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Free-Body Diagram Example 3-1

Figure 3—1a shows a simplified rendition of a gear reducer where the input and output
shafts AB and CD are rotating at constant speeds ; and w,, respectively. The input and
output torques (torsional moments) are 7; = 240 Ibf - in and 7, respectively. The shafts
are supported in the housing by bearings at A, B, C, and D. The pitch radii of gears G;
and G are r1 = 0.75 in and r» = 1.5 in, respectively. Draw the free-body diagrams of
each member and determine the net reaction forces and moments at all points.

First, we will list all simplifying assumptions.

1 Gears G| and G, are simple spur gears with a standard pressure angle ¢ = 20°
(see Sec. 13-5).

2 The bearings are self-aligning and the shafts can be considered to be simply
supported.

3 The weight of each member is negligible.

4  Friction is negligible.

S The mounting bolts at E, F, H, and [ are the same size.

The separate free-body diagrams of the members are shown in Figs. 3—15—d. Note that
Newton’s third law, called the law of action and reaction, 1s used extensively where
each member mates. The force transmitted between the spur gears is not tangential but
at the pressure angle ¢. Thus, N = F tan ¢.



Free-Body Diagram Example 3-1

-

|

i
i
|

i
,, T, = 240 Ibfin |
:

|

j
HI
0

’/’

S0

(a) Gear reducer (b) Gear box

(¢) Input shaft (d) Output shaft



Free-Body Diagram Example 3-1

Summing moments about the x axis of shaft AB in Fig. 3—1d gives
Y M, = F(0.75) — 240 = 0
F =320 1bf

The normal force 1s N = 320 tan 20° = 116.5 Ibf.

Using the equilibrium equations for Figs. 3—1c¢ and d, the reader should verify that:
Ray = 192 1bf, Ra; = 69.9 Ibf, Rpy = 128 Ibf, Rp; = 46.6 Ibf, Rcy = 192 Ibf, Rc; =
09.9 Ibf, Rp, = 128 Ibf, Rp, = 46.6Ibt, and 7, = 480 1bt - in. The direction of the output
torque 7, 1s opposite w, because it1s the resistive load on the system opposing the motion w,,

(¢) Input shaft (d) Output shaft

Shigley’s Mechanical Engineering Design



Free-Body Diagram Example 3-1

Note in Fig. 3—1b the net force from the bearing reactions is zero whereas the net
moment about the x axis 1s (1.5 4+ 0.75) (192) + (1.5 + 0.75) (128) = 720 1bf - in. This
value 1s the same as 7; + 7T, = 240 4 480 = 720 Ibf - in, as shown in Fig. 3—1a. The
reaction forces Rg, Rr, Ry, and R;, from the mounting bolts cannot be determined
from the equilibrium equations as there are too many unknowns. Only three equations
are available, ) F, =) F, =) M, = 0. In case you were wondering about assump-
tion 5, here 1s where we will use it (see Sec. 8—12). The gear box tends to rotate about
the x axis because of a pure torsional moment of 720 bt - in. The bolt forces must provide

(a) Gear reducer (b) Gear box



Free-Body Diagram Example 3-1

an equal but opposite torsional moment. The center of rotation relative to the bolts lies at
the centroid of the bolt cross-sectional areas. Thus if the bolt areas are equal: the center
of rotation 1s at the center of the four bolts, a distance of \/ (4/2)2 4+ (5/2)? = 3.202 in
from each bolt; the bolt forces are equal (R = Rr = Ry = R; = R), and each bolt force
is perpendicular to the line from the bolt to the center of rotation. This gives a net torque
from the four bolts of 4R (3.202) = 720. Thus, Rg = Rr = Ry = R; = 56.22 Ibt.

(a) Gear reducer (b) Gear box



Shear Force and Bending Moments in Beams

e Cut beam at any location x;

» Internal shear force VVand bending moment A must ensure
equilibrium

(a) (b)



Sign Conventions for Bending and Shear

(=) = )

Positive bending Negative bending

Positive shear Negative shear

Fig. 3—3
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Distributed Load on Beam

 Distributed load g(x) called /oad intensity
 Units of force per unit length

5 q(x)
]
_Q

Fig. 3-4




Relationships between Load, Shear, and Bending

dM
V = — (3—3)
dx
dV — d*M
— = = 3-4
dx d x? 1 (3-4)
VB Xp
f dV = Vg — V4 = f q dx (3-5)
VA XA
1'1"[3 Xp
/ dM = Mp — M 4 :/ V dx (3—-6)
1'1-’[/4 XA

e The change in shear force from Ato Bis equal to the area of the
loading diagram between x, and xg.

» The change in moment from A to Bis equal to the area of the
shear-force diagram between x, and x.



Shear-Moment Diagrams
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Moment Diagrams — Two Planes
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Fig. 3—24



Combining Moments from Two Planes

y ,l 1200 Ibf
600 Ibf . . . , I
A B C D X T '\
1 A 800 Ibf 400 Ibf
200 Ibf 400 Ibf |z T
M. Mr_r
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0 x 0 X

(c)

o Add moments from two

planes as perpendicular
vectors

o M= /M;+ M?

Location: at B (x = 10™)

\\—"“———‘

8246 Ibf-in —
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Fig. 3—24



Singularity Functions

° A nOtatIOn useful Function Graph of f, (x) Meaning
- - oncentrate x—a) x—a)?=0 x#ua
for integrating oment e e
(unit doublet)
across ~ [x-aar=-a
discontinuities )

« Angle brackets Consenleiad (-3l (x-a)'=0 x#a
indicate special (unit impuse) | 7‘(“” ;;oi o
function to
determine whether : -

: (x—a) 0 _ x<a
forces and moments " S w-a®={, .2,
are active L [eata=na
Ramp tr-a’ x—a)! = IO_ ! : ¢
] 1 X /(x—a)'dx=<x_za>2

"W. H. Macaulay, “Note on the deflection of beams,” Messenger of Mathematics, vol. 48, pp. 129-130, 1919.
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Example 3-2

Derive the loading, shear-force, and bending-moment relations for the beam of Fig. 3-5a.

- 20 1n

200 Ibf 100 Ibf

by

41n
_’J 10 in
— >

Y

(a)

V (Ibf)

210

(b) 1%‘“ X
90 +

M (Ibf - in)

900
840

Fig. 3-5

(c) 0 x



Example 3-2

Solution

Using Table 3—1 and ¢ (x) for the loading function, we find

Answer g = Ri(x)™' —200(x —4)~!' — 100{x — 10}~ + Ry(x —20)~" (1)

Integrating successively gives
Answer V = f gdx = R (x)? —200(x — 4)° — 100(x — 10)° + Ry (x — 20)° (2)
Answer M = f Vdx =Ry (x)! —200(x —4)! —100(x — 10)! + R (x — 20)' (3)

Notethat V=M =0atx =0".
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Example 3-2

The reactions R; and R, can be found by taking a summation of moments and
forces as usual, or they can be found by noting that the shear force and bending moment
must be zero everywhere except in the region 0 < x < 20 in. This means that Eq. (2)
should give V = 0 at x slightly larger than 20 in. Thus

Ry —200—-1004+ R, =0 (4)
Since the bending moment should also be zero in the same region, we have, from Eq. (3),
R1(20) —200(20 — 4) — 100(20 — 10) =0 (5)

Equations (4) and (5) yield the reactions R;= 210 Ibf and R, = 90 Ibf.
The reader should verify that substitution of the values of Ry and R» into Egs. (2)
and (3) yield Figs. 3-5b and c.

Shigley’s Mechanical Engineering Design



Example 3-3

Figure 3—6a shows the loading diagram for a beam cantilevered at A with a uniform
load of 20 Ibtf/in acting on the portion 3 in < x < 71n, and a concentrated counter-
clockwise moment of 240 Ibf - in at x = 10 in. Derive the shear-force and bending-
moment relations, and the support reactions M; and R;.

