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Failure Examples

(a) (b)

Fig. 5-1

« Failure of truck driveshaft spline due to corrosion fatigue
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Failure Examples

 Impact failure of a lawn-mower blade driver hub.
» The blade impacted a surveying pipe marker.
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Failure Examples

« Failure of an overhead-pulley retaining bolt on a weightlifting
machine.

» A manufacturing error caused a gap that forced the bolt to take
the entire moment load.

Shigley’s Mechanical Engineering Design



Failure Examples

(a)

| Fig. 5-4

Chain test fixture that failed in one cycle.
To alleviate complaints of excessive wear, the manufacturer decided to

case-harden the material

(a) Two halves showing brittle fracture initiated by stress concentration
(b) Enlarged view showing cracks induced by stress concentration at

the support-pin holes

Shigley’s Mechanical Engineering Design



Failure Examples

Fig. 5-5

» Valve-spring failure caused by spring surge in an oversped
engine.
» The fractures exhibit the classic 45 degree shear failure

Shigley’s Mechanical Engineering Design



Static Strength

» Usually necessary to design using published strength values
o Experimental test data is better, but generally only warranted
for large quantities or when failure is very costly (in time,

expense, or life)

» Methods are needed to safely and efficiently use published
strength values for a variety of situations



Stress Concentration

 Localized increase of stress near discontinuities
» K,Is Theoretical (Geometric) Stress Concentration Factor

K, = 2mx g Imax (3-48)

|< 1) T‘-l
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Theoretical Stress Concentration Factor

Graphs available for
standard configurations Figure A-15-1

Bar in tension or simple

See Appendix A-15 and

hode. op = F/A, where
A = (w — d)i and 1 is the

A-16 for common
examples

Many more in Peterson’s
Stress-Concentration
Factors

Note the trend for higher  |Fewe s
K: at sharper discontinuity | e = e s
radius, and at greater

disruption




Stress Concentration for Static and Ductile Conditions

» With static loads and ductile materials
> Highest stressed fibers yield (cold work)
o Load is shared with next fibers
- Cold working is localized

> Overall part does not see damage unless ultimate strength is
exceeded

o Stress concentration effect is commonly ignored for static
loads on ductile materials

e Stress concentration must be included for dynamic loading (See
Ch. 6)

o Stress concentration must be included for brittle materials, since
localized yielding may reach brittle failure rather than cold-
working and sharing the load.



Need for Static Faillure Theories

» Uniaxial stress element (e.g. tension test)

_ Strength S
Stress o

o Multi-axial stress element
> One strength, multiple stresses
> How to compare stress state to single strength?




Need for Static Faillure Theories

» Failure theories propose appropriate means of comparing multi-
axial stress states to single strength

» Usually based on some hypothesis of what aspect of the stress
state Is critical

» Some failure theories have gained recognition of usefulness for
various situations



Maximum Normal (Principal) Stress Theory

Theory: Yielding begins when the maximum principal stress in
a stress element exceeds the yield strength.

For any stress element, use Mohr’s circle to find the principal
stresses.

Compare the largest principal stress to the yield strength.

Often the first theory to be proposed by engineering students.
Is it a good theory?



Maximum Normal (Principal) Stress Theory

o Experimental data

shows the theory is i o o
unsafe in the 4% T T f%
I
quadrant. | ] I&
o Thistheory is not safe | ) i o
to use for ductile i - |
materials. | - |
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Maximum Shear Stress Theory (MSS)

Theory: Yielding begins when the maximum shear stressin a
stress element exceeds the maximum shear stress in a tension
test specimen of the same material when that specimen begins to
yield.

For a tension test specimen, the maximum shear stress Is o; /2.
At yielding, when o, = 5, the maximum shear stress is S,/2 .
Could restate the theory as follows:

> Theory: Yielding begins when the maximum shear stressin a
stress element exceeds S /2.



Maximum Shear Stress Theory (MSS)

For any stress element, use Mohr’s circle to find the maximum
shear stress. Compare the maximum shear stress to S/2.

Ordering the principal stresses such that o, > 0, > o3

=

> B

Tmax = Or oy — 03 = S)' (5_”

Incorporating a design factor 7
S, S,

Tmax — T or 0| —03 = — (5_3)
2n n

Or solving for factor of safety
8,12

Tmax

N




Maximum Shear Stress Theory (MSS)

To compare to experimental data, express z.., In terms of
principal stresses and plot.

