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Introduction

+ In this chapter, we apply the energy balance relation to systems that do not involve
any mass flow across their boundaries; that is, closed systems.

«  We start this chapter with a discussion of the moving boundary work or P dV work
commonly encountered in reciprocating devices such as automotive engines and
compressors.

«  We continue by applying the general energy balance relation, which is simply
expressed as Ei,-Eqy = AEgstem, 10 systems that involve pure substance.

- Then we define specific heats, obtain relations for the internal energy and enthalpy
of ideal gases in terms of specific heats and temperature changes, and perform
energy balances on various systems that involve ideal gases.

«  We repeat this for systems that involve solids and liquids, which are approximated
as incompressible substances.



Objectives

The objectives of Chapter 4 are to:

« Examine the moving boundary work or P dV work commonly encountered in
reciprocating devices such as automotive engines and compressors.

 Identify the first law of thermodynamics as simply a statement of the conservation of
energy principle for closed (fixed mass) systems.

» Develop the general energy balance applied to closed systems.

» Define the specific heat at constant volume and the specific heat at constant
pressure.

+ Relate the specific heats to the calculation of the changes in internal energy and
enthalpy of ideal gases.

» Describe incompressible substances and determine the changes in their internal
energy and enthalpy.

» Solve energy balance problems for closed (fixed mass) systems that involve heat
and work interactions for general pure substances, ideal gases, and incompressibge
substances.



MOVING BOUNDARY WORK

* One form of mechanical work frequently
encountered in practice is associated with the
expansion or compression of a gas in a piston—

cylinder device. ggjnfg;’rvyi“g
* During this process, part of the boundary (the \ I I

inner face of the piston) moves back and forth.

Therefore, the expansion and compression SR

work is often called moving boundary work, : :

or simply boundary work (Fig. 4—1). | GAS |
| I
| I

« Some call it the P dV work for reasons
explained later. Moving boundary work is the

) ) . . FIGURE 4-1
primary form of work involved in automobile . . .
engines. During their expansion, the The work associated with a moving
combustion gases force the piston to move, boundary is called boundary work.

which in turn forces the crankshaft to rotate.



The moving boundary work associated with real engines or compressors cannot
be determined exactly from a thermodynamic analysis alone because the piston
usually moves at very high speeds, making it difficult for the gas inside to
maintain equilibrium.

Then the states through which the system passes during the process cannot be
specified, and no process path can be drawn. Work, being a path function,
cannot be determined analytically with- out a knowledge of the path. Therefore,
the boundary work in real engines or compressors is determined by direct
measurements.

In this section, we analyze the moving boundary work for a quasi- equilibrium
process, a process during which the system remains nearly in equilibrium at all
times.

A quasi-equilibrium process, also called a quasi- static process, is closely
approximated by real engines, especially when the piston moves at low
velocities.



- Under identical conditions, the work output of the engines is found to be a
maximum, and the work input to the compressors to be a minimum when quasi-
equilibrium processes are used in place of nonquasi-equilibrium processes.
Below, the work associated with a moving boundary is evaluated for a quasi-

equilibrium process.

F
Consider the gas enclosed in the piston 1
cylinder device shown in Fig. 4-2. The | I‘
initial pressure of the gas is P, the total
volume is V, and the cross- sectional area I ds
of the piston is A. If the piston is allowed HTH‘HT A
to move a distance dsin a quasi-
equilibrium manner, the differential work
done during this process is GAS

FIGURE 4-2
8Wb = Fds =PAds = P dV A gas does a differential amount of

work 6W, as it forces the piston to
move by a differential amount ds.



That is, the boundary work in the differential form is equal to the product of
the absolute pressure P and the differential change in the volume dV of the
system.

This expression also explains why the moving boundary work is sometimes
called the P aV work. Note in Eq. 4—1 that Pis the absolute pressure, which
is always positive.

However, the volume change dV is positive during an expansion process
(volume increasing) and negative during a compression process (volume
decreasing).

Thus, the boundary work is positive during an expansion process and
negative during a compression process.

Therefore, Eq. 4—1 can be viewed as an expression for boundary work
output, W, ... A negative result indicates boundary work input
(compression).



The total boundary work done during the entire process as the piston moves

is obtained by adding all the differential works from the initial state to the final
state:

2
W, = J P4V (W)
1

« This integral can be evaluated only if we know the functional relationship
between P and V during the process. That is, P = f(V) should be available.

Note that P = f (V) is simply the equation of the process path on a P-V
diagram.



« The quasi-equilibrium expansion process described is shown on a P-V diagram
in Fig. 4-3. On this diagram, the differential area dAis equal to P dV, which is
the differential work. The total area A under the process curve 1-2 is obtained

by adding these differential areas:
P

1

2 2 : Process path
Area=A=J dA=f PdVv |
1 1

N

|

|
A comparison of this equation with Eq. 4-2 |
reveals that the area under the process curve on .
a P-V diagram is equal, in magnitude, to the
work done during a quasi-equilibrium
expansion or compression process of a closed
system. (On the P-v diagram, it represents the
boundary work done per unit mass.)

FIGURE 4-3

The area under the process curve on a
P-V diagram represents the boundary
work.



A gas can follow several different paths as it expands from state 1 to state 2. In
general, each path will have a different area underneath it, and since this area
represents the magnitude of the work, the work done will be different for each
process (Fig. 4—4).

This is expected, since work is a path function (i.e., it depends on the path
followed as well as the end states). If work were not a path function, no cyclic
devices (car engines, power plants) could operate as work-producing devices.

The work produced by these devices during one part of the cycle would have to be
consumed during another part, and there would be no net work output.

The cycle shown in Fig. 4-5 produces a net work output because the work done
by the system during the expansion process (area under path A) is greater than
the work done on the system during the compression part of the cycle (area under
path B), and the difference between these two is the net work done during the
cycle (the colored area).

10



If the relationship between P and V during an expansion or a compression
process is given in terms of experimental data instead of in a functional form,

obviously we cannot perform the integration analytically.

But we can always plot the P-V diagram of the process, using these data points,
and cal- culate the area underneath graphically to determine the work done.

Strictly speaking, the pressure Pin Eq. 4-2 is the pressure at the inner surface
of the piston. It becomes equal to the pressure of the gas in the cylinder only if
the process is quasi-equilibrium and thus the entire gas in the cylinder is at the
same pressure at any given time.

Equation 4-2 can also be used for nonquasi-equilibrium processes provided that
the pressure at the inner face of the piston is used for P. (Besides, we cannot
speak of the pressure of a system during a nonquasi-equilibrium process since
prop- erties are defined for equilibrium states only.)

Therefore, we can generalize the boundary work relation by expressing it as

2
szj P,dV
1

: : . 11
where Pi is the pressure at the inner face of the piston.
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W, =10kJ ,
WB = 8 kJ A
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| I
v 7 Y FIGURE 4-5
The net work done during a cycle is
FIGURE 44 the difference between the work done
The boundary work done during a by the system and the work done on
process depends on the path followed the svstem.

as well as the end states.
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Note that work is a mechanism for energy interaction between a system and its
surroundings, and Wb represents the amount of energy transferred from the
system during an expansion process (or to the system during a compression
process).

Therefore, it has to appear somewhere else and we must be able to account for it
since energy is conserved. In a car engine, for example, the boundary work done

by the expanding hot gases is used to overcome friction between the piston and
the cylinder, to push atmospheric air out of the way, and to rotate the crankshaft.

Therefore

2
Wb = Wfriction + Watm + Wcrank = J (F friction + P ath + F crank) dx

13



Of course, the work used to overcome friction appears as frictional heat and
the energy transmitted through the crankshaft is transmitted to other
components (such as the wheels) to perform certain functions.

But note that the energy transferred by the system as work must equal the
energy received by the crankshaft, the atmosphere, and the energy used to
overcome friction.