Fig. 3-6 g

10 in

M(1 = Bl 'y lcl N 92joxlbf.in

Y

(@) 'R,
V (Ibf)
Step
80 Ramp
M (Ibf+in) g
: te
240 Parabolic p
80 i
(0] X
Anp
—-160 Slope = 80 Ibfin/in : : — :
(c) | Shigley’s Mechanical Engineering Design



Example 3-3

Following the procedure of Example 3—2, we find the load intensity function to be
g =—M(x)>+ R (x)7' —20(x —3)° +20(x — 7)° —240(x — 10)2 (1)

Note that the 20(x — 7)° term was necessary to “turn off” the uniform load at C.
Integrating successively gives

V=-M{x"T"4+Rx)"=20(x =3 +20(x —7)! —240(x — 10)~" (2
M=—M{x)°+ R x)! —10(x —3)* + 10(x — 7)> — 240(x — 10)" (3)

The reactions are found by making x slightly larger than 10 in, where both V and M are
zero in this region. Noting that (10)~! = 0, Eq. (2) will then give

—M;(0) + Ry (1) —20(10 — 3) +20(10 —7) — 240(0) =0
which yields Ry = 80 Ibf.
From Eq. (3) we get

— M, (1) 4+ 80(10) — 10(10 = 3)* + 10(10 — 7)> — 240(1) = 0
which yields M; = 160 Ibf - in.

Shigley’s Mechanical Engineering Design



Example 3-3

Figures 3—6b and ¢ show the shear-force and bending-moment diagrams. Note that
the impulse terms in Eq. (2), —M; (x)~! and —240(x — 10)~!, are physically not forces
and are not shown in the V diagram. Also note that both the M; and 240 Ibf - in
moments are counterclockwise and negative singularity functions; however, by the con-
vention shown in Fig. 3-2 the M and 240 1Ibf - in are negative and positive bending
moments, respectively, which 1s reflected in Fig. 3—6c¢.

hi

Fig. 3-6 q

10 in
7 in >

~—3in—> 20 1Ibf/in

MC by b ‘J\z“ojbf’m

Y

A A

AA B C
(@) 'R,
V (Ibf)
Step
(b) 0 X
M (Ibf-in)
Parabolic Step

240 +

w0 | /

0] X
Ap

-160 Slope = 80 Ibf+in/in

(c) | Shigley’s Mechanical Engineering Design




Stress

Normal stress is normal to a surface, designated by o
Tangential shear stress is tangent to a surface, designated by =
Normal stress acting outward on surface Is fensile stress
Normal stress acting inward on surface Is compressive stress
U.S. Customary units of stress are pounds per square inch (psi)
SI units of stress are newtons per square meter (N/m?)

1 N/m? =1 pascal (Pa)



Stress element

¥y v

Figure 3-8

" . .,
(a) General three-dimensional )
stress. (b) Plane stress with
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» Represents stress at a point
» Coordinate directions are arbitrary

» Choosing coordinates which result in zero shear stress will
produce principal stresses



Cartesian Stress Components

Defined by three mutually orthogonal surfaces at a point within
a body

Each surface can have normal and shear stress

Shear stress Is often resolved into perpendicular components
First subscript indicates direction of surface normal

Second subscript indicates direction of shear stress

)




Cartesian Stress Components

Defined by three mutually orthogonal surfaces at a point within

a body

Each surface can have normal and shear stress
Shear stress is often resolved into perpendicular components

First subscript indicates direction of surface normal
Second subscript indicates direction of shear stress

y

)

g _\_



Cartesian Stress Components

» In most cases, “cross shears” are equal
‘C}:’){- — ‘CX}' ‘C:*\ — -C): -CXZ — 'CZX (3_7)

» Plane stress occurs when stresses on one surface are zero

y y




Plane-Stress Transformation Equations

 Cutting plane stress element at an arbitrary angle and balancing

stresses gives plane-stress transformation equations
Oy + Oy Oy — O

0 =—— 4 = : = €08 2¢p + T,y Sin 2¢) (3-8)

O'X - O'1,':

T = — Sin2¢ + 1,y cOS82¢ (3-9)




Principal Stresses for Plane Stress

Differentiating Eqg. (3-8) with respect to ¢ and setting equal to
Zero maximizes o and gives

27T,y
tan2¢, = : (3—10)

()")( - O.Y

The two values of 2¢,are the principal directions.
The stresses in the principal directions are the principal stresses.
The principal direction surfaces have zero shear stresses.

Substituting Eq. (3-10) into Eqg. (3-8) gives expression for the
non-zero principal stresses.

Oy + Oy oy — oy )\’
o1, 00 = 'k2 L4 ('X2 )) —|—rv,(2y (3—13)

Note that there is a third principal stress, equal to zero for plane
stress.



Extreme-value Shear Stresses for Plane Stress

» Performing similar procedure with shear stress in Eg. (3-9), the
maximum shear stresses are found to be on surfaces that are

+45° from the principal directions.
e The two extreme-value shear stresses are

Oy — Oy 2
‘L'l,‘[,'2::|: (,t > )) ‘|—'C'§}. (3—]4)




Maximum Shear Stress

There are always three principal stresses. One is zero for plane
stress.

There are always three extreme-value shear stresses.

o1 — 0 . 0O) — O3 . 0] — 03
2/3 — 1/3 —
2 / 2 / 2

(3-16)

T2 =

The maximum shear stress is always the greatest of these three.

Eq. (3-14) will not give the maximum shear stress in cases
where there are two non-zero principal stresses that are both
positive or both negative.

If principal stresses are ordered so that o; > o, > o,
then 7., = 733



Mohr’s Circle Diagram

A graphical method for visualizing the stress state at a point
Represents relation between Xx-y stresses and principal stresses
Parametric relationship between o and 7 (with 2¢ as parameter)
Relationship is a circle with center at

C=(0,)=[(c,+ 5 ,)2,0]

and radius of




Mohr’s Circle Diagram
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Example 3-4

A stress element has o, = 80 MPa and 7y, = 50 MPa cw, as shown in Fig. 3—11a.

(a) Using Mohr’s circle, find the principal stresses and directions, and show these
on a stress element correctly aligned with respect to the xy coordinates. Draw another
stress element to show 7| and 72, find the corresponding normal stresses, and label the
drawing completely.

(b) Repeat part a using the transformation equations only.

y
5() ~—
4 b
50
—_—
(@)
Fig. 3-11
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Example 3-4

(a) In the semigraphical approach used here, we first make an approximate freehand
sketch of Mohr’s circle and then use the geometry of the figure to obtain the desired
information.

Draw the o and 7 axes first (Fig. 3—115) and from the x face locate o, = 80 MPa
along the o axis. On the x face of the element, we see that the shear stress is 50 MPa in
the cw direction. Thus, for the x face, this establishes point A (80, 50°%) MPa.
Corresponding to the y face, the stress is 0 = 0 and 7 = 50 MPa in the ccw direction.
This locates point B (0, 50°“%) MPa. The line A B forms the diameter of the required cir-
cle, which can now be drawn. The intersection of the circle with the o axis defines o
and o, as shown. Now, noting the triangle AC D, indicate on the sketch the length of the
legs AD and C D as 50 and 40 MPa, respectively. The length of the hypotenuse AC is

71 = +/(50)2 + (40)2 = 64.0 MPa

and this should be labeled on the sketch too. Since intersection C 1s 40 MPa from the
origin, the principal stresses are now found to be

o1 =40+ 64 = 104 MPa and 0y =40 — 64 = —24 MPa

The angle 2¢ from the x axis cw to o 1s

—1 50 o
2¢>p =tan 5 = 51.3

Shigley’s Mechanical Engineering Design



Example 3-4

cwW

(80, 50°™)

2¢,

(0, 50°°%)

F I g ' 3_ 1 1 Shigley’s Mechanical Engineering Design



Example 3-4

To draw the principal stress element (Fig. 3—11c¢), sketch the x and y axes parallel
to the original axes. The angle ¢, on the stress element must be measured in the same
direction as is the angle 2¢, on the Mohr circle. Thus, from x measure 25.7° (halt of
51.3°) clockwise to locate the o axis. The o7 axis 1s 90° from the o axis and the stress
element can now be completed and labeled as shown. Note that there are no shear
stresses on this element.

