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Preface

The MATLAB programs given in the book, answers to problems, and answers to
review questions can be found at the web site of the book:
http://www.prenhall.com/rao.

The programs and techniques presented in the book, solutions manual and the web
site are intended for use by students in learning the material. Although the material
has been tested, no warranty is implied as to their accuracy.

I would appreciate receiving any errors found in the book, solutions manual or the
web site of the book. The errors detected will be posted at the web site of the book.

Singiresu S. Rao

srao(@miami.edu




Chapter 1

Fundamentals of Vibration
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From Fig.(), x= %+ Ll (%= X0

z‘f‘ﬂﬂ-
= Lo x, + o Ay ()
Q,'f‘f?. £;+‘(2
Vertical force QD.;,L(I'erum feom Frg.(b) -
F= F+ F, (25
Moment &2ui[flnr:'u.m akout c’ (Fig.bdd :
Fg 22 = F, /Q| (3>
So[u.‘:fdn o;. EgS’- (2) Q;n;l (3): f
Fi = Flz F., = -——-——-—'—'F 1 (4)
g.l-f' 29_ ’ < Rl'f' R2
D.‘SP\Memenfs of springs k, amd %, are given Ly
o= B _Eh L L
* 3 (El-" Qz) £ ka2 'kz(ﬂrf'fZ)
Df5[=l0—¢€m8n‘|' of force F can be founci using Ezs-cs)
in Eg.(1):
1, 'Fﬂz " 9\___ F
*= 140 0@+l Al ks (0442)
_ = (LZ K, +,Q72_ 1<2> (6)
Q’I+ QZ)Z *, K

The E&-U-VM Add‘uﬂﬁ conshant cfb the Xy/:.&‘»m 'n the
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direction of X ’ke , 48 §iven E_Lf Ef/- (6):
Q’-&"’ 22)2 ki ke
flz 'k|+ E: Kz

F _
'ke = —; (7)




Eguiva.lence of Pcr&enb‘a,[ energies gives
[ 2 4 O { z L 2 2
2 "t1 @ +% ¥ @ +3 1‘5,(9-1)+37:1“2(9£|> +3 kg(el;_) =-7|_-1<eaa

z 2
‘keﬁ: Keg + Kz + k A+ 'L +f<3,fz'

®

1‘!2.3: for series sPrings e, Ko a_y-._al k3 s
l VL, L

—

=L+ + . ks =
%iza €, © kz | kg 7 3 ke ko + Ky feg+ K3k

—

Using energy e,au_t'va..lehce s

3 2 A Z 2

¢ z b 3
- 'ke@= Ky + Kizz + R kg + R kg
k| Ky K3

= f / o *®
4+\klkz+kz1<3+4c3k,) + R(ks + Kg)
For sfmplﬂ Supporfed beam, l I-%Tn _L
for ,Loo.d at Tnl'C’\C“E) / Y / x
s 7, =4 = A
48 ET  48(z06xw0 )(10") 6
K, = £3 = g —m——— 2 —=--
= |2-36 <10 Nfm where I= ]J{(‘i) (0")3 = !5-4 Tn4.
- . _ ™ _ 5 F-51 =7
8, = original deflection = .‘(3; = -I%-%Gi;c-’:,—- = 396-8447 xlo ™
When SPrin3 & IS added, ke‘f} = %+ K4
o) New deflection = & _ %1, 4 = GWE _
( ) 52 1‘6& 4 E& 81 4' 'kl
- = k+ kl
4 = 3% = 37.08 %0 N/m
b deSlection = ™7
(k) New aefieetion T=§L e, = 270 - 2k
Y - 7 5,
S ok= Kk oz 1236 xfo_’ N/m = ket Kk
) New Ae;lec{:{c}n = ——-—-mg- = j_ ol 4 - 4—‘7\12 _ 4
keg " & ' TG 38, T 3 ki
‘1<=";' R, = 4.12 - N/ = K+ %,
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th .ﬂengﬂ. L, YOUn3’S modulus £ and
I$ 9iven Bj

For a bar wi
cyoss - section A, The axial sk:‘f{ness(k)
_ AE (1
L
d ciceular with diameter d,
(2>

whewn cross —section is sol

ovrea = A= Td%
when cross —section is sguare with s'de d,
oxea = Ap = 4 (39
when cross ~section (s hollow ecreular with mean dios. d and
wall thickness t zo-ld >
ovea = Trdt =Td(e1d)= o T 4> (4
For Staedgcu'ed Va-!-ue 0’6— k= %, cross - sectidon orea
reguired is: A = fEi'— = ¢ (constant)d 5D
weig‘ht of bar :
with solid cireulay section: ) y o
w,:7j4___é_2|___—_- c L with a\'—“'—‘— O
with  hollow ceeular seetion:
W§= o-l']TolaLz*o-:‘lT(—ﬂ_’Ti)L = o4 Ccl 7>
with sgpuere section: = ok Wi
PL o= &S L =2 ows p2772Wr (8)
T T
u-(Q—V CroSS~ section

Wﬂ.=
! ';-l-.e shaft with the hollow cire
corre.slao'nc\s B minimum weight .




@ Stiffness of o cantilever beam under o ben&:',.,_ﬁ

fovce ok [z €md : 4 = 3___——;31 )
For o Apectfed velue of k= %,
— 03
i ?_‘:__E-. &= L o c_ond-'a-“t (2')
3E
For o solid circular section with dia meter 4,
B L L T S
Eh T
weight of beam= W, = E_é’-ﬂ 2 ’_g shC
4 4 N7
= 3.5449 VT C4)

For & Lollow cireuvlar section with meon dinmeter d

wnd woll thickness t=o1d, weight of beam (W, is:
Wy = 3—;;_ (ds' =ds’ ) L= zrz_g {('al-«-ﬂ’— (-}
= I‘% (44*:7r gt = wlG1d®D
:o-u*ﬁﬂ\}.%‘ﬁ _ pige dc (5D
For oo Agpane seclior with Ade A, weight of fhe

beaw (w3z) 44

wgz d20 = & -G—_::-_f _ 4.s5135 LJc” (6

By can-gaa-‘!v-n-ﬁ Eps (4,6 arih (6, the minimum wel'gh't
beam corresponds te the bollow ectredan cross- section,
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Spring dJerce is givenby  Fz goo x + 40 % >
' static epuilibnium of the rubber mounting (%) under

the WE-t'ai'\'!_ of the elo femic instrument is given Lj

3
F = 20060 = Bago 1*1-4-0 o %
3
a 406 2* + 00 x¥ _ 200 =0 (2D
The reots of the cubic &vu:.f:c'n (2 cam be ford From
MATLAB b
K= 02492, —ol246E 4 4TTT 4 @>

Thus the Atafze egu.i[rkn'um POSL"!:I'On og the rubbe mouh_{_‘.nj
is given by the reel roat of Ep- @)
x* = 02492 n (47

(a) Ezu“vd\e\«f linear Apring constant of vubber moun'f':'nj
ok ks stetic egui“brfum Fogi,’-‘-on , using Eg.(("f))f“

Keo = _EL_F = Scc.+ 26 x*z = 9 (o2 ?2)2
A 1= | =¥ = B0o + 1200 (024
= goT 4521 b/ (5>

(b 'Dgs-(er.h‘ow of yubber mouh“ﬂj c_orresr:cnclfnj fo
the e@u\rM Linean Apring constant is:
F

200
e e Bl T 6
i Kep 867 4521 T (6
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@ F(x)= 2002+ 50 :ic2—|-ac::c53 [1_)

wWhen the Spring anergoes o shao.aQﬂ deflection of
x* =¢S5 in c:\un‘nj t+he oFera:{’('on of ke €hg ine the
fovce exerted on the 5Iar[nj can be Qcounai od

£= 200(e8)+ 50 (o5) +1o (0-5)° = nz.-75 kb (2)
Ezu;\,aj_g_mi' Licnear Spring constant ot UM /5{_59.&,3
deflection is given by Eg.(|-7):

‘= s
200 + loo (0+5) + 30 (ca-fs)z
= 253.75 Ib/in

2

* ¥
% = 200 + 100 X% 4+ 30 x

x = X
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.() s ownwa.rz! T

dEf(ECtlo*rl
Gf POtI"l{' A, 2 _b_z
- 2. —(2)
X, = resulting
deformation l
of 4pring
Potentiol energy eguiv@Lence
ives 1 2. 4 z
E S rgx = pE
- Xg 2
ey = (T ‘ —
But x= ‘: 03' _ (L"'Zxﬁ)z e aa""‘(‘i')
b/ Zsy12 2
2_(by? -5 (- £} - q
=1. CL"'(—E) = Thz
<-(3)
z g
| ok _xh L b 1]
= 2 4 (af- e
=¥ 0 x
FEf-25% et -1
=@+ - b 2(d-Z-)
i

Using the relation (1 +6)"" = L+ 2, we obtain

Yo
O S Y

= Y 2 4k GLZ‘E)—kfr_E*_:_b_
kez_k x)_4 (lf"r — (

(b) Here x = %g (Apring Jefleah’on)

-keﬂ= «
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Let x= vertical
alusPla.,cemen{:
of ass M,
,8 = 'rESLLL{‘tnj
Jeforma—ffan of

eauck inclined

SPrl'r\'g .

From QEL&I'V@LEnce of ‘ocﬁan*:\a.[ energy,
2
*z“ez“”('”‘"ﬁ)ﬂ ez'“‘( )

From 9eorne.{"r‘j » (j X/S) /E o & —2lx s &

x—zx,ﬂc::so(-i-?-ﬂ*,s—-*f =0 _(Ei)
: — @l xs—x 2
Solving (E1), == Keos [1+ {1 - zzzmi } ] (£2)

Usin3 the rE‘.a:':fDﬂ ‘11-9 = o4- -e— (EZ) can be rewritten oas

x = L cos [‘l ; {1 = (?.:;:,sc;xq )}] (Ea)

ASS Uming X to be smeall,

we wse minus 9[3!‘! and nealecf Kj‘
comPared to 2 Xg n (Eg) This Sw‘eS'

p
2L = =

'keﬁ — 3% ws X

z
Tn o Aimilar wanner, Cg = 3cC cos .
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Ezuivoal.&mi- /‘5‘9!“1'&5 COﬂS&a..h'{: of the sas%em ( ’keg> ak
Foint A can be determined 59 cons[derc‘ns the woment
eguilibn‘um of fovces gleuwt the ngof Fo;nt o :

JEOERACHENC IS

- . Ie tio_ e kx _ 3
F= 3 3 2 T 2 g T
= ’kez'x
w B
‘kea -Zf— 'k
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F CSPrinj force an wass)
A

F = (k,+ %) (x—%0) + k‘r (gc—ol‘#)
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ko (sine 1)

Moment about the

Pt'Vof: point O :

T = moment

me _él S @ —(%l_;g Sc'ne)-é-

= (kgi.HHG) {

'mjﬂ E" 2

( z )
(1)

:Denoi:mj the ef/u.waﬂbwt f'orsuoncu‘ Sd’““j constant

W

R

of the system ot %Ki, the moment T can be

e&FreSSe,ol as
T= k. 6 (2 )

By ezua;h‘nj Eps- (1 and (2), we obtain

ﬂ 2
L ng - kglsﬂ - kzgz (#)
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When mercury is a(n's[:la_cesq by an amount x In one
@ 'ﬂ'e'j of fthe manemeter (Fi9. 1:77): the mercury
column will underges o total Al'sf’la—-ce_meni‘ of 2%.
The wma.rjvni!-ucle of the Force , due fo the we{sf-\{: of the
a\:‘SPla.c_eal -mercurj,a._.c,’cs on the vest of the Fleid
The res[:orinj force is given Ey

F= 2 I'A x
wheve 1" 48 the specific weight of wmercury omd A is

(1>

the c:\-c:oss-Sec’l:'x'f::n'w-zE are e o_{: the manometer tube.
I,fr 'ke_s clenai:es the Srn‘nﬂ c,o-ns{—a.“’t o_,%ocdai_ma‘
wzlf* the restOrfnj _-f-orce; the rES'l‘or:'nj :Forc_e Can
be exl;ressecl as

F - keg
Eaua...'}:t'ans (> amd (2) 51‘2[4 the EguIVG.(Eh‘{.' Apring

Cons‘{'a-h": Qb
=21A (2D

x (2)

/keg
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When the drum (s c\.‘s]pla.c,ecl Bj an amount = Fom its
static azuiifbn‘um position , the weight of the

S[u\‘a\ (sea wa..'l?er) dlSP‘O—C—QA (S jiven I’j

5 'iTo\z ® (1>
we 53 (50)

where ¢ is the density of sea water omd g is the
occelonalion due To gravity- The weight, W, given by
EZ-(J') olso denotes the restoring force F. By expressing
the restoring force o4

F = ’keg *
wheve ke, denstes the eguivalent Spring constant
ossociated with The vestoring Jorce: Eguai's'ns (1Y and

(29

2

(35

1-18



B kK, k3 rﬁ \"_ﬁ _;_r‘ f.? I

2" et % g @ —{]
W&L kg
‘k‘Lf = Af} f?’ t‘(’jfc!
bar
From kinetic energy # (miss[.:ss)
m (487 + (meem) (48 . 7

From Fa{:en‘ll:aai enerjy,

. 2 2 " 2
:?-Lk' (119> s _?i_— kz? (129) +—2" kf— 62-{- 'ZL 1<'4(f3 6) = ’aL‘keza

Jeﬁ=m!gr2+(mz+’”>f-:_; * -—‘kf +k23?2+1< +’<f

, i
+
L T + < _L
@ ?E > Q’//’__,, d
i it el + J’__
< g, — 1 l,c_____/@l:g___q
4. = EA _ met(d+?) % = TEDA
’ L2 X, 41
. 4 t(d+%)
k,= k, gives £, = =

1-19 .



)

direckion :

’k,: - A;EC
A

@) S’f@r.‘r\j consfant (stiffness) of Af'é.F < i the ax el

(1>

b
Cb) P

\\\\\‘1_-\\\\\
—

The reaction ak any polnt ,:Jm«j the S'[:e.‘bpﬁaf Shaft due
an axial fovce (F) a-zf;’a{‘e,_-ﬂ af point 4 will be same as F.
Hence the A&vr;njs(s*f:;ff neSSes) corr&?/:ahdl'nj tz the

three X"eps 12,23 avd 34 ave 1o be considered of sevies

Springs: Im view of Ep.(1), fhe

Coni {'a.ht

ef/..utva.ﬂzri A‘b r.'nﬁ

or

ke’?

3iven Lj Eﬁ. (J» 17 ) becormes

:_L-+J_+—L—:L_(_ﬁ_“+£}.+&>
kl k?— kg E Al Az A3
- (E‘A2A3+sz;A3+ £3A|A2>
E A|AQ_A3
E:Pf\Ag_F\;
key = (2)

7 LA Az + L2 AAs + I3 AA,

(¢) steps behave as series springs.
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- e \ using Egs. (1-10) and (1-16).
’ 2| VNN MOV 3 *
z k \AANMN—
. e AINAN——
2. % ——— 1Qi—a» F
J 5
I AN AAAAN WA—
4 k
/1 '3 o 5
N i I
| —WAMAMA— 5 SW ¢
keﬁp_ 953-214
L =L, 3> = &,
'kef,z kT K . &
kﬁg. = e
e AANNAN— ¢
(4 W
———www— Ky =2k
’kczz'.: '1'
i S A T A G 2 A AT
i 5 6
k= 5% Ko, = 2%
eﬁq 2 egi
J
\ | 1 2. {
4. => e m ot = B
%5 = l Y
kﬁgs f‘e?q k5§3
- {0
Kegy = 5 X
e WAAANNAN————— F

Eau ivelent Spring constants
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@ (CLJ) TOV‘SIO“DJ szrm.j constant oy st _F—fnegg O.F gl‘et;,,,_ 'e
= = B m o, s &= 12,9 (1)
Q‘. ap KLy
(b) The reactive torpue ok amy Pom.’r al_a-n.j The zféﬂpeal

ghaft due & am a-ﬂyﬂ.zﬁl fcflﬁ«r-e T ot fke freeend
will be T. Hence the torsional sfff:,fnes’ses(zpn‘nﬁx)

CorrESFonAt‘ng T ’H—Ie three rﬂ'e,los 2 423 ord 34

a.xe ‘fb be cor\‘sfalﬁr‘ESI ay ASfeyires Spra‘njs- In View

DE E?/ (1> the eaufvale\':t _{'orS’t'anai /Srr‘l'nﬁ Wa_’.—i‘

31‘\(8!1 b:j Eﬁ-(t’l?j becomes (Ef‘ (M—;) s fo be

l‘anerprc’reA fa-r tor‘gi‘Oﬂa/Q S(arian):
2 12 L3
322 f q)

l
— = — 4+ —/ °F
keZ Ky, Ke,  ®is TG \ P,
4 4 4 4 A
TG 4 o4 4
B D, Dy
or
4 4
_ TG D, Df D3
Yoy 4 4 ho A (2)
32((2]1); pf + 4, D, P; + f3 p/ D, )

S{‘e.r)s be have a2 Aeries /gFra‘ngs.

O
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14

F/ o dF -(x—xo)=<5eox+zx3> +(500+ze>-(9(-‘°)

x d-ﬁ Xg x=10 x=-le

~ {100 = — 4000

(b)af x= 9 mm: :
Exact Fy = sooxe+2 (9) = 5958 N

Approxfma.fe FQ:: {tog x99 — 4000 = 5900 N
Evror =-0-9735 /]

(C) X x= [l mm: 3
Exact F, = 500 xil+ 2 (1Y = gle2z N

Approximate F, = poo «i - 4000= gloo N
Evror =+ \':-75'96Z7

‘F'Vr = Ca*nsfa—ht --- (Ej.) 5 Dl'j-'feren{';;a'ffon of (E':[) gives
J# v +f"f- Uf-—i dv = o

dp = - _1;'1-; dv  -==(Ep)

cka,nje in volume when mass moves by g o= _Ad = (B
Eps- (E2) and (E3) give d = FT A 4
v Z
Force due to pressure change = dF = df.- A = u.cﬂ;
spring constant of air spring = k= dF =( Y‘Alg
_1’__’—19 .

d=
Eguiva,l.enf: spring constants in diffent directions ore
SIS SRR AT
k: K

-ke;:<__k‘_1<_"-__) , «e“(_s_é

k1 -+ 'kz 1(3 + "kq’
If the force P woves bj x, spring Aocated of 8, undergoes o
c\i‘SF‘[a—"—EmE—‘Wt of X, = XK cof a; (cgeriva.fl'on a,S in proHem 1:17).

4
Ezufvculehce of }vo'l:en{u'a,‘. enerqy gives % ‘fceZ x = + = Ke: xi

4 2 L=4
keg = Z (key s 01)

=1
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kax - =

Let the Aink OABC un&ergo o Xmali a.m-%wh-h

AI.&?J.O«CUM e ahb ;A'LOWn in above §t‘3ure: The

Spring recction Forces are olss indicoked in the figure.
Egu'\h'brfum of moements aboul fhe pivot point O gives:

—1‘12(’,'5') "‘k?'x(Q)" kzx(zé) <+ F(X)T—O

If keﬂ denstes the eazu-'vaizmi' r{fﬁv-r'.j CMM&
of the ,(_..ruc a..‘l.a'r\-ﬁ the direction og F aX Fo.‘n;{' €,
we {".O-ve
F = 'kez X (2>
E—'Zu.oﬁ_m (1) omd (2) 9ive
f 2
keg = _g_‘.+ 2‘; + g = 1;.--(— 23;(21:)-1—(3«)
key = 5 (3>

1-24



@ SpYing constant of o felical Apring is
4
k= _Gd (1)
g N D’
Assuming the Shear modulus of steel ax G=793GPa,

EE.(O 3t‘ves, for p=o0'2m, d=0.005 ™ and N = (0,
_ (793 x:os)(O’Of?E)q
g (16) (0-2)3

k = 77 4414 N/m

1-25



@ (a) D and d: same Jcor both helical SFn'ngS‘
Wefgh‘c of o {dei.‘caj Apring is:
W = Wb(zr'z,i ) N Y (1)
where y = specific weight of material of spring,
For o Afeel /i.}ar-‘n.g with ); = 7&€ % kN/ms, the
w€i5|ﬁ+ is (for Ng = 16) : i
2 2 32
W, = 7tp (Td* )N = Tp AT Y (765 xi6)
A (T) A Y/-S Z (0

= l‘?-fzs'xmq WQDJZ (2)
For aw olueminum APn‘nj with )’; = 9E+B 'kN/ma, +he
weight & (For num ber of turns N ).

W,, = TTD(E;%Z) No, )’; = 7D d” Nov (zésé xmg)

= 6-65*(03 T\"zDo\zNa, (35
Eg,uai:-nﬂ (2) amd (3), s . .,
19128 xio! WD d° = 6¢5x0 ™ D d° N,

‘1
or N, = H'IZS**'O; = 28:75%4 >
6'65x%1p

(b)Y Sprivg g_.onS“a_h'{' of o felicad Apring is .
4= G4Y/GND)
For o steel Apring with g = 7933 G Pa>
g = (793 K10 ) a\q/{ 8 (o) :Daf
= O-Sslzsxto? AQ/DB (5)
For ar aliminum APTring with G= 2¢.2 G P,

‘kw:(Qs-leoa)o\q/{ g (28:75%4) D?}
= o'{139 xlo? o‘q/;p? (5>
Egs-(%‘) and (6) indicelz thet the Bpring conshont of
steel /ifrn'na 8 0'39‘2%.”39 = ®.7046 times Kcuj&r
than that of aluminum Apring
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Fe #:x + 21(2(:(-0.;)
= dx+ 2k (x—a)
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From Problem 1-29, ¢ = f___):ﬁf with V= 14 for air

Let p = 200 psi v )
2 1 4) A% AT
k= 15 Wfin = ( °°)g LR B

Let diameter of Pl‘sfcn =

2 2
d=2inch ; A= %(2)=3'!416 n
3

Vo= Az/o-zms = 36'8408 in
Le\E 11‘.: ?_:'nc‘\ 4 _1_}—_32(2)_-—_ 9 = P = 4»34_29 .‘ncl'z

Fe—ax+bx® =2(10%x+4(10") %

Around x : F(%) ~F(x )+ %Fi; 1 iz —x)

When % = 1072 m, F(x’) = 2 (10%) (107%) + 4 (107) (107°) =240 N

dF | . —a+3bx=2(10% +3 (4) (107) (107*) = 32000

dx

Hence F(x) = 240 + 32000 (x - 0.01) = (
Since the linearized spring constant is given by F(x)

N/m.

32000 x - 80 ) N
=keq X, We have ke, = 32,000
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F;:oa;.x;-i- BL x? y b= 4,2

SPrings n Series:

W= oy 8 + L‘IS\B (1
W= @, 8+ by 8] (2)
N: #e& sz (3)
g$£: 8| + 82 (4’)

Solve Ezs‘-(i) a,'nc' (2) for S| e 8§25
resfsec{:t‘vefj, Substitute <the result
in ET/'(4) ond then in -Eg.(i) to
Find  *eg

SFrings n ParaLLeL:

3 3
= s Ssp + by Ssp + 0,8+ b, 8zt
= ‘keg Sst

2 2
'keaz @ F El 855 + Qg + Lg Sst

5

T4
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4
6 . D
= 2 >gxio N/m 3 T 26 5 Nz 10

bR
W= TTDNf (Tﬂg—) where p= weight per unit velame

fi= 2 [X5 -1 cd2g
1 IV zyamept Nt z o OF

Using  @= 73.1 xi10° N/m? » f = 76000 N/m® , 2= 931 m/sec”,

"D_ = G; 8,10 ; N= 10,15, 20 d =04,0-6,¢--, Va.Lu:‘.S UJ:

- =
% and f; arve r.cmf:ufe.c'.

d

Combination of 226, N=Io and d=20m, Lor‘respc‘ncfi'nj
to k= §-4¢cé x"og N/"" ~and 5‘12 o-4301 Hz ,6 can be

'ﬁ.‘iibe/r\ ad an o.x,ceia'tw“e gle‘;ign.

Total elongation (strain) is same in each material:

a=a=7 (1)
where x is the total elongation. Equation (1) can be expressed as
Ts gy x
E B _¢ -
E, x
or Oy = 7 (3)
B, x
g &= 7 (4)
Total axial foree is:
F=F,+F, =0, A; + 0. A, (5)

axial forces acting on steel and aluminum, respectively, and
sectional areas of the two materials. Equating F to ke X
nt spring constant of the bimetallic bar, we obtain from

where F, and F, denote the
A, and A, represent the cross-
where keq denotes the equivale

Egs. (3) to (3):
Eg x E, x
F=kmx={€}&+{€]%
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Let the fenj‘Hw of ftre K3
Sfar:‘nj be 4 - Sforinj (S h &
undeformed ok 6:=0: « i
wWhen tke end A of % — =
the spring is dis placed | ] WA
by an amount o af —L . G) Fa +—_-® B
Ahown in The gata ure 5 l————— 2% -—-——>-|

the ,gtorl‘nj is S‘{'rei'chee(
loy the awmount C\}’m — 4 > so that the force

in the SFrt‘nj (E) s given bj

F/g: k(gzhl-{—-‘acz —h) (>

The component of the Apring force Mz “"Q""'j’ tHe
Au‘r&ch’on aF ~®~ IS given bj

O S oY,
I & —

L5+ x

= K (i - 4 ) % (2>
Np2e

E@mﬁc‘" (2) shows that tke fovce - W
7—;&1.0-1.?57‘- (fh the =- c;lirg,cﬁcm) (s hon\{nea.r $ _T,Jr_
Lhe rvedoSion is linear, we comldl wirite

F,x — rls x (3>

A cg-rr\a?o_?'ﬁ/ﬁ’m‘lcr& EV'QZ) MLA(?) ,g!jowg ‘[—Aa_f:
the Afning conkbnt X 15 not o comshamt, buft

J.e(}:En-abs on the C?LAW %
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From the given dates, The force ~defermation

relation of the Sf-'rs'nj Lam dre alai_a.—{ru_s&az :

Tensile force (FI, N © loo 250 330 ygo 570
DefdwodEar sf AT
(x) , o i3 33 44 64 76

(chamsge in Qong D

The Sorce - Aefarma.ft'an relation is P[o'H‘En in the
£iqure shown below:- The velation can be feen fo be
with tke /SFra'nj constant given ‘:y

nea.v(j (inear

t i 5 ‘ = 7 N m = 7500 M/m
- L
A = ""’_K' i “_'_?; = S /“‘

F(ND
ot F
400
(e}
200
3 _}_'_ K
o 20 40 6o 20
(mm)
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v

_'_

O,meo ; = [4—+-[ ’ . . —

w17

"-._‘
<4

N
=
3

J == El- 4 — area polar moment of inertia at section x = 1.5708 (0.1 — 0.05 x)* m*
Knowing that the angle of twist, 6, between the ends of a uniform shaft of length &
under a torque T is given by 6 = R the angle of twist for an element of length dx can

be expressed as

T dx T dx
GJ (80 (10°)) 1.5708 (0.1 — 0.05 x) ®

The total angle of twist can be determined by integrating Eq. (1) from x=0 to 1 as:

1 T dx B T ! dx
7= { (12.5664 (10'°)) (0.1 —0.05 0t {12.5664 (1010)} £ (0.1 — 0.05 x)* (2)

1 1 —0.05
5 (0.1 —0.05 x)* 0.05 3 (0.1 —0.05 x)* 5 (0.1 +¥)

— 4.6667 (10*) wherey =—0.05%

4
Hence 9 —_ T (4.6667) (];2 ) = T (0.3714 (10—6)) rad
12.5664 (10'°)

This gives ky = %— — 2.6925 (10%) N-m/rad

The steel and aluminum hollow shafts can be treated as two torsional springs in parallel.
For a hollow shaft,
TG
D‘i . d4
32¢ ( )
For the steel shaft, G = 80 (10°) Pa, £ = 5m, D = 0.25 m, d = 0.15 m, and hence

10
_ 7 (8(07) (595¢ —0.15%) = 5.34072 (10°) N—m/rad

k{;:-'

ks, 32 (5)

(Ou) For the aluminum shaft, G = 28 (10°) Pa, ¢ = 5 m, D = 0.15 m, d = 0.1 m, and
hence ;
ky, = %ﬁ (0.15* — 0.10%) = 0.207395 (10%) N—m/rad

Keq = ki, + ki, = 5.34072 (10%) 4+ 0.20739 (10°) = 5.54811 (10%) N—m /rad

(b) With G= 2¢ (109) Pa, f= 5m, Pzoasm and d= 005 ™
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kt R (26 xzoa)

= 4 4 _ 6 -
2 72 (5) (ﬁ-fS ~ o005 ) = 0:255255x10 N m/*a.c!

6 6
1<9_5= ‘K.{;\-i-K'tz = 5.34072 x10 + 0:255255 wif = 5.595975 xio
n-m/rad

"

@ gt
For helical spring: k =
prne 64 n R

(12x10°)(2") _; 58580 Ib/in
64 (10)(6%) ,

Spring 1: ky =

By(14
Spring 2: kg = (—4—5—1—(2—)—(1—)— = 50.00 1b/in

64 (10)(5%)
(a) Spring 2 inside spring 1 (parallel): keq = k; +ky =1,438.89 Ib /in
(b) Spring 2 on top of spring 1 (series):
1

e 3
ke ki
which gives ke, = 48.2625 1b/in.

1k +ky
ky k; ko

+

4
For oo '{16!(&-&1 Spring, * = G d

3
(mst)(l)fr ¢4~
4oy (%) T PO L/t

(Amros)(@-‘f)Ll
Y, = = ' 2 n
g 64 () (5°) s 4/

a ) Spring 2 inside spring 1: .= K, + ¥y = §9-931 L"%‘h
P EHEg b}

(5) Spring 2 on to of SPrl‘ng fo Lo = e S L
o kK2
or Ak, = O 8¢ 806 (3:125)
E& = ( = L/
1 % = 3.0l¢ V-
S 86.806 + 3125 4 /
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g
Eauiv@lence of strain energies:
2 s
z 5 ° N “
‘é‘kea‘y:‘{zkzxz‘i‘ék:wl""{k\?Mgc
.;_'—-'2-. Ko yz S?nQBOa
L@y 1(6%: _:}3'_ ,1“_{_ _AIT ,kz
' wn Z z 6 &
with o AE . 2 0= 95 XB0x0 ) - 597295 wie” L/
I Q\ oo
O.M.A ’k . Az E‘Z. __T_r_ (7'2- 6.52> (30 xioé) 6. /% ‘
2 T - 4 = 2.12058 xt0 A"
2 75

6 . )
1‘:@% - %(2.29?235 tio ) + (212658 x10°)

= 2.2531lg25 x(oé /ua/,‘,.,

S;mi(a.f(vj,t[ne e@uiva«lt’,n{: damping constant can be found ad
(Using e@uivwlence of finetic energies):
b [/L-—S n .
Ce‘b: %C‘_{-—A‘FCI: _3_(0,4)+-2t—(0-3) = 0.-39775 e:/

€ .2
Stainless steel: & =30 xi6° #/imn®, G=105*%10 b/
D= 0.%0 , d= 0’29”) /(": S-O”
Axial stiffness = AE _ f_(pz,c{")_i_

0 4

6
s % (9v302—o-292>(§-%-13—-> = 27380 316 'u’/fﬂ = kg
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Torsional stiffness= _fTGg (DH 0{‘!)
22

¢ \ -
7 (15 x10°) (a.3@4—0~25 Y = 23,0942 M-infaa =
32 (50)

=

— — —— —— ——— — o — — S p —

Axied stiffress = ¢ 4, = l6,681- 896 ﬂ’/fﬂ
Tbrs{anal 3‘{3!‘3035\1693 = € ‘kk = 139:]£52 u':—-—fn/rg_d

| Assume small angles 8,and 625 o, =(_}f_l>9:
2

B x, = horigental displacement of C.G. of mass ™y = 61
1 Liead divpl t of G. of r B 8 "'z/[ﬂ
Xy = vertica (splacement oy C- ma.s§ m, = 8, Iy = 2
5{ = {‘crnéont@l dlsfafa,cemen-\': of sFrmﬁs K, and ka= 8 (rl+£i>
Gy verbical displucement of springs fy and ky= 3= ha®/hy
Ezucvaiehr.e of #&inetic energies gjves
& N o W&
z J_gz(e,> = iz ( ) 45 (92) + 4 m,(x,B + "i”""z("‘2>
. a_e_a = Jf + J_z_ (%l/}’z 4+ my rl.l-{— l"ﬂz 'rzz ( ?,/#232-
Egul‘va.,[ence of loa'{:en'l!::'al energles 94'\(85‘
z 4 2
"_keg 9| = _JZ K2 ;trz-'{"ékBH yz' -é-é kff GIL+’IZ- kfz_e,_
with k= &+ Ky, kyp= K3k (Kt ki)

J, = 9‘(1",+1|) 5’ = 17,1-,_8,/15 and 6, = ha'/h’.‘

2
s ("Ct‘f‘ ‘f:z) (52|+9) +.(k3+k‘f) f’l : 4 k{:|+ kf‘l—_;:_—?.--

7 P <3 % - x )
Erom ezuf\/culeme af kinetic energies,
. 2

2
4 2 4 s 2 4 . A
gy 37 = ke dm K g 54

mep = M (£) + e+ % ()
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@ Let §; = angular velocity of the motor (input)

Ansufa.r velocities of different gear sets are:

| o e SRS B B B i S e
moter » 91 ;9_2293 1 J4, J5 pomem §

'_ i i 2N 2 J-io@c!
————————— A o pume e i e oo B e

8; | go[2E ) G (oL Ba ' (ﬂl n3 .. Tznes
.__-_‘:___-_:_-_"ET’;)._!_?'— Nz g i @\

e i e P o DR
Epuivalence of kinetic energies 9aves

; =2 ;2 2N 2
4, £S5 1T S L = - 57
e_a 5 z Ymeter @7 + 2 e 8 J 91: + g lead ol

" Ty = (Jmofar’“J)“‘('”Js( > @H&)( 4>2
A n a2 +( 2N T 190_4)( = Tﬁl‘}z

2N
@ E®u|v@[enc_e of Kinetic Energfes gives
i "

L r = S = g, [t
5 a—gz 91 = _iz-_ Iy 91 + 5 g 8, where 8, = 61_(_;1_1>
2
g Ny
= % ()
When point A moves by distance X =%y, the walking beam rotates by the angle
Xh
by = —-
€3
Xh 32

This corresponds to a linear motion of point B: xg = 0y €2 =

&3
and the angular rotation of crank can be found from the relation:

)
, r
Xg = I sin 0, + £4 cos ¢ = rc sin b, + €4 VI —f—‘;sin2 0.
4

For large values of £, compared to r. and for small values
of x and 8., we have

XB xp ¥s
i RS gy Bin B, =, B oF By = =

Te 53 Te
The kinetic energy of the system can be expressed as

m%mhxh—}-—-.]b 9b+—J 3

2
Equating this to T = = Meq X

T, e,
meq:mh—}-—z——i-Jc
&3

1
=5 Meq xh, we obtain

€3 T
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@ When mass m is displaced by x, the bell crank lever rotates by the angle 6y, = -;— This

) 1
makes the center of the sphere displace by x; = 6, €5. Since the sphere rotates with out

slip, it rotates by an angle

The kinetic energy of the system can be expressed as

s A 2 L 2 £ J . 2 o T-'a
t—;m%'i’zaéa “"ijzsa/S'szf‘ A 2L, " x s
o b o eh® L x L(z Y : ( \> w1
syt (233 ) * 1 h

. 2 ) ) 2 .
since for a sphere, J; = T m, r:. Equating thisto T = —;— m,, X , We obtain

7 4
—] J—-—- — —
Meq m+0£%+5mﬁ£%
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When the amgulan position of the Crank is e from x— axis,
tee am?u‘-ah pesition of connecting rod @, Ahown in Fi5-
[*161, s given by
rsime =8+ L sing ()

The x- and Y- coordinates of piston (xP, BP) are
given by

% = rcose + L cos ¢ L (2O

dp = 8 (3
the - amd y- coordinates of the center of mass of the
connecting rod (%, 9D can be expressed as

A, = Y coSo + L, cos & “4>

Y = rsine -4 sin g =)
The x- omd Y- cowvdinates of tke center of mass of

the crank are Jiven by

®, = —;—_— cos © >
Y. = 5 Sin @ (7)
p,‘fferenf:{a..’n'on of Egs- (1) - (&Y with recfaed: te time
yields
rewse & = [ cot ¢ 9‘5 or 4:-%;::: o )
o'cr—_--rsineé._ﬂs{n}z‘{c,ﬂ. (%)
ﬁr = Qo)
WK, = - Y SMe 6 — 1, Ain g ¢ G
Y = r cose 6 — L, Cosg o (12)

Uét'nj Ep- (8), Eg-(9) can be expresreci as

7'¢.P=—\’$Eneé-—£$-'h¢—r— CosO g
A cos @
= —r8 (Sih o+ 0S8 tan ¢g) (13)
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Similarly, using €5+ @), Eps- (1O and (2D can be expressed

x,=—r6 (Ane+ %’—Mef‘m,d> | a4

Ye= ré %3— ot € (8
F,-M,LL_LI, di§ feventiation of Egs. (6) and (7) ylelds

Xypz — & Sin6 6 (16)

‘31. = -2 0s @ @ a7

The kinetic enerqy of the system (T) can be expressed as

. 2 ¢ 2 . 2 LR .2
T=dm (kp+¥p)+ 376 +L m (% +10.)

A
2
wd T e g e (et )

2
2 B 2

L2 g 2
= —'Erﬂr ) e +~12- J.e +—é~mc{(5m e—t--—-';:cos o.fom 2
z
g 2 @& A ;
+2fk—'sinecosarém¢)‘r‘ 6-{-1%(_0529 ‘e }“‘I_z.'-‘rc?
{

; 2 ’ ™ ° :
+ 5 ™M (r‘g,‘nze 6 + 1 Sin' # ¢2+ 2rl sine singd @ ¢) (8

1s the ezuivw\enf refatory inertia of the whole system

about the Pm‘nt’ O i denoted o2 3;3, the kinetic energy

of tke system (T) can be written as

T= -?l_ 'Te,z 9.2 (I?)

By ezua.."r\‘nj Egs: (18D amd (19), The E@uivwlenf rofafory
inertia of the offset Alider crank mechanism can be

exPreSSQa‘ oA

2
2 2 { 2 &
J_ez'—'-'—l&mr\“ "'Jr*mc{(s'“ e+—1;-2-cosaf'm¢
2 > 2
; 2 2z
+ -'(-E'- sin 28 f-am ¢)Y‘11‘ EZ‘; (_ogza r\z}- -+ a_c%i +mr(sfn9 r
s 2
1 ‘2 ¢ . L ;
+ L7 sin @ ——-6'9' + ‘2.Y£ Sin @ Sln;ﬁ _g_) ?o)
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In view of Eg.(8), Eg. (20) can be rewritten as
2

2 2 L 2
Jeg = 7 ™M ¥ &+ Jp + m, r {(S(nzs + —-g'—,_casze farm &

&

4
2 2 2
¢ s
+ -&-\- Sin 20 t“""sb)'l' E_z.., coS’zS}- + J'c-t- ff'_-—-g-
4 z 2 2
Q ,q ce S ¢
2
.2 . 2 cos 6
+m,, rg' (Sm e + Sllﬂ?6 om +2¢Sme sl‘nﬁ CO$9)
cos @ cos ¢
or 2

| 2 2 .2 Ri 2 i—z?’
Jeg"'?,'“rr +Jr+mcr{(5m6+ —-—-Q-_ccnseowu
2
Brosin 28 fam ¢)+ _g_z_ Cosle}

+ 0 2
/4 . { )
2z 2
+ ;E_r— _C;o_S__f_' + m ra. (S‘fnze + CoS e fam Fb
Qz Cc.»S’?'Sd P
+ sin 26 fam ¢> 1))
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(@)

o cla_mpn'nj force of Ci = < (%o~ ®); i=123
Fz [:cz ' -
Fa ca Fea—_- da—mping gcorce of Ceﬁ = Ce_,z (7‘2 = 14,)
. b x = R+ Fot F3
Xi - — ‘ i Ce_% -t C.' + Cz + Cg
(k) kR C”'— - e ei(em %)
}—' h }——:ﬂq Fo= ¢p (%3 = %2)
2 3 ) .
l-f — Fg: Cg(xq—""B>
o CE@ . . -
fi(_l_f ._-;L, = Ql(f-f —--:;_3 + x3y - 7‘1.;_ + X — X
' i P I
K : P
. N = — c c
Since ch = F|_ Fg= Fg ) Ceﬂ Cy Z 3

i C.C(-EJ
( )Eﬁua.{wg the Energles d:gs.Fa-t':Eol n o o Xz
TTCe&CdX -—'iTCwX,+Ti'CZQ3X 2, o3 @ X3
- ol
where Xx,= ol,, xz: g, and Xz 3
L2\
= = C+C S + C
) 2 ( g

(d) Ezuo.:f:lnj the energies d.srnpa,te.a! n a cgcle,

& &38
ch%weizwcfiw&’{-wctz@ezwLW t3 E

where g, = 9.(;—2) and @3 = 6‘!(‘1‘)'

nz
pi - 2
G n C |

nsz

L4
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Fig- (@) gy L=}

I TZ 7 IZ 7777 77 V777772277

F;‘ﬂ- (k) F
< s A

Lekt K, Mg, X = c.l.'g‘:la..at’_meni's o £ Pofn'L'S A:B,C
n Flg (a-)
F: = force of damper i ; £ =12

Frem Frg. (@),

2y
= A (- %) = le + . (1D
* I L.-f-/qz(xz ' ,Q|+ﬂz l £+ ﬂz *
o.m.c{ hance 0 )
e e A o

£|+£2 i R‘-Fﬂz *
For verf:u'cal ;FO!’C—& gwﬂbmm (F‘.S' b)-

= F| =+ F;;_ (5)
For moment E.U.u'(fla rium about Pot‘n{‘: c’ (F—,‘j_ [,)
Fz ﬂz = F'I Ql C‘f)
Egs- (3) and (4D give
F L
F.= Fﬂz ) ks =
| Rﬁﬂz ’ 1,+ 4, (>
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velocitres EMP&r;‘Enceel bj ola.mperS:

x, = A FLa @)
& Ci(llfﬂﬂ-)

)
7“2"' fgz“ s (7>
2 c, (Q.,-t-ﬂz)
velo city of point ¢ (or force F) cam be found using
Egs: (€) amd (1) in Eg (2):

2
& F Qz o F QI

2

B o z = > (®)
¢y (ﬂl-!- Qg_) Ce  hie
The EUA-':VGM dm-dm‘nj comslont of the system in
the direction of 2, C,, is given Bj |
2
Ce = —-E- = (Li+18) ¢ (5)

Lo 2 2
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Damping constant desired = ¢ = 2
S = = 1 Ib-sec iscosi :
s =4 preyn =4 (107°) Ib—sec/in’. fim, viscosity of the fuid =

2 d
37D (1 + —
c=/ " o+ D) (1)
4 ¢
D >
P , I Assuming x = D/d as the unknown with =2 in,
- e Eq. (1) can be written as
3
c:ptiﬂ&"_&](w_) or 1= (02) A2y 1+ ) (@)

This gives %3 +2x* —53,051.52 =0
Using a trial and error procedure, the solution o
~ 36.92. Using D = 3 in, we get d = 3/36.92 = 0.08126 in.

f this cubic equation can be found as
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= l-mt o [ston
{BWDI (1%—2.-%{-)}; = drameter of P

4 Ag L= a.x-‘al f&nj’fﬁ: of F:’S‘t‘:on
F= 4> M rEjﬁoH.S‘ d = radiel clearance
(Jarorﬂ S}w-‘glejj! Mccha.m'ca,[

Engineering Desfgh>
Let A=O'DO1” 3 D= 2‘1-’{-” Cl-rldl abeove e.gua:!‘.‘mn aives

= (45)(10_6){ 3T (2'4)3 { (1_'_ 2 xo0-o00l oo! )}

4 (o ocv!>a

d= wvap8t7"”
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&

'I"a.ngen{:fo./l velac(tj of inner cylinder = %Qp -
~ For

small d, vrate of change of velocity of

ffm‘a’ s dv D 2-__ __ﬂé
;e = Z N 55

dr 0 ,éfj.— = 3T

shear sw‘:resj Letween Cj(i‘nder: is ATd 5 :d: : g
- my. D 12 =l 7
Y= =S T At =0
sl . S
and shear force is 5 R ol |
™R D (f—‘ﬁ) e ——
F= T -Aree = T 'TFD(f-’f-‘): 2 d e A

Torgue a{eveloped = My = F"Dz“

For fma_,it ‘f‘\; rate of C‘?ﬂ-nj& of

ve(crcH-_y of J:'fm'cl in verticad direction is
dv _ res

dy f
4 rw
Shear stress s T=M ;{? = ﬁ_{,—

Force on ovee dA = dF = T dA

Torgue Letween bottom surfaces of cylinders is

Mtz = ffdmt*-AA Wwhere Jmh: JF. r = tur':a? I de
arew Dl e 4
: _ o9 /uc,y TP
e My, = /:rr;j; e‘[org‘a!r de = =7k
Total -Eorzu.e = M= My + My, = TT/ADEGB(I—A) " L' & D
4 d €4

EXP‘I"'EFS'fnﬂ mt al C-b v o= C, (.:3])/2 sy Wwe jg‘i: cla_mfgfnj constant:

2 (-4 E
2 d 32 h
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Tﬂ-j[cr:s' sereg expansion o Eg- 01D about The oloer'a.‘l'l‘nj

velocity v¥ = 1o m/s gives the linearized Aa.\m;a«‘nj

constant (¢) a3 [ see Section (.5.2 ]:

2 3
F= 0o vV + 400 VvV + 20 V (1)

dF l
Cr e 2

dv lv= v¥ 22

FOr EZ- G,
2
dF —_-_(laoo+$’oav +60V> = v¥z o
dv L v#* V= -
= 100 + 800(10) + 606 (10) = 15000 N-%4, (3)

Hence linearized Ja.'mp\‘nj constant s Jdefined by
Fzcv wth ¢= (5000 N-s5/m.
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From Problem 1-60, The [inearzed ola-mf:fnj constant of

the Twe dampers is given by ¢ = (5000 N-5/m (for each).

When fwo dawmpers ore connected in parallel; tke

eguivalent damping constant is given by (see
section 1.9:3 and Problem 1.55):

Ceg = ¢+ Cy =2¢c = 30000 N—»S/m
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From t;,\’ob'em 160, the linearized damping constant
of cach of tke fwe dampers is given by

C= 15000 N-5/m.