To simplify, consider a plane stress state

Let o,and ozrepresent the two non-zero principal stresses, then
order them with the zero principal stress such that o; > o, > o

Assuming o,> ogthere are three cases to consider
- Case 1: 04> 05>0
- Case 2: 0,> 0> op
- Case 3: 0> 0,> op



Maximum Shear Stress Theory (MSS)

e Casel: 04> 05>0
> For thiscase, o = o,and o;=0
> EQ. (5-1) reduces to 54> S,
o Case 2: 0,>0>op
o For this case, o, = o,and o3 = og
° EQ. (5-1) reducesto o, — 05> S,
e Case 3: 0> 0,> 05
o For this case, o; =0and oy = og
> EQ. (5-1) reduces to oz< -5,



Maximum Shear Stress Theory (MSS)

Plot three cases on
principal stress axes

Case 1: 04> 05>0
° 04> 5,

Case 2: 0,> 0> o5
°© Oy~ 0= 5,
Case 3: 0> 0,> op
° 0g<—S,

Other Ilnes are
symmetric cases

Inside envelope is
predicted safe zone

Case 1

28

LLoad line

Case 3

Fig. 5-7

Case 2

g A



Maximum Shear Stress Theory (MSS)

o Comparison to

experimental data g o
« Conservative in all o) > ____3_4,“
quadrants L te
// l
e Commonly used for - ®
- . - s |
design situations } 1 ©
I |
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Distortion Energy (DE) Failure Theory

» Also known as:
> QOctahedral Shear Stress
> Shear Energy
> Von Mises
> Von Mises — Hencky



Distortion Energy (DE) Failure Theory

 Originated from observation that ductile materials stressed
hydrostatically (equal principal stresses) exhibited yield
strengths greatly in excess of expected values.

e Theorizes that if strain energy is divided into hydrostatic
volume changing energy and angular distortion energy, the
yielding is primarily affected by the distortion energy.

fo'z fr“ I =Ty,
/ I / I / I

T Tay T1= Oy

ST LV L

(T% = (T'gl\'

(T|>O'2>O'3

(a) Triaxial stresses (b) Hydrostatic component (¢) Distortional component

Fig. 5-8



Distortion Energy (DE) Failure Theory

e Theory: Yielding occurs when the distortion strain energy per
unit volume reaches the distortion strain energy per unit volume
for yield in simple tension or compression of the same material.

T, o o2 o,-0,,
v 4 LV LY
03 Ty 03— 0,
0> 0,>0,
(a) Triaxial stresses (b) Hydrostatic component (c¢) Distortional component

Fig. 5-8



Deriving the Distortion Energy

o Hydrostatic stress is average of principal stresses

Ul+ﬁg+ﬁ3 ()
a

(8] av f— -
)

« Strain energy per unit volume, u = i[e;o, + 6,05 + €303]

 Substituting Eq. (3—19) for principal strains into strain energy
equation,

| - ]
€, = = o — v(oy +07)
I - ]
€y = = |0y —v(oy +03) (3-19)
. E | . .
Ly (0x +0y)]
€. = —|lo. —v(o, + o,
Z £ L2 X v) |
l ] 3 2
H = — [{IT + 05 + 05 — 2v(0102 + 0203 + 0307 ]] (b)



Deriving the Distortion Energy

l 2 e
== o7 + 05+ 03 — 2v(0102 + 0203 + 0307 )] (b)

e Strain energy for producing only volume change Is obtained by
substituting o, for oy, o,, and o;

i

4 2
le]

U, = ,}E’r{l — 2v) (c)
 Substituting o, from Eq. (a),
1 -2v, , 5 5
Uy = oL (01 + 05 + 03 —|—20102—|—20203—|-20301) (5-7)

 Obtain distortion energy by subtracting volume changing
energy, Eq. (5-7), from total strain energy, Eq. (b)

(5-8)

