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Shear Force and Bending Moments in Beams

 Cut beam at any location x1

 Internal shear force V and bending moment M must ensure 

equilibrium
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Sign Conventions for Bending and Shear
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Distributed Load on Beam

 Distributed load q(x) called load intensity

 Units of force per unit length
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Relationships between Load, Shear, and Bending

 The change in shear force from A to B is equal to the area of the 

loading diagram between xA and xB.

 The change in moment from A to B is equal to the area of the 

shear-force diagram between xA and xB.
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Shear-Moment Diagrams
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Moment Diagrams – Two Planes
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Combining Moments from Two Planes

 Add moments from two 

planes as perpendicular 

vectors


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Singularity Functions 

 A notation useful 

for integrating 

across 

discontinuities

 Angle brackets  

indicate special 

function to 

determine whether 

forces and moments 

are active
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Stress

 Normal stress is normal to a surface, designated by s

 Tangential shear stress is tangent to a surface, designated by t

 Normal stress acting outward on surface is tensile stress

 Normal stress acting inward on surface is compressive stress

 U.S. Customary units of stress are pounds per square inch (psi)

 SI units of stress are newtons per square meter (N/m2)

 1 N/m2 = 1 pascal (Pa)
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Stress element

 Represents stress at a point

 Coordinate directions are arbitrary

 Choosing coordinates which result in zero shear stress will 

produce principal stresses
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Cartesian Stress Components

 Defined by three mutually orthogonal surfaces at a point within 

a body

 Each surface can have normal and shear stress

 Shear stress is often resolved into perpendicular components

 First subscript indicates direction of surface normal

 Second subscript indicates direction of shear stress
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Cartesian Stress Components

 In most cases, “cross shears” are equal

 Plane stress occurs when stresses on one surface are zero
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Plane-Stress Transformation Equations

 Cutting plane stress element at an arbitrary angle and balancing 

stresses gives plane-stress transformation equations
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Principal Stresses for Plane Stress

 Differentiating Eq. (3-8) with respect to f and setting equal to 
zero maximizes s and gives

 The two values of 2fp are the principal directions.

 The stresses in the principal directions are the principal stresses.

 The principal direction surfaces have zero shear stresses.

 Substituting Eq. (3-10) into Eq. (3-8) gives expression for the 
non-zero principal stresses.

 Note that there is a third principal stress, equal to zero for plane 
stress.
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Extreme-value Shear Stresses for Plane Stress

 Performing similar procedure with shear stress in Eq. (3-9), the 

maximum shear stresses are found to be on surfaces that are 

±45º from the principal directions.

 The two extreme-value shear stresses are 

Shigley’s Mechanical Engineering Design



Maximum Shear Stress

 There are always three principal stresses.  One is zero for plane 

stress.

 There are always three extreme-value shear stresses.

 The maximum shear stress is always the greatest of these three.

 Eq. (3-14) will not give the maximum shear stress in cases 

where there are two non-zero principal stresses that are both 

positive or both negative. 

 If principal stresses are ordered so that s1 > s2 > s3, 

then tmax = t1/3
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Mohr’s Circle Diagram

 A graphical method for visualizing the stress state at a point

 Represents relation between x-y stresses and principal stresses

 Parametric relationship between s and t (with 2f as parameter)

 Relationship is a circle with center at 

C = (s, t) = [(s x + s y)/2, 0 ]

and radius of 
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Mohr’s Circle Diagram
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Example 3-4 Summary

x-y
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Principal stress 
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Max shear 

orientation



General Three-Dimensional Stress

 All stress elements are actually 3-D.

 Plane stress elements simply have one surface with zero stresses.

 For cases where there is no stress-free surface, the principal 

stresses are found from the roots of the cubic equation
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General Three-Dimensional Stress

 Always three extreme shear values

 Maximum Shear Stress is the largest

 Principal stresses are usually ordered such that s1 > s2 > s3, 

in which case tmax = t1/3
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Elastic Strain

 Hooke’s law

 E is Young’s modulus, or modulus of elasticity

 Tension in on direction produces negative strain (contraction) in 

a perpendicular direction.

 For axial stress in x direction,

 The constant of proportionality n is Poisson’s ratio

 See Table A-5 for values for common materials.
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Elastic Strain

 For a stress element undergoing sx, sy, and sz, simultaneously,
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Elastic Strain

 Hooke’s law for shear:

 Shear strain g is the change in a right angle of a stress element 

when subjected to pure shear stress.

 G is the shear modulus of elasticity or modulus of rigidity.

 For a linear, isotropic, homogeneous material,
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Uniformly Distributed Stresses

 Uniformly distributed stress distribution is often assumed for 

pure tension, pure compression, or pure shear.

