Fig. 11S.3, with 
 

 o i i o
i i o i

t t T T150 25 325 198.6P 0.42, R 1.01, F 0.94
T t 325 25 t t 150 25
− −− −

= = = = = = =
− − − −

 

 

 
( ) ( )

m,CF
325 150 198.6 25

T 174.3 C.325 150n
198.6 25

− − −
Δ = = °

−
−

l
l

 

 
Hence 
 

 
5

2
2m,CF

q 2.63 10 WU 160 W / m K.
AF T 10m 0.94 174.3 C

×
= = = ⋅

Δ × × °l
   < 

 
COMMENTS:  From the ε - NTU method, Cc = 2102 W/K, Ch = 2080 W/K, (Cmin/Cmax) ≈ 1, qmax = 
6.24 × 105 W and ε = 0.42.  Hence, from Fig. 11.14, NTU ≈ 0.75 and U ≈ 156 W/m2⋅K. 
 



PROBLEM 11S.2  
KNOWN:  Heat exchanger with two shell passes and eight tube passes having an area 925m2; 45,500 
kg/h water is heated from 80°C to 150°C; hot exhaust gases enter at 350°C and exit at 175°C.  
FIND:  Overall heat transfer coefficient.  
SCHEMATIC:   
 

 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Negligible losses to surroundings, (2) Negligible kinetic and potential energy 
changes, (3) Constant properties, (4) Exhaust gas properties are approximated as those of atmospheric 
air. 
 
PROPERTIES:  Table A-6, Water ( )( )cT 80 150 C / 2 388K := + ° =  cc = cp,f = 4236 J/kg⋅K. 
 
ANALYSIS:  The overall heat transfer coefficient follows from Eqs. 11.9 and 11S.1 written in the 
form 
 
 m,CFU q / AF T= Δ l  
 
where F is the correction factor for the HXer configuration, Fig. 11S.2, and m,CFTΔ l  is the log mean 
temperature difference (CF), Eqs. 11.15 and 11.16.  From Fig. 11S.2, find 
 

 
( )
( )

( )
( )

h,i h,o c,o c,i

c,o c,i h,i c,i

T T T T350 175 C 150 80 C
R 2.5 P 0.26

T T 150 80 C T T 350 80 C
− −− ° − °

= = = = = =
− − ° − − °

 

 
find F ≈ 0.97.  The log-mean temperature difference, Eqs. 11.15 and 11.17, is 
 

 
( )

( ) ( )
( ) ( )

1 2
m,CF

1 2

350 150 C 175 80 CT TT 141.1 C.
n T / T n 350 150 / 175 80

− ° − − °Δ −Δ
Δ = = = °

Δ Δ ⎡ ⎤− −⎣ ⎦
l

l l
 

 
From an overall energy balance on the cold fluid (water), the heat rate is 
 
 ( )c c c,o c,iq m c T T= −&  
 
 ( ) 6q 45,500 kg / h 1h / 3600s 4236 J / kg K 150 80 C 3.748 10 W.= × × ⋅ − ° = ×  
 
Substituting values with A = 925 m2, find 
 
 6 2 2U 3.748 10 W / 925m 0.97 141.1K 29.6 W / m K.= × × × = ⋅    < 
 
COMMENTS:  Compare the above result with representative values for air-water exchangers, as 
given in Table 11.2.  Note that in this exchanger, two shells with eight tube passes, the correction 
factor effect is very small, since F = 0.97. 
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PROBLEM 11S.3  
KNOWN:  A shell and tube Hxer (two shells, four tube passes) heats 10,000 kg/h of pressurized water 
from 35°C to 120°C with 5,000 kg/h water entering at 300°C.  
FIND:  Required heat transfer area, As.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Constant properties. 
 
PROPERTIES:  Table A-6, Water ( )cT 350 K :=  cp = 4195 J/kg⋅K; Table A-6, Water (Assume Th,o ≈ 

150°C, hT  ≈ 500 K): cp = 4660 J/kg⋅K. 
 
ANALYSIS:  The rate equation, Eq. 11.14, can be written in the form 
 s mA q / U T= Δ l          (1) 
and from Eq. 11S.1, 

 
( )

1 2
m m,CF m,CF

1 2

T TT F T where T .
n T / T
Δ −Δ

Δ = Δ Δ =
Δ Δl l l

l
  (2,3) 

From an energy balance on the cold fluid, the heat rate is 
 

 ( ) ( ) 5
c p,c c,o c,i

10,000 kg / h Jq m c T T 4195 120 35 K 9.905 10 W.
3600 s / h kg K

= − = × − = ×
⋅

&  

 
From an energy balance on the hot fluid, the outlet temperature is 
 

 5
h,o h,i h p,h

5000 kg JT T q / m c 300 C 9.905 10 W / 4660 147 C.
3600 s kg K

= − = ° − × × = °
⋅

&  

 
From Fig. 11S.2, determine F from values of P and R, where P = (120 – 35)°C/(300 – 35)°C = 0.32, R 
= (300 – 147)°C/(120-35)°C = 1.8, and F ≈ 0.97.  The log-mean temperature difference based upon a 
CF arrangement follows from Eq. (3); find 

 ( ) ( ) ( )
( )m
300 120

T 300 120 147 35 K / n 143.3K.
147 35

−
⎡ ⎤Δ = − − − =⎣ ⎦ −l l     

 5 2 2
sA 9.905 10 W /1500 W / m K 0.97 143.3K 4.75m= × ⋅ × × =    < 

COMMENTS:  (1) Check hT  ≈ 500 K used in property determination; hT  = (300 + 147)°C/2 = 497 K. 
 
(2) Using the NTU-ε method, determine first the capacity rate ratio, Cmin/Cmax = 0.56.  Then 

 
( )
( )

( )
( )

max c,o c,i

max min h,i c,i

C T T 120 35 Cq 1 0.57.
q 0.56 300 35 CC T T

ε
− − °

≡ = = × =
− °−

 

From Fig. 11.13, find that NTU = AU/Cmin ≈ 1.1 giving As = 4.7 m2. 



PROBLEM 11S.4  
KNOWN:  The shell and tube Hxer (two shells, four tube passes) of Problem 11.14, known to have an 
area 4.75m2, provides 95°C water at the cold outlet (rather than 120°C) after several years of 
operation.  Flow rates and inlet temperatures of the fluids remain the same.  
FIND:  The fouling factor, Rf.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Constant properties, (3) Thermal 
resistance for the clean condition is tR′′  = (1500 W/m2⋅K)-1. 
 
PROPERTIES:  Table A-6, Water ( cT  ≈ 338 K): cp = 4187 J/kg⋅K; Table A-6, Water (Assume Th,o ≈ 

190°C, hT  ≈ 520 K): cp = 4840 J/kg⋅K. 
 