14 v [(ol —07)* 4 (02 — 03)* + (03 —al)z}
Ug = U — Uy =

3E 2



Deriving the Distortion Energy

[+ v [(ol —02)” + (02 — 03)" 4 (03 — ol)z}
Ug = U — Uy = (5-8)
3E 2
» Tension test specimen at yield has o; = S, and o, = 03 =0
» Applying to Eqg. (5-8), distortion energy for tension test
specimen is
Il 4+v 5
= ‘ -9
Uy, E S} (5-9)
» DE theory predicts failure when distortion energy, Eqg. (5-8),
exceeds distortion energy of tension test specimen, Eq. (5-9)
[(ol —02) + (0 —203)2 + (03 —al)z}”z s, 510



Von Mises Stress
1/2

|:(01 — 07)* + (07 — 03)° + (03 — 01)2:| > S, (5-10)

2
o Left hand side is defined as von Mises stress

. [0 —0)> + (02— 03> + (03 —a)> "
o = (5-12)
2
» For plane stress, simplifies to
, 1/2

o' = (ai —o.0p + cré) / (5-13)
 In terms of xyzcomponents, in three dimensions
o' = L [0x — 0, + (0 — 0 + (0 — 00 + 6(c, + 22 +2)]7> (5-14)
» In terms of xyzcomponents, for plane stress

o' = (axz — 0,0y + UE -+ 3t_3).) /2 (5-15)



Distortion Energy Theory With Von Mises Stress

\Von Mises Stress can be thought of as a single, equivalent, or
effective stress for the entire general state of stress in a stress
element.

Distortion Energy failure theory simply compares von Mises
stress to yield strength.

o' > S, (5-11)
Introducing a design factor,
S.
o = = (5-19)



Octahedral Stresses

» Same results obtained by evaluating octaheadral stresses.

» QOctahedral stresses are identical on 8 surfaces symmetric to the
principal stress directions.

» QOctahedral stresses allow representation of any stress situation

with a set of normal and shear stresses.
A%

B

Principal stress element with single

octahedral plane showing All 8 octahedral planes showing



Octahedral Shear Stress

o QOctahedral normal stresses are normal to the octahedral
surfaces, and are equal to the average of the principal stresses.

o Qctahedral shear stresses lie on the octahedral surfaces.

1
Tost = = [(01 — 02)% + (02 — 03)> + (03 — )*]/* (5-16)

3

0y




Octahedral Shear Stress Failure Theory

Theory: Yielding begins when the octaheadral shear stress in a
stress element exceeds the octahedral shear stress in a tension
test specimen at yielding.

The octahedral shear stress is

|
3 [(01 —07)* 4 (07 — 03)* + (03 — 01)2]

/2 (5-16)

Toct —

For a tension test specimen at yielding, o; = S, 0, = 03 = 0.
Substituting into Eq. (5-16),
Toct = QS\ (5-17)
3 .
The theory predicts failure when Eq. (5-16) exceeds
Ea. (5-17). This condition reduces to
[(ol —02)" 4 (02 — 03)" 4 (03 — 01)2}
2

1/2

> Sy (5-18)



Failure Theory in Terms of von Mises Stress

» Equation is identical to Eqg. (5-10) from Distortion Energy
approach

« ldentical conclusion for:
> Distortion Energy
o QOctahedral Shear Stress
> Shear Energy
> Von Mises
> Von Mises — Hencky



DE Theory Compared to Experimental Data

0,/S. Oct. shear

Plot von Mises stress on
principal stress axes to
compare to experimental
data (and to other failure
theories)

DE curve is typical of data

Note that fypicalequates to
a 50% reliability from a
design perspective
Commonly used for
analysis situations

MSS theory useful for
design situations where
higher reliability iIs desired

v
l-l.O /%




Shear Strength Predictions

For pure shear loading, Mohr’s circle shows that 6, =—o5 =7

Plotting this equation on principal stress axes gives load line for
pure shear case

Intersection of pure shear load line with failure curve indicates
shear strength has been reached

Each failure theory predicts shear strength to be some fraction of
normal strength Fd

“
Pure shear load line (o, = —0 = 7)

— DE
=== MSS




Shear Strength Predictions

» For MSS theory, intersecting pure shear load line with failure
line [Eq. (5-5)] results In

Syy = 0.5, (5-2)

.
Pure shear load line (0, = —0p = 7)

— DE
=== MSS




Shear Strength Predictions

For DE theory, intersection pure shear load line with failure
curve [Eq. (5-11)] gives