The use of the boundary work relation is not limited to the quasi-equilibrium
processes of gases only. It can also be used for solids and liquids.
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EXAMPLE 4-1 Boundary Work for a Constant-Volume Process

A rigid tank contains air at 500 kPa and 150°C. As a result of heat transfer
to the surroundings, the temperature and pressure inside the tank drop to
65°C and 400 kPa, respectively. Determine the boundary work done during
this process.

Solution Air in a rigid tank is cooled, and both the pressure and tempera-
ture drop. The boundary work done is to be determined.

Analysis A sketch of the system and the P-V diagram of the process
are shown in Fig. 4-6. The boundary work can be determined from Eq. 4-2
to be

2 0
W,,=J P# =0
1

Discussion This is expected since a rigid tank has a constant volume and
dV = 0 in this equation. Therefore, there is no boundary work done during
this process. That is, the boundary work done during a constant-volume
process is always zero. This is also evident from the P-V diagram of the
process (the area under the process curve is zero).

15



AIR
Pl - 500 kPa
T, = 150°C

P2 =400 kPa
T2 - 650C

Heat

P, kPa 4

500

400

<Y
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EXAMPLE 4-2  Boundary Work for a Constant-Pressure Process

A frictionless piston—cylinder device contains 10 Ibm of steam at 60 psia
and 320°F. Heat is now transferred to the steam until the temperature
reaches 400°F. If the piston is not attached to a shaft and its mass is con-
stant, determine the work done by the steam during this process.

Solution Steam in a piston cylinder device is heated and the temperature
rises at constant pressure. The boundary work done is to be determined.
Analysis A sketch of the system and the P-v diagram of the process are
shown in Fig. 4-7.

Assumption The expansion process is quasi-equilibrium.

Analysis Even though it is not explicitly stated, the pressure of the steam
within the cylinder remains constant during this process since both the
atmospheric pressure and the weight of the piston remain constant. There-
fore, this is a constant-pressure process, and, from Eq. 4-2

2 2
1 1

or
W, = mPy(v, — v;)

since V = mv. From the superheated vapor table (Table A-6E), the specific
volumes are determined to be v; = 7.4863 ft3/Ibm at state 1 (60 psia,
320°F) and v, = 8.3548 ft3/lbm at state 2 (60 psia, 400°F). Substituting
these values yields

1 Bt
W, = (10 1bm) (60 psia)[ (8.3548 — 7.4863) ft3/1bm](5 04 - ft3>
404 psia -

= 96.4 Btu
Discussion The positive sign indicates that the work is done by the
system. That is, the steam used 96.4 Btu of its energy to do this work. The

magnitude of this work could also be determined by calculating the area under
the process curve on the P-V diagram, which is simply £, AV for this case.

17



P, psia 4
1 Py= 60 psia 2
60-——¢ > *

1 |
| |
| |
1 |

Heat : Area = w, :
{ l FIGURE 4-7
| | . .
1 | . Schematic and P-v diagram for

v, =7.4863 v, =8.3548 v, ft¥/lbm Example 4-2.
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EXAMPLE 4-3 Isothermal Compression of an Ideal Gas

A piston—cylinder device initially contains 0.4 m3 of air at 100 kPa and 80°C.
The air is now compressed to 0.1 m3 in such a way that the temperature
inside the cylinder remains constant. Determine the work done during this
process.

Solution Air in a piston—cylinder device is compressed isothermally. The
boundary work done is to be determined.

Analysis A sketch of the system and the P-V diagram of the process are
shown in Fig. 4-8.

Assumptions 1 The compression process is quasi-equilibrium. 2 At specified
conditions, air can be considered to be an ideal gas since it is at a high tem-
perature and low pressure relative to its critical-point values.

Analysis For an ideal gas at constant temperature T,

PV =mRT,=C or P=€

where C is a constant. Substituting this into Eq. 4-2, we have

2 *C >dV v, V,
= | PdV=| —dV= — =Ch —=PV,In— 4-7
W, L Jl Y CL v C v 2% nV1 47

In Eq. 4-7, P,V; can be replaced by P,V, or mRT,. Also, V,/V, can be
replaced by P,/P, for this case since P,V;, = P,V,.
Substituting the numerical values into Eq. 4-7 yields

0.1 1kJ
W, = (100 kPa) (0.4 m3)( 1
b= 2)( m)<n0.4)<1kPa-m3)
= —55.5kJ

Discussion The negative sign indicates that this work is done on the system
(a work input), which is always the case for compression processes.
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T,=80°C = const.

AIR
V;=04m3

P, =100 kPa
T, = 80°C = const.

0.1 0.4 V, m3

FIGURE 4-8
Schematic and P-V diagram for Example 4-3.
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Polytropic Process

During actual expansion and compression processes of gases, pressure and
volume are often related by PV" = C, where n and C are constants. A
process of this kind is called a polytropic process (Fig. 4-9). Below we
develop a general expression for the work done during a polytropic process.
The pressure for a polytropic process can be expressed as

P=CV™ (4-8)
Substituting this relation into Eq. 4-2, we obtain

V2—n+l L Vl_n+1 B P2V2 e PIVI
=i+ 1 B L—m

2 2
W, = J PdV = J cV™"dv=_=C_ (4-9)
1 1
since C = P,V|'= P,V;". For an ideal gas (PV = mRT), this equation can
also be written as
mR(T, — T,)

W, = # 1 kJ 4-10
A - n (kJ) (4-10)

For the special case of n = 1 the boundary work becomes
2 2 V.
x 2

W, = J PdV = f cVv 1a'V=PV1n(—)
1 I Vi

For an ideal gas this result is equivalent to the isothermal process discussed
in the previous example.
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PV"= C = const.

P,VI= P,V1

PV" = const.

<Y
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EXAMPLE 44 Expansion of a Gas against a Spring

A piston—cylinder device contains 0.05 m3 of a gas initially at 200 kPa. At
this state, a linear spring that has a spring constant of 150 kN/m is touching
the piston but exerting no force on it. Now heat is transferred to the gas,
causing the piston to rise and to compress the spring until the volume inside
the cylinder doubles. If the cross-sectional area of the piston is 0.25 m?,
determine (a) the final pressure inside the cylinder, (b) the total work done by

the gas, and (¢) the fraction of this work done against the spring to
compress it.

Solution A gas in a piston—cylinder device equipped with a linear spring
expands as a result of heating. The final gas pressure, the total work done, and
the fraction of the work done to compress the spring are to be determined.
Assumptions 1 The expansion process is quasi-equilibrium. 2 The spring is
linear in the range of interest.
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Analysis A sketch of the system and the P-V diagram of the process are
shown in Fig. 4-10.

(a) The enclosed volume at the final state is
V, =2V, = (2)(0.05m*) = 0.1 m’

Then the displacement of the piston (and of the spring) becomes
AV (01— 0.05) m?
A 0.25 m*

The force applied by the linear spring at the final state is
F = kx = (150kN/m) (0.2 m) = 30 kN
The additional pressure applied by the spring on the gas at this state is

F  30kN
P=—= 5 = 120 kPa
A 025m
Without the spring, the pressure of the gas would remain constant at
200 kPa while the piston is rising. But under the effect of the spring, the
pressure rises linearly from 200 kPa to

200 + 120 = 320 kPa

X =0.2m

at the final state.

(b) An easy way of finding the work done is to plot the process on a
P-V diagram and find the area under the process curve. From Fig. 4-10 the
area under the process curve (a trapezoid) is determined to be

(200 + 320) kPa 1k

— — — 3 _—
W = area > [(0.1 ODS)m](lkPa-m-”

) =151



Note that the work is done by the system.