ANALYSIS:  The overall heat transfer coefficient can be expressed as 
 ( )t f f tU 1/ R R or R 1/ U R′′ ′′ ′′ ′′= + = −    (1) 

where tR′′  is the thermal resistance for the clean condition and fR′′ , the fouling factor, represents the 
additional resistance due to fouling of the surface.  The rate equation, Eq. 11.14 with Eq. 11S.1, has 
the form, 
 ( ) ( )s m,CF m,CF 1 2 1 2U q / A F T T T T / n T / T .= Δ Δ = Δ −Δ Δ Δl l l   (2) 
From energy balances on the cold and hot fluids, find 

( ) ( ) ( ) 5
c p,c c,o c,iq m c T T 10,000 / 3600 kg / s 4187 J / kg K 95 35 K 6.978 10 W= − = ⋅ − = ×&  

( )5
h,o h,i h p,hT T q / m c 300 C 6.978 10 W / 5000 / 3600 kg / s 4840 J / kg K 196.2 C.= = ° − × × ⋅ = °− &  

The factor, F, follows from values of P and R as given by Fig. 11S.2 with 
 ( ) ( ) ( ) ( )P 95 35 / 300 35 0.23 R 300 196 / 120 35 1.22= − − = = − − =  

giving F ≈ 1.  Based upon CF arrangement, 
 ( ) ( ) ( ) ( )m,CFT 300 95 196 35 C / n 300 95 / 196.2 35 182K.⎡ ⎤ ⎡ ⎤Δ = − − − ° − − =⎣ ⎦ ⎣ ⎦l l  

Using Eq. (2), find now the overall heat transfer coefficient as 

 5 2 2U 6.978 10 W / 4.75m 1 182K 806 W / m K.= × × × = ⋅  
From Eq. (1), the fouling factor is 

 4 2
f 2 2

1 1R 5.74 10 m K / W.
806 W / m K 1500 W / m K

−′′ = − = × ⋅
⋅ ⋅

   < 

 
COMMENTS:  Note that the effect of fouling is to nearly double (Uclean/Ufouled = 1500/806 ≈ 1.9) 
the resistance to heat transfer.  Note also the assumption for Th,o used for property evaluation is 
satisfactory. 



PROBLEM 11S.5 
 
KNOWN:  Flow rates and inlet temperatures for automobile radiator configured as a cross-flow heat 
exchanger with both fluids unmixed.  Overall heat transfer coefficient. 
 
FIND: (a) Area required to achieve hot fluid (water) outlet temperature, Tm,o = 330 K, and (b) Outlet 
temperatures, Th,o and Tc,o, as a function of the overall coefficient for the range, 200 ≤ U ≤ 400 W/m2⋅K 
with the surface area A found in part (a) with all other heat transfer conditions remaining the same as for 
part (a). 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Negligible heat loss to surrounding, (2) Constant properties. 
 
PROPERTIES:  Table A.6, Water ( hT  = 365 K):  cp,h = 4209 J/kg⋅K; Table A.4, Air ( )cT 310K≈ : cp,c 

= 1007 J/kg⋅K. 
 
ANALYSIS: (a) The required heat transfer rate is 
 
 ( ) ( )h p,h h,i h,oq m c T T 0.05kg s 4209 J kg K 70 K 14,732 W= − = ⋅ =& . 
 
and from an energy balance on the cold fluid, 
 c,o c,i c p,cT  = T  + q/m c = 300 K + 14,732 W/(0.75 kg/s × 1007 J/kg K) = 319.5 K⋅&  

 
We will use Eq. 11.14 with Eq. 11S.1.  From Fig. 11S.3, with P = (Tc,o - Tc,i) / (Th,i – Tc,i) = 0.20 and R =  
(Th,i – Th,o)/ (Tc,o - Tc,i) = 3.6, we find F ≈ 0.95.  Then, 

 h,i c,o h,o c,i
lm,CF

h,i c,o h,o c,i

(T  - T ) - (T  - T )
ΔT =  = 51.2 K

ln(T  - T )/(T  - T )
 

Thus 

 2 2
1m,CFA = q/UFΔT  = 14,732 W/ 200 W/m K × 0.95 × 51.2 K = 1.5 m⋅  < 

(b) To solve this “performance” problem using the log mean temperature difference method is very 
cumbersome. It requires solving the following equations for the two unknown outlet temperatures (and q), 
where F is also a function of the two outlet temperatures, 
 
 c p,c c,o c,iq m c (T T )= −&  (1) 

 
 p,h h,i h,oq mc (T T )= −&  (2) 

 

 h,i c,o h,o c,i
lm,CF lm,CF

h,i c,o h,o c,i

(T -T )-(T -T )
q UAF T         T =

ln(T -T )/(T -T )
= Δ Δ  (3,4) 

 
Continued… 
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One rational approach is to work backward. For a specified value of q, Eqs. (1) and (2) can be used to 
solve for the outlet temperatures. Then F and ΔTlm,CF can be determined, and U can be found from Eq. (3). 
In this way, we can generate the following plot. 
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With a higher U, the outlet temperature of the hot fluid (water) decreases.  A benefit is enhanced heat 
removal from the engine block and a cooler operating temperature.  If it is desired to cool the engine with 
water at 330 K, the heat exchanger surface area and, hence its volume in the engine component could be 
reduced. 
 
COMMENT:  This problem is much easier to solve using the ε-NTU method, as shown in this IHT 
model. 

// Heat Exchanger Tool - Cross-flow with both fluids unmixed: 
// For the cross-flow, single-pass heat exchanger with both fluids unmixed, 
eps = 1 - exp((1 / Cr) * (NTU^0.22) * (exp(-Cr * NTU^0.78) - 1))      // Eq 11.32 
// where the heat-capacity ratio is 
Cr = Cmin / Cmax 
// and the number of transfer units, NTU, is 
NTU = U * A / Cmin            // Eq 11.24 
// The effectiveness is defined as 
eps = q / qmax 
qmax = Cmin * (Thi - Tci)        // Eq 11.18, 11.19 
// See Tables 11.3 and 11.4 and Fig 11.14 
// Overall Energy Balances on Fluids: 
q = mdoth * cph * (Thi - Tho) 
q = mdotc * cpc * (Tco - Tci) 
// Assigned Variables: 
Cmin = Ch  // Capacity rate, minimum fluid, W/K 
Ch = mdoth * cph  // Capacity rate, hot fluid, W/K 
mdoth = 0.05  // Flow rate, hot fluid, kg/s 
Thi = 400  // Inlet temperature, hot fluid, K 
Tho = 330  // Outlet temperature, hot fluid, K; specified for part (a)  
Cmax = Cc  // Capacity rate, maximum fluid, W/K   
Cc = mdotc * cpc  // Capacity rate, cold fluid, W/K 
mdotc = 0.75  // Flow rate, cold fluid, kg/s 
Tci = 300  // Inlet temperature, cold fluid, K 
U = 200  // Overall coefficient, W/m^2.K 
// Properties Tool - Water (h) 
// Water property functions :T dependence, From Table A.6 
// Units: T(K), p(bars);  
xh =  0    // Quality (0=sat liquid or 1=sat vapor) 
rhoh = rho_Tx("Water",Tmh,xh) // Density, kg/m^3 
cph = cp_Tx("Water",Tmh,xh) // Specific heat, J/kg·K 
Tmh =  Tfluid_avg(Thi,Tho )  
// Properties Tool - Air(c) 
// Air property functions : From Table A.4 
// Units: T(K); 1 atm pressure 
rhoc = rho_T("Air",Tmc)  // Density, kg/m^3 
cpc = cp_T("Air",Tmc)  // Specific heat, J/kg·K 
Tmc = Tfluid_avg(Tci,Tco) 



PROBLEM 11S.6  
KNOWN:  Single pass, cross-flow heat exchanger with hot exhaust gases (mixed) to heat water 
(unmixed)  
FIND:  Required surface area.  
SCHEMATIC:   
 

 
 
 
 
 
 

 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Negligible kinetic and potential 
energy changes, (3) Exhaust gas properties assumed to be those of air. 
 