When Twe dampers are Connected in series, tke

eguivalent dampiag constant s given by (see
Section 1.2°3 and Problem [-55) :

Cez &, Cy C
or 2 ISoo0o
& = = = = oo N-X
Ez 2 1 75 /m
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Force - veloci{—j relation of the Aamper:

F= 500 V + (06 V-4 50 v (1)
Linearized d“’"‘&"‘"ﬂ constant of the "\a""f’er ot fhe
ocperating velocity v¥=5 m/s is given bj (see
seetion 1.9:2):

dF 2
= e = = (5800 + 200 V+ 150 V
dv )V=V* ( ) v¥ =5
= Eo6 + 000 + 3750 = §2 50 N—S/m ()

I;F [.‘neo.n'zeo( a\ampfnj constant () Iis used ot an
oFera.{'incj velo cf-(-j of lo rn/g, e da—'“l’““j force (F)
is given by

F=cv = 5250 (16) = 52,500 N ()
The actual dam ping force given by the nonlinear
damper, EZ.(I), is

F

actal = 500 (1) + '°°(‘°2)+ 50 (ma) =65,000 N (4D

Thus the error invelved in efh'ma,h‘nj the damping

:FOr ce (s

65 coo — 52,500 = (2,500 N
= 12,500 460 = I3-237' (uno(er —esfrma’r:'orD.
€5,000
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The date are P‘oH'eof (n oo ﬂerIm a3 Shewn below. The

damping constant of the damper is given by the slope

of the force - velocity [ine:

c

700 [

& 00

Sec0

200 1

100

4o0 |

(N) 300 |

—
-

F

r . BSoeo

w = 3,225.8 N-£/s
v 01585

i % 2 & I e 28 [} F 3

0+0Z 0.0y 0406 008 ¢+0 02 oy o:lg 0.8 9'20 0422

v (m/s.)

b
>
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Flat plates in Pa.ra.“el with (ubricant £ilm in between:
surface area of fop plate (A) = 025 m°
Film thickness (h) = 1I'5 mm = ogols m

viscosity of lubricant (/.A.) = 0+:8 Pa-8

@) Dawmping constant (¢)-
e MA L 05 (025D | oo a333 N-A/,
h 00015

(b) Dawmping ;force o\evelo}:ed when V= 2 m/s:

F= cv = 833333 (2) - (66.-6666 N
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Torsional alarnpc‘nj constant of J‘ourv\oj beaﬂ'ﬂj:
Vi'g c,osH'U oot f.u.l:n'ca.n'[? =pm= 0 35 Pa - 7%
Diameler 0.:F S”""*ff = 2R= 065 m

Lenj'H- of bea.:ra‘nj = £ . 0:075 m

Bearing clearance = d: o0.005 m

Rotationad fpeed = N= 3000 rpm or o= 314" (6 Pﬁ—d/g

Do ping 'f‘o‘rzu.e o(evefo!oed (1T):
T= 2w p R LW 2T (0-35)(010253)(0»075)(3!1-1- (€)
7 -

= 016l N-m

0005

Torsional alcbmjal‘nj constant (C-{:)’

= 2 16l7  _ 45.0005153 N-m-58
3 314 1€

C,&: o _ or1619

1-54



|
Torsional Aa.\-npu‘r\j constant = Cf - 2 MR L

d

2w REA W
Dam)ﬂ'nj h:r?ue o\evelopeal = TE c'& W = /l“ol

Ranges of parameters:

p= 035 % 5) Pa—s > (°-3325, 0:3675)

R= 0:0625 5% m 2> (0:02375, 0:02625)
Q= 0075 £ 57 m = (007125, 0.07875)
d= 0005 £ 5/ m = (0-00475,0,00525)

N= 3000 £ 5/ Trpm or
W= 31416 £5Y% radfsg = (298-452,329 868 )
Bj L-Uhng ofl FoSS{He combinations of lower amd

»pper bound values of the five parameters (o MATLAB
pregram s written for +this purpose), the ranges of
Ci amd T are found 15 be

C, > (00003798, 0-000 6924 N-m-3
T=> (o134, 0:2294) N-m

These Correspo'nd\ o Percew’: totalk jelud'ua:f't'ans of

C. = 00006924 —0:000379°¢%
¢ x 100 - 60-66377
(€£) mean = 0000 5153 = ‘
02284 - o- 1134
T = x (oo

CT) man = 2 1619 = Teenisd,

MATLAB P'eﬁ"o’“" and ou‘l’Pu"— are Shown on ;Fo“owfnj
pege.-
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clear all; close all; clec; format long g

mu mean = 0.35;
R mean = 0.025;

1 mean = 0.075;
d mean = 0.005;
N mean = 3000;

w mean = 314.16;

variation = 0.05;

mu = [mu_mean*(l—variation),mu_mean*(l+variation)];
R = [Rgmean*(1—variation),Rmmean*(1+variation)];
1 = [l“mean*(1~variation),1_mean*(l+variation)];
d = [d_mean*{l—variation),d_mean*(1+variation)];
g N = [N_mean*(l—variation),N_mean*(1+variation)];
w = [w_mean*(lwvariation),w_mean*(1+variation)];

for il = 1l:length (mu)
for i2 = 1l:1length(R)
for i3 = l:length(l)
for 14 = l:length(d)
for i5 = l:length(w)
Ehilddl, a2, 4.3 .44, 45 = 2*pi*mu (il) *R(12)~3*1(i3)/d

(i4);
A T 3018548, A5 = 2*pi*mu (il)*R(1i2)"3*1(i3)/d(i4)
*w(i5);
end
end
end

end
end
Min Ct = nin(min(min (min(min(Ct(:,:,:,:,2))))))
Max Ct = max (max (max (max (max(Ct(:,:,:,:,2))))))
Min T = nin (min (min(min(min(T(:,:, s, :,2))))))
Max T = max (max (max (max (max (T (:,:,t,:,:))))))

Min Ct =

0.000379828829490285

Max Ct =

0.000652439904555133

Min T =

0.113360673819034
Max T =

0.228413766435793
EDU>>
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Assumptions made:

I. viscous $luid s incompressikble.

2. velociby of piston is small.

3. Mass flow rate of £luid through the orifice s Known

in Terms of the pressure difference across The ordfice:

Mass flow rate (Q): JAQI; D)

where o is o comstant, known From experiments

[:ee: B-R. Munson, D.F.Young, T- H: Okiishi and
W.W: Huebsch, "Fundamentals of Flurd Mechanves,
¢'R gdition, Tohn Wiley, 2009].

The velume Flow rote of the f—[u\'of "H-Troujl‘\ the orifice
can be expressed as :
.g'_ = A Vv (7-)
£

where p= density of fluid, A= avea of piston surface
and v= velocity of piston. 1, view of Ez. ), Eg- @) can

be E,JLloreSS'eol al
b = AV oy VY= ' (3D
f v uf A

Since tke P|‘S+on velocH—J 's osfumed + [e /rma.u, the

force on fhe )m‘s'f'ah (F) can be found as

Fiz AP-A or Ap = _;_ €D)
US:‘nJ Ez- Wy in Eza(B), we obtain
i = ———E——r or Bz oL gAY (50
« p AN :
Thus the force - velocity relation is given by
F=cv® (¢)
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2
wheve ¢ (s the ola_mpl‘nj cons-i:am‘l'( ce o j?' Aq )

Note: . The da.m_lau‘ng force (F) is Proparf{onwl fo fhe
sguare of ve.lcc:'l'j. Hence the damper is
nownlinear.

2. The daraping force- vele c_t'-l-l:j relation , Ep - (&)
cen be lineavized about amy ere_rg,{-;nﬂ ve,fac\'i-y

Cv*) 1 f-l‘no‘ an approximate Linear Ja.,my;‘ns
Constant.
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e s brlbd -——aFSI'c-i-O.Ziz
F(X)%F(XO) + glio (X—XO)

At %, =5 m/s, F(%o) =5 (5) +0.2 (25)=30N,%Fx7[-10:(5 +0.4%) |5 =7 and hence

F(x)=30+7 (x—35)=T7Tx—5
Thus the linearized damping constant is given by F(X) = 7 X = Ceq X OF Cgq =7 N—s/m.

Damping constant due to skin friction drag is:

¢ =100 p€* d (1)
Damping constant of a plate-type damper is:
A
¢ = h (2)

where A = area of plates and h = distance between the plates. If the area of plates (A)
in Fig. 1.42 is taken to be same as the area of the plate shown in Fig, 1.107,We have A =
¢ d. Equating (1) and (2) gives

100 p €2 P (3)
h
from which the clearance between the plates can be determined as h = 10}) 7

h? a— —
2

When p = 0.3445 Pa-s, ¢ = 0.1 m, h = 0.001 m, a = 0..02 m, and r = 0.005 m:

6 7 (0.3445) (0.1)
- (10_3)3 {(0'02

a2 o2
= BTLf {(a—E)Z—rZ} b

2 2
— 0.0005)% — 0.005% 00z OO 00k

0.02 — 0.0005

= 4,205.6394 N—s/m
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2 . | ' 5
_ BTl _hYy a? - r
. e = .h3 [(a 2) . ,.2] ;

.-a -

-

§ M_I::r

Basic date: [zi0em, h=o. cm, awsE 2em, 1= 015 0m,

M= o' 3445
,Da...m'm‘nj constant with basic data :

c= 4,205-6230 N-%/m

@) r Lh@njeo‘ to 4 em; mMew c= 2,6l7.7%20 N-S/m
by cka.ﬂgaaf to 605 em; new c= 35,0,60-8910 N-5/m

(c) a cl—uamaeo‘ to 4 ¢cm; mnew C = 38,754-5860 N-S/m
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Lek linean velocity of
Point A be 2. 1T{ @

is the om?mia.n velocity
of fhe bar about fhe
foc‘\m{‘ Pofnl' O, the kpear
velocities of points

A)B omd C o given la_l_-!

Da""“r’""j QorczS’ ok Pofnfg B ams C are given ’93

Fo= €2 ¢, = 0.75 € ® = o0.75 (!'S)é

Do

= (1258

Fl= ¢, =y = 0:26 ¢, 6 = g.25 (lo) 6 = 2-50 6

ASSum.‘ng e&dvalbwf o{wmﬂy«ng MN\—J‘ ot dnaiw'l‘ A ofg
Ceﬂ: tke Jorce F can be expresses as
F = Cez/ x® = C é

e
7
Mement evﬁ.libn‘um ef/.aa.at—"m abouk the PI‘VO"— ,ooih‘f' @]
3ives
F/Q"-" F| £|+F2£2

or

c%é (L) = 258 (0-25) + 11.25 6 (0.75)
oy

Ceg = 90625 N-4/m,
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3

For 'f—wo o\a.m'oe.\r‘s in Séeries ., = . =
the eguivalemt damping N I——'I
constant is given by ep . - ‘ CEEZ
- = 4 44 _ 2 R TTFTRET T E T LT
Cegl C C' i C'
oy Cea‘ = EL
Zz

For fwe dampers inr Pa,ra-LLel, the E&Uu’\f’a./leh‘b damping
Constant is given by

Cezz'—' Ca+ Cp= 2C2
Thus the system can be reploced by tke fwo eg uivalent
dompers in Ioa_roiw os Rhown in the £iguve okove:
The overall ev.a.avo.ﬂp,\—o{' daxgeiag constant is given by
Cop T Cegu v Cega = G 41cy
se that

- 1-62



LB . .
.'x=5+2¢ = Ae"" = A ceso+ L A Lne

:9?:96—-52 A:J(A cos 8)% 4 (A #in o) = 5% 2> =5-3852
6= tam (:s;:sae) tan' (2) = 21-8014

. =i+24. :aai+®2L N -;:z_:'- 3 -4 4L =bi+L?_4.-

=xi+ 7—2 = (Gbi-f-Li)-{-f.(a'z-f-L?.): 4 - 2¢
=Ae® = Acose+ i Asing

A= 4%+ (-2)% = 4-4721

o= tar' ("2) = _ 26-565¢

2 = (3-4i),z, =(1+21)
2=1; —zp = (3-4i)-(1+2i))=2- 6i = Ael’

9

where A = V22 + (—6)? = 6.3246 and 6 = tan™" [_TB] = tan™' (—3) = — 1.2490 rad

3, =1+2i, 7, =3 —4i .
g=1, 2= (1 +20)(3-4i) =11 +2i=Ace"’

®

where A = V112 + 2% =11.1803 and § = tan™" (2/11) = 0.1798 rad
B 1421 _ (1 +21)@B+41) _ —5+10i : 0
== = = =-02+04i=Ac¢
T 3—4i _(3_41(3+41) 25 SR
where A =V (=0.2) + (0.4)? = 0.4472
and 6 = tan™? -_OL;— = tan™! (—2) = - 1.1071 rad
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x(t) =X cos wt, y(t}) =Y cos (wt + ¢)
2 ’

(a) = = cos? wt, = = cos® (wt + 9),

2
Xy
2 XY cos ¢ =2 cos wtcos (Wt + @) cos ¢

2 ¥ Xy .
B e D g
~u cos @

=cos? wt + cos® (Wt + ¢) —2 cos wt cos ¢ cos (Wt + @) (1)

. 1
Noting that cos? o = = (1 + cos 2 &), Eq. (1) can be rewritten as

2
X ¥ Xy
¥ ¥ XY

cos ¢

1 1 1 1
=-§-+Ecos2wt+3+5cos(2wt+2qﬁ)—2coswtcos¢cos(wt+¢)

2 2

=1+%{2005 2wt+2wt+2¢ s zwt—zwt—-2¢}
— 2 cos Wt cos ¢ cos (Wt + @)

=1+4cos (2wt +¢)cosd—2coswtcos Pcos (wt + @)

=1+cos(2wt+¢)cos<;’>—2cosgb{-;— [cos(wt-{-qﬁ-—-wt)—l-cos(wt—i-q?ﬁ-{-wt)”

=1+ cos ¢cos (2wt + ¢) — cos ¢{cos¢+cos (2 wt-—!—qﬁ)}
=1 —cos® ¢ =sin® ¢ (2)
(b) When ¢ = 0, Eq. (2) reduces to
2 2 2
X ¥ Xy X ¥
— =2 =T — | =0
2 Y? 9 [X Y}
which gives X = % v. This indicates that the locus of the resultant motion is a

straight line. When ¢ = 'i;", Eq. (2) reduces to

2 2
X e
= Ty

which denotes an ellipse with its major and minor axes along x and y directions,

respectively. When ¢ = 7, Eq. (2) reduces to that of a straight line as in the case
of ¢ =0.
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Equation for resultant motion:
= Yz Xy 2 -2
-ET—Y—z—2X—Y—cos ¢ =sin* & (1)

2

¥

When v = 0, Eq. (1) reduces to in* ¢ and hence:
¥ =+ Xsin ¢ =4 6.2 =085 in figure  (2)

el

=gin® ¢ and hence:

4[4

When x = 0, Eq. (1) reduces to
y =+ Ysin ¢ ==+6.0=0Tinfigure (3)

It can be seen thatb
= 7.6 in figure (4)

OR=Xcos ¢
oS X sin ¢ 6.2
e e SR T = —— = 0.8158 =3.272°
OR ~ Xcos ¢ B RO = Bl (5)

From Eags. (2) 2nd (4), we find
X = '\/Eisi.n ¢)? + (X cos ¢)F = V(6.2)* + (7.6)° =9.8082 mm

Equations (3) and (5) give
6.0 :
= it = 9.4918 mm

Y = — =
sin ¢  sin 39.2072°
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(@) =t} = A cos (So-l:-t— 4)-m where A B n mm < E)

1000
x(o) = ‘;:m cos X = pr003 , A €osS of = 3 =t (Ez)
i(O)z _ 50A Sine = 1 5 A Sin of = -20 —-——(Eg)

i
A:{(Acosq)z+ (A sin d)z}/?— = 20:2237 ™m

- -1 sin o =
« = tan (f.‘_—'i——- = tan (-6-6667) = - 8i-4692°=-1-4219rad

A cos

2(t) = 20-2237 cos(sot -1.4219) wm

(b) cos (A+B) = CoS A cos B — sin A sin B
2(£)= A cos 5ot-cos x — A Sin Sot.sin«

g (E1) can be expressed as

= A4 cos wt 4+ Ap Sin et

where w=50, Aj=Acosx, A,=—-ASinx
. x(t) = (3 cos 50t + 20 SinSot) mm

dt?*

% (£) = A cos @t + Ay Sin wt
z
éﬁ-(f) - _ A @ sin @t + Ay cos wt | ax = — Ay cos ot — Ay sin ot

3 ;
d™X _ 9% x(t) where @* 5 a constant

t?.

Hence x(¥) is a S‘A'mp’e far monic motion .

#y () = = (cos 3t cos i - sin3t sin £

. (as) Using trigomometric relations:

x,(t) =10 (cos 3t cos 2 — sin3t sin 2)
2 (£) = 24 (F) + %o (£) = cos 3t (5 cos1 + 10 cos 2) - sin 3t (5 Sin 1 + 10 SN 2)
If x{t) = A COS(Cth+°()= A cos st cos X = Asin Wt sin & |

(9=3, A cos o =5 ces L+ 10 cos 2 = — 1-4599,
A sing = 5 An 1 +10 sin 2 = 413.3003

1
A= Jacos x)? + (Asinx) = 13-3802
_ -1 (A SD N e LI - 96.2640 = 1-68 rad
o = tan (Acoso()"' tan ( 8 O4—) 96 4

Angle between xy (£) and x(t) is

(b) Using vector addition :
For an arbitrary value of
cat +i,), hay monic motions

24 () and z,(t) can be shown

as in the figure. From
vector addition, we find

x(t) = 13-38 cos(wt +1.68)
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(c) Using ‘complex

numbers:
i (wt
2, (6) = Re {As € = *Q} =

Re {5 e_i_(c&{'+ 1) }

L (Wt +2) (Wt +2) }

Re {10 e
i(us-L—+ ) } ,

x,(t)= Re {Ay e
I§ x(t) = Ref{A e
A cos(3t +2) = Ay cos (3E+1) + Ajcos (zt+2)

= 5 (cos 3t cos s — sin 3t- Sin ;‘L)
+10 (cos 3t cos 2 —sin3t. sin 2y
AsSinad = 5 sinl+ (0Sin2

ie. A (cos 3t cos « - sin 3t sin )
A cos & = 5 cosi +10 cos2 ,

o= 1-68 rod
i(3t + 1:68) }

e
A: |3'3802,
x(t) = Re §13-3802 €

x(t)= l0 sin (wt+607) = x4y (¥) « 2, (£)
where X () = 5 sin(wt+30") arid #(ED= A sn (wt + «°)
4+ cos (ot sin Gon) = § (Ain ot -cos 30"+ cos et sin zo')

10 (s.‘n 3t cos 60
+ A (sin t. cos 2%+ cos wt-sin q’)

=] o °
(0 CoS @O0 = § Ces 30 + A oS X ; A cps ®° = brEEaZ
o sin Go° = 5 sin 30+ A sin x° 3 A Sin «° = 6-1603
A= \10-66932-{- c.1603% = ¢.1966
x = tah-i ( 6'|603/0-6699) - 83-7?38"

x,(£) = G-1966 sin (wt + 83-7938°)

< ()= %

_ 4 gis T
= 5 (oS 7{ (i+4_5m 'Et) )

Cos %t + sinTt
x(£)

From the nature of the
gra.daf-\ of =(t). it )
can be feen that x(t)
is FEn‘odfc with a 0
time Feriacl of T= 4.

i\/2\/\/

T

] ) / S t
4
-

If Y(t) = —w? ®(t)
Here x(t) = 2 cosat + cos 3t

% (t)= -8 coset —9 cos 3t £ -
x(t) is harmonic

x(t) is harmanic,

x(t)

constant times

not
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1.88

x(t) = cos Tt - cos Tt

ve z
%Y= - % cos l;f: + T cos Tt # - constant Hmes x=(£)

x(t) is not harmonic

XL
2
T

< (£) = 24 (E) + xp(8) = 3 5n 30t + 3 sin 29t
Since Sin A 4+ Sin B= 2 Sin ——-—A';_B cos '“__';E >
x(t) = (g cos %)sin 2t x(£) 5Ty EE-‘;-t Gcos%
T his ezum‘::‘on shows érn. RIS o {/
that the a,mp.',i{'ude F = K ‘ r
t : : ]\\ "\ A A
(¢ caS_-) varies with n af\ A+
2 o um ’-u >
+ime between o, maximum i & U U \ \J‘ '
value of € and a ’ s b \ N
minimum value of O -6k-" R Xl 7 "
The freguency of this minimwm
litudes
oscillation (bea,t QP

freguenc‘rj) je = 1.
Note Beat freguency s twice the freguency of the term

Gcos_g. since two peaks pass in each Cjcle of (6 .:cs—%.

The resultant motion of two harmonic motions having identical amplitudes (X) but
slightly different frequencies (wand w + 6w) is given by Eq. (1.87):

x(t) =2 X cos [w t + é%?-] cos {é—;i]

Thus the maximum amplitude of the resultant motion is equal to 2X and the beat

frequency is equal to éw. From Fig. 1,173, we find that 2X = 5 mm or X = 2.5 mm

and
ow 2 2 2T
— = = = = 0.374 rad /sec
2 Theat Tlagker 2 (12.6 — 4.2) /
§w 2 2 T
or 6w = 0.748 rad/sec and w +

= = = 6.2832 rad/sec
2 Tsmaller

Hence w = 6.2832 - 0.3740 = 5.9092 rad/sec. Thus the amplitudes of the two

motions = X = 2.5 mm and their frequencies are w = 5.9092 rad/sec and w + ow
— 5.9092 -+ 0.7480 = 6.6572 rad/sec.

A= 005 m , @ = (0 Hy = 62-832 rad/sec
eriod =7 = 20 _—_2T™ _ _ 5.1 sec

P e 62-832

TMaximum ve‘.aci‘&j = Aw = 0:05 x 62832

= 3-1416 m/s
maoximum acceleration = Aw?® = o005 (62'832)2 = {97393 T"/sz
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W = 15 cps = 94248 rad/ sec
‘.J-Cma.x = 0-5}: 0.5'(9'81) = 4_-905 -m/sz - sz

A= a.mpli{:ucle = 4_‘905/(94_. 24_3)2 = 0.0005522 ™

:\'t,,-.a_,; = mMox. veloaH:j = AW = 005204 “"/5

x = A cos gt ; X opax = A = 0:25 mm

'r)(ma"._:-’ AGSL': O"l'l’g - 392 & mrn/s?-

Qperc\;l:u‘ng sPe.ed of pump =

3 ‘i_—'—LSZA CDS(JBT‘J

y gF = 2514/A= 15696 ("a-‘t/s>z
9 = 1252837 ra.c!/g = |9-9395 ypm
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xty= A %t

— o
x(1)= 0:752985 = A C .
®(2)= 0:226795 = Ae—dk (2)

Divide Eg- (1) by Eg.(2):

©0:-752985 Ae‘t
0:226795 A g2t
LA eq = 3.4965
= ; = panld (3
or o« = hoy, 34965 -2 D,
From Eg s (1) and 3), we Find
Az Q752985 56329 @ >
e— 1-2517
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Dfspla..c.em:ant = % ()= |8 cos 8t mm
@) Freguency of hormonic motion = 9 = § ra_e(/,s
. _ _ 2T _ 2Tv
Pecled = T = o - 5 =o07854 5

(},) F\"&W‘en"j GJC oscillation :

w= 8 TO—J/A = _g____ Hz (273 - Hz
2Tv
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Me tion of the machine= % = 8§ sin (st +4) D)

—

Using the formula for sin (A+B), Eg- (1) Can be
written ok

sta (5t+1) = sin5t.cos 4 + cos 5t sin | (2)

o.nal 416\’\ ce

%2 = 8 Sins5t-cost + 8 cos 5t sin 1 (3>
Eg-(3) is in tke form

%= Asinst + B cos 5t ¢t
with

A= 8 cost = g (0'5403) = 4-3224 D)
arcd

B ¢ simt1 = 8 (0:8414) = 6.7312 (¢)

1-72



X(t)= —-3:0 Sin st - 2.0 Cos 54
Eg-(1) cen be expressed in the form

A ctsBGt+éd

» (t)

= A C.O‘E\L-'C_D{sﬂ --A.S‘t"ns'b'S!"n/d

(1)

(2>

Cam]oaur.‘rlj CGrreS’POnA\'nj Terms 6f EZS- (1D and (2))

we obtain
A Cos ¢ = —2+0

ASl'nFj: 30

Dl‘\(-'c:ll'n_j Ei' (%) Bj Eg-@), we ;Fr‘nJ

't'wv\?ﬂ = - 1’5

Which gives

o Bz _56-309%

cos ¢ = 05547
Eau.ntdﬂé 3) omd ©) give

-_— 20
A= R
Cos ¢

2 (t)

ll

I

2,06

0 5547

A cos ('S'E"l' ¢>

- - 36055 o5 (5t -56:3099°)

~3:6055 o8 (5t- 0.982%)

— 3:60656

(3D
“D

C)

(6

LTy

@)
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Dt'SF‘a.cfe—men't :

% (£)

Yele C.H'tj s
wl{ £}

-
—

-~
-_—

0-2 gin (5t+3) m

o b (Et+3) ™/5
Acceleration:

;é({;): _ 5. sin (5t +3) *m/A

2

Ath'budes of alu'S,ala..c_.eme,n'l: , VE|oc..'+'y o
owctelernolion one:

A

0+2 "™,

% = )0 ™
™ a-x //$2
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% (t)= 015 sin 4t 4 2.0 cos 4t in (D

By Expressing Ea.(i) as
%« ()= A sin (lf'l:+¢>
= A (th Lt cos ?5 + oS 4t S‘n‘\n¢)

we obtain
A ces § = o015 2D
A sin g = 200 tad
Egs- @) amd (3D yield
for &= -2——?;5;- = 13:3333  or & = 85-7108°
OJ
- 1. 4959 raodl
ond |
0-15 0:15
Az —— = __—__—— — = 2.0056
cos,ﬁ 00748

x(+)= 20056 sin (4t + 1°4959) in

vele CH':’: |
% (£)=8.022¢4 cof (4t + 1-4359) in/gec
Acceleration : | z
:’a(f')-'—'—??.-ogﬂé' $in (l-H:-i- 1'4353) lh/gga

Ampl({:uales of d.'gPlM&ment‘, Ve'oci-\-j ovd accelerekion
ahe

1

xmo_& Q’OOGG 'n

s 0224 n /see
% max 8 /

% oax = 320896 f“/SeoQ'
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x(t)= 005 sin(Gt+&D m

®n(t=z0)= 0.04 = 005 Sin &

o s:n¢ - ool
-XN-XY

= O 8
which gives

$ = 53.1301° or 0.9273 rad
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2(t>= A sin (61 + ¢)

™m (1)
2 ()= 6A cof (6t +¢) ™/ (2D
At t=o0:

1(0): A gin ¢

= 0:05 m (3D
%(0)= 6A coAt @ = 0.005 ™/X &)
Divide Ep. (3D by Eg. l4D 40 §ind
t"_“_g_ié - C::-oc:aE =1
°C g = fam ' (6e) = §9.0451° = 1-554) rad >
Egs: (3) omd (5> give
A Sin |-554) =005
ax A= i I = bo-65% wn ©>
0,999861
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Frezuencg = 20 Hz = 20 (27) =

40 ™ vad/s
Amph'{'ude of occeleration

—

©:5 9 = o.5(9-81)

= 4.905 rn/,g"
If %2 (t)= A sin WOt

x(tY= Aw cf Wt

% (£) = — A W 4in WL
In the }AJI%M CaAl ,
2
Awr = 4.-905 = A (w0 ™)

-905
or A= Zt\

= - 0:0003tl06 M = g-3106 mMm
Go ™

Hence The Jis"a'kt@,emen‘t x (t), VEIoc\'-i-j = () o

a.—acelz}w.ﬂoh ’;E.('b) of the machine are given b"_-j

wx(t)= A ¢in w0t =

—

0+3106 sin |25.6640 t

Rizlkand
x(t) = Aw AWt = 6.03903 o5 125-6640 t ™/ %
X (E)= —AC SOt = — 4.9047 Stn 125- 660t m /g2




v, = ¢o'§ w™mm

X
i

0-59 = 4:305 m/g?
1; x(t) s o ’fmo.nmm—u:c ;Fund’-‘cn,

x (t)= A sin wt

&
:;E(f):—-f\w Bin Wt

For the given dafa,

AT 05 mm = 0:0005 m
O.nd .5
szz 4.905 or wls RS = 98100
0:0005
Hence W= 99:-0454 T‘a..al/g = 157635 Hz

= 8459121 rpm
Hence the rotational Apeed of the votor (s:

945-8121 Hpm.
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27 Tt
@ X(‘b) —=Xsin — 5 Xms =

1—cos4
27 , we obtain
Using sin = 5. 1
: 3
2 7 ATt 2 w1 m e dFELL
X |t =5 cos ds =17 |2 2 47 T
¥rms T 5 |2 T
1
2 X
X 7T _ T gnam—0+0f =
- 7{5 i 3
X(t)=§;_,o_<_t<fr 1
1.105 . 3
T2 B 1 A? 31 A2T32={A2}2=A
Lifdear =177 |3 =3 |3 TV
Xrms T ~ )

: ty= =) %
For_even functions, =€5) 7550 - =2 [=(t) sinnt dt
From Eg- (% 73), bhi = \E?t(f) | %

= _%{ j’o ({:) sim ntﬁt dt + .J. x(£) sin nwf dt]
K )
Since  Sin (—nwt) =~ Sin (nc.s‘t')— odd function of t,- tHe
}:focluc_f cf x () and sin net 1§ an odd Function. ]
Further, for an odd function £}, f-t)= - f(£), an
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\

ya}(t) at f?(ﬂ it + j?&) dt = fa;(.fc) At +j:(+) At
-a o > 5

-

a o
= - fo F#) 4t + f p(t) & = o ‘—-—(Ez>
)
Eaua.-{:,-ons (Ei) po | (Ez) lead + b,= ©.

cos net is an even function, we get

Also, since
iz (73
2 f z(f) cos n&Q{: cl't = % Lx(t) cos ‘ﬂﬁst dt

oy = F
..'C'/z
For odd functions, = (-t) = - x(¥)- A

For oA s =
From EZ' (1'72)= Ly = % f'z(t) cos nast dt = }f j‘x(t) cos nawt dt

Since cos nwt s an evem function, cos (..nc.s{'>= cos (na&":);
the produd: of %(t) and  cos net is an odd  function.

Hence @y, = 0. .
Further, &ince sin nst is an odd function, x(t) sin nwt is

an even Jﬁ’unc{fon and hence

T2
b, = -fg: f/::(-f;) sin net dt
)
7 4\7‘({-)
, @ _A , o_{-‘bs% — A
T
x@®)=] A ,Z<tzv (@) = 7 >t
£ ik
A, osts% 4‘-?‘(&)
A % -
x('b—)'-' -A, g‘ﬁts—f‘ (b) = Z, =t
| -A
A, Tst=T A% (t)
, <t=s© : ‘ l
x®) = 0, ost= 72 (c) o L ot
2k, L=2t=T7T % *
= (t)
JA, 0 t2 = (ZA
xG;): " 37 (c” et
s TR o o
37 < t2 T
2A, = -
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(@) x(=€)=-x(t) ., odd Function , hence a,a_«:@ =g

7
. T 2
b = -%',- jx(-f:) sin n@t-#:%[—-ﬁs me net-dt + A S;,n nwot At:)
e
e 1 cos nwl T“*”t Wi 2A /- oS nost 27
= T( A + = n oS s
& (2 ces NTT — cos O — cos zm‘r)
(== i , 't
_ 4-A sin (2n-1) &
xt) = 22 Z G
(b) %(’_15> = x(¢) , even _-Funcf:‘on . f\ence by =@
(4
o
.. = z \ - — }: @]
N A LI OO MR W
9 T
On = T fx(t) cos ncot.df
) % P -
= _z.i... sin nwt _ sin nwt + Sin nest ]
T ndd o Y 3"‘:/4
= _f‘-—[z Se'nﬂ—ZSl'n EiL 4+ Sin ZT‘FT‘i]: 4A/THT for N= {3y o
nr - A =37, 1,---
= Ak £ —quTforn'.l)J
: 4A = =) i 2T (n-0t
v Bt 5 =% = -—-—-‘-—'(2“_0 co o

T
© o= 2 () ar = &[0+ 24 @), 1 -2

(=]

T ' A iz
Qy, = '«ij =(t) cos nwt & = :5.92‘ Sin W3 ) o
)
_ 2 L . —- 4A (cos na.?t
bn'_{ j; z(-t) Sin nest A = n'—__-_a&’t' T/z
_ _ 4A (cos 2TTn — oS ra-n')
w7 _ 2T .
i 4 A Zm: i Bl (Lh——lvw'{: with &= A
x(t) = — = = (zn-1)

(al) x (-t) = x (), even function , tence b, =0

&, = %fl({—)&j_j 2 A ——a>+zA(’C'——§Z,_E>]:‘- 2
(@)

T 4 A . % - £ w
O = % j x(t) cos anwt 4t = nasz’]:ém "C‘Pt_)j + (;' e >§z?
o
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nwT n+1 £
oo o 2T (zZn—1{ _ ™
*(t) = i'___. = ( ) cos ("E‘ > with z/a-
! n=1 (2.]‘!-1)
. 'Jnc(f:)={Asm""";r,"t , o =t 5%
° 2= g 2 B
, z = ./
z 7 t\72
2 Tt z 2=
o= & [=®) o= 2A [ 7% 2 dt.—__%%ﬂ.(—.ﬁ_.cas? i
Q [#)
= 2A
s
2 %
G = & [ o st dt = 2R [Tt o mest o B2
o

o
sin (rn-f-n)w{? + S (m=-r) et ,
2

Ugrﬂﬁ the relai:on Sin mt . cos nwt =

Eg. (E1) can be rewritten as

TT/(;@
@y = _g. 5 [s;ﬂ (i.(.n)c.a{: + Sin (1-n) L&f] dt
e] W/C'S
when e A CUi= -% f sin st . dt = ©
cos(1+n)wf _ cos (1-n)wt Vs
when n=2,3,4,.. n= "[ (140)0 a-me .
Al esaT , s GoT]
B -rr[ 14n 1-n
o if n s odd
= .-___?;A ) ‘.
{ (n-D(n+ )T if m R

S:‘mi[a.r{j e )
by = —-%',— fﬁ:(f) sin neot dE = %‘l S’Z/Kfn ZTET"& cos w3t dE
o

S‘t%' [cos(j_an)w'é - 8 (140) asw’:] dt

- A
T g
=4, B 5
when j‘ (J.t - 2(.3{.') dt = F
e menits sy o & [t s Gemet (T
" = (1-n) & (1+n) W 5
x(t)= A L A snowt - 24 s cos nest
( > ™ T2 ! T Z ('nl_ij
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1]

il

zAt <tz =
= = ° 2
z
~2At oA, T2t 2T
7 %
T 2at
=-%—5-x({:)cH:=—%:f%ia‘_tit+f("*-%-+2:4>5t]
o 0 T "L"/z
T 21T g
A |7 _ 2l £ 4 2A- ¢ }
- T T 2 ba T 2 |z, 'C/z
_ 2T AT _ 3AT At’]r_ A
T T 4 4
2 © ot dt
= 7z 57:(%) cos M
° C
E 2A
'-‘-—%':[IT 2A £ cos noot clt+j6?t+2A)CO$ neot dt
[»] T %
Ty
2 | 2A J¢ 32 nwt 3 c,osnc.zst 72
=7 | T mes %6 .
. s
2 A sin nwt cos nwt 1% . A (_sfn nwt) ]
T i nes T Tt ” + N3 A
As T= E;.T_r-,
= £ __/_\__&_3__ —-—A—C‘—S—“——ﬁﬁ-— T ALD cos‘n'n]
Qn = ?[ﬂnzw Cos nTr —— —_—cyp cos 2TTn +—_r-r—n;;
4A
= 28 Ozsmr—i) i — o, - = & 5,
n? mw?
(w] N ‘ﬂ=244‘; 6y
i %
-%.— £x(t) sin nwt dt =2{:7 f ?-E{’l-&s{ﬂnw{:dt

o]
t"-z-é-f A) sin nwt At]
+£f2( = + 2 ) in n

T,
2a {_ tcosnwt | sionot | 72
o
t cos nwt + Sin nawt £ 2A (__ cos n&St) }
2,92 Y169
__A_coSnT\'+7:ﬁ.cos rz_u'lT_.._.cDSnTr_E;"_‘. cosznTr..i__'_?-_'E‘_cosnTt':[—o
ne n ne
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|
-~
>
ﬁl
N
(u o
N
o

"
o+
f
i
\*‘ M\i
>
d*d\)’ =
‘—1_
+
™
>
ENTS
N IN
e ot
NN
z |t

T

"z = Lz(t) cos nwt dt = %[%J; b o S 2l

T,
4A fsftrf cos nest dE L ,a f?/ cos nest dE
4

T gy
v (o3
4A t cosnwt dbt - 4A cos neot dt ]
T L/;'f/‘% L"/q—
2 [4A ¢ sinnot , cos nek Vo _ 4A {t Sin nt | cos nast T4
- ?[? { ree n?w? } T T nw WG [y

=
A (Si'n nt.S{'.

]

sin nwot % AA (, sinnwt  cos nwt
+ ZA e . + P 't + = Z —_
ne % T nes n“w 3T

A _ 2A nm (2A . A
- fﬁ[sm z +““9 e )T P T \Tre T Tere

A
: A 1A A InT A . 2
sin 3-“77(—3_6-4_.__2 _——-+£-——>+C05‘—' T n*@

+ 2z nes n 9 nts 2 -Trnq'@
A 1A
4 CoS 2T N (1_7;—“—1-0—9)_ cos O(Wn‘uJ)] - 0
- o4
¥ 4
l:!n e B j ?C(‘L') Sin nCrB't' dt = —_g_',— [4;& 5 t sin net . dt - 4Af‘\‘.' sin nt .dt
T J, i %
7 T fuf
+ 2A Ja /;m neet At + 4A J- t s ndt.df 4A f sin nwt CHS]
t © oy 2%
% = 1
_ 2 |4A ——jf—-'?_ sin nwt - % ces nuit } L _ 4A { sin nwt
=Tl T (@ 9 & z
€ + N -~ SN AT E aflt ) = sin n®
'?{Ewnwt}gzl +2"A( nes )7::1;—_ & T{‘-cal '



= _ T
.- cos nwt Gl cos nest T= o5
nes -4A (- —
3z - 3T nes 3T _ 3T

& -z = T e

4A . Am . 3anT o & wm is evwen
= =T (Sln —i— — Sin 7 ) -

?T n SA Yl.-_i

= (—j_) ¢ if nois odd

@y= A s N\ ¢

2 = e z Sin NS
4 Sy

7‘(":)'-7 A(i—'_tf) y 8 2 £ £ %
: T —.‘tl 2

Ly = —?‘Ey:z:(-t)dt: E%éj;?(i-—%)d_f _—__2_'?.( ﬁ) =

el
=]
T . 2T
O gy == '%-‘ fz(-!:) cos nwt df = gAYy nest -t s nwot _ ces nest o
o T nwd T nl 7 ntes’
=0 ' z'rr/
¥ cos vt | £ s nt _ sin ndt \T/E
by = _%f x(£) Sin ntot df =-g$(— W T we tn’as")
o
_ A
T
o sin hwt
) A A
Lox(ty= A+ & = T
n=4
'The truncated series of k terms can be denoted as
1.112 B
_ a9 k _ kE
x(t)=—2—-+Za.ncosnwt—i-zbnsinnwt (1)
n=1 n=1

with X(t) denoting an approximation to the exact x(t) given by Ea. (1.70). The
error to be minimized is given by

7w

E= [ e(t)dt (2)
—7fw

where e(t) = x(t) — X(t) (3)

and x(t) is the exact value (with infinite series on the right hand side of Eq. (1)).
Treating E as a function of the unknowns ap and by, it can be minimized by

setting:
7 fw
% =92 _f/ {x(t) = g‘(t)} [— cos o W t] dt =0 (4)
5E mw B )
agn =2 _{/w {x(t) - X(t)} {— sinn w t] dt =0 (5)
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Rearranging Eq. (4) gives

Using orthogonalty property, the right hand side of Eq.

This leads to

7 fw

i

—7fw

T /w

—7[w

0 form=n

x(t)cosnwtdb = [ Xt)cosnwt dt

T jw
[ X{t)cosnwtdb= a, T
—rfw " form=n
wfw e
a, T
[ x(t)cosnwtdt=—"—o
—r fw e '
- mfw
or E.n=—ﬂ_— f x(t) cosn wtdt ; n=0,1,2, ..,k

—rfw

In a similar manner, we can derive:

wfw

[ x({t)snnwtdt ; n

w

ol

n

—irfw

It can be observed that Egs. (9) and (10) are simlar to those of Egs. (E.3) and

(8)

(6) can be expressed as

(7)

(8)

(9)

(10)

(E.4).
! y o L__.n=i o n=z ... T
¢ ;t"’ Ex*' :x. CQSEE.-—{:‘ =; :a‘nzlr-é!-z-ms,‘!_r_h x; sm"—w—t-‘ ?'&Lcos emts x. Sin

i : P o2 032 | ¢ a2 032 | D 0.32

. i ! * i
1 looz ! @ | #3149 souuga | 6-3637 63640 | 3-nukl 2-3149
2 iv'o‘r P13 Logoar24 9.1924 1 o0+0cco [3:0000 |—9- (924 9-{723
3 10106 7"7 I G.5056 {5.7060 !_{?_.ozo? 120208 l—I57aEe — & 5057
4 ;,0'03 :25 ! @roo000 29:0000 ! ~29.5000 ©0.0000 : g:c0o0e -29-0000
o j43 |~ 164556 39:7267 | -30.4053 ~36. 4059 139. 7271  — (6,454 %
6 oz |59 i—4CT1A5 AL T | _0:0000 -59:0000) 4I-7I8T 417179
7 lot4 163 1-sg2045 24:1087 | 44.5482 —44 5472 -24.010( 582040
8 !.O'(G | 57 | ~5Twoose  ocgoao | 57-0000  Ow02am 1—-57 0000 0:0000
9 1018 149 | ~45.2700 —{8-T5(8 ; 34+ 6477 346487 - 18-7505 =45.2705
la l0-20 535 i_zq.VqS'S -24.7487! 0.0000 350000 | qu—m‘?s UL RE
1] :0'11 }35 |=13.3936 -32.33553 ‘-—24&.7493 24,7482 : 32.3354 133950
2 ILII‘J"J‘I P41 | o.0008 —4l:0000 |-4l.0000 orgooe | c.coaa 4li0cca
H llo-QG 24-7 i i7.9966 —43.4221 | —33.2333 _33.23q7:_43_4229 (79847
l4,ozs :41 : 289917 —28:9311 | o.0000 —4'-00001—28,9?05 _25.9923
5 il e e & ki — 43747 L 21927 —T920 | 4.9755 —i2-0l02
L il TR Tt st v O ik | 770000 0:0000
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g( ) 55§ - 166.7897 —31:3278 —.6552 —9(-5984 —43-2234 26.523|
i=1

1 :
i Z( )69.75 —20-3487 =3:7(60 -1 45679 -iie44 98 —-5.4029 3.3535
g ¢ =1
'Speed joo rpm b pressisre. b (t)

In o winute, w Fom{' Wt(

be su.!:ueei:e.cl ts the ik P‘“’""
maximum pressure » A=
quxz (0o PSI'-J foo x.Lf:

400 times. Hence 0

z T 2E v 3T
- = = time, t
PEF[OC!:: T o= _G_O_ =0.|5 sec.
4do0
23
b (4 { A , octs T
°© T =t = T
2 ¢ 2 iz A
= 7 J; P(t) df = E'— ({' L m g = sE b
% . Tl :
2 2A sin mt A . mTl
DJ el e ———— [ L
m= = ED};( y cos mest dt = = ( — )a £ sin —
2 T 2
Lh‘\: T J. ?(‘f) sin mat dE = - 2';,\ (EOS mat /4 = - A casﬂ.—i)
) T
Evaluation of a@p and bm
-t Twm=1 "‘.'"_"-51;'{""“""II“"_"__'B_"""""“
i 5 1 e e g RS A_ ___________ y i T
= D g D = A I — ; - _ oy D
Qy Sim —--1_1*_ : wl__é__?r..sin'?'f'__g E a_,3_,_§_TFS| 7
= 301:8309 psi | '. 2 e s 153 }ssi
_ _A gL : - _ i = i Lot 28
F(@{?_D | by = 27 (=t ) | ( >
=i.9309 psi _=30830% bsi ) T lo:gles PiL.

8

'P(T’:) = E;f- + = Cau.m ety mugk w0 by, Sih mcﬂf) psi
m=1
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N

SPEEG{=’ZOO rpm A pressure , F(-!:)

L-. o wminute, as ch+ w;f A—P
be su!:Jec&gc( + the ~ Pmax _‘

maximum bressure » A=

Fmax: (0o FS‘.)'ZOO x6 =

1266 timeS. Hence 0 %— T E ew .3‘-*5 time, t
FEI’L.CJCl: T = _.6_?— =0.¢5 sec.
{2oo

f,(.,g)z{A , o=t < T
°© , Ty =+=7

- 2 pE Z
Qe = "r,;-_{ PE) AE = E‘j—" (é)o = -'2— = 50 psi
& \ T
o= 2 - 2ZA (TR = A sinml
m= = ] p(t) cos rno?'t‘: dt = = =— . sin =
2 % 2z
bz 2 [Tty snmest db o - 28 (smafYUA A (o mE )
=} m L3 o mm
Evaluation of @y, and bm
T Tm=d ".'"“'r_n";-'z"'"""“.—"'“{n':"_'_"“_""“
o N SRS UL« e O S
- A . T : A 3T
wlﬂ?sln-zz_’_a‘ﬂ.: ; G-u._,_:-?—_ﬁ_-sm"n'rzo ': a"?:‘g'?s'”—.'z_
= 31-8309 pst i : = -(0-6l03 ps¢
. 1 |l
ry o 2% g1 ' __A \ - _A 3T
| 1
3 g

= 3|, 9309 psi

8

'P('IE) = QJ___; + Z; Cwm cos ma}t + Eh‘l Sin h‘lﬂf) F"’:

i i '_ n=1 ! n=2 t n=3
i |, e eme—e—e- pmm——————— tmm— = —_——————— e —— == — - — - — =
Wil t; r Mg, $: | 4t i el 6wl
| 1 . [ . 2L, o .5 v 1 s ] . 4T% L . i
| : Meg o8 T Me: ma olz I; My ooiz} € gtz M Glorzy £ 002
] ] [} ]
T 1} [ ) i !
i1 0.0005 ! 770 | 743-7627 1 199.29(2 EGGG 8391 '385 0010 Sy et T2 | 5htes 4731
2 ,0.00l0 | 8I0 | 70(-4802 '405’ 0007 4047988 701 -=|=8r2' 0:0000 1|:S’|'c3-oooc:'
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1 lo.o25, 9.00 |  8.69 2.33 1 7.79  4.50 ! 6.36  6.36
2 1p.0Scr 17.00 1 14.72 8.50 ('.Jf—S 50 14.72 1+ 0.00 17.00
3 'o.075! 23.00, 16.26 [16.26 | 0.00 23.00 ' -16.26 16.26
4 Se.rsol 25.00 1 12,50 |21.65 1-12,50 21.65 | =25.00  0.00
s lo.,iz5' 26.00' 6.73 |25.11 |-22.52 13.00 , -18.38 -18.38
6 l'o.50, 28.00, 0.00 [28.00 (-28.00 0.00 ; 0.00 -28.00
7 'g.75 1 33.00!' -8.54 [31.88 T 78,58 =16.50 + 23.33 =-23.33
8 'g.200, 35.00, -17.50 |30.31 | -17.50 -30.31, 35.00 _ 0.00
9 lor225) 34.00 | -24.04 |24.04 0.00 -34.00 ! 24.04  24.04
10 'o.250) 29.00 | -25.11 |14.50 ) 14.50 -25.11 , __0.00 29.00
| =
11 o, 75! 24.00 ) -23.18 .21 T 20.78 =12.00 ' -16.97 16.97
12 l0+300: 26.00 , -26.00 | 0.00 . | 26.00  0.00 , -26.00 _ 0.00
13 1g,325! 32.00 | -30.91 |-8.28 7.y T 16.00 T =22.63 =22.63
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15 1g.375 ! 18.00 1 -12.73 12.73 1 0.00 18.00 | 12. 73 -12.73
16 io0.400, 8.00 1 =4.00 | -6.93 1 -4.00 6.93 | 8.00 _0.00
17 :o 425 =-5.00 , 1.29 | 4.83 TEI3 -2.50 | -3.54 -3.54
18 'o.450, -14.00 ' 0,00 16.00 ' 14.00 _ 0.00 . . 0.00 =14.00--
19 | o.475 )+ -28.00 | ~-7.25 |27.05 |T24.25  14.00 | -19.80 -19.80
20 1 g.500 ' -37.00 , -18.50 | 32.04 " 18.50  32.04 , 37.00 0.00
21 !o.,525 ), -33.00 ! -23.33 | 23.33 ! 0.00 33.00 : 23.33 23.34
22 1o.550 ' -29.00 ! -25.11 i 14.50 1+ =-14.50 25.11 ; 0.00 29.00
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23 ! g.575 ) -22.00 ; -21.25 5.69 !-19.05 11.00 i -15.56  15.56

2 1o.gooy 000 ! 000 000 § 000 000, 000 000 __
24

=() 939.00 -241.90 282.30  39.72 147.18  45.26 -4.88

+=1

j

2 B f' ) 19.92 -20.16 23.53 331 12.26 377 -0.41
%‘:=2=====’:::‘::::==::::=:=.—_"::=:::::::::::::: ———————————————————————————————

$Programl.m

$Run "Programl.m" in MATLAB Command Window.