1/2 S,
(3t7,) =8 or 1y = 7% = 0.5775, (5-20)
» Therefore, DE theory predicts shear strength as
Ssy = 0.577S, (5-21)

.
Pure shear load line (04 = —0p = 7)

s— DE

Fig. 5-9 ——— MSS




Example 5-1

A hot-rolled steel has a yield strength of Sy, = Sy, = 100 kpsi and a true strain at fracture
of ¢ = 0.55. Estimate the factor of safety for the following principal stress states:

(a) ox =70 kpsi, oy = 70 kpsi, 7,y = 0 kpsi

(b) o = 60 kpsi, oy = 40 kpsi, 7,y = —15 kpsi

(¢) ox = 0 kpsi, oy = 40 kps1, 74y = 45 kpsi

(d) ox = —40 kpsi, oy = —60 kpsi, 74y = 15 kpsi

(e) oy = 30 kpsi, on = 30 kpsi, o3 = 30 kpsi

Solution

Since &f > 0.05 and Sy, and Sy, are equal, the material is ductile and both the
distortion-energy (DE) theory and maximum-shear-stress (MSS) theory apply. Both
will be used for comparison. Note that cases a to d are plane stress states.

Shigley’s Mechanical Engineering Design



Example 5-1

(a) Since there 1s no shear stress on this stress element, the normal stresses are
equal to the principal stresses. The ordered principal stresses are o4 = oy = 70,
op — 0y = ?U, g3 — 0 kpSl

DE From Eq. (5-13).
o' = [70° — 70(70) + 70*]"/* = 70 kpsi

From Eq. (5-19),

Sy 100
n=-—==— =143
o 70
MSS Noting that the two nonzero principal stresses are equal, tyax Will be from the

largest Mohr’s circle. which will incorporate the third principal stress at zero. From
Eq. (3-16),

ag] — O3 70 — 0

Tmax = 5 = 5 = 35 Kkpsi
From Eq. (5-3),
Sy
ne22 _ 10072 _ 4
Tmax 35

Shigley’s Mechanical Engineering Design



Example 5-1

(b) From Eq. (3—13), the nonzero principal stresses are

60 + 40 60 — 40\~
oA OB = er i\/( . )+(—15)2=68.0,32.0kpsi

The ordered principal stresses are 04 = 01 = 68.0, op = 0, = 32.0, o3 = 0 kpsi.
1/2

DE o’ = [68% — 68(32) + 68°] " = 59.0 kpsi
Sy 100
S e =1.70
T T 590

MSS Noting that the two nonzero principal stresses are both positive, tmax Will be
from the largest Mohr’s circle which will incorporate the third principle stress at zero.
From Eq. (3-16),

a| — 03 68.0 =0

Tmax — 5 T = 34.0 kpSi
S 1002
Tmax 34.0

Shigley’s Mechanical Engineering Design



Example 5-1

(c) This time, we shall obtain the factors of safety directly from the xy components
of stress.

DE From Eq. (5-15).
6" = (0 — 0x0y + 02 + 3t2) 2= [(40? + 3(45)?]* = 87.6 kpsi

Sy 100 [ 14

"Te TRT6

MSS  Taking care to note from a quick sketch of Mohr’s circle that one nonzero princi-
pal stress will be positive while the other one will be negative, Ty, can be obtained from

the extreme-value shear stress given by Eq. (3—14) without finding the principal stresses.

2 2
— Oy 0—40
rlTlEl)( = \/(Ux 2 J}) -|— IIZ_".F = J(T) -|- 452 — 492 kpSl

Sy/2  100/2
n= v/ =—/= .02
e 49.2

For comparison purposes later in this problem, the nonzero principal stresses can be
obtained from Eq. (3—13) to be 70.0 kpsi and —30 kpsi. Sy R



Example 5-1

(d) From Eq. (3—13), the nonzero principal stresses are

—40 + (=60 —40 — (—60)\°
o4, 0p = —2F (=060) :I:\/( ( )) +(15)2 = —32.0, —68.0 kpsi

2 2
The ordered principal stresses are o7 = 0, 04 = 05 = —32.0, o0 = 03 = —68.0 kpsi.
DE o' = [(=32)> = (—=32)(—68) + (—68)*]* = 59.0 kpsi
Sy 100
= —==—=1.70
T T390

MSS  From Eq. (3-16),
op —o3 0 —(—68.0)

Tmax = 5 = 5 = 34.0 kpsi
Sy/2  100/2 | 47
Jl] — == — —
Tmax 34.0

Shigley’s Mechanical Engineering Design



Example 5-1

(e) The ordered principal stresses are o, = 30, o, = 30, o3 = 30 kpsi
DE From Eq. (5-12).