PROPERTIES:  Table A-6, Water ( cT  = (80 + 30)°C/2 = 328 K): cp = 4184 J/kg⋅K; Table A-4, Air 

(1 atm, hT  = (100 + 225)°C/2 = 436 K): cp = 1019 J/kg⋅K. 
 
ANALYSIS:  The rate equation for the heat exchanger follows from Eqs. 11.14 and 11S.1.  The area 
is given as 
 m m,CFA q / U T q / UF T= Δ = Δl l        (1) 
 
where F is determined from Fig. 11S.4 using 

 
80 30 225 100P 0.26 and R 2.50 giving F 0.92.
225 30 80 30

− −
= = = = ≈

− −
   (2) 

 
From an energy balance on the cold fluid, find 

 ( ) ( )c c c,o c,i
kg Jq m c T T 3 4184 80 30 K 627,600 W.
s kg K

= − = × − =
⋅

&   (3) 

 
From Eq. 11.15, the LMTD for counter-flow conditions is 

 
( )

( ) ( )
( )

1 2
m,CF

1 2

225 80 100 30T TT C 103.0 C.
n T / T n 145 / 70

− − −Δ −Δ
Δ = = ° = °

Δ Δl
l l

   (4) 

 
Substituting numerical values resulting from Eqs. (2-4) into Eq. (1), find the required surface area to 
be 
 
 2 2A 627,600 W / 200W / m K 0.92 103.0K 33.1m .= ⋅ × × =     < 
 
COMMENTS:  Note that the properties of the exhaust gases were not needed in this method of 
analysis.  If the ε-NTU method were used, find first Ch/Cc = 0.40 with Cmin = Ch = 5021 W/K.  From 
Eqs. 11.18 and 11.19, with Ch = Cmin, ε = q/qmax = (Th,i – Th,o)/(Th,i – Tc,i) = (225 – 100)/(225 – 30) 
= 0.64.  Using Fig. 11.15 with Cmin/Cmax = 0.4 and ε = 0.64, find NTU = UA/Cmin ≈ 1.4.  Hence, 
 
 2 2

minA NTU C / U 1.4 5021 W / K / 200 W / m K 35.2m .= ⋅ ≈ × ⋅ =  
 
Note agreement with above result. 



PROBLEM 11S.7 
 
KNOWN: Conditions of oil and water for heat exchanger, one shell with 4 tube passes. 
 
FIND:  Length of exchanger tubes per pass,  L; and (b) Compute and plot the effectiveness, ε, fluid outlet 
temperatures, Th,o and Tc,o, and water-side convection coefficient, hc , as a function of the water flow rate 
for 5000 ≤ cm&  ≤ 15,000 kg / h  for the tube length found in part (a) with all other conditions remaining 
the same. 
 
SCHEMATIC: 

 
ASSUMPTIONS: (1) Negligible heat loss to surroundings, (2) Constant properties, (3) Fully-developed 
flow in tubes. 
 
PROPERTIES: Table A-1, Brass (400 K):  k = 137  W/m⋅K;  Table A-5, Water (323 K): ρ= 998.1 
kg/m3, k = 0.643 W/m⋅K, cp  = 4182  J/kg⋅K, μ = 548 × 10-6 N⋅s/m2, Pr = 3.56. 
 
ANALYSIS: (a) From an energy balance on the water, the heat rate required is  
 

 ( ) ( )c c c,o c,iq m c T T 10, 000 3600 kg s 4182 J kg K 84 16 C 789,933 W= − = × ⋅ − =o& . (1) 
 
The required tube length may be obtained from Eqs. 11.14 and 11.15, 
 
 o o m,CFq U A F T= Δ l  (2) 
 

 ( ) ( ) ( )m,CFT 160 84 C 94 16 C / n (160 84) (94 16) 77.0 CΔ = − − − − − =⎡ ⎤
⎢ ⎥⎣ ⎦

o o o
l l . 

 
From Fig. 11S.1, F = 0.86 using P = (84 - 16)/(160 - 16) = 0.47 and R = (160 - 94)/(84 - 16) = 0.97.  From 
Eq. 11.5, 

 
1

o o o
o

o i i i

r r r1 1
U n

h k r r h

−
= + +
⎡ ⎤
⎢ ⎥
⎣ ⎦

l  

 
where hi must be estimated from the appropriate correlation.  With N = 11, the number of tubes, 

 
( ) ( )

D 3 6 2
4 10,000 3600 kg s 114m N

Re 25,621
D 22.9 10 m 548 10 N s mπ μ π − −

×
= = =

× × × × ⋅

&
. 

 
For fully developed turbulent flow, the Dittus-Boelter correlation with n = 0.4 yields 

 ( ) ( )0.8 0.40.8 0.4
D i DNu h D k 0.023Re Pr 0.023 25, 621 3.56 128.6= = = =  

 ( ) ( )3 2
i Dh Nu k D 128.6 0.643 W m K 22.9 10 m 3610 W m K−= = × ⋅ × = ⋅ . 
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2
o 2 2

1 25.4 10 m 25.4 25.4 1
U n 355 W m K

2 137 W m K 22.9 22.9400 W m K 3610 W m K

−−×
= + + × = ⋅

× ⋅⋅ ⋅

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

l . 

 
Returning now to Eq. (2), find Ao, then the length, 
 
 3

o oA D L No. of Passes No.of Tubes 25.4 10 m 4 11L 3.511 Lπ π −= × × = × × × × =  

 2L 789,933 W 3.511 m 355 W m K 0.86 77.0 C 9.6 m= × ⋅ × × =o  < 
 
(b)  Using the IHT Heat Exchanger Tool, Shell and Tube, One-shell pass and N tube passes, the 
Correlation Tool, Forced Convection, Internal Flow for Turbulent, fully developed condition, and the 
Properties Tool for Water, a model was developed using the effectiveness - NTU method to compute and 
plot Tc,o , Th,o , ε, and hi  as a function of cm& . 
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In order to avoid a boiling condition in the cold fluid, the cold flow rate should not be less than 8000 
kg/h.  As expected, Tc,o and Th,o  decrease and the internal convection coefficient increases nearly linearly 
with increasing flow rate.  The effectiveness increases with increasing flow rate since the overall 
convection coefficient is increasing. 
 
COMMENTS: (1) The thermal resistance of the brass tubes is negligible.  Since L/Di  = 400, fully-
developed conditions are reasonable.   
 
(2)  In the analysis of part (b), you have to specify the capacity rate for the hot fluid in order to solve the 
model.  From the analysis of part (a) using the model, we found L = 9.56 m and Ch = 11,974 W/K. 