 For tension and compression,

 For direct shear (no bending present),
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Normal Stresses for Beams in Bending

 Straight beam in positive bending

 x axis is neutral axis

 xz plane is neutral plane

 Neutral axis is coincident with the 

centroidal axis of the cross section

Shigley’s Mechanical Engineering Design

Fig. 3−13



Normal Stresses for Beams in Bending

 Bending stress varies linearly with distance from neutral axis, y

 I is the second-area moment about the z axis
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Normal Stresses for Beams in Bending

 Maximum bending stress is where y is greatest.

 c is the magnitude of the greatest y

 Z = I/c is the section modulus
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Assumptions for Normal Bending Stress

 Pure bending (though effects of axial, torsional, and shear 

loads are often assumed to have minimal effect on bending 

stress)

 Material is isotropic and homogeneous

 Material obeys Hooke’s law

 Beam is initially straight with constant cross section

 Beam has axis of symmetry in the plane of bending

 Proportions are such that failure is by bending rather than 

crushing, wrinkling, or sidewise buckling

 Plane cross sections remain plane during bending
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Two-Plane Bending

 Consider bending in both xy and xz planes

 Cross sections with one or two planes of symmetry only

 For solid circular cross section, the maximum bending stress is
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Shear Stresses for Beams in Bending
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Transverse Shear Stress

 Transverse shear stress is always accompanied with bending 

stress.
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Transverse Shear Stress in a Rectangular Beam
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Maximum Values of Transverse Shear Stress
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Significance of Transverse Shear Compared to Bending
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 Example:  Cantilever beam, rectangular cross section

 Maximum shear stress, including bending stress (My/I) and 

transverse shear stress (VQ/Ib),



Significance of Transverse Shear Compared to Bending

Shigley’s Mechanical Engineering Design

 Critical stress element (largest tmax) will always be either 

◦ Due to bending, on the outer surface (y/c=1), where the transverse 
shear is zero

◦ Or due to transverse shear at the neutral axis (y/c=0), where the 
bending is zero

 Transition happens at some critical value of L/h

 Valid for any cross section that does not increase in width farther away 
from the neutral axis.

◦ Includes round and rectangular solids, but not I beams and channels
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Torsion

 Torque vector – a moment vector collinear with axis of a 

mechanical element

 A bar subjected to a torque vector is said to be in torsion

 Angle of twist, in radians, for a solid round bar
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Torsional Shear Stress

 For round bar in torsion, torsional shear stress is proportional to 

the radius r

 Maximum torsional shear stress is at the outer surface
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Assumptions for Torsion Equations

 Equations (3-35) to (3-37) are only applicable for the following 

conditions

◦ Pure torque

◦ Remote from any discontinuities or point of application of 

torque

◦ Material obeys Hooke’s law

◦ Adjacent cross sections originally plane and parallel remain 

plane and parallel

◦ Radial lines remain straight

 Depends on axisymmetry, so does not hold true for 

noncircular cross sections

 Consequently, only applicable for round cross sections
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Torsional Shear in Rectangular Section

 Shear stress does not vary linearly with radial distance for 

rectangular cross section

 Shear stress is zero at the corners

 Maximum shear stress is at the middle of the longest side

 For rectangular b x c bar, where b is longest side
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Power, Speed, and Torque

 Power equals torque times speed

 A convenient conversion with speed in rpm

Shigley’s Mechanical Engineering Design

where H = power, W

n = angular velocity, revolutions per minute



Power, Speed, and Torque

 In U.S. Customary units, with unit conversion built in
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Closed Thin-Walled Tubes

 Wall thickness t << tube 

radius r

 Product of shear stress 

times wall thickness is 

constant

 Shear stress is inversely 

proportional to wall 

thickness

 Total torque T is 

 Am is the area enclosed 

by the section median 

line
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Closed Thin-Walled Tubes

 Solving for shear stress

 Angular twist (radians) per unit length

 Lm is the length of the section median line
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Open Thin-Walled Sections

 When the median wall line is not closed, the section is said to be 

an open section

 Some common open thin-walled sections

 Torsional shear stress

where T = Torque, L = length of median line, c = wall thickness, 

G = shear modulus, and q1 = angle of twist per unit length
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Open Thin-Walled Sections

 Shear stress is inversely proportional to c2

 Angle of twist is inversely proportional to c3

 For small wall thickness, stress and twist can become quite large

 Example:  

◦ Compare thin round tube with and without slit

◦ Ratio of wall thickness to outside diameter of 0.1

◦ Stress with slit is 12.3 times greater

◦ Twist with slit is 61.5 times greater
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Stress Concentration

 Localized increase of stress near discontinuities

 Kt is Theoretical (Geometric) Stress Concentration Factor
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Theoretical Stress Concentration Factor

 Graphs available for 

standard configurations

 See Appendix A-15 and 

A-16 for common 

examples

 Many more in Peterson’s 

Stress-Concentration 

Factors

 Note the trend for higher 

Kt at sharper discontinuity 

radius, and at greater 

disruption
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Stress Concentration for Static and Ductile Conditions