Programl.m and forier.m should be

%4in the same file folder, and sé&t the path to this folder
sFollowing 6 lines contain problem-dependent data

n=16;
m=3;
time=0.32;

x=[9 13 17 29 43 59 63 57 49 35 35 41 47 41 13 7]1;

£=0.02:0.02:0.32;

%end of problem-dependent data
sFollowing line calls subroutine forier.m

[azero,a,b,xsin,xcos]=forier(n,m,time,x,t);

g fpollowing outputs data
fprintf (‘Fouriexr series expansion of the function wle) g’} ;
fprintf(’'Data:\n\n');

fprintf (‘Number of data points in one cycle

Epridaef (* \nf);

fprintf (‘Number of Fourier Coefficients required =

fprintf(’ \n’);

fprintf ('Time period = %8.6e \n\n’,time);

fprintf (/Station i

fprintf (' Time at station i: E(i)

fprintf('x(1) at t(i)")

£or d=l:n =

vl

)

= %3

JOE \g*,n);

%£3.0f \n’,m);

fprintf (’\n %8d%25.6e%27.6e ‘,i,t(i),x(1));

end

fprddtd (¢ \n\nt)

fprintf ('Results of Fourier analysis:\n\n');

fprintf ('azero=%8.6e \n\n’,azero) ;

fprintf (‘values of 1

for i=l:m
fprintf (*%10.0g
end

ali)

b{iy\n');

%8.6e%20.62 \n’,i,a(i),b(i));
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eSubroutine forier.m

function [azero,a,b,xain,xcos]=forier{n,m,time,x,t)
pi=3.1416;
sumz=0.0;
for i=1:n
sumz=sumz+x (i) ;

end
azero=2.0*sumz/n;
for ii=l:m

sums=0.0;
sumc=0.0;
for i=l:n

theta=2.0*pi*t{i)*ii/time;
xcos (1)=x(1i) *cos(theta) ;
xsin(i)=x(1i)*sin(theta);
sums=sums+xsin (i) ;

sumc=sumc+xcos (1) ;

end

a(ii)=2.0*sumc/n;
b(ii)=2.0*sums/n;

end

>> programl

Fourier series expansion of

the function x(t)

Data:
Number of data points in one cycle = 16
Number of Fourier Coefficients regquired = 3
Time period = 3.200000e-001
Station i Time at station i: t(i) x(i) at t({i)
1 2.000000e-002 8.000000e+000
2 4.000000e-002 1.300000e+001
3 G.UQDDDGE—DDZ 1.700000e+001
4 8.000000e-002 2.900000e+001
5 1.000000e-001 4,300000e+001
6 1.200000e-001 5.900000e+001
7 1.400000e-001 6.300000e+001
8 1.600000e-001 5.700000e+001
9 1.800000e-001 4,800000e+001
10 2.000000e-001 3.500000e+001
11 2.200000e-001 3.500000e+001
12 2.400000e-001 4,100000e+001
13 2.600000e-001 4,700000e+001
14 2.800000e-001 4.,100000e+001
15 3.000000e-001 1.300000e+001
186 3.200000e-001 7.000000e+000
Results of Fourier analysis:
azero=6.275000e+001
values of i a(i) b(i)
1 -2.084870e+001 -3.815885e+000
2 -1.456887e+000 -1.144579e+001
3 -5.402900e+000 3.353473=+000
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g Exl 119m
for i = 1:; 101
£(i) = 0.32*%(i-1)/100;
x(i) = 34.875 - 20.8487*cos (19.635%t (1)) - 3.5160%sin(19.635%t (1)) ...
— 1.4569%*cos (39.27*t(i)) - 11.4498%sin(39.27*c{i)) ...
- 5.4029*cos (58.905*%t (1)) + 3.3535%5in(58.905*%t (1))
end
plot (t,x)
xlabel('t’);
ylabel ("x=(t) ')

70 T T T T T

x(t)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

al = 2;
r0 = 0.5;
First case, r changes
or 1 = 1:101
r(i) = 0.5 + (i-1)*0.5/100;
cl(i) = ( 6%pi*u*l/(h0~3) ) * ( (a0 - HO/2) %2 — w(d)"2 ) .w-
% | (aDA2~r(i)“2)/(aO—hO/2) - h0 );
end .
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% Second case, h changes
for L = L0301
h(i) = 0.05 + (i-1)*0.05/100;

c2(4) = ( 6*pi*u*l/(h{i)~3) ) * ( (a0 - h(i}/2)"2 - z0"2 )...

* ( (a0~2-r0~2)/(a0-h(i)/2} - h(i) ):

end
& Third case, a changes
for i = b0l

a(i) = 2 + (i-1)*2/100;

c3(i) = ( 6*pi*u*1l/(h073) ) * ( (a(i) - ho/2)7"2 - x07°2 )..

* ( (a(i)~2-x022)/(a(i)-h0/2) - hO0 );

end
subplot (311) ;
plotiz,el) ;
xlabel('x');
ylabel(‘c(x)');
subplot (312) ;
plot(h,;c8)5
xlabel('h');
ylabél('c(h)’);
subplot (313);
plot({a,c3);
xlabel(’'a’);
vlabel(’'cla)’);

c(h)
na

D 1 1 1 1 | L] L] : ¥ L]
0.9(51063.055 0.06 0.085 0.07 0.075 0.08 0.085 0.09 0.095 0.1
) h

T T T T T T T

c(a)
"

2 22 24 26 28 3 3.2 34 36 3.8 4
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g BEx1_121m
Fgr i = 1:101
x(i) = (i-1)*4/100;

ka(i) = 1000*x(i) - 100*x(i)"2;
Xb(i) = 500 + 500 *x(i)"2;

end

plot(x,ka);

hold on

wlak e, STy
xlabel('x");
ylabel(’ka: solid line Xb: dash line’);

9000 T 1 | T

8000

7000

6000

o [9)]
(=) Q
o o
[e=] o

T T

la: solid line kb: dash line

W
o
[
(=]

T
hN

2000 5

1000 F -

—"F‘

5 Ex1_122.m

for i = 1:201
£(i) = (i-1)*30/200;
x1L Y = 3%sin(30%*t{1));
x¥2 (1) = 3*=sin(29%t(i));
x=(1) = x1 (i) + =2({i);

end

plot(t,=x);

xlabel ("t");

vlabel ('x');
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x4 = rel —rcose -l wsd =r+h-rcos wt — i —sin?g (€))

But l$¢‘n¢ = Y sin B H) cos #:_ G-— -;—: S'i'nzfﬁ't>-é (EZ>

Using (Ez) in (El)! ?LP = r+£ — T cos et — £ (f— —;—:— S:'nz&«"'{—'>i (E3>
€,

Let —Z— = small (4 2%) Using Y1- € = {-3 (E3) becomes

Ky % r(H—?ri- _'r(r_asw‘&-f-z%c,os zcst) (e4)
(0-9 EZ.CE‘#) gives }1,-: xi‘;—' r (r_f.. ﬁ)z —-T‘(Coé‘ wt -{-ZL‘L f—coslﬁd‘f)
- (Es>
IDC ——E—' (s VErj Sma.LL, }P o Gl (<5 et %‘Aa_}rmgﬂf.(_ motl‘ﬂﬂ.

(b)'i? have a.mplf{—ucla of sgecond  farmonic smaller then that

of first harmonic in Ep- ( Es), We need to have
LY L . T = A iy ‘9%2: .25

—_—

z T < z8-, v&v T T 35 °

once the amplitude of cecond  harmonic s smaller by o

Factor of 25, 4w amplitudes  of higher harmonics arising
from the expansion of sgua_re_rom‘:— term in (53) are E?&Fecfﬁc‘
ts be still smaller.
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1.124

Unbalanced force developed = P = 2 m W? r cos wt, range of force = 0 - 100 N,
range of frequency = 25 - 50 Hz = 157.08 - 314.16 rad/sec.
Parameters to be determined: m, r, w.
Let r — 0.1 m. To generate 100 N force at 25 Hz, set:
P,. =100 =2 m (157.08)* (0.1)
which gives
100
m = -
2 (157.08)% (0.1)
To generate 100 N force at 50 Hz, set:

— 0.0202641 kg = 20.2641 g

P,. = 100 = 2 m (314.16)* (0.1)
which yields

m = 1002 = 0.0050660 kg = 5.0660 g
2 (314.16)? (0.1)

Goal: Weight to be maintained at 10 £ 0.1 b /min

Parameters to be determined: Angular velocity of crank (w), lengths of crank and
connecting rod, dimensions of the wedge, dimensions of the orifice in the hopper,
dimensions of the actuating rod, and dimensions of the lever arrangement.

Given: Density of the material in the hopper.

Procedure:

Select w based on available motor. Determine the dimensions of the orifice in the
hopper which delivers approximately 10 1b/min (assuming continuous flow of
material ). For trial dimensions of the wedge, determine the increase/decrease in
the size (diameter) of the orifice. Choose the final dimensions of the wedge such
that the material flow rate delivered by the orifice lies within the specified range.

Force to be applied = 200 lb, frequency = 50 Hz = 314.16 rad/sec.

Procedure:

1. Select a motor that provides, either directly or through a gear system, the
desired frequency. Assume that it is connected to the cam.

Z.V,S'etermine the sizes and dimensions of the plate cam and the roller.
3. Choose the dimensions of the follower.

4. Select the weight as 200 Ib. From the geometry, determine the range of
displacement (vertical motion) of the weight.

5. Determine the force exerted due to the falling weight.
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Considerations to be taken in the design of vibratory bowl fee}‘ders:
1. Suitable design of the electromagnet and its coil.
9. Radius of the bowl and the pitch of the spiral (helical) delivery track.

3. Tooling to be fixed along the spiral track to reject the defective or out-of-
tolerance or incorrectly oriented parts.

4. Design of elastic supports.

5. Size and location of the outlet.

@ Axial spring constant of each tube = k = -ézE—}
: Let diameter of each tube be 0.01 m (1 cm) with thickness 0.001 m (1 mm). Then
A= % (D? — d?) = % (0.012 = 0.008%) = 28.27 (107°) m”

This gives

K= (28.27 (10—5); (2.07 (10™)) _ 20.26 (10°) N/m

Since 76 tubes are in parallel, we have the total axial stiffness as:
keq = 76 k = (76) (29.26 (10%)) = 222.38 (10°) N/m

The polar area moment of inertia of each tube is
s T
7 (D* —d*) = = (0.01* —0.008%) = 580 (107°) m*
Tt —dt) =g ( ) =580 (107%) m

Torsional stiffness of each tube is given by

GJ _ (79.6154 (10°
C? @

For 76 tubes in parallel, equivalent torsional stiffness will be:

ke = (76) (231 (10%)) = 17.56 (10°) N—m/rad

22) (580 {10_8)) = 231 (103) N—m/rad
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Chapter 2

Free Vibration of Single Degree
of Freedom Systems

@ ¢ = 30 ¢ |
2 5 4
W, = _2;) = —9—5—.&)/2 — 442945 rad/sec = 7-0497 Hz

gs g xw0?

T, = o0-2l sec = 2T /L:— , S/ = o021 VE /277'

(i) (Tn)new = 2TTm _ awim ) o 2|J'—>
|"kneu 1.5-1( m_\ = O0|7|5 sec.
(,‘;) (Tn> _ 2mJm _ 2mm _ o (o 21J—’> — 0+2970 Sec.
new lknew \/‘—‘—" Jo 5k
@ W, = 62.832 radfsec = B, & = &/e2 g5
when spring constant s reduced , s, decreases.
(@) e = O55 @, = 34:5576 redfiec = [Eoen ' [w-ioo
new ™o m

K- 800 ,42.936 = 34-5576 «-800 _ .5
e g V& =2

#—800 _ (0.55)2 = 03025

*
% = 1146-9534 N/m
2 469534
= Jk/¢2. 932 ; gz RS ChegBE = SR SHiC
Jm /(’2 £ / 3947-8602

m = 0-2905% kg,

k= foo/(lm) = 10000 N/a
F \/— (4xw )1/2 B 22«3

21

= 63:-2456 rad/sec

_ 2T _ 6-2932 _ _, LEEN
Tw =N e = © 0993 sec
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@ 2000
m= —.
386.4

Let wp, = 7.5 rad/sec.

w2
2000

ke =m wi = [386 4] (7.5)2 =291.1491 Ibfin =4 k

where k is the stiffness of the air spring.

Thus k = &1‘}4—9-1- = 72.7873 1b fin.
x = A cos (Wt -g) , x=~—-6,A sin (W,t=2),
x = — A cos (Wt —4,)
@ WA= 0d e ;3 To= =25, w,= ad
h A = : v = o s O, = 31416 rad/sec
A = o041/, = 0-03183 m
@) X, = x(t=0) = A cos (—¢o) = 002 m
.02
costg) = 525 = 0.6283
g = 54-0724°
k) %, = 7"C("5~“-‘=) = -6, A ,s:n(—-;g)z —9-1 Sin (—51-0724")
= 007779 m/sgc
b _ 2
©) 9lea..rc - = (3"4"6) (0'03139> = 0:314151 m/sed

@ For Smeall a.ngula.r rotation of bar P& about P,
Z @‘lz)eg (efs )z = "E ki (aff)z‘l' T k3 (912 >2
- (kfﬂe,g 7 )/g;

Let kgg = overall Spring constent ot @ .

! { |

e N —

Keg ©  (Kka)e *3 f
(k’z> 4 . {k{ > + Ky = }#3
Ty = = = 9, 2 2
(kiz)e, + 2 * —ﬂ_';> T ke (%) + K3
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2 2
oo [Fo o [ Hrehxhats b
n -
m

(*k,f,z—i- Ko 1224- *3 E—:')

‘m= 2000 kg , §; = 0:02 m
)’/z

i ;
W, = (9/8“:) = %7%%_" = 221472 rad/sec
, Let x be measured from
the positl’on of wmass at which
the springs are unstretched. W sin 6

Ezua:l‘:a‘on of motion 1S

mx = —Hky(z+ G5 ) = %y (2 %4) v W“’se
+ W sn e -= " (E')

where 5‘5,& (%, + k:_) = W“ﬁn e - \j—'kl—Tf‘—k_Z\
T“tu.s Es- (Ef) Lecoames ™ % 4+ (‘k‘-f-kz) x=0 = wrl= m J

 mE 7 (005 (30 (10%)

6 30 (12)
163.6250 1b/in

ko

A E
L (25) _ 136.3542 Ib/in
2z 30

w ; ~
ke = kq +ky = 163.6250 + 136.3542 = 299.9792 Ib/in s e B TR

Let x be measured from the unstretched length of the springs. The equation of motion is:

mx = — (k; +ka) (x + 6g) + W sin 0
where (k; + kg) 8 =W sin ¢

i.e., mii-l—(kl +k2)x=0

Thus the natural frequency of vibration of the cart is given by

Iy +ky .\/599.9792 (386.4)
Wy = - — = =4.814
n v — =300 8 rad [sec

@ Weight of electronic chassis = 500 N. To be able to use the unmit in a vibratory

environment with a frequency range of 0 - 5 Hz, its natural frequency must be away
from the frequency of the environment. Let the natural frequency be w, = 10 Hz =

62.832 rad/sec. Since
wy = \/ K _g2.832
m

we have



2 [ﬂ] (62.832)? = 20.1857 (10*) N/m =4k

kg =m Wy = o081
so that k — spring constant of each spring = 50,464.25 N/m. For a helical spring,
_ Ga
8 nD?
Assuming the material of springs as steel with G = 80 (109) Pa, n = 5 and d = 0.005
m, we find
9 4
k = 50,464.25 = 80 (10°) (0.005)
8 (5) D?
This gives
-3
D? = s o) 24,770.0 (10~%) or D = 0.0291492 m = 2.91492 cm
50464.25 _

(i) with springs % and *, : :j ===—""_3 1 '
Lat L. . 55 ’ ?ﬁ be deflections \— ou————l i_l'"“‘\l
of beam ot distances a, by 2 i b !

From ch.XE.cl enc;-
e z | 2
z (kfi‘-)e& #H = £ K fo+ 3 ke Yy
. 2 XL \2
L (Kin)ey = * (‘;‘g> + Ka "‘—> -
= _F_ff a3 f— = ———=x__
= e € ? = ot -“H\
- = — 3£ - =
@ = Q » y,p,a GET ( )
&
@ x= b % = FEb oy
? b GET (s )
@ax=1, H= FL
3EI
2 2 >
»-— Ji # where LT e

[*1(351)w"(3f—a«)2+ x, (3e1) b* (34-4)° :)z'

mﬂg{-k, o? (3!'-—@)7'4— ko b¥ (30-b)* + 12 €2 L3}

(H) without SPrfan ‘k,ra.hd K,

_ ,’kbe e "3&'1 \
Wn = ma.. = TE
4

hag
2




Z

Let =x,, % = d.‘spla—cemenfs of
PulLEJS' {, 2
A= 2%+ 2 %y I (-7
Let P = tension In rope. P P
For egui Lbrium of pulley 1, f""a
2P = 4 %, —-- () YT
For epuilibrium of pulley 2, ky
2P= %y %3  —--- (E3) &
where t=;"€+é‘;=z‘:, £, = 24K P
and K,z K+ K= 2%

Cornlm'm'ns Egs‘(E;) to (E3) : | o
)
%= 2% + 2% = 2(%)+2(%):4P(§+;>= e

Let ‘kea = e&u.fva,(.en‘b SFrinj cong{;a_n{: Of -{;he S'ﬁgfem.'

_ P _ %
ke& - -_i— - -z*— re
Eﬁua:f:n'o’n O:F 'm.o‘\':'forl O; waLs Wl mE 4+ k&ﬂ x =0

v.n w.n: k & —_— _15—
\J ™ - &Gm

For 2 displacement of x of mass m, pulleys

1, 2 and 3 undergo displacements of 2x, 4x
and 8x, respectively. The equation of motion

of mass m can be written as

m%+Fy=0 (1) B

where Fg =2 F, =4 F, =8 F3 as shown in figure.
Since F3 = (8x) k, Eq. (1) can be rewritten as

m¥%+8F; =8(8k)=0 (2)

from which we can find

Wy = —— g — (3)
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(@) W,= J4%/m

b w,= VARl

E\'ll_".'_lgil: _c_n:p_c_“j:fons:
Velocf{:_lj of Jca.u.fng mass m = V= \J?_g
H=0 ot Atatic &5(_4.4!]&!’«.“."\ Fos"n‘::an

o= w(t=0) =_ w_'____e;z;"t = - _:__i

Conservation of momentum: (f"“"‘“'o 3 =
_ o =

AC

( n—_,ifz:___z}l)

moa = m V23l

ie iGme) = gk

» M+m
Com'n{e{:e solution: » ®)= A, sm(w + + ,d)
where Ao = J;oz.f. %_)2— e m } m"}f
e V e k" 24 (M+™)
and 1 (%ol
¢a = ) 'Ea.m
( sl ® ( M+
(2) Velocity of anvil = v = 50 ft/sec = 600 in/sec. x = 0 at static equilibrium.
position.
weight meg
Conservation of momentum:
M4 m)x=mv or X =x(t=0)= Mm+vm

Natural frequency:
4k

“o = M+m

Complete solution:
x(t) = Ag sin (wn t + ¢0o)

where

Ao =1x§ +|— ={

Xp Wn » / g VM +m
g = tan™? ; =tan ! |- & 4k (M + m) | - tan™! |—
° Xg _ 4k M + m) mv v V4 k



Since v = 600, m = 12/386.4, M = 100/386.4, k = 100, we find
1

2 2 .
_{ 12 (386.4) } +112 (ﬁﬂo)l 386.4 =1.7308 in

4 (100) (386.4) 386.4 | 112 (400)

¢o =tan™! |— 380 V1l —tan~! (— 0.01734) = — 0.9934 deg
\/386.4 (600) V400

(b) x = 0 at static equilibrium position: Xo = x(t=0) =

momentum gives:

Mx,=mV or )';D=5;(t=0)=_mﬁv_

Complete solution:

x(t) =A(; sin (wy t + bo)

0. Conservation of

where
1
21—
z 2 X,
Ay =1{x% + *o e M| myv o 12 (600) "V 386.4
i : =1.8314 i
Wy M? 4k i 38644 (100) (100)
Xq W
go = tan™’ ” —| =tan™ (0) =0
36, T
Byt el E - 48, L
@ i 113 (a..‘t t‘P) : ‘kz = _._..,(_2;——2- (a;k rm'cldie)
‘kez[ = 'kt - ‘kz_ o
G, = *;ﬁ = 3‘;:' 43;,_ >
w

— AE . T (oot 1§ 2+
k T - {4_(001)2}{2 07 x10° } _ 0'8129)“05 N/
- ,

m= {000 1&3 4/
.8429 x©0° 2z
WOy, = k= (° mooxw ) = 2%8-5114 ra.Cl/Sec

haal

io,-'- 7 Tn/,a 4 xg = O (sudden[j Sl‘oppea’

while it has velocit‘:y)

™ 2T
enoc‘ nsk = = 2= _
P of ensuing vibration T Go = 7zsna = O 12204 jec

Amrln‘:ucle = A= Io/(gn = 2/23 51t = 0:Q7015 ™

. WS,= 2 Hz = 12-5664 ra,d/,gec = jE
™

Jk = 2. 5664— vm

/ = J-;-t-—i. = 62832 T‘QJ‘/AEC
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Jk = 62832 Jwm+i
= 12.5664 Jm

Jm+i =z Im » m‘—“-d-s'-kg

2
,k:_(m:sééti—) w= 52:¢3814 N/m

Cable stiffness = k = i L % {Z (0.01)2] 2.07 (10'!) = 4.0644 (10°) N/m

4
Tn=0.1=_1—=_2.l
fan W
W=t g0 = B,
) " m
Hence
8
m=_k2___..i-ﬂﬁ;4i(_12°_)-=1029.53 kg
wa (20 m)
b= Zf sin &

Neglect masses of Links.

@) keg= x () (41;14;85) t—i ,i.‘
* (%7e) "

"ke \[-k 9 Ccosec® 6 " $rom solution
( ODC Problem f.g)
(L) (..J since K = K.
W l i

y=’\/€T—(€sin9—x)2 — ¢ cos 0 = Ve cos® 6 —x® +2€xsinf —¢cos b

2 2 £ xsin @
=t’cost9v1— E + — € 8
2% cos® B £2 cos® @ co8

1 1 1
i ==k vV+=k 2
9 eq ¥ 2 17 +2 2 Y

where
1] x* 1 2¢€xsiné
~fcosf |l —— + = — g
cos 2 £2 cos® g & c0529] cos
ﬁxsm9=xtan8
cos &
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Thus ke can be expressed as

Equation of motion:

mX +keqx=0

wn=vk;q = (k_l_—;_vl_{_ﬂ_g tan @ —L
/\([SP‘" e_x)

T

Natural frequency:

@ (a) Neglect masses of rigid links. Let x = displacement of W. Springs are in series.

k
keq=_2"'

Equation of motion:

mX +keggx=0

N z’\/ki='\/_k_
> m 2 m

(b) Under a displacement of x of mass, each spring will be compressed by an an
amount:

Natual frequency:

Equation of motion:

Natural frequency:




F
Fi=Hh= *k!x(_a—s‘f—sa F . ]
Fo= Fy= 4, x cos 135° 4] 5P
° x
E= force a—Lonj ® o= R @54‘504- F, ¢s135 1 fm %,
+F w545° + Ry 8135 Fs

= 2% (% cos®45° + K, os*135°)
F

’kei:: T 2('#2'“" fzi)= k,+ kg

€

Ezua:i:ubn of motion: ™ X + (&, + k_,,_) x = 0

Let 0(; denote the a.ngle
Tade f;y_ i Apring with
vespect to X axis.

Let x= C!tS'f(GI-C-ETner\-‘E of
mass aj.o'nj, the J.uu_zﬁ‘a'n

> X
a’-'-t—vn.v_sl Iv} o .
e ‘ke Cg}uvaw Apring
Co‘n.S"l:a.n‘t The ez/‘;m_ﬂm
o plamticd ew?&«! Fives
2 — ” x’ Cd's 6-—0{,: z
-g-k,ﬁx_%_z_‘ih{ ( )}
- 2
- G . .
kef, = ZG: k£ Cos'z (Q_ a(;)___ Z: 'k‘:(CDS'Q oS + An & Akm.@(;_)
=1 =
= é 4 (Cdﬁzo(,: Ao + v X ’513-3'9)
=1
& B '2% (e ot #in x; AO 4«:.9)
=1
Natural freguency = &y = _k_ri_i
' 4
For @9, te be fnclﬂdﬂenole.n‘t of &> Zk Z *; Ao - (Ej)
" L=1
ard zck oS X; AmX; =0 -~(Eg)
i=1i

(Ey) and (Ey) can be rewritten as

5 = L, -'— cos 2«
Eki(li.‘.-i-co‘a' Z'(;)_Li'—‘__:,i'k( )
=
and _;_— %“ %« sn 2e(; = O
re- é t;_ (os 2; = O (Ei}
=1
amd i k; Sin 2&; =0 =7 W)
i=1
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In the Pre.sen‘t exm—n‘pie, (Eg) and (E4) become

%, cos 60° + 4, cos 240 + Kz €oS 23 + Ky CaS 420°+ Ky cof GO0
+ k3 ws (360" + 243) = O

o
k, sin 60° + kg Sin 240" + *3 Sin 2 oz + K, Sin 420° + k, Sin 600
+ k3 sin (360 + 2%3)

4| — Ko + 2 K3 cos 2«3

a

|

(€

= 0 } . 2 k3 of 2«3 = Kz - % -'-(EE)
‘ 3
N3 *,-—ﬁﬂkz + 2 k3 sin 23 (o} , 213z Sin 23 =

= v3' (k2 — k)-(&)

Sguaring (Eg) and (E¢) and adding,
b wg = Gko- ®D* (143

o k3 = + (k- K1) = k3= I‘k:z." ®
Dividing (E¢) by (Es), '
tan 2oi3 = V7
L oay= 4 ten P (VED = 30°

2
@ oy — 200 lb—sec” o\ _ 44 bfinch.
386.4

inch
Velocity of jumper as he falls through 200 ft:

mgh=>mv or v= V2 gh =V2 (386.4) (200 (12)) = 1,361.8811 in/sec
About static equilibrium position:

xg = x(t=0) = 0, Xp = x(t=0) = 1,361.8811 in/sec
Response of jumper:

x(t) =A4-3 sin (wy t + &)

where
1
2 —_—
Ay = dxt % || _ % _ %o Vm  13s18811 .\/ T (———
== 'x = oe— = =z | "
0 n {,un ;;k ;; 10 386.4
cnd 4o — tan-t |22 ] _
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The natural frequency of 2 vibrating rope is given by (see Problem 2.26):

T (a +b)

W, =
B mab

where T = tension in rope, m = Imass, and a and b are lengths of the rope on both
gides of the mass. For the given data:

1
T (80 +160) |7

10 = T 120 ] (80) (160) ="VT (0.060375)

386.4

which yields

100

...
0.060375

—=1,656.3147 1b

when w=o0, total i
: T

vertical height=20+% |
when (95 0, total R "_l i ™

o
vertical height=(2f cos o+Fk) g -
Spring force = *k[zf+ f- ('zf cos B8+ A)] -
- % ¢
= 24l (1- 8 9) ,
For vertical egulibrium of mass ™. Fo= mxd
mg + T, KO = T -7 (Es) 2= L sine

For onrisanta,( e.&uililvuwm, k= (-rl'f'TZ) an 8
T = (Fc — Ty sin ,e)/sm & - (5

From (Ez) > (Ey) con ke ex,;resred as

m3+ (FC'—TL s"‘e_.> cos @ = T cos €
sin 8
. 5 E ot © m5+mw"1co56
e Ty = q+ e =
7 cos 6 2 o8 S
S
T, = Fo— Ty sine 'm'ld?l_- "‘f__“_i;}fa,,g._.*_"_t.‘:;_'g Sin ©
2-— - =
sSin @ sin ©
2 2 ¢08 &

spring force = 2kl (1- cos @)= 2T, w5 @

W

m i cos @ —mg

use=<ZK£+m3 BV ¢ -2}
26 + micst
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This eguation defines the ezuilFLrt'um position of wmass .

For Sma,U. pscfua,f:'ons aj:dut the E@.‘:.L'—L"—‘M" daaﬁﬁ‘:s‘r\;

Newton's second flaw gives
e ' 2k
amy + K =0 , 8. = o =

n

(a) Let P = total spring force, F = centrifugal force acting on each ball. Equilibrium

of moments about the pivot of bell crank lever (O) gives:

20 P | 12
(i) ) &

When P = 10* [ﬁf)—] = 100 N, and

2
95 |16 | (2N
9.81 | 100 60
where N = speed of the governor in rpm. Equation (1) gives:

0.004471 N? (0.2) = l%(l (0.12) or N =81.9140 rpm

2
— 0.004471 N?

27N
F—mrwz--mr{ 80

(b) Consider a small displacement of the ball arm about the vertical position.
Equilibrium about point O gives:

(mb2).9-+(kasin9)ac059=0 (2)
For small vallues of 8, sin § = ¢ and cos 6 = 1, and hence Eq. (2) gives
mb2f+ka’d=0
from which the natural frequency can be determined as

1
1 =,

2 2 2
ka® |2 L |012] 9.81
= =4(10 252 L =37.5851 rad
o {mbz} (10) [0.20] 25 radses
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reswltin vert.ca.l— clns‘D{a.Cemen‘f: of the

NN

[ 7] / z
so’=z = , 00 =4k, 05={h+
vz

whew Bach wWire stretches by x; , let the

Pla.f:form ke x
05 + Xg = /(‘Lf-x)"+ ~°2—'1
z & (4.-;—1 L+.a;-
xy = Aar %— { ) :.z ~-1 } S
+ 5

/ [/1+ f ]
-‘%)
For Sma.u.. x, rx_" 5 nEjlfSlue cc-"—\apa,n_zﬁ Z.‘Ax arrug "14'6 ~ 1+

and hence
1

Pl

v = [Jpie & 1+__&r__._i _ x
A 2 i) - ‘F\L‘i' a.z.'
. 2
Po{'entua,l energy ezufva_le,nce 3;\/35‘
4 % z
—ike@x—é(-’?-_kx‘) .
_ &«
kT 46 () T GE
Ev;ax"'.o‘n 01. molien o'B M =
] ,k =
M ox + 55 x o | ) ) d/?_
- m— = T — ————
Tn s, (1‘65/.!‘/1) /2 4 1k
@ Equation of motion:
mx =73 Fyx
i.e., (LAp)ii=—-2(Axpg) ' T
) v 2g '
e, X+--%= 0 | L"‘
where A = cross-sectional area of the tube and i
\

p = density of mercury. Thus the

natural frequency is given by:
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Assume same area of cross section for all segments of the cable. Speed of blades = 300
rpm = 5 Hz = 31.416 rad/sec.

k
Wi = —f- — (2 (31.416)) = (62.832)"
k, =m w? = 250 (62.832)" = 98.6965 10*) N/m 1
q

AD = Vo.52 + 05?7 =07071m , OD = \/22 +0.7071%2 =2.1213 m

Stiffness of cable segments:

9
kpo = ?E = (2071) (107) _ 907 (10°) A N/m

PO
AE A (207) (10%) 9
= = =97.5817 (1
Kop o ST (10°) A N/m

D
0:7071 M
_ g = feol
o taf (22221
= 19.4710°
The total sttiffness of the four inclined cables (kj) is given by:
k. =4 kop cos’ 0
— 4 (97.5817) (10°) A cos® 18.4710° = 346.9581 (10°) A N/m
Equivalent stiffiness of vertical and inclined cables is given by:
1 1 |
——— = ———— +
keq kpo _ ki
- kpo kic
e “d k'PgO + kic 9
_ (207 (12 ) A) (346.9581 (10 )QA) _ 129.6494 (10°) A N/m @)
(207 (10°) A) + (346.9581 (10°) A)

Equating keq given by Egs. (1) and (2), we obtain the area of cross section of cables as:

4
= 98.6985 (1 g) = 7.6126 (107°%) m®
129.6494 (10%)
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ki |2 k
5w {_1_} =5 ; —— =4 (m? (25) = 986.9651
27 | m m

1 kl —é- kl 9

=4.0825 ; ———— =4 (T 16.6668) = 657.9822
27 {m-}-SOOO} m + 5000 (m)" ( )
Using ky = e we obtain

ki _AE _ A(207) (00°) _ vapwnst

m ¢ m 2m
e, A=95359(10"")m (1)

Also
k
P = 657.9822
m + 5000 ¢ (m + 5000)
e, ———— =6.3573 107°
“€ T 1 5000 (107) (2)

Using Eqgs. (1) and (2), we obtain
A = 9.5359 (107°) m = 6.3573 (10~°) m + 31.7865 (107%)
le., 3.1786 (107°) m = 31.7865 (107°)
l.e., m = 10000.1573 kg (3)

Equations (1) and (3) yield
A =9.5359 (107°) m = 9.5359 (10°) (10000.1573) = 0.9536 (107%) m®

Lcng;‘tudinaL Vibration:

@ et Wy = 'bart of weight w carcied by length o of shaft
W, = W—Wy = Lu'&'jhf corried L:j lenj{:k b

z= Elongation of ienjn‘:k a = REEG.. ;EzYouny': = ellae
7=Shorfem‘n3 of length b= (w-w) (L-a) EAz Epes. o) crass ~saskion
AE = mdYk
Since x= %, W = W(l—a.) ’
! W (l a
x = elongation or static deflection of length a = w_[l
AE

Considering the shaft of fen_g{h a it end mass Wi/3 as a
SFn‘na -ma.Ss SgSfEm,

W, = \/__;.’T - < ii?ﬁa’) 1/2
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Transverse vibration:
spring censtant of a fixed — fixed beam with off-center load
= % = 3EI 13___ 3EL 13
CLB La Cb3 (f.-a_.)g
3 1/2 3
oy = j—c' = ___;B_E_.I_f_-—g—-— ith T - wd
m { W o (I-a) } " - ( /64'>

Torsional vibration:

= moment of mertia

If f[gwkee’. is given an a.'nju.la.r clef(ec‘h‘on 8, resfS‘tu’nj
torgues offered by Qengths a ond b are 63'3 and E32

——

b
Total resisting torgue= M= GJ( + -—a>e
m 1 4+
‘K_t = —-ei = G&J (—GT-'— —t—) where T = T('d Po‘a.r

moment of inertic

= —— - GJ 1 i }
&Sn 3 { o_ (___—'- __.-)

where J5 = wass polar moment of inertics of the §lyufweeL.

me , = equivalent mass of a uniform beam at the free end (see Problem 2.38) =

'i% i = {1 (1) (150 x 12) D250 } = 0.3107

140 386.4

Stiffness of tower (beam) at free end:

1
apr 2 E0%109) (55 W0

T, s » — 0.001286 Ib/in
TR (150 x 12)° /
Length of each cable:
A=V2 =1.4142 ft /2 15 =21.2132 ft , AB — OB — OA = 19.7990 ft
™=V TA2 ‘\/1002 +19.7990% = 101.9412 ft
100
ey e o = 5.0508 , 6 = 78.8008°
an AB = 19.7990

Axial stiffness of each cable:

AE _ (0.5) (30x 10%)
¢ (101.9412 x 12)

Axial extension of each cable (v.) due to a horizontal displacement of x of tower:

k=

= 12261.971 b /in
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3 =0 +x° ——2€xcos(180°—9)=€2+x2 1}-26’}:(:059

or £, =¢€41+

2 2
X X
i = a
{] + 2 7 cos

2 &

2
g =& —E€=¢ 1+~1-£-+-;—(2)3‘é-c059]—£
=¢+xcos —€=xcos?

Equivalent stiffness of each cable in horizontal direction:

2
é—kY3=-§-keqcx2 or keq==k[-};—c] =k cos® 8

This gives

keq, = (12261.971) cos” 78.8008° = 462.5419 Ib/in

In order to use the relation

2

Y11
keq,,d =kb +4keqe [—]
YL

we find

viu _|FLI@BL-14) 3ET _LI(BL-Ly)
L 6E I F L3 217
2 —
_ 1007 (3 (150) —100) _ o e
2 (150)°

Thus

L =kp 4 ke, (0.5185)% = 0.001286 + 4 (462.5419) (0.5185)*
= 497.4045 Ib/in

keq

Natural frequency:

: 1

5 1L
Keama |7 _ {M}Z — 40.0114 rad/sec

U_}n =
T, 0.3107
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@ Sides of the sign:

AB =V8.82 +88% =12.44in ; BC=30—-88—88= 12.4 in
Area = 30 (30) — 4 (-;- (8.8) (8.8)) = 745.12 in

Thickness = .]S'_ in ; Weight density of steel = 0.283 1b /in3 l’" 3-8

Weight of sign = (0.233)(%)(745.12)=26.e4 Ib

Weight of sign post = (72) (2) (%} (0.283) = 10.19 Ib

Stiffness of sign post (cantilever beam):

Bending stiffnesses of the sign post:
1

s, 3 (00NE)
Kz = V- =3 1 = 40.1877 lb/in
3 (30 (10%)) (=)
3E I« 384
kyy = ——5— = -~ = 0.6279 Ib/in
7 o
|
|} i
" 4
= 2 / 1;’
]~
l V
s 3
Vil .~

2
Torsional stiffness of the sign post: \'}‘/
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be b b*
K =533 2 G{1—063 — |1—
=5 4 33{ 12a4}

erials for Design, MecGraw-Hill, New York, 1984,

(See Ref: N. H. Cook, Mechanics of Mat

p. 342).
Thus
1 T
1) (— il
k, = 5.33 Ol (115 (10%)) {1 — (0.63) (-;—) - ()
72 12 (1)4
= 1531.7938 Ib—in/rad
Natural frequency for bending in xz plane:
1
1 | 401877 |3
ker | 2
Wey =1— =) 26.64 |  =24.1434 rad [sec
= 386.4
Natural frequency for bending in yz plane:
1
. 06279 |7
Wy ={—”1‘-} _1(2664|} =3.0178rad/sec
w 386.4

7

n as a square of side 30 in (instead of an octagon),

By approximating the shape of the sig

we can find its mass moment of inertia as:

_ L 3 2y |0:283 (80} laps (1 1y —
g 2t = (b® b +h b)_t386‘4“3H30 (8)+(8) (30)}—-24.7189

Natural torsional frequency:

1 1
ky |2 1531.7938 | 2
_ ke | 1991 ITE R — 7.8720 rad
x {100} { 24.7189 wel e

Thus the mode of vibration (close to resonance) is torsion in Xy plane.

() Pivoted:
3€E1L 2EL
()= T

’kea = 4' kcalumﬁ =

Let A= t.

= O

w -
& Con of wmetion: (‘3’ * me;,ci) x + Keg % ‘
NCL{:U-TGJ. J—]re,%ue,ncj sz hor{gon'tal v:'br‘a..ft'an _ wﬂ :-j; EZEI
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(ID) Fixed :
since The _joi'nt between column —— DC[ocr
does not permi% rotation, each column
will bend with inflection }aar‘ni‘ at middle.
When force F is applied of ends,

3 3
=2 E(%)Y _ ¥ =
3EI 12EL AVE F
I
#« _ 1EI _ -
Column ES 4 kea— 4— k@lumn Ka

Let meﬁcz = Egcfecfl've mass of each c_olu.mn ok faP end

(W 2 _
Egua,ffan of motion: (7 + Teﬁ‘.&) z ‘kE& % = T
Natural freguency of ﬁorif)onta,ﬂ vibration = &,= £3(%+ meﬁg)

Eggective mass (due to selg weight): e, Lm
. , / M
(a") Let me:FJH = E_-Ffe.cfwe Pa.rf: of é———--_.___\i‘z_\\ %l =
mass of beam (m) at end . = ""‘\%

Thus 'Vl‘Lra..{'fﬂj nertia force at encg

is du.e to (M_(. T"P.;;f)‘
AsSume aieffecffcm SLa+e Jurc‘nﬁ Vfbra.:ft'on same af +he
statie cleffec_{'u‘on S!Ha_}pe with a tld: [oa—c’-’ 5

y(xt) = Y0 cos(o,t—g) where  Y(x)= Fxt (302

GETI
Y(:‘(): __Y_o__ x"(g,?-—::) WLErE Yo: ng'__ma_x.t;rale»f‘ec-&.‘on
g g2 €I
y(xﬂ:) = Y;g (3 . xa) Cos (c.s,.‘t—g!) (erD
Z
Max . strcu‘n ehe‘”jj oji Eea.rh: Max- work ,Lj gaOrCE F
- L ET 2
= ZFf% =2 3 % (&2
Max - kinetic energy due to distributed mass of beawm
1 .
_ 1 m . Z . 2
=2 7 > dx + % Mm
t [ i) | 4+ £ ()
2 & -3
=t el (FEm) v en e M (e3)
..
meffi = Tz0 m= 0:2357 m
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(b) Let Y(x):: @+ @, X+ g 00 Guy, %
Y(O)z o, %(o):o , Y(f)-:YO, %(ﬂ):o

BNANRAY
|
|
:
Q‘ﬂ !
$<—

This leads te y@x)= 3Yo *_ 2 Yo 5
= = F
F(t)= Y, & g 3 __..> c,os(qs t—4) (E4)
Moaximum Strain energy + EI f ( ) l
mesx
_ GEI Yo (Es>
£ Py
Max. kinetic energy = +tm 6-9»:_ Yol“' Ji(%> Yo C‘B: f %__2._1?54‘

= Lwr e (M 35 ™) (B

13 m = 0-3714 m

m —
eff2 = 35

Stiffnesses of segments:
A = % (D? —d?) = 1;— (22 — 1.75%) = 0.7363 in’

A E i
ky = 1L e (0'73513; (107) _ 61.3583 (10*) Ib/in
1

- 14r. (D} —a) = 5 (15" — 1.257) = 0.5400 in?
A E 7
g, = 2B (0.8400) (10) _ 540 (10%) Ib/in
T 10
Ay =2 (0§ —df) = £ (17 —0.75") = 03436 in”

AsBg _ (0.3436) (10T) _ 49 9516 (104) Ib/in

3 Ty 8

Equivalent stiffness (springs in series):

1 1
P U™ k H ‘g
— 0.0162977 (10™*) + 0.0185185 (10—4) + 0.0232820 (10~*) = 0.0580982 (107*)
or ke =17.2122 (10*) Ib/in

Natural frequency:

V_ _ V '\/ 17.2122 (104) (386. 4) = 2578.9157 rad/sec

2-22



i
= ANANNANA— '! - T
e g : -
= L - ._f_ —'—— ! b'eal
H,\/‘\/\/\,—b—-\/\/f'v{r" k{:ofa.l kl =, : o5 = 217 ————41(
l_'é—*_z—rl “"ftal'%‘:—k"k':z‘k: .
b Ve 27T
= 4
1‘52 4’< 3 | _ 0 i | , '
—AAAANTTAANANANM A FON SRUS TR B |
L0 o Sl ekl B T AR K R
k, = 4
3 7 K
Th= 2T ,k% where kef/ bk + L ® 5
(
L= 2T 3 ™ 2T V3. [m _ 2T ﬁ(—1r>—°'4330 sec
" (6 & 4 ® “ z
w
Let M= cocff.‘crent‘ of Friction | l
MFhi ¥ M
x= o(.'s'FIa.cemen!: of C-G.of S L T

block }—j
FbFz= net reactions between |

roller and block on

|
' & ,—|4 = __..I
Left amd right sides . a

Reactions at left and ngkf: due to s:’:a.flc loaod W are
w (c- x)/p_c and W (c+ 'x)/zc , respectively.

M= moment about G due o motion of block = (/u F, /AF)a_,

Reactions af fegt and right to balonce m= 1 - o (= F)

2C 2c

F, = M_/__(_C_:E-_)__ /‘i.a_’-(FZ"Fi> . E = W(C+xz+ /‘-::‘—'(FZ_F’>
’ ? zcC

zc 2c 2 S e
Subtraction 9ives Fo-Fi = WX . /ﬁé (Fz*'Fl)

P

C

-e-; R-F = wcx

)= =R
C- pe C“/“:/
Rggtorinj Force = /‘*(FZ-_ Fl) B ( C/L_L_/_Lo, 3

.o w

(=)
== o
WCC—/‘&) C — i G

SoLv-’nj this, we get a9 = [C CﬁVCQ + ""‘92-)]

Egua.:f:amw of motion ;
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Z

From problem 2.4,

Yotk
Peston‘ng forcg WI{—{'IOK.{_ SPriﬂjf: /LA (FZ—'F‘>= c—pov
Spring vestoring force = 2 k=
Total restoring force = /i_\%u—% + 24k %
C_-
w
Epuation of wmotion: %— e 4 (%7::. + 2 Kk >x = O
W,= @ = [Pw-“—z’k(c_/uw)]?}yz
(e-pe) W

Solutron of this Ezua,{—l‘or» gives

( W We - 249c
F W}-PWC@,'OJ—-Zk}Gb)

(2) Natural frequency of vibration of electromagnet (without the automobile):

Wy = '\/-E= v 16000.0 (850:4) _ 35.8887 rad [sec
M 3000.0

(b) When the automobile is dropped, the electromagnet moves up by 2 distance (%)

from its static equilibrium position.
xp = static deflection (elongation of cable) under the weight of automobile
Wauto _ 2000 :
= = =0.2 in
k 10000
% =0
Resultant motion of electromagnet ( +x upwards):

%(t) = Ag sin (« t + ¢o)

where
1
REE
Ag ={xd + ||} =xp=02
n
A
e Xg Wy 4
and ¢y = tan - =tan™" (00) = 90°
Xp

Hence x(t) = 0.2 sin (35.8887 t + 90°) = 0.2 cos 35.8887 ¢
(¢) Maximum x(t):
x(t) | max = Ao = 0.2 in

Maximum tension in cable during motion = k x(t) | max + Weigh of electromagnet
— 10000 (0.2) + 3000 = 5,000 lb.
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(2)

(b)

e 9 2
s = \——-bJ ’
= 7t | &,
PNy TN N SRS ~ T ~

Newton'’s second law of motion:
F(t)=—ki x —ks x=m¥ or m¥+ (ks +kg)x=0
D’Alembert’s principle:

F(t) —mx =0 or —k x—kyx—mx=0
Thus m% +(k; +ke)x=0

(c) Principle of virtual work:

When mass m is given a virtual displacement 0,
Virtual work done by the spring forces = - (k; + ko) x &
Virtual work done by the inertia force = - (m X) &x

According to the principle of virtual work, the total virtual work done by all forces
must be equal to zero:

—m¥% 6 —(ky +ky)xx=0 or m¥ + (k; +kg)x=0

Principle of conservation of energy:

.2
T = kinetic energy = —12— m X

U = strain energy = potential energy = —12- kq X2 + -}2- ko x?

T+U -—-—--;—rmicz + —12—- (ky + k) x? = ¢ = constant

-(%(T+U)=0 or m¥ + (k; +ke)x=0

k(4r) (e, +8©)

T

*(t)

Wi
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Equation of motion:

Massm: mg—T=mX (1)
Pulley Jo: Jo0=Tr—k4r(0+6)4r (2)
where 6 = angular deflection of the pulley under the weight, mg, given by:
m

mgr=k(4rfy)4r or 6°=lﬁrgk (3)
Substituting Eqs. (1) and (3) into (2), we obtain
_ _ _ 2

Jy=(mg—-m¥)r—ki6r (9+16rk) (4)

Using x = r 6 and ¥ =r 6, Eq. (4) becomes
(Jo+mr?)f+(16r7k)6=0

Consider the springs connected to the pulleys (by rope)

to be in series. Then

1 1 1 5
ey ek, s k.. =2k
ke kT 7 T
Let the displacement of mass m be x. b4
: i
Then the extension of the rope (springs T
connected to the pulleys) = 2 x. From
™
the free body diagram, the equation of l
motion of mass m: T 72 (t)
2kx

mX+2kx+kyg(2x)=0

or m5<'+?kx=0

1 23
= —mX
2

T = kinetic energy = Tnass + Tpulley
1

+EJO.92=%(mr2+JD)92

U = potential energy = % kxl == ~;— k(4r0)? = % k (16 r?) 6
Usmg (T + U) =0 gives

(mr?+J)d+ (162 k) =0

1 2 1 s
T=kineticenergy=-2—-mx +E-109

1
U = potential energy = % k x2
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where 0 = 3:— , X, = extension of spring = 4 r 6 = 4 x. Hence

Jo . .2 1

- Jov2 oyl 2
T=5 (m+ )x ; U=+ (18k)x

g . d .
Using tthe relation T (T +U) = 0, we obtain the equation of motion of the

system as:

Jo, ..
(m+—)%+16kx=0
r

CTOSS-SEC‘{:I'OH: Sem % 5 em P
c

AE _1 ' BLL

%
F-————-f: 0:8 m e—‘r—cu:o-zm
Due to 2 load P at C, deflection at point C is given by (from Appendix B):
)= BE=D [ ax— g~ -] e Sx e 4s
6EIC p a2
a
= = = ——————— f
Yc Y(X €+a') 3EI£( +2.)

Moment of inertia of cross section of beam:

I == T1§ (0.05) (0.05)° = 52.0833 (107%) m*

Equivalent stiffness:
p _ 3EI¢ _ 3(207 (10°)) (52.0833 (10~%)) (0.8)
Yo 2 (€+a) (0.2) (0.8 +0.2)

— 6.4687 (10°) N/m

keg =

Natural frequency:

w =Vk—eq— =VM = 359.6872 ra.d/sec
2 m 50
‘ %P
A’J B &
4 -
Lr/r fq: g:8§m ————v-l'-a.rzo-:!.m—rl

From Appendix B, the deflection of fixed-pinned beam with an overhang, due to
load P at the free end, is given by:
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P 2¢
y(x]=—4—E—;=;—£7 xz—-é’xz——[—g—a-—+1] (x—&P|; ¢<x<¢+a

Using a = 0.2, { = 0.8, x =2 + ¢ = 1.0, and

= le_ (0.05) (0.05)® = 52.0833 (10~°) m*

we obtain

P (0.2) _ 2 _ (16 3
o9 {12 0.8 (1)* —( =k +1) (0.2)

7 T (207 (10°)) (52.0833 (107%))
— P (9.895652 (107%))

keg = P 1010.5448 (10%) N/m
e

1 1
1 .
{keq } - {10;1.%4(_“.’_)} — 449.5642 rad /sec

a4 50

5c-_—5m/s

Da—‘hw: 4= 5o0o N/m; m= 2 'kﬂs xoza'l m, o

_ ] ! %
(.lsh_ */m = (5-00/2> - [5'8“4 r&‘v/g
Eg.(z-lﬁ’) - x (t) = x, cos w, t + Z‘ sin 9,1

n

= 0.1 cos I5.8114 T +<'_§_m)s;n 15,8104t

=

C x(E) =0l cos I5-814 t +0:3162 sin I5.8114t wm
%x ()= = 125811 Sin 5.8114 + 4+ 5 cos 15.8115 £ m/s

% (£)= —24.3394 cos 158114t —79.0570 sin 15:81l4 £ —3

Da;to.n-. C&h: s} 'FO-A/S ,V ®, = 005 m , D.CO = 1 Tﬂ/s
Response of uncla.mFe,al svjsfem:

x(t)= n, cos @t + Zo gin w5, t

(]
CIS\'I
= 005 coS (0t +(_'_) Biw G
o
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(E-1)

0:05 cos (6T + o.1 sin (6T wm

—
—_—

x (t)

.
L

€2
D

Py

ot

{

—0'5 Sin lot 4 58

(t)

m/s?