PROBLEM 11S.8  
KNOWN:  Power output and efficiency of an ocean energy conversion system.  Temperatures and 
overall heat transfer coefficient of shell-and-tube evaporator.  
FIND:  (a) Evaporator area, (b) Water flow rate.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Constant properties. 
 
PROPERTIES:  Table A-6, Water ( mT  = 296 K): cp = 4181 J/kg⋅K. 
 
ANALYSIS:  (a) The efficiency is 
 

 
W 2 MW 0.03.
q q

η = = =
&

 

 
Hence the required heat transfer rate is 
 

 
2MWq 66.7 MW.
0.03

= =  

Also 

 
( ) ( )

m,CF
300 290 292 290 C

T 5 C300 290n
292 290

− − − °
Δ = = °

−
−

l
l

 

 
and, with P = 0 and R = ∞, from Fig. 11S.1 it follows that F = 1.  Hence 
 

 
7

2m,CF

q 6.67 10 WA
U F T 1200 W / m K 1 5 C

×
= =

Δ ⋅ × × °l
 

 
 2A 11,100m .=          < 
 
(b) The water flow rate through the evaporator is 
 

 
( ) ( )

7
h

p,h h,i h,o

q 6.67 10 Wm
4181 J / kg K 300 292c T T

×
= =

⋅ −−
&  

 
 hm 1994 kg / s.=&          < 
 
COMMENTS:  (1) From the ε-NTU method, (Cmin/Cmax) = 0, qmax = 8.34 × 107 W, ε = 0.80 and 
from Fig. 11.12, NTU ≈ 1.65, giving A = 11,500 m2. (2) The required heat exchanger size is enormous 
due to the small temperature differences involved. 



PROBLEM 11S.9  
KNOWN:  Shell-and-tube heat exchanger with one shell pass and 20 tube passes.  
FIND:  Average convection coefficient for the outer tube surface.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Constant properties, (3) Type of oil 
not specified, (4) Thermal resistance of tubes negligible; no fouling.  
PROPERTIES:  Table A-6, Water, liquid ( hT  = 330 K): cp = 4184 J/kg⋅K, k = 0.650 W/m⋅K, μ = 

489 × 10-6 N⋅s/m2, Pr = 3.15. 
 
ANALYSIS:  To find the average coefficient for the outer tube surface, ho, we need to evaluate hi for 
the internal tube flow and U, the overall coefficient.  From Eq. 11.5, 

 
i i o o t i i o o

1 1 1 1 1 1
UA h A h A N L h D h Dπ

⎡ ⎤
= + = +⎢ ⎥

⎣ ⎦
 

where Nt is the total number of tubes.  Solving for ho, 

 ( )
111

o o t i ih D UA N L 1/ h D .π
−−− ⎡ ⎤= −⎢ ⎥⎣ ⎦

      (1) 

Evaluate hi from an appropriate correlation; begin by calculating the Reynolds number. 

 
( )

h
D,i 6 2i

4 m 4 0.2 kg / sRe 26,038.
D 0.020m 489 10 N s / mπ μ π −

×
= = =

× ⋅

&
 

Hence, flow is turbulent and since L >> Di, the flow is likely to be fully developed.  Use the Dittus-

Boelter correlation with n = 0.3 since Ts < Tm, NuD = 0.023 4 / 5
DRe  Pr0.3 

 ( ) ( )4 / 5 0.3 2
i D

k 0.650 W / m Kh Nu 0.023 26,038 3.15 3594 W / m K.
D 0.020m

⋅
= = × = ⋅  (2) 

To evaluate UA, we need to employ the rate equation, written as 
 m,CFUA q / F T= Δ l          (3) 

where q = hm&  cp,h (Th,i – Th,o) = 0.2 kg/s × 4184 J/kg⋅K (87-27)°C = 50,208 W and m,CFTΔ l  =   [Δ 

T1 - Δ T2]/ nl  (Δ T1/Δ T2) = [(87 – 37) – (27 – 7)]°C/ nl [(87 – 37)/(27 – 7)] = 32.7°C.  Find F ≈ 0.5 
using Fig. 11S.1 with P = (27 – 87)/(7 – 87) = 0.75 and R = (7 – 37)/(27 – 87) = 0.50.  Substituting 
numerical values in Eqs. (3) and (1), find 
 UA 50,208 W / 0.5 32.7 C 3071 W / K= × ° =       (4) 

( ) ( )
12 21 1

oh 0.024m 3071 W / K 20 3m 1/ 3594 W / m K 0.020m 878 W / m K.π
−− −= × × × − ⋅ × = ⋅⎡ ⎤

⎣ ⎦  < 
 
COMMENTS:  Using the ε-NTU method:  find Ch and Cc to obtain Cr = 0.5 and ε = 0.75.  From Eq. 
11.30b,c find NTU = 3.44 and UA = 2881 W/K. 



PROBLEM 11S.10  
KNOWN:  Flow rates and inlet temperatures of exhaust gases and combustion air used in a cross-flow 
(one fluid mixed) heat exchanger.  Overall heat transfer coefficient.  Desired air outlet temperature.  
FIND:  Required heat exchanger surface area.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible heat loss to surroundings, (3) Constant 
properties, (4) Gas properties are those of air. 
 
PROPERTIES:  Table A-4, Air ( mT  ≈ 700 K, 1 atm): cp = 1075 J/kg⋅K. 
 
ANALYSIS:  From Eqs. 11.6 and 11.7, 
 

 ( ) ( )c p,c
h,o h,i c,o c,i

h p,h

m c 10 kg / sT T T T 1100K 850 300 K 733K.
m c 15 kg / s

= − − = − − =
&

&
 

 
From Eqs. 11.15, 11.17 and 11S.1, 
 

 
( ) ( )
( ) ( ) ( )
h,i c,o h,o c,i

m
h,i c,o h,o c,i

T T T T 250 433T F F F 333K.
n 250 / 433n T T / T T

− − − −
Δ = = = ×

⎡ ⎤− −⎣ ⎦
l

ll
 

 
From Fig. 11S.4, with R = (300 – 850)/(733 – 1100) = 1.50 and P = (733 – 1100)/(300 – 1100) = 0.46, 
F ≈ 0.73.  With 
 
 ( ) ( ) 6

h p,h h,i h,oq m c T T 15kg / s 1075J / kg K 367K 5.92 10 W= − = × ⋅ = ×&  
 
it follows from Eq. 11.14 that 
 

 
( )

6
2

2
5.92 10 WA 243m .

100 W / m K 0.73 333K

×
= =

⋅ ×
      < 

 
COMMENTS:  Using the effectiveness-NTU method, from Eq. 11.21 
 

 
( )
( )

c,o c,i

h,i c,i

T T 850 300 K
0.688.