(c) The work represented by the rectangular area (region 1) is done against
the piston and the atmosphere, and the work represented by the triangular
area (region |l) is done against the spring. Thus,

1kJ
stpring = %[ (320 = 200) kPa] (0.05 m3)(m) =3 kJ

Discussion This result could also be obtained from

Wipring = 2k(33 — x7) = 3(150 kN/m)[ (0.2 m)* — 02](“:Nk‘.lm> = 3kJ

P, kPa

320

200 -

FIGURE 4-10

Schematic and P-V/ diagram for
Example 44. Heat

0.05 01 V,m?
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4-2 = ENERGY BALANCE FOR CLOSED SYSTEMS

Energy balance for any system undergoing any kind of process was
expressed as (see Chap. 2)

Ey, — Egy - AE’system (kJ) (4-11)
Net energy transfer Change in internal, kinetic,
by heat, work, and mass potential, etc., energies

or, in the rate form, as

By — Eoul - dEsystem/dt (kW) (4-12)
Rate of net energy transfer Rate of change in internal,
by heat, work, and mass kinetic, potential, etc., energies

For constant rates, the total quantities during a time interval At are related to
the quantities per unit time as

Q=QAt, W=WAt and AE = (dE/dt)At (kJ)  (4-13)

26



The energy balance can be expressed on a per unit mass basis as

€in — Cout — Aesystem (kJ/ kg) (4-14)

which is obtained by dividing all the quantities in Eq. 4—11 by the mass m
of the system. Energy balance can also be expressed in the differential
form as

) in anut = dE system or Sein - Seout = desystem (4-15)

For a closed system undergoing a cycle, the initial and final states are iden-
tical, and thus AE = E, — E; = 0. Then the energy balance for a cycle
simplifies to E,, — E_, = 0 or E.. = E_ . Noting that a closed system does
not involve any mass flow across its boundaries, the energy balance for a

cycle can be expressed in terms of heat and work interactions as

system

net out — Qnet in OF | net out Qnet in (fOI‘ a CYCIe) (4-16)

That is, the net work output during a cycle is equal to net heat input
(Fig. 4-11).

27
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FIGURE 4-11
For a cycle AE = 0, thus Q = W.
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The energy balance (or the first-law) relations already given are intuitive in nature and
are easy to use when the magnitudes and directions of heat and work transfers are
known.

However, when performing a general analytical study or solving a problem that
involves an unknown heat or work interaction, we need to assume a direction for the
heat or work interactions.

In such cases, it is common practice to use the classical thermodynamics sign
convention and to assume heat to be transferred into the system (heat input) in the
amount of O and work to be done by the system (work output) in the amount of W, and
then to solve the problem. The energy balance relation in that case for a closed system

becomet Qnet,in o Wnet,out = AE o1 Q - W=AE (4-17)

system

Where

Q = Onetin = Oin - Qou 1 the net heat input
and W = Wieout = Wour - Win 18 the net work output.

Obtaining a negative quantity for Q or W simply means that the assumed direction for
that quantity is wrong and should be reversed. Various forms of this “traditional” first-
law relation for closed systems are given in Fig. 4—12. 29



The first law cannot be proven mathematically, but no process in nature is known to
have violated the first law, and this should be taken as sufficient proof.

Note that if it were possible to prove the first law on the basis of other physical

principles, the first law then would be a consequence of those principles instead of
being a fundamental physical law itself.

As energy quantities, heat and work are not that different, and you probably wonder
why we keep distinguishing them.

After all, the change in the energy content of a system is equal to the amount of energy

that crosses the system boundaries, and it makes no difference whether the energy
crosses the boundary as heat or work.

It seems as if the first-law relations would be much simpler if we had just one quantity
that we could call energy interaction to represent both heat and work. Well, from the
first-law point of view, heat and work are not different at all.

From the second-law point of view, however, heat and work are very different, as is
discussed in later chapters.
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General Q- W=AE
Stationary systems Q — W= AU

Per unit mass g —w = Ae

Differential form &g — 0w = de

&

FIGURE 4-12

Various forms of the first-law relation
for closed systems.
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EXAMPLE 4-5 Electric Heating of a Gas at Constant Pressure

A piston—cylinder device contains 25 g of saturated water vapor that is main-
tained at a constant pressure of 300 kPa. A resistance heater within the
cylinder is turned on and passes a current of 0.2 A for 5 min from a 120-V
source. At the same time, a heat loss of 3.7 kJ occurs. (a) Show that for a
closed system the boundary work W, and the change in internal energy AU
in the first-law relation can be combined into one term, AH, for a constant-
pressure process. (b) Determine the final temperature of the steam.

Solution Saturated water vapor in a piston—cylinder device expands at con-
stant pressure as a result of heating. It is to be shown that AU + W, = AH,
and the final temperature is to be determined.

Assumptions 1 The tank is stationary and thus the kinetic and potential
energy changes are zero, AKE = APE = 0. Therefore, AE = AU and internal
energy is the only form of energy of the system that may change during this
process. 2 Electrical wires constitute a very small part of the system, and
thus the energy change of the wires can be neglected.
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P, kPat

Wy =374

out

FIGURE 4-13
Schematic and P-v diagram for Example 4-5.
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Analysis We take the contents of the cylinder, including the resistance wires,
as the system (Fig. 4-13). This is a closed system since no mass crosses the
system boundary during the process. We observe that a piston—cylinder device
typically involves a moving boundary and thus boundary work W,. The pres-
sure remains constant during the process and thus P, = P,. Also, heat is lost
from the system and electrical work W, is done on the system.

(a) This part of the solution involves a general analysis for a closed system
undergoing a quasi-equilibrium constant-pressure process, and thus we con-
sider a general closed system. We take the direction of heat transfer Q to be
to the system and the work W to be done by the system. We also express the
work as the sum of boundary and other forms of work (such as electrical and
shaft). Then the energy balance can be expressed as

Eipn — Eout = AE‘system
[ ——
Net energy transfer Change in internal, kinetic,
by heat, work, and mass potential, etc., energies

0 0
Q — W= AU + AKE + APE"
0~ Wopher — W, =0, — U,

For a constant-pressure process, the boundary work is given as W, =
Py(V, — V,). Substituting this into the preceding relation gives

Q — Woper — Po(Vo = V1) = U, — U,
However,
Po=P,=P —> 0~ Wye= (U, +PVy) = (U +PV)
Also H = U + PV, and thus
0 — Wypee = H, — H, (kJ) (4-18)

which is the desired relation (Fig. 4-14). This equation is very convenient to
use in the analysis of closed systems undergoing a constant-pressure quasi-
equilibrium process since the boundary work is automatically taken care of
by the enthalpy terms, and one no longer needs to determine it separately.
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(b) The only other form of work in this case is the electrical work, which can
be determined from

kJ/s

1000 VA) = )

W, = VI At = (120 V) (0.2 A) (300 s)(

P, = 300 kPa
sat. vapor

State 1: } hy = hy @ 300kpa = 2724.9 kI /kg (Table A-5)
The enthalpy at the final state can be determined directly from Eq. 4-18 by
expressing heat transfer from the system and work done on the system as
negative quantities (since their directions are opposite to the assumed direc-
tions). Alternately, we can use the general energy balance relation with the
simplification that the boundary work is considered automatically by replac-
ing AU by AH for a constant-pressure expansion or compression process:

Ein - Eout = AEsystem
Net energy transfer Change in internal, kinetic,
by heat, work, and mass potential, etc., energies

Wein = Qou — W, = AU
Woin — Qou = AH = m(h, — hy) (since P = constant)
72k — 3.7kJ = (0.025 kg) (h, — 2724.9) k) /kg
h, = 2864.9 kJ/kg

Now the final state is completely specified since we know both the pressure
and the enthalpy. The temperature at this state is

P, = 300 kPa
h, = 2864.9 kI /kg

Therefore, the steam will be at 200°C at the end of this process.