¥(t)= —5 cos 1ot - 10 sin lot
Plotting of Eps. (E.1) to (£:3):

% Ex2_52.m

1: 1001
g(i) = (i-1)*5/1000;

for i

+ 0. Ivednlaa*kli));

= -0.5%sin(10*t(i)) + cos(10*t(1));

0.05 * cos(10*t(1))

x(i)

dx (i)

= Th*egin (LOFC(L)] s

= -5*cos (10*t (1))

ddx (1)

end

plOt (t, %)

hold on;

f___l) -
’

ploti{t, &€,

)i

I .

plot (&, ddx,

ddx(t) ") ;

ylabel(’x(t), dx(t},

xlabel('t’);

ddx(t)’);

Dotted line:

dx(t)

Dashed line:

title(’Solid line: x(t)

Solid line: x(t) Dashed line: dx(t) Dotted line: ddx(t)

15

(Wxpp “()xp ‘()x

4.5

3.5

2.5

1.5

0.5
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@ Da«t—W‘ wd: Zra.al/S, ‘s:a.f, Xa50'01m,¢;=1raﬁ

Initial conditions 1

2
I-%° W, , w,:= %/ Jt-3° = "/Ji—o-ol

- 2. a :
e 3 o0 2 alzl rad /s (e-1)
Xc - {'X-: * (ﬁa - A xa) }E = o001 (E-?')
@y
_ e 4 % W, x
¢o" Tan ("‘ o ¥ hi a.) = 4 (E-3)
Ly %4
Eas. (E-2> and (E-?) fea.a’ to :
x4 (io + 0.2010]} *")z = 0:000| (- 4)
° 2

1] , x
- (x°+o sl a) = tan 1l = 0.7954

B

er

— (#t, 4020101 %) = (.5708 %o (e.5)

Substitution of Eg.(e-5) infe (B-4) yields

o= .007/864 ™ (E")
Egs- (E - 6) omsh (E 5) give
¢

‘x - _g+013933 “"/S’ (E.T)

0o =

.'WLELGM.{' possengers,
= ’-1:';‘* = 20 TGLG'/S

'-'-'> & = 400 ™ (Evi)
With ]oa.,ssengers,
("") = [k - 732 red/fs (e-2)
2 A S0
Saua.tirij Ez.(E.'z), we 3@'?:
_* _  _ (732) - . E3
e =07 32 ) = 299-9824 (e:3)

U;inj k= 400 ™M in (E'3> gives
m= (4996481 %g
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X [ ]
e i P ot %, = ol W= 4 m/s

-—

'_DaJtau: = 0. 5625",
$= 193 Hz, k=264 u’/fn

4 ¢
k= ¢pring rate = d G 4" QB 26" 4
Prind § 7> N 3 -
| 8 (656257 ) N

G= iI-5 xn:a‘s Ps:‘ > f= 0-282 uﬂ/fn3

4 3
Qél 8 'g62 ——6
or d _ 4 (8) (o 5°) = 3.2486 x1lo (E")
N 1.5 x5
= 4 (%3
R

W= Ir._é—z DN =
W (4 ) b
2l
= 0:391393 N d

e ' 26:4 (386.4)
2 2 = 193
0:-391393 N d

ov N dY = 00174925
Egs- (E.\) and (e.2) j(eIO(
_ d” 0174925
T 3.2686 x5 ° - d2
or 46 = o0:5717¢4 % 6 ¢
or d = 0.911037 %16 = 0:0911037 inch
Hence N = o-l':\4;92‘5 TS V.

_ %__2(0-5625'>(0-282> N dZ

(e2)
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<:) Datw: 1=¢:5625", G= 4 x10° psi, p=o0"! Lb/ i3
= 193 Hz, k=264 /u’/l'n

4
4% = Spring rate = _A_.ﬁ_.._. = 44 (4 st)
g D° N 3 = 26:4
Y ¥ (0:5629 )N
or d 26-4(8)(0-56253>
N

—6
= 9:397266 % e (e-1)
4 x:o

A

TDN § = j; (0:5625) (1) N dZ

= 0138792 N 47

Hence Fd s \/26'4(386-4)
2

= }reauen cy =

—

I Nl-

wheve = (‘n

= |93
0138792 N d% I
or N d? = 0-493290 (E-2)
(e D) and (E-2) 37‘EI'°|
a4 0: 493290
W= S intEEs wig° d?
-6
ar ch = 4:63;575 R
oy A = o-129127 inch
Hence N = 014932230 = 29.584728%8
d
Yri
\ 7
2.58 / %
. ﬁr “J
Bj nEjlec-l—mj the E’,C:Fec{' [< f K.

of self WE\j}wt of the

beam, and uSnnj c S\nﬁle cﬂejree of free:fom moa{el

the natural 3‘5“’-@“5""3 o; the 85s£em can be
expressed as " *



where = mass of the machine, and
k= stiffness of the cantilever peam :

. 3FE1
k= -———Q—a—'

W here 1: lenj-H-\, E = Younj}s mocseu.[us, and I =

ares moment of inertia of the beam section.

; G
Assuming E= 30 x,0 psi  for steel ond 105 x10€

sy for aluminum, we fhave
4

(w"‘>s’ceel = {3 Goxe®) T }"

m L3
6 A
Gﬁ“)aﬂ.uminmﬂ = {3 (l‘:'l'zzm ) I}z

Ratic of natural ;ereauehm'est

_
Ol59i6|

(Wn)steel g
= (—"—') = |r&%903 =

(w"7a.{umirlum 0.5 B

Thus the naturaf fr‘e%uean s reduced to 59161/,
of its velwe f aluminum is used instead of steel.
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o it frdiiony i
Mm= ('laigfs o’ls Jdulm- =2 sroo 11.3 E wiltbrium
:(wr (> (!o'so) -1 -1 ————f_
(mess of b ufs ‘ *
divpoced ox Ep-lobcay Y ==

m % + mutcgmécjf =0
= =

w2 + (Wrg'>fz".(lo':'>o ae;) = o
oY

500 % + TV("’SYX (tes0 x T8)=o

d\‘ an
X + 225 (1050 x9.9),
= O
Soo
24
* 1 le.|8 ® =&
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{ Conn LQ
| from Which i watimed a0 S /IBV(EJ e

S,= 1618 = 4 .02p¢ rad/g
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From e €opfon of mobion, we nile

)

¥ = Soo,k_g Xk ,5?,&*,:( W\C&:F: jogo = N
Qozs)g
(&) By egpabig W wirghh of 0 ags ond W
W‘j bzh ’ oo o 3 C')
500 (9/81) = — 13 *
Q:QQ.‘S)
i, o8 |
3
’ 025 "'é
x? = 227 (7213 (o0 ;l = T76.641 Mlo
A‘E [oaa
" el R L vio = co0k248 m

(LY the Lonssuged Apreg conslnt, %, ebouk The

- dF _Booe 7—
b = —
Ax |x= %y @:a 25) S

2

3°°°>3 (f2v717x6")
(oz

@an (_{.2((77
—6
|5.625 % (°

x\o )(,E ﬂl,_ —3*.!1-672):&:5 PVM

15.625 xio°
2-36
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52 Mafued W‘j f Viba@ion foe fmall

A

2
i (3 LfG’LfQ X 1o ) = 26!?#'?’3 m;q//s

o¥ NJM W‘j G’évfbw—aﬁfm\ (o el
WM whian wm= Gookg?,
T this Cese, Mo AR %ﬁmw pot T 48

Give by 3
)
_3 w = 58¢¢ X@'OZQ

s T (000

i s

X [L.§o55 » 0«025 = @045 14 ™

The Linesndied ottt | & 5 ebowt &
Aale e@_zfrkuu_ doawan (%—%D 5 e b
= 300° ;s (xlﬂ:>

ov A F (
&7; = ;;/SE‘ (OOZS'>

2000 ~2
C‘-f‘i'!'-f X lo )

@025 P
(20.6778 K;o )

—6
|5. 625 X lo

..L

/ i 2
C? <F12e xro = 95 .53y2 7,_,_,{//3

—

5
= y (o) ] _ |
B °° = 3.91206 % (o ’\ym




accelernatton = a = _ o ™/ et = 4%x (J)

= = ;—L:—.E_z—:
iv\ﬁgfmﬁg“ O’& Eg - (1D wrt- TEme jmuz/s
'X‘-:éﬁ = —1s t + ¢ (2>
Avf- e l ahe s ,(%) t= o M %:U:IOO “"‘/hour
100 K 10 m m
. ml{t=0 )= ——m — = 2718 — = ¢
w = 'JC( ) P £ 27 3 !
Ax - —10t + 7—7'7778
2

e
ehsche Afaps o Fem
de o afher ¥ U7 ke %?itwa Given by

‘E‘L
P

2.
2,7178 (2-7'775’) + é (“f0> (2'777@

= 2

_ a9.1602 —~ 3 3.5808

= 38.5903 ™
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For lnaHo w cfrcu‘a.r

[aos-l:,
Ix'x = 3: __(r\o -, )
= -'g— a-o'iq-— 0:045 )

- € 4
= |-6878 »io m

Eﬁz_d&"v.z ﬁz/ﬁy&» of |peost

I

(:gor L\e,holt‘ng ﬁW) is C|$<

ge=£‘0-2:|-8 ~.

le= 2.0-0:2=1-8 ™ e
Bending Wafress o T post in %3 -plane;
Kz © 35133 _ 3 (207 x10%) (16378 x15 %)
. @)

3
= 179 7194 ¥ 10 N/m
NW4ﬁe }oan = m™m= T{'(raz._r;z)ﬂf

=m = W(o-osg—o-oqsz)(z)(7653:3) = 23,2739 K3
9-
MaMc’ZT ﬁw&b—»c Aign = M = bcli':_f
=M= 0. 75(4) (0:005) '1529_9)-..— - 6972 Kg
3-8
EWVMMKB»&MKWM ‘D&Qﬁnd{yrmﬁ«{&m

with om end mats M (from Ba-uco’[), Himt cover) :

Meg, = M+ 023 ™ = 1.4972+0-23 (23-2738 )
= t7-6502 %Kg
Not u ral fre&uenf—j fcr Vibratian in x} p|ame:
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]
W@n = ( _ C"f?.-nqq xroa)z
™ eg 17-0502
= 102+ 6674 'ra.o'/g

Bending At $fness o’k the post in 33-F|ane:

é
Kyz = 3ETx _ 3(2o7x:o )(1-6878 x 10 )

Q. 0-8)°

3
= 179-7194 x16 N/

Naftor oA W"Cﬂ aaaf vibration n j%-——}’la’"e‘

3z
i, = (797194 %10
""‘ea |7-0502

l02- 6674 rad /s

1\
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For lana w CI'FC.LA‘O-\"

'905{';

v g
T = Lyy = 7—5— (v =r")

Yy
™ 4

= a.gS-—O‘C)Hs

: )

. N 4
= |6978 *1lo At

Emcﬁ-\l_ﬂ Qbﬂj,a; of past
(Lor bending WW) 9

ﬂef. gl ~@i2 = =8 ™

Be.n:ﬁxnﬂ A/CW 0‘[3- the Fosf?m -:x}..,a]a.ne_-

- &
de = 3ELgyy 3 (111 w02y (1r6878 x10 )
13, e -
{; (-8)°

3
= 96.-3727 x1© N/m

Mats of the post = m= 7 (r,—r>) Ly

2
= = Tr(a-os—o-oHSZD(i)(é’Ol;j’> = 24.3690 K3
9.

mass of Thofic Aign =M = bdt g
M= 0-75(4) (0-005) (3'0“"’) = 122476 Ky
9-81

with om emd mats M ( from Ea-f-fko’[, Hiont cover) :
M+0:23 ™ = [2:2476 +0.23 (24.3690 )

Mg, =
= 17- 5525 Kg
Notural freguency for vibration in %3 plane:
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L
Wy = ( ) (36-3727”103)2
™eg 17- 8525

= 134729 ro;al/g

Bending At $fness o’k the ‘oos-z‘: m Y3 -Fla.ne:

g -
’ky%'—*— PEIua 3 (1 ‘*'Oq)(l-6978 x 1o )
'JZ: TY

3
= 96.3727 %10 N/m

Nafits oA W""% acaf vibration in gg—rlaﬂne :

i)
., k.‘f% 96-3727¥,03 2
Meg 17.9525

73-4729% ra.ol/,i

"

!
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For free vibration, a"ﬂp[j Newton's
/ second faw 0§ motion:

h’li'@' + mg Sin @ = o (E-l)

For small a_mjula.r Jn'SFlacemenfs, E@.(Evl)
reduces o

mﬂé+mge =) (E-z)

o B+ We e =° €3

wherve W, = \J’? . (5_4_>

Solution of Eg, - (E=37) 5

9(":): 8, ces C&nf -+ __?_3_ sin 69,,{' (E.'S')
W,

where G and éc Lenote the a.ngu'a.r aln'sF{a-cemen‘L'
and @.ﬁjula\" velocf%y ot t=zo. The a_meitua‘e of
meotion S given by

®@= fef + (6 \ }Jﬁ :

{ (’ci?n) (e-6)
US!‘hj ® = 5 ra.c'f, 8,=0 a.no( éo:: g ra*al/s’ Ea-
(E-6) gives

'] _— e _— 1
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T’"e 83s£'em GS: F’S-(A) Drivery Drfven
can be drawn in
egu-'vaJEnt form as
Shown im F.‘j-(B) where
both pulleys have the fame
radius Ty We rotice in 250 wm & 1000 vm &
Fig- () that vibration can take g Fig. A 5,
T:Ia.—ce in only one way with one
Juuf(ej ™OVing clockwise and +
the other moving counter clockwise:

When Pul(egr rotate in : % @
opposh‘:e. directions, & _ %,

- hi L‘ez ] d - Fi'g- B T,

The 4pring force . which has the ks AN _ (forc,_ in Aprings ) 1,

fame value on either pulley & — ki (8+62) due to a8° /=
Wheve %y = torsional spring constant of

Aystem: - obion iz o
the Aystem Egealion of moti 2#(-:-:7'555)2 = /2 n-m/rad

T 6+ ki (81182)=0 S T8, #1(8:+92)=°1: . (&) gives, for 3= 12T rad,
ve 6+ k(e D)oo & TG4k (F40)G=0 1 k= 4547935 N

|
-~
*
=
b
(]
~
b‘_-_-s
1}
[,
A
=
'\I

Either of these ezua.'t:ons’ SFVes it The other Possib\e motien s
o= {'kt ( M) }Vl —_— (E‘) :I rotation of the two ru(feys‘ ot os
9 J2 A ! wWhole (as vrigid body)in Aame
Here 7;= o-% =005 Ky-m™ > ' direction. This will have & natural

Ji’: J;_(&Peed Ta-f,'a)i-; D'z(é_)?-:' 00125 Ky-m Efreguencj of 3evro- See gection e
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'M£§+m;sin9=o
/ For smeall o, mlé 4+ m3o =0

s, = _.;9.'_-
4
z = 2T - 2T _ 4.4185 e
e wn - 9'3‘1
09

@) ,= /%?

(k) Tﬂzzé -+ xa® sin & + ’“3? Sne =0 3

Yruezé -+ («a,l.-]—m?P) =0

w“ = ‘kaaz-l- mzﬂ
ml? .
) 'mlz'e. + Kd sne - mgﬂ_ sn € =0 wl e +(k0.»1—rnj_ﬂ) 6= g
kaF - m q'
=n = f mf"‘?

configuration (b) has the ’u'ghesi' natural freguency.

Aluminum rod

1" Qia. \b: o
—E‘I:'—E'—"—— b ——  — ——s —_—
Q "
e ——\
N |
‘l.< 5’ \{ thicknesszaz=4"
0.283
m = mass of a panel = (5 x 12) (3 x 12) (1) (m) = 1.5820
Jo = mass moment of inertia of panel about x—axis = % (a2 + b?)
— 15820 12 | 362) — 170.9878
12
I, = polar moment of inertia of rod = % d¢ = -% (1)* = 0.098175 in*
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ke = __.I_Q. = MW — 3.1089 (10%) |b—in /rad
T 12

1

1
ky |2 2
B a2 3.1089 (10%) 1 * _ 13,4841 rad/sec
LI 170.9878

'Io = polar moment of inertia of cross section of shaft AB

_ g =T (1)t =0.098175 1 in*
32 32
Gl

k, = torsional gtiffness of shaft AB = —%—

4
8
- EE_QE))__(O_‘%E—-—HS)- — 19.635 (10*) Ib—in [rad

Jo = mass moment, of inertia of the three 'Dla.des about y—axis

1
=3JO|PQ=3 Emf’z =m€2 356—-4— (12)2—07453

Torsional natural frequency:
1

1
ki |2 4 |2

=it = 19.635 (10%) |* _ 513.2747 rad/sec
i 0.7453

o Jo — mass moment of inertia of the ring = 1. 0 kg—m
( I‘,s — polar moment of inertia of the cross section of steel shaft
o w
= —35 (a4 —d&) =7 (0.05‘* _ 0.04*) = 36.2266 (107°) m*
I, = polar moment of inertia of cross section of brass shaft

'E (dd —ab) =35 T (0.04* — 0.03*) = 17.1806 (107%) m*

Ky = torsional stiffness of steel shaft

Gs L 50 (10°)) (36.2266 (10~°
= Sf e (80 ( ) (32 (L ) = 14490.64 N——m/rad
kyp = torsional stiffness of brass shaft

_ belob (40 (10°)) (17.1806 (107 ®) _ 3436.12 N—m/rad
2

ke, =k + ky, = 17,926.76 N—m /rad

Torsional natural frequency:

=T
ki, 4 /1792678
Wy = \/ —J—:L = ———1—-— — 133.8908 rad /sec

Natural time period:

2m i
Tp = = _—2——— = 0.04693 sec
Wy 133.8908
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Kinetic energy of Syifem is
T= Ted T Lab--i-( "’UE )6 +-£M£ 6

Potential energy of s system- is
(smce rnais 615 the vod acls Through s C&qﬁ&\?

U= Ugd + LQL = —myf (.1.—Cos e>+ Mgﬂ(i cos e)
E@ua.f:loﬂ of motion :
—°‘— (T + U) =0

ie. (M+-)E 6+<m+ 1)32 sSim&® = 0O

For' s-rna.u M?(es: 'e (M-Pm) 3’ 8 =0
e + ™~ Nl -
(M+-_,'—)
o, = [(M+T)3
(M+5)f
*+ 4 -
For the shaft, F = 1;—5— = T‘___go'cil —= 641-3594 x10 ot
2
) e 5o (emsr o) (esnse sTt) _pasns-o0r wenfred
.
FOY‘ tl‘ne C!I‘SCn mD’-—. (f HZ{L) Dl _ fTrD+A
%= g % & - 32
- (783 xw 3)27"(-“-)4(0 1) =76+ 8710 *g- m
4, o fﬁ _ (24329-002)1/7_ - 47-7902 ra.d/s‘ec
n T = 76-8710

Eraucd:lor: of motion
/) T 6 =-W de—zk( 9)3

(23_19>‘§“ = Ke €

where ) P
L_ F.
J—A:J-G‘i‘md -—-‘—{Tﬂﬂ'}'m 36
=& m2
> 2% gw f* w=r?
m_‘g,ﬂ_ I9*+(m?d+2k"_+§-;?‘_ + kK )9:0

Gﬂga,-é--'—kf +—9—4<1 +kf)9l I\/srnjd+l0'k!1+9‘kf
m 2% . mi*
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For 9iven data.
o = /;(IO)(? 71) () +10 (2009) (5)" + (100 2 = 45.1547 24

o (5)% sec
. ) l
J;:—z'--ma > JE‘:-ernRz-a-mRz %, (R+a) @ \ A 4, (R+a) 0
” Let a..ngula.r c[fspla.ce.rn ent = ©

Egua_h‘on of wmotion:

OO TN TR

N SIS SN S S AN,

o 2
J. 6+ &, (R+@) © + K, (R+w)zs =0

T

TIPS

- (k, + k2) (R+ cu)z' " —
Cs?n \/ J& T — \/(7‘1 kz)(R+w) (E{)

]+5 m R?

Ezua.{:ron (E1) shows that w, increases with the value
of @ .

WG wiU. be maximum when @ = R.

Net 2 acting on the aven&u(u.m - 9.§4-5= 481 m/sed = 2,
\ (= \/’_%_ = f"’r 31— 3.(01¢ redfsec

T= W5 = 20259 fec
;Ezua.’t:fon of motion:
T e———kt (ia,e)a.. #E&)ﬁ
where &= L wl +m (3 )._._mjz

\'nf 8 -{—(‘kt-r "‘;La--t-"‘z_l )e o

W, = {3(*%* Ky ot + k2 10) }1/2

mi*
‘ I = J&-ﬁ-mbz: é—ma_.z-p—mbz
Eguation of motion:
J, 6 + mg,b 8 = o
Sy, = / [ 225 ?-9"
24 2 b?
(zg b )’5‘{(@"4—15")(29)—235(41;)

o>+ 2 bt (o*+ 2.6")2

*a2

i
2b 2
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i _ oy &
ne !’J ALE: f2—|
- |
b=+ a/N7 a1+2(a2/2_) VZ' @

L= e a.;/ﬁ gives (‘ma,gfna:rj \Ja,[.ue for @3, .

Since Wp,=0 when b=o0 , we hove w")max or b= %2.

4 (o 4) #(o 2

e —— )

!
\._ R Y
7 &

Let & be measured from static equilibrium position so that gravity force need not
be considered.

(a) Newton’s second law of motion:
5] £, ¢ 3¢, .3¢ = 3
=— f—=)——k(6 —)(— kb=
(b) D’Alembert’s principle:
M(t) —Jo 6 =0 or —3k(8 %) (%)—k(ﬂ %)(¥)~J09=0
or Jo'é+-i-k€2 f=0

(c) Principle of virtual work:

Virtual work done by spring force:
€€ 3¢, ,3¢
W, =—3k (6 =) (= 80)—k (0 —)(— o¢
-3k D Em-xeiH @
Virtual work done by inertia moment = - (Jo 6) &0

Setting total virtual work done by all forces/moments equal to zero, we
obtain

Ju'é+%k529=o
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;‘_Of‘ga'onaj /s{*fﬂlness "JU'
the PoS": (ajaoui-j“ﬁ—xfs);

ke ® T8 Yﬂ)
2 fe
4 y
T (7?-3“09)(0-05 ~-0-045 )
2 (1-8)

2
= 148. 7161 %10 N-m

Moss moment of inertia
aQQ the Sr'jﬂ a,taou.f the

.
Z-axig: ,{e= foo2= 108 T
I = _@_— (Clz-l' b!z)

with

mwc{b 'tﬁ.g,bb{c /‘31'3n: M = bo‘-'&_f
M= 07504 (0:005) (76"5"" = 11-6972 Kj§

981
2.
Hence 5 . 11-6972 (o-qo 4+ 075 ) = 0.7043 Kg-m
Sl'jn 12
MG.M morﬂen{' G§ ner{'m., cjf the Fog{_— QJLO“*_ ﬁ:‘_e
2 - A% St
m 2 *
J_ros.b = mer (do + d D)
wiffF  d = 20, = ©0-lom™m, oq;=2'f‘;:2(o-c'-(5>=o-o?rh
0
and

MWO'L- the Poﬂk = m= Tr(r'oz-—r“z) lf

2w = TT'(o-o'i'g—o-oH‘Sz)('z-)(?__‘;j.g-?—) = 23:,273% K3
?n
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Hence

2 2 >
= o + 0:09 ) =0.052657 kg~-m

23.2738

s}
= (
Eauu‘valenf mass moment of inertia of the post

(J_%) ot the Loecation of the /gfjn:

‘Tpost

J 0.052 657
J-% — ‘;ast — 03 = O O'75‘52 Kg-mz

( Derivation given below)

Na,'l'ura-[ che?/u.e-ncj of 'L'orS’\’Ona./Q vibration of the
'fl‘a—gagcs'c srgn about The }-—axfs:

(8 Ji
W, =
J—S‘fan + Jeff
58
48 .7161 mog =
- o.7043 + 6.0175 52

453.8945 ro—&//{

1

Derivetion :

Effect of the mass et of- inerfre of tke

post a-(}/fma-»bjl' (J;“_> on The nokandl JC""'W"":)’

of vibrafion of o Mogt carging end maes
Yncn-rw.m-i' o’k renlia (J‘S;SH7 :

Let & be fke M?JM velocity of the end

T QT TR PY, o C{]}' tnenfia, ( Ts"gn) deeing vibration.
Assume a Uvrearn variofion s the gm?u-iaﬁ
\Ae,Qa—ch of tke %“"BJ[_ (post) Ao that of o
dishamee x prom the fixed emd, the amgulen
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Veloc\'"y is 3{Vgh Igj B x

s

f
The ftotal IkKinetic entrgy ofy the /sfwa,b}(' (’aosf)

'S jiven ‘oj

o . - | : ( ( D‘Pos{.) 4
post S(; >
- 4 I (8)

This shows thkat ke e—({b"’-dﬁr\f—?— magA ra-L.crrrwat
017 e e 55, the X{F\.&ﬁ{' (j:an)aJ\” the erd

s Tpost
3
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Torsyonal /st'aﬁaﬂheSf "b;F
the Posf (a)aou’('j-a_;(.'@;

” © (vt o vH)

il (l-[l"-i Kloq) 69-05#— o-O‘lsq)

2 (1-8)

77.6399 xi0° N-m

iy

i

Mors woment of mertia
053 the Aign a_,i;ou.{' tre

Z2-aRis

a'| = _ﬁ\-— (0‘2—1' ]Drl)
S‘lgh |2

with

mats of Thaffee Aign = M = bel t

M= 075 (o4 (0-005) (3"’ 100 ) = 1202476 K
98|

Hence 2

122476 (o-l-:o - 0-7‘52> = 0.7371‘; Kg —-m
12

eSS moment of nertio of the Fosf ahboud the

2- 0%y St

sign .

2

. - -
Jrcs,t=-—; (clo -"roi," )
W;m.o{o: 2T, = 0-la m , 0‘“32\‘"-:2(0.5'15’):0-09&»

£

and
Mats | the post = m= 'n‘(‘roz-— z)ﬂf

=m = Tl'(oa'i' —0:045 )(’?—)(w> = 243490 ‘kﬂ
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Hence |
24-36%0.

8
Ezuf‘vw[enf mags moment of nertia of the !093{'

(J’%) oocd the Llecation cJC the Aign

J-PQS'E (e-loz-{- 0:092) =

- stt 0'055{35
Jegg = 2 = —

2
2 = 3 = o.018378 kg-m

( Devivation given in the solution 0of Preblem 2.79)

Natural 'DC"Q%“'G“C:I of torsvonal vibration o§ the
"L‘r‘a—fffc s'gn absut he }-—axfs:

L,

‘ &1 2
“n = I T
Sl'an al CfFf

|

3 —

77-639% X100 =
0:7374+ 0.0 18378

320-5127 rod/x

]

i
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.Assume The end mosg m te be a joel'n't" masgs. Then

the mays rmomend JE inerntia ol ™,y aboukt TR pivet
Fol'f\t K 9I~Ven Lj

2
T, = wm, {

wamz;ﬁé\ww
f"(j jwﬂaw &G?Ff‘v@f“ )

5 Fiven lr;;

2

= 2 Qv.
I:l - -{Zng *f‘m‘z(‘:z) :-;Lmzfz (2)

M WW Q-Wd?f'VO'll_ abo}rd“o:us 91'\.‘5“-?7

Iaé' + mzj.é&aﬁf—h:j-[&;s:a ER
where

IO = .’L,"f* Tz.': 777}/?2-}- %MZZQJ (Lf'>

ﬁY ,E]:u:z.?,- Q/“"P""Q-M cg@syn/(g—\w) (S'a:;.,g:l: 2 oad E_Z_(g>

(o b2+ m 7) 6" o +mzij WA

aYy

49” + ?:(l_mjg-/( -+ my_?ﬂ)
2(%m)ﬂ2+mzﬁ)
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> gy ghlemrzme? oo

L2 (gm;—f 2 Wy

o

é'+_%_(67"1+2m2‘>9—° (5)

6 mt 2 mg
By e"jb‘“"“‘fj g -(8) a4 8 + Cdnl g =0, = hjﬂm}
B po-< &&V(Mmﬁﬁ%%’@( WM

_ z—(é‘ml‘f'gmz (6)
9~ 4 6m,+ 2Lm2
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ggpedion of-motion for fhe amgudon molion of =
sgwonm oo™ W2 pivet point O
I, 8, + Mg b cose,+ m g £ cos 04
- F,o0p + R, =o (1)

where 6, is the totad o.m?AJ.a.h WW ol

the ffweohm , I, is the mass yrowmewt a’[y tnendio
ojﬁ'f'h'e :Fa‘leaﬁ'wn anmd The moess casnied

Io= ‘“zl”i-k'!-;l’gr"t (2)
ared the forces in the biceps amd Triceps
muscles (F, amd Fi ) one given by

Fo= — C20¢ . (3)
Fo= %= Qa0 4>
where the linear velo c.i{'j of the triceps can
be exPregseal o8

2 0,0 )

Using Egs- @) -®), Eg- (1) can be rewritten

as
T, 6, + (mygb + 4 mgb) cosey
2 o
+ €% 0t + ¢y 6 = O )

| et tke }O\'Earm unAErjo small o,,\j,u,(a_)-.,
C;\;'Afvlwm‘t () oloouk the stalE e,f),:.ih‘bra‘u-m

[aosih‘on , 8 , So thak
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8y = 6 + 6 7>
USing Ta_jlor's series e&'oa.nf!‘on of Ccos = abould
&, the alalic eprilibniumm position, can be

&xanJaé (gawx&rrw-ﬂ Va—ﬂkuoflr@):

CoS &4 = Cos (5-[-6) ~ CoS G — 8 Sn ng

Using 6, = 6 and 6, = 6, E- €D can be
expressed as

I, 6 + (myg9b +2mgb) (586~ 5in & o)

+ Cop oy (5+9)+c,a,2 B =a

oY
I, 6 + (mpgb + i mgb) ot 6

Csin® (magh+im3b) @ + 22,8

+ Cpovy 6 +C,o~fé =0 (%)
Noting that the static eguilib rium epuation of
the Qorecvm ok 64 = g is 9iven by

(mogh+ tmgh) e58+c,2,8 =0 Go)
In view of Eg- (10), Eg- (9) becomes
@11’1‘*‘5"’1”')54— c,al 6

+{c2a;2_. Sin & 5L(m2+i~m,)}g =0

(n
which denotes the e&uaﬁ:‘dﬂ of motion of ﬁ:rz

Sorearm.
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The undam loaa[ natural fr&zuency of the

forearm can be exFresseJ as

CQ_ Qg — SC‘“.Q- g‘) (mz_l-_z!zm') Y
@On = (12)

b* C"“z+ J;- my)
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2.83

@) oo Vv 4 20 ¥ =@
Using o solution similar 16 Eps. (2.52)amd (2.53)
F

we :Fl'na“- __'%i.&
Free vibraTion response : V(Y= v(). © &
Time constant : T = foo - 5 gec.
z0
(Y ()= VD 4 v, (8
- g0
Tualts MA&): e e whone Az contlond
M%F(_tﬁr € = P W
lCDO(O)—&zoc:;o arc:‘é_“
LI o
(U('E): A e loa " -é-—
- O )
V(o) = AC 4% =16 A—.—.f%
Toted MFM:
s =it | 4
_
v(t) = =z e + 7
20

Free v:"ora,’t'a’on res’{nenSe: e
Homo geneous solution: .'_2'2. e_

Time constent: T = lg—:—: 5 Aec
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Cc) F}LE_ "7 G'—‘am :
e W —%—‘;{
v(E)= ve) e
Ths #dltron  Growos bl Tome
No t:\-,..,l. WCM KFC 67”-‘-4"’{'
d
@ e Vibretfon AdluBam ;

G (£) _ =t ~ ]
niS o —_g. 5 €

Time (oo X = e 2949 {o A
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Let t=eo when force is released .

2 '

prt t=o0o, x(t) =ol ands Aot e®

— O

arl= A & o> A=c)
SCoo o
e (BN = ey & 5 :
o'\ e v t>oe (Ep)

Use
. Srtj =tz 1) = 0r0] ™z @2)’

_(SOoe/Cjic _(So)caa/:)

610l = 0+ €
ar
e ]

i‘E. - SQooo
p) = :Qmo:l = —-2.3026¢

Hence C= 21714:+7 N—s/m




™y = F-D - m9
1000 ¥ = 50 oo 2006 V — 100"(?’?')
1000 ¥ 4 2000 ¥ = 4 (90
o
0.5V + V= 20095 €2

- _ o ek t=o:
Calks i c%gz.(e,)yvﬂf A (e) = |

- Lt
stys aoets (1= €77 )

oy _2'&_
é_i‘;(t): 20‘0‘?5(1"@ ) (EZ)
d+
}:W{E?fw.ﬁcm ol Eg,-(EsD jrves
/ —?—-{:) C
e . w038 | ——— z O T~y
2 ()= 20:095 t 20 (_2
—:t

= 20095 t 4 100475 € + ¢,

—_—

% (¢} =&
2
= o= 106475 € TC

—

aY Cl - 1--0-0'-{75

-2t
2w (t)=20.095 Tt + lo-oyT5 € - 1004758
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/ Let myz = effective part of mass of beam (m) at middle. Thus vibratory inertia
force at middle is due to (M -+ me). Assume a deflection shape:
y{(x,t) = Y(x) cos (w, t — @) where Y(x) = static deflection shape due to load at
middle given by:
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3

X p.4 4
Y(x)-——YD[B?—é}F};O_‘(_xﬁ—Q:
. . . F £
where Y, = maximum deflection of the beam at middle = BEI
Maximum strain energy of beam = maximum work done by force F = —;— F Y.

Maximum kinetic energy due to distributed mass of beam:

&
) 1 2
=9 1 m .2 = b
LB ] ) e o] + 7 (o) M
0
£
mwz 2
=== _[Yz(x)dx-}——é-wi'Y%me
3
7 2 2 6 4
m Wy 9x X s 1
= ¥ 2o 318 S —24 —| gt — YR 2
¢ _!J- 0[52 {’5 34 +2Y0Mwn
2 2
mw:¥: o ¥ 16 x¥ 24 %°|,7 ,1
-~ F s tE T Al ryTiMe
1 17
= = Y2 W2 | =—
2 °°J“[35 +M]

This shows that mg = % m = 0.4857 m

For smeall a.ngula,r rotation of bar P& about P,
. , 2
PBT) 4 (kdey 04 =% . (08) + £ %2 (0 k)
2 .
(kn,) = Htir sl
Since (km)ef,j a-nJ 1(3 axe in SEeries,

A
,keﬁ = (kIZ.)QS' kB _ k' ‘ka Bf?- + 'kz 'k3 ’EZ

(‘kiz—)eg"“ k3 1<|/qu+ L33 f:‘-{-— k3 152

T = kinetic energy = £ m =% | U= potential energy= 7 *e, x?

I§ = X <es Gjﬂt,

R z
Tmax = —;:mw,,,x 3 Uma_iz—é’k%)(
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2 2 !
Tmax = Umax  Jives & = / Ky ks L+ %y %3 £,
| T om0k A ks 1)
—. When wmass m moves by 2, e
SPrEn3 x, de;!eCfs [’J "/q- ;= 2k
‘ T = kinetic energy =+tm (i)z
W o=

tential - z
}j ) energy = z{-{-(l-k)(%) }
For 4ar monic Tnotion, *, = 2%

A : 2
Tma.x‘-'—?'_-mw,, X . ‘U‘max:—ékx

Tinax = Umax Iives _ ’ &
a- X GS_“ - _‘*_Tn-

Refer to the frgure of solution of problem 2.24.
o 2 e
T= gm% ) U“—‘—;:[?-k, (= 05 45°) + 2%, (x co&‘ls'b')z_]

2
+ (ki+ 1) =

1}

hormonic meotion,

2
YR -
Tmax = —'Z"m LB,,,?— X Umax = -2‘—_ (e + 1‘2.) X
TI!'I'IG..I = Uma_,x 9:VE$ (S = ‘k"f‘ ‘kz
n m

~ kinetic energy (K.€) = + m e
_ Potential energy (p E-)= L Ty=+ + T, =

= Work done 'n

A'SPI"'C""H mass wm by distance x against The total force
(tension) of T, + T3.

= %v— T, T = —E‘— T from solution of problem 2.26

Max. K E = L£m @2 X, Max. P-E: "LT(;'T+‘L‘)X2
Mox. K-E. = Max. P-E. si'ves /T a..+b .

<2 1 + -
ke = b 38t -t @ rmd) =g ,-'imf‘+m—~§-‘>e
2
‘ 2
e Y.

FR 2 Z
-PE_.Tngal(1—Co.$‘9)+2-(1<9<‘+J£1<7:z>+-’£‘ke
with cos 6 = 1--;:92

+
) 7‘1=§6 and 2= i"'QQ



- 4 97' | Sl g% 2 z
U—mg-g-_i_-rk-g—e-rk-’f;—e + L ko0
.mf" z 2 2 2
Tmax = Ji (_3——)@ 2 Uma.xz ‘é‘ m—i—sf ®z+_% (r__o:f )6+é—k{:®
X o 4« 4% '
me9e — 4 === #« .
w'ﬂ = j '3 o -+ t - 4.5' {5 &7 rsae'i for given
wl? data
g

Refer to the figure in the solution of problem 2.76

T U= Ky et + -%_—‘ki(sa,)z-i- %k,_(ak)z
For e(t) = © cos Wyt
= 41 g;(a:' @ ,

mft poje

2 2 2
Upax= ke + 0+ b )0

Tmas 2
Tomax= Umax ives |
1 :
W, = _4&,& -+ ki d-1+_kz£z' = \/?(kt"' kia’:-'f' kg_l")
[0 ; 7 —
since  dJdy = mlz'/g_
: when prism is A,‘sP‘a_ce& I":f % . k—-a.«—’l
@ Ffrom e_gua".fb'rium Pcs‘it.‘on, the & T
_ weight of oil dfs}:la—ce.cl T L
= ‘-Fa g abx = restoring force 8posit:’an —%.:['__' o = el ______L

Mass of Frn‘Sm: ™ = Jf;_a,,bk

Ezuﬂ—f—'"dn of motion:
’m.:-'c - restorn'ng JCOTCE =0

fwwbk % + JZ}@L?. = o

_ [Lgeb | L7
On = E ekt 7L (&1)

Since 9, is |'no(erenc'cnt of CroS.S'-S‘Bc.ft'o'n of the PrfS'm, (@38
remains same even for o cirewlar wooden prism.

l -2 1 -2 1 1. 2
2.94 T=_mx +-2—J09=§-lmR2+§-mR2}9

sincex=R8andJ0=%mR_

U=—;—k1x'{+%—k2x§=—%(k1+k2)(fl+a)262



where x; = (R + a) 0. Using g’c_ (T + U) =0, we obtain

(%mrﬁ)‘ehr(k1 +ky) (R +2)?6=0

\ Let x(t) be measured from static equilibrium position of mass. T = kinetic energy
| of the system:

1 .2, 1.3 1 Jo | .2
T=— —J 0 == + —|x
. 2 mx - 2 0 2 [ 1‘2
since 0 = P angular velocity of pulley. U = potential energy of the system:
m g

1 9 1 9
U = ky' =3 (16 x*)
sinee ¥ = 9 (4 r) =4xX = deflection of Spring- ""—t (T + U) = 0 leads to:

w  Jo ..
mx+-—2—x+16kx=0
r

This gives the natural frequency:
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Assume: No /LECGQaIng of the cglfnder.

jarelie erengy o] T o}-&JM(T): Aum o

; -;mi’l+'!5$§l (e )
conee tim cylirdir il et Alidieg,
k % (E; )

2= 6R ar 9’;75

Using E%- (Ezy, the Kinetic W% CCn be

axrmMul alt

% o & T . .
T Lmd’ % & 5 2 —:J?-_(m—}-?)_x a».
R

= L m éier_ .2 2 .2
Z + 576 = L (mR +T)6 @q)

'TEJ. ayai—émbqu (crr /ﬁmh> W%, U, use = H-Te
gaggg B o o) &= Aﬂh«vg A5 Frive- ]
U = L % % EsD

= -?f:’k?le CE£>

TMUW% & Cofoo bt Sfiee U oﬂo«m"
¥ abged .

T+ U = ¢ = constant CE'i' >
US‘V:T Ey CEZ ) o CESD A EC/ (Eq> :w{ méu:ﬂ
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J ot | 9(2. .
é‘(?ﬂ+‘,§‘~;71+ L % = ¢ (&

%’W‘P@I‘j Eg-@»3> s pe T et 34\;4,3

L+ m)(2*) F 4 Lk (2xi)=o

len g
(2 )%+ xx] 4= &

S‘hce'x':}to @YO‘JJ" t’
rn+£—;~_>ét'-g—9<4<:o CE,,,)

F)—EL h_aﬁ;?\-"-‘? ij C«q Nr‘bmﬁ_cm ! 5{_9.—,. Eﬁ'(glo>,

W, = o | (};r:j>
)
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US\'nﬁ Egs- (t‘q)w\—ﬁ (Eg ), The #Aostal
nengy 9’6— The W o A E’.x/oreSSeoFM

2 A

-IE(THRE-—!- J) éz-l— é ® R 8 = ¢= consfonk
(Eisd
Diggesundion o Ep. (Eig) with respect t

Kime j“\/f/g

.z"z(rnﬂa-l-ﬂ')@é 9),+ 'i.z"kﬁz (295)-‘_0 (Ew>
[@Rz_w) 6 + *F 9]‘9 = G
Since é ;to WG-LQ r

(-mraL.} J‘)E? —+ k'ﬁi & = o @l&’)
Ve waKune [Py b b
(r?\y-m F@'CE{? da & i L:j

/ 2
(8, = ji_;i__——-, CEW>

MR -+ Jd

Uby € Ere D, Egs- Eig) o E19) b come

me" & 4 xrie =0 Eed

3
2



d) mSEom , Eps (E1p) ot (E,g> , fad &
= fowe notune L Wc; 9, @A
foowos B

& 5 (Br) o4 (Be)).
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For pendulum Sy = ’% n vaccum = 0.5 Hz = T rad/sec
1: %/-n—i‘- = ?ngl/-n—z = 0.9940 ™M

Cdd = G J1—y® in VISCOUS medium = 0.45 Hz = 0.9 7 ra.J/sa:
= n
= - 2/ 1— 0°FI
TPz Pn- Y o T"(——-——-! >= 18752
Wk
T = 13634 § . ﬂ
8 e =0
Egua.{:fon of motion: ml- 8 + ¢ €+ ™3
3
Cop = 2(mi*Y e, = 2 (1) (- 974) () = ¢- 2080
c -
Since T= Lt . . 1-3684, ey = §.5013 N-rn-,!ec/,.a‘cf'
Cet

. \From &g (2:85), ]
- (;’) = 'ﬂ"([s) = J_ig:TT = 2.9%04
;.1'! G

A
T = (2-8904'>Z }Z IR
G s904) + 4 TT°
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(o) If damping is doubled, Proiew = 0-8358

ﬂ'h (7‘2' _ 2T an ZT"(O'gBSE') 5y
. oy = = ; = 9-565¢
J! J1- FA Vi= (0.83 58)%

%% - 14265.362
xg".*q

(b) If da-l'anng is *IG&VE.J,
27 [,

ew a7 (0-2090) o s AEE

(T -
I m&: \ﬁ— (a-?.a:)ﬂcv)zr

xa
= 3.929

X g+
where W = Ji=7T* w,

ws
a1 nt sin C&Sd‘t

X(t) = X e-
For maximum Of minimum of (%),
-7
x 3 "t (-—TCS“ Sin CIS‘!{: -+ CSJ cos wg,_t) =0

ST £ o for finite t.,

7S, sin Uyt + Gy cos Wt

S/

Y = 0-2090

= 0

i.e. tan Wt =

Using the relation

sin St = * fan 3¢ . % ('i" TZ/T) 7
jt = & = = i =z {1-T
JT.+ tan wyt \[i-f-( 1-T2 >2
T

we obtain

sin Wyt = JI-<= , cos Wyt =T

and
Sin w‘!tz —\/1-1"- , Cos usd,tz o O
-y, t '

[TLCS: sin th -7 C:sh wd coS C-IS"": -— Clg:- sin C'SJt:)

I+

d%x _
dt*
sin Wyt = J1- T+ and cos P T

4 T t 2
= - X e Wy Ji-¥* < o

p=—

e
. sin &3&{: = \Ji-T" carrespcnals- to maximum of =(t).
when sin it = —J1-T* and o8 k= -,
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A -

2
%&: X e w! Ji-7* > o
. sin CSJ‘f: = — 4 -5-" c_orresFamls to minimum of x({;)_
Enveloping curves: KEIT ~meg _ =, ()
Let the curve '.‘ ““““ -

. I; ™ ey
posSSing throus the 0 L Ry
maximum (or minimum) S e d
fo:‘n%s be _f___---";:"

T8t x, (t
Z(‘\‘:): C' e " 7'( )
. =1
For maximum Poinfs, tmon = $in (01—72__}_
2
O-l“ldl t
-7 W, -tma.x . TG0 Cmax
¢ e = X € sin 03y tymax
ver C = X \“-"Tz
Tt
)= X Ji-T1* e - \/’____"—i‘
, . sin (= J4=71")
S;’miia.:rlg for mintmum ponis, B, = @,
and 7
- W, t. —-T W t’min
C e T @Wn tmin - X e s C‘Sd tm..n
v o= =X Ji-v*
- T

g 'xz({') = - X Ji-3* €

x('t') = [‘x°+ ('ko—q— W, xe)t] éwm‘:
(E1)

For x>0, grath of &.(Es)
is shown for different x, -

we assume x, >0 as it is the
onlj case that gives a maximum.

For maximum of =(t),
dx _
dt

e—-wnt {—-(‘io"f“w“ ‘za)wﬂt + -‘-‘O} =0



i — 6t : ‘
%-{:L: = —c {zwn X, + By % - WE (%, + @, %)t }----(E,)
(Ez) and CE;j ‘give
i’:i =---L.3 twm {2&9 7c°-|-03h ®y — C-’,..(—x + &, x°>{- }
dt* [t=tm ‘
= "é—w ( U"(i""'('s"x")) { wn;ca + 63: 'JCo} - (Eq')
For %> 0 and %X, >0, ° dx < &
at* 1t

Hence t.. given b Ep. (Ez) corvesponds £ o maximum of x=(E) .

: . -, tm
xl p B {x.,-!- (%o + Gn %) _Eo }e i
1= %m - Wy, (%o+ Iy Xo)

L B Fra) e (e

Egua.{non (2.92) can be expressed as g £+ fn (_"__
- ™
For 'haJJo- c.y,oﬂv,, = -f and hence

8 = Z /f"" (‘Xo - 2 Lr\
- (=
Necessary dawping ratio I, is =3.7942
7, = 3 - 3.7942°
° - - i
Gk Vv 37942
= o0'5i63

(a) :
It T* 3T, - 0-3877, the overshoot can be deter mined by

-f;ncllnj S ;-:-om Eg (2 85)

x
o zrrT| _ 2™ (ogfll)_. = 2.6427 = ZE“(?:_)
o oJi-T Ji- 03877% i

Ko
—— - .2135
E’"(‘X.L) A
F A

Xy = 1/81'32'35 = 0:26G775 X4

EA

overshoot is 26-677‘5'2‘
b
(ch ‘g=—5-—T = o0.64Cl1, & is given bj

ATy am (06460 39 - 2 ﬂ“(ﬁi—>

J-i’--—_q /T_ (o.eqei)z 2
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Ko - 14.2888 .