T T 1100 300 K
ε

− −
= = =

− −
 

 
Hence, with Cmixed/Cunmixed = Cc/Ch = 0.67, Fig. 11.15 gives NTU ≈ 2.3.  From Eq. 11.24, 
 

 2min
2

C 10 kg / s 1075 J / kg KA NTU 2.3 247 m .
U 100 W / m K

× ⋅
= ≈ ≈

⋅
 



PROBLEM 11S.11  
KNOWN:  Flow rate, specific heat and inlet temperature of gas in cross-flow heat exchanger.  Flow 
rate and temperature of water which enters as saturated liquid and leaves as saturated vapor.  Number 
of tubes, tube diameter and overall heat transfer coefficient.  
FIND:  Required tube length.  
SCHEMATIC:   

 
 
 
 
 
 

 
 
 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Constant gas specific heat. 
 
PROPERTIES:  Table A-6, Saturated Water, (T = 450 K): hfg = 2.024 ×106 J/kg. 
 
ANALYSIS:  The heat transfer rate can be found from considering the cold fluid, 

6 6
c fgq = m h  = 3 kg/s × 2.024 × 10  J/kg = 6.072 × 10  W&  

Then an energy balance on the hot fluid yields 
 6

h,o h,i h p,hT  = T q/m c = 1400 K 6.072 × 10  W/10 kg/s × 1120 J/kg K = 857.9 K− − ⋅&  
 
From Eqs. 11.15 and 11.17, 

 
( ) [ ]
h,i c,o h,o c,i

lm,CF
h,i c,o h,o c,i

(T T ) (T T ) (1400 450) K (857.9 450) KΔT  =  =  = 641 K
ln (1400 450) K/(857.9 450) Kln T T )/(T T )

− − − − − −
− −⎡ ⎤− −⎣ ⎦

 

 
From Fig. 11S.4, with P = (Tc,o –Tc,i)/(Th,i - Tc,i) = 0, find F = 1, thus 
 Ao = 6 2 2

lm,CFq/UΔT  = 6.072 × 10  W/50 W/m K × 641 K = 189 m⋅  

 L = Ao/NπDo = 189 m2/500 × π × 0.025 m = 4.8 m     < 
 
 



PROBLEM 11S.12  
KNOWN:  Compact heat exchanger (see Example 11S.2) after extended use has prescribed fouling 
factors on water and gas sides.  
FIND:  Gas-side overall heat transfer coefficient.  
SCHEMATIC:   

 
 
 
 
 
 
 
 
 

 
ASSUMPTIONS:  (1) Heat transfer coefficients on the inside and outside (cold- and hot-sides) are the 
same as for the unfouled condition, (2) Temperature effectiveness of the finned hot side surface is the 
same as for the unfouled condition.  
ANALYSIS:  The overall heat transfer coefficient follows from Eq. 11.1 as 

 
( ) ( ) ( ) ( )

f ,c f ,h
w

h h o o o oc c h h

R R1 1 1R
U A hA A A h Aη η η η

′′ ′′
= + + + +  

where Rw and fR′′  are the wall resistance and fouling factors, respectively.  Multiply both sides by Ah 

and recognizing that ηo,c = 1, obtain 
 

 
( ) ( )

f ,c f ,h
h w

h c c h c h o,h o h

R R1 1 1A R .
U h A / A A / A hη η

′′ ′′
= + + + +  

 
Substitute numerical values from Example 11S.2 results (hh, ηo,h, Ah Rw, Ac/Ah) and those from the 
problem statement ( )f ,h f ,c cR , R , h′′ ′′  to find, 

 
( )2h

1 1
U 1500 W / m K 0.143

=
⋅

 

 
 

( )
2 2

5 2
2

0.0005m K / W 0.001m K / W 13.51 10 m K / W
0.143 0.91 0.91 190 W / m K

−⋅ ⋅
+ + × ⋅ + +

× ⋅
 

 

( )3 3 5 3 3 2
h

1 4.662 10 3.497 10 3.51 10 1.099 10 6.005 10 m K / W
U

− − − − −= × + × + × + × + × ⋅  

 
 2

hU 66.3 W / m K.= ⋅         < 
 
COMMENTS:  For the unfouled condition, we found Uh = 100 W/m2⋅K from Example 11S.2.  Note 
that the thermal resistance of the tube-fin material is negligible and that fouling has a significant effect, 
reducing Uh by 34%. 
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PROBLEM 11S.13  
KNOWN:  Compact heat exchanger with prescribed core geometry and operating parameters.  
FIND:  Required heat exchanger volume; number of tubes in the longitudinal and transverse 
directions, NL and NT; required tube length. 
 
SCHEMATIC:   

 
 
 
 
 

 
 
 
ASSUMPTIONS:  (1) Negligible heat loss to surroundings, (2) Single pass operation, (3) Gas 
properties are those of air. 
 
PROPERTIES:  Table A-6, Water ( cT  = 325 K):  ρ = 987.2 kg/m3, cp = 4182 J/kg⋅K; Table A-4, Air 

(Assume Th,o ≈ 400 K, hT  ≈ 550 K, 1 atm): cp = 1040 J/kg⋅K. 
 
ANALYSIS:  To find the Hxer volume, first find Ah using the ε-NTU method.  By definition, 
 
 h h min hV A / and A NTU C / U .α= = ⋅    (1,2) 
 
Find the capacity rates, q, qmax and ε: 
 
 c c p,cC m c 2 kg / s 4182 J / kg K 8364 W / K= = × ⋅ =&  
 
 h h p,h minC m c 1.25 kg / s 1040 J / kg K 1300 W / K C= = × ⋅ = ←&  
 
Hence, 
 

 min
r

max

CC 0.155.
C

= =  

 
It follows that 
 

 
( )
( )

( )
( )

c c,o c,i

max min h,i c,i

C T T 8364 W / K 350 300 Kq 0.804.
q 1300 W / K 700 300 KC T T

ε
− −

= = = =
−−

 

 
With ε = 0.804 and Cr = 0.155, find NTU ≈ 1.7 from Fig. 11.14 for a single-pass, cross flow Hxer with 
both fluids unmixed.  Using Eqs. (2) and (1), find 
 
 2 2

hA 1.7 1300 W / K /100 W / m K 22.1m= × ⋅ =  
 
 2 2 3 3V 23.7 m / 269m / m 0.082m .= =  
 
          Continued ….. 
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PROBLEM 11S.13 (Cont.) 
 
To determine the number of tubes in the    
longitudinal direction, consider the tubular 
arrangement in the sketch.  The Hxer 
volume can be written as 
 
 fr LV A= × l    (3) 
 
where 
 
 ( )L L fN 1 D= − +l l   (4) 
 
and NL is the number of tubes in the longitudinal direction.  Combining Eqs. (3) and (4) and 
substituting numerical values, find 
 
 ( )L fr fN V / A D / 1= − +l         (5) 
 
where Df is the overall diameter of the finned tube, and 

 ( )3 2
LN 0.082m / 0.20 m 0.0285m / 0.0343 1 12.1 13.= − + = ≈    < 

To determine the number of tubes in the transverse direction, compare the overall water flow rate cm&  
with that for a single tube, tm .&   That is, 
 t c t im A Vρ=&           (6) 

where At is the tube inner cross-sectional area ( )2
iD / 4π  and Vi the internal velocity.  Hence, 

 ( ) ( )23
c tN m / m 2 kg / s / 987.2 kg / m 0.0138m 0.100 m / s 135.4 135.

