

**The University of Jordan
Faculty of Engineering & Technology
Mechanical Engineering Department**

Fluid Mechanics Lab.

Course No.0904362

Mid Exam

Date: 16/4/2014

Inst. Eng. Ala'a Gharram

Student Name:

Student ID #:

Serial #:

Section:

Time: 40 Min.

Question 1 (10 Marks):

Answer by true (**T**) or false (**F**) to the left of the question.

In the Hydrostatic Pressure on a plane surface Experiment:

- () The surface under study has the shape of toroid.
- () The rider weight balances the weight of the toroid in the dry situation only.
- () The location of the center of pressure changes if a different fluid was used in the tank.
- () The center of pressure in an immersed body is always below the centroid.

In the Hydraulic Jump Experiment:

- () The energy under the sluice gate equals to the energy after the gate.
- () The height of the hydraulic jump increases as Froude number increases.
- () The energy loss in the jump is zero.

In the Impact of Water Jet Experiment:

- () The Force on the flat plate is less than the force on the hemispherical cup.
- () The force generated is calculated by taking the moment about the center of the jet.
- () The water flow rate is measured using weighing tank.

Question 2 (10 Marks):

The following data was taken during the experiment of centrifugal and reciprocating pumps:

	Centrifugal	Reciprocating
Motor speed (rev/s)	12	15
Pressure difference	0.3	0.5
Load on dynamometer(kg)	1.47	0.75
Volume of water in the tank (liter)	10	10
Time to fill the tank (sec.)	44	27
Water density (kg/m^3)	1000	1000

Calculate the following for each pump:

- Water power.
- Brake power.
- Overall efficiency.
- Volumetric efficiency.

Hint: use the following equations:

$$\text{Water power} = \rho g Q h_p, \quad \text{Break power} = 2\pi \omega F R, \quad Q_c = 2A_p L \omega, \quad Q_c = \frac{0.75}{12.5} \times 10^{-3} \omega$$

$$R = 0.15 \text{ m}, \quad A_p = 15.55 \times 10^{-4} \text{ m}^2, \quad L = 0.0413 \text{ m}.$$

MechFamily