Shigley’s Mechanical Engineering Design



Example 3-4

The two maximum shear stresses occur at points £ and /' in Fig. 3—11b. The two
normal stresses corresponding to these shear stresses are each 40 MPa, as indicated.
Point E is 38.7° ccw from point A on Mohr’s circle. Therefore, in Fig. 3—11d, draw a
stress element oriented 19.3° (half of 38.7°) ccw from x. The element should then be
labeled with magnitudes and directions as shown.

In constructing these stress elements it is important to indicate the x and y direc-
tions of the original reference system. This completes the link between the original
machine element and the orientation of its principal stresses.

F I g ' 3_ 1 1 (d) Shigley’s Mechanical Engineering Design



Example 3-4

(b) The transformation equations are programmable. From Eq. (3-10),

1 274y 1 2(—50
¢, = = tan! (—2_) = Zqan~! (2222 = _25.7°, 64.3°
2 Jx - Jy 2 80

From Eq. (3-8), for the first angle ¢, = —25.7°,

80+0 80—0
= +

> cos[2(—25.7)] 4+ (=50) sin[2(—25.7)] = 104.03 MPa

ag

The shear on this surface is obtained from Eq. (3-9) as

T = — 802_ Y sin[2(—235.7)] + (—=50) cos[2(—25.7)] = 0 MPa

which confirms that 104.03 MPa is a principal stress. From Eq. (3-8), for ¢, = 64.3°,

804+0 80—-0
= ;_ + 5 cos[2(64.3)] 4+ (—30) sin[2(64.3)] = —24.03 MPa

o
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Example 3-4

Substituting ¢, = 64.3° into Eq. (3-9) again yields r = 0, indicating that —24.03 MPa
is also a principal stress. Once the principal stresses are calculated they can be ordered
such that oy > o». Thus, oy = 104.03 MPa and oo = —24.03 MPa.

Since for oy = 104.03 MPa, ¢, = —25.7°, and since ¢ 1s defined positive ccw in the
transformation equations, we rotate clockwise 25.7° for the surface containing oj. We
see in Fig. 3—11c¢ that this totally agrees with the semigraphical method.

To determine 7| and 7>, we first use Eq. (3—11) to calculate ¢;:

1 . 1 30
¢, = —tan~' [ =2 Uﬂ”) — oo ([ = — 19.3°. 109.3°

For ¢y = 19.3°, Eqgs. (3—8) and (3-9) yield

8040 80 —0
. 2+ n c0s[2(19.3)] + (—50) sin[2(19.3)] = 40.0 MPa
30— 0 |
N $in[2(19.3)] + (—50) cos[2(19.3)] = —64.0 MPa

Shigley’s Mechanical Engineering Design



Example 3-4 Summary
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General Three-Dimensional Stress
» All stress elements are actually 3-D.

 Plane stress elements simply have one surface with zero stresses.

 For cases where there is no stress-free surface, the principal

stresses are found from the roots of the cubic equation
oo — (o, + oy + 03)02 4+ (oxay +o0.0; + 0y0; — T.Ey — t? — Ti.)a

X

ag

Fig. 3—12



General Three-Dimensional Stress

» Always three extreme shear values

o)y — 03 0y — 03 gy — 03
23 = T3 =
2 / 2 / 2

T2 =

(3-16)

o Maximum Shear Stress is the largest

 Principal stresses are usually ordered such that o; > o, > o3,
In which case 7., = 7y3

-~

T3

Tin

ag

0




Elastic Strain

Hooke’s law

o = E¢ (3—-17)

£1s Young’s modulus, or modulus of elasticity

Tension in on direction produces negative strain (contraction) in
a perpendicular direction.

For axial stress in xdirection,

O'K' O’X
E.\' — — 6‘\' — 6: = —V— (3_]8)
E ' E

The constant of proportionality n is Poisson’s ratio
See Table A-5 for values for common materials.



Elastic Strain

» For a stress element undergoing o,, o,, and o, simultaneously,

1 . ]

€x = E Oy — V(Jy =+ JZ)_
I - ]

€y = = oy —v(o, +0;) (3-19)
1 . ]

€, = = o7 —v(ox +0y)

Shigley’s Mechanical Engineering Design



Elastic Strain

Hooke’s law for shear:
T =Gy (3—20)

Shear strain y is the change in a right angle of a stress element
when subjected to pure shear stress.
G Is the shear moaulus of elasticity or moaulus of rigiaity.

For a linear, isotropic, homogeneous material,
E=2G(1 4 v) (3-21)



Uniformly Distributed Stresses

» Uniformly distributed stress distribution is often assumed for
pure tension, pure compression, or pure shear.

 For tension and compression,

S (3-22)

c_ (3-23)



Normal Stresses for Beams in Bending

.\‘

Straight beam in positive bending
X axis Is neutral axis

M

¥ i
i \ Py
xz plane Is neutral plane
Neutral axis is coincident with the /
centroidal axis of the cross section N~
)
~ NN



Normal Stresses for Beams in Bending

» Bending stress varies linearly with distance from neutral axis, y

M )
O, = —T\/ (3_24)

o /1S the second-area moment about the zaxis

I :fysz (3-25)

Compression

A

l Neutral axis, Centroidal axis

'

X

Tension

Fig. 3-14



Normal Stresses for Beams in Bending

o Maximum bending stress is where yis greatest.

M -
Omax = _c (3_260)
I
M
O'max —_ (3_26b)
Z

IS the magnitude of the greatest y
o Z =[/cis the section moadulus

Y Compression

l Neutral axis, Centroidal axis

'

X

\;

Tension



Assumptions for Normal Bending Stress

Pure bending (though effects of axial, torsional, and shear
loads are often assumed to have minimal effect on bending
stress)

Material is isotropic and homogeneous

Material obeys Hooke’s law

Beam is initially straight with constant cross section
Beam has axis of symmetry in the plane of bending

Proportions are such that failure is by bending rather than
crushing, wrinkling, or sidewise buckling

Plane cross sections remain plane during bending



Example 3-5

A beam having a T section with the dimensions shown in Fig. 3—15 1s subjected to a bend-
ing moment of 1600 N - m, about the negative 7 axis, that causes tension at the top surface.
Locate the neutral axis and find the maximum tensile and compressive bending stresses.

Yy

A

Y

i 75

Flg 3—-15 Dimensions in mm
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Example 3-5

Dividing the T section into two rectangles, numbered 1 and 2, the total area is
A = 12(75) + 12(88) = 1956 mm~. Summing the area moments of these rectangles

about the top edge, where the moment arms of areas | and 2 are 6 mm and (12 +
88/2) = 56 mm respectively, we have

1956¢, = 12(75)(6) + 12(88)(56)
and hence ¢; = 32.99 mm. Therefore ¢; = 100 — 32.99 = 67.01 mm.

Shigley’s Mechanical Engineering Design



Example 3-5

Next we calculate the second moment of area of each rectangle about its own cen-
troidal axis. Using Table A—18, we find for the top rectangle

1

1
I, = —bh’ = —(75)12° = 1.080 x 10* mm*
12 12

For the bottom rectangle, we have

]
L= ﬁ(12)883 = 6.815 x 10> mm*

~= 75 S

Iy
12 1 T

Shigley’s Mechanical Engineering Design



Example 3-5

We now employ the parallel-axis theorem to obtain the second moment of area of the
composite figure about its own centroidal axis. This theorem states

I, = I, + Ad>

where [, 1s the second moment of area about its own centroidal axis and I, is the sec-
ond moment of area about any parallel axis a distance d removed. For the top rectan-
gle, the distance is

dy =32.99 — 6 =26.99 mm

and for the bottom rectangle,

88
dr = 67.01 — 5 = 23.01 mm

Using the parallel-axis theorem for both rectangles, we now find that
I =[1.080 x 10* 4 12(75)26.99%] + [6.815 x 10° + 12(88)23.017]
= 1.907 x 10° mm*

Shigley’s Mechanical Engineering Design



Example 3-5

Finally, the maximum tensile stress, which occurs at the top surface, is found to be

M 1600(32.99)10~3
N e Eeed) — 27.68(10%) Pa = 27.68 MPa
] 1.907(10-5)

Similarly, the maximum compressive stress at the lower surface 1s found to be

M 1600(67.01)10=3
—— D — —56.22(10°) Pa = —56.22 MPa
i 1.907(10-9)