2

= g-0700 o

wl-

xy
4

* oveyrshoot = 7/o

(i) (&) Viscous damping, (b) Coulomb damping. L
(iii) (a) T4 = 0.2 sec, fg = 5 Hz, wg = 31.416 rad/sec. S
(b) 7, = 0.2 sec, f = 5 Hz, wp =

31.416 rad/sec. —

X

@ (=== ]
Xi+1 :
. R
g s g2 —0.6031 = —25 e
X4l 1—¢

or 39.9590 ¢ =0.4804 or ¢=0.1006 =
Since wy = Wy V1-¢, we find =

Wq 31.416

Vi-¢& ~ o.98708

k=muwl = [E’%} (31.6065)2 = 5.0016 (10*) N/m

Wy = = 31.6065 rad /sec

9.8
c c o

Ce 2m wy T
;5(;01 ) (31.6065) (0.1096) = 353.1164 N—s/m

(b) From Eq. (2.133): ,- o

k=mwi = 5395% (31.416)? = 5.0304 (10*) N/m —

Hencec=2m w, ¢ =2

Using N = W = 500 N,

4
_ 0002k _ (0.002) (5.0804 (10%)) _ o503
4 W 4 (500)

(a,) Cc= 2 J‘k‘m =1 4500«:%50 = {000 N-A/‘rn
(by €= ¢/2 = 500 N =5/ m
c\? _ [sco0 2
o= oI = (E - (&) = (B2 -

= 8.6603 rad/sec
€) From EE’(Z'SS)' §= H‘(_&')= — (iﬂ)ﬂ)

Gy \zm 3.¢6603 \ 1% 50
=3.6276

- m = 2000 %9 , V= %5 = (0 m/sec , *= 40,000 N/m
2.104) ¢ = 20,000 N-se/m
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- 40
W, = ‘H‘ﬂ" - J_:ﬁggo%% = 4.4721 TG-A/sec

Cc = 2Vtm = 26 2898221 N—S‘ec/m

T= Y% = 0:7906
W= w, JI- T* = N ¥ =
g " = 44721 | = (0-7.906) = 2:7384 ra.cf/Se,c

Ty = 2T/egy = 22945 sec

(@) For %, =0 and z, = lo m/sec, Ep. (2.72) gives

- c;s,,'f: >
=(t) = Ej— _ T osin 1= T E

6y ifp—*

L ~F
A‘t xma.x > LJ,.,{‘: bty Ez _a.ruk sin W9, |- T = 4
—av7906 (%)
> ~ ( 10 _ o
e € 2. 7384 (t) = (-0548 m

Ly &= TA/4= 2.2945/4 = 0.573¢ Sec.
= 200 Cﬂdes/mfn = 20.944 ra.cﬁ/sec 3 di: 180 Cgﬂ‘.‘es‘/m:n =18-843

# Ct’“
Since 4= W W s T = 1—‘(%&)2 = \/i—~ (% 2_==o-4-359
= & _ Ct

Cederi 2 T, WOy,
Cp= 28, L9, T= 2(0.2)(20-94: &)@ 4359)

= 3.¢518 N-m-3/rad
Ea.(z-'l?_) can be used to obtain () for é, =0, 6,= 2°= 0:03491

g red
see

wed aond %= Q= % = ©.3333 sec,
—T Wyt T W ,
9({7) = e h 8, {uﬂ 633& -+ Tﬂf_ Sin C.Sd{: }

e—(0-4-3'59)(?-0-944)(“'””) (0-03491) {cos 18. 8496 x 0-3333

0- 4359 x 20-944 .
0 ' 2333 3
e Sin 18- 8496 x 033 }

— 0,004665 rad = 0.09541°

+

IAssume that the bicycle and the béy_' fall as a rigid body by 5 em at point A. Thus

the mass (m.q) will be subjected to an initial downward displacement of 5 cm (t =
0 assumed at point A):

%o =0.05m, Xp =0

I
_ Kea =‘\[ (50000) (9-81) _ 94 7614 rad fsec
U = Meq 800
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e =2muwy, =2 L:OO ] (24.7614) = 4038.5566 N—s/m
1

C
_ & 10000 _ 40476 (underd
4038 5566 (underdamping)

Wy = Wy '\/ 1—¢ =24.7614 V1 —0.2476° = 23.9905 rad /sec
Response of the system:
x(t) =Xe " sin (wy t + )
af-L
. 2
Xg + ¢ Wp Xg
Wy

where X =1x§ +

. 2|2
B . [ (0.2476) (24.7614) {0.05) 0051607
=105} + 23.9905 ) w
Xo Wa 0.05 (23.9905)
= tan~! = tan™" = 75.6645°
B R e Y s | 02476 (24.7614) (0.05) 5.6

Thus the displacement of the boy (positive downward) in vertical direction is given
by
x(t) = 0.051607 ¢~ 813%% * 5in (23.9905 t + 75.6645°) m

X
X1 _ 80 _ . 0009; In—> =0.08701 = Ere

Xg 5.5 Xo *\/1_51

fe, 0007571 (1 —¢%) =39.478602 ¢ or ¢ =0.013847

Q Reduction in amplitude of viscously damped free vibration in one cycle = 0.5 in.
2.107

: T_“.—-o-?_ SEC:%,I‘-; 5 (.943 31-4 16 ra..c‘/ggc
From Es. (2.92) 8= ELE g t0 = 0-04605
§

0:04&CS

T= = = = 0:007329
2 1
(TI') -+ 5 ﬁlﬂ)2+ o-oq.gos"
wWhen cla.mp.‘nj (s neg[ectecl,
T
Wy, = c.sé/m‘;l = 31417 ra_cl/sec i Tn= 3;'3_“ = ©0-19999 sec
Propor tional decrease in period = (22 ";;_13953) = 0:00005
~ |Eor cr[{-fca..uj damped system, Ej. (2:80) gives
2.1 -
e Ty .
—w t L *
.9(({').: e {xo - x, St - c.sn xo-t} (E,_)
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€% =g ccc{df-ru

Let t, = time at which %= X, and

x, =0 and 2, = initial recoil velocity. By setting

Here
% () =0, Eg: (Ez) gives
_ ').cc 72-0 ] (E )
- = —_——— = g 3
T TGS, (e, + 09y %0) (9, %o “n
with E% (Eg) For 'br,-, a.YlG? Ky =0 > (E|> SI.VES'
. ~ 8, t i
Xmax = % tm € T - % ©
O
Le . = (O, Kmaz€ = Wy (0:5) (z-7183) (E,)

o

USF"’? 7"0 = {0 """/SEC» G, = “/(0-5 * 2*7!83) = F« 3575 ;:’j
When wmass of gun is 500 kg_,

the sti [ ffness of' the Sphnj

k=w m= (T 3575) (s'oo) 27,066-403 N/m

Ce= 02 N-S/mrn = 200 N-'s/m

4 = 5000 N/m
= Z\ka = 2y5000 m
™ = 2 ‘Kg.

W= \,{;73:‘ \JSDOO/z. = e ra,d/sec

s o 2T T
c f

{en 3= ¢ % o+« 3083 amA c= g- 3033 (O«Z-> = GO- 66 N-s‘/m

Losa..rc‘_{'hmt'c decrement = — 2.0

Wy dt— 7
'ﬂ'/z and  Sin \Jl- e 0L B A

FOI‘ %ma_,g 3 w,,f ~
_ 03033 (T0/2) i (1) = o0.01303 ™

P e ik
e € 50 (13— 0. 3033

For an overda—mped system, E (2 81) gives

‘ Tt wy € +
x(t)= e (e, e 4F L, €947) | (&1)
_ zx sinh = (2)

US:'nj the relations e -~ ganl e B
Eﬁ-(Ef) can be rewritten as

- T, T _
x(t)= e (Ca cosh gt + C, sinh a:dt> (Ea)
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Differentiating (Eg) ;

’)'C ("t‘) o e_j‘a&nt [C; OSJ sinh C&d'b -+ Cq Q}d COSA ﬁcf-t]

— e, &7 [ s cosh eyt + Cy sinh gt ] (ey)
Initial conditions
and (Eq) give

x([E=0) = %y amd %(E=0) = x, with (E3)

C3 = 25 C4 = (7(°+ TW, xo)/agd (Es)
Thus (E3) becomes
_yw,t
x(t) = x, e ¥ (CQSA &ﬂdf-f- Tac;j" sinh C&d‘f:>
X Tt (E
+ @, e Sinh c.sat ¢)
(") when %, =0, Ep- (E¢) gives
- TWnt Wn
x@®)= %, € (cosh ayt + Ig sinh ayt) (&7)
Since g Teégt , cosh wd-t R T(‘jh and sinh 0.941'5 do not
2
change sign (elways Fosi-a‘:n've) exsaEl = Tt

e a.»paoraa—c.kcs
gc(t) will not C.ha_nje sign .

(i) when =z,=0 s . (E¢) gives

'] o nt

x(t) = %9_ e hs sinh a3t (E8>

d
Here also, wd: e__ Tt a~d  sinh 0.&'(‘; do not C-l'za.nge sign

(abuajs Fosi-&fve) and e_Tw“t

t'hC‘rEa.«S'l'nj - 8

3ero with (ncreasing t,

frao.c.f-.es zero with

z (t) will not Cha.nﬁe, sign .

| Newton's second law of motion: — m%
—, X, %

TM=J f=—FR (2) o e — cx
where Fy = friction force. E f %o
2 . f
Using Jq = ki and6=%, Eq. (2) gives
__ 2| X __ 1 3
F1="3x (mR] Rz @

Substitution of Eq. (3) into (1) yields:
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%m§+ci+kx=0 (4)
: 2k .
The undamped natural frequency 1s: o = Ty (5)

“\ Newton's second law of motion: (measuring x from static equilibrium position of

cylinder)
. ZF=miE=—kx-—c§:_—-kx+F; (1)
TM=J 6 =—FR (2)

1 I :
where Fy = friction force. Using Jo = 5 o R? and 0 = 7 Eq. (2) gives

1 ve
=——mX (3
F¢ "3 )
Substitution of Eq. (3) into (1) gives
%miﬁ+c§c+2kx=0 (4)
Undamped natural frequency of the system:
4k
. Kx Wy, = 3 (4)
ex \ .
/& ™%
}_ ®
5,6
% %
%
Consider 2 small angular displacement of the bar & about its static equilibrium

position. Newton'’s second law gives:

bk

TM=1J, 6 =—k [9 _4—]

s el o 3
4+ ke o=
1.€., J09+ 16 +4k 0
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7
where J; = = m €. The undamped natural frequency of torsional vibration is

I EENTE
—\/31:52 A /36 k
UJn= = SR
4-]9 7m

given by:

Let 6x = virtual displacement given to cylinder. Virtual work done by various
forces:

Inertia forces: §W; = — (Jo 8) (80) — (m %) & = — (o ) (i‘;.{‘;) — e 5)

Spring force: W, = — (k x) &
Damping force: §Wq = — (¢ X) &
By setting the sum of virtual works equal to zero, we obtain:

_i‘l_ _:_c_ —mX—kx—cx=0 or irr:tii-!-c:i:—}-l-:x=0
R |R 2

Let 6x = virtual displlacement given to cyllinder from its static equillibrium
position. Virtualll works done by various forces:

Inertia forces: §W; = — (Jo 6) 80 — (m X) 86 = — (Jo %) (%) —(mx) &

Spring force: Wy =—(kx) & —(kx) x=—2kx &

Damping force: W4 = — (¢ x) &
By setting the sum of virtual works equal to zero, we find

J as
—T;——E——mii—-ka—-cic=O (1)

Using Jo = —12— m R?, Eq. (1) can be rewritten as

%mi+c:‘c+2kx=0 (2)

as:

See figure given in the solution of Problem2.114. Let 8 be virtuall angular
displacement given to the bar about its static equilibrium position. Virtual works
done by various forces:

Inertia force: SW; = — (Jo 6) 66
Spring forces:

3¢ 3¢ v APT 4 3
Ms=—(k9T)(T69)—(3k61-)(159)=-—{zk€2 9} 56

Damping foree: Wy = — (c 0 7‘;.) (_‘Z- )

By setting the sum of virtual works equal to zero, we get the equation of motion

e 62 " 3
Jo @ L L kérh=
o Tc i +4kc” 0
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See solution of Problem 2.93. When wooden prism is given a displacement x,
equation of motion becomes: m X + restoring force = 0
where m = mass of prism = 40 kg and restoring force = weight of fluid displaced

= pp g 2abx=pp (9.81) (0.4) (0.8) x = 2.3544 py x Where pg is the density of the
fluid. Thus the equation of motion becomes:

40 X + 2.3544 py x

"0.3544 p po
Natural frequency =

Since 7, = we ﬁnd

9 2.3544 ,oﬁ
wn-_~—5= =

Hence p; = 2682.8816 kg/m

Let x = displacement of mass and P = tension in rope on the left of mass.
Equations of motion:

YF=mX=—kx—P or P=—-mX—kx (1)

ZM-—-JOG——Prz—c(Grl) (2)

Using Eq. (1) in (2), we obtain
—(mii+kx)r2—c9r1=.lo.9' (3)
With x = 6 ry, Eq. (3) can be written as:
(Jo+mrd)f+cr +krif=0 (4)
For given data, Eq. (4) becomes
5 +10 (0.25)%] § + ¢ (0.1) 6 + k (0.25)2 6 =0

or 5.6250+0.1¢c8+0.0625k 6 =0 (5)
Since amplitude is reduced by 80% in 10 cycles,
o N~ Lt
11 0.
X1
In — =1n5=1.6094 =10¢ w, T4 (8)
X1

Since the natural frequency (assumed to be undamped torsional vibration

frequency) is 5 Hz, w, =2 7 (5) = 31.416 rad/sec. Also
27 2T _ 0.2

wd_wn\/l—-gl_'\/l—-g’ o

1

Eq. (6) gives
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0.2 } 62.832 ¢

1.6094 = 10 ¢ (31.416) [,\/1 ==~ -
— -

e, V1-¢ = 62.832 . — 30.0406 ¢

1.6094

ie, ¢=0.02561
Thus we obtain:

= A /70.0625 k
wy = ~EigE — 31418 or k = 8.8827 (10*) N/m

- ¢ =0.02561 = — = c _ 0.10 c
cc 2mg w, 2(5.625)(31.416)

or ¢ =90.5134 N—s/m

i ‘Torgue = 2% Io—-s N -m
angle = 50° = g0 divisions
' For o torsional system , Ep- (2.84) gives

— e
€,
(b) FOT one CHCLE 5 2‘; = Z Sec q,ncl (E1) gives
2y w9 _
§59- = e ¥ .“ or T, = + fn (16) = 1-3863 E2)
n = T,
| QU= ez -1t
2 2 _.n,z. ' - _ . -
@l = (”3 4+ el = fr_‘r + 1:3863 = (-7915

(&
e W, = 34339 rad /sec

d) Stnce a.ngula.r cll’sp[cucemen{: of rotor

(E3)
u.nafe,r a_FH-‘ect tor‘gu.e
= 50 = 08727 rad,

=3 :
1({: = tOf&“e/ahﬁula.r da’sp’a—ce.merrt 2X10 /0-3727

= 2.2907 263 N-m/rad (e,
() Mass moment of inerticc of rotar I's . .
T = Xt - 2.2917 x 163 /ii. 7915 = 1:9436 x0T N-m=S Es)
(=] w:
(€6)

. _ TWn _ |.3863
E&g.(Eg) amd (53) gave £} [ - 3. 4339
Ep- (E¢) gives Cy= 53887 x16* N-m-£/rad.

=0-4037
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b)Y wm= 10 kg

€= 2006 N-5/m

(€) m=10 Kg

= loces N/m

A () m=1lo Kg ;
_ C-lb'o N=5/m

i !
| ]
| !
| !
= 1000 N/Aoy = (600 N/m !
| L]
|
W, \[—‘ 1006 : Wy, = ,1’_:; :(_,9,.,: —1:-"—
= [ Y‘G—C'/S | = Lo ra.cl/s : = lo ra-el/s
[
3 = c | 3__ s : ) e
Z2wm W : T 2wm Wn :\S‘- 2 (9n
= _E:_ ;a-'!S: '—'-.2.?_.____: {0 : :_ifo__..: 1.25
2 (1) (10) | 2 (16) (1e) ! 2 (10) (o)
1 i
(,_90!._-, G NI = Tz :wdz 1o J1- (00" :‘-*94 = not w;:[:h‘ca.'ofe
(i-os® | ' damped
= - 0.15 = oVEr-dampe
oyl =9 : o ! (: ped)
= 661438 rad /s i(Cr?chuj-o(ampeA):
| I
|
I

(under- dam ped)

]

: (@) Under c‘a.'mpecl System : Responise : Eg. (2:70)
X, = {x02+ (io+Twn ‘Ko)z}yz (E.i)

Uana 'xoz— O-I) &- :(O;T: 0-75, C‘.gn': IO) wot:G‘é{qagJ

o

EZ'(E'O gives Koz 1162832 m.
¢o= o.a:i (._ );'c"'TwnxO)
w“ Z,
{_wi (__ (6 + 0-15(l0>(0nl>> P gg,t,‘??og’
6.61438 (o = - 1150935 rad
Ege. (2:70 'ves:
g ( ) 3 7.5 t =
x(t) = (-62832 ¢ ws(e-glqas t + 1.50935 ) m

k) Crf%fea“y O(QY"‘PEJ system: Response: Eg. (2-80)
w(E) = {7‘0 + (%, + &, %)t } é-wnt

-}
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{0'1 + (1o + (O*o-\) 'l:} e_mt
(o1 + 11 &) é_mt

D) OVerolo.mPEol system: Response: Ea,(z-g-.;)

Using J5°-1 =y1-25°—1 = o.75, we obfain
¢ = Mo Wafy s}t %,

1]

Eg.(2-82)
2 W, Jx?.q
o1 (10) {|-25+o-‘7§_}+fo
= 0.8
2 (19 (0-75) 7
CZ: - Ky S8y {‘S"ﬁ\l‘fz__l}— ?.<° E (2 gz_)
2 Wy, J’;j o
—o.1 (10) §1-25 ~0.15} — 10
= —0:7

2 (10) (215 )
Eg. (2.81) 9vves

-3 +g7-1) Wt (—T“‘JTZ'OC‘Q"'E
e 4 1T, €

x(t) = C,
-1-25 + 075 ) (1) t (-1:25-0.75) (10t
= 0.7 G( 209 - 07 € )
—B% ~ 20t
= 0% € - o7 @ ™
:Energj stsi’aa;l'ea( h & Cjc{e of ma’éf'on,
7 #%{t) = X sim &941‘: > is given by
AW = 7T ¢ wy 2 E- D
@) wn'_'\l% = "o’io = o raa[/g
¢
3= =39 . _ .25

2m Uy 2 (1) (10)

CSJ = Wy, \fl— "S'l = |o\[i-— 0-2'5:‘L = 2: 682458 ra.o’/s

For X =o0:2wm, Eg. (E-1) gives
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6o-83682 Joules

L

AW = T (50) (9-682458) (c2)

b)) o= JE = 16 rad/s

= C _ 50
0:15

— -

2m Wn 2 (10) (10)

[ 7 _ j z d
“SA':""“ ¢ = lo Jt-0'75 = 6. 614378 )“GL/g

Foy X = 0:2 m, Eg.(E-l) gives
pw = T (150) (6.614378) (02" ) = 124678385 Joules
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Evt.a-tc'n of motion:
o . 3
106 ¥ + 500 = + l000e ® + 400 X =0
(") Stefic exzj,..j,.la}u.wm faosl‘{:t‘or\ is given Lj = s
po thet |, for the nonlrnear Apring
3
10000 Xpo + 400 Ay _ mg = |00 (781N =981
The Value c'l_ *, P4 31‘\/6‘(1 ‘sy The roect ch,
4—00 ‘X: + 0000 Xy — 88| = 0o
@co‘i‘s from MATLAB:

* o7 0:0981 ™ oﬁ;er roo’f's: —o-oq‘io:t 5-0007»5)

) L,‘M‘él_p' /ga}u,,j cowtb + abnd W=
Altze @_\Ithm..cfzmcm oﬁ x,= 0:098 | ™4

*(x)= 4oc0 x ~+ looodo x

d % 2
e 1200 %, + (0000

Linear dx

—

n = Zo

2
12060 (0:098%81) + 10000

L

- |00(l-5483 N/m

Linearized Waﬂ o’b moti'on:

60 % 4+ 500 % + 10011:5483 % =0

€Y Neotunod egpemey of vibrafZon for Amall
&Afia-cemrﬁ : I

_ 1001154 83\2
e, = ( ) = 10:0058 f'“"‘/«?

lo o
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@) Static ez‘u{ifLr(um'Fasf’ce‘oh s given b«j x= %,
such that
- 400 ')C:+ feNele]=) 'X-czmg :;oQ(S‘€|> = 9%

ar 3
-4o0 M, + lOQOCO X, —981 = O (1D

Roets of Ep- (1) ane: (from MATLAB)
K, = 00981 5 other voofs: 49502 ; -~ 50483

(b) USt‘ﬂj the X’M—M racvae reet ef Eg-(f)
oA -Hi-e z%"i"a.}':'c e.au'nf:'lzrt‘um FOS'I",:;O?‘\) %, = 00781 M,

the LCMS&A f"a’]ﬁun—j cortbont o bowt . LT

3
()= —460 % + (0000 *
2
khmﬂ-ﬂ-" = %—1—4— = —1200 A, + [O00°
e 4 s

= 99284517 N/m
Linearized exz/u—aj:m‘* og metion:

00 %X + 506 % + 9988 .4517 = = O (2)

e> Naiwral ger%"-;‘j of vibration for gl
A‘gﬂgla«c.en‘wnvtf_ :

1
q?gs"qs:'z)z
W= = B
n ( P = 9.9942 rad/xs
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Ei,ua.bu‘an of wotion :

with

To= 25 Kg-m® and ky=loo N-m/rad.

For Cr‘fffcal Ammpfna_, E&‘ (2' 405) 3?\/65

C

=

I

C. 2 2 \cho Kt = 2 \'25 (16 0)

|00 N*m-s/ra.cf,
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@) 2% +8 % + (6% = o

m=2, C=8, k=16
()= 0, x(o0) = |

€ = Q\ka — - \flé(a) = -3(37

Sincte Cx C., S'jsfem A8 uhAErclamPecA.

- £ _ 3
- " 11,3137 = o707l
Wn= f‘f; = (2 = 2.8284 rad/s
W= W, (1-c* = 2.8284 \/(—0-7071_9? = 2.0 rad /5
Eg. (2.72) qives the so lution:
x(t)= é‘swni’{% cos Wyt + £°+;anxo $in wdf}
~0-707! (2-8284) &
=e < {o +—é sin 2t }
B SR

(B) 3% + 12 % + 9% =0
™= 3, C= 12, k:S
x@)z0, x(e) =

1
Ce=2Vkm = 29(3> = p-2923

Since € > C_, system is OVEra[a..rnPea‘.

= & |2
T Toesa: = 1547

C.Sh-’ f = |73 2¢

Selution js given bj Eg- (2.81):
C = X, Wn (r+\l'§z—l)+ %o

!
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1
— = o5

2 (1-7320) (i 1547°-1 )
C,= - Xo W (3 - x%— )““‘9;'0 |
2 g \J'S'g-l
e(—‘s+\!rz~: Yt
(=% -] ) Pat

+C2€

Solution i§:

’X(t): c;

_ —% -3t
= 05 e —0o-:5 €

Since = \
(—‘S‘-‘t\/‘g‘z—j): - 11547 :t\/:IGL{'? —

— 1 15Q7 £ 0:5713

|

i

= {732 3 —0:577%

€)Y 2% +8 % +8%x =o

m=z2,¢c:8, =8 ; x()=zo, x(e)=1

= C/Cg = C/(‘.'ZJ’RTH ) = 8/(2‘(5’(2) ) a4
Sljngrn 'S Crl"tl'Ca-aLﬂj ola,the_af
wns [& =T =2 red/n

Solution s given by Eg- (2:80):

. _ Wt
®CED = {’xo—|— ({co_,.wh'xo){:} ©

I

fo+(irort et

-2t
t e

!
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(2.128

(‘G')Z%ﬂkg&_f'g'x:c' s "m——Z)C:S)»kz!é
x(e)=1, x() =0

(R~ Z\l#ml-_-_ ZWZ l!,3|’37

C

Cince ¢ < C. , /ﬁ?&/{:ﬁ A8 n_,,.._i_.!ﬂ.w
c
e 0-707! - Lo = ’E'_ _ (€ . 2(‘?"’
3 Ty ] g ™ —F\!T = 2.8

golution is given by g (2:7 2) -

; .z

—“rwﬁtz( 2, T Y% }
= % Wyt + — A 5T
= oIs (2.9284) t ot
= B ) :
o.70 [28284) (1) .ot !
2

-+
-2t 7/
= e (CJZ'(:{—A—\—\-Z'{')

(k> 352 41234 4+ 9% =0 5 =3, C= |2
n(e)= 1, 2(c) =0

= tikm <= 29(3) = j0:3923

Since ¢ 5 ¢ /,?/Vﬁz;_ % . ‘
= S 2
\g C = = 1.15477
& fo 3923
,= |[X = ’9 { _
wh m —;— e 17310
A B \/"15‘172" —0-5771%



2
%o Bn (% + \}T =i} ) 1(|-732-°) (l~15‘}7+o-5’¥73>

C =
' —
2 W, \g*-1 2(117320) (65773D
= 1-5
: —\
5 Gy (E’—— \1‘92*’ )
Cl'-'-
. 20Wn (%)
— 1 (1-7320) (11547 - 0:573) .
= = — O:
2 (1+7320) (0-5773D
Solution is: \]____‘ ‘
(-4 \52-) ) ont g =5 =1 ) %n
x(t)= |5 € B P En —o0:5 €
— 06,5774 (1-732)t 732 (11732 ¢
= -5 & —0:'5 €
—t e 8
= 1:5€ - 05 €

(c)'2i+8a}.+8x:o‘, m=2, c=8, =38

C. = Nem™ =2 \g(2) = 8
Since Cc= C_, sgS‘l:Em is Cf'r."].’fCaLQj ola.rnlne,al.

= §4 +(o+2x1)t}e_2t

:({-{—‘lt)e—z

2-95



@) 2% +9 % 4+ (6 x =0
m=2,¢c=8 k=16 3 (D=1, % ()=~

¢, = 2 {km =9_\lf669- = {). 3137

Since c< ¢, system is unaﬂercla,rn[:eal.

e S 8

C : ’

c 1.3137 o707!
G5 = .ii —
"Tm = 1—% = 2.9284
Wy=Nl-%v% w,= 20

Eg. (2:72) gives the solution as
- -"S(ﬁnt 7&9+rwhx0 .
x(t)= e {'xo cos asdi:.;. y Sim C.SA‘E}‘

—(o767t) (2.82 8 ‘—t
6(0 ( 47 {Ccs Cad'ﬁ

i

—t + o707 (2.9284) (1)
z

Sin C&At}
=9t
= 2 (COS 2t + '.z,j Sin 21‘:)

(b)
3% + 2% + Tm=6, | _ 3 coiz, k=79

'B'C(G):l) 3}'(‘0):—'|

e = 2w = 2J9(®) =2(1961) = (0.3927

= S = '7-"!7
g (03923
Sae |2 =1 3 = jr722
™ 3



v ! 1
Us* =1 = Viisy7? 2 = s 293
‘g_JTS.—’Z:\ — @_5"77?
C = (t)wh (I'732) = { - {
= — _
2&371 (O-G'773> 2
n B4 [ -1 ‘
€ = W _ + .
2 In (0-577'3) 2

-ga{u‘/'g'a'n 3;-\!-2« L} Eﬁ'('?'SD:
(‘I-I-JT ~J )wnk (—T—-JTQ_—J\>Q9H{':
x($)= ¢, e

+C, €
—o.5774 (1-732) T

4 -t
R =

fl
0

(C_) 2"7‘ +8’;‘-+Qz:o$ = 2 CT—SJ ,k:g

'9((0)':') ‘3‘4(07:_.}
TS s {km =2 (8)(2) = 8

—;:_E—-—
cc:

= |
hewce byt s enilieally Htam gt
QH:E:EZQ
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cellfzon & \
Py B/L\“—m Lf:, EZ' (2.9074

"X.C‘[:)': [Ofo-{- (io -+ 8y "Io){' eﬂwh%

- [:‘ + C"I—f 2(!)) f‘] e_z‘f:

= (4 +t) el
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Frezuency N odir = 120 u&oebs/'mt'n - 120 (217) - 4T ra.ﬂl//s
O ,

Freguencty in  Atguid = fes/ . = 100 (2T
&u. Y L loo cyc /m»,. Ga( ‘)

= 3-3333 v rad/4
Assuming damping To be negligible in air, we have
‘-‘9""4“—:\]'1‘; = 4 = (ﬁ,w)"m:@'ﬁ?z(w)
= 15791441 N/m
I dawmping ratio in ,L:'Zu.‘a\ is 3, amd afsuming
unden damping ; st honat

2
@ = 3.3333 T = AN o

o 2

or -7 = (M) = 0:6%4 4

4 T
or - G._o.ggqq)?-: 05528
T = 2. o c
c 2 ™ wh
¢
orxr o B528 & —————""
2 (1e) (T

or c= 0:5528 (807T) = (38.9341 N-8/m
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(@ % +2x+3%n=0

m=|,Cc=z 2, k= 9;

€. = olkm = 2 \lci(') = 6
At c < c., system is underdamped.

JT:?:@-S’-!QS;

Solution ig given by Eg. (2:70):
)= x &°PBOT L rshesxzt—g)
t

C:SJ = On Jl"gz =2.8284

= R e s (2.82841%- )

whene X and ¢ depend on the initiad condilions,es
3?\.{211 lo:j EZS'. (2,73) oo @.75D 3 %ESF&L{'I'VElj.

-t
Since tke respons€ (o SO(u’\‘t'aﬁ) Velues a3 € >

we Caumn a-—Ao]f{g e meu_fi' dE- the time constant (T)
as The nEjG.)t'fVE inverse of the EJ‘-I"QNGH'}-I‘G.} Ian-i'

Hence fthe time constant ¢

D)

T =1

rx—}-g@ 9 2 =o0 ‘Y\’\'-'—’,C:gz,k:?

CC= 2y m = 2

‘l(') = 6 5 e

1l

t - 3
w

T= = =& =

fc— = = 1.3333 ; Hewcr X
m:m = 0. 8919
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-‘S—*\E‘g‘f = - 2.2(52
—T+ VTP = — 0.y51Y
SolulEom is Five~ "; 7R (2.81)

x(t) = o e-o-qsw(g)’c _zo2i52 (3D T

Since the respense s given by the sum of Two

&Ponenf(o.l.ﬂtj &’e% acund'.'ang) Two ’h’me
cootlordl cam fro attrecatid wilh the two portE

: 73 84 T = (505
- = o : = = o0:[5 0
‘ % ¢euse

CC)'Z—[—E'Z 1 9% =©° 5 m=1l,¢c= 6, k=7

c
c, = s ( kw =2W=G bg:z—‘::i

—

The System s C.ra"l‘:'c_a.Qﬂj ala.n-wfa&cl The solufiorm 18

given 'oj EZ' (2:80)¢ ot

mEY = {x +(Zo+ﬁ9%)t‘:}'e

= §x,+ (%, +37‘o)t}é-?f
Since the sgolufion decsreases Wﬁta—gﬂg, The
Comeefel 6 Lme comtlant (72 cam be a_.}zao(ize_cg t

find = 4 = 0.3333.
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ls,= %t
J
?’:Z"h::_l_—-—-zj—’: 2k %
£, @n t

2
_ k| E
e (%)

Cla) -’2‘_’:0'5)
‘ kf = LocO N""“/ﬂ-ﬂ?

Jd = Eooo (0'5 > = bLooo (o-oa 63’32>
2T

_ 2 2
= 31 6627 N —-—m-4 = Kg-wm
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@) A = — 4 %+ g

G& +q+s;>(,<+q—sz> = Qs+t1)2._(5;)q_

7
= 4+ 88416 25 = B +8A+4I=0

choracteristic Ezua.'h'ons:

O A .= h* 5
2 2
Qs_.tf_s,cﬁC/S—-q-{-sJ:): QS-—Q) — (s
= A%+ 16 —88+25 F <P _gs 4=
) A, —4, -5
7
@_{_4)(/5_(_57: A 495+ 2

@) ‘/gbz: —4, =4
'2 —_—

o

Undamped natural gre%uen eles

(4"> m=I[, C= S,k‘l ‘f'
= [E = V4l = 6.403]

k7 w=1, es=8, k=%
- x '.:,lf" = . 3)
(e m=|, c= 9, k=2°

e, = JEF:: (70 = 4472
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Co{) m=|, c=¢, k= 1€

Damping ratios

qu-f c S+ K =0

= Q"“‘—f:;:\: 7 JRkwm

(‘LD 1‘: 8 - g
i — - 0-£2¢¢
Z\IZH(') Z\ﬁf—?

by s= 2 — = =% = _c.624¢
2 | 410D 2 Vy1

y
Y
o
()
o~
N

(c> *S—: 9
2 (2o

@> g- ¥ = {0

2N16C1)

Da.mped freguencries

O.ﬂd{: m'wn 'k T < I

e |

@) ) = J,_o,é»ztrgg“..@.zfaBID = §,0004

bD Cﬁa ¢ Neoft O-aiﬂf*'uc_cubfe

(c) wA 2 Not a.ia‘as—'e-ic.azbie

) Wy =0
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Ts'me coen S‘"a.h'h's

| T Pt -—‘—-—— e 2.._._._m
T Wn é
@) T = 1 = 0'2500 (Unolero\a.h-n]aecl)
o 6246 (¢.-4031)
by 7 = 1 = —0:2500

—0'62he (6-4063\)

NotT aﬂ,?f.:,:o)ﬂe ; megq ative a\o.mloing-
RQQPOHSG Frows Exloonen‘l'l'a.u!j 5
| = 02222 (o\;ero\avhﬂP?-vl)

ey T = &
oo &2 (4-4721)

(d) T = . = 0.25 (Uno\a-\'hPE-O‘ )
10 (4°0)
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waua
UHalErda-m}sEcl .
OSci‘lla.'to'ry response.

<)
JET
A
o—& > Re
-5 -y 0
stable.

Response will mot
oscillate.

(k) im
Fa b ®
I a——
-54 7 o)
Unstadble.

Response grows

exponentially .

(A) Im

A

Re

—“f."”"

stable.
RQSPOnse Wdfno+

oser Hate.,

> Re
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2:135

c‘w avecteris tic e,aucutfom

A%+ wA+ b =0 )
where
am,d
b= ®/m (3)

Roots of Eg (1D
- i a}— 419 a 2
- 4
/Si_,‘z = =-_£:l-_/(%>_L (4)

amd S, amd 5, ou, in gmo-l; ccmp.ex i DEFE.

solu.-h‘ch o{ Ez.(l) com ke ex.’ares“se.cl a’

x ()= ¢ s c, &t (s)
where ¢, omd ¢, che comstamds -
. when £, amd 5, ane both real amd ﬂ_p_gnﬁv.e__,'{'ke
solution in E?' (52 a/daP)‘Oﬂ-C-"tES Zeres a..Sjm‘a{'o'h‘ca-uj.
o If siamd 3; ane complex, the nafiine of solution is
governed by the real pant of the voots. Ig real
Pohi’ié negaffm; the solution in Es, - (53 'S
osci llatory amd G-dvd’?‘aa-bl\-u zevo o3 t —> oo,

T"\E Sfab‘l‘-"'j O; . N N~ s 4\ T'",-“ (/S) VA 4 I
~
% > ~ ~ \\ \\ ” /‘f ;s 5 y, 7
tke S'Jg Sy N SO /1 A A ,’ /
~ \ » Vi
f"‘e S-“Plﬂ-he '.s \‘ \\ ~ \\ \\ ,/ /I / P / / /
\\Agjm FO"'\ \\\/ 4 Ung{—o){:le ;
SI"\OW\’\ Na 9 e t'fca.uj\\ ///I 7/ P /gy ,
N ble ~_" ’ !
i ~ Sfm l\ w ¥ Ty s s /" / RE’.(J)
Frg. o P T . A
* ke ™ N 4 7 7 /9
\\ \\\\ B /s / / £ Vd /
™o ~ \\ = s 7 o -
Boundary of > "N /oy /z o
Iy ~ s/ 7/
Sf’abie\?ealon\\sb P ,/ //// // ,
~ ~ L/ s /
Frgure a : R I A
\\\\ “ \\ \~/ / / / / P4




The stahility o§ the system in the parameter
spoce cam be indicodtd oy shown n Fig . b.

e When o< O amd b>o (fourth 8ua.olran’c), the
curve (%)1—5 =0 Aeaoa.naﬁg the &u-a.&w.mi'
inte fwe regions. In the top chi' ( obove tte
Fa..ra.LcLa-), tke reets 5, amd 3, will be complex
canJ‘uaa—fe with positive reaf Pcmi‘ Hence tke

motion will be diverging oscillations,

n the bottom chf: ( below the -Fa,ro!pola. curve) »
both s, amh s, will be real witt ot leagt one
pesitive reot. Hence the metion o{fverges

wf'Hn out oS8ci ([letion.

e W}\Eh a >0 a.rr\_o‘ bs>o (;,‘rsf W,‘n F.'j-l;)i

The curve givewn by (_g;)z_ b=o (pore bola)
seperates the guodnomt wwto Two regions : In
the top region, (_ﬂ > b)Y A amd 3, will be
real omd neja:!:we Hevice the motion oleca-j/s
without ascillations (afreriedic decay):

In the resu‘?n 9";_ <b, A omal 4, will be
Com P\ex congugates with negative real Pa_n;ﬁ'
Hence the response s OSCE([aﬁ‘arj omd decays

os time increases.

Along the boundary curve (_— ~b =o0), the
voots A, amd £, will be dentical with s, = 5,=
Hence the motion decays with time +.

_2 9
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When ®zo and b>o, the roots 4, amd £, will
be pure imaginary complex conjugalss . Hence the
motion is oscillatery (fharmonic) amd stable
When b<a (second omd third guadrants),

A, amd 8, will be positive omd hence The response

diveraes with ne oscillations ; +hus +he mo+tion

is unstable.

2
o
> b
P T T T Y ¢ 1)
NN N NN \
x NN A X % L Response
\\ \ \ LY N\ \\ \\ \—-—CIQC%S
$ % N
\"\ \\ @ g B \\\ '—-Wlfﬁ""° 2 \\ \\ %
\\ NNy N h & ) 0.4) <L R
N N N NN * N ,"\ N
N “ A N NN S'H‘W‘ 2} c
S N N N NN : NN K
A L L i’[‘&bt
" N ~ \\ N \: ) -; ( )__L 0 N \ . ~
\\O'n stable N OLO .
\( R ‘h\‘\‘ \,f\\ \\ N EO\SC\N‘G}OY‘JﬂlﬁC’-j>
'D|\A€ e ~ N
N N: ‘\r\a\ g? N
~\ ~ w, 43 <

\ . Wl‘{'h A AN \\ 1\
% N q_ N 3
\ bb\os“c\{ Hq_ hc{ng)\

NN N N N

\\sta«!ﬂ\ ?c;,; Z)\ b
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C.l'\a.ra..c'te r'stic ezu ation

2AL cs+ 18 = o (0
Roots of Eﬁ'(')‘

A = -c¢= VCz—WH (2>

I, 2
4

At c=o, fhe roots ame given by A, = T R
These roots ore Ahorm as dots in F.'a, ., By

ihcl’Ea.s':'r\S the vealiue a’é_ €, the rpots cam Le -_-Fa-wmof
ot Ahowm in the &o”aw:‘n.j Table .

¢ Aa /S‘i

o +3 £ — 34

Z - 05 4+ 2.964 g el e DeSE 4
4 - 10 4+ 283,

10— 288

—2:0 4+ 2:24 4 - 2.0~ 2:24 4

— 2. 75 —1-204
(2 ~ 3.0 .
tH ~3:5+1:§0= ~-1:70 —2:5 -0 = —~ §5.20
20 —5.0 4+ o= -~ 1.0 - 5.0~ 40 = —%-0
loo | _25.6+2482=-0'18| —-25-0-24-82=—-49.32
lCoo | — 250 +250 ~ ¢ — 250 -250 £ _ Sos¢

Roa-l— hecug is Sl-\owh ip F.‘ﬁ. ov .
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= R S1 S1, 52

e
8
B W,

Problem 7-136 Root locus plot with variation of damping constant (el

Fl'g. (e)
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C I’la.fa..c tevistic ezua,’rl'on :

2/’*2+|z/s+1==° €
Raots of Ep-(1D: 1
_ —l2x JiyH — 8K
A2 = Je (z)
4
oY
A= TEE -1 g et

Since & cannet be n&ja—t"\/e; we vary &k £rom o

to 0. When =18, both 4, and 2, ave

read omd 5ol © -3, I, the vange o< k <18,
both £, amd A, will be real amd negative.

When #=0, £ = o amd A,= —¢. The variation

of voots with increasing valuwes o’&. A g Shown
in the following Tabkle amd aliv n Frg. a.

« A Ao

O o - 60

10 -0 — 50

18 -3:0 - 3:0

20 s B e ke -3 =4
40 -3 +3:324 —-3 —3324
oo -3 4+ 640 < -3 — 640«
(000 -3 4+ 22164 —3 — 2216 «
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_ 100

k= ioo

Problem 2. 137 Root locus plot with variation of spring constant (k).

Frg. (o)
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C h avracteristic egu atien:

m/s2+12/5+4‘=° €

Roots of Eg- (1) :

_ =2+ Jlay - |6 ™
£, = ‘/ (2)

2rn

Since nesa..'l'ive ond zero voles a’g, m ore not
possible, we Vedlly m ' the Yange (< v < co-

The roets given by Eg.(2) ane Ahorom 1 the
:F—‘o“owin_c, Takle omd olso Pio‘H:e_al o F'lﬁ- o .

m A A,

1 -0:345 - 11-655

4?- —-0'38 - 262

8 — 050 ~ 1-0o0

> — 967 — i 5]

10 -0:6 + 024 . —0:'6 —0:24

20 —0:3 4+ 0-33 4 —0:3 —0:33
o0 —0'06 +0+19 4 —0:06 — O6+1% <
500 | — 0012 4+ 0 0§%L| — 0012 - 0089 <
1000 | —0.006+0+063¢ | — 07006 — 0:063 ¢
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Migration of sy as
71 increases

Migration of s,
as 1 Increases

Problem 2.138

Root locus plot with variation of mass (m).

F ‘g, (@)
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m=20 kg, k= 4000 N/m
~— W= [E = Jﬁ’-"—@— 141421 rad [sec

2o =
Amplffu.a{es of successive cycles : 50, 45, 40, 35 wmm

Amrl;{-udeg 033 successive cycf.:S’ diminish by Smm=5xi10 m

System has Coulomb c]a.m'IP.‘nj.

LN 5*!6-3 > MHN = {(EXIO#B)(‘FOOO)}—S N
= 4 -
3 = cla_mPn'nﬁ force
Frg?/uEHC—j of Ja_mpeal w‘b.ra—'&fo"" = 4421 ra_ol/sec.

‘ _ ' _ N 150 = | -
m= 20 kg; 4= 10000 N/m » 4/; = z da mwm = 2.5 x |03
p= (2sxig?)leoco) o

4(20x 9:31)
Time ela.psed-_- 4 CTh= 4 x i;: = ST"E = 4.124 sec

m

N Mm=10 k3 , k= 3000 N/m , p=o012, X =400 mm
N . "

C14) " o 00D e 15 e
* 3000

As 6(4—%”) = 94.2 mm, mass comes to rest at Qoo—94’--2)=5-8 st

. mg =25nN, 4¢= 1000 N/m , damping force = constant
/ mass veleased with xXy= 10 am and x,= 0.

25

Static deflection of spring due to sels weight of mass = T—

= 0:025 m
atl =4 : X= g.ilm , 9'c=o
X =0
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N
'xlzxo—z/‘-‘-;; y R g —
— g UN
l“e'J { -_— 0-|
Ao k _ (o) (tcoo

MG-jrlf‘l':ua{e of damiamj Force = /-IN-_-_ —_OE_ = >(8 J
= {25 N

= p:05 m

= 10,000 N/'rn s /-IN:- 50 N, %,

' m= 20 1(3 S
@..) Number of half cycles elapsed before mass comes to

rest (r) is given l:y
50
r = {xo-' } 0:05 — (|ODOD _ 4.5
2 /MN |05c?oo>
r=5

(b) Tme. elcbpsea* before mass C.Omes to rest
= v = —
z \) LT (Too00 = ©° .2810 sec

Time taken = (2-5‘ cg.clo!) t‘F = 07025 Sec
(C) Final extension o_-F S‘Prfnj a.,:F'(’.‘e.r‘ g fm..Lf— c:gc_Lcs :
_ﬁ:N ;
= 005- 5 (% =005-5(2*1Z°oao>=0

L) PaSLtt an="0

Xg
(al.grsla..cemenf from static eaunhbrtu

But static deflection = 1«& = 20x "Bl . G962 m
(0 coo

Final extension C’.‘F SPring = [.9620 cm.

Q.rna.ulﬂ-'“- aic‘ium 06 FEndu(_u_m:

(@) Eaualfm o‘k meton
3;9+T“§£/hme__‘mg.t;.9‘—cgse =0

Fm’)%-m.auam_gﬂu e+—%-—(ej:f*d) .

his shews that the am
;;‘-s s e %Ld&&wwg&em;uuﬂ&(_z_>

(b) For wmotion from right {a left :
O(k) = A Aot + A ain ut + A

where 3~ [mgf

% ; d
Let @(t=0) = 6, and B(t=0)=0: Then A;= 6, - L:T , A,=0
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8(t) = (B-ﬁ_f‘_)coswt-t-f_;.l
For wction from le.ff te rlgl-\t .
elt) = A; COSCB‘t +A#sm(.9t’— !“2

d .
At Ca{: T, 6= —8,+ 211 > 8 =0 from previous solution .

- g - 3pd
Ag= 9, 27 ,A4_o

o) = (o, - 24y s syt - L‘j‘r
©) The wotion ceases when (9,,— n 4pd ) - Lo‘l
where n denotes the number 88 lczl 2L
cles

(t)= X sin wt (uncler sinusoidal Force Es sin C.B‘t)

Da.m ping force = /uN'

Total atl.:r{a.z.pm-vri per cycle = 4 X
(EI)

Energy dlS’SIFG.tE—d Pe,'r cycf.e = AW = 4./uN X

If Ce, = egufva.!en't viscous da-mPl'nj constant, energy
digsipated per cg-o&. is given by Ep. (2.98):
AW = T0 Cgp 09 5 (E2)
Ezua.‘tfnj (E.) and (E2> gives
4‘/“N . (E_;a)

44N X

e, = —
@ I B9 E ™a X

\Due to viscous damping :
- §=fn ( oy ) = g ¥

ercent decrease in amplitude

per cycle at X

3— =
1 - 0B (o=l o (] S=E e-?.'rrr)

Due to Coulomb cla.mpn‘nj:
ercent decrease in a.mplftude per cycle at X

5 =P
( xm - xm-é'l) 4 z 2
When both types of damping are present:

1]
w

+ % | =2 - \
EZ 2 5 3+ 3 S

Xm= 20 mm
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e N
100 ([_ 'ZWT) + xe2 (/j—'

¢ 0.02 * = =
—2 T T 400 M N _
oo (1€ J* Sy (B ) ™ B

The selution of these eZua.f:fa-ns gives

5o (1-—-627”'):0.5 | /‘-f’—=o-5xw wm

|Coulomb damping.
|
2
/ (a) Natural frequency = wp = L . —-;—- = 6.2832 rad/sec. Reduction in

amplitude in each cycle:

4uN m 4pug 9.81
k HEX R
L

Kinetic coefficient of friction = p = 0.00503
(b) Number of half-cycles executed (r) is:

ot otp

Eel) (255

Wy

[0_ | _ 0.00503 (9.81)]
>

6.28322
— | 2(0.00503) (9.81)
6.2832%
> 39.5032
> 40

Thus the block stops oscillating after 20 cycles.
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—

. .1:; = ‘°'5°°° = 44.721359 rad/s
2w 2T
i =

= ©. A
44.721359 kb i

Time taren fo complete 1o cycles = 10 T,
= 404957 s

A x
) e g, i ()
9'30

a
( N-mgcose .. PN K‘ix

h'\s gn €

caﬁe“_WhE’ﬂ')t:-i— and = = + or stz — amd %= +

m; :—21«94—/1N+m?s;..e
or mx 4+ 2 kx = —H‘fﬂg‘Cose—}‘mgﬁh.e (E'l)
case 2: hen x= + and x= — oOF o= ‘= el T = =
Mk = —24x+ pN + Mgsin @
or -7 +2Hx = pmg cose + Mg sin @ (E'Z)
Egs- (E-1) amd (£:2) cam be Written as o single
eaqutlow ak -

N + phmg cos e /Sjn('x)—{— 2 4+ ™Y Sn O =0

(B85
(b) x,= o0l m, ’Xa:. 5 ‘m/s-

l ‘ ’I oo
- % = ozo = 7.071068 ‘rcu:f/s

Selution og Ez. (E-1):
pmg cos @
'x('[:);: Al cos wﬂ't -+ Az Sip wnf — e
+ m Sin 6 (E-4)
]
Selutiom of Eg. (E.2):
'7&("7): A?. (o8 9.t + Aq Sin (Jn‘l’ o

rMg o036 mg Sin 8

k %
(e.5)
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Using the initiad conditions in each halg Cyeley he
tonstants A and A, or Aj; and Ay are b be found.
For example, in the frrst Ahely tyele, the motiom

starts from legt toward right with =x_=o0.) and

K, = g, T[nese velues can be uSEcﬂ

in Eg A (E_' 4 )
te fmd A, and Ay
- 25 ’ .
Friction force = uN= 0.2 (5) = 1 N. k = i 250 N/m. Reduction in
amplitude in each cycle = 4 TCN = 42§]6) = 0.016 m. Number of half-cycles
executed before the motion ceases (r):
_
. =0 k _ 0.1 — 0.004 =
2 N 0.008 12
k

Thus after 6 cycles, the mass stops at a distance of 0.1 - 6 (0.016) = 0.004 m from
the unstressed position of the spring.