Discussion Strictly speaking, the potential energy change of the steam is
not zero for this process since the center of gravity of the steam rose some-
what. Assuming an elevation change of 1 m (which is rather unlikely), the
change in the potential energy of the steam would be 0.0002 kJ, which is
very small compared to the other terms in the first-law relation. Therefore, in
problems of this kind, the potential energy term is always neglected.

State 2: } T, = 200°C  (Table A-6)
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FIGURE 4-14

For a closed system undergoing a
quasi-equilibrium, P = constant
process, AU + W, = AH.
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EXAMPLE 4-6 Unrestrained Expansion of Water

A rigid tank is divided into two equal parts by a partition. Initially, one side of
the tank contains 5 kg of water at 200 kPa and 25°C, and the other side is
evacuated. The partition is then removed, and the water expands into the entire
tank. The water is allowed to exchange heat with its surroundings until the tem-
perature in the tank returns to the initial value of 25°C. Determine (a) the vol-
ume of the tank, (b) the final pressure, and (c) the heat transfer for this process.

Solution One half of a rigid tank is filled with liquid water while the other
side is evacuated. The partition between the two parts is removed and
water is allowed to expand and fill the entire tank while the temperature is
maintained constant. The volume of tank, the final pressure, and the heat
transfer are to be to determined.
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System boundary

/

Evacuated
space

P Partition

m = 5kg

|
|
|
|
|
| H,0
|
|
|
|
|
|

T, =25 °C

P1 =200 kPa ¢|

Qin

FIGURE 4-15

Schematic and P-v diagram for Example 4—6.

P, kPa 1

200

3.17

\J

<
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Assumptions 1 The system is stationary and thus the kinetic and potential
energy changes are zero, AKE = APE = 0 and AE = AU. 2 The direction of
heat transfer is to the system (heat gain, Q). A negative result for Q, indi-
cates the assumed direction is wrong and thus it is a heat loss. 3 The vol-
ume of the rigid tank is constant, and thus there is no energy transfer as
boundary work. 4 The water temperature remains constant during the
process. 5 There is no electrical, shaft, or any other kind of work involved.
Analysis We take the contents of the tank, including the evacuated space, as
the system (Fig. 4-15). This is a closed system since no mass crosses the
system boundary during the process. We observe that the water fills the entire
tank when the partition is removed (possibly as a liquid—vapor mixture).

(a) Initially the water in the tank exists as a compressed liquid since its pres-
sure (200 kPa) is greater than the saturation pressure at 25°C (3.1698 kPa).
Approximating the compressed liquid as a saturated liquid at the given tem-
perature, we find

V| = Vg a5ec = 0.001003 m’/kg = 0.001 m*/kg (Table A—4)
Then the initial volume of the water is
V, = mv; = (5kg)(0.001 m’/kg) = 0.005 m*
The total volume of the tank is twice this amount:
Viank = (2)(0.005 m*) = 0.01 m*
(b) At the final state, the specific volume of the water is

y _ﬁ_O.Olm3
m Skg

which is twice the initial value of the specific volume. This result is expected
since the volume doubles while the amount of mass remains constant.

At25°C: v, = 0.001003m’°/kg and v, =43.340m’/kg (Table A-4)

= 0.002 m*/kg

Since v; < v, < vy,, the water is a saturated liquid—vapor mixture at the final
state, and thus the pressure is the saturation pressure at 25°C:

P, = Py assc = 3.1698kPa  (Table A—4)
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(c) Under stated assumptions and observations, the energy balance on the
system can be expressed as

Ein - Eout = AEsystem
—— S
Net energy transfer Change in internal, kinetic,
by heat, work, and mass potential, etc., energies

On =AU =m(u, — u)

Notice that even though the water is expanding during this process, the sys-
tem chosen involves fixed boundaries only (the dashed lines) and therefore
the moving boundary work is zero (Fig. 4-16). Then W = 0O since the system
does not involve any other forms of work. (Can you reach the same conclu-
sion by choosing the water as our system?) Initially,

U = U osoc = 104.83 kI/kg
The quality at the final state is determined from the specific volume
information:
V, = _ 0.002 — 0.001
Vs 43.34 — 0.001

g

=23X107°

Xy =

Then
Uy = up + XUy,
= 104.83 kJ/kg + (2.3 X 107°)(2304.3 kJ/kg)
= 104.88 kJ/kg
Substituting yields
Oin = (5kg)[(104.88 — 104.83) kJkg] = 0.25 k]

Discussion The positive sign indicates that the assumed direction is correct,
and heat is transferred to the water.



Heat

FIGURE 4-16

Expansion against a vacuum involves
no work and thus no energy transfer.

1 kg 1 kg
IRON WATER
20 =360 20 5=30:C
) ) .
45Kk] 41.8kJ
FIGURE 4-17

It takes different amounts of energy to
raise the temperature of different
substances by the same amount.

m=1kg
AT =@

Specific heat = 5 kJ/kg -°C
P

5kJ

FIGURE 4-18

Specific heat is the energy required to
raise the temperature of a unit mass of
a substance by one degree in a
specified way.
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4-3 SPECIFIC HEATS

« We know from experience that it takes different amounts of energy to raise the
temperature of identical masses of different substances by one degree.

* For example, we need about 4.5 kd of energy to raise the temperature of 1 kg
of iron from 20 to 30°C, whereas it takes about 9 times this energy (41.8 kJ to
be exact) to raise the temperature of 1 kg of liquid water by the same amount
(Fig. 4—17).

« Therefore, it is desirable to have a property that will enable us to compare the
energy storage capabilities of various substances. This property is the specific
heat.

* The specific heat is defined as the energy required to raise the temperature of
a unit mass of a substance by one degree (Fig. 4—18). In general, this energy
depends on how the process is executed.

* In thermodynamics, we are interested in two kinds of specific heats: specific
heat at constant volume cv and specific heat at constant pressure cp.
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Physically, the specific heat at constant
volume cv can be viewed as the energy
required to raise the temperature of the unit

mass of a substance by one degree as the
volume is maintained constant.

The energy required to do the same as the
pressure is maintained constant is the
specific heat at constant pressure cp. This
is illustrated in Fig. 4-19.

The specific heat at constant pressure cp is
always greater than cv because at constant
pressure the system is allowed to expand
and the energy for this expansion work
must also be supplied to the system.

2)

(D)

/ = constant
m=1kg
AT = 1°C

cy=312

kg-°C

3.12kJ

FIGURE 4-19

P = constant
m=1kg
AT= 1°C

cp=5.19

kJ
kg-°C

5.19kJ

Constant-volume and constant-
pressure specific heats ¢, and ¢,
(values given are for helium gas).
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Now we attempt to express the specific heats in terms of other thermody-
namic properties. First, consider a fixed mass in a stationary closed system
undergoing a constant-volume process (and thus no expansion or compression
work is involved). The conservation of energy principle e,, — e, = Ae
for this process can be expressed in the differential form as

system

oe;,, — 0ey, = du

The left-hand side of this equation represents the net amount of energy
transferred to the system. From the definition of ¢, this energy must be
equal to ¢, dT, where dT is the differential change in temperature. Thus,

c,dT = du at constant volume

(a“) (4-19)
c, = | — _
oT ),

Similarly, an expression for the specific heat at constant pressure ¢, can be
obtained by considering a constant-pressure expansion Or compression

process. It yields
() -
@ = \or), i

or
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Note that cv and cp are expressed in terms of other properties; thus, they
must be properties themselves. Like any other property, the specific heats of a
substance depend on the state that, in general, is specified by two
independent, intensive properties.

That is, the energy required to raise the temperature of a substance by one
degree is different at different temperatures and pressures (Fig. 4—21). But
this difference is usually not very large

A few observations can be made from Eqgs. 4-19 and 4-20. First, these
equations are property relations and as such are independent of the type of
processes.