Shigley’s Mechanical Engineering Design



Two-Plane Bending

» Consider bending in both xyand xzplanes

» Cross sections with one or two planes of symmetry only
M;y Mz

O'X —_— —

I, I

(3-27)

 For solid circular cross section, the maximum bending stress is

Mc (My+M)V*d/2) 32
— - ~ = — M M_, /2 3_28
I wd*/64 er3( v M) | |

Om =



Example 3-6

As shown in Fig. 3—16a, beam OC is loaded in the xy plane by a uniform load of
50 Ibt/in, and in the xz plane by a concentrated force of 100 Ibf at end C. The beam is

8 in long.
(a) For the cross section shown determine the maximum tensile and compressive

bending stresses and where they act.
(b) If the cross section was a solid circular rod of diameter, d = 1.25 in, determine

the magnitude of the maximum bending stress.

y

50 Ibf/in

F I g ' 3_ 1 6 (HJ Shigley’s Mechanical Engineering Design



Example 3-6

(a) The reactions at O and the bending-moment diagrams in the xy and xz planes are
shown in Figs. 3—16b and c, respectively. The maximum moments in both planes occur
at O where

1 _
(My)o = —5(50)82 = — 1600 Ibf-in (My)o = 100(8) = 800 Ibt-in

100 Ibf
50 Ibf/in 200 1bf-in
YYYYVYYVYYYYYYYYY Y x
1600 Ibf TO ¢ ¢ TC
6 -in |,
M
(Ibf-in)
M,
0 X (Ibf-in)

300 _\
— 1600 0 X

(b) (c)




Example 3-6

The second moments of area in both planes are
1 3 . 4 I 3 . 4
I; = E(O.?S)I.S“ = 0.21091n Iy, = 5(1.5)0.75‘ = 0.052731n

The maximum tensile stress occurs at point A, shown in Fig. 3—16a, where the maxi-

mum tensile stress 1s due to both moments. At A, y4 = 0.75 inand 74 = 0.375 in. Thus,
from Eq. (3-27)

—1600(0.75)  800(0.375) , .
V= — — 11380 psi = 11.38k
Answer  (0x)4 02109 005273 pst PAt

The maximum compressive bending stress occurs at point B where, yp = —0.75 1n and
zgp = —0.375 1n. Thus

Answe(r - —1600(—0.75)+800(—0-375)_ 11380 0si — —11.38 kpsi
ox)p = 0.2109 0.05273 e

Shigley’s Mechanical Engineering Design



Example 3-6

(b) For a solid circular cross section of diameter, d = 1.25 in, the maximum bending
stress at end O 1s given by Eq. (3-28) as

32 1/2 : :
Answer  Om = TaT3 [800° + (—1600)*] """ = 9329 psi = 9.329 kpsi

50 Ibf/in

(a)

Shigley’s Mechanical Engineering Design



Shear Stresses for Beams in Bending

w(x)

QHIIH,,HIII\IHI) -

V+dV
| x o4
(a) 4
dx
Fig. 3-17 ®
“(dM)v
hdx = [ MY,
Vi (c)
V C
= — A -2
T= ll vd (3-29)
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Transverse Shear Stress

(

e =,
' q
i
-
&
|

Fig. 3—18

A
= / VA — A (3-30)
- Vo
== -31
T 77 (3-31)

» Transverse shear stress is always accompanied with bending
stress.



Transverse Shear Stress in a Rectangular Beam
y y

-l

Y

< bh—> _ 3V
Tmax = ﬂ

ot

-
S+ =
=N

o |
.

-
-
-
1

=

Q*—
> wu TAAA ~
| S
L
"F

-
e

S

X
y A/
Y

(@) (b) (c)
C C l 21C l
0 = ydA:bf ),;dy:l :z(cz—ylz)
V1 Vi 2 Vi 2
‘C:VQ_V(CZ_VZ) ]_Acz
Ib 21 - B



Maximum Values of Transverse Shear Stress

Beam Shape Formula Beam Shape Formula
vV 4 _v 2V
T Tge ™ A Tmax = ﬂ ‘ [ Tavc™ A Tmax = 7
il | |
Rectangular Hollow, thin-walled round

. _4v . s ¥
2 A Tmax — web Tmax =
3A L Aweb
__ =

Structural I beam (thin-walled)

Circular

Table 3—2
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Significance of Transverse Shear Compared to Bending

» Example: Cantilever beam, rectangular cross section
o Maximum shear stress, including bending stress (My//) and

transverse shear stress (VQ/ 10),

O
Tmax = (E

Figure 3-19

Plot of maximum shear stress
for a cantilever beam,
combining the effects of
bending and transverse shear
stresses.

2
) —|—'L'2__
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Significance of Transverse Shear Compared to Bending

o Critical stress element (largest z,,,) will always be either

> Due to bending, on the outer surface (J/c=1), where the transverse
shear IS zero

> Or due to transverse shear at the neutral axis (y/¢c=0), where the
bending is zero

 Transition happens at some critical value of L/

» Valid for any cross section that does not increase in width farther away
from the neutral axis.

> Includes round and rectangular solids, but not I beams and channels
Figure 3-19 1400

Plot of maximum shear stress 1200

for a cantilever beam, 1000

combining the effects of
bending and transverse shear 800

stresses.

Trnax (MPa)

600

400

200
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Example 3-7

A beam 12 in long is to support a load of 488 Ibf acting 3 in from the left support, as
shown in Fig. 3-20a. The beam 1s an [ beam with the cross-sectional dimensions
shown. To simplify the calculations, assume a cross section with square corners, as
shown in Fig. 3-20c¢. Points of interest are labeled (a, b, ¢, and d) at distances y from
the neutral axis of 0 in, 1.2407 in, 1.240" in, and 1.5 in (Fig. 3-20c¢). At the critical
axial location along the beam, find the following information.

(a) Determine the profile of the distribution of the transverse shear stress, obtain-
ing values at each of the points of interest.

(b) Determine the bending stresses at the points of interest.

(c) Determine the maximum shear stresses at the points of interest, and compare them.

y

488 |bf
<~—3 in —>f= 9 in > 0.260 in
‘ ¢ JD.%Om d
T KB
].Zf in
ol - . - - = - - - - - X 3.00 in 0.170 in Yy _ . a—
l 1.08 in —=
¢ ] = '—I
‘-(— 233 in— ©
C
R, =366 Ibf R, =122 1bf

“ Fig. 3-20



Example 3-7

First, we note that the transverse shear stress 1s not likely to be negligible in this case
since the beam length to height ratio is much less than 10, and since the thin web and
wide flange will allow the transverse shear to be large. The loading, shear-force, and
bending-moment diagrams are shown in Fig. 3—20b. The critical axial location 1s at
x = 3~ where the shear force and the bending moment are both maximum.

(a) We obtain the area moment of inertia / by evaluating [ for a solid 3.0-in X 2.33-in
rectangular area, and then subtracting the two rectangular areas that are not part of the
Cross section.

2.33)(3.00)° 1.08)(2.48)° ,
=R Sl R DI R) ) N
, 12 12
l488 Ibf
(0] X
tSﬁG]bf 122]bft
366 Ibf
(0]
—122 Ibf
N
“0 Fig. 3-20(b)
(b) Shigley’s Mechanical Engineering Design




Example 3-7

Finding Q at each point of interest using Eq. (3—30) gives

0, = (1.24 + &260) [(2.33)(0.260)] + (%) [(1.24)(0.170)] = 0.961 in®

0.260 4
Op = Q. = (1.24 i T) [(2.33)(0.260)] = 0.830 in

Q4 = (1.5)(0) =0 in’
d

Lﬁl.%(} in : .

t N
|24 in b

2 1

._
RN
1.08 in ﬂ*—:—
|

Fig. 3—20(c)

a
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Example 3-7

Applying Eq. (3-31) at each point of interest, with V and [ constant for each point, and
b equal to the width of the cross section at each point, shows that the magnitudes of the
transverse shear stresses are

VO.  (366)(0.961) |
Tp = = = = 828 psi
b, _ (2.50)(0.170) oz o
_VO» _ (366)0830) __ —
= T, T 25000170y 0 P 2pin
VO.  (366)(0.830 TN
T, = Q ( ) ) 52.2 psi  1.08in «‘4—1-
Ibe  (2.50)(2.33) | |
_ V04 _ GO © @
M= T T (2500233 P

-

The magnitude of the idealized transverse shear stress profile through the beam
depth will be as shown in Fig. 3-20d.

