

PROJECT No. (1) (Otto Cycle Simulation)

❖ OBJECTIVES

1. To have an idea about the basics of engine simulation.
2. To study the effect of various engine design conditions on its performance.

❖ MODEL INPUT DATA REQUIRED

1. Engine design parameters: D, S, CRL, CR, RPM
2. Fuel and air data : CV, A/F, Cv, Cp, Ma
3. Inlet conditions : P1 and T1.

❖ MAIN PROGRAM

1. Compression Stroke (1-2), (0 ≤ θ ≤ 180)

► Start with calculation of $V(\theta)$ using equation No.(4) see next page.

$$\text{► Then calculate } P(\theta) = P_1 * \left[\frac{V_1}{V(\theta)} \right]^\gamma$$

$$\text{► Then finally calculate } T(\theta) = T_1 * \left[\frac{V_1}{V(\theta)} \right]^{\gamma-1}$$

2. Combustion Stroke (2-3), (θ = 180)

- Take the pressure ratio $(P_3/P_2) = 4.5 - 5.0$
- Calculate P3 which is $P(180)$ after combustion.
- Then calculate T3.
- Then calculate Heat Input per Kg of air.

3. Expansion Stroke (3-4), (180 ≤ θ ≤ 360)

- Start with calculation of $V(\theta)$ using equation No.(4).

$$\text{► Then calculate } P(\theta) = P_3 * \left[\frac{V(\theta = 180)}{V(\theta)} \right]^\gamma$$

- Then finally calculate $T(\theta)$ from T3

4. Exhaust Stroke (4-1), (θ = 360)

Since this is a simplified model and for the sake of this project only, restore the final values to the initial values.

❖ MAIN EQUATIONS USED

$$\text{► } V_s = 0.25 * \pi * D^2 * S \quad (1)$$

$$\text{► } V_{TDC} = V_2 = V(\theta = 0) = V_s * (1 / (CR-1)) \quad (2)$$

$$\text{► } V_{BDC} = V_1 = V(\theta = 180) = V_s * (CR / (CR-1)) \quad (3)$$

$$\gg V(\theta) = V_s * \left[\left(\frac{CR}{CR-1} \right) - \left(\frac{1 - \cos(\theta)}{2} \right) + \left(\frac{CRL}{S} \right) - \frac{1}{2} * \sqrt{\left(\frac{2 * CRL}{S} \right)^2 - \sin^2(\theta)} \right] \quad (4)$$

$$\gg IMEP = WD / V_s \quad (5)$$

$$\gg IP = (IMEP * A * S * (N/n)) \quad (6)$$

$$\gg IT = IP/2*\pi*N \quad (7)$$

$$\gg WD = M_t * Cv * [(T_3 - T_2) - (T_4 - T_1)] \quad (7)$$

$$\gg \eta_{ith} = WD/Q_{add} = IP/M_f * CV \quad (8)$$

$$\gg ISFC = M_f / IP \quad (8)$$

Where;

V_s = Stroke volume (m) D = Cylinder diameter (m) S = Stroke length (m)

CR = Compression Ratio CRL = Connecting Rod Length (m) θ = Crank Angle (rad)

WD = Net Work Done (kJ) IP = Indicated Power (kW) A = Cylinder Area (m^2)

IT = Indicated Torque (N-m) N = Engine Revolutions (RPM) $n = 2$ for 4-strokes

$IMEP$ = Indicated Mean Effective Pressure (bar) η_{ith} = Indicated Thermal Eff.

$ISFC$ = Indicated Specific Fuel Consumption (Kg/kW-hr)

☒ PLOTS REQUIRED

- gg Pressure and temperature variations with crank angle.
- gg Pressure and temperature variations with cylinder volume.
- gg Effect of CR on engine performance parameters like (IMEP, ISFC, IP, WD & IT) taking 4 different values for CR (6,7,8 & 9).
- gg Effect of specific heat ratio (γ) on P-V and T-V diagrams.

☒ This program can be done using any of the programming languages (C, FORTRAN, PASCAL, BASIC ...etc) or worksheets (EXCELLetc).

☒ Last date of submission of this project is **Tuesday 21st November 2002**.

☒ To test the output of your program, use the following data :

$D = 7.94$ cm, $S = 11.12$ cm, $CRL = 23.34$ cm, $N = 4000$ rpm, $CR = 6$

$CV = 42000$ kJ/Kg, $A/F = 14.6$, $Cv = 0.718$ kJ/Kg-K, $P_1 = 1.0135$ bar, $T_1 = 300$ K

☒ You should be able to get the following output :

$P_2 = 12.452$ bar, $T_2 = 614.302$ K, $P_3 = 88.468$ bar, $T_3 = 4364.035$ K, $P_4 = 7.2$ bar & $T_4 = 2132.65$ K

$IMEP = 24.98$ (bar), $WD = 1376.465$ (kJ/Kg), $IP = 45.88$ (kW),

$ISFC = 0.164$ (kg/kW-h), $\eta_{ith} = 0.5215$

☒ Once your model is verified, you can go for the engine performance study.