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Table-7. 1 Data collected from the experiment execution

Trial M(kg) L(cm)

1 0.4 20.5

2 0.8 21

3 1.2 21.5

4 1.6 219

> 2.0 2237

6 2.4 227

4 2.8 2" 284 4.13

8 3.2 Z 138 4.26
. 9 3.6 24 4.7

10 4.4 24.8 4.98

Table-7.2 pimensions and parameters of the spring

Parameter _-Value
N(turns) 18
D(mm) / 42.52
d(mm) & 3.3
Lo(cm) i 20.2




Table-7.3Data processing analysis

Trial | Mikg) delta(mm) t(second) | t"2(second)rs

1 0.4 0.3 0.288 0.082944

2 0.8 0.8 0.343 0.117649

3 1.2 1.3 0.349 0.121801

4 1.6 1.7 0.361 0:130321

5 2 2.1 0.401 _~~ 0.160801

6 2.4 2.5 041 0.1681

7 2.8 2.9 0.413 ~ 0.170569

8 3.2 3.4 0,426 0.181476

9 3.6 3.8 _~0.47 0.2209

10 4.4 4.6 " 0.498 0.248004

—
Ta ble-7.4Data processing results
Spring Stiffness K
K{theoretical) = 857.045 (N/m)

From: Slope K(Dl/ﬁ) Percent Error (%)
Figure-3 $,=94 _922.14 7.6
Figure-4 S:1=0.039 1012.27 18.1

Spring Effective Mass ms
From Figure-7.2: P
Y inter (kgm/N) 0.073 ms(kg) 0.4
X inter (kg) -1.87 ms(kg) 7 0.4

Gravitational Acceleration g

From figures- S5152(sec”2/m) g(m/sec”2) /Pé‘f:ent Error (%)
7.28&4 3.666 1077 .~ 9.79
Modulus Of Rigidity-é
From figure- Slope (m/N) G(Gpa) Percent Error (%)
7.2 0.039 94.5 ~~ 18.13
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1) What is the physical meaning of the Effective Mass of a spring? Is there
an effective mass for Torsion springs?

In a real spring-mass system, the spring has a non-negligible mass 1n. Since not
all of the spring's length moves at the same velocity U as the suspended

mass M, its kinetic energy is not equal to mug/ 2 4s such, 1 cannot be simply
added to M in order to determine the frequency of oscillation, and '

the effective mass of the spring is defined as the mass that needs to be added
to M in order to correctly predict the behavior of the system

This approximation is valid for linear springs that follow the linearization
assumption. Thus it can be applied to the torsio / ings, too. Instead of
effected mass, effective mass moment of merp is used.

2) Derive a formula for the effective mass of a linear helical spring m; in

terms of its total mass M;? ///////////////////////

The effective mass can be calculated using Raleigh's

method. Let the spring have a uniform mass per unit ~ X
length & =m_/L and total mass ms and lengfh L Tf L

the coordinate of the mass (the spring ?d pom’r) is
y, then its velocity is y. The velocity o oint at a

distance x below the top of the sprijng is then by
proportionality: <

AR ?
L

Vertical spring of mass m,
u L, where u is its mass per unit length

/\
|

/
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dx l z

/\

av
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X
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Hence an infinitesimal piece of the spring of length
dx located at a distance x below the top of the spring
contributes a kinetic energy:

dK, = %(,udx) ]~ X

And the complete spring contributes a kinetic energy, Ks:



k2] —

i | =

m
Which means that the effective mass of the spring = —3—‘

3) Use the dimensions of the spring to estimate its volume and total mass
(by approximate calculations), and apply in the formula derived above
to find its effective mass. Verify your experimental results.

If the spring was compressed so its turns close to each other, then we get a
hollow cylindrical tube as in the figure.

V= A, xh =—§[D2 —(D—2d) [x(18d)

V= % x[0.04245% —(0.04245-2x0.0033)" [x18x0.0033
4

= 24.11x10"°m’

m, = pxV =7840x24.11x10™° = 0.189 kg

0.189
<+ Megpicrive = El:,’_s = __38_ =0.063 kg

4) In eqn-5 F, = mg, why didn’t we equate the spring force Fg with the
total weight of the system Mg?

vl

At the static equilibrium position: F, =ké =

(M + md) - k(AX + 5slalic) - 0
When discs masses are added: Mg canicelsout with k&



5) In determining the stiffness of the spring using the deflection curve of

Figure-7.3, what is the essential implicit assumption that has been

made? How could you ensure that you did not violate it in the
experiment using your graph?

The relation between the spring force and the spring deflection was assumed
Linear. This means that the spring's behavior follows Hooke's Law of simple

harmonic motion. This linearization was taken in consideration in the deflection
curve in this experiment so it is still valid.

max
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R
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/ cdisplacement
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/{_,-- simple examples of Mass Spring Systems that we use in real life
£ ***Shock absorbers in a vehicle:

¥

***Complex example of a Mass Spring System used in our
profession:

designing firearms
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_ Experimental Procedures:
e

1) Hang the spring vertically with the load carrier attacheq

10 its end, anq then
measure the total length of the spring L,

(This length is not the initial fi-ce length of the spring L)

2) Add one disk to the carrier (m = mg), and measure the total-length of the

spring after elongation 7.,

3) With this loading, stretch the spring downward, thefi leave it to oscillate

freely and record the time needed to complete ten/Oscillations 7.

4) Add another disk so that (m = 2my), and repeat steps-2 & 3.

5) Continue by adding a disk each time for total ten disks (m = 10mgy), and each
time measure the parameters L and 7. /