Wy = k. ='\ / ﬂ%@ = 22.1472 rad fsec
m

Ty = 2T 0.2837 sec
e |

Thus total time of vibration = 6 7, = 1.7022 sec.

Energy dissipated in each full load cycle is given by the area
enclosed by the hysteresis Loop.
The area can be founo? bj cou.nl!:\'ng the sguares enclorecﬂ bj

the hysteresis loop. In Fig. 27117 , the number of cpucres is
33, Stnce each spuare = 100 x |

1600 =0l N-m, the

energy dissipated in a cy,dc ig ,
AW = 33 x 0= 3+3 N-wm =7r4cpx

Since the maximum deflection = X = 4-:3 mm, and the

Slope of the force-deflection curve is

180
k= —C° N - ¢364 xiw0° N/m,

It mm
the l‘ljsteresrs' da_manj constant /.-'3 is  given by
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; AW 3¢3
P= Tz x2 = W (16364 x los)(o-oo43)2
T (0-3%72) = 10908

= 03472

= Tfﬁ = Loja.n‘ﬂwm‘c decrement =

Ezu.;'va,lem‘: v:'s;c:ms da.mpn'nj ratio = ‘S'&a = /GA = o-1736.

)

..Ei—: KJ:E‘ = 1.1 5 @: o.03032
, xju 2-7f
" Cep= p Jmk = o0-03032 Jixz = 0-04288 N-%/m

=

2 -
AW = T kp x? = 7 (2) (o-03032) (f;':m = 19:05%x16° N-m
Lgaa.n‘fl-\rnic decrement = § =. ﬂh(x;' » TR
: Xi+1
For n cyeles, §= L g.[%e = Tp
n X
i 30\ _ o. =
= L“(EE) = 0-004055 = Tg
p:o-OOiZBi
4 jS:—: -’l:_‘-—- f/h Eﬂ_
. Xon
| 25 !
= = Lv. To © l—a-o'fm 2:5= 5.0091625
S= 7T i‘-—
< _
. lg29) (eoe
AN S'k_:_(ooos ) )=0-58’532'? N/
i T
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@) Eaua,ﬂon of molion:
&+ 9 sino =0 ()
Lineari zation of Sin © akout am ahzbfh—u)vg velue

O, using Taylors series expansion (and refaining

c‘“lj u.Jot'o tke Ainear Térm) :
S§n @ = Sitn &, + Ces 8, (e—eo) & e (2)
By defining 0, = 0- 0, Ao thet 0 =6 +0, wilh

6’—2 ord e:g, we con EJLPre.s’S EZ.(‘)M

pe]

+ %— (St‘r\ 9y + @ o5 90> =0 (3)
where §/ , sin @, amd f O, are constants. Eg. (3)
IS the M/‘Lﬂ.ﬂ Lin.o..aJ'L e.?/a,a.rc:-ah

by At the epuilbrivem (reference) positions indicoted
by

Qe-.: HE 2 M=o, W, 4+t 2T, w. *)

S gg = Sin 8, = 0+ Hence Eg-(i) taxes The form

~

6 + & =
+}2 s 8 g =0 (5)

T"\E MM eau.a..{':on COrrechnAinj -[—O EB' (S_>

(S

,51-+ _%__ cos ee = & (-6)
The roots of Ep. (6 ) are
‘ —
A= :t\/—- 3 cof B¢ &)
).
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FO\"G"—-'-O; = L 2
€ A t‘\Fﬂ &)

Both the values cg 8 ang “ma.?ﬂ'-na-ﬁ-g + Hence +he
sys{:em is heu{'ra.u.y stakle.

FOT eez Tr, A= + %_ (9)

Here one value of 4 & pesitive omd the ofher

Velue 0‘5 A is ngjaﬂw ([,o'ﬂr ont )'Lw-j-> Hence
the system is unstakle.

ALTERNATIVE APPROACH:

The potential energy of the pendulum is given on

Vi) =1V, - T—f—— cos © (ied

where V, is o constant: The e&wﬂb’um slotes
€= Oe , of Eg-(0) ane given bj He /S'I”a,ﬁfc-rmr@ velue

(fB V(&) g
é‘\—]‘: r:-isina = &5 D)
de ¢
Roots of Eg. (D) give the eppulibrium states os
@e=nNT ; M=0,% 1\, Et2,... @25
Second derivative of V(g) Is
2-v ™
o‘";\’;"z = -—ﬁl cos & Ci3)

positive for g= 0,277, 4T -
~{h€3¢+l've for @z T, 3, ...

Thus the Pc{:er\{:t‘mQ Eme)% s minteticm 6k Be = O, 27%,

i o
4 T, cun-o{ T imum ok ee: T B Ty

Hence the pendulum s stakle ok Be=0 amd umstoble at
Qe = Tv.
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@) Eguah‘o’n of motion:
Mass moment of inertia of the circular disk about
poict O is T+ ML= 7. ()
Mass moment of inertia of ke rod about point O

2

L J—r=-i-';mﬂl+ m(_%_)s': -é-mﬂv ()
For small
J.t'SP{G—CemenfS (6) of He C % -e.:__

rigid bar oheut tre ppivet
Point” O, fke free body
dicgham is shown in Fig. o
The eg/mi'fm of motion for
the 0-"\%«-4-1-0-"' motion of the
\"!'5"0‘ bo.r, using Newton's

Second lowr af mo+;‘0n,¢'$:

(‘J—r*'JJ)'G'—-mj-’%sfne
-MgL sine + cx Lcote
+ kx LS e -, _ 3>
Stnece © s Small, $Sin B X6 omd wWfO ~Il. Thus

Eg-(3) cam be e.x.PresseA oA

QT,+J‘,)5-*29_25__Z_9_M3L9+CL1+ el? =0 4)

E9- (%) cam be written os

%9+C£6.+ @ =0 (¢)
where
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Jo= T+ Iy P,

Cri= e P

) (7
k,g:—*"?f—-f“s'--{—*L (8)
(Y  The characteristic eguation for tke dyperendial
egpolion (5) is given by

J°A1+ L A+ K4 = o (1)

Whose roots ore given Bj

-C, + Jef _
A, = t Jé 4 do Kk (o)

2 7,

It can be shown (gee Section 3.11-1) thek the
system will be stable ig Cp amd &y are pesitive.

In Ez'C9)J C_e >0 amd Jo > O W”\:Ie k-b Z O

onlJ when 42 | wmgl + MgL (ie, when the
2

moment due 45 Hw weh._n_j Loree c} the /S'FJun.ﬁ

IS La.h_?v\ tham the moment due 1o te 3,,-0_\,;-{—;
;?orcg).
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% Ex2_157.mu
2{157 % This program will use dfuncl.m

tspan = [0: 0.05: 8];

x0 = [0.4; 0.0];

[t, x] = ode23{’'dfuncl’, tspan, x0);
plot(t,; 2elsy L))z

xlabel('t");

ylabel ('x(t) ") ;

% ‘d_funcl.m

function £ = dfuncl(t, x)

7= 0.5

k = 100;

&= B

f = zeros(2,1);

£ = x(2)3

£(2) = -u * 9.81 * sign(x(2)) - k * x(1) / m;

4 Ex2_158.m

| wn = 10;
dx0 = 0;
*x0 = 3105

for i = 1:101

03 = 2%{E-1) /1.00;

x1(i) = (x0 + ( dx0 + wn*x0)*t(i) )*exp(-wn*t(i));
end '
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x0 = 50;
for 4 = 12101
t(1) = 2% i-1)./200;
x2(i) = (x0 + ( dx0 + wn*x0)*t (1) ) *exp (~wn*t (1)) ;
end
x0 = 1900;
for 4 = 1:1071
£E{i) = 2*%(i-1)/100;

x3(1) = (x0 + ( dx0 + wn*x0)*t (i) ) Fexp (-wn*t (i)) ;
end
x0 = D
dxl = 10;

for i = 1:101
t(i) = 2*(i-1)/100;
x4(i) = (%0 + ( adx0 + wn*x0)*t (i) ) *exp (-wn*t (i)) ;

end

dx0 = 50;

forid = 1:x101
t{i) = 2*({i-1)/100;
®¥5(1) = (x0 + ( @x0 + wn*x0)*t (i) ) *exp (-wn*t (1)) ;

end

dx0 = 100;

for i = 1:101
t(i) = 2*(i-1)/100;
xX6(1i) = (x0 + ( dx0 + wn*x0)*t(i) ) *exp (-wn*t (1)) ;

end .

subplot (231) ;

plot(t,xl);

title('x0=10 dx0=0');
xlabel('t’);
ylabel('x(t)");
subplot (232) ;
plot(t,x2);
title(’x0=50 dx0=0');
xlabel(’'t");

vlabel ('x(t)’);

subplot (233);

plot(t,x3);

title('x0=100 dx0=0');
xlabel('t');

vlabel ("x(t)’);

subplot (234) ;

plot(t,x4);

title('x0=0 dx0=10");

xlabel('t’);

ylabel({'x(t)"’);

subplot (235) ;

plot(t,%x5) ;

title(’x0=0 dx0=50');

xlabel(’'t’);

ylabel (‘x(t) )

subplot (236) ;

plot (t,x6);

title('x0=0 dx0=100");

xlabel('t’):

vlabel (‘x(t)*);
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x0=10 dx0=0 %0=50 dx0=0 x0=100 dx0=0

10 50 100
8 1 40 80
6 30 60
= % 1
4 20 40
2 10 20
0 0 0
0 1 2 0 1 2 0 1 2
i t
x0=0 dx0=10 *x0=0 dx0=50 x0=0 dx0=100
0.4 2 T - 4
0.3 1:5 3
go2 g 1 g2
0.1 1 0.5 1 » 1
0 0 Q
0 1 2 0 1 2 0 1 2
t 1
% Ex2_159.m
‘wn = 10;
zeta = 2.0;
dx0 = 50;
x0: = 203
cl = ( x0*wn*( zeta + sgrt(zeta”2-1) ) + dx0 )/{ 2*wn*sgrt(zetan2-1) );

¢2 = ( -x0*wn*( zeta - sgrtizeta”2-1) ) - dx0 )/( 2*wn*sgrt(zeta”2-1) );
for 4 = 1101
t{d) = 5% (i-1)/100;
x(1) = cl*exp( (-zeta + sgrt(zeta®2-1)) *wn*t (i) )
+ c2*exp( (-zeta - sgrt{zeta”2-1)) *wn*t(i) );

end
plot. [, =l
xlabel ('t");

vliabel ('x(t)’);
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20

T 1 T T T T T T T
18 =
16~ b
14 9
12 N
210t -
8- i
6 a
4~ |
2r -
Q | I | ! 1 | ! |
0 0.5 1 1.5 2 2.5 3 35 4 4.5 5
t
Results of Ex2 160.m
EE R A R R N o o o S
>> program?2
Free vibration analysis
of a single degree of freedom analysis
Data:
m= 4.00000000e+000
k= 2.50000000e+003
o= 0.00000000e+000
x0= 1.00000000e+002
xd0= -1.00000000e+001
n= 50
delt= 1.00000000e-002
system is undamped
Results:
i time (i) %(1) xd (i) xdd (i)
1 1.000000e-002 9.679228e+001 -6.282079e+002 -6.049518e+004
2 2.000000e-002 8.756649e+001 -1.207348e+003 -5.472905e+004
3 3.000000e-002 7.289623e+001 -1.711420e+003 -4.556014e+004
4 4.000000e-002 5.369364e+001 -2.109085e+003 -3.355853e+004
5 5.000000e-002 3.115264e+001 -2.375618e+003 -1.947040e+004
6 6.000000e-002 6.674722e+000 -2.494445e+003 -4.171701e+003
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44 4.400000e-001  8.425650e-001  2.499931e+003  -5.266037e+002
45 4.500000e-001 2.555609e+001  2.417001e+003  -1.597256e+004
46 4.600000e-001 4.868066e+001 2.183793e+003  -3.042541e+004
A7 4.700000e-001 6.877850e+001 1.814807e+003  -4.298656e+004
48 4.800000e-001 8.460003e+001 1.332986e+003  -5.287502e+004
49 4.900000e-001 9.516153e+001  7.682859e+002  -5.947596e+004
50 5.000000e-001 9.980636e+001 1.558176e+002 -6.237897e+004
x 10*
8 T T T T T T
6l xdd(t) i
4 fm -
ot J
3
= T T XQQL_
g0 ’ x(t) i
<
2= ‘ -
4 -
-B - -
8 1 } t | | !
0 0.1 0.2 0.3 0.4 05 0.6 07

Results of Ex2 161l.m

FAk A Ak A AR AR KA A IR AR A KRR *hH

->> program2
Free vibration analysis

of a single degree of freedom analysis

Data:

m= 4.00000000e+000
k= 2.50000000e+003
c= 1.00000000e+002
x0= 1.00000000e+002
xd0= -1.00000000e+00
n= 50

delt= 1.00000000e-002

system is under damped

Results:

e

1
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i time (i) se (4} xd (1) xdd (i)
1 1.000000e-002 9.704707e+001 -5.547860e+002 -4.678477e+004
2 2.000000e-002 8.940851e+001 -9.485455e+002 -3.216668e+004
3 3.000000e-002 7.854100e+001 -1.203024e+003 -=1.901253e+004
4 4.000000e-002 6.575661e+001 -1.335030e+003 -7.722135e+003
5 5.000000e-002 5.218268e+001 -1.364393e+003 1.49564%2+003
6 6.000000e-002 3.874058e+001 -1.312202e+003 8.592187e+QQ3
4.5 4.500000e-001 -4.071590e-001 3.283U84e+000 1.723973e+002
46 4.600000e-001 -3.667451e-001 4.698554e+000 1.117518e+002
47 4.700000e-001 -3.150951e-001 5.542443e+000 5.837337e+001
48 4.800000e-001 -2.575358e-001 5.894760e+000 1.359090e+001
49 4.900000e-001 -1.985409e-001 5.844858e+000 -2.203340e+001
50 5.000000e-001 -1.416733e-001 5.484453e+000 -4 .856551e+001
x10
100 T 400 T 2 T
200 1
1_
80 ] xd(t) xdd(t)
0.. -
0_ -y
s0} 4 -200f .
-400} 17 ;
40t .
600 | 1 o i
20 -1 =800 -
3 J
(1) -1000 1
or 1 g ]
-1200 .
. ' -1400 ' -5 :
200 0.5 1 0 0.5 1 0 0.5 1
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Results of Ex2 162.m

Ak hkkFrkFh A xx T T TRTRRE T HKF KK

>> program?

Free vibration analysis

of a single degree of freedom analysis

Data:

m= 4.00000000e+000
k= 2.50000000e+003
&= 2.00000000e+002
x0= 1.00000000e+002
xd0= -1.00000000e+001
n= 50

delt= 1.00000000e-002

system is critically damped

Results:
a4
100 . 0 : 1X1D .
90 1 -100 - 0.5 xad(t) g
80H 4 -200 . of h
x(t)
70 4 -300 4  -05H 4
60} 1 -400 . A .
50 4 -500f - 15H i
40f 4 -s00f & 2 i
30 1 -700 4 -25 N
201 41 -800H - 31 9
10 1 -900 4 .35 4
0 ! - 1000 L -4 L
0 0.5 1 0 0.5 1 0 0.5 1
t t t
i time (i) X (1) xd (i) xdd (1)
1 1.000000e-002 9.727222e+001 -4 .925915e+002 -3.616556e+004
2 2.000000e-002 9.085829%9e+001 -7.611960e+002 -1.872663e+004
3 3.000000e-002 8.252244e+001 -8.868682e+002 -7.233113e+003
4 4.000000e-002 7.342874e+001 -9.196986e+002 9.196986e+001
5 5.000000e-002 6.432033e+001 -8.946112e+002 4.530357e+003
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44 4.400000e-001 1.996855e-002 -4.576266e-001 1.040098e+001
45 4.500000e-001 1.587541e-002 -3.644970e~-001 8.302721e+000
46 4.600000e-001 1.261602e-002 -2.901765e-001 6.623815e+000
47 4.700000e-001 1.002181e-002 -2.309008e-001 5.281410e+000
48 4.800000e-001 7.957984e-003 -1.836505e-001 4.208785e+000
49 4.3900000e-001 6.316833e-003 -1.46005%e-001 3.352274e+000
50 5.000000e-001 5.01234%e-003 -1.160293e-001 2.668750e+000
Results of Ex2 163.m
I *kkkkkFk
>> program?2
Free vibration analysis
of a single degree of freedom analysis
Data:
m= 4.00000000e+000
k= 2.50000000e+003
Ei= 4.00000000e+002
x0= 1.00000000e+002
xd0= -1.00000000e+001
n= 50
delt= 1.00000000e-002
system is over damped
Results:
4
10
100 T 0 T QSX T
xdd(t)
90 ! | {\
-100F xd(t) J ot i
80 -
70 . :
-200 B -0.5H b
60 7
50 1 -300F A -1 A
40 .
-400 | 1 5% .
30 1
20 -
-500 - 2ot g
10 -
0 . -600 . 2.5 .
0 0.5 1 0 0.5 1 0 0.5 1
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1, time (i) x(i) xd (1) xdd (1)
1 1.000000e-002 9.764529e+001 -3.945541e+002 -2.157540e+004
2 2.000000e-002 9.294636e+001 -5.205155e+002 -6.035927e+003
3 3.000000e-002 8.756254e+001 -5.46394%e+002 -8.734340e+001
4 4.000000e-002 8.214078e+001 -5.344391e+002 2.105923e+003
5 5.000000e-002 7.691749e-+001 -5.090344=+002 2.830006e+003
45 4.500000e-001 5.281308e+000 -3.537806e+001 2.369881e+002
46 4.600000e-001 4.939118e+000 -3.308581e+001 2.216329e+002
47 4.700000e-001 4.619098e+000 -3.054209e+001 2.072727e+002
48 4.800000e-001 4.319813e+000 -2.893726e+001 1.938429%9e+002
49 4.:900000e-001 4.039520e+000 -2.706233e+001 1.812832e+002
50 5.000000e-001 3.778161e+000 -2.530888e+001 1.695374e+002
s Ex2_l64.m
% This program will use dfunc2_.164.m
tspan = [0: 0.05: 12];
®0 = [0.1; 5];

= ode23('dfunc2 164', tspan, x0);

[, xI
plotilt, z(:; 1))y
xlabel(’'t’);

vlabel(’x(t)");

% @fun02_134.m

function £ =

dfunc? 164(t, x)

-u*g*cos (theta) *sign(x(2))

- 2%k*x (1) /m - g*sin(theta);

u=0.1;
k = 1000;
m = 20;
g = 9.81;
theta = 30 * pi/l180;
f = zexos(2,1);
£(1) = x(2);
2 =

0.6 T

0.4ﬂ

0.2F

D_

=

02k

04F

_U'E_

08 L

T

T

12
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The eguations for the natural freguencies af vibration were
derived in Problem 2,35,

Operating slaee.a, of turbine is:

G2, = (2400)%%1— = 251.328 ra_al/se_c
Thus we need teo sa..l:a'sj-’y'.

e / _ 2l AE A
"laxial W o (f-—w)} z W, (&)
31 (%2 Y
W transverse { z 3 } =z W (Ez2)
\
9 - Gd (L g ol VA
: c"rcumferen‘h'a-l- Jo v [-a.) = oy, (Es)
where a[?'
A= 11'4 ) W = (000 x9-21 = 9810 N,
= d wd*
L= 4 g = 35 Jds= S0o k’y—mz,
and. E

= 207 Xio? IV/'I'ﬂz H G: 7?'3 XI09 N/‘rnl ({or Stezl).

d, ! omd o can be determined t

S‘a.i';‘s‘j-’g the :'nezumlffl'ey (EI)J(EE.),W“‘A (Eg) qung a
triad and error Proceolure.

The unknowns
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From solution of F’\'Olnle'rn_ 2.38 , the £

reguire ments can be stated as:

2.166

iz J B l2 EI '
T pivet ends T = 6y, (E,)

F(F )

Where E = 30x|06 pst s T = -6%- [44— (dwzt)4]

wn\ ) 49EL |
fixed ends \/23 (%‘T + mqffz) z & (Ez)

W!t‘nmefft = (0'2357 m) 2 me,q—z = (0'37‘4 m),

M = mais G’E E.ﬂ-f-L C.t:!lumn = -}—[Az“ (‘l_z'f)z] iﬁﬁ 3

. 3 “
P= bo*283 EL/M\ 5 g = 3564 h/secz;

ﬂ: ﬂ-'f"j# ag, c_o{umn = 9 1in.,

W = Wweight of floor = 4000 L,

W = wefjlﬂ‘ of columns = 4{-2:- [ Jz" (J—zt)z]ff} CE;)

Fr‘e%ue'nr.j fiemit = 3, = Sox2T = 3]4-16 TG'J/S'EC..
Problem - Find d and t such fhat W g/ven by

-------- EZ' (Eg) s mu'nl'ml‘:se_.a' while Sa.f::'s‘fiju'nj the
inegualities (E)) and (Ez).

This Problem can be seolved either Ly g"r‘a}:hfml cP‘I‘:‘mija.r':cbn
or by using a triel and error procedure.

2 2 2 o
--- (E
/(1) Viscous damping: (& -

figh
&,
g

------------------------ | e
Y % Lo d2 s MAF) - ()

For critical dampmg , Es. (2:80) gives
—, t

8(t) = {9a+(éo+os,, ec,)t}e --- (E&4)
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For eo_—. 75’”: 1-309 ra_d am_J 6y = o,

2 &= (r-;o‘} + 1:309 &9,,.1‘:) e_c‘s“f g (55>

For © = 5°= 0.08727 ra—cl » Eg- (Eg) becomes
0:08727 = Ir%O? (1-;— wnt) e_w"t -- (Eé)

Let time to veturn = 2 Aec. Then Eg. (Eg> gives
008727 = 1.307(,_,_ 2 ¢o, e-zusn — s Y

Selve (£7)) by trial and error o find cs,. Then

choose the values of m, M a~d ke to set the

desired value of s, - Eend the Jcl—'rhpfn.g constant

(4D crs using Ep. (E3).

(a,) Follow +he ]o'roceofure of part(i) to find the value
of W,

(b) Derive expression for the eguivalent torsional viscous
Aa_mpfng coanstant (cf)ez for Coulomb a!a-m}ss'ng. Thes
eKPY‘E'S'S’l'O'ﬂJ -_-Fnr small amounts O,JC c{a.fhpfhg, is
(Cf})ez = {4 —':!/ITT w, @ } --~ (&)
wkere -':[ = :Fr;-c_-t.'on (dn.w,r,;nj) .L-Orgu_:, a_ncp
® = a.mpff{‘uafe of angular oscillations. ,

© T (4)ey 05 fo be cqual o (@) = 2V7 Fr
we yl'n‘G’

G- TEO () = (&)
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Let x = vertical dlspla.cement of the mass (lunar excursion module), X3 =
resulting deflection of each inclined leg (spring). From equivalence of potential
energy, we find: ,

, = stiffness of each leg in vertical direction = k cos” «

Hence for the four legs, the equivalent stiffness in vertical direction is:

ln:eq=4kz:os2 o

Similarly, the equivalent damping coefficient of the four legs in vertical direction is:

_ 2
c,q—4ccos Q@

where ¢ = damping constant of each leg (in axial motion). Modeling the system as
a single degree of freedom system, the equation of motion is:

Meg X +Coq X +kegx=0
and the damped period of vibration is:
2T

TV
N RV

Using m,, = 2000 kg, kg =4k cos® o, ¢ eq =4¢C cos? ¢, and « = 20°, the values
of k and ¢ can be determined (by trial and error) so as to achieve a va.lue of 73

between 1 s and 2 s. Once k and c are known, the spring (helical) and damper
(viscous) can be designed suitably.

Ta =

Assume no damping. Neglect masses of telescoping boom and strut. Find stiffness
of telescoping boom in vertical direction (see Example 2.4). Find the equivalent
stiffness of telescoping boom together with the strut in vertical direction. Model
the system as a single degree of freedom system with natural time period:

T e ] v
. I 'If

2 386 4’

the strut (k,). Once kq is known, the cross section of the strut (A,) can be found
from:

Using 7, = 1 s and mg, =

determine the axial stiffness of

_AE,
2

with E, = 30 (10%) psi and ¢, = length of strut (known).
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Chapter 3

Harmonically Excited Vibration

: W 50
(w) 8= =« = Fooo = 0.-0125 m

(‘D) 8:'—' —E°—=—§9-=o-015m

* 4000
i
(€) 0= JE - (+oooxs-si)/z - 280143 rad/sec
5o
9= 6 Hz = 37-6922 ra.J/Sec
x = Sst W N2 T 0015 37-6932 6992V | = o.0185 m
' L - (", 280143

2T 2T

@ U= B-o =~ Zmw(400-398) > see

K= 4000 N/m,“--'r:r: 10 4«3, F(t)= 400 cos ot N
F.= 400 N. =10 rad/s

&, = %:20 TGLOI/S', %=é—%=a-5 < 1
Response is given by Ep. (3.9) :
s K
X('t)"' (xo—d;__o;;)Coswt-l-( )g,nw-h_f_ - Coswb
(G‘) H,=0-:1, 7'(,°=o: ('E l)
Eg- (1) becomes
x(b)_.{o | - 400 cos 26t + g cos ot
4000 ~ ’°(‘°°)f 40006 —io (l00)
¢ - 0.033333 cos 20t + 0-133333 cos lot (E-2)

(b) x,=0, %,= 10
E%. (E-l) becomes

x () = {0 - 439000— lo (‘C"")}

+{ 400 }cas 1ot

4o00a — 1o (100)

cos 20t + 12 sin 2ot
20

= = 0123233 cos oot 4+ 0:5 Sin zo“b+o 133333 ¢€e$ 1ot

(53
31



() ® =01, %, = (o

Eg. (&) becomes

'x(%) :{o-l-— HOP } cos 20{7 - _I_c Sin 20t
4ooo - 1o (i00) 20
400 t
cas o
N {qoo-o- lo (loo)} °

= _ 0.033333 cos 20t + 0.5 Sin 20t 4 0:133333 coS 10t

B (E-4)

&= 4000 N/m, ™M= (o kg-, F(t)= 400 cos 261 N,

= 400 N, W= 29 ra.J/g
s, j_',zomA/s, 8. . 22y
Response is given by EZ.(s-ls):

0 A
x(t)= %, cos Ot + %o sin Wt + S—st—z-n—— sin 9, (E |)
wn
WL‘\Ere 85b= Fo/,k - 400/4009 = 0.1
(QJ) Wozo-l, J:Co:: o
.-Ea.(E-I> 9ives
x ()= 0.\ coszot + (o'])gzo) t Sin 20t
= o.| co§ 20t 4+ T sin 20t (E-2>
(L) 9<°=0, '{Ca-’:'O:
Eg- (E-1) gives
®(£)= 2 sin 20T % )t oy 20t
20 Z
(E-3)

= 0.5 §in 20F 4+ £ sin 201t

) %, =01, %, = lo:

EZ (E- |) gives

x('&)’ o:1 co$ 20t +—é—% sin 20 t +M Sin 20 t
2

= 0] cos 20t +0'5 5in 20t + + s'nz2et (E-4>

—
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k= 4000 Nfm, m= 10 kg, F(t)= 400 cos 20:1t N
"~ Fo= 400 N, (9= 20-] ra.o!/g , 9= 4o4.0) (ra.d/s)?'

8 = -f—f,— = 20 rwal/,a

Solution is 5|‘ven l:j Eﬁ' (3.9)'.

_ F :
x(-{:)_( - _o_._i> cos O E + 2 ¢in oo t
e —m 9 LOn

F
+(m cos &t (E-!)

L

(afj 7(°=G'|: Xo:o'.

Eo. (E 1) reduces to

'ac(-l;).-:{a.t._ .l }Cos 20 1
L4ooo — lo (404:00)
400
+{ } cos 20.1t
4000— 10 (404 .01)

= 16075062 (oS 20t — 9:975062 ces 2ot (E-.z)
(b)Y %g=0, %,=lo:
Eg,- (g-1) reduces to

Sk { 27— cos 20t le ..
* ~ " L4000 -m(z.»oq.on)]z ° T 25 S0 ks t

400 i
* {qooa e {hodnol) | 5 Fo

= 9.975062 coS 20t + ©'5 sin 20t

-~ 9.8750¢62 cos 201t (E-3)
(C) ®,=o0'1, 7'C°= o
E?' (E-1) gives
x(t)=20"1] 900 2 12, & +
= = —_ 3 20
{ Hooo — lo(t.'ott-ol) ces Zo + 3 N Z¢

{ qoo
H4ooo — io(éfol-l-m) } cos 2041t
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- |6:075062 Cos 20t + ©:5 sin 20t
_9.975062 cos 201t (5'4)

4 = 4000 N/m, m= 16 %9, F(t)= 400 cos 30t N
F,= 400 N, 5= 30 rad/s, w* = 90 (tad /s)?
13 &
GBn= (7 = 20 mcl/s x W B 1.5 =1

Solution is given by Eg. (3.9):
x("f): (xc = Fo

9) cos Wt + _;E"_ sin &9t

*—m 2 o
Fo 7 (gD
+('k-m 097'> cog G
(@) #,=0-1, N,= o0t
EZ-(E.I> ‘Jr‘e[clsqoo s t
- - ; ; coS %o
x(£)= {o I 4000_‘10(900)} cos 20t +

Yooo — to(900)

= 018 cos 20t — 0.08 cos 30t

ar
(b) H,=0, ‘)‘Loz (0
Eg.(g.:) \jfEHS’:
(+ 400 lo
¢ I : L :
) (4000__ o e cos 20t + 55 Sin 20 t
400
+
(‘:ooo— lo (9005) °° L
— 0.-08 CoSs 20t + 6'5 sin 20t - 0:08 cos 35 & (E'3>
() #p=0.1, %,=10
Ez (E-1) 'jlelc{s
w(tY= Q01 - il cos 20t + 12 sin 20t
4ooo — (0 (9006) 20
a)
{ g }cos 36 t
= 0+|8 cos 20t 4+ 0+5 Sin 20t — 008 cos 30t (E'4>
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S = 2= = - o.0125
sk 7 72000 = © 1 m i o 5.y oot o
Sl‘eo.clj gtote salwl:ion.a.t resonance = * = = %

= 0:00625 (3.t SNt m
(w)at end of i— cyele, wat=F and x (£) = 0:00625 (T ) sin T = 0.00917 m
(‘:))At end of 2‘%' cnjcfes', Wt = 57 and =) =0'°062‘5(5"ﬂ') G 5T = O
(C) At end of 5‘;?— cycles, w.t= HET™ ond

23 s 23 - . g m
x(t)= 0:00625( F W) sin 2T = — 0.225

i 8 R loo
= 2 = — s m -
st = 1000 = 0:025

1 l (w 2 Sst 0.:025 _
= 8 R . | —~ = ~ = (<25
b 4 st (_C_c-l.,>7' Gﬁ‘n> X 20xi0 °
-
c‘%.;; o m - t'5
G, = &5/_5 = E(ZTT)ﬁ-S = 20:94¢4 ra-c?/sec
m = */{,_9:': 409‘/(20-94’-02 = 9.1189 Kkg
€3, = f L :1{50007,0 = 22-3607 rad/sec
- SS{.: FO/‘k = 250/5000 = ¢, g5 ™M
i .
X = 89{,—% 1— fa_s__>2.}
I ; : "i
. = 0«0
(RN=EP L = on (1"‘" isé: z = 22'3607[l-— .;-;-g J

1

{5.8114 md/sec
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K = 4 K
@ % s

Force transmitted to the mass through ki:

?

! Jd o | %
— = = z
4 & e *

!

4 &
3

2

*— .—LF({:) F(e)=_ %2 Fee) =_*1 % (_@)wu&t
‘kz e k|+ 'kz. ki+ k!. k, F
= k & cos st where &gt = -f"
S‘a‘:ea,olg state response of m:

')(.(‘f?') =

—
—_—

Fo

cod &5'?:'

@Y T

{ Sst
1= (&)

} cos 9t with E.‘:

* 'Ssé.
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k = 4,000 N/m

f(t) = Fy cos wt

/
* (x+ Sst—) /\s x
et ¢ be measured { “\\ W sing

from the position of \7

mags ot asfeeh Hie /

Apvng 5 umglbhetched . __E /

Thes o W s o
4« 8‘“: = W g£in g W= 3\{

Ezua,{‘n‘on of wotion:

mx = —4 (2t 8 ) « W sine 4 F cos @t
Or b
mx + kx = [, cos et
Free vibration e,aua_t'.ah s m % + kxr=o0

with selution : ’)Clq (E) = Cl - CJH'L’ + C2 in &9"{'
with Wa= (K/)E
e RES‘{aor\S‘E 's:
’)CA({:)-_- CI A &9,..‘{: s g Cz Sin C.!Sh'l:
%r,(.'b): X Cod 09'&'
Where Y = Fo — = (FO/«>
= 1- (63/u,Y
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@ W,= 5.2 Hz = 32.4726 rad/s

mg = 70 Kgf = 70 x9.9] N= 68§6.7 N
W= 70 'kj

G, - L “
nT 32:6726 = \[T— > 4= (2-6726) (70)

= 74725 N/m
Uﬁ) (9= 5.3 Hz = 233.3009 ‘r‘a_of/g
Amrlf'}—uc{e = Y= a1 JBa,ee excitation

vertical displacement (Y g given by

X =Y {H 2y 7
(-r>)* + @-vf] .

r= W _ 3%3.3009 ”
o e Gt e = lr01 92 o = ]«
[ 32:672¢ Y 10389

T =0 (NO da—“”rfﬂj)

Eg. (1) reduces 1o

l =
X: Y[(l-—\"z_)z] = 0.1

—

= 2+8752 m

1
et

o« |

[1-1.0388)

'xla = X sin (&97(5 -—525) = VErl‘a'CaJ- oLt'S'o(Q.C.E.mQr\'I' of

ik Ehe ?5 _ 'f'am-l (o) - & person

p—

9{.,0: X 8'm st = 2:5752 Sin 33.3009 t m™
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Plote of $orced vibration regponse :
@-ﬁ) 8S£= o,l’ &9'-' 5’ &91“": 6’ x°=e‘l 3 g-c-o'-: O'S

(%h)z: r’ = 135_')2 = 0:.6944%44

9 (£)= 0.1 Cof 6F + °'€5 i Gf—l-o-l{

cog 5t — o3 6t }
1— 069444

G x(t)=0:1 o8 6t + 0.08333 sin 6t+0.3273 (cos5t-cos 6'&)

(1)
(b) 8$£:0'|, W= 61, “,,= 6, Ry = @Al 5 «3;_020.5
2 I 2 2
Y = A\ TR = (€-! o U
@n) 6-o> 03361

) 0t —-coS 6t
x(£)=o-|c_af$6t+3-§—srn 6t + o-1l e }
6 1— 1.0336

% (E)= 041 o 6t + 0.083%3 sen GF
— 2:9753 (cos gt — cos Gt) (22

@€ &5t =01, 759, =6, %,=0:1, %, = 0.5
2 _ (S 2 5.9 ~\2
r°= G’h> ( ) = 0.96694
c.5

60
x () = 0.1 cos 6t + - cin ¢t
+ 0-l oS 5.9t — cog ei)

< x(t)= o'l of 6t + 0.08333 v €t

+ 3.0248 (cos 5.9t — cos 6t) (3)
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MATLAB program:

function plotjanll
clear all;clc;

for i=1:311
t(i)=(pi/300)*(i-1)

x1(i)=0.1*cos(6*t(1i))+0.08333*sin(6*t (1))+0.3273* (cos(5*t(i))-cos (6
*t (1))

x2(1)=0.1*cos(6*t (i))+0.08333*sin(6*t (1) )-2.9753* (cos{(6.1*t (1)) ~cos
(e*t(i)))

x3(i)=0.1*cos (6*t (i) )+0.08333*sin(6*t (i))+3.0248* (cos(5.9*t(i))-cos
(6*t (i)))

end

plot (t,x1, 'k-"); hold on; gtext('x(t) a')

plot [t,x2, 'k~. ")z hold on; gtext('x(tT;b');
plot (t,x3, "k*--"); gtext('x(t) _c');

xlabel ('t")
ylabel ('x(t)")

end
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’)CD: 'JCO =0

Period of Bea_.\:\‘ng - 0.5 A4

Period of oscillation= o.05 5
Find:0,, W.

Frequency of beating = W, = W,— 0w

Pen‘oal O_F bEa.‘l'l'nj:.. 2T = ._._2_.._Tr_.__, - o5
Iy, €S, — &9

or  Wn-W= 4T

Period of oScillation = % = 005 A&

2T

oY Sy = ';‘;—5' = 40 TU Pa.o‘/,g

Eas- (1) and (2) 3u've = 36 T ra-J/X '

(v

(2)
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m= 00 kg, k= 400 N/m , £(8)= F, cos wt,

Fo= lO N

= 2 d 3 e, = jﬁ- —
@) w rad /s 5 ‘/—: —
% (4) = (Fo/k

|
A
(o)
(o]
]
N
£
-~

1

\
i
o
o
R
a
™
w
3

'x,,(H: 0:02525 (oS 0.2 ¢ ™

e _

c) o= 20racl//s, r= '6_:9:" ?—%:(o, r = 0o
S - FD _ {0
st - = '
4 400 cro25 m
¥ = Sst _ 025
= - ry T T = = 0:0002525 m
I—(/wh) l—loo
9CF, ('l:) = ~o0:0002525 cos 20t m
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Equivalent stiffness of wing (beam) at location of engine:
N 1 3
: 3SE(—Db
(12 @) _Eb a®

_ force 3EI _ _
deflection o & 4.6
2
27N mr 7 N
itude of unb d force: = W= =
Magnitude of unbalanced force mr mr | =5 200
33 33

(ab & p)

Hqui lent f wi t 1 ti f inee M = —— My = ——
quivalen mass O ing at location ol engine 140 - 140

Equation of motion: MX +kx=mr WP sin wt

Maximum steady state displacement of wing at location of engine:

mr ™ N?
900
| mre? \
k —M o Eba® 33 ., 97N’
e 140 P17 %0
mr & N?

22.7973 E b a° — 0.2357 pa b £ N
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Rotating unbalanced force, m r «”, can be resolved into two components as:

Fy=mr o sin wt (parallel y—axis)

F,=mruw coswt (parallel z—axis)

Maximum bending stress at A:

d
4 mr«* R [—20—‘ }
OB"'J; lez — = T
L 2 T4 g4
A (d5 —df) | v
Il ———— X
(0.1) (0.1) (31.416%) (0.5) (Eéi) __7@ —
= — 8.5124 (10*) N/m* /'
il 4 4
Z (0.1* —0.08%) 3
64
: . | ——R
Maximum torsional stress at A
d shaft
q mrw? R To <
% - = |Ldyl —| = “;tL A
J; )

- .
=5 (df —df)

= 4.2562 (10*) N/m?

/" "\ Total stiffness with steel specimen:
' , ke, =Ky + ky = 10,217.0206 + 750,000.0 = 760,217.0296 1b/in

Force in specimen due to magnets (static) due to elongation X = kg X.
Force in specimen due fto a.c. current in magnets (dynamic) due to elongation X =
keg X —m o X
ko X
ko, X—muo? X
750,000.0

Ratio of stresses =

—l- i.e
g

1
Le. 40 o
L8 | 760,217.0296 — [386 4] gl 2

Squaring both sides of this equation and rearranging gives:

107.1225 w* — 15.7365 (108) o — 187.207 (10t*) =0
or u? =0.218378 (10%) (positive value)
w = 4673.0935 rad fsec = 743.7442 Hz

~\ Equation of motion: Meq ¥ + keq x =F(t)
where m,, = @ass of valve and valve rod plus mass of spring at end =
A/ (20 +(15/3))/386.4 = 0.0647 Ib—sec? /in.

keq = 400 Ib/in, F(t) = A p(t) = A pg sin w t = 100 (10) sin w t = 1000 sin 8% Ib.
Response of valve (steady state) = xp (t) = X sin 8t in where
1000

Y =2.5261 i
400 — 0.0647 (8)? -
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@ (a) Equation of motion:
» mp % +k (X +%) +mpg=Fc; x>0 (1)

where F, = force exerted on the follower by the cam, mg = mass of follower plus
one third the mass of the spring, and %y = initial displacement of the spring.

(b) Force exerted on the follower by the cam: k (et %y )

F.=mo¥ +k(x+x)+tmeg (2) w l
|
t

withx = ecoswt.

(¢) Condition under which follower loses contact with the cam is when F, is zero and
% is negative. Equation (1) can be used to state this condition as:

I (x +%o) + mo g > |mo ¥| (3)

TN 5, - static radial displacement b
Oge shast under we.rght of
furbine

§ = radial deflection of shaft

during rotation

SEL
= f—‘-—-—ﬂ-:;-“ = S'l‘:tffnes‘s‘ af centrally
loaded S‘s‘mrlj su.Hparch mg
beam
m §cs” = 44(8‘89{_) or mw = K#k-%
or ) *
- I W E
Sst A — P ( !>
Critical speed is e = —ff; €2)

If critical spewl = -,i_--tk of ope.ra;h‘ng sfeecl,

E=te =

Heve m= 500/335.4_ = {:2940 %'52/:':1
and W= 3000 x 2T /60 = 314-16 rad /sec

For 50"““ shaft (Sf53‘> of diameter d arnd len_g{'ntw 2
E& (EB) gives
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cf4

48ET _ W with E=30x0° psi 4 I= =
mg* 25 xlon patoan 64
, 3
=€y _11_ = {38§36- 8 (5'4)
JF
Let L= 30 d in E@-(E(,_) :
_ 27000
d = m = |-9513 nch and fhence {= 58:5395 'nch.
i 4 4 T4 4 . 4
1_% (4% —a%y = 5 (4" —35%) = 5. 2002 im
- 43 ET _ 4g(30xlo 5.2002
£ rE ( 000)3(' . 74595 297 Ab/m
m = 500/3?6'4- = 12940 _U:—S" o

i |

W, = ‘Jk/‘m = \[74-8’5’-285’/1-?.‘?40 = 76.-0719 ra.J/s‘ec

C . o5 =g
Ecc.errl:n Cr.{'j = = 2 in , ec_r_en‘l':n‘c ma.Ss= My= -3%6——#_ __”:.—-

Radial force due to eccentric mass ot resonance

- z_ 5 2 .

= FO = My r & = (?36-1-!)(2)(76'07!?) - |47 7654 L
Let x(t) = radial a[u'S'Pla-c_amen'{: of turbine .

At resonance, Ez.(s.'ﬁ) gives, for g = Ko =0

9(('&) = % 85‘{: &Bhf: Sin C.,S_n‘(:
where Sep = o _ 1497654 _ .55 in
k. 74 9%-29%8

To activate the limit switch , x(¥) =05 in. and hence
0-5 = L (0:02) (76.0719)t sin 760717 T

Ly t sin 760719t = 0.6573 (&)

E-B.(E,) is solved by triad and error ((assuming values

A Be (s 3y oty i, @
t=z o-6760 sec.

' T'l'P Loa,cl = ol b , flf-'f mMa.§8 = M, = ol _ 2,598 x rbdq
: p g B4t L~ s*/n
N T = (o-l) (O-OS) = 2:0833 x 1;6 i T

(2 - In
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4= B ET _ B(BOMOG) (z.ogaaxao'é)

13 3 - O"875 %/FIH
(10}
-5
m= masSs oJC beam = _0'2?3 (IOX 0:2 X o-oS).-_ 7+ 324 xi0
3564 th-5%/n
. 4 4 I
W = 2 o875 z wad
™, + 023 m - R =5:6469 52
(2-588+ 0-7324) 10

Es- (3-68) gives

X ={ 1+ err)” }%
Tl ey

i
Y=

nl-

Z
2.5 —so—{ (+ @x oot T) }
oRo= (-r*)>+ (2xoo1T)
L'.e.
wr‘r — 119996 r* +0:9996 =0
e T = W

= 5. = 0493999

o (9 = 09999 S, = 5-6463 Y‘O‘A/Sea.

K

|

i

]

1

y Ymlhs
F(t)

Equation of motion for rotational motion about the hinge O:

(Jo +M &) 0+ (ky a2 + ko b?) 0 =F(t) € =Fo {sinwt (1)
Steady state response (using Egs. (3.3) and (3.8)): ‘

4, 6

f,(t) = O sin wt (2)
Fo ¢
where O = ) = > (3)
(kla. +k2b2)“(J0+M€)UJ2
m ¢2 ¢ 1
Jp = PR = mé
and Jo T -i-m(z) g @ (4)
For given data, Jo = % (10) (1) = 3.3333 kg—m?, w= E]—U%[()z—ﬂ-)- = 104.72 rad/sec,

and
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_ 500 (1)
5000 (0.25% + 0.5%) — (3.3333 + 50 (12)) (104.72%)

!Equation of motion for rotation about O:
J0-9.=—k-t-9-£—£—- —————6351—{ My cos wt

= — 8.5718 (107*) rad

4 4 4
ie., J09+[ k€% 0=Mpcoswt
where Jo=%m€2+m(g)2=?78—m52=-41§(10) (1%) = 1.4583 kg—m’

and w = 1000 rpm = 104.72 rad /sec. Steady state solution is:
fp(t) =O© cos wt

where

M,
e = = 100 = — 0.007772 rad

5
e k€2 —Jyw* 5000 (_:—) (1%) — 1.4583 (104.72%)

' k= 4000 Nfm, m= 10 &g, €= 40 N-%/m , F(t)= 200 cosiot,
F,= 200 N, W= (0 rad/s, ®, =01 m, X, =0

w=li‘__— - Fo 200
n o -QOro.J/s's 85"1:"'?:: m:o.OSM

3= % :("—/2 r—-):(ﬁto 2 [4000 (1) ) = ol
\fl— 2 &, \Ii—(o f) (20) 19:899749 ra.d/s

X = ﬂ ( 1) +(2TV‘ 0:05 '
/ " {Qaa.s*‘)?‘ + (2 (o-')(o-‘i))z}i

= 0066082 m
] 27T - . "
¢: ton ( ?z>=":a.hl (2*61*05‘):-0'[32‘55'2 rad

|- Y (-0:5”%
S’:e.a.cqh- state response, Eg. (3‘25>:

74’,({;) = A Cos(c.ﬂt-—;i)

= 0066082 cos (Lot — o0-132552) m
Total response, Ep. (3:35):
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x(t) = Xoé?w"* cos (gt - #o) + X co8 t-g) (ED

Using the initial conditions x, and %,, Eg-(E") gives

= X, o g, X 5P )
OF X, 5 fog= Ho— X 59 (e3)
X, = - TS, Xows;d 4 Wy Ko Sing + WX sin g (E-4)

or X o Sin gso, {x + Yy, A, r.a’:;do_-w}{ﬂn#} LE+5.)