They are valid for any substance undergoing any process. The only relevance
cv has to a constant-volume process is that cv happens to be the energy
transferred to a system during a constant-volume process per unit mass per
unit degree rise in temperature.
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AIR AIR
m=1kg m=1kg
300 > 301 K 1000 = 1001 K
- )
0.718 kJ 0.855kJ
FIGURE 4-21

The specific heat of a substance
changes with temperature.
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This is how the values of cv are determined. This is also how the name
specific heat at constant volume originated. Likewise, the energy transferred
to a system per unit mass per unit temperature rise during a constant-
pressure process happens to be equal to cp.

This is how the values of ¢p can be determined and also explains the origin of
the name specific heat at constant pressure.

Another observation that can be made from Eqgs. 4-19 and 4-20 is that cv is
related to the changes in internal energy and cp to the changes in enthalpy.

In fact, it would be more proper to define cv as the change in the internal
energy of a substance per unit change in temperature at constant volume.
Likewise, cp can be defined as the change in the enthalpy of a substance per
unit change in temperature at constant pressure.

In other words, cv is a measure of the variation of internal energy of a

substance with temperature, and cp is a measure of the variation of enthalpy
of a substance with temperature.
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Both the internal energy and enthalpy of a substance can be changed by the
transfer of energy in any form, with heat being only one of them.

Therefore, the term specific energy is probably more appropriate than the
term specific heat, which implies that energy is transferred (and stored) in the
form of heat.

A common unit for specific heats is kd/kg - °C or kd/kg - K. Notice that these
two units are identical since AT(°C) = AT(K), and 1°C change in temperature
IS equivalent to a change of 1 K.

The specific heats are some- times given on a molar basis. They are then
denoted by c—v and ¢—p and have the unit kd’kmol - °C or kd/kmol - K.
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3
_(ou
v ‘(aT)V

= the change in internal energy
with temperature at
'y constant volume

®
3 4
. (o
7 \oT .
= the change in enthalpy with
temperature at constant
& pressure
FIGURE 4-20

Formal definitions of ¢, and c,.
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4-4 INTERNAL ENERGY, ENTHALPY, AND SPECIFIC
HEATS OF IDEAL GASES

« We defined an ideal gas as a gas whose temperature, pressure, and specific
vnliime are ralated hv
Pv =RT
It has been demonstrated mathematically (Chap. 12) and experimentally
(Joule, 1843) that for an ideal gas the internal energy is a function of the
temperature only. That is,

= u(T) (4-21)

* In his classical experiment, Joule submerged two tanks connected with a
pipe and a valve in a water bath, as shown in Fig. 4-22.

 Initially, one tank contained air at a high pressure and the other tank was
evacuated. When thermal equilibrium was attained, he opened the valve to
let air pass from one tank to the other until the pressures equalized. Joule
observed no change in the temperature of the water bath and assumed that

no heat was transferred to or from the air.
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« Since there was also no work done, he concluded that the internal energy
of the air did not change even though the volume and the pressure

changed.

« Therefore, he reasoned, the internal energy is a function of temperature
only and not a function of pressure or specific volume. (Joule later showed
that for gases that deviate significantly from ideal-gas behavior, the internal
energy is not a function of temperature alone.)

« Using the definition of enthalpy and the equation of state of an ideal gas, we
have

h=u-+ Pv

} h=u+ RT
Pv = RT

Since R is constant and u = u(7), it follows that the enthalpy of an ideal gas
is also a function of temperature only:

= h(T) (4-22)
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Thermometer

AIR Evacuated
(high pressure)

FIGURE 4-22

Schematic of the experimental
apparatus used by Joule.
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Since u and h depend only on temperature for an ideal gas, the specific
heats ¢, and ¢, also depend, at most, on temperature only. Therefore, at a
given temperature, u, h, c,, and ¢, of an ideal gas have fixed values regard-
less of the specific volume or pressure (Fig. 4-23). Thus, for ideal gases,
the partial derivatives in Eqs. 4-19 and 4-20 can be replaced by ordinary
derivatives. Then the differential changes in the internal energy and enthalpy
of an ideal gas can be expressed as

du = ¢,(T) dT (4-23)

and

dh = c,(T) dT (4-24) FIGURE 4-23
For ideal gases, u, h, ¢, and ¢, vary

The change in internal energy or enthalpy for an ideal gas during a process with temperature only.

from state 1 to state 2 is determined by integrating these equations:
2
Au=u, —u, = f ¢ (T) dTr (kJ/kg) (4-25)
1
and

2
Ah=hy,—h = f c,(T)dT  (kI/kg) (4-26)
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To carry out these integrations, we need to have relations for cv and cp as
functions of temperature.

At low pressures, all real gases approach ideal-gas behavior, and
therefore their specific heats depend on temperature only.

The specific heats of real gases at low pressures are called ideal-gas
specific heats, or zero-pressure specific heats, and are often denoted ¢,
and ¢,o.

Accurate analytical expressions for ideal-gas specific heats, based on
direct measurements or calculations from statistical behavior of molecules,
are available and are given as third-degree polynomials in the appendix

(Table A—2c) for several gases. A plot of Cy(7) data for some common
gases is given in Fig. 4-24.

The use of ideal-gas specific heat data is limited to low pressures, but
these data can also be used at moderately high pressures with reasonable
accuracy as long as the gas does not deviate from ideal-gas behavior
significantly.
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The integrations in Egs. 4 —25 and 4 —26 are straightforward but rather
time-consuming and thus impractical. To avoid these Ilaborious
calculations, u and h data for a number of gases have been tabulated over
small temperature intervals.

These tables are obtained by choosing an arbitrary reference point and
performing the integrations in Eqgs. 4-25 and 4-26 by treating state 1 as
the reference state.

In the ideal-gas tables given in the appendix, zero kelvin is chosen as the
reference state, and both the enthalpy and the internal energy are
assigned zero values at that state (Fig. 4-25).

The choice of the reference state has no effect on Ou or Oh calculations.
The u and h data are given in kd/kg for air (Table A—17) and usually in
kd/kmol for other gases.

The unit kd/kmol is very convenient in the thermodynamic analysis of
chemical reactions.
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Some observations can be
made from Fig. 4-24. First, the
specific heats of gases with
complex molecules (molecules
with two or more atoms) are
higher and increase with
temperature.

Also, the variation of specific
heat with temperature is
smooth and may be
approximated as linear over
small temperature intervals (a
few hundred degrees or less).

Ar, He, Ne, Kr, Xe, Rn

20

T

| | |
1000 2000 3000
Temperature, K

FIGURE 4-24

Ideal-gas constant-pressure specific
heats for some gases (see Table A—2c
for ¢, equations).
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Therefore, the specific heat functions in Egs. 4-25 and 4—-26 can be replaced by
the constant average specific heat values. Then the integrations in these
equations can be per- formed, yielding

U, — Uy = Cv,avg(TZ - Tl) (kJ/kg) (4-27)
and
hy — hy = ¢po(T, — T) (kJ/kg) (4-28)
@
C AIR

T,K  uklkeg  h, kl/kg
0 0 0

300 214.07 300.19
o 310 221.25 310.24

W

FIGURE 4-25

In the preparation of ideal-gas tables,
0 K is chosen as the reference
temperature. 57



The specific heat values for some common gases are listed as a function of
temperature in Table A-2b. The average specific heats c,.,4 and ¢, a4 are
evaluated from this table at the average temperature (71 + T2)/2, as shown
in Fig. 4—26.

If the final temperature T2 is not known, the specific heats may be evaluated
at T1 or at the anticipated average temperature. Then T2 can be determined
by using these specific heat values. The value of T2 can be refined, if
necessary, by evaluating the specific heats at the new average temperature.