Shigley’s Mechanical Engineering Design



Example 3-7

(b) The bending stresses at each point of interest are

_ My, (1098)(0)

%= T T T 250
e My _ o2 "
i 750
M 1098)(1.50
Ud=—ﬁ=—( sl )=—659psi

I 2.50

Shigley’s Mechanical Engineering Design



Example 3-7

(c) Now at each point of interest, consider a stress element that includes the bend-
ing stress and the transverse shear stress. The maximum shear stress for each stress
element can be determined by Mohr’s circle, or analytically by Eq. (3—14) with

ay =0,
2
Tmax = \/(%) + e

Thus, at each point

Tmaxa = VO + (828)2 = 828 psi

545\ ,
Tmax.b = —— + (715)? = 765 psi

—545\2
Tmax.c = \/ (T) +(52.2)2 = 277 psi

—659)°
Tmax,d = \/(T) + 0 =330 psl

Shigley’s Mechanical Engineering Design



Example 3-7

Interestingly, the critical location is at point @ where the maximum shear stress 1s the
largest, even though the bending stress 1s zero. The next critical location is at point b in
the web, where the thin web thickness dramatically increases the transverse shear stress
compared to points ¢ or d. These results are counterintuitive, since both points a and b
turn out to be more critical than point d, even though the bending stress is maximum at
point d. The thin web and wide flange increase the impact of the transverse shear stress.
If the beam length to height ratio were increased, the critical point would move from
point a to point b, since the transverse shear stress at point ¢ would remain constant,
but the bending stress at point » would increase. The designer should be particularly
alert to the possibility of the critical stress element not being on the outer surface with
cross sections that get wider farther from the neutral axis, particularly in cases with
thin web sections and wide flanges. For rectangular and circular cross sections, how-
ever, the maximum bending stresses at the outer surfaces will dominate, as was shown

in Fig. 3-19.

Shigley’s Mechanical Engineering Design



Torsion

» Jorgue vector—a moment vector collinear with axis of a
mechanical element

» A bar subjected to a torque vector is said to be in forsion

» Angle of twist, In radians, for a solid round bar
T
- GJ

0 (3-35)




Torsional Shear Stress

» For round bar in torsion, torsional shear stress is proportional to
the radius p

_Ip

J
o Maximum torsional shear stress is at the outer surface
Tr
Tmax — — (3_37)

J




Assumptions for Torsion Equations

» Equations (3-35) to (3-37) are only applicable for the following
conditions

> Pure torque

- Remote from any discontinuities or point of application of
torque

- Material obeys Hooke’s law

- Adjacent cross sections originally plane and parallel remain
plane and parallel

- Radial lines remain straight

Depends on axisymmetry, so does not hold true for
noncircular cross sections

» Consequently, only applicable for round cross sections



Torsional Shear in Rectangular Section

» Shear stress does not vary linearly with radial distance for

rectangular cross section

» Shear stress Is zero at the corners
o Maximum shear stress is at the middle of the longest side
 For rectangular 6x cbar, where £1is longest side
T 1.8
Tmax = = 34+ — 3-40
T abe? T be? ( b/c | |
Tl
fH = (3-41)
BbcG

b/c 1.00 .50 1.75 2.00 2.50 3.00 4.00 6.00 8.00 10 00
o 0.208 0.231 0.239 0.246 0.258 0.267 0.282 0.299 0.307 0.313 0.333
B 0.141 0.196 0.214 0.228 0.249 0.263 0.281 0.299 0.307 0.313 0.333



Power, Speed, and Torque

o Power equals torgue times speed
H=Tw (3-43)
where H = power, W
I = torque, N - m

@ = angular velocity, rad/s

» A convenient conversion with speed in rpm

H
T = 9.55—1 (3—-44)
/

where H = power, W
n = angular velocity, revolutions per minute



Power, Speed, and Torque

 In U.S. Customary units, with unit conversion built in

rv 2nTn I'n

H = = —~ (3-42)
33000 33000(12) 63025

where H = power, hp
I’ = torque, Ibf - in

n = shaft speed, rev/min
F = force, 1bf

V = velocity, ft/min

Shigley’s Mechanical Engineering Design



Example 3-8

Figure 3-22 shows a crank loaded by a force F = 300 Ibf that causes twisting and
bending of a %—in—diameter shaft fixed to a support at the origin of the reference system.
In actuality, the support may be an inertia that we wish to rotate, but for the purposes
of a stress analysis we can consider this a statics problem.

(a) Draw separate free-body diagrams of the shaft AB and the arm BC, and com-
pute the values of all forces, moments, and torques that act. Label the directions of the
coordinate axes on these diagrams.

(b) Compute the maxima of the torsional stress and the bending stress in the arm
BC and indicate where these act.

(c) Locate a stress element on the top surface of the shaft at A, and calculate all the
stress components that act upon this element.

(d) Detern}ine the maximum normal and shear stresses at A.

Shigley’s Mechanical Engineering Design



Example 3-8

(a) The two free-body diagrams are shown in Fig. 3-23. The results are

At end C of arm BC: F = —300j 1bf, T¢c = —450k 1bf - in
At end B of arm BC: F = 300j Ibt, M; = 1200i Ibf - in, Ty = 450Kk Ibf - in
At end B of shaft AB: F = —300j Ibt, T; = —1200i Ibf - in, M = —450k Ibf - in
At end A of shaft AB: F = 300j Ibt, M4 = 1950k 1Ibf - in, T4 = 12001 Ibf - in
.
y ™~
| A
M F%Ml
-,
- \x

F I g ' 3_23 Shigley’s Mechanical Engineering Design



Example 3-8

(b) For arm BC, the bending moment will reach a maximum near the shaft at B.

It we assume this 1s 1200 Ibf - in, then the bending stress for a rectangular section
will be

_ M _ oM _ 60200 _ g 400 psi = 18.4 kps
~Tc T bt T 0251252 pit = 184 Xp%l

a

Of course, this 1s not exactly correct, because at B the moment 1s actually being trans-
ferred into the shaft, probably through a weldment.
Y

Shigley’s Mechanical Engineering Design



Example 3-8
For the torsional stress, use Eq. (3—43). Thus

T 1.8 450 1.8
max — 5~ 3 — | = 3 = 19 400 1 = 19.4 kpsi
fman = 0 ( T b/c) 1.25(0.25?) ( * 1.25/0.25) 7400 psi = 19.4 kpsi

This stress occurs at the middle of the li—in side.

Shigley’s Mechanical Engineering Design



Example 3-8

(c) For a stress element at A, the bending stress 1s tensile and 1s

M 32M 32(1950)
Y add  w(0.75)3

The torsional stress 1s

Oy =47 100 pst =47.1 kpst

~T  —16T  —16(1200)
Je  md®  7(0.75)3

= —14 500 psi = —14.5 kpsi

rxz =

where the reader should verify that the negative sign accounts for the direction of 7,;.

Shigley’s Mechanical Engineering Design



Example 3-8

(d) Point A is in a state of plane stress where the stresses are in the xz plane. Thus
the principal stresses are given by Eq. (3—13) with subscripts corresponding to the
X, 7 axes.

The maximum normal stress 1s then given by

2
Ul = el Ufa — o]

47.1 +0 47.1 — 0\’ _
=—5—+H/|——) + (—14.5)2 = 51.2 kpsi

Shigley’s Mechanical Engineering Design



Example 3-8

The maximum shear stress at A occurs on surfaces different than the surfaces contain-
ing the principal stresses or the surfaces containing the bending and torsional shear
stresses. The maximum shear stress is given by Eq. (3—14), again with modified sub-
scripts, and is given by

oy — o, \° 47.1 — 0\’
T = ( 5 ) +12, = (T) + (—14.5)2 = 27.7 kpsi

Shigley’s Mechanical Engineering Design



Example 3-9

The 1.5-in-diameter solid steel shaft shown in Fig. 3-24a 1s simply supported at the ends.
Two pulleys are keyed to the shaft where pulley B 1s of diameter 4.0 in and pulley C is of
diameter 8.0 in. Considering bending and torsional stresses only, determine the locations
and magnitudes of the greatest tensile, compressive, and shear stresses in the shaft.