For Known values, Eﬁs (E-3) ond (€'5) yield
Xo cos ¢o:o-03HL{98 3 R, Sin ¢a = — 00003922

Hence L
Ro={(X, 5 9,) "+ (R, sin B, }1 = 0034510

¢o= tan ! (x"’ i ¢°-> = —0:026710

X, oS Fq
Thus the total response, Eg. (e-1), will be
x(t)= 00345 10 e_zt cos (19.899749 ¢ +0.02671(0)
4 0066082 cos (lot —o0-132552) m (E+6)

"\ k= 4000 Nfm, M=10 K9, C= 40 N-S$/m » F(t)=200 cos 0t,
Fo= 200 N, w= 1o rad/s, x,=o0, ®,= 10 m/g
From solution of Problem 3.26,
T=ol, W =19:899749 rad/fs, r=o0:5, X=oc.066082 M,
53: 0132552 rad
%p (£) = 0.066082 CoS (1ot — 0-132552) ™
K, cos }do - xo" K s ¢ = - o 665502

X, Sm;é = C& {x + 7 &, X Cosgﬁo —C‘BXS'ngﬁ}--‘o f—f9|5Lf7

= {&, cos )+ (X, sin m } _ 0495892

e (Eemntey. v
Xo C.O§¢g
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Thus the toteal response, E&. (3-35’), 'S 3.‘\/3" by

x(€)= 0-495892 éZt cos (19:893 749 t + n438320)

+ 0.066082 cos (1ot —o0-132552) ™

k= 4000 N/m, m= 10 kg, c= 40 N-3/m, F(£)= 200 cos 2ot

Fo= 200 N, 720 rad/s, x,=0.1m, %o =0

X F

wn-.: % = 20 f‘aLJ/s, 85{:: —f'= £a¢ = 0.0%
e & _ 40

3% BT 2Jkm 2 J4oeo (o) @

Wy = Ji—g® o= \l- 01> (20) = 9897749 rad /s

% = S5t 0:05

-t f2xr
= ton (l—r"') - fan ()= I
steady state response, Eg. (3-25):
xp ()= X cos (Wt—¢) =025 cos (20t -2 ) m

Total response. E& (3.’35‘):

{(l_r,_)z_‘_ (23'1’)?'} 2 {(l— {1)2-& (2 *o-l*')z}

Y, =025

x(t) =X

- TJ Ww,t
e

COS(QJ£—¢O)+ X ces (w'f:—sé) (. D

U':'n‘nj the initial conditions x, and t,, Ep. (E-1) gives

Xotosdy= %= X cosd =o0'1- 0:25 cos T =01
¢ [ i o
Ko Sin @, = -G-_’j;{xa-q- TWhaX, cosd, - a9 X swnsd}.
_ (a + 0'l%¥20 %0l — 20 %0:2%5 % Sin 1;)/9,8?97‘f9
:—O'ZL{'207
-3 . L
Henece X, = {(Xacas 8.) + (X, sin ¢a>l}z = 0. 261117
s s ST U |
: a_,nl< o |l’l¢° - 'fo.n‘( [a] uf|20? =—-t'|77783
S( CD$¢Q a-|
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Total response :
ota F Y.

x(£)= o0-261117 € cos (iq.gqg-ﬂ.’q 4 ‘1’['777928)
+ 0.25 CaS(Zat,__l__:) ™

' k= doos N/m, m= 10 Kg, ¢= 4o N-8/m,
F(t) = 200 coS 20t N, Fo= 200 N> w= 20 r‘a,cl/s
) R,z 0, %o = 10 /s
From solution of Problem 3.28.
X=o:l, W_= 120 radfs, W= 19-8997417 rad[s , 1=
X =025, ¢= -
xl’&): 0.25 cos (20t - l;) m
X, cos @ = Kog= X tos g = 0-0 =0

K., Sin @,= E":{ {7'(04- T, X, b ¢, —X sin ¢ }

= 4 §IO+O-I*ZO*O—20*0-25*3:’:11:}
19-899 749

= @-2512¢60

Hence Ae = {(X’a ‘-°5¢o)2+ (Xo sin %)z} E = g-2512¢60

- . ‘
b= tor (Lot ds
Ko o5 @o

j = (.S70793

~2t
x(£) = 0.251260 € Cos (I‘I-S?‘?'ﬂf? t - 1-5'70793>

+ 0:25 coS (Zot—-—rri) ™m
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m = 353%04 lb—sec? fin, F(t) = 200 sin 100 7t Ib. Let Xpee =0.05 in < 0.1 in
/  (maximum permissible value). From Eqg. (3. 33),

Xpax = b —— === =0.05 (1)
i A
Let ¢ = 0.01. Then 6 = 200 and Eq. (1) gives
keq eq
200
Ky = = 20.0020 (10*) Ib/in
® " 2(0.01) V1 —0.0001 (0.05)
Since shoeck mounts are in parallel, stiffness of each mount = E e
k
—;i = 6.6673 (10*) Ib/in.
c _ Ceq

§'= e iy
V2kym
or oy =¢\/2keqm =0.01 ‘\/ (20.0020 (10%)) (35004) — 7.1948 Ib—sec/in

Eug .
and hence ¢ = 5 = 2.3983 Ib-sec/in

| Equation of motion for torsional system:
_ Job+e(0—&) +k(8—a)=0 (1)

where 8 = angular displacement of shaft and o = angular displacement of base of shaft
= q sin w t. Steady state response of propeller (Eq. (3.67)):

l<-—-20m—>-{—<—— 30 m —34

e e bt
Fo T oe4m] o m
AT TS T e —-—- 4t
1 S
shaftz ;,m o4m shaft f
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6,(t) = O sin (Wt — @) (2)

1
kf + (e W)’ :
e =
where fa (s — T PF — (o F (3)
Jo ¢t WP
and ¢ =tan™! 0 (4)

kt (kt _‘ID (.02) +(Ct W)z

Here J, = 10* kg—m?, ¢ = 0.1, and w = 314.16 rad/sec. Torsional stifinesses of shafts:

I (10)) [3”2— (0.6* — 0.44)]
(k) = ; L= = — 27.2272 (10®) N—m/rad
1
(80 (10%)) | = (0.4* —0.2%)
QI 32 .
(ki) = 5 50 = 9.4248 (10%) N—m/rad

Series springs give:

(k) (ke)e  _ (27.2272 (10%)) (9.4248 (10°) _ B
87 k) +(ky)2  27.2272 (10°) 4 9.4248 (10°) = 7.0013 (10°) N—m/rad

e =¢(2V/To k) =0.1 (2) V/(10%) (7.0013 (10%)) = 52,919.8624 N—m—s/rad

From Eq. (3),
11

(7.0013 (10%))* + {5.2920 (10%) (314.162)}

6 = 0.05 2

{7.0013 (10%) — (10%) (314.162)} + {5.2920 (10%) (314.15)}

=9.2028 (107*) rad

(10%) (5.2920 (10*)) (314.16%)
7.0013 (10°%) l7.0013 (108) — (10%) (314.162)J + (5.2920 (10*) (314.16))°

¢ =tan™!

= tan™! (59.3664) = 89.0350° = 1.5540 rad
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For wmaximum X, 4¥ _ 1 - —_—da(-e D) 2) +2(27T)(2T)
dr :OSSt % {(l-rz)z+ 10)* '3.3 ?-{ ( ( ) } '

5 By —4r(1-T*) + gr T =0

e r:\}i—z‘gz

Sst Bst

X = _ o bsk
]a* reviiet [ft- @2+ G Frere-h SR o

X 1
h (sg{,)ma.x B 27 1~ 12

' Under a d.c. current (I) through the coil, core rotates by angle §. Torque developed due
to I balances the restoring torque of spring: al=k; 8 where a is a constant and ks is

/ the torsional spring constant. Under an a.c. current I(t), torque developed is T(t) = a
I(t) and the equation of motion is:
Joy—i—ct9+kt5=T(t)=aI(t)=aIOcoswt (1)
Steady state angular displacement of core:
8,(t) =© cos (Wt — $).sp (2)
: [a Iy
a ky
where O = -2 = (3)

% 2 9 _;_
{(kt—Jo W)+ (e w)z} {1_(;‘”_)2} n 2?—3“]

When w = 0 (d.c. current) and Ig = 1 ampere, Eq. (1) gives

kg
and hence a = ki = 62.5.

When w = 50 Hz = 314.16 rad/sec and Iy = 5 amperes, Eq. (3) gives:

a (5)
kg
- = 1.9386 amperes

2 215

2 2
314.16 314.16
1—{ 250} +2(1)[250]

B4, = {-E—L— =1 (reading corresponding Sac)
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where Jo = 0.001 N—m?*, k; = 62,5 N-m/rad, ¢ = 0.5 N-m-s/rad, and
0

k
i =v f = 822 _ o850 rad/s. The steady state value of current

| P 0.001
indicated by ammeter — 1.9386 amperes (this shows that the ammeter is not accurate).

' X X
E v 3 ' 3 5 res -
’ ( 4) Sst Ot

= G, =Y

(~€- == 2
p=27 ‘OTMD =004 T (&)
_ 1
Eg-(3-30): X = . vz 075
e (- + (230 -
:'e 2 _O_:EL- — i = CEl>
e RS oh
crol _ i
0045  ouqs+ 225 T
le-, 041914 + 2+25 T2 =16 T~
l-e-» S = 01180
l _
. (
D e e iy
2 e a - .&—— m 2 2
- ma = cl(y—x)_cax - R, % kg % C'(3"7"'>
(e mx + (o +¢3) x + R, % = € y =-c,x9Y Sin Gt
(b) -—(Cle/k
w_P(t) = 1) - sin (Wt— &)

JG=e e (277p (o)

where 1= oy, 7= (1t Y or g and 47 tar (1275)
(C) s{:ea.cﬂj_st’a.te force transmitted to point P
= 4, pt G, i’?
= —'Cctw\() {S'rn<c,,9t—-55>+ %&3 CoS(aBt-"F‘)

1
=

JG-r* + oy
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Eaua.{-(on of motion:

5c'+2‘gc‘9»h7;.+09f ¥ = JEOCG.S’C&{T ¢y

(i) steady alale hegponse:
xg (£) = C, o8 wt + C, An ot (2)
% g () — _oC, Sin 9t + @ Cy cof T (3D
aé,gﬂs) =~ C st — C‘slcz Ain ot %)

Substitute Eps- (2> — (%) m Ep. () :

(_w2c|+2ro9h X Cz—l-c.s: & ~ JGo) co8 ot

+ (—wzC2—~9-"S’C=9nC‘9 Cy o+ 69, C,) Sin Wt =0 (5)
Since Eg. (5) is valed Hov ol Toime t, the coeffrccents
6f cos @t amd sin 9t must be zero so that

e, (™ B ) + G (2T bnw) =% @
e, (m23Wnt) + Cy (-~ s+ w,f) = o (72
The golution of Egs. (6) and (7) s given Isj
(c‘shz_ w’-) :po
= 2- SRS (8)
(o=@ )2 (27 @ we)?
_ (2 5 ) 5
Cy = ) (2)

@jh?._w'z.)'l . (ZT wwh)i

By XwES‘L'H:u‘f'l'nj Ege (8) | ©) n Eg. (2), we
Obtﬂ.fn

(wﬁz— &?z) Jco

(whz“ 6‘51)2 + (27 @ wh)z

3-30
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QC/g(f“)':



. (23 wwn)aao

(CSHZ_GB':.)Q. 4 CZ \S' &8 wnDZ

= Sin C&t’: 00)

(Il) Total response of the SjS’f:ern:

x ()

1l

(1) + xg(E)

Acosw,t + B sin st + C cof ot + C, Bin wt D

am_al 4\€hce
o (£) = — A Wn S0 ot + W B S Ont

~ ¢, o sinwt + CQCSQ:'SC&IE (2>
Let the mmitiod condiflions be
x (0) = X, (13)
. %(0) = %, G4
E%g' (137 O.n-s.al (U-) 8{‘\/8:
A+C = Ag (15)
Egs. (4) omd (12) 9ive:
o, B 4+ a8 Cy = g‘co (16)
Egs.(1s) omd (16D give
A= Xy — Cy 07)
B= (%- © €2)/s, @)
o ( 2 2) y
Wy, — @ o
A= %Xo — 2 2 Q‘9>
(G = ) + (2 5 0 wn)
et QE. oS (9-‘5' CJ@:—;) :Fg )
BT e T 2o

- er)2 (e wwn)®
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Thus the toteal response of the sysvf:em can be
exfr*esse_ol ah (Eg(ﬂ')) ’

X (t) = {}Co“{@sh =@ ) e ]wswt

(&9“2 _ wz):z + (2 3_ 9 wh)z

R [x_a B %{ Gy & Wn) o z}JS"“ ot
O n thz_wa.):z +(9_3-&.969,.)

+{ (wnz'“ 5‘32) 5o wt
coS
( ﬂz__wa.)a. 4 (2% C.B&S‘h>
-+ { (2\5 “ wﬂ) s sin Ot Cz!)
(2= ™)+ (25w )
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E¢ uation of motion:

mx + kx = E._,c::'sc«ﬁ"t (D
where
- 3£EBI (2)

Assuming the initiad condiliors 1 be zers (zc_o:: B.CO :o),
the response of the videocamera can be EKFFESS’&DQ,
From Eg- (3.2)5 a8

=

x@y= 2 (cof ot — o8 ot)
4 - m w*

- Forn (QQ»SC&'L‘—-—CD’SC&nf)
£ _w”
m

1l

__.L_ CQJS ¢St == Cﬂ'fc'-g'ntD
2 2
(-I.9r| —

—_ Gnt G
._.—---—--—-2 fo sSin o= £ Sl‘n( o t (3>
2 2 2, Z
W, — @

Thus the moximum a.rnlafa'hwle of Vibration of the video

I

Camere IS js‘ven l‘-?j
2 £

X . —
nax - 2 639_ Cé,-)

DES‘l'ah regbu'r‘e ment is:

2 go
txym.x\: _— < 0005 m (5D
2 2
(S, — 8
Tf'\t‘S [ea.clf 1o ’f‘uuo cokes.
Cose 1
2 fo
—_ 2 3 < 0005
9, — o



Using the given date

m=2 %9, Foz 25N, W= 75.3984 rad/s,

F
fo = ’—\rs_: (25 5 C‘sn=./-‘_—f— =\ o.5%

Ez@) gives
[2:5
- 2 ( ) =< o©0.005
o0:+5 k — 5684'92

or
o005
= -~ 5000

ovr

05 K = 5684:.92 —50006-0
or k = 136984 N/m

For Aluminum "_uLDLCIGLY‘ \"‘Ool,

4 = 3EL _ 3(71)(!09)]:
22 6.5)° > 1369 84
Oer
2 136984 ( o.[25) _ 3
- o158 5 = B»O0803%D ¥rle
Xlo
Since

[}

= T dt (d°+t") >
Lt 4 _ o or d= 10t

+
4
Then T = I(;of"‘)(lot £%) = 396. 627 t
= - i
= ©0:098039 x Io
e £ > 2.02¢64 x16'?
‘ ~ B | ssum eol
By £ = 1.1932 x16 ~m= [1(932 mm (assumed)
d = 11932 vam = (1932 mm (a-ssumed ).

3-34



Case 2:

P o e

2510 5
=< 0:00
wng_wz ——
2 (12:5)
or < o0:005
05 4 — 568‘{-'74'
Gr 25
o5 k - 5634.94 z = 50000
0,005

or D5 K = 0,634+ 94

or K = 21,369+ 89

9
3ETI 3 (71 I
¢ = = i ( xfi) ?_'_ 2()36?‘88
L ©'5)
or T = 21;36‘7198 (O.[zS’)
213 x 1672

-8
Z 122541 x |0

Let 4 _ .
- 3
4 —
T= 296.627 t = 1:2541 %10
4 -2
"€ t' = 31,6191 xto
-3
=2 t = 2.3713 xlo = 0:002371lmM

amd  hemce d = 23.71 wmw
. Froal a.ccepfmble design:

t= 2.3 mm and d= 23.7] mm
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M() = My cos wt

Turbine rotor, Jy

M{:.-: Mo cos et % ‘{(_t-_.- 1({:1"" ki—z
Ezuo.i'io‘n of motilon:
T, 8 + ¢ 0 + (K + Kep) 0 =mE) =M, cos ot (1)
For the given date , Eg.(:) becomes
©6:05 6 + 2.58 + 7000 8 = 200 coS 500t @)

steady stefe Teiporse of the turbine rofor can be expressed,
gimilar To s (8:25), (3:28) and (3:29) for o

torsional s_tjs{:em 5 8

er('l:>:@cd5(wt'—¢) (3D
where
B Mo @)
{("k.b—- :To Cﬁq_)z = C{'_z 092 }—.':’: o
and
qB= fa.h“‘ ( Ct @ = (5‘)

Fovr the given ola.ta,,
Jp= 0:05, My= 200, Ky= 7ooo , Cf = 2.5, W= 500
Hence Egs- (4) and (6) give
200
4N\ 2 2 4 L
[(7000—-0-05 X 25 w10 ) + (2.5') (Q.B'x!a )]z.

- 62868 x16° rad

@.—:
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1

- 2.5 x 500
foan ( )
Y000 — 0:05 x 250000

- 50 -1
fa’"‘ - ‘.;-?500) - tan (-— 0-9273)
—12.8043° = —o0+2235 rad
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@~ factor = 200

Naturol freguency = (8, = (000 Hz = 2§32 ra.cf//s

& e " = [LOC
2%
or ‘;‘:-——L—-' = 0.000 467
2400

Ba,na\wl'dﬁ? i S 3!‘\{&\(} bj Ego C3-4‘5):
AWS = 092 — 69; o 2 ‘3‘ Cl.9h
~ 2 (0.000 467) (6283.2)
X 5.23¢ r‘a-ci/fS or 0:833%3 Hz
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'Eg.(s.M-) 3ives (Sst)ca wn ‘S'
¥ X = :r!_;-xmu = T"- ‘w - g (330) gives

4 4. 1 :
\Z 23 m—f")z-i- (27¢ Y
Spuaring and rearranging
—4-2rt4e et arty?

gyt = (- r*) A ey P

4 4 r? (47-2) + (1-87%) =0
Y= 4-27% £ 27 J1+72
Neglecting terms involving <2 |
. -
o= %z’ = 1%X 2%
) o Ty and W= &, when r¥= 41+ 27

(W2 + 091) (L9, — L91) _ AT

W, — &
e = = 94 \2
5: (=
W9, - Wy
= 7
— TTE g4 _ o (793 x07) (4 )4 - 15930.31 N-m/rad
- = Too

k*_ 32 4 - 32 (1)
/ _ f[is®30-31° _ 24
L9 = = 44.6434 T /Sec

= 100%9930.35 = o0.0502z rad

St = __C-’F—- ” il = oe B36
29, Wn 2(10) (44-6434)
when written for o torsional system, gives

() Eg (3-30),
® _ = —
N _\f@—r")z-i—(z‘s‘r)

ie. (2/57.2956) _ 1 .
00502 ‘/(T—r?-)H- (2%0-336 1)

= 0

ien  v* _ 5494 v - 10679

{e., r*= 2.0655, —0'517I
= g4 416 ra.of/sec

W= 1 Gn= (70655 (44-6434) =
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(b) Maximum Ttorgue ‘f:’ra,nsh‘!ff{:&c! to the Su.;slfuort:

M, () = K, 8(t) + ¢ é(t)
= %k, 0 of(wt-4) -

(mgm_x = \f(k% 8)* + (c, @ )
__.\/{nggo.al (ﬁ)}z o {300 (ﬁm)(é# té)}2|

_=_,_957' 2 N-m

. ® @ sin (t— @)

i i o TEE
CO“‘Ple‘l’E solution is  x(¥) = Xg€ cos (Wyt+¢,)+ X et (Lot — )
/= 2 (35) = 219912 vad/sec, _ = _ [2500 _
8. = B (80 / ww’J;-\!-—.a— = (531l vad [5ec
sk = —%x = Zsoo - 0072 m

- _c .__._______-—-—4'5 T W _ 2199102
3= 2w (3, 2 (10) (15-8114) ~ o-1423 , T = G~ e [-3908
TWBn= 2:25, W = J1-T" Wn= 15-6505

st 0.072

e

) Ja-r2Y + @vr)? B [(1- 1-3708%)" + (2 x0-1423 % 1" 13908)] Y

= 0.07075 M
_ -1 [ 2% iy 03952 _ .
p= tan ( ) tax” ( = T ) = _ 22-9591
—_2r Z‘St 0
e = Ky € b (15-6505t + #,) + 0:07095 <F (21-9912 £ + 220 9570
~2i28%
&in (15:6505t+8)

._z 25t 2
(6= — 25 X e (ls.GSOSt.{- B - 15:6505 X, €

= 21-3912 (o-o'ro‘rs) Aon (21-9912 t +22-959(°)

xz(0) = c.0l5 = X <S4 + 007095 ot 22.9591°

X Hh@y = — 005033 ---- (1)
@)= 5 = -225 X AP —15:6505 Xo ,s:m-;s —l;5603/$6nzz-95‘1£°
; 0 EBRE — 225 Ko 5
% Ain B, = 8 e o = — _ 0351l ----(E2)
15:¢505

Eps- (E¢) and (E2) 3VE
{co 05033) + (-o- .3510)? }

bt (2321 .
= ( :::5033) ton' ( 6.9760) = gI. 3423

= 0-3547

%o
%

I
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|

: I X s
m () oives g e (0] T 6T T
- ‘g—_.- 0«25

(b)egs-(3-42) yreld

L34 7A
(CrB,., ~ 1-27T% = 0:5 . GSi = S Vo5 :(‘S*ZT\_)\IO.S'
22,2145 ra.d/sec

032 \*
(“(:9'; v (+27F = <5 > 052=Q9Y\J1-5' :(Sx 2.TT>JI-5'

= 38-4766 red/sec
Amp]itude of vibration under base excitation:
— k2 + (c w)?
1

Sl [[k —.m uﬁ]z + (e w)z}-{ P

(0.2) L\/1<T+ c? (157.08) L )
- :

2 —_—
2
{k — 2000 (157.08)2} + ¢ (157.08)°

Let k — 5 (108) N/m. Then Eq. (1) gives:
V25 (10'%) + 2.4674 (10*) ¢ E
1966.7717 (10'2) + 2.4674 (10%) c”

i.e., 1.85055 (10%) ¢’ = 466.6929 (10'%) ie., c=158805.0 N—s /m

1
k2+02w2 s
_X-—= 2 .Sp
Y vﬁc—moﬁ] + c? o

11
(10°) + (10° (200 7))* I
2
10° 5000 ’
Ty |{10® - Fgf] (200 7)? +{(1o3) (200 w)}

or Y = 160.5294 (107%) m

Equa.t.ion of motion:
. £ 4 e .| € 3¢ 3¢
PR — — — s — — t
109+lk49}4+[c45]4+{k . } 1 My cos w

2,
& 9+5 k&2 9=Mycoswt

or 109+c~ﬁ- E
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2
where Iy = E‘% +m (%}2 = Z% m ¢ = 7;% (10) (1%) = 1.4583 kg—m?
2 2
¢t . (1000) (1) _ g5 N—m—s/rad
16 16

Byt (5000) (1%) = 3125.0 N—m//rad
W= -}E}%g—ﬂi = 104.72 rad [sec

Equation of motion becomes:
1.4583 O + 62.5 g 4+ 3125.0 6 = 100 cos 104.72 i

Steady state response is given by Eq. (3.28):

B,(t) = O cos (Wt — Q? = O cos (104.72 t — ¢).sp
:_l 8 = 0.006927 rad

where © =
2 2 r}
{3125.0 — 1.4583 (104.722)} + {62.5 (104.72)}

o 62.5 (104.72) B B o
and ¢ = tan —| = — 0.4705 rad = — 26.9606
3125.0 — 1.4583 (104.72)

m = 100 kg, Fg =100 N, X,y = 0.005 m at w = 300 rpm = 31.416 rad/sec.
Equations (3.33) and (3.34) yield:
| W=ty V1—2g2=‘\/;]i;\/1—2g2=31.416

or k(1—2¢)=(100) (31.%‘162) = 98,696.5056 (1)
1 0 1
and Xpax =0 ——F—— = = 0.005
2¢V1-—¢ Fk g¢V1-¢

= 10,000.0 (2)

A/ 0
or kg V1-¢ ~ 3 (0.005)

Divide Eq. (1) by (2):
1-2¢  _ 98606 (3)

¢Vi=¢
(3) and rearranging leads to:

101.4090 ¢* —101.4090 ¢ +1=0 or

Squaring Eq.
¢ = 0.0998, 0.9950

Using ¢ — 0.0998 in Ea. (1), we obtain
oy, SEAINUDD = = 100,702.4994 N/m
1 — 2 (0.0998%)

Since ¢ = P , we find
13
c=2m w, ¢=2(100) _1_0(%%20—;5%1 (0.0998) = 633.4038 N—s/m
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Fz, F;

reactions

|
i

at O Tn';ci-‘l‘ _1V_
%

Equation of motion for rotation of pulley about O:
—ke (fr)r—Jo B—k x(2r)—cx(2r) +Fpsinwt (2r) —mX (2 r)=0 (1)
where 6 = x/(2r). Equation (1) can be rearranged as:

Jo
{E—+2mr]x+2crx+{2k1r+—k2r]x—2ngsmwt (2)
T
For given data, Eq. (2) becomes
11i+50i+112.5x=5sin20t (3)
Steady state response is given by Eq. (3.25):

xp(t) =X cos (Wt — ?)

where X = > =0.001136 m

{112 5—11 (202)} + {50 (20)} ’

and ¢'=tan"1 { b (20)

112.5 — 11 (20%)

~ @
My =0 (about hinge):

I 6 + ke_._]__+( ee)e=ﬁyosmm

] —0.2291 rad = — 13. 1287°

Fo €
or 109—{-c329+ k&= 0" sinwt

Magnitude of sﬁeady state response:

1

By & 2 2
ea=[-%*-]/{%kfg—lo wz} reet | (1)
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S My =0 (about hinge):

L o+keo)e+ c%{t? -3-4£=§Fosinwt
of

or Io‘é+—1?6—cf2f'9+k€29=

Magnitude of steady state response:

2 2|5
‘eb=[F‘;f}/{k32—Iouﬂ} +{f—6cf2 w} (2)

Usually, ¢ is small compared to k. If the term containing c is negligible, ©, will be
smaller than ©y. Hence arrangement (a) is desirable.
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Ezu ation of motion:

cast
Jdp 6 + kp & = Moew )
Let fhe Ioa.r'f:t'cula.r solution be :
c ot
6, ()= ® e @ (2)
sub stitution of Eg- (2) info Ep (1D gives
Mo
©= ky - T, 0% (3)
Mo <ot
e C'[:): ©
P ke - T, 07 4 )

Frezuencj \"ESPOhSe:
Ep. (4) can be rewritten oz
ww®  (4es) o

M, 1—y?

com}a|ax freguency
Pesfange of The S"_-{S"l:eam

where
5 (6)

r= oy
Nofe: H(£0) s not COmHex because ofa_m}aa‘nj

P e e
is abgent.
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Eguation of motion :
mx + cx + kx = £(B (1)

For given data , Eg- (1) fakes the form

|50 % + 2000 £ 4 25000 x = (00 cos 20t (2)
The 3ra_laln‘cal method indicated in Fg. 3-13 can Le
used {5 find the solution o Ep-(2). Noting H.at
the steady stote values, o, %, and Xp, wil be
ouk 035 P‘NLSE with each offer by 90°, thke various
ferms 0§ Eg-(1) can be shown grophically (i the
com]a‘ex Plcwte.)-

ij @S’Suminj the :Fo,rcinj function as

£ (k) = Ea ezc&t @S
Conlj reak 'pa.rf 1S 3fven n Ei, (f))

e solut: o8
ond the s on ¢ (et d)

(oﬂ[j real Joa.r't needs o be considered for

the Sotuh'c:m O:F E«Z . U) ) 5 wWe obtan
2 s (wst-9) Lot
(-mwX+cu3X+1<X)e :foe (5)

The various Terms of Eg-(s) can be shown

3ra.dphf&l% () 1‘na[l'ca.i‘F_e! below.
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®)

Noting Hat the real Po_r'lrs of xp xf’ ol ’;CF are

8:‘Ven bg
x. () = X cos (ast-—;zi) &)

P
xp(H) = WX sin (t— )= wX m(wt-¢+90°)c7)
&)

p(H) = X ot (wWt—¢)
the various ?/uo.hfh‘:n'es shown (n the akbove Fiqure
con be used o obtain

072 (-me) X4 (co) X° ()
( $rom the triangle oPS)
.
] E o
Joemm D"+ ey
e fon ¢ = «iiw; o o= fm"(—g:—a;f an



Using the Known data , corresponding ts Ep. @),
EZQ’(IG) amd (11) give

00
x =
2 2
J(25000 — 150x 400)" 4 (2000 x20)
(00
B 3 = o0.c0ol881 m
\{28-25 %10

5
i

fan"( 2000 x 29 ) = fam (— l-l’lr23>

25000 — [Sox4y00
= ~ 48.8141° = —0.8520 rad
Hence the sf"ea.&j state solution s gtven [o;(

-—xFH:) = 0001881 cos (20t 4 0.8520)

3-48



1 (t)= % sin &0t + By

@;(t) - —;‘?(t) - A cos wt
w(t) = - Bz coswt + BiE+ By = = (t)
& _ A A AII A,
AsSslwning 'y(a) = y,(c) =a, we aet m
A % */

©(t) = -5 cos ot

R S S T S SRR
—_— x;(f)

Eguation of mation:
mx + k (2=%) =0

e, m 3 4 'kg,:——'mg—;_-..m BC.}(t)_—._.mACosqs»f
where 2= x—7
Solution is: _mA s et
}(t) = =
-f(-—-m(ﬁ
e #[¥) = L) RN = e |
} + y( ) k-—m&?z -+ E)A cg.'roﬁ‘l‘:

From solution of P'rob(em %5,
. -mA : A '
'X(f) = Y & c@z\ sSin wt =5 'a';i sin st

—2000 (122-)

= tog9 sin 25t — _10_a>-_|__z sin 25t
2 looo
el %10° — 2oen [25) @5)
For moaximum 2 (£),
7—(&) = .-—- 200 _ l . _y
1-15 x 10° 6250) sin 25t = —3.339/x(0  Sin 25F ™
0:3339 mm

Mot mcowi horiianfa,f. J{sP(a,czmen'b of J—'[oar =
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Yﬂ(’i"‘ﬁ‘) -+ ?(x-—y,) = — ™™ E-,t‘ = — T 55'.;’ (Ei>
Here ()= =g(t) = Xy cos wt , and Eg- (Er) becomes
m 5/4- 14}-_—_ meX} cos ot with 2= -2k

Solution is:

2(t) =
‘k—'hﬂwz {—Tr

with &, = £ = "o-;xiog
o Y.V, T. R IS5« 811 4 TG.CP/S’EC.

and r= /W, = 200/i5.8114 = {2:649

. 2

T 12-6491

5’( ) (!OOO) { z} cos zoot =_0.01509 cos 200t m
— (26431

<o Am]af-ff:ude of vibration of Jqoor‘ — /03009 m = 30:082 mm-

Time faken by car to travel one cyele .- = .
2m =
('35 ’m) is Ty i o ? o —
35 x 3600 | *
35 m

2
™m Cl.9 X;_ cos Q}t X Y‘L cos aj“t
- 2
2

T= _——— = 2.4 S€cC
60 % 1000
-
Exa'l:a.{:u‘oh j:reguenf:j = ¢y = %— = 2.99592 ra.o[/cec,
©, = 1T(2) = (25664 d frec , ¢= G = 02381, T" 0-45
AmPh’cude of vibration of car is given by Eg.(3- 68) :
X [ 1+ (2371)? ]1/2 -
Y (1-r2): + (2wr)f
1+ (2%x015% 0.2381)* 1/
= ol {
(1- 023812)% + (2xo-15 % 0-2391)%

The most unfavorable SPegol corresponds to the maximum of

3—;— n Eg.(E:). For maximum of —?— with res"be_d: @ T,
,4__[ {+ 4%5°r?
= O
dr f+rf_2r*447T%r" ]

e, (+r4—arieasri)(esir) - (1+45 15 (4r4ar 8% S
(1+rd—2r*4+ 4% 2 p2y®

18, —4"'(2'5- r4 4 T __‘) -0
e r=o or pP= oI Vi+ 8%°
: Pres
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Feasible value of 2 -1 + l+8(o-|5‘)2|
Y= = = 0-958¢
4—(0-15)

r
= 09721 (12.5664-) = |2'3035 ra.c:?/s‘e,c = —&

_ 35x3600
W"!ETQ {4 m ﬂ.h.d = ’SPEEJ "JE car in k‘ﬂ“/{\r.

. - 12+ 3035 % 35 x 3.6
£ "y 2. - 246- 7279 ‘kh/‘f\r.

| T'Ezucd:{ons (3.73) and (3-68) give
s () o s a3 1%
. T [(:L__‘-l)z g (ZTT)?‘

Fr m ot [ 1+ (?.‘rr)z ]i/?-

) (1-v2)? + (27 0)*

Y | %

1+ (z‘f\')z :Ii/z

- + (277r)?

EZ'(3'7S>" mg'*‘cé’*‘k}:-mﬁt:: mcal‘]" cos et
S‘tea,cij _state solution is:

_ Y (ot —
}(t) i i o8 ,dl) — Z oS (cﬁ'l‘:-—;zf,)

@_ m(&z.)ﬂ_ + @09)2

wWhere ¢|=1'7a.n‘1‘( ced L)

4 — M3
pa in = ¥
wping Force /7 % — _cw L sin (C,gf:—-sz!.)
Energy absorbed per cycle by the damper (E) =
E - IZTVGB é_z ZT\-/QS
C . —
£-5  dF iy = f{"cw Z sin (‘Bt‘ﬂ‘t)}{"@z""“(wt—’d')}#
2 2T/g
= ¢ W Z f S‘a'nz‘(cat—-géi) dE = TWe ZZ

o
Since Z = mGS"Y/\/&c_an”')z + (cos)z" s
E = { we el (m2634f)_ }
@(___mw:.>2+ ctws?

For maximum PaWer 5 jE — o
c
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{(#—mwi’)zﬂe—clw?‘} (T@g MYy e m2y (2e@”) .

-
| {(’1’-—- mwz)z-l- c:z'Cﬁz}2
ver oo ((Erehy.

Linear displacement of point Q due to

3
) ¢ 6 — x(t). Equation of motion:

where I =T1-2—m€2+m(§—

" Hence Eq. (1) can be rewritten as

3¢
6 = = 8 and net compression of spring PQ =

k€8 € 329 _x(t))% "

=l omet= _4% (10) (1?) = 1.4583 kg—m’

48

hé+[ik£2]9={%k€x0]sinwt )

8

Steady state angular displacement o

e={i
4

f the bar is given by Eq. (3.8):
kfxol/{%kfz-—louﬂ] (3)

= [% (1000) (1) (0.01)] /[% (1000) (1?) — 1.4583 (102)] = 0.01565 rad

and hence 6(t)

— O sin wt = 0.01565 sin 10 t rad

) Equation of motion:

b ¢o ¢ € 5 3¢ 3¢

_ 0y —x |20 —x(t)|

I 0 k i (4 c49(4) k{4 x()] 7
i.e., 1019--%—11—6-‘::'52.9+—:—kt’2=%k€x(t)=%kfxosinwt (1)

48

2
where Ij = -1% m ¢ +m {%} T met= '47_3 (10) (12) = 1.4583 kg—-m*  (2)
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(1) can be expressed as

(12) 6 + -2— (1000) (1%) 8 = —i- (1000) (1) (0.01) sin 10 ¢

ie., 1.4583 0+31.250462500=75sn10% (3)
of the bar is given by Eq. (3.28) with:

Using given data, Eq.
. 1
1.4583 6 + — (500

Steady state angular displacement
5
! T = 0.01311 rad

0=
5 1
{[625.0 — 1.4583 (102)] + 31.25% (102)}2

o 31.25 (10)
-—| =0.5779 rad
625.0 — 1.4583 (10%)

-, B(t) = O sin (wt — ¢) = 0.01311 sin (10 t — 0.5779) rad

Displacement transmissibility (T):
A X
1+ (@2¢r) 12

X
T=T={U—ﬂLHuﬂz

¢ =tan~

For maximum of T,

1
ar 1| 1+481 T2
ar 2 (1+r4—2r2)+4g2r2
[(1—-r2)2+(2gr)2 (8g2r)—~(1+4§2r2)[4r3—4r+8§2r] .

2 —1
[ -t + (2 o]
n can be simplified to obtain: '
(2§2)r4+r2—-1=0
Solution: r* = —1£ V1453 ¢
4 2

_1VAV1tsg -1

or T=TIp
2¢

This equatio
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At SFeeg‘ V= §5 T'r'IPh; and

wave IEna‘l‘h 12 §t,

W= tTN§=2T (V (ITGO*B))

3600
= 42.2371 rad/see

4« = 30000 Lb/gt
T = o2

' 30000
i \ng 31.0559
= Zligpub ra‘“sec

s o _ 42-237)
-— w —_— e — ey
n 31. 08065
= |-35390
2 pA
(2Tr) :(2*0'2* 1.3596)
6 2955 '

2
Gov*Y= (1-1035%)

o 7t70

1+ (23r)” Z

fl-rz)z-i- (2‘3’1‘)?'}

._:{ I+ 0-2955 }
6. TI70+ 0:2955

iU

|

b, A
T

A
2

Amen'J:ucle of vibration of

automebile s magnified

o.a-;Fa,c)hnr of 1.1%11

by

Fu “._nr Laa.afeof

. 30°¢ 1677 b= s
m= S5z ¢ 2% Ft

Ww=42-2371 ra,d/sec
%= 30000 Lb/St
T =02

=
W, = it__ - 30 000

LiL 93,1677
17- 9444 rad/sec

1

W _ 42.23%7)
£ T

n 17944 4
= 2:.353§%

@25r)= (z*a-z*2v3533)z
= 08864
(l_ra.)"":(f— 2'36391)1
= Zo 614
PR (23 1) z
’ o—m%(zrrf}
_ {1+ 0.%8364
{zo.émwo-s%tf}
= 0-29612
Amplitude of vibration of

outemobile is diminished
by a,fa.cfl'ar an a*2562

L
Z




Am‘mh"'u.de of the mass is given by Ep. (3:68):
J

o ®T+ c?es” 2

Y {(K_mwﬁ) " (cw)z} )
Using the given dato. >

X = 0:05m, Y=o0-0lm, m= 25 K9 , ®= 2500 N/‘m;

o= e J'? o rad /s

Eg () can be ex(aresseo\ as
2'500 g CIO )

( ) .05
( - 2
CZ'Soo—- 25 Y-!OOD + ¢ (100)

oY
Y 2
625 xio0 o6 C
25 = +
0o c®
or 2500 c? = 625 )Hoq + (co €
= = 62'5)“0"

oY C = 2604 1667

2400

: c= Slr03(0 N-4/p
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Equation of motion: M¥+cx+kx=medsinwt

/ where w = -31006—((}2—711 — 314.16 rad/sec, M = 100 kg, ¢ = 2000 N-s/m, k = 10° N/m,

m = 0.1 kg and e = r = 0.1 m. Steady state response is:

xp(t) =X sin (wt —2)52)

me

. where X = :
F)

l&—m&f+&@4
0.1 (0.1) (314.16%) — 110.9960 (10~%) m

2
2
{105 — 100 (314.162)} + (2000 (314.16))?

w - 2000 (314.16
and ¢ =tan"! : 1 ( ) ]

—— | =tan”
k —M o? 108 — 100 (314.16%)
= — 0.07072 rad = — 4.0520°

| ™ =20 kK3

v - 4 = gspri C_OﬂS'L'a.h{' o — -
* P m? L d Ta.IL cection ’,' " =05 kg
J cantilever beam (self mass = 240 %3) ‘ o
= 6) EL= 2.5 MN/m , T=0-15 | ° €/=lol5m

_ 3ET _ 3 (2:5 »lo A -
27 43 7
7
= o172 x106 N/ j< 4 m >
* ' £
9 = — o« L1772 x 10 _ '
n \['mi +0-25 My /;+ 0,25 (250) = 38,2753 'ra.a!/sec
w = 2T (1509) /60 = 157-08 rad / sec
r= 63/o,= 157:08/38.2753 = 4-1040 ,  r*= (65428

Forced response (S ZJiven by Ep. (3:79) :
x?({:) = X Sin (L’.E't --55)

where me . r?
X= Tmy fa-e? + Gyt
_ (0:5)(0-15) 6-8428 1
S (- (s-s4zg)z+ (2 x 015 x 4-1049)
— 3.9747 x 16> m = 3.9747 mm
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45 _ .m.i - 380 x 9-81

By =
st oo " T % =
e 4= 82,840 N/m e
2 (1750
J 82,849 4 7648 m—“’/ss:; s W= T
~380 rady
— (83-26 vec
r= - A88:26 _ . f2-412 2
“‘n 47648 ;5 r2=(54-0566

(i )A\T\Fi {'ucfe cf v:Lra.fton
I54:0566

o5

X = M \/' 2) T ey’ = 780 \/?53.0555)24-01

= 3:9732 x10 m
(H)Force transmitted to ground
= X -—(828’40) (3 9732 xi0 ) = 32°9140 N
4

-4

l'=<_'1i-(a-§) (0-1)3 = 0-4(67 x 10 ™
- -
192.61: _ 1nz (szTxlo” Y (or 4167 X 10 ) = |+3248 xto N/m

% =
(5)3

(@) s, / F 14-8’)(!0 = 420.2956 radfsec

w= 2w(1200) /4o = 125°664 rad fsec

r=9% = l25-6‘4/4—20-2355 = 0.299 ,
state vibration

r¥= 0-0894

-

Ampi.‘lzude of S“f‘ea.clj— is given by Eg: (3-39)
with =0

X = Sgt _ ¥N _ S5po00 -

- lrz-j_l ‘kl(r’*-”\ 0-3249110 )(o-‘?loG)

-3
— 04145 xlo ™

cctive mass due fo self weight of beam

(b) Using the eff
be V.r.f-'c' here alse,

(For = Ca.h‘hl.Evar) to

4
W, = f
" M+ pe2357 ™

where M = mass of motor =75 k9, and

gl of bea-m = (; x0:5 !O-!)( 76:5 )('IO'3 — 174?‘ 5313 kg
1 XA
gy = L3288 ¥ (0% y
n = _ . )
75 + (1949:5313)(0-2357) i57.4339 red/sec

r= Wi, = 125 664/157- 4339 = 0-7982 r2= 637!
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Set Fo _ 5oo0
- (l 3248 Xto )(0-5629)

X = lY.z_il - k]r’—i[

-3
= |0400 x IO MM
and thickness =t m.

Let widtt =a:5m

= L » 5 3 = _{:3 4
i= iz (0 5>t .E-‘-f- m
3
* = 3EL - 3(2'07’("’”)( 6/24) = 207 x!og t3 N/m
13 (5)3
Sy = L
M+ g:2357m 755xwa .
52 2 )=19455.41
Where m= mass of beam = (Sxo 5 x t)( — > “
g

207 %10 £3 l
CJ“ =
75 + 02357 (1949541 ¢)

r=-g"-_- (25 -¢c64 \F5+4€?5'-0628 t
" 2-97::08 1‘:3

X = &s¢  _ Fo
|'r='.—1 ( %« lrg_—||
Le Sooco0
= 05 =
, g8 .3 25.664)% [ 75+ 4595° 0688t | _ 4
(2 o7 xte® £ ){Q [ p——p 5 }

3
3108 xtot £t~ - 4595.069 % — 74,347 =

i-e.,
founcﬂ a3

By trial and error, the value of + s
t with o new widft such as

t ~ 0:6-m -
we can star
{0 m.

Since this is too !5-“5"3:_

o472 ra.ol/sac

_ 27T —
m_—_((acy?.gf) N W= (ioco)/ec
/ % = ¢ (6000) = 36,000 N/-m
V"‘/m ﬁooc/(ﬂ’.z = 24.261! r‘a-c!/sea
. 2 _ .
r= w/w“ = "04'72‘/24'26“ = 4.3164 5 re= |8 631
2
G = Fo _ e whece My = unbalanced mass
® lr"-—i( * (rz._,‘ and € = Eccev\'{':rfc,i!:_y
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1 2
LB _3 M, € ({04,72,)
2.5 x (o

3¢coo0 l £ b |

L€, e = o.lu4T kKg-m
5 Unbalance= W, e = mz€ = O« ({47 (7.31).—_ {4195 N-m
: - _ lgoo _ _ o, b =is® _ o (l500) _ 15708 rad
M= 3364 s in ? i =] = s
I’ Possible 'solators are: (i) k=45 000 Lé/‘n , T =20
- (i) 4= 90000 Bls ;» ¥e=o

(i) «=45000 ity & & =gell
(iv) «=9000c0 /in » IT=o0I3
we will com’pa.re the force transmissvbilities of these solators.
Force tra_nsma‘ssfb:titj — ‘Tr e 1+ (ZT r)z

f= o242 . faTr)"

i = (k" /45000
<l> 0.9“”' = = i.z?g,} = 13(.- 8634 r‘C‘-"’/S’Ec

r= @, = 157798131 8634 = le 1912, r¥= 114190
l
T a-'m? T
(”)wnz ,/f;—.‘-;—% = 186.4329 redfsec
r= O/, = 157-08/|96.4829 = 0-9423 > r¢= 0:7095
Tr= — 1 = 3.4423

[1-r2] ~ o0-2905

(iﬁ> wﬂz f 45 ago; = 13(-8634 r‘a"c!/se‘:
246

r= 11z , r¥= 4190 < = 0-15

_ 1+ (2 x 11902 x 0:(5)" I
e / (2_ = = [.9282
(- 1-4190) + (2 x (-1912 x ©+15)

(I'V) S, = i86-4829 rad/fsec > Y= 008423, r%= 0.7095 , T =o-15

|

T = t+ (2 x 0-8423xo-l5>2'

_ = 2.6789
(1-0.7095)" + (2 x 08423 x 0. (5)?

.. TIsoletion (iii) is best,
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4

- M X i
Eo.(3-82); = -
Al me T [@-r Y+ (27w

r=1,
mx _ | 1 JE. R e
= = -2—? or me zrx 2*;-(0_55) 151 % ( 1)
When r= large,
Mmx _ Mmoo _ (Ez
me . o me | X 0.5 )
Combfm‘nj CEO and (Eg), we obtain
.
me o-15 - [ 1%

T = o0-13¢64

. .EFor each SPriﬂj; ) 4
‘k::.__i‘ilq_z,. _ (1. 5385 x10°) (0025)  ae.ops M)
= Y 64n R 5#(8)(!-5)3

Totael 4+ = 4(ze.og3)= 04 -332 1«5/(':1

W= Z-TIMO—OD— = 188.- 496 ‘r‘a.&/:ea

60
2

I
e I l04.332
\/—— = = 7.3316 vad/sec
M \/(75‘0/395.4) E /

r= 188-496/7.33c = 25-7002 , ré= G6l-0l44

me r? - ico (a-ol) g_g.'_m'il-r_>
X= "M \/(T—r’-’-)?-—f-(zj'r)?_ S S

= 13354 x5 > in.

- ZTT(lsoo)/éo = |57.08 ra_cl/s'ec 0 T 02" diw {4

o
(au) Force due to eccentricity of rotor 1500 rpm
= me " (3%4 (or01) (157 05’) (9-1569 Ab.

(b) u-p. —(Force>(€c_ce.n{:rfcifj>(a_ngu.{a.r velocity)
= (19-1569) (&2 0')( 187:-08Y _ 5.004559 hp-
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e?)

“vee dramsmithed 1o the Foundation due o rofating
un bolamced force (F):
F(t)= 4 %(t) + cx (¥
= & X sin(@t-¢)+ cww X s (wt-¢) (1
The rrwa«w,/@di of the fransmitted force com be
e&’oresseal ob ‘
|F b = f@“)l—f (cw Xy

= X Ju® + eow” (&)

USl'nj i
me &8 C’S)

X= ‘
JCk‘Mw1)2+ @09)2

n Eg- @), we obtain

2 2.
me & \/4(2_,_ (Cc)

HEE
Joc - mo* + )"

€Y

With
c= 2m Gy T ,

"
8
N
8|S
i
3
Q\:)l'j
<

e
M n
Cawn be Y‘ewr‘{'}:'ben o3

1+ 4517
‘;:(w] = me s — (5)
—r=)* + 4% T

Ny
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=y
e (o 2
R
zoo ‘k%

5’9/336 4 G- S _ :
= 39.3(4| rod/sec [ / C|—.6. ) "L—lc
v/
= (D _ g5y radfer }(—— 5 "t 5 20 i

(P)HQJ‘;H;M = ;(;%:4)(4) + 3%4)(5) —141-2612 lb-in-sec?