4
π

= = × × = ≈& &  

The total number of tubes required, N, is 135; the number in the transverse direction is 

 T LN N / N 135 /13 10.4 11.= = = ≈        < 

To determine the water tube length, recognize that the total area (Ah), less that of the finned surfaces 
(Af), will be that of the water tube surface area.  That is, 
 h f o TA A D N.π− = ⋅l  

From specification of the core geometry, we know Af/Ah = 0.830; solve for Tl  to obtain 
 ( )T h f h oA 1 A / A / D Nπ= − ⋅l        (7) 

 ( ) ( )2
T 22.1m 1 0.830 / 0.0164 m 135 0.54 m.= − × =l π     < 

 
COMMENTS:  In summary we find that 
 
 Total number of tubes, N (NT × NL)  143 
 Tubes in longitudinal direction, NL    13 
 Tubes in transverse direction, NT    11 
 
with a total surface area of 22.1 m2.  The length of the exchanger is 
 
 Length in longitudinal direction, Ll   0.41 m 
 Length in transverse direction, Tl   0.54 m. 



PROBLEM 11S.14  
KNOWN:  Compact heat exchanger geometry, gas-side flow rate and inlet temperature, water-side 
convection coefficient, water flow rate, and water inlet and outlet temperatures.  
FIND:  Gas-side overall heat transfer coefficient.  Required heat exchanger volume.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Gas has properties of atmospheric air at an assumed mean temperature of 700 
K, (2) Negligible fouling, (3) Negligible heat exchange with the surroundings. 
 
PROPERTIES:  Table A-1, aluminum (T ≈ 300 K): k = 237 W/m⋅K.  Table A-4, air (p = 1 atm, T  = 
700 K): cp = 1075 J/kg⋅K, μ = 338.8 × 10-7 N⋅s/m2, Pr = 0.695.  Table A-6, water ( T  = 330 K): cp = 
4184 J/kg⋅K.  
ANALYSIS:  For the prescribed heat exchanger core, 
 

 
( ) h w

h c c h o,h h

1 1 1A R
U h A / A hη

= + +  

 
where 
 

( )f ,hc i
h o h

AA D 8.21 1 0.913 0.070
A D A 10.2

⎛ ⎞
≈ − = − =⎜ ⎟

⎝ ⎠
 

 
The product of Ah and the wall conduction resistance is 
 

( ) ( )
( )

( )
( )

o i i o i 5 2
h w

h c h

ln D / D D ln D / D 0.0082m ln 10.2 / 8.2
A R 5.39 10 m K / W

2 kL / A 2 k A / A 2 237 W / m K 0.070
−×

= = = = × ⋅
× ⋅π

 

 
With a gas-side mass velocity of G = h frm / Aσ&  = 1.25 kg/s/0.534 × 0.20 m2 = 11.7 kg/s⋅m2, 
 

 
2

h
7 2

G D 11.7 kg / s m 0.00363mRe 1254
338.8 10 N s / mμ −

⋅ ×
= = =

× ⋅
 

 
and Fig. 11S.6 yields jH ≈ 0.0096.  Hence, 
 

 
( )( )

( )

2
p 2

h 2 / 3 2 / 3

0.0096 11.7 kg / s m 1075 J / kg K0.0096 G c
h 154 W / m K

Pr 0.695

⋅ ⋅
≈ = = ⋅  

 
          Continued ….. 



PROBLEM 11S.14 (Cont.) 
 
With r2c = r2 + t/2 = 15.8 mm + 0.330 mm/2 = 15.97 mm, r2c/r1 = 15.97/5.1 = 3.13, L = r2 – r1 = 10.7 

mm, Lc = L + t/2 = 10.87 mm = 0.0109m, Ap = Lct = 3.59 × 10-6 m2, and 3/ 2
cL  (hh/kAp)1/2 = 0.484, 

Fig. 3.20 yields ηf ≈ 0.77.  Hence, 
 

 ( ) ( )f
o,h f

A1 1 1 0.913 1 0.77 0.790
A

η η= − − = − − =  

 

( ) ( )1 11 2 5 2 2 2
hU 1500 W / m K 0.07 5.39 10 m K / W 0.79 154 W / m K 0.0183 m K / W

− −− −= ⋅ × + × ⋅ + × ⋅ = ⋅  

 

 2
hU 56.2 W / m K= ⋅          < 

 
With q = Cc (Tc,o – Tc,i) = 4184 W/K × 80 K = 3.35 × 105 W, qmax = Cmin (Th,i – Tc,i) = 1344 W/K × 
535 K = 7.19 × 105 W, ε = 0.466 and Cr = 0.321.  From Figure 11.14, we then obtain NTU ≈ 0.65.  
The required gas-side surface area is then 
 

 2min
h 2h

NTU C 0.65 1344 W / KA 15.5 m
U 56.2 W / m K

× ×
= = =

⋅
 

 
With α = 587 m2/m3, the required volume is 
 

 
2

3h
2 3

A 15.5mV 0.026m
587 m / m

= = =
α

       < 

 
COMMENTS:  (1) Although Uh is small and Ah larger for the continuous fins than for the circular 
fins of Example 11.6, the much larger value of α renders the volume requirement smaller. 
 
(2) The heat exchanger length is L = V/Afr = 0.132 m, and the number of tube rows is 

L
L

LN 1 7
S

≈ + =  

 
(3) The hypothetical fin radius (r2 = 15.8 mm) was estimated to be the arithmetic mean of one-half the 
center-to-center spacing between one tube and its six neighbors. 



PROBLEM 11S.15  
KNOWN:  Cooling coil geometry.  Air flow rate and inlet and outlet temperatures.  Refrigerant-134a 
pressure and convection coefficient.  
FIND:  Required number of tube rows.  
SCHEMATIC:   

 
 
 
 
 
 

 
ASSUMPTIONS:  (1) Negligible fouling, (2) Constant properties, (3) Negligible heat loss to 
surroundings. 
 
PROPERTIES:  Table A-4, Air ( hT  = 300 K, 1 atm): cp = 1007 J/kg⋅K, μ = 184.6 × 10-7 N⋅s/m2, k = 

0.0263 W/m⋅K, Pr = 0.707; Table A-5, Sat. R-134a (1 atm):  Tsat = Tc = 247 K, hfg = 217 kJ/kg. 
 
ANALYSIS:  The required number of tube rows is 
 ( )L f LN L D / S 1= − +  
where 
 ( )fr h h min hL V / A V A / A NTU C / Uα= = =  

 ( )h c c h h w o,h h1/ U 1/ h A / A A R 1/ h .η= + +  

From Ex. 11S.2, (Ac/Ah) = 0.143 and AhRw = 3.51 × 10-5 m2⋅K/W.  With 
 

 2h
2fr

m 1.50 kg / sG 20.9 kg / s m
A 0.449 0.16mσ

= = = ⋅
×

&
 

 

 
2 3

h
7 2

GD 20.9 kg / s m 6.68 10 mRe 7563
184.6 10 N s / mμ

−

−
⋅ × ×

= = =
× ⋅

 

 
and Fig. 11S.5 gives jH ≈ 0.0068.  Hence, 
 

 
( )

2p 2
h h 2 /3 2 / 3

Gc 20.9 kg / s m 1007 J / kg Kh j 0.0068 180 W / m K.
Pr 0.707

⋅ × ⋅
= = = ⋅  

 

With Lc = 6.18 mm and Ap = 1.57 × 10-6 m2 from Ex. 11S.5, ( )1/ 23/ 2
c h pL h / kA  = 0.338 and, from 

Fig. 3.20, ηf ≈ 0.89 for r2c/r1 = 1.75.  Hence, as in Ex. 11S.5, ηo,h = 0.91 and 
 

 ( ) ( )2 5 2 2
h1/ U 1/ 5000 W / m K 0.143 3.51 10 m K / W 1/ 0.91 180 W / m K−= ⋅ + × ⋅ + × ⋅  

 
 2

hU 133 W / m K.= ⋅  
 
          Continued ….. 
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PROBLEM 11S.15 (Cont.) 
 