Flg 3-24 (o

Shigley’s Mechanical Engineering Design



Example 3-9

Figure 3-24b shows the net forces, reactions, and torsional moments on the shatft.
Although this 1s a three-dimensional problem and vectors might seem appropriate, we
will look at the components of the moment vector by performing a two-plane analysis.

A

10in 290 Ibf-in

200 Ibf
10 in

1600 Ibf - in

1200 Ibf

400 Ibf
400 Ibf

(a) (b)

Shigley’s Mechanical Engineering Design



Example 3-9

1004 600 Ibf-in

200 Ibf
10 in

1600 Ibf - in

1200 Ibf

600 Ibf

400 Ibf
400 Ibf
(b)
}!
r@o Ibf l 1200 Ibf
B C D
A B, C D N A . N
200 IbfT Loo bf 800 1Ibf Loo Ibf
y 4000 |z 2000
(Ibf-in) M,
" 2000 (Ibf-in) 4000
O X O X
© (d)

Fig. 3—24



Example 3-9

The net moment on a section is the vector sum of the components. That is,

M:\/M§—|—M§ (1)

At point B,

Mg = /20002 + 80002 = 8246 Ibf - in
At point C,

Mc = v/4000% + 40002 = 5657 Ibf - in
Thus the maximum bending moment is 8246 1bf - in and the maximum bending stress
at pulley B is

Md/2 32M  32(8246)
g = = =
7d* /64 nd3 m(1.5%)

= 24 890 psi = 24.89 kpsi

The maximum torsional shear stress occurs between B and C and 1s

Td)/2 16T 16(1600)
T = == —
7d*/32 wd? 7(1.5%)

= 2414 psi = 2.414 kpsi

Shigley’s Mechanical Engineering Design



Example 3-9

The maximum bending and torsional shear stresses occur just to the right of pulley
B at points E and F as shown in Fig. 3—24¢. At point E, the maximum tensile stress will
be oy given by

2 2
24.89 24.89
=3 +\/(%) =T +\/(T) P E e

Location: at B (x = 10™)

\

8246 Ibf-in —

8000 Ibf-in

F

- Max. compression
and shear
2000 1bf-1n
B=rtan SO0 =76°

Max. tension
and shear

F i q . 3_24 (E‘ J Shigley’s Mechanical Engineering Design



Example 3-9

At point F, the maximum compressive stress will be o2 given by

o —o 2+ , —24.89 —24.89 2+24142_ 0S5 Ko
2=7 2 ) 2 R

The extreme shear stress also occurs at £ and F and 1s

+o\? +24.89\2
o = \/(TJ) 472 = \/( . 9) +2.4142 = 12.68 kpsi

Shigley’s Mechanical Engineering Design



Closed Thin-Walled Tubes

Wall thickness ¢ <<tube
radius r

Product of shear stress
times wall thickness is
constant

Shear stress Is inversely
proportional to wall
thickness

Total torque 7'is
T = f Tirds = (t1) f rds =tt(24A,,) = 2A,,it

A, Is the area enclosed
by the section median
line

Median line



Closed Thin-Walled Tubes

 Solving for shear stress
T

T = (3-45)
At
o Angular twist (radians) per unit length
g, = 2 L (3-46)
' T 4G AL

m

o [ Is the length of the section median line

Median line




Example 3-10

A welded steel tube 1s 40 in long, has a %—in wall thickness, and a 2.5-in by 3.6-in
rectangular cross section as shown in Fig. 3-26. Assume an allowable shear stress of
11 500 psi and a shear modulus of 11.5(10°) psi.

(a) Estimate the allowable torque 7.

(b) Estimate the angle of twist due to the torque.

o0 | —
5‘

40 in
2.51n

<——3.01n

F I g ' 3_2 6 Shigley’s Mechanical Engineering Design



Example 3-10

(a) Within the section median line, the area enclosed is
Am = (2.5 —0.125)(3.6 — 0.125) = 8.253 in’
and the length of the median perimeter is
Ly =2[2.5—-0.125)+ (3.6 —0.125)] = I1.70 in
From Eq. (3—45) the torque 7 1s
I'=2Att =2(8.253)0.125(11500) = 23730 1bf - in
(b) The angle of twist € from Eq. (3—46) is

e ; 23 730(11.70)

0 =061l = =
4G At 4(11.5 x 106)(8.2532)(0.125)

(40) = 0.0284 rad = 1.62°

Shigley’s Mechanical Engineering Design




Example 3-11

Compare the shear stress on a circular cylindrical tube with an outside diameter of 1 in
and an inside diameter of 0.9 in, predicted by Eq. (3-37), to that estimated by

Eq. (3—45).

Solution

From Eq. (3-37),

E B Tr B 7(0.5)

J o (w/32)(dd —d})  (w/32)(1* — 0.9%)

From Eq. (3—45),

= 14.809T

Tmax —

T T

_ — 14.108T
2A,t  2(70.952/4)0.05

T =

Taking Eq. (3—37) as correct, the error in the thin-wall estimate is —4.7 percent.

Shigley’s Mechanical Engineering Design



Open Thin-Walled Sections

o When the median wall line is not closed, the section is said to be
an gpen section

e Some common open thin-walled sections

E_ j L L Fig. 3-27

o Torsional shear stress

3T
T = GQ]C = ——= (3—47)

Lc?
where 7= Torque, L = length of median line, ¢ = wall thickness,
G = shear modulus, and &, = angle of twist per unit length



Open Thin-Walled Sections

Shear stress is inversely proportional to ¢©

Angle of twist is inversely proportional to ¢?

For small wall thickness, stress and twist can become quite large
Example:

> Compare thin round tube with and without slit

- Ratio of wall thickness to outside diameter of 0.1

o Stress with slit is 12.3 times greater

o Twist with slit Is 61.5 times greater



Example 3-12

A 12-in-long strip of steel is % in thick and 1 in wide, as shown in Fig. 3-28. If the
allowable shear stress is 11 500 psi and the shear modulus is 11.5(10°) psi, find the
torque corresponding to the allowable shear stress and the angle of twist, in degrees,

(a) using Eq. (3—47) and (b) using Egs. (3—40) and (3—41).

A

—] a-:—lin

Figure 3-28

The cross-section of a thin strip

of steel subjected to a torsional

moment 7. Shigley’s Mechanical Engineering Design



Example 3-12
(a) The length of the median line 1s 1 in. From Eq. (3—47),

Lt (1)(1/8)%11 500
3 3
7l 11 500(12)

O=0l=06c= 11.5(106)(1/8)

T = 59.90 Ibf - in

= 0.0960 rad = 5.5°

A torsional spring rate k; can be expressed as 1T /6:

k; = 59.90/0.0960 = 624 1bf - in/rad

Shigley’s Mechanical Engineering Design



Example 3-12
(b) From Eq. (3—40),

Tmaxbc® 11 500(1)(0.125)

= — — 55.72 1bf - in
3+1.8/(b/c) 3+ 1.8/(1/0.125)

From Eq. (3—41), with b/c = 1/0.125 = 8,

il 33.72(12)

= = =10.0970 rad = 5.6°
Bbc*G  0.307(1)0.1253(11.5)10°

ki = 55.72/0.0970 = 574 1bf - in/rad

The cross section is not thin, where b should be greater than ¢ by at least a factor
of 10. In estimating the torque, Eq. (3—47) provides a value of 7.5 percent higher than
Eq. (3—40), and is 8.5 percent higher than when the table on page 102 is used.