Another way of determining the average specific heats is to evaluate them at
11 and T2 and then take their average. Usually both methods give reason-
ably good results, and one is not necessarily better than the other.

Another observation that can be made from Fig. 4-24 is that the ideal-gas
specific heats of monatomic gases such as argon, neon, and helium remain
constant over the entire temperature range. Thus, Au and Ah of monatomic

gases can easily be evaluated from Eqgs. 4—27 and 4-28.
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* Note that the Au and Ah relations given previously are not restricted to any
kind of process. They are valid for all processes. The presence of the
constant-volume specific heat ¢, in an equation should not lead one to
believe that this equation is valid for a constant-volume process only.

« On the contrary, the relation Au = ¢4 AT is valid for any ideal gas
undergoing any process (Fig. 4-27). A similar argument can be given for cp
and Ah.

« To summarize, there are three ways to determine the internal energy and
enthalpy changes of ideal gases (Fig. 4-28):

—h

. By using the tabulated u and h data. This is the easiest and most accu- rate
way when tables are readily available.

2. By using the cv or cp relations as a function of temperature and per- forming
the integrations. This is very inconvenient for hand calculations but quite
desirable for computerized calculations. The results obtained are very accurate.

3. By using average specific heats. This is very simple and certainly very
convenient when property tables are not available. The results obtained are

reasonably accurate if the temperature interval is not very large. 5



Approximation

Cpavg

1 avg

FIGURE 4-26

For small temperature intervals, the
specific heats may be assumed to vary
linearly with temperature.
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Specific Heat Relations of Ideal Gases

A special relationship between cp and ¢V for ideal gases can be obtained by differentiating

the relation 7 = u + RT, which yields
dh=du+ RdT

Replacing dh by ¢, dT and du by c, dT and dividing the resulting expression
by dT, we obtain

c,=c,+R (kJ/kg-K) (4-29)

This is an important relationship for ideal gases since it enables us to deter-
mine ¢, from a knowledge of ¢, and the gas constant R.

When the specific heats are given on a molar basis, R in the above equa-
tion should be replaced by the universal gas constant R, (Fig. 4-29).

¢,=¢,+R,  (kJ/kmol-K) (4-30)

At this point, we introduce another ideal-gas property called the specific
heat ratio k, defined as

k=" (4-31)

The specific ratio also varies with temperature, but this variation is very
mild. For monatomic gases, its value is essentially constant at 1.667. Many
diatomic gases, including air, have a specific heat ratio of about 1.4 at room
temperature.

AIR
V = constant AIR

T, = 20°C P = constant

0, | T,- 30°C T, = 20°C

T, = 30°C

Au=c,AT Au=c,AT
=7.18 kJ/kg =7.18 kl/kg
FIGURE 4-27

The relation Au = ¢, AT is valid for
any kind of process, constant-volume
or not.

N /1
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Au=u,—u, (table)

2
Au =J cy, (Tdk
1

Aus=sc AT

v,avg

FIGURE 4-28
Three ways of calculating Au.
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EXAMPLE 4-7 Evaluation of the Au of an Ideal Gas

Air at 300 K and 200 kPa is heated at constant pressure to 600 K. Determine
the change in internal energy of air per unit mass, using (a) data from the air
table (Table A-17), (b) the functional form of the specific heat (Table A-2¢),
and (c) the average specific heat value (Table A-2b).

Solution The internal energy change of air is to be determined in three differ-
ent ways.

Assumptions At specified conditions, air can be considered to be an ideal
gas since it is at a high temperature and low pressure relative to its critical-
point values.

Analysis The internal energy change Au of ideal gases depends on the ini-
tial and final temperatures only, and not on the type of process. Thus, the
following solution is valid for any kind of process.

(a) One way of determining the change in internal energy of air is to read the
u values at 7; and T, from Table A-17 and take the difference:

U = Ueipok = 214.07 kJ/kg
U, = Uagepok = 434.78 kI /kg
Thus,
Au=u, — u; = (434.78 — 214.07) kI/kg = 220.71 kJ /kg

(b) The c,(T) of air is given in Table A-2c in the form of a third-degree poly-
nomial expressed as

e (1) =ta EhIEcR YT



AIR at 300 K

c,=0.718 kl/kg - K

R=0.287 kl/kg - K } ¢p = LOOS RIS

or

¢, =20.80 kJ/kmol - K } -

=29.114 kJ/kmol -
R, =8314K)kmol -K | 2T SR

FIGURE 4-29

The ¢, of an ideal gas can be
determined from a knowledge of
c,and R.

where a=28.11, b=0.1967 X 1072, ¢ = 0.4802 X 1075, and
d=—1.966 X 1072, From Eq. 4-30,

c@)=¢,~ R, - (a-R,) LbT t Tt dr
From Eq. 4-25,

/) T,
Aﬁ=J (T dT=J [(@a = R,) + bT + cT*+ dT3] dT
1 T

Performing the integration and substituting the values, we obtain
Au = 6447 kJ/kmol

The change in the internal energy on a unit-mass basis is determined by
dividing this value by the molar mass of air (Table A-1):

_ A 6447 kJ/kmol
M 2897 kg/kmol

which differs from the tabulated value by 0.8 percent.

Au

= 222.5kJ/kg

(¢) The average value of the constant-volume specific heat c, ,,, is determined
from Table A-2b at the average temperature of (T; + T,)/2 = 450 K to be

Cuavg = Cveasox = 0.733 kJ/kg-K
Thus,
Au = ¢, (T, — T)) = (0.733 kJ/kg - K)[ (600 — 300)K]
= 220 kJ/kg

Discussion  This answer differs from the tabulated value (220.71 kJ/kg) by
only 0.4 percent. This close agreement is not surprising since the assump-
tion that c, varies linearly with temperature is a reasonable one at tempera-
ture intervals of only a few hundred degrees. If we had used the c, value at
T, = 300 K instead of at T, the result would be 215.4 kJ/kg, which is in
error by about 2 percent. Errors of this magnitude are acceptable for most
engineering purposes.



EXAMPLE 4-8 Heating of a Gas in a Tank by Stirring

An insulated rigid tank initially contains 1.5 Ibm of helium at 80°F and
50 psia. A paddle wheel with a power rating of 0.02 hp is operated within
the tank for 30 min. Determine (a) the final temperature and (b) the final
pressure of the helium gas.

Solution Helium gas in an insulated rigid tank is stirred by a paddle wheel.
The final temperature and pressure of helium are to be determined.
Assumptions 1 Helium is an ideal gas since it is at a very high temperature
relative to its critical-point value of —451°F. 2 Constant specific heats can be
used for helium. 3 The system is stationary and thus the kinetic and potential
energy changes are zero, AKE = APE = 0 and AE = AU. 4 The volume of
the tank is constant, and thus there is no boundary work. 5 The system is adi-
abatic and thus there is no heat transfer.
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Analysis We take the contents of the tank as the system (Fig. 4-30). This is
a closed system since no mass crosses the system boundary during the
process. We observe that there is shaft work done on the system.