With Cmin/Cmax = 0 and Cmin = h p,hm c&  = 1511 W/K, 
 

 
( )
( )

h h,i h,o

max h h,i c,i

C T Tq 20 K 0.317
q 67 KC T T

−
= = = =

−
ε  

 
 ( )NTU ln 1 0.382= − − =ε  
 
and 
 

 2min
h 2h

C 1511 W / KA NTU 0.382 4.34m .
U 133 W / m K

= = =
⋅

 

 
Hence, 
 

 
( )

2
h

2 3 2fr

A 4.34mL 0.101m
A 269 m / m 0.16m

= = =
α

 

 
and 
 

 f
L

L

L D 0.0723N 1 1 3.1.
S 0.0343m
−

= + = + =  

 
Hence, three or more rows must be used.       < 
 
COMMENTS:  For the prescribed operating conditions, the heat rate would be 
 
 ( ) ( )h h,i h,oq C T T 1511 W / K 20 K 30, 220 W.= − = =  
 
If R-134a enters the tubes as saturated liquid, a flow rate of at least 
 

 c
fg

q 30,220 Wm 0.139 kg / s
h 217,000 J / kg

= = =&  

 
would be needed to maintain saturated conditions in the tubes. 



PROBLEM 11S.16  
KNOWN:  Cooling coil geometry.  Air flow rate and inlet temperature.  R-134a pressure and 
convection coefficient.  
FIND:  Air outlet temperature.  
SCHEMATIC:   

 
 
 
 
 
 

 
 
ASSUMPTIONS:  (1) Negligible fouling, (2) Constant properties, (3) Negligible heat loss to 
surroundings. 
 
PROPERTIES:  Table A-4, Air ( hT  ≈ 300 K, 1 atm): cp = 1007 J/kg⋅K, μ = 184.6 × 10-7 N⋅s/m2, k = 

0.0263 W/m⋅K, Pr = 0.707; Table A-5, Sat. R-134a (1 atm): Tsat = Tc = 247 K, hfg = 217 kJ/kg. 
 
ANALYSIS:  To obtain the air outlet temperature, we must first obtain the heat rate from the ε-NTU 
method.  To find Ah, first find the heat exchanger length, 
 ( ) ( )L L fL N 1 S D 3 0.0343m 0.0285m 0.131m.≈ − + = + =  
 
Hence, 

 ( )2 3
frV A L 0.16 m 0.131m 0.021m= = =  

 ( )2 3 3 2
hA V 269m / m 0.021m 5.65m .α= = =  

The overall coefficient is 

 
( ) h w

h c c h o,h h

1 1 1A R
U h A / A hη

= + +  

 
where Ex. 11S.2 yields (Ac/Ah) = 0.143 and AhRw = 3.51 × 10-5 m2⋅K/W.  With 
 

 2h
2fr

m 1.50 kg / sG 20.9 kg / s m
A 0.449 0.16 mσ

= = = ⋅
×

&
 

 

 
2 3

h
7 2

GD 20.9 kg / s m 6.68 10 mRe 7563.
184.6 10 N s / mμ

−

−
⋅ × ×

= = =
× ⋅

 

 
Fig. 11S.5 gives jH ≈ 0.0068.  Hence, 
 

 
( )

2p
h h 2 / 3 2 /3

Gc 20.9 kg / s m 1007 J / kg Kh j 0.0068
Pr 0.707

⋅ × ⋅
= =  

 
 2

hh 180 W / m K.= ⋅  
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PROBLEM 11S.16 (Cont.) 
 

With Lc = 6.18 mm and Ap = 1.57 × 10-6 m2 from Ex. 11S.2, ( )1/ 23/ 2
c h pL h / kA  = 0.338 and, from 

Fig. 3.20, ηf ≈ 0.89 for r2c/r1 = 1.75.  Hence, as in Ex. 11S.2, ηo,h = 0.91 and 
 

 
( ) ( )

5 2
2 2h

1 1 13.51 10 m K / W
U 5000 W / m K 0.143 0.91 180 W / m K

−= + × ⋅ +
⋅ ⋅

 

 
 2

hU 133 W / m K.= ⋅  
 
With 
 
 ( )min h h p,hC C m c 1.5 kg / s 1007 J / kg K 1511 W / K= = = ⋅ =&  
 

 
2 2

h h
min

U A 133 W / m K 5.65mNTU 0.497.
C 1511 W / K

⋅ ×
= = =  

 
With Cmin/Cmax = 0, Eq. 11.35a yields 
 
 ( ) ( )1 exp NTU 1 exp 0.497 0.392.ε = − − = − − =  
 
Hence, 
 
 ( ) ( )max min h,i c,iq q C T T 0.392 1511 W / K 63 K= = − =ε ε  
 
 q 37,200 W.=  
 
The air outlet temperature is 
 

 h,o h,i
h

q 37,200 WT T 310 K 285 K.
C 1511 W / K

= − = − =      < 

 
COMMENTS:  If R-134a enters the tubes as saturated liquid, a flow rate of at least 
 

 c
fg

q 37,200 Wm 0.171 kg / s
h 217,000 J / kg

= = =&  

 
would be needed to maintain saturated conditions in the tubes. 



PROBLEM 11S.17  
KNOWN:  Cooling coil geometry.  Gas flow rate and inlet temperature.  Water pressure, flow rate 
and convection coefficient.  
FIND:  Required number of tube rows.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Negligible fouling, (2) Constant properties, (3) Negligible heat loss to 
surroundings. 
 
PROPERTIES:  Table A-4, Air ( hT  ≈ 725 K, 1 atm): cp = 1081 J/kg⋅K, μ = 346.7 × 10-7 
N⋅s/m2, k = 0.0536 W/m⋅K, Pr = 0.698; Table A-6, Sat. water (2.455 bar): Tsat = Tc = 400 K, 
hfg = 2183 kJ/kg. 
 
ANALYSIS:  The required number of tube rows is 

 f
L

L

L DN 1
S
−

= +  

where 

 h min
h

fr h

V A CL V A NTU
A Uα

= = =  

 
( ) h w

h c c h o,h h

1 1 1A R .
U h A / A hη

= + +  

From Ex. 11S.2, (Ac/Ah) ≈ 0.143 and 

 
( )

( )
( ) ( )
( )( )

i o i 4 2
h w

c h

D ln D / D 0.0138m ln 16.4 /13.8
A R 5.55 10 m K / W.