(o |)(’79 54) = 798205 b

5
E,:meos:(

3864
Point R is subjected to the force, F(t)=F,cos Wt =79.8205 cos 7854t
Assume that S s not maving. .
Then Rs A-S'P(o.c.acl by -
053 F, cosot _  Fo coswt  79.8205 cof wt
B I 2R (7854
l'fc ™ ( +* f | Cﬁ‘h) I 200 li’ 3? %WD '

= o0.1334 coS 78:54 t inch
Let o= a,ngu.fa.:r o(t'spla.aamen'& of plate Pa.
Displacement of S= 5@ inch
Extension of springRS = (56 - 0:1334 cos 78- s4t) inch
Restoring moment of spring Fforce akout P
= 200 [50- 01334 cos 78:54 €] 5 [Mb-in
velocity of @= 40 g inch/sec
Damping force ok Q = 406 (1) = 40 6 1b .
Moment of damping force about P = 40 g (40) =600 © Jo—in
EB',‘G"{_'IO“ of motion of Pl@te PQ -
Jp 6 + (600 6 + (600 (56 = 0-1334 cos 78:54t) =o
ie., 1412612 8 + (6oo & 4+ So00 @ = [33:4 cos 7854 t (Eu)
Comporing (E,) with Eg.(;.?_q.), the solution of (E)) cen be
expressed as Op(t) = @ cos (@t —¢)
where , from Egs- (3:30) ond (3:31), we 93{7
@ = (133 4 /5600)
\/(I 74 . 2"'51) + (2x 0-9519 % 13- zols)
and g = tan (_ 25- 1326/(73 275!) - 2_52_9

= 1.5239xi5 " vad

Steady state motion of Q= 6 (40)
= 01006095 CA(78:54t + §:25297) inch
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Dl‘stala.cgment' of S = @G ineh I Dy

|
= <{_g232 x“;if)(;) FHCI'\ g \33:181.16 0'0007619”

= 0.0007619 inch » Ds
2

D, Dy = Mmaximum JEforma-fi‘or\ of
Spring = o- (334 4
Max. l_-f-orcg ‘t'ra..hSmifte.ol to PO:'rL't ,Sr = * (D1 D3>

= zoa(a-n334) - 26-68 Lk
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Assume: M= mass ef meotor = 5 Kj

k= Atiffness of beam = 30,060 N/m

- [#_ - [30000
©n= | = ’..__.5_——- = 774597 vad/s

s 15708
T e— A —— - »
Y= on TR 2:0279

(w: [Soo er: |'500X27T/60 = I57'08 !"’G-d//g>

Using X = 0r02m and tke velation
pd : !

m—

N
we _-Fl'nJ

Ss-!: = X [4 ...z,og-;qzl = o:az(?-“f’.?): 0:06225 m
New condition (s:

e
-

| 1- 2-0279{]

{

=y T 88y = e (0-06225) = 0:056025
- |

Ugin X 2 _ | _ ,
J /‘“('z.s—,) f" o.osco2s — |118u41Z,

we {.‘nd

1

@ N\ 6
= [ e —— - a ’s‘
( “,_> 188492 or b3y

14

Thus the reguired Apeed of the wmotor is given by
B = a(43415 = 77.4597 (4 3415
=336.2964 rad/

or

336'22;6" (60) = 3211:3869 rpm
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M= 50 1«:3, ™= 21':3; e=o1wm, ¥ =c.l

= 10gg vpm = !000@
P — % 2T = (0472 l"M‘/xx

Go
@Y For {F{
— = o.25, Eg-(3:84) gives
I+ 4% ¢° 1
[Q—r"‘)z—r 4‘3‘2r’j] = Z:"
or A+ 4(on 1

Q-4 4n’r?

oY >3 2
16 + 64 (e-00) Yi = (I—YQ) + 004 T

oY

o= r%_2.6r =I5

(e
Consiale’n'nj the eaua..(ﬂ—j sign in Eg.(l), we obtain

L] 2
Y —267r |5 =o (2)

with roots
2 2.6 :t\/(z-s)ﬂ. 6o
. .

r =
= —~2.7883, 5~3853

Consa'alerfnj the fosf-l-l‘ve root,

1
rs (5'3853)2 = 23206 = _:;9 (?>
| 2l
or et
9. — oy 72 _
"7 2.3208 Sas08 _ 45vize3 rad/¢
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From the velation

&= 1 X2 - & _ .
n \/M ,/50 = 451263

we fl'no'
& 4
k= 50 (45-1263) = (0-181% x1o N/m
(b) Force transmitted & :FOunoQa,‘h‘on s

{F] = 0.25me @

2
= 0:25 (2) (e 1) (loy-72)

\l

5483139 N
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M= 200 K, wm=z 15 g, k= 5000 N/m , 5= 0-05
4 5000
(- == Y e =
n \/M |/zoo -‘Sra,&/)s

De;}led-:'on oJ\"Y‘ESonamce = X = o1 m™
Resonance u‘mlal.’es r=1 or (¢9=05 = 5 raJ/s

@) Mx _ re

fa-reY+ 4%° r“}ji

(D

me

‘For M= 200, m=15, T =6:05, X=o0-1 and r= 1,

Ez.(l) gives
(200) (e-1) 1
ls (e)—“ o] , 3 i IO
{‘f (0.05)2 (*J}"‘
oy
e= 2° - 5.1333 w
15 (10>

(bY) Let M be the new moass of The turbine rofor .
For X = o0:05 m, Eﬂ'(') gives

’ me \"z
M

$G-r*)* + xR ¥
1s (0 1333) (1)
2 (e-05) (V) (0-05)

il

= 400 k§

Becawse M’z M+ AM, AM = mass added = 200 k9.

3-67



) X(r)J =
nax
me T'2
¥ =
M [(|~r2)2 + ! r)g' ] =
IS (o-i%?%) '
B L
200 [ C|._.Y~2)2+ o0l Y‘ZJ =
2
= (qq- 975 “54) L (@
(f-+ r"[--2.'r‘?'+ wot‘("')z
Because max (x) = wmax (}(z> , we have:
£
r‘(
Maximize _-Sf(r) - (3)
wiltk resFecfi \*t'... 1-991‘2+ i
T

NECESSO-Y'j condition is:

4 3
df _ ‘Fq(lfr'g—- 3.98r) — (7 _ 199 Y 1) &Y 5

o (r*l'-—i-ssr"-:-i)z
{:€.
4 ¥‘7— 3.99 Y’g - 4 r7+ 7-96Y‘5~lfr‘3 ol &
he 3.88r°- 4 =0 or r= 1:0153
Hence Eg-(2) gives )

(-0153) 1

X:(‘??-‘??Sx;o—q){ |
o {+ Q-ossa)" - 199 (1 0153)

= 0:9168 wm
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1R/

Ol e ot —g)
; []
W 1T/

= S sin cot [ cos ot. SP + sn @t-s:ngs]abt

(a]

(4 o ) s § (st} &

, o
[ esn (gst) o om0 (ST
(2]

or g (o s aty O (s @_aﬁfi‘)r“/”
wr ? ( =)\ Ee z o
Ly |

= —-dg' S 55

ol = WEX' I = @RX sing

Let ==(t) = c{:‘spla_cemenf of mass m

Vs
New Ee.ng‘H! of each SPr:.‘r\j,-kl - (11+11) 2
") New tension in each spring ki = = (JIF+zr )%+ e
) Horl'sonfa.[ CO‘MPOI‘I@.‘I’L‘{: Of new fension in each sprl‘ng %,
— T- . ‘r'tf-_"za Tf
Vertical component of new tension in each spring Ky = —ﬂ—ﬁ’—\;‘;

Total friction force = M4 M2+ 2T A

, 124+ %
when _mass moves _to_ xight:
Eg,uai‘n‘on of motion of mass m:
2 1T x 2T )2

max + K, +

e oy i) - ot

where A= area. of piston.

o max 4+ % (‘f‘z“' 2 IE’_> =pmg +2puT, + P A simegt

§‘.‘Tlta:t&'1’ when the mass moves _'E'_o ,_(_e_f?’::

mE+ % (kaw 2 )= —pmg —2pTo+ B A i@t

3-69



m= 5 K9, 4= 25006 N/m, Fo= 200N,
w=20 Hz = 125- 664 vad/s , = o0.25

Siace

4 MN = 4 Mmg = g4 (:25) (15) (79D = (47.15 N
R Tl = TW(200) = €28.32 N,

the magnitude of the steady state response , £ .
(3-93), 'S 9iven Lj

-

e == e
ol - (5

- (&)

X’ =

where

RET—

(In = .9 = \/2_'_5_9_6__9 = 59 ra-:s‘/g
V ™ lo

4N

- 14715 = 02342
L - 66
o T [25- 664 = 2+5133
50

Thus Ep - (1) gives the ma.ﬂnff'ude of sféa_ij state
Vibration as

2 A
200 1 -(0.2342) =
&Foog f—(z-SI??)z
]
= o0.o008 [ @945} E
[-5-3167 |

Y

= 0003373 m
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m= 25 49, k= 10000 N/m , M =0:3

W= 8 Hz = 50+ 2656 vad/s
X= 0+:2

Ep- (3:88) gives
4pN 4 (c3) (25x9-81)

e ™ (50.2656 ) (e-2)
= 9:3183 N—-4/m

Ce? =

Note: It is cibumed ot Feiction Force ('S
Amadl ComPa,reJ o Fo n ;?‘Fnczl‘nj the

e@u.t‘va.,le.n‘b VisScous Aa,mlﬂt‘nj con stant of
the system,
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B = ‘/‘k = 209 - 32:403703 rad/sec
" ™ 2 _
@ N = vertical force = mg =2 (9-31) - 1962 N

W _ 2:5173268 x2T0 _ 5.4 3319
Wn 32403703

2 4/
SRS S h

(1-%‘;7 j 5= {ﬂ*(‘?'“l}z Yo

75 120 T (120)
T3 00 =
o e (| o 0-4-‘39H‘?l7')
z i
e 1 - 004334 pt\Y2
LR = 0-5902473
2
- 0.9995666 = 1- 0-04334 M
Y- I'L-:' o-1
~ Ww _ 5000 5
N (@) %= -8-:; s = (0 N/m
- when w= ,, Eg- (3.102) 9gives
Fo tooo
X = —o gl = ———— =>'{3=o-i
®p 7 (10°) @

(b) AW = 0 Cep @3 X% = mRk X%  where

p %

s

AW = 75 (0:1) (16°) (0-2)" = 314-16 Toules /eycle
(C> S‘f:ea_,dg state a..m'P[f-f:ude ak ane—zu_a_r-lggr af regonant

from Eg.(SriocD

freguency :
i = 025
GO
5 1000
¥= _

= o0:0l061 ™

i l:{i-(%>z }2 * Fz]‘/z ) ‘05[{1"0-252}'24' (o-i)z]%l

(d) Steady state o-mplitude ot thrice the resonant freguency:

W3

& =
Con
oo

e ‘05[(1—3")a+(o.|)9-]yz

= @ge:00l25 ™
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7
f.
3 (004) = o0:0000202

Aw — 'ﬁ-ﬂ * X
o 3.3 = TA (60 oooj (0:04.);)—
| = A (a-os)r = 0:0000504

.95 = Tl'ﬁ (Gooor:.v) (c.og)r

Ta-king bgari{:hms,
bn p + f e (0004) = In (0 0000202)
bap + 1 A (00€) = {n (0-0000 504)
en ﬂnﬁ = 3.24 8876 I' = —i6-909828 ---- (51)
fop — 281340 V= — 7895500 PR
cubtracting () from €),  0:4054¢5 7= 091430
= 2254964

From (Ey) , dn g = —(0:809928 + 3:21887¢ (2.2549264) = -3-55137%
1

/5 - 0028685

_w= [Fde = [F *
x(t)= X cos(t—g), Work done in one

~—~, Work done
.‘ | If FE)= E cos wt and
< eycle -;_Tf/w
= W= - Fo cos wt. X sin (wt—'}ﬁ) At
2T
A@

)?-’)'/ﬁ_l_ _____F;GSX sin ¢ (t-ff— Sin 26
o Z 265 L

Fo X 5f (L cos 2wt
2 269

—
—_

2
— FaTl_X an.ﬁ
‘ . ra-G' 7
Given data: F= 5 b, t9= 37 o2 > t=-;: sec, ¢=%_, X=0-5
AN
5 = 6-.9018 lb-in

W= F X sing = 57 (0.5) sin 5 =

it owill Comple'f:e 5 cjc,LES-

(i) In one second,
W}i seeend
(l'l') In four seconde, it will ComFlev‘:e ¢ cycles.

¢ W = 4-0-8'08 Wh-in.

(5 W = (0-2027 Ab-in.

/4 seco nds

‘ ‘Da.mping force = F= C ()'t)n
Energy clissipa-’ced per guarter oycde  during harmonic motion 2#)= X sin 5t
18 /209 V269
%— = 5‘ c (7':.)" Fy = 5 c ((,3}(_ oS C.B{:)n ciz.
o o

But dxz = '.‘-CCHT = wX St dt
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/109
AW = 4c¢ wn-t-i xm—i S /1 ccsm'i Lk
o Ti‘ﬁ_cs Tr/,_w
- 4c qan® Xn'i-i{__i___- - ot - sin 3t +I‘._1 fﬂﬂ{“-iwt a[t}
(n+1)Gs
Wz
n+i 2(9
cac o™t X(E) [ ettt b
o
Eau:zi‘fng this expression o T ce@@xz, we obtain
: n on-1
4c O X N (Ve
C.ez = T (h-H.) S; cps“ 1(31‘;&;& = CLS“ Xn-i 0(’"
where a4 m N (Ve
on = -f(h+1)5 s . db =~ (B)
°.
For exawmple , for m=2. (& becomes
p'e ,
/203 : 2y
A= A5 [ s eta = 2 ﬁ:_ﬁz’s)/w I
(-] 3T w /o 3TF Lo
and hence = DX
g 37T

which can be seen to be same ot the expression found in Example 3.7,

[ DN AN S S 3_____1 AP
1
=2 A 3 3 32
i & e 4@ 5 W

The amplitude can be found as
Fo . P

= 2 1 fy
Lk"' ™m GSL) -+ C-ezé fﬁl \/;Z. (:i— ‘fz')z.f- Cep__z C.B’L
F

o
= 1
\/;r.( i__rz.)z + C" wl(n+1) X:.(n-i) o(:

~. Evnergy d.,g,g.fa.tid per cycle for viscous damping = TC wx?
Energy digsipated per cycle for coulomb damping = 44NX
Ezulva,{en{: viscous damping constant (Cep)) is  given by

T cezc.sxz - TcwX? + 4pNX

4pMN
& = C R
@ ( * Tex
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Ath'-(:ucle X is given by e

F =]
- — = ;
X = Tma )+ % [Ci-r) + 5@

substituting for Cep o sguaring and rearvanging s ,
2
guNC 3 16 0N 2
xf{kz(i—rz)z-c- e b+ X (“ﬂ. >+( — - ):o

(ﬂl) Ef,uwl:(on of motion mn % :'_‘/AN+C(75>3+ £ % = F, cos et

3'88 Thus the S_',‘S‘EErn has Cgmba‘ned Coulomb and ve.iaci{'y— cubed
c!a-mping- 4 pN
For (_'gu.'.o\mb da—mans N Ca&i = 11'/‘&9 X ‘ (E'>

For Velocii:j - cubed damping , The e&,u.:va.l.en‘f: viscous damping
Coe.ffi'c:'ent can be obtained frem the solution of Fmb!em 3.69:

Coga = © > x? o (E2)
wWhere " ; T%@ , (E
o = "—,-F('Z.") j cos® wt dt = T 3)
o) .
S @
~ z
3 z
il Ceg = Cegr T Cep2 o X & ces X (&9
(b) Steady state Cl-'mpl?‘f:ua[é under harmenic force :
Fo Fo
X = ' = : ——
- 2 N o R 2
\/;z(r—r&>2-+ C.éé(_,al \/1:2(1—-1-2-) +{.g_r/_:3-)-(+£_c.os x}(&z)
(C) Amplfw’:ude ratio : &
X X L
—_— = = Z A
It (-F°/k) Q""Uz + (C.‘L-Z—s-—)
<

= - (£5)
Jor e f B p e

W
*
At vesonance , r=1 and Eg. (E-,) reduces to
1

(2s)

X =

= = 4 N 3 3 2
S5t | resonance =ee £ oo F w” X }
Model the pipe as a single degree of freedom system with Meq = equivalent mass at end
. )= % m (m = mass of pipe; see Problem 2.46) and key = 3; 1 . Slope of pipe at
end:
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o Fe@ _Fe& |8 |_3x

2E1 3EI |2€| 2¢
where x = end deflection of the cantilever pipe under a transverse load F. Force induced
2 Force acting on the single degree of freedom system (in

due to fluid velocity vis pA v

vertical direction):
, 3x

F=pszsin9%pAv29=pAv 57

Equation of motion: Me X +keqx =F

o 33 s 3EI _3pAv | _,
140 P 2¢ | °
2
Instability occurs when SEL B EAY <0 or Vv> S0
£3 2 pA &2

ater than 1000. Strouhal number (8t) for vortex

. Assume Reynolds number (Ri? gre
fd _ (.21 where f = frequency of vortex shedding, d =

shedding is taken as: St =
(air). At 50 mph speed,

~" diameter of cylinder and V = velocity of fluid
V= EEM =880 in/sec and = 021V _ 18438 o, (d in inches)
3600 d d

For the three sections of the antenna,
_ 1848 _ 416.0 Hz
0.3

the vortex frequencies are:

£y =

g, = 1548 _ 9940 Ha
180428
8 _ 1848.0 Hz

f3 = e— =
At 75 mph speed,
75 (1760) (36) (38) _ 1320 infsec and = 0-2611 V = 27;'2 Hz (d in inches)

V =
3600
For the three sections of the antenna, the frequencies are:

il . 924.0 Hz
0.3

f1=

£y = 2;72‘2 — 1386.0 Hz
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277.2
f3 = —0_]__— = 2772.0 HZ

Since the natural frequencies are much smaller, no instability occurs.

M + —3—3—nlwherem= mass of

(a) Equivalent mass of single d.o.f. system = Meq = T
N/ cylindrical part of the sign post:

m = % D*—d)hp= —Z— (0.25% — 0.2%) (10) (7962010 ) = 1378.0527 kg
(1378.0527) = 524.8267 kg

33
& w0y 7 200 + ——
' & 140

1= —5’% (D* —d*) = % (0.25* — 0.2*) = 113.208 (107°) m*
Equivalent stiffness of the system:
9 —6
ey, = 3 Esl _ 3 (207 (10%)) (1§3.208 (10°) _ 70,302.168 N/m
h 10
ration of sign post:
1

1
keq |2 188 | 2
w == = 70302.168 | 2 _ 11 5738 rad/sec = 1.8420 Hz

iy 524.8267

Natural frequency of transverse vib

(b) Wind velocity corresponding to maximum vibration of sign post (V) is given by:
f; D ;D
S =021 = —— or V= 1D _ (1.8420) (0.25) _ 91920 m/s
v 0.21 0.21

he system due to wind velocity:
sin Wt = -12- (1) (1.2215) (2.19209%) (8.0) sin w t N

—93.4958 sin wt N

(¢) Maximum force acting on t
F(t) = Fo sin Wt =—;—ch‘°’ A

1.2215 kg/m3, A = projected

— density of air =
w = frequency of wind force.

where ¢ = 1 for a cylinder,l p
10) = 8.0 m?, and

area of cylindrical part = (0.8)(
Equation of motion:
g & +ceqi+keqx=F(t)

and the maximum steady state displacement of the sign post occurs when w = w

and is given by Eq. (3.34):

Ost, Fo 93.4958
¢ kg (25 2 (0.1) (70302.168)
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(co) Egu.a.'l::‘on of motion me+cx +kx = g x

or mx + cx +(k_1=°>z=o (ED
- Assuming the solution =)= ( e’* (E2)
where ¢ is & constant, Es-(El) gives the a-u.xih‘a_rj eaua.-[_—,-on
2 (= 4 - F
-4 E=-Te) = E
A + ( = ) =0 (3)
Roocts of (E3) arve
£ = e £ N2 - F ;
1,2 2m e (Zm) - (* ™ °)

(Ey)
First consider the case of positive stififness (% > Fo). For this
case, following FossiL:Lh‘:s‘er exist,

o1 (&) > ("“F")z

™

Both £ ond 33 will be r‘_eal and n83a.-&:'ve and hence
t v
x('b) = C.’, es‘t -+ cz esz

will be stable.

D
b () - (522):

™
Both 5 and 3 will be identreal , real and ne._ga-'l:n'vé.,
Solution gk
)= (q+ct) e’ Ee)
will be stable since sit

et _» 0 as t— o=
3. z;@::)z.; Ck;Fo>=

Heve S and s, will ke complex conjugates and solution
will be -

x(t)= ¢ e_(ig"_)t sfn(ﬁ'(‘g:)i+ ("'mp")]:t + }5) (e7)

This reprgsen&s a 'r_onvérgfnj oscillatory motion and hence
the system wiu. Le stolble.

Next consider the case of y\eja.-bive stiffness (1-:< Fc). Here

s = -3 £ G (B2 &)

Thus 5y will be Pos‘f{:l‘vc and £ will be nega,f:'re,a_ncf

te solution becomes

+ 4t —[’le‘t

This solution can be seen to dn‘vgrge as t—=oo.

()

L

mx 4+ cx + kx = Fpx
e (550 < - 3

—_——— =0
™

(b) Eguation of motion

or

GH)
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AsSuming x(t) = C 55t He g,u.xilt‘a-ry e&u.a.’bbn becomes

S (C___-'rf" )s + -E— =0 G,

and hence _ ‘ T

SRR =
First consider the case of positive damping (¢ = Fo) in (Euo)-
For this case, it can Le seen that fhe system will be stable for
oll possible values of { (’c_ Fc)z__ %

T zm o

Next , consider The case of negative damping (c < F,,).
Depending on the sign of the guantity under the radical n
Eg- (Ei), we will have three types of solution.

ic (.__.:-——-E?' g - -—E— r He\"e' baf‘l 5y a'“a 52 are reafl a-n&
2m m

£ JE
F‘asiél’v‘e and hence »(t) = C, eg' + C, es (€3

This denotes a diverging nonosci llatory motion ; .5°
the system is unstable.

=
2' (c —Zr:d) = ;’Eﬂ_ ’ Here sl aﬂd sz arle I-GlE-nfl'cal a_nd are

+
IR ) itive. Henee  n@)= @ G e W
This re_rresenfs e diverging nenoscillatory solutdon ;
se the sgs’bem will be unstable.

3, (c— Fo>2< % gere 8 and s, are cnglex conjugates

2m

O-ha '{'iE-ﬂc-ﬂ F, = : L
A1,z = a?_mc) + 4 \/—";— = C;j’) (Eis)

The solwtion Lecomes
- . =
')C('e) — X Sin (\/:_.r;_- (E_.E-;hg-) + +,ﬁ) (EIG)

B

ch)t

Since the exponent is positive , Ep-(E) denotes o
clt‘vergfng os‘cL‘LLa:l:'orj motion ond hence the system is
u-h"ta—b'e-

Thus the condition For dynamic stability of the system

can be stated as

Fo = ¢ (EI'D
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(c) Ezua.-hcn of wmotion me +cx + 1€ = x
or (m- Fo)x+c,¢+kx=o (Ee)

with the solution x (&)= C e’ (E:s>

the a.ux;L:‘a.rj egu_a.tn'on will be

z c <
T m- F .;-) = ('f"-Fa) =° (EZ‘D

The roots are '

- e Sl G

First Consider the cese of Pa.s‘l,'f:lve maSss (-rn > F)m (Els)
Tn this case, the system will be stable for all valwes of

[ m ] -]

Next consider the case of negative mass (v < Fo) in

CEIS‘)' For this case Sy and S can be e,xFresseal ab

This shows that s w:“ be Posi-bl've and s, will be
negative ; thus the solution will be divergent.
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E&ua.f’c'on 0§ wotion can be rewritten as

mx + €x + k % = Cg—\-kg (1
For Y(£) =Y sin wt, Eg- (D becomes
mME +cx + kx = cwY cat w0t + kY sin ot (2>

Laplace fransform of Eg.(2), for zero (nitiak

conditions, is

(m}’oz+ cA+ ) X (O

\

cw‘((); +w)+ kY(,s +c.9>
= F(X)

wheve F(5) (s the Lualola_ce. ’f’romeorm of the

fo'rc.t‘nj fun C‘bmn :

F(8) = cwY (——ﬁ;—;;_-)-f * 7 @ (jzlwa) (@)

From Eg- (3)> tre fransfer qur'l ction of the

Sys+em con be defined as

T(ay= 2 _ : O
F(4) mAT+ C B+ K

More 3€n€\“ﬂ—uy, o.s indicated » Note 7 of Section
3.12, we replace = (¥) by x(4) eﬁ ord Y (F) lf)’
Y (4) e‘t so that the fronsfer function of tke

Sysfe.m ) governea! Bj tke e,@uav‘h‘on Of ‘mofl"on (2 )J
can be o‘e_—fl"neal af

ch + K
Te (£) = 2Y) o @
] Y (%) mat+ CcA+ %
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uwolion (G can be rewritten as

2

T= (’5) = (H?)

e

2
i A4 235 0,5+ O

Y
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Ezua.{'u'an of motion:
M% + cx + kx = F(&) = mea;'sfnwt ()

La..lofa,ce fransform of Eg.(l) , for zervo a‘r-i'h'wq conddioms

can be expressed as

(M).iz-t- CA+ k) XA = meaw (_© = F(® €D
A%+ 9*

where F(4) denotes tre L_a,rla..ce fransForm o £ the

Sorcing funcktion F(t):
2 o

From Eg. (2), the transfer Sunction of the system
cen be defined af
XA 1

T(zﬂ): =
F(£) Ma*+ch+ %

(4

More 38hera-u3, ot indceafid a Note 7 of Section
312, we re‘b(a,ce. x (t) Lg X () est omd F(E) b;

Y(4) e&t so  that

T = (4D = 4 (s)
Y(4) Mia2cc s+ k
or i
T s Tx = X2 . Q)
F F (£ Matyr chA+ k

3-83



EUA.aJth of wnotion for bas€ excifation:
Tn55+c°'°+'k'x-:c,j-\-4c; ("
For y(t)= y Sin wt, Eg-(1) becomes

(2

i + C% + k% = cwY cog st + RY sin Gt

Laploce transform of Eg- (2, £Lor zero initied conditions,
71
A ¢
(ma*+ca+ &) X(#)= el (W) t el ,;a+cg9">
= F(4) 3)
where F(£) denotes the La.dzf(zu. ﬁwé—h«ng& the

gcorcinj function .

A ¢
Feov= caoY (SN ¥ (o) >
Eg-(3) gives
K(Ayz QT4 + €D (s>

B @ J(m A ed & E)

By expresgsing Eg . (s) as

C,84 C ca XK +C
)((A): ......'___._._2... o 3 4 (6)
A%4 w* mA*+ c4+ K

2 2
- @:/‘S +Cz>(m,x°+ cA+K) + (C38+ eq)(,g-t- 9 )
(A4 6™) (ma®+ cs+ %)
2
{43 (Cnm-{- C‘g) +/s2(ctc _{,sz_i,.clf)_‘_/gcc,".*.czc_‘_cgw)
+(C2k+fzfa_9)}. :

(A*+ &™) (m A+ cs+ 1)

(7)
B& C"“‘P""“:“ﬁ the numerators of Y'i'jh't —hand Aide Terms
of Egs- (5) omd (1), we obtain
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(&)

Cim+C3 = (o)

e+ Cam 4 Cy4 =0 (92)

C,k+CC 4+ C30 = c6 Y (10)
an

Solution of Egs. (8) — (1D gives
kWY C(te—mws ) s

c, = ’
(e -~ m w) {_wc’£+ (mwz_“) Ck—-mcag')}
2
c.'z:"(—-———-mc's'_":).c:l (s
c
C;i‘ = m.cl Gq)
Cy= Y- % .C) ES
Inverse La.rla..c.e fransform of €g.(6) 9ives
(t6)

g C, A 4+ Ca
b d [—"——""“i} = C, ces wt + B2 At wt

A%+ @ o
C;Z-l- C‘f

=) cz3 A+ C -1
LTSN y
mats cs + % m A% 4 23w, 5+ Wn

_gwat
=L JdE, Ys -
= 3 — @ sin (Wt —¢1)
TR
+ Cq C&A (= Sin wAi‘ )
%)

~ [-(-:): C, ot Ot + (Cz/w> sin @t

£ G R i (o AD
Cy 4 gIWet o oyt 19)
+ o iy € Sin d (
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Ezua.-h’on of molion of a Aystem with rofating unbalance:

M% + i +% % = mea sinwt = F(4) ()
Laplace fransform of Eg.(1):
: (N
(Mz‘2+ e A+ k) X (A) = wme c@z (AZ_F wz)‘i F(A) (2)

 where F(s) denotes tie Loplace transform of
the forcing function -

F(A) = mas e ( o

A4 W* (#
EZ-C23 gives
3
_ me (9
K8 = - A 2 2 O'>
(S*+ w*) (M a2+chs+ &)
By Expressing Eg- (4" as
- s +C2 c3A + C
X(8) = : + ? 4 (5)
B2+ &%) (M %+ cs+ #)

€, 4 +Cz,j(M/SL-+ CA + &) +Cc3,g+cl,)(/€2+wz)

U2+ @*) (M&>+ ca+ &)

2 &
{Ag(C,m-{- €3) 4+ £ (eG4 M Cat ¢y

4+ A(C ket C2¢ + c3L%) +Cey k4 Cq@)}

1|

A2+ ™) (M ¥+ ch+ 1)

7>
e Ef/w‘va.le.nc,e of numerators in Eg S (4) amd ()
9ive
c,M+C3 =0 @)
Cic+ CoM + Cy =0 €D
C k+ CuC + C3 08 = O Giz)
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Cok+ Cyld = me )

Solutiom of Egs- @D - (@) Jives
C mE s .
(12)

C, =
Py MW+ M —MTw - 2
L
erx - (229 ¢ Cisd
Cg:’- — MC| (,L{}
CH:_CC|-—MCZ 05)
By noh‘ng that
oc@ [ ] c, eos wt (16D
A -Ha’
Ca a7
= — /Sar\ t
% [,s"'+&9‘] > X
i - Cg/s
(2] 4 ¥ ]
MA* 4 A+ & m A%+ 23 W4+ Wn
C3 wh "‘Twnf
L i Cayt — (&
Mmooy € s (d ¢ ) ( )
€y o Sat
4 ) C _X, _
— % = -4 b .
e [M,‘2+2~;wn£+w:’ M-wo‘ ¢ s“"wolt s>

the xolution can be ex.,oregseol ot (Hhew Eg. (s)):
gt
(#1] e T n Sin (wdt—.#’)

C" Smw{:+ =3

x ()= ¢, cos w0t + B
¢ Tt |
8 5 E o .
Where _ P
pre o (5 amd waz | D
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E?jua.,h'on of motion:
m¥% + kx = F cos wt ("

La,rla..ce transform of Eg -0 :

(ma® 4+ %) x4 = F, . 2 s
A
Eg - (2) gives
Fo A
X(A) = (3>

(w A%+ 1) AT+ WD

Inverse Laploce fransform of Ep.(3) gives

x () = Zﬂ[x(x)]: B ;g‘(: A :I(‘r)
( D

W AT F k)(/Sz-f- >

We express tke term in brackets on The ra‘jlnf hand
side a4 Eg-(q) n Pa.rh‘aﬂ Lractions as

A - aA+b c s + d

(w824 £) (82+ ) A Py
(@AY (A )+ @+ d) (m A%+ 1) .
Mma%+ &) (4% ™) " b

(o~ b, c amd d : constants T be defermined)
The Nr. ( numerator) in E§.(5) con be rewritren as

43 (a+cem) + s (b+ dm) ¢ A (o @ 4+ ¢

y °{ = numeéraltor © l {—fé”“
+(La9+ ®) = A | erat f lef (g))

By E.aua.‘l“fr\.j the corres'oanolfnj ferms on botlh Aides
of Eg- (6), we oblain
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@ + Cm =20 (7D

B -+ dm =0 (5’)
a4+ k=1 (>
bw?+d =0 @)
Ez-(-r) gives
a=—-cm a»)
In view of Eg. (1), Eg» (1) gives
c(-mc.s"-+ ) =1 or c= ' . (12
4 - m a9
ov= —Cm :—( b ) (3)
k—mwz \
E'z. (o) is rewritten a4
b +°‘ -ik-?_ = (“’)
(s
Subtra.ct Ea-(l'-f) from Eg.(8) :
o\(m——g—z_")zo or d=o (15>
Hence , from Egs. (15D ard (4D, we £ind
L:o ('16)

In view of Egs- (12, (13), (5D and (6D, Eg. ()

becomes

2. | A
= [(m,a“+i<)(/s?'+ &9’>J
- ™ A | A
= [""091-1‘ (m/s’+k> B mw’-k()%’*'“"gj
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Eguaﬁa'n of metion:
Cme+ k2= F(td)= zoo €%
Laplace Tharsfiim of €.0:
(e A+ ®) XG> = 22 (2>
or — 200 3 200{ | }
A(cAr+ K A(c A+ K

1l

200 { % "’ L } 3 az_,B: canS"a_ni"S‘

cCAhA+ Kk
= 000 f aC 8 4 akt b/.%} (s>
(ch+ kD A
Here ac + 19 - D (‘f)
ak = | > a= s>
From Egs-(5) ard 4 >
k,-:._.a,c.: e % (5)

. ’ |
9y = goo S0 4 _ e 1/t N @
X (4) 20 {k y » c(_'_‘g-)}

Tnverse Lalafa,c,a transform of Eg , (-7)_-

>

I . &
x (¥) = 900 {fi(&)_ik@ c } (8)
st
uni'bsf'e'fa
- 200 -k +
o X ()= T(i"‘ et ) (%
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S — { f ' : 2} )
MU e Atz v w, 4 O,

4 _ Asa+b Ac + d
= £
2
(A4 ™ ) (A + 2T 0,8+ 6> Py

2
/52+ 2 -Iwn,s-f wﬂ

(a,b,c,d: consfants) (2
lelﬁ‘i’ ‘La.r\c; gside ex!ore gSVonn M Eg.(z) can be
rewritten a4

2 2 2
' # 49 e+ d) (A4
(Got+b) (A 4270, £+ n )+ et dd( ) -

@5+ w®) (2" 4 25 W 8+ W)
E&ua.ifnﬁ the numeraker in the legt honmd stele
expression of Ep.(2) b the numeratsr of (3),
we obtain
2= Aare) 4 A (b +27@n >t A

2 2 2
+5(2‘Swn\°+a-a&93+ CC.9>+(LQFH+ACJ)

Egpaling cgmuamwunj Terms on  both Sides of “?
B >, We find
o-+C =0 D
b+ o (23Wn) +d =0 €D
b (2TSWn) + a e +cw = 4 7D
bew' +dae” = o0 &)
Eg-(58) gives: c= —o (3>
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Egs: (2) omd %) yield:

d=—b—®(2§wh)=—bwr‘z OO)
6‘92
LCi " :-a(zrwn)
o bz _gRE@n? an
w?—_w“z

. o) amd (W) grve:
3
A= af 2% O ) G2
- o’
Egs: (70, (1) amd (5) lead

_aa<2.~swn )(zrwn)—l' a_‘agh__,a_,w"'
6.9-(.:3"

a¥ .
) Al (1%
(e - ™)'+ W (2xwn)
Egs: (@) omd (13D give
on - & @)

@7 -0ty + o (23 @)’

EZS

c= -

EZ“' ("j amd (3) result m:

z

2 Z
(:.9"—-(49 (2‘5'(‘9]‘))6'9

(wh2_a92-)9_+ wl(zrwh)z ((.9‘1-" w“2.>

b= -

2% Wy W

is)

!

(@oi- @)+ (zyon @
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Finally » Egs- (12) and (12) give

2

2
Wy -—-692 (Z‘S'fﬁn) wt‘_

d =

@i - w*)* + (23 wn) 9

2
(Z'Swnj WOn

—
=

G

- 2
(wnz_wz)z % (23_ wn) GBZ

= whz

)

(e)
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.

Let T, be the mas¢ moment of mertia
a,ssemblj cboud the axis of the sha ft-
Moment due T fhe a.r,,l.'eo! force f(t) albout the anxis

og the SLO-F{' (S given L‘J
m(t) = 0.25 F£(t) = 125 sin 30t N-m

of ke wheel

Ezua.‘l'lbﬂ oF motion Lor the torsional motion of The
wheel ossembly can Le ex,:re:seol as

I'é + ‘k{Q = M) = (25 s 3ot
Mg sin WOT (l)
and 5= 30 rad /s .

where m_ = 25 N-m

La-'ola-ce transform of Eg-(t):

FEEOA) + k@ = Mg @)
224+ %
where
@)= L [e ] (3)
Eg- (@) gives
Mo 0
N 4>

® (%) =
8%+ 0*) (T A% %)

Inverse Laplace fransform of Eg. (4 ) can be

expre ssed as
1
_ @ (8D M w [
6(t) = [ 1= % (824 ™) (8%+ )
wWhere s « (5)
Wy = -3:5 )
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From LaaPlﬂ--Ce transform 'lLa_Hes‘, Eg.(S‘) can be
e,&loresseoi ok
(A .
oty Mo 1 {—L st Bk = = il c.s.,’c}(;r)
J - (J,.,z & W

For given data, EZ.(v) Lecomes

_ 125(80) 1 :
e(t)= C— . {?,"b s'n 30t = 1 sin c.snt}
J 30 - 9, o
= 3750 { Si'n 30t Sin C'Sn'b ;
< 20 BuE, o S
J (900 -9, ) 30 ©,, (8>
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General Transfer Lunction s given by (Aee solution of

Problem 3.93) :
+®
c A+ .

T x (/g) =
Y A+l + K

By substituting 4= 4w , Eg.- (1) gives the freauenc‘y

tronsfer function ol

Tx (£09) = ceo + (2)
¥ —n G 4 £O9C + K
2% W, W+ W, -
—w® 42y W, WO 4+ asr.?'
Eg. (22 can be vewritten a3 *'A(w)
< 7
T, (i) = my) & P | M C
Ej < do(w@)
M;(tﬁ) (=4
where ) (4
M; (@) = )
JG=mes*)? 4 (@c)?
—t 7 g5€
Y e tEh | e @D
Fi ('k-rnca">
My () = 1 &)
x? 4+ (‘wc)z
—i &9 C
W) = o (8
fé_’() t:.m - ) )
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To $ind the mo-jm'i'uc{e. of Tx (¢ed), rewrcte

E&. (2) a5 H

(cew + &) § (- mew?) - cac f
TL(L‘C&) —
’ (- m 0.9")1-{- (cs)*

# (%~ “"“91> + (¢ )z + i{cc..‘i (k-mc,gz).. c.scn}

(k -mw®)*+ (w*

1

From Eg- (©®) , the ma..jm'f'uae of Tx (e (o)

can be determined as

[T, (t(ﬁ)l Mg ()
\/f:‘k(fc mw)+@9c)}+{cw(k mw”) - wc«}
(’k-'mcd ) + (wc)z

'

CL\"!J 'f‘h'e P‘\G,GE a_r.sle o8 GO)

4 s | PE Ce=me) — E %
’ | } D)

e (k—mc.s") L (wc)?
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Frem the solution of Problem 3.94, we have

Tw (4) = X : ad

F F(A) MmA*+ €2+ K

By substituting (& in F\a._ce of &, Eg- (1D gives the
grg@u-enc.j ‘hra.vn':“;fer gcuﬂC—{'t'on ald

1 2
.‘c‘s — )
Tz (£®) Mt 4 cio + Kk

&
The m.a.znum‘?- Cf& T_} (£6) can be exlaresseo( o8

— f i (3)

X

P e met) )
Since the magnitude of fhe unbalanced Force F
'S given Ly

F= me @ (4D
Eg- (3) gives the mognifude of the response a
me
X = )
\[Qc— Mme™ ) 4+ (cw)?
From Ep- (1),
Tx ({&) = Mg (). g Pt
; ) Mo (). € e/ 50 D
M. ). < go (D
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Where

{
M; () = (7)

\f@— me*)? + (6e)?

peCe) = D)
(k- M )

My(d) = 1 h,

?éo (w) = (10)

Mocdle Tx(cw) ; ‘'vern by Egp.
e Mnfld.ﬁ 0'6 2 s g've y Eg (3)
o—no{ the lol-sa-ee o:n7(e Lj
p (@) = fam (Z° ) (i)

M as’— &
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s Ex3_103.m

k = 4000; '

m = 10;

w = 10;

FO = 200;

wn = sgrt(k/m);
x0 = 0.1;
x0_dot = 10;

£ 0 = FO/m;

for i = 1: 501

t(i) = 3 * (i-1)/500;

x(i) = x0_dot*sin(wn*t(i))/wn + (x0 - £ 0/ (wn"2-w"2)) *cos(wn*t(i))...
+ £ 0/ (wvn"2-w"2)*cos (w*t (1)),

end ?

plot(t,x);

xlabel('t’);

yvlabel ('x(t)");
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0.6 T T — T T

0.4

0.2

X(t)

0.2

0.4

0.6

0.5 1 15 2 25 3

% Ex3 104.m
-% This program will use the function dfunc:3 104.m,they should
% be in the same folder
tspan = [0: 0.01: 107];
x0 = [0.1; 10]1;
[t,x] = ode23('dfunc3 104, tspan, x0);

disp(’ t x(t) xd(t) ") ;
disp([t x]);

plot(t,x(:,1));

xlabel(’'t’);

gtext ('=x(t)’);

% dfunc3_104.m
-function f = dfunc3_104(t,x)

FO = 200;
w = 10;
u=0.3;
m= 10;
k = 4000;
f = zeros(2,1);
£(1) = x(2});
- £(2) = (FO/m)*sin(w*t) - 9.8l*u*sign(x(2)) - (k/m)*x(1);
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0.6 T T T T T T T T —

y W
AN

0.6
'D-B 1 1 ! 1 1 L] I 1 !
0 1 2 3 4 5 6 7 8 9 10
i
|
g Ex3 105.m

% This program will use the function dfunc3_105.m, they should
% be in the same folder

tspan = [0: 0.02: 2];

x0 = [1; 0]; '

[t,x] = ode23('dfunc3 105, tspan, x0);

disp(”’ £ . x0E) xd(t)');

disp([t x1):

plot i, xls2));

xlabel(’t’);

gtext (’x(t)’);

% dfunc3 105.m
function £ = dfunc3 105(t,x)

m = 100;

k = 40000;

zeta = 0.25;

Y = 0.05%

w = 10;

‘e = 2 * zeta * sgrt(k*m);

f = zeros(2,1);

£(1) = =x(2); -

£(2) = k*Y*sin(w*t)/m + c*w*Y*cos (w*t)/m - c*x(2)/m - (k/m)*x(1l);
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o Bx3 105

OO0 OO O0o

.

N BPRrRrRrRrRRERERER

t

¢}
.0200
.0400
.0600
.0800
.1000
.1200

.8000
.8200
.8400
.8600
.8800
.2000
.9200
.9400
.9600

.9800

.0000

s £
.0000
.9272
.7381
.4823
.2096
.0372
L2270

coooook

.0523
.0434
.0329
.0210
.0083
.0047
.0176
.0297
.0406
0.0499

0.0572

| O T T |
[sleleolelelele ool

— Bl
-11.
-13.
=13
-11.

-7

OO0 O0OO0DO0OO0O0O

xd(t)

0
9328
5448
6094
.3072
1218
.7195

.3504
.4869
.5637
.6179
L6473
.6510
.6286
.5811
.5103
.4194

3120
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Ex3 106.m (Program3.m)
‘Main program which calls HARESP

ofP oP dP dP

of
|
|
|
|
I
1
|
|
|
|
1
|
I
1
|
|
|
|
I
[
|
|
|
|
|
|
|
|

P of of

xm=10.0;

xk=1000;

zeta=0.1;

xc=2*zeta*sart (xk*xm) ;
£0=100.0;

om=20.0;

n=20;

ic=1; )

% end of problem-dependent data

Run "Ex3_106m ' in MATLAB command window.Ex3_106.m and haresp.m should
be in the same folder,and set the path to this folder
following seven lines contain problem-dependent data

[t,x,xd,xdd,xamp,xphi]=haresp(xm,xc,xk,fO,om,ic,n};

2 following lines output the results

fprintf (/Steady state response of an undamped\n’);
fprintf ('Single degree of freedom system under harmonic force\n\n');

fprintf (‘Given data\n’);
fprintf ('xm = %10.8e\n’,xm);
fprintf('xc = %10.8e\n’,xc) ;
fprintf('xk = %10.8e\n’ ,xk);
fprintf (' £0 = %10.8e\n’,£0);
fprintf (‘om = %10.8e\n’,om) ;
fprintf(’ic %1.0f\n’,ic);
fprintf('n = %2.0f\n\n\n',n);
fprintf ('Response: \n\n'};
fprintE (’ i x (i)
fprintf ("\n\n’); ‘
‘foxr i=1:n

fprintf(’ %2.0f

©oxd(i),x=dd(i));

1l

%10.8e %10.8e

end

subplot (311) ;
plot(t,x);
ylabel {('x(t)’);
gtext(’=(t)’);
subplot (312) ;
plot (t,xd);

ylabel(’xd(t)’);
gtext (‘xd(t)’):
subplot (313);
plot (t,xdd) ;
ylabel (‘xdd(t) ') ;
gtext ('xdd(t)’);
xlabel ('t7);
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function [t,x,xd,xdd,xamp,xphi]=haresp(xm,xc,xk,f0,om,ic,n);
omn=sgrt (xk/xm) ;
xai=xc/ (2.0*xm*omn);
dst=£0/xk;
r=om/omn;
xamp=dst/sqrt((1.0-r“2)“2+(2.0*xai*r)“2);
xphi:atan(z.o*xai*r/(1.0-r“2));
delt=2.0*3.1416/ (om*n) ;
time=0.0; '
if ic~=0
for i=l:n
time=time+delt;
t(i) = time;
k{i)=xamp*cos(om*time—xphi);
xd(i)=?xamp*om*sin(om*time—xphi);
xdd(i)=—xamp*om“2*cos(om*time—xphi);
end
else
for i=l:n
time=time+delt;
£(1i) = time;
x(i)=xamp*sin(om*time;xphi);
%d (1) =xamp*om*cos (om* time-xphi) ;
xdd(i)=—xamp*omf2*sin(om*time—xphi);
end '
“end

>> Ex3_106

Steady state response of an undamped
Single degree of freedom system under harmonic force

Given data

xm = 1.00000000e+001

xc = 2.00000000e+001

xk = 1.00000000e+003

£0 = 1.00000000e+002

om = 2.00000000e+001

ie = 1

n = 20

Response:
i x (1) xd (1) =xdd (i)
1 2.97987095e-002 -2.85475021e-001 ~1.,19194838e+001
2 2.39294085e-002 -4.55665383e-001 -9.57176339e+000
3 1.57177193e-002 -5.81259445e-001 -6.2B708774e+000
4 5.967463209—003 -6.49951518e-001 -2.38698528e+000
5 —4.36693253e—003 -6.55021513e-001 1.74677301e+000
6 -1.42738605e-002 -5,95973141e-001 5.70954420e+000
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7 -2.27835571e-002 -4.78586436e-001 9.11342282e+000
8 -2.90630300e-002 -3.14352252e-001 1.16252120e+001
9 -3.24975978e-002 -1.19346877e-001 1.29590391e+001
10 -3.27510596e-002 8.73410566e-002 1.31004238e+001
14 -2.97986046e-002 2.8547939%9e-001 1.1919441%e+001
12 -2.39292411e-002 4.5567289%9e-001 9.57169644e+000
13 -1.57175058e-002 5.81261754e-001 6.28700233e+000
14 -5.96722446e-003 6.49952395e-001 2.38688978e+000
i 4.36717313e-003 6.55020872e-001 -1.74686925e+000
16 1.42740794e-002 5.95971044e-001 -—5.'709_631'768+000
17 2.27837329e-002 4,78583148e-001 -9.11349314e+000
18 2.90631454e-002 3.14347982e-001 -1.16252582e+001
19 3.24976417e-002 1.19342102e-001 -1.29990567e+001
20 3.27510275e-002 -8.73458687e-002 -1.31004110e+001
0.04
0.02 =
g of :
-0.02 =
-0.0
40 0.35
1 T T T T T T
0.5' Xd(t) B
g of .
%
-0.5F ]
- 1 1 ! ! 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
20 T T T T T T
10 #
= ak xdd(t) i
S
10 -
.20 L 1 1 ! 1 1
0.05 0.1 0.15 0.2 0.25 0.3 0.35
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l$Ex3_107.m

Y= 0.05;

zeta = 0.1;

wn = B.164966;

w = 2.90889;

r = w/wn;

x =Y * sgqre( (1 +
disp(”’ w

disp([w wn x1);
w = 14.54445;

r = w/wn;

x =Y * sgre( (1 +
disp([w wn x]);

w = 29.08890;

r = w/wn;

x =Y * ggrt( (1 +

disp([w wn x]);

wn =

6.324555;

w = 2.90889;
r = w/wn;

X

Y * ggril( (1 +

disp([w wn x]);

w = 14.54445;

r = w/wn;

x =Y * sgqbl{ (1 +
disp([w wn x]);

w = 29.08890;

r
X

w/wWn;
¥ * ggrel (1 +

disp([w wn x]);

>> Ex3 107~

w

2.

14.

29.

90889000000000
54445000000000

08890000000000

.50889000000000
.. 54445000000000

.08890000000000

(2

(2

* zeta * r)"2)/((1

* zeta * r)"2)/((1

* zeta * f}*Z)/((l

* zeta * r)”2)/((1

* zeta * r)”2)/((1

* zeta * r)*2)/((1

wIl
8.16456600000000

8.16496600000000
8.16496600000000
6.32455500000000
6.32455500000000

6.32455500000000

r~2)°2 +
x');

(2 *

TR)E2 & (R R

r~2)~2 +

TR2TEZ (2 ¥

ra29 %2 + (2 *

A2 N2 4+ (2 %

.05722376420338
.02410324256879
.00524102723160
.06325355032007
.01275990975243

.00336736169683

zeta

zeta

(2 * zeta

zeta

zeta

zeta

r)"2)

r)"2)

r)"2)

r)"2)

#)*2)

r)"~2)

¥i
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- o m am m= mm e === = =T DT

T e Dl

ua.'l‘t'on of-rmi:.‘on is m§+C7't+ xx = C‘é’—+1:1.£
when y(t)= Y sin cst, %y () = X cos (ot —¢ —%2)

COmPI.e.{:e solution can be expressecf as

x(£)= %o e-\rw“t cos (Wyt+ Fo) + X <F (st = pi- $2) (e-1)
. 2 Y5
with  x=Y 142737 “
[ G- r2)* + @7r)* ] ’

-4 - -1 __—‘1 = _(‘_,- .
pi= tan (?3:;-) ,  Ba= fon (z-yr) AR~
I the initial conditions are known x(£=0)= Xo amd % (E=0)=
'7-020, Ay = X,cd#a.i.x‘c_,;(ﬁ_,‘?sz)
and %, = = TWn Xo A~ X, sin g — X sin (-9— 2)

Hence

%
-, - X in 2
. [f*o— < calhe s { x, 'rt.snx,-i-}'t;’,: s (Bt 8)+WX s (¢.+¢2)}]

g = tai [<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>