(a) The amount of paddle-wheel work done on the system is

2545 Btu/h

Wy, = W, At = (0.02 hp) (0.5 h)( ™

) = 25.45 Btu

Under the stated assumptions and observations, the energy balance on the
system can be expressed as

En > B = AE system
Net energy transfer Change in internal, kinetic,
by heat, work, and mass potential, etc., energies

Wain = AU = m(u, — uy) = mcv,avg(TZ —T))

As we pointed out earlier, the ideal-gas specific heats of monatomic gases
(helium being one of them) are constant. The c, value of helium is deter-
mined from Table A-2Ea to be ¢, = 0.753 Btu/lbm - °F. Substituting this
and other known quantities into the above equation, we obtain

25.45Btu = (1.5 Ibm)(0.753 Btu/Ibm - °F) (T, — 80°F)

T, = 102.5°F
(b) The final pressure is determined from the ideal-gas relation
PV _ P,V,
T, T,

where V; and V, are identical and cancel out. Then the final pressure
becomes

50 psia _ P,
(80 + 460) R (102.5 + 460)R
P, = 52.1 psia

Discussion Note that the pressure in the ideal-gas relation is always the
absolute pressure.
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P, psia }
L ®2
He
m = 1.5 Ibm
T, = 80°F 1
P. =50 psia
1
A e N 'y
! = ; FIGURE 4-30
: . Schematic and P-V diagram for
V=V, v Example 4-8.
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EXAMPLE 4-9 Heating of a Gas by a Resistance Heater

A piston—cylinder device initially contains 0.5 m3 of nitrogen gas at 400 kPa
and 27°C. An electric heater within the device is turned on and is allowed to
pass a current of 2 A for 5 min from a 120-V source. Nitrogen expands at
constant pressure, and a heat loss of 2800 J occurs during the process.
Determine the final temperature of nitrogen.

Solution Nitrogen gas in a piston—cylinder device is heated by an electric
resistance heater. Nitrogen expands at constant pressure while some heat is
lost. The final temperature of nitrogen is to be determined.

Assumptions 1 Nitrogen is an ideal gas since it is at a high temperature and
low pressure relative to its critical-point values of —147°C, and 3.39 MPa.
2 The system is stationary and thus the kinetic and potential energy changes
are zero, AKE = APE = 0 and AE = AU. 3 The pressure remains constant
during the process and thus P, = P;. 4 Nitrogen has constant specific heats
at room temperature.
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Analysis We take the contents of the cylinder as the system (Fig. 4-31).
This is a closed system since no mass crosses the system boundary during
the process. We observe that a piston—cylinder device typically involves a
moving boundary and thus boundary work, W,. Also, heat is lost from the
system and electrical work W, is done on the system.

First, let us determine the electrical work done on the nitrogen:

kJ/s
= = X R =
W,=VIAt= (120V)(2A)(5 608)(1000VA) 72 kJ
The mass of nitrogen is determined from the ideal-gas relation:
P,V 400 kPa) (0.5 m’
m=—r= ( ) ) = 2.245kg

RT,  (0.297 kPa-m’/kg-K) (300 K)
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Under the stated assumptions and observations, the energy balance on the
system can be expressed as

Ey — Eo = AE system
Net energy transfer Change in internal, kinetic,
by heat, work, and mass potential, etc., energies

em Qout Wbout = AU
e,m Qout = AH = m(hZ hl) = mc (TZ _ Tl)

since AU + W, = AH for a closed system undergoing a quasi-equilibrium
expansion or compression process at constant pressure. From Table A-2a,

= 1.039 kJ/kg - K for nitrogen at room temperature. The only unknown
quantity in the previous equation is T,, and it is found to be

72kJ — 2.8 kJ = (2.245 kg)(1.039 kJ /kg - K) (T, — 27°C)
T, = 56.7°C

Discussion Note that we could also solve this problem by determining the
boundary work and the internal energy change rather than the enthalpy
change.
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P, kPa 4
____________ 400 l t 2
{ N, 'l 28007 ! T
2 A l P = const. ' : : t
—f— v,=05m3 | » : |
| |
P, =400 kP ! [
120v | 1 A | [
| T1 =27°C | | [
| | | |
- T | ' '
| | .
0.5 V, m?
FIGURE 4-31

Schematic and P-V diagram for Example 4-9.
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EXAMPLE 4-10 Heating of a Gas at Constant Pressure

A piston—cylinder device initially contains air at 150 kPa and 27°C. At this
state, the piston is resting on a pair of stops, as shown in Fig. 4-32, and the
enclosed volume is 400 L. The mass of the piston is such that a 350-kPa
pressure is required to move it. The air is now heated until its volume has
doubled. Determine (a) the final temperature, (b) the work done by the air,
and (c) the total heat transferred to the air.

Solution Air in a piston—cylinder device with a set of stops is heated until
its volume is doubled. The final temperature, work done, and the total heat
transfer are to be determined.

Assumptions 1 Air is an ideal gas since it is at a high temperature and low
pressure relative to its critical-point values. 2 The system is stationary and
thus the kinetic and potential energy changes are zero, AKE = APE = 0 and
AE = AU. 3 The volume remains constant until the piston starts moving,
and the pressure remains constant afterwards. 4 There are no electrical,
shaft, or other forms of work involved.

Analysis We take the contents of the cylinder as the system (Fig. 4-32).
This is a closed system since no mass crosses the system boundary during
the process. We observe that a piston-cylinder device typically involves a
moving boundary and thus boundary work, W,. Also, the boundary work is
done by the system, and heat is transferred to the system.

(a) The final temperature can be determined easily by using the ideal-gas
relation between states 1 and 3 in the following form:

PV, PV,  (150kPa)(V;) (350 kPa)(2V,)
T " 300K i
T, = 1400 K
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P kPa 4

V. m3

0.8
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(b) The work done could be determined by integration, but for this case
it is much easier to find it from the area under the process curve on a P-V
diagram, shown in Fig. 4-32:

A= (VL —-V)P,= (04 m3)(350 kPa) = 140 m’ - kPa
Therefore,
Wi; = 140 k]

The work is done by the system (to raise the piston and to push the atmo-
spheric air out of the way), and thus it is work output.

(c¢) Under the stated assumptions and observations, the energy balance on
the system between the initial and final states (process 1-3) can be
expressed as

En, —E out = AE system
[ ———" (S At
Net energy transfer Change in internal, kinetic,
by heat, work, and mass potential, etc., energies

Qin = Whou = AU = m(uz — uy)
The mass of the system can be determined from the ideal-gas relation:
_ PV, (150 kPa) (0.4 m?)
RT, (0.287 kPa-m’/kg - K) (300 K)
The internal energies are determined from the air table (Table A-17) to be
U = Ugipog = 214.07 kJ/kg
Uy = U@ a00x = 1113.52 kJ/kg

= 0.697 kg

Thus,
Qi — 140kJ = (0.697 kg)[(1113.52 — 214.07) kJ/kg]
Qin = 767 K]
Discussion The positive sign verifies that heat is transferred to the system.
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4-5 NTERNAL ENERGY, ENTHALPY, AND SPECIFIC
HEATS OF SOLIDS AND LIQUIDS

A substance whose specific volume (or density) is constant is called an
incompressible substance.

The specific volumes of solids and liquids essentially remain constant
during a process (Fig. 4-33). Therefore, liquids and solids can be
approximated as incompressible substances without sacrificing much in
accuracy. The constant-volume assumption should be taken to imply that
the energy associated with the volume change is negligible compared with
other forms of energy.

Otherwise, this assumption would be ridiculous for studying the thermal
stresses in solids (caused by volume change with temperature) or analyzing
liquid-in-glass thermometers.
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It can be mathematically shown that (see Chap. 12) the constant-volume
and constant-pressure specific heats are identical for incompressible sub-

stances (Fig. 4-34).

Therefore, for solids and liquids, the subscripts on ¢p and cv can be
dropped, and both specific heats can be represented by a single symbol c.
That is,

cp = cv =c (4-32)
This result could also be deduced from the physical definitions of constant-

volume and constant-pressure specific heats. Specific heat values for
several common liquids and solids are given in Table A-3.
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FIGURE 4-33

The specific volumes of
incompressible substances remain
constant during a process.

FIGURE 4-34

The c, and ¢, values of incompressible
substances are identical and are
denoted by c.