Shigley’s Mechanical Engineering Design



Stress Concentration

 Localized increase of stress near discontinuities
» K,Is Theoretical (Geometric) Stress Concentration Factor

K, = 2mx g Imax (3-48)

|< 1) T‘-l

Shigley’s Mechanical Engineering Design



Theoretical Stress Concentration Factor

Graphs available for
standard configurations Figure A-15-1

Bar in tension or simple

See Appendix A-15 and

hode. op = F/A, where
A = (w —d)t and{ is the

A-16 for common
examples

Many more in Peterson’s
Stress-Concentration
Factors

Note the trend for higher  |Fewe s
K: at sharper discontinuity | e = e s
radius, and at greater

disruption




Stress Concentration for Static and Ductile Conditions

» With static loads and ductile materials
> Highest stressed fibers yield (cold work)
o Load is shared with next fibers
- Cold working is localized

> Overall part does not see damage unless ultimate strength is
exceeded

o Stress concentration effect is commonly ignored for static
loads on ductile materials



Techniques to Reduce Stress Concentration

e Increase radius
» Reduce disruption
» Allow “dead zones” to shape flowlines more gradually

Large radius
relief groove

(@) () ()
| Figure 7-9

Shoulder
relief groove

Sharp radius

Large radius undercut

Stress flow \

)

Bearing

\  Shaft S R
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Example 3-13

The 2-mm-thick bar shown in Fig. 3-30 is loaded axially with a constant force of 10 kN.
The bar material has been heat treated and quenched to raise its strength, but as a con-
sequence 1t has lost most of its ductility. It 1s desired to drill a hole through the center
of the 40-mm face of the plate to allow a cable to pass through it. A 4-mm hole is suf-
ficient for the cable to fit, but an 8-mm drill is readily available. Will a crack be more
likely to initiate at the larger hole, the smaller hole, or at the fillet?

I mm rad
i S
40 mm O 34 mm e 10 kN
1 — 7
Fig. 3-30
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Example 3-13

Since the material is brittle, the effect of stress concentrations near the discontinuities
must be considered. Dealing with the hole first, for a 4-mm hole, the nominal stress is

F F 10 000
0= T m—dr  @o—ap ) Mpa

The theoretical stress concentration factor, from Fig. A—15—1, with d/w = 4/40 = 0.1,
1s Kt = 2.7. The maximum stress 1s

Omax = K00 = 2.7(139) = 380 MPa

3.0

28 }
F o T _qi= — [

26
24

22

Fig. A—15 —1

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
dhw Shigley’s Mechanical Engineering Design




Example 3-13

Similarly, for an 8-mm hole,

F ja 10 000
= AT w—dr @ -39 y

With d/w = 8/40 = 0.2, then K, = 2.5, and the maximum stress is
Omax = K00 = 2.5(156) = 390 MPa

Though the stress concentration is higher with the 4-mm hole, in this case the increased

nominal stress with the 8-mm hole has more effect on the maximum stress.
3.0

2.8 4
o — T — = — [

26

24

22

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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Example 3-13
For the fillet,

F 10000

oy = —

= = 147 MPa
A (34)2

From Table A-15-5, D/d = 40/34 = 1.18, and r/d = 1/34 = 0.026. Then K, = 2.5.

Omax = Kro9 = 2.5(147) = 368 MPa

The crack will most likely occur with the 8-mm hole, next likely would be the 4-mm
hole, and least likely at the fillet.

3.0 |

Did =1.50 w
2.6
d

Fig. A-15-5

d Shigley’s Mechanical Engineering Design



Stresses in Pressurized Cylinders

 Cylinder with Inside radius r; outside radius r,, internal
pressure p; and external pressure p,

» Tangential and radial stresses,

pir? — por: —rir2(po — pi)/r?

2 .2
r; r;

(3-49)

piri — por’ 4+ riri(po — pi)/r’
2

2 __
ro I",-

Fig. 3-31




Stresses in Pressurized Cylinders

 Special case of zero outside pressure, p,=0

2 2
repi r
- s
T2 (1+r2)
o

i

(3-50)
rizpi

2 _
r:—r

2

I

(a) Tangential stress F | g . 3_32 (b) Radial stress

distribution distribution
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Stresses in Pressurized Cylinders

» If ends are closed, then longitudinal stresses also exist

2

Pil;
) 2
ro ri

(3-51)

o] =

Shigley’s Mechanical Engineering Design



Thin-Walled Vessels

Cylindrical pressure vessel with wall thickness 1/10 or less of
the radius

Radial stress is quite small compared to tangential stress
Average tangential stress

(01)ay = % (3-52)
Maximum tangential stress
(01 mar = (d’; ) 3-53)
Longitudinal stress (if ends are closed)
o] = p—d’ (3-54)

41



Example 3-14

An aluminum-alloy pressure vessel 1s made of tubing having an outside diameter of 8 in
and a wall thickness of % in.

(a) What pressure can the cylinder carry if the permissible tangential stress is
12 kpsi and the theory for thin-walled vessels 1s assumed to apply?

(h) On the basis of the pressure found in part (a), compute the stress components
using the theory for thick-walled cylinders.

Solution

(a) Here d; =8 —2(0.25) =751, r;, =7.5/2=3.751n, and r, = 8/2 = 4 in. Then
t/ri = 0.25/3.75 = 0.067. Since this ratio 1s less than 0.1, the theory for thin-walled
vessels should yield safe results.

We first solve Eq. (3-53) to obtain the allowable pressure. This gives

. zf(ﬂ'}‘)max 2(025)(]2)(10)3

_ _ — 774 psi
P= =0 75 1 0.25 Pt

Shigley’s Mechanical Engineering Design



Example 3-14

() The maximum tangential stress will occur at the inside radius, and so we use
r = r; in the first equation of Eq. (3—-50). This gives

r? pi r? r: +r? 4% 4+ 3.752 _
2 ( 1+ E) = Di P = 7’7442 e 12 000 psi

Q

(Ur)max —
Similarly, the maximum radial stress is found, from the second equation of Eq. (3-50)
to be

o, = —p; = — 174 psi

The stresses o; and o, are principal stresses, since there is no shear on these surfaces.
Note that there is no significant difference in the stresses in parts (a) and (b), and so the
thin-wall theory can be considered satisfactory for this problem.

Shigley’s Mechanical Engineering Design



Stresses in Rotating Rings

Rotating rings, such as flywheels, blowers, disks, etc.

Tangential and radial stresses are similar to thick-walled
pressure cylinders, except caused by inertial forces

Conditions:

o Qutside radius is large compared with thickness (>10:1)
> Thickness Is constant

o Stresses are constant over the thickness

Stresses are

3 ro 143
o = pa)z( —é—v) (l’,-z —I—Ff + /i ZO _ .t vr2)
r

34 v
o, = pw’ S rf i — it —r?
8 r?

(3-55)




Press and Shrink Fits

» Two cylindrical parts are assembled with raaial interference 6

o Pressure at interface
5

= 3-56
P R 1 rg—I—R2_|_ +1 R? +r? | |
Vo — VY
E, \r? — R? E; \R? — 2
« If both cylinders are of the same material

ES [(r? — R*)(R* —r?

p==2 (r, )( : 7) 3-57)
2R- r2 —r;

=/ 2
-

(a) (b)




Press and Shrink Fits

» Eq. (3-49) for pressure cylinders applies

2
pir? — por: —rir2(po — pi)/r

Oy — 5

rc% — 71
(3-49)
pir? — porz +riri(po — pi)/r?
o, =
r(% R rfz
 For the inner member, p, =pand p;=0
R> +r?
(O'r),' L — —pR2 — rf.z (3—58)
 For the outer member, p,=0and p;= p
r: + R?
(Ur)() e — prg _ R2 (3—59)




Temperature Effects

Normal strain due to expansion from temperature change
ex =€y =€, =a(AT) (3—-60)
where « IS the coefficient of thermal expansion

Thermal stresses occur when members are constrained to
prevent strain during temperature change

For a straight bar constrained at ends, temperature increase will
create a compressive stress

o0 =—€F = —a(ATYE (3-61)
Flat plate constrained at edges
o= _HADE (3-62)

1 —v



Coefficients of Thermal Expansion

Table 3-3 Material Celsius Scale (°C1) Fahrenheit Scale (°F!)

