

LIGHTS & APPLIANCES in OFF-GRID SOLAR SYSTEMS

Themes

- Lights / efficacy / efficiency
- Measuring energy consumption of appliances
 - DC appliances
 - AC appliances

Light efficacy

- Light output is measured in lumens (lm)
- The efficacy of a lumiere is measured in lumens per watt (lm / W)
- Excellent article on **Luminous Efficacy** in www.wikipedia.com

Comparison of lights

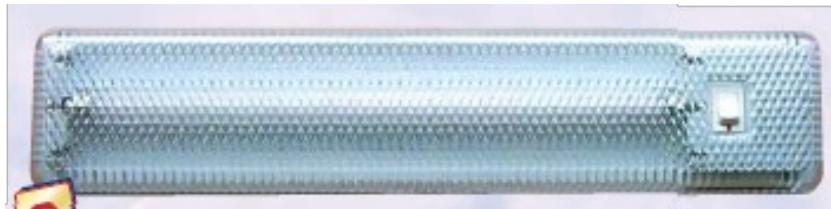
Incandescent

$80 \text{ W} \times 4 \text{ h} = 320 \text{ Wh}$

Low energy light bulb

$18 \text{ W} \times 4 \text{ h} = 72 \text{ Wh}$

LED (less light)


$4 \text{ W} \times 4 \text{ h} = 16 \text{ Wh}$

DC lights

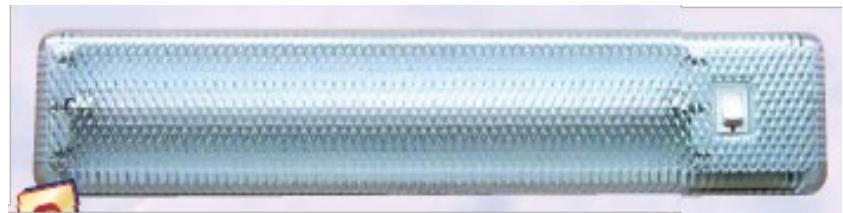
*Sollatek
Lumina
7 - 13W
12V*

Labcraft, Trilite, 8W, 12V

 Sundaya

Incandescent lights

- 9 lumens per watt
- Output
 - 15 watts → 135 lumens
 - 25 watts → 225 lumens
 - 80 watts → 720 lumens
- 1,000 hours
- Cheapest
- Generally not recommended



Halogen lights

- 14 to 18 lumens per watt
- Output
 - 10 watts → 140 lumens
 - 20 watts → 350 lumens
- 2,000 hours
- Cheaper than fluorescent
- Generally not recommended

Fluorescent lights - baton type

- 40 to 55 lumens per watt
- Output
 - 6 watts → 240 lumens
 - 8 watts → 340 lumens
 - 13 watts → 715 lumens
- 5,000 hours

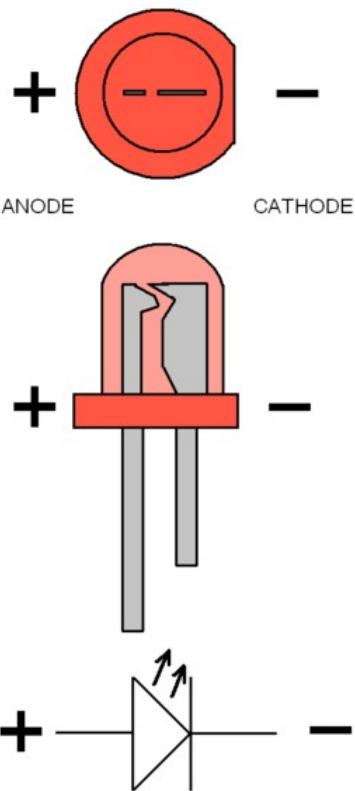
Labcraft, Trilite, 8W, 12V

Fluorescent lights - PL type

- 45 to 55+ lumens per watt
- Output
 - 7 watts → 315 lumens
- 10,000 hours



Solstatek



LEDs (Light Emitting Diodes)

- On the market
 - up to 70 lumens per watt
- Prototypes
 - up to 150 lumens per watt
- 100,000 plus hours

LED lights

LED pathway, Carmarthen, Wales

LIGHTS & APPLIANCES

Comparison of lights

Energy for Sustainable Development Africa, Nairobi, Kenya

Installing lights

- Appropriate level of light
- Light only areas requiring lighting
- Reflectors
- Standing and desk lights
- Avoid wall lights generally

Outdoor lights

Portable solar lanterns

Sollatek™
solar systems

Efficiency of appliances

$$\text{Efficiency} = \frac{\text{Energy Output}}{\text{Energy Input}} \times 100$$

- Inefficiencies also referred to as *losses*
 - Cables losses, battery losses etc.
 - Nothing is 100% efficient