77



Internal Energy Changes

Like those of ideal gases, the specific heats of incompressible substances
depend on temperature only. Thus, the partial differentials in the defining
equation of ¢, can be replaced by ordinary differentials, which yield

du = c, dT = c¢(T)dT (4-33)

The change in internal energy between states 1 and 2 is then obtained by
integration:

2
Au=u, —u, = J c(T)dT (kJ/kg) (4-34)
1

The variation of specific heat ¢ with temperature should be known before
this integration can be carried out. For small temperature intervals, a ¢ value
at the average temperature can be used and treated as a constant, yielding

Au = ¢, (T, — T) (kJ/kg) (4-35)
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Enthalpy Changes

Using the definition of enthalpy 2 = u + Pv and noting that v = constant,
the differential form of the enthalpy change of incompressible substances can

be determined by differentiation to be 0
dh=du + vdP + Pdv =du + vdP (4-36)
Integrating,
Ah = Au + VAP = ¢,,, AT + v AP (kJ/kg) (4-37)

avg

For solids, the term v AP is insignificant and thus Ak = Au = ¢, AT. For
liquids, two special cases are commonly encountered:

1. Constant-pressure processes, as in heaters (AP = 0): Ah = Au = ¢, AT
2. Constant-temperature processes, as in pumps (AT = 0): Ah = v AP
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For a process between states 1 and 2, the last relation can be expressed as
h, — h, = WP, — P,). By taking state 2 to be the compressed liquid state at
a given T and P and state 1 to be the saturated liquid state at the same tem-
perature, the enthalpy of the compressed liquid can be expressed as

hepr = hror + Vso (P — Pyar) (4-38)

as discussed in Chap. 3. This is an improvement over the assumption that
the enthalpy of the compressed liquid could be taken as 4, at the given tem-
perature (that is, hg pr = h; @ 7). However, the contribution of the last term is
often very small, and is neglected. (Note that at high temperature and pres-
sures, Eq. 4-38 may overcorrect the enthalpy and result in a larger error
than the approximation & = h; g 1.)
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EXAMPLE 4-11 Enthalpy of Compressed Liquid

Determine the enthalpy of liquid water at 100°C and 15 MPa (a) by using
compressed liquid tables, (b) by approximating it as a saturated liquid, and
(c) by using the correction given by Eq. 4-38.

Solution The enthalpy of liquid water is to be determined exactly and
approximately.

Analysis At 100°C, the saturation pressure of water is 101.42 kPa, and
since P > P, the water exists as a compressed liquid at the specified state.

(a) From compressed liquid tables, we read
P = 15 MPa
T = 100°C

This is the exact value.

} h=43039kJ/kg  (Table A7)

(b) Approximating the compressed liquid as a saturated liquid at 100°C, as
iIs commonly done, we obtain

h = kg 100oc = 419.17 kJ/kg
This value is in error by about 2.6 percent.
(c) From Eq. 4-38,

horr = hor + Viar(P — Pyar)
— (419.17 KJ/kg) + (0.001 m’ kg)[(15,000 — 101.42) kPa](iJ
1 kPa-m
— 434.07 kJ/ke

Discussion Note that the correction term reduced the error from 2.6 to
about 1 percent in this case. However, this improvement in accuracy is often
not worth the extra effort involved.
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EXAMPLE 4-12 Cooling of an Iron Block by Water

A 50-kg iron block at 80°C is dropped into an insulated tank that contains
0.5 m3 of liquid water at 25°C. Determine the temperature when thermal
equilibrium is reached.

Solution An iron block is dropped into water in an insulated tank. The final
temperature when thermal equilibrium is reached is to be determined.
Assumptions 1 Both water and the iron block are incompressible sub-
stances. 2 Constant specific heats at room temperature can be used for
water and the iron. 3 The system is stationary and thus the kinetic and
potential energy changes are zero, AKE = APE = 0 and AE = AU.
4 There are no electrical, shaft, or other forms of work involved. 5 The sys-
tem is well-insulated and thus there is no heat transfer.

Analysis We take the entire contents of the tank as the system (Fig. 4-35).
This is a closed system since no mass crosses the system boundary during
the process. We observe that the volume of a rigid tank is constant, and
thus there is no boundary work. The energy balance on the system can be
expressed as

o P = AE system
—_— —_—
Net energy transfer Change in internal, kinetic,
by heat, work, and mass potential, etc., energies
0= AU

WATER
258

0.5m?

FIGURE 4-35
Schematic for Example 4-12.
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The total internal energy U is an extensive property, and therefore it can be
expressed as the sum of the internal energies of the parts of the system.
Then the total internal energy change of the system becomes

A(]sys = A(Jiron + A[Jwater =0
[mc(T2 - Tl)]iron + [mc(TZ o Tl)]water =0

The specific volume of liquid water at or about room temperature can be
taken to be 0.001 m3/kg. Then the mass of the water is
v 0.5 m’
= — = = 500 k

Mhwater = ™ 0,001 my/kg 2

The specific heats of iron and liquid water are determined from Table A-3 to
be ¢,,, = 0.45 ki/kg - °C and c, 1, = 4.18 kJ/kg - °C. Substituting these val-
ues into the energy equation, we obtain

(50kg)(0.45 kJ/kg - °C) (T, — 80°C) + (500 kg)(4.18 kJ/kg - °C)(T, — 25°C) =0
T, = 25.6°C

Therefore, when thermal equilibrium is established, both the water and iron

will be at 25.6°C.

Discussion The small rise in water temperature is due to its large mass and
large specific heat.
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EXAMPLE 4-13 Temperature Rise due to Slapping

If you ever slapped someone or got slapped yourself, you probably remember
the burning sensation. Imagine you had the unfortunate occasion of being
slapped by an angry person, which caused the temperature of the affected
area of your face to rise by 1.8°C (ouch!). Assuming the slapping hand has a
mass of 1.2 kg and about 0.150 kg of the tissue on the face and the hand
Is affected by the incident, estimate the velocity of the hand just before
Impact. Take the specific heat of the tissue to be 3.8 kJ/kg - °C.

Solution The face of a person is slapped. For the specified temperature
rise of the affected part, the impact velocity of the hand is to be determined.
Assumptions 1 The hand is brought to a complete stop after the impact.
2 The face takes the blow without significant movement. 3 No heat is trans-
ferred from the affected area to the surroundings, and thus the process is
adiabatic. 4 No work is done on or by the system. 5 The potential energy
change is zero, APE = 0 and AE = AU + AKE.
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Analysis We analyze this incident in a professional manner without involving
any emotions. First, we identify the system, draw a sketch of it, and state
our observations about the specifics of the problem. We take the hand and
the affected portion of the face as the system (Fig. 4-36). This is a closed
system since it involves a fixed amount of mass (no mass transfer). We
observe that the kinetic energy of the hand decreases during the process, as
evidenced by a decrease in velocity from initial value to zero, while the inter-
nal energy of the affected area increases, as evidenced by an increase in the
temperature. There seems to be no significant energy transfer between the sys-
tem and its surroundings during this process.

85



Under the stated assumptions and observations, the energy balance on the
system can be expressed as

i — 1 = AE system
Net energy transfer Change in internal, kinetic,
by heat, work, and mass potential, etc., energies

v

0= Al]affectcd tissue + AI<Ehand
0 = (mCAT)affectedtissue + [m(o o Vz)/z]hand

That is, the decrease in the kinetic energy of the hand must be equal to the
increase in the internal energy of the affected area. Solving for the velocity
and substituting the given quantities, the impact velocity of the hand is
determined to be

_ \/ 2 (mCA T) affected tissue
Vhand —

mhand

- \/2(0.15 kg) (3.8 kJ/kg - °C)(1.8°C) ( 1000 mz/s2)
- 1.2 kg 1 kJ/kg

= 41.4 m/s (or 149 km/h)

Discussion Reconstruction of events such as this by making appropriate
assumptions are commonly used in forensic engineering.
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