2k A / A 2 15 W / m K 0.143
−= = = × ⋅

⋅
 

With 

 2h
2fr

m 3.0 kg / sG 18.6 kg / s m
A 0.449 0.36mσ

= = = ⋅
×

&
 

 

 
2 3

h
7 2

GD 18.6 kg / s m 6.68 10 mRe 3576
346.7 10 N s / mμ

−

−
⋅ × ×

= = =
× ⋅

 

and Fig. 11.16S.5 gives jh ≈ 0.009.  Hence, 
 

 
( )

2p 2
h h 2 / 3 2 / 3

Gc 18.6 kg / s m 1081 J / kg Kh j 0.009 230 W / m K.
Pr 0.698

⋅ × ⋅
= = = ⋅  

 
          Continued ….. 



PROBLEM 11S.17 (Cont.) 
 

With r2c/r1 = 1.75, Lc = 6.18 mm and Ap = 1.57 × 10-6 m2 from Ex. 11.6, ( )1/ 23/ 2
c h pL h / kA  = 1.52 

and Fig. 3.20 gives ηf ≈ 0.40.  Hence, 
 

 ( ) ( )f
o,h f

A1 1 1 0.83 1 0.4 0.50.
A

η η= − − = − − =  
 
Hence, 
 

 
( ) ( )

4 2
4 2 2h

1 1 15.55 10 m K / W
U 10 W / m K 0.143 0.50 230 W / m K

−= + × ⋅ +
⋅ ⋅

 

 
 2

hU 100.5 W / m K.= ⋅  
 
With 
 

 ( )6 6
c fgq m h 0.5 kg / s 2.183 10 J / kg 1.092 10 W= = × = ×&  

 
 ( )min hC C 3.0 kg / s 1081 J / kg K 3243 W / K= = ⋅ =  
 
 ( ) ( ) 6

max min h,i c,iq C T T 3243 W / K 500 K 1.622 10 W= − = = ×  
 
find 
 

 
6

6max

q 1.092 10 W 0.674.
q 1.622 10 W

ε ×
= = =

×
 

 
From Eq. 11.35b 
 
 ( ) ( )NTU ln 1 ln 1 0.674 1.121.ε= − − = − − =  
 
Hence, 
 

 2min
h 2h

C 3243 W / KA NTU 1.121 36.17 m
U 100.5 W / m K

= = =
⋅

 

 

 
( )

2
h

2 2 3fr

A 36.17 mL 0.373m
A 0.36m 269m / mα

= = =  

 

 f
L

L

L D 373 28.5N 1 1 11.06 11.
S 34.3
− −

= + = + = ≈      < 

 
COMMENTS:  The gas outlet temperature is 
 

 
6

h,o h,i
min

q 1.092 10 WT T 900 K 564 K.
C 3243 W / K

×
= − = − =  

 
Hence hT  = (900 K + 564 K)/2 = 732 K is in good agreement with the assumed value. 



PROBLEM 11S.18  
KNOWN:  Cooling coil geometry.  Gas flow rate and inlet temperature.  Water pressure and 
convection coefficient.  
FIND:  Gas outlet temperature.  
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Negligible fouling, (2) Constant properties, (3) Negligible heat loss to 
surroundings. 
 
PROPERTIES:  Table A-4, Air ( hT  ≈ 725 K, 1 atm): cp = 1081 J/kg⋅K, μ = 346.7 × 10-7 N⋅s/m2, k = 

0.0536 W/m⋅K, Pr = 0.698; Table A-6, Sat. water (2.455 bar): Tsat = Tc = 400 K, hfg = 2183 kJ/kg. 
 
ANALYSIS:  To obtain Th,o, first obtain q from the ε-NTU method.  To determine NTU, Ah must be 
found from knowledge of L. 
 
 ( ) ( )L L fL N 1 S D 10 0.0343m 0.0285m 0.372 m.≈ − + = + =  
 
Hence, 

 ( )2 3
frV A L 0.36 m 0.372 m 0.134 m= = =  

 ( )2 3 3 2
hA V 269m / m 0.134m 36.05m .α= = =  

The overall coefficient is 
 

 
( ) h w

h c c h o,h h

1 1 1A R .
U h A / A hη

= + +  

 
From Ex. 11S.2, (Ac/Ah) ≈ 0.143 and 
 

 
( )

( )
( ) ( )
( )( )

i o i 4 2
h w

c h

D ln D / D 0.0138m ln 16.4 /13.8
A R 5.55 10 m K / W.

2k A / A 2 15 W / m K 0.143
−= = = × ⋅

⋅
 

 
With 
 

 2h
2fr

m 3.0 kg / sG 18.6 kg / s m
A 0.449 0.36mσ

= = = ⋅
×

&
 

 

 
2 3

h
7 2

GD 18.6 kg / s m 6.68 10 mRe 3576
346.7 10 N s / mμ

−

−
⋅ × ×

= = =
× ⋅

 

 
and Fig. 11S.5 gives jH ≈ 0.009.  Hence, 
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PROBLEM 11S.18 (Cont.) 
 

 
( )

2p
h h 2 /3 2 /3

Gc 18.6 kg / s m 1081 J / kg Kh j 0.009
Pr 0.698

⋅ × ⋅
= =  

 
 2

hh 230 W / m K.= ⋅  
 

With r2c/r1 = 1.75, Lc = 6.18 mm and Ap = 1.57 × 10-6 m2 from Ex. 11.6, ( )1/ 23/ 2
c h pL h / kA  = 1.52 

and Fig. 3.20 gives ηf ≈ 0.40.  Hence, 
 

 ( ) ( )f
o,h f

A1 1 1 0.83 1 0.4 0.50.
A

η η= − − = − − =  
 
Hence, 
 

 
( ) ( )

4 2
4 2 2h

1 1 15.55 10 m K / W
U 10 W / m K 0.143 0.50 230 W / m K

−= + × ⋅ +
⋅ ⋅

 

 
 2

hU 100.5 W / m K.= ⋅  
 
With 
 
 ( )min hC C 3 kg / s 1081 J / kg K 3243 W / K= = ⋅ =  
 

 
( )2 2

h h
min

100.5 W / m K 36.05mU ANTU 1.117.
C 3243 W / K

⋅
= = =  

 
Since Cmin/Cmax = 0, Eq. 11.35a gives 
 
 ( ) ( )1 exp NTU 1 exp 1.117 0.673.ε = − − = − − =  
 
Hence, 
 
 ( ) ( )( ) 6

min h,i c,iq C T T 0.673 3243 W / K 500 K 1.091 10 Wε= − = = ×  
 
and 
 

 
6

h,o h,i
min

q 1.091 10 WT T 900 K 564 K.
C 3243 W / K

×
= − = − =     < 

 
COMMENTS:  (1) The assumption of hT  = 725 K is good. 
 
(2) If water enters the tubes as saturated liquid, a flow rate of at least 
 

 
6

c 6fg

q 1.091 10 Wm 0.50 kg / s
h 2.183 10 J / kg

×
= = =

×
&  

 
would be need to maintain saturated conditions in the tubes. 
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