Efficiency example

$$\text{Efficiency} = \frac{\text{Energy Output}}{\text{Energy Input}} \times 100$$

$$\text{Efficiency} = \frac{150 \text{ W}}{200 \text{ W}} \times 100$$

$$\text{Efficiency} = 75\%$$

$$\text{Useful work done} = 75\% \quad \text{Heat} = 25\%$$

DC – measuring energy consumption

- Use a multimeter (fused)
- Measure voltage and current at battery

AC – measuring energy consumption

- Use plug in power meter
- Measure on mains – not on inverter

DC appliances

- Generally more efficient than AC equivalents
- Designed to run on batteries
- More expensive
- Not as easy to find
- Mobile home and boating suppliers
- DC-DC adaptors
- Always useful to have a small inverter

Lights
TV / videos
2 way radios
Fridges
Pumps

Fridges & freezers (DC)

- DC is usually more efficient than AC
- No inverter required
- Manufacturers
 - *Kissmann*
 - *Sunfrost*
 - *Steca*
- The *fridge* or *freezer* is more expensive

Kissmann GTR 300 freezer
157 x 88 x 70 cm
323 litres, 24 V

Fridges, Low Voltage

Compressor Driven, Low Consumption, 12V/24V DC Fridge Equipment

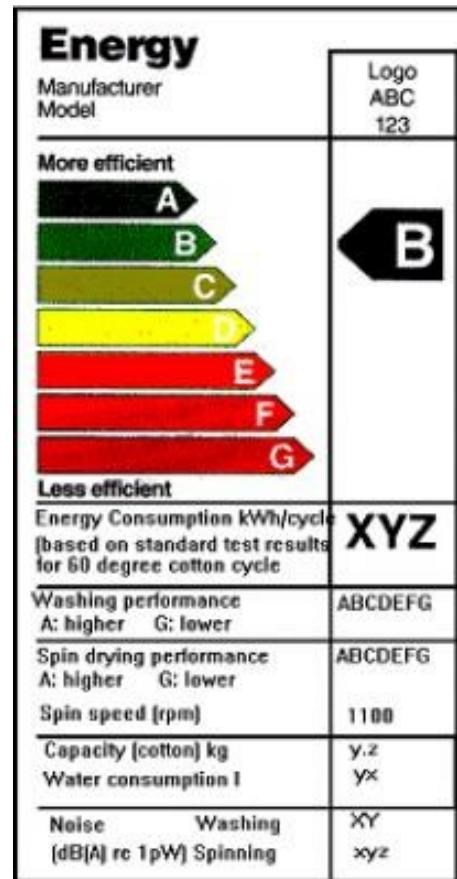
A RR14 Fridge

55 cu.l including 2 cu.l icebox
Typical consumption:
12.5 AH/day at 25° C ambient
Supplied with floor bracket
Dimensions:
525mm H x 500mm W x 500mm D
Weight: 21 kg

B F35 Freezer

35 cu.l top loader, 2*-12°C rating
Typical consumption:
24 AH/day at 25° C ambient
Slide rail mounting option
Dimensions:
375mm H x 300mm W x 740mm D
Weight: 16.5 kg

C


Cor
into
Kit
Dan
pla
Din
156
Col
65 i

www.ampair.com

Fridges & freezers (AC)

- Generally not as efficient as DC versions
- Important figure is yearly energy consumption figure
- Size
- Inverter ***may*** be an issue

Fridges & freezers (medical)

- Self-contained units
- To WHO and UNICEF standards
- Medical
- Vaccine cold chain
- Veterinary

www.napssystems.com

TITLE: Solar power system for compression-cycle vaccine refrigerator or combined refrigerator-icepack freezer.

<i>Specification reference:</i>	E03/PV01.1
<i>Product verification protocol:</i>	E03/PV01-VP.1
<i>Date of origin:</i>	02.08.2007
<i>Date of last revision:</i>	New specification

Contents:

1. Scope:	2
2. Normative references:	2
3. Terms and definitions:	3
4. Requirements:	4
4.1 General:	4
4.1.1 System characteristics:	4
4.1.2 Design responsibility:	4
4.2 Performance:	5
4.2.1 Photovoltaic array:	5
4.2.2 Array support structure:	5
4.2.3 Battery set sizing:	6
4.2.4 Battery type:	6
4.2.5 Battery set housing:	6
4.2.6 Battery charge regulator:	6
4.2.7 Battery safety kit:	7
4.2.8 Power switch:	7
4.2.9 Electrical safety rating:	7
4.2.10 Electrical protection:	7
4.2.11 Lightning surge protection:	7

World Health Organisation has standards for solar medical refrigeration

Screens

- Size is the most import thing
- Rated wattage is a good guide but usually refers to max. power consumption
- Cathode ray and LCD similar
 - 3.4 W per inch (av.) (est.)
- Plasma less efficient
 - 9.4 W per inch (av.) (est.)
- Look at the labels
- Take measurements

Sound equipment

- Energy consumption difficult to predict
- *Audio power* ratings on amplifiers are not a good guide
- Car stereos are a good DC option
 - DC power consumption can be measured using a simple ammeter
- Measure energy + power on mains?

Two way radio

- DC
- Power consumption
 - 1/3 of rated, rule of thumb
- User education

Microwave ovens

- DC microwave ovens are available
- Recreational vehicle & boating suppliers

Non-electric alternatives

- Gas fridges
 - more expensive
 - but cheaper than PV

Electrolux do a range of gas-powered fridges