T30 —30)% + (30 — 30)2 + (30 — 30)27"° ,
— 5 = 0 kpsi
Sy 100
n = = — 00
o’ 0
MSS  From Eq. (5-3).
S, 100

Shigley’s Mechanical Engineering Design



Example 5-1

A tabular summary of the factors of safety 1s included for comparisons.

C) (b) (<) (d) (e)
DE .43 1.70 .14 1.70 00
MSS .43 1.47 1.02 1.47 00

Since the MSS theory is on or within the boundary of the DE theory, it will always pre-
dict a factor of safety equal to or less than the DE theory, as can be seen in the table.

=== MSS
=== Load lines

Shigley’s Mechanical Engineering Design



Example 5-1

For each case, except case (¢e), the coordinates and load lines in the o4, op plane are
shown in Fig. 5-11. Case (e) is not plane stress. Note that the load line for case (a) 1s
the only plane stress case given in which the two theories agree, thus giving the same
factor of safety.

- DE
=== MSS
-—= Load lines

Shigley’s Mechanical Engineering Design



Mohr Theory

» Some materials have compressive strengths different from
tensile strengths

o Mohr theory is based on three simple tests: tension,
compression, and shear

 Plotting Mohr’s circle for each, bounding curve defines failure

envelope ) T

Mohr failure curve

g




Coulomb-Mohr Theory

o Curved failure curve is difficult to determine analytically

o Coulomb-Mohr theory simplifies to linear failure envelope using
only tension and compression tests (dashed circles)

Coulomb-Mohr
failure line




Coulomb-Mohr Theory

Coulomb-Mohr
failure line

e From the geometry, derive
the failure criteria

B,C, — BiCy B3G5 — B(

0C, — 0C 0C; — 0C,

B,C, — B¢y B3(5 — B (
G, C Gy

B1Ciy = 5;/2, BCr = (01 — 03)/2,
and B3;C3 = S./2

g1 — O3 S; SC S;
2 2 2 2
S o1r+o3 S S
2 2 2777
O O
L R |
St Se

(5-22)
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Coulomb-Mohr Theory

« Incorporating factor of safety

g 03 |

—— === (5-26)

Sr SC n
 For ductile material, use tensile and compressive yield strengths
 For brittle material, use tensile and compressive ultimate

strengths



Coulomb-Mohr Theory

R (5-22)
Sf SC B
To plot on principal stress axes, consider three cases
Case 1: 0,> 05>0 For this case, o; = o4and o0;=0
> EQ. (5—22) reduces to
oa = S (5-23)
Case 2: 0,> 0> o, For this case, o; = o4and oy
— GB
5 I
B (24 %8 (5-24)
Sr SC
Case 3: 0> 0,> o5 For this case, o; =0 and oy
"9 op < -5, (5-25)

> EQ. (5—¢¢) reuuces w



Coulomb-Mohr Theory

 Plot three cases on principal stress axes

» Similar to MSS theory, except with different strengths for
compression and tension

Op
S,
Q>
ey ef-;f}o O
o 9(. \’z)& ‘S‘f ‘
AT
>
<&
Fig. 5-14
-S.




Coulomb-Mohr Theory

» Intersect the pure shear load line with the failure line to
determine the shear strength

« Since failure line is a function of tensile and compressive
strengths, shear strength is also a function of these terms.

Sy1 Sye
: S_w + S}‘C ( )



Example 5-2

A 25-mm-diameter shaft is statically torqued to 230 N - m. It is made of cast 195-T6
aluminum, with a yield strength in tension of 160 MPa and a yield strength in com-

pression of 170 MPa. It is machined to final diameter. Estimate the factor of safety of
the shatft.