Coefficients of Thermal Alusnti 23.9(10)~ 13.3(10)~¢

Expansion (Linear Brass, cast 18.7(10)~° 10.4(10)7°

Mean Coefficients Carbon steel 10.8(10)~° 6.0(10)7°

for the Temperature ClanstSro 10.6(10)~° 5.9(10)7¢

Range 0-100°C) Magnesium 25.2(10)~¢ 14.0(10)~°
Nickel steel 13.1(10)~ 7.3(10)7°
Stainless steel 17.3(10)7° 9.6(10)~°
Tungsten 4.3(10)7° 2.4(10)~°

Shigley’s Mechanical Engineering Design



Curved Beams in Bending

o |In thick curved beams
o Neutral axis and centroidal axis are not coincident

> Bending stress does not vary linearly with distance from the
neutral axis

Centroidal
[ axis

h + ¢ e A
y

A

<_
~
\
: +
>

Neutral axis




Curved Beams in Bending

Centroidal
axis

\

¢ e A
y

Ja==21

Neutral axis

_
| +}

rl

r, = radius of outer fiber
r; =radius of inner fiber
r, =radius of neutral axis —
r.= radius of centroidal axis

h = depth of section

¢~ distance from neutral axis to outer fiber

¢; = distance from neutral axis to inner fiber

e = distance from centroidal axis to neutral axis

M =bending moment; positive M decreases curvature

Fig. 3-34 et



Curved Beams in Bending

e Location of neutral axis
A

'n = =774 (3-63)
r
o Stress distribution
My (3-64)
o = —
Ae(r, — )
o Stress at inner and outer surfaces
Mc; Mc,
of 0y = (3-65)

Aer; Aer,



Example 3-15

Plot the distribution of stresses across section A-A of the crane hook shown in
Fig. 3-35a. The cross section is rectangular, with b5 = 0.75 in and & = 4 in, and the load
i1s F' = 5000 1bf.

A
.
¥

‘1.‘
Y
m

-l V

<——12in 4" I 0.75 in

4 1in

A
¥

6 in

¥

A

Section A-A
(a) (b)

Fig. 3—35



Example 3-15
Since A = bh, we have dA = bdr and, from Eq. (3—63),

A bh h

-"nz_/dAz rﬂhf =]nri (1)
- ﬁ Fff‘ r;

From Fig. 3-35b, we see that r; = 2 in. r, = 6 in, r. = 4 in, and A = 3 in®. Thus, from
Eq. (1),

= 364l
In(ry/r;) lng
< r, >
; el
« r— sle V]
v
"‘_Eiﬂ4>| I 0.751in
4
- sin - Fig. 3-35(4)
- 6 in .




Example 3-15

and the eccentricity is ¢ =re —rp =4 — 3.641 = 0.359 in. The moment M is positive
and 1s M = Fr. = 5000(4) = 20 000 Ibt - in. Adding the axial component of stress to
Eq. (3-64) gives

F My 5000 (20 000)(3.641 —r)
o= — =

A A=y~ 3 T T 3035 12)

Substituting values of r from 2 to 6 in results in the stress distribution shown in
Fig. 3—-35¢. The stresses at the inner and outer radii are found to be 16.9 and —5.63 Kpsi,
respectively, as shown.

o

16.9 kpsi

r

’ 3 W
—5.63 kpsi

F I g . 3_35 (C) Shigley’s Mechanical Engineering Design




Formulas for Sections of Curved Beams (Table 3-4)

)\ h
= 1+—=

2

‘ r
i

" n(ro/r)

«—— >~ —>

+ C
5
Y l Y
ro= —
/ \ e ‘ 3 bi + b,
/ _\ ¢ :
r —_—
S R e o o
—b— b \
i r;
Pl
|<—b0_>| . _r.+bjC%+2b()clc2+b0C%
) & 2(bocy + bicy)
bic1 + boca
'n

T biIn[(ri + 1)/ ri)] + bo Inlro/(ri + c1)]

S —
Q\

—— 5 —> [€—
]

—b— }
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Formulas for Sections of Curved Beams (Table 3-4)

=

——
[\
PNy
N
I
QT\)
I
=
\S)
p g

I
f—b,—>] 1 1
: : Ehzt + it?(b,- — 1) + 1,(bs — 1)k — 1,/2)
to e = F; +
J ‘ c to(by =8 & by (b= 1) =+ hit
e
-] [ j=
| 4 B 4y — 1)+ (b — 1) +- 41,
2 r}’l - I’l +t 7'0 _to r()
¥ b; In +t1n + b, 1In
“t. 9 ¥ ri +t To — 1o
Vl
ik fe—— b, —>
r
l l _ A

1 1
Ehzt + Etl-z(b —1) +1,(b — )k — 15/2)
ht 4 (b == t)(ti + to)

Ye =r;i+

DI~
[ S TN

(b—1)(ti +1,) + ht

B | = ri +t r, rp —t
Jf r, b(ln’ L 4+1n—2 )—i—tlno <
r; Yo — 1 ri+t

T

fe——————— 5 ——>
e—————— S ———> [«
Nl
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Alternative Calculations for e

» Approximation for g, valid for large curvature where eis small
with 7, [ 7,

1
e = A (3-66)
e Substituting Eqg. (3-66) into Eq. (3-64), with r,— y=r, gives
o MV (3-67)



Example 3-16

Consider the circular section in Table 3—4 with r, = 3 inand R = | in. Determine e by
using the formula from the table and approximately by using Eq. (3—66). Compare the
results of the two solutions.

Solution
Using the formula from Table 3—4 gives

R? 12
= = 291421 in

T 2r—JrP-R) 2(B-3-))

This gives an eccentricity of

e =r;—rp, =3—291421 =0.08579 in

Fn

The approximate method, using Eq. (3—66), yields
I 7 RY4 R? 12

A re(@wR? 4r,  4(3)

|

|
<
=
&%
G
"
o
5

This differs from the exact solution by —2.9 percent.
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Contact Stresses

Two bodies with curved surfaces pressed together
Point or line contact changes to area contact
Stresses developed are three-dimensional

Called contact stresses or Hertzian stresses
Common examples

> Wheel rolling on rall

> Mating gear teeth

> Rolling bearings



Spherical Contact Stress

» Two solid spheres of diameters @, and d, are pressed together
with force F

e Circular area of contact of radius a

o af3E(L=v) [Ei A+ (1) [Es (3-68)
8 l/d]—|—1/d2




Spherical Contact Stress

 Pressure distribution is hemispherical

o Maximum pressure at the center of
contact area

3F
2w a?

Pmax =

(3-69)




Spherical Contact Stress

o Maximum stresses on the zaxis
» Principal stresses

Z 1 1
0] = 02 =0y = 0y = — Pmax (1— P tan l|7/a|)(1‘|‘v)_ )
X 2(1 + "’—2)
| a .

(3-70)
. _plnﬁ)\

BT z’ (3-71)
1 + —

a

o From Mohr’s circle, maximum shear stress Is

01 — 03 Oy — O3
Tmx =T1/3=T3 = —5— = — (3-72)




Spherical Contact Stress

g, T

Plot of three principal
stress and maximum
shear stress as a function
of distance below the
contact surface

Note that 7., peaks
below the contact surface

Fatigue failure below the
surface leads to pitting
and spalling

1.0

0.8

0.6

0.4

[Ratio of stress to p,. |

0.2

0 0.5a a 1.5a 2a 2.5a 3a

For pOiSSOﬂ ratio Of 0.30’ Distance from contact surface
Tmax ~ 0.3 Prmax Flg 3—37
at depth of

Z=0.48a



Cylindrical Contact Stress

Two right circular cylinders with length /and
diameters d; and 4,

Area of contact Is a narrow rectangle of width
2band length /

Pressure distribution is elliptical

o Half-width 6
~2F (1 =vi) JEi + (1 —v3) [Es
b= \/m 1/d, + 1/d5 (3-73

o Maximum pressure

2F
Pmax — —— (3_74)
bl




Cylindrical Contact Stress

) (3-75)

(3-76)

o Maximum stresses on Zaxis

Z2
Oy = _zvpmax | —+ ﬁ —

—2

hd
b

i
b

= 3-77
V 1+ z2/b? ( )
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Cylindrical Contact Stress

e Plot of stress
components and
maximum shear
stress as a function
of distance below
the contact surface

 For poisson ratio
of 0.30,
Tmax — 0.3 Prax
at depth of
z=0.78606

IRatio of stress to p,. |

0.8

0.6

0.4

0.2

0 0.5b b 1.5b 2b 2.5b 3b

Distance from contact surface

Fig. 3-39