 With static loads and ductile materials

◦ Highest stressed fibers yield (cold work)

◦ Load is shared with next fibers

◦ Cold working is localized

◦ Overall part does not see damage unless ultimate strength is 

exceeded

◦ Stress concentration effect is commonly ignored for static 

loads on ductile materials
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Techniques to Reduce Stress Concentration

 Increase radius

 Reduce disruption

 Allow “dead zones” to shape flowlines more gradually
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Stresses in Pressurized Cylinders

 Cylinder with inside radius ri, outside radius ro, internal 

pressure pi, and external pressure po

 Tangential and radial stresses,

Shigley’s Mechanical Engineering Design

Fig. 3−31



Stresses in Pressurized Cylinders

 Special case of zero outside pressure, po = 0
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Stresses in Pressurized Cylinders

 If ends are closed, then longitudinal stresses also exist
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Thin-Walled Vessels

 Cylindrical pressure vessel with wall thickness 1/10 or less of 

the radius

 Radial stress is quite small compared to tangential stress

 Average tangential stress

 Maximum tangential stress

 Longitudinal stress (if ends are closed)
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Stresses in Rotating Rings

 Rotating rings, such as flywheels, blowers, disks, etc.

 Tangential and radial stresses are similar to thick-walled 

pressure cylinders, except caused by inertial forces

 Conditions:

◦ Outside radius is large compared with thickness (>10:1)

◦ Thickness is constant

◦ Stresses are constant over the thickness

 Stresses are
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Press and Shrink Fits

 Two cylindrical parts are assembled with radial interference d

 Pressure at interface

 If both cylinders are of the same material
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Press and Shrink Fits

 Eq. (3-49) for pressure cylinders applies

 For the inner member, po = p and pi = 0

 For the outer member, po = 0 and pi = p
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Temperature Effects

 Normal strain due to expansion from temperature change

where a is the coefficient of thermal expansion

 Thermal stresses occur when members are constrained to 

prevent strain during temperature change

 For a straight bar constrained at ends, temperature increase will 

create a compressive stress

 Flat plate constrained at edges
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Coefficients of Thermal Expansion
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Curved Beams in Bending

 In thick curved beams

◦ Neutral axis and centroidal axis are not coincident

◦ Bending stress does not vary linearly with distance from the 

neutral axis
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Curved Beams in Bending

Shigley’s Mechanical Engineering Design

ro = radius of outer fiber

ri = radius of inner fiber

rn = radius of neutral axis

rc = radius of centroidal axis

h = depth of section
co= distance from neutral axis to outer fiber

ci = distance from neutral axis to inner fiber

e = distance from centroidal axis to neutral axis

M = bending moment; positive M decreases curvature

Fig. 3−34



Curved Beams in Bending

 Location of neutral axis

 Stress distribution

 Stress at inner and outer surfaces
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Formulas for Sections of Curved Beams (Table 3-4)
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Formulas for Sections of Curved Beams (Table 3-4)
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Alternative Calculations for e

 Approximation for e, valid for large curvature where e is small 

with rn rc

 Substituting Eq. (3-66) into Eq. (3-64), with rn – y = r, gives
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Contact Stresses

 Two bodies with curved surfaces pressed together

 Point or line contact changes to area contact

 Stresses developed are three-dimensional

 Called contact stresses or Hertzian stresses

 Common examples

◦ Wheel rolling on rail

◦ Mating gear teeth

◦ Rolling bearings
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Spherical Contact Stress

 Two solid spheres of diameters d1 and d2 are pressed together 

with force F

 Circular area of contact of radius a
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Spherical Contact Stress

 Pressure distribution is hemispherical

 Maximum pressure at the center of 

contact area
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Spherical Contact Stress

 Maximum stresses on the z axis

 Principal stresses

 From Mohr’s circle, maximum shear stress is
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Spherical Contact Stress

 Plot of three principal 

stress and maximum 

shear stress as a function 

of distance below the 

contact surface

 Note that tmax peaks 

below the contact surface

 Fatigue failure below the 

surface leads to pitting 

and spalling

 For poisson ratio of 0.30, 

tmax = 0.3 pmax

at depth of 

z = 0.48a
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Cylindrical Contact Stress

 Two right circular cylinders with length l and 

diameters d1 and d2

 Area of contact is a narrow rectangle of width 

2b and length l

 Pressure distribution is elliptical

 Half-width b

 Maximum pressure
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Cylindrical Contact Stress

 Maximum stresses on z axis
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Cylindrical Contact Stress

 Plot of stress 

components and 

maximum shear 

stress as a function 

of distance below 

the contact surface

 For poisson ratio 

of 0.30, 

tmax = 0.3 pmax

at depth of 

z = 0.786b
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