Solution
The maximum shear stress is given by

wd”> 7 [25(1073)]

The two nonzero principal stresses are 75 and —75 MPa, making the ordered principal
stresses 0y = 75, 0o = 0, and 03 = —75 MPa. From Eq. (5-26). for yield,

| |
01/Syt — 03/Sye  75/160 — (=75)/170

1.10

Shigley’s Mechanical Engineering Design



Example 5-2

Alternatively, from Eq. (5-27),

SySye  160(170)

= — = 82.4 MPa
and Ty = 75 MPa. Thus,
Ssy 82.4
= = =1.10
Nt TS

Shigley’s Mechanical Engineering Design



Example 5-3

A certain force F applied at D near the end of the 15-in lever shown in Fig. 5-16,
which is quite similar to a socket wrench, results in certain stresses in the cantilevered
bar OABC. This bar (OABC) 1s of AISI 1035 steel, forged and heat-treated so that it has
a minimum (ASTM) yield strength of 81 kpsi. We presume that this component would
be of no value after yielding. Thus the force F required to initiate yielding can be
regarded as the strength of the component part. Find this force.

2 in

Shigley’s Mechanical Engineering Design



Example 5-3

We will assume that lever DC is strong enough and hence not a part of the problem. A 1035
steel, heat-treated, will have a reduction in area of 50 percent or more and hence is a duc-
tile material at normal temperatures. This also means that stress concentration at shoulder
A need not be considered. A stress element at A on the top surface will be subjected to a
tensile bending stress and a torsional stress. This point, on the 1-in-diameter section, is the
weakest section, and governs the strength of the assembly. The two stresses are

M 32M  32(14F)

I/c xd3  w(13)
T 16T  16(15F
L L 1L T

J wd3 7(13)
Employing the distortion-energy theory, we find, from Eq. (5-15), that

= 142.6F

Oy =

1/2

o' = (062 +372)"7 = [(142.6 F) + 3(76.4F)*"* = 194.5F

Equating the von Mises stress to Sy, we solve for F and get

Sy 81000

~ 1945 1945

= 416 Ibf

Shigley’s Mechanical Engineering Design



Example 5-3

In this example the strength of the material at point A is Sy = 81 kpsi. The strength of
the assembly or component is /' = 416 1bf.

Let us apply the MSS theory for comparison. For a point undergoing plane stress
with only one nonzero normal stress and one shear stress, the two nonzero principal
stresses will have opposite signs, and hence the maximum shear stress 1s obtained from
the Mohr’s circle between them. From Eq. (3-14)

2 142.6F \°
Tmax = \/(U—;) 72 = \/( S ) + (76.4F)2 = 104.5F

Setting this equal to Sy/2, from Eq. (5-3) with n = 1, and solving for F, we get
= 81 000/2 — 388 Ibf
104.5

which is about 7 percent less than found for the DE theory. As stated earlier, the MSS
theory is more conservative than the DE theory.

Shigley’s Mechanical Engineering Design



Example 5-4

The cantilevered tube shown in Fig. 517 is to be made of 2014 aluminum alloy treated
to obtain a specified minimum yield strength of 276 MPa. We wish to select a stock-size
tube from Table A—8 using a design factor ny; = 4. The bending load is F = 1.75 kN,
the axial tension 1s P = 9.0 kN, and the torsion 1s T = 72 N - m. What 1s the realized
factor of safety?

\ x Shigley’s Mechanical Engineering Design



Example 5-4

The critical stress element 1s at point A on the top surface at the wall, where the bend-
ing moment is the largest, and the bending and torsional stresses are at their maximum
values. The critical stress element is shown in Fig. 5-17b. Since the axial stress and
bending stress are both in tension along the x axis, they are additive for the normal
stress, giving

(1)

A I A 1

Jx:_+

P Mc_9  120075/2) _ 9 , 105,
1 -

where, if millimeters are used for the area properties, the stress is in gigapascals.
The torsional stress at the same point 1s

I'r  72(d,/2)  36d,
J J - J

_ N, T:x

(2)

Iz;[ —

< — > o, x
=
\ F I g ' 5_ 1 7 (; Shigley’s Mechanical Engineering Design



Example 5-4

For accuracy, we choose the distortion-energy theory as the design basis. The von Mises
stress from Eq. (5-15), 1s

o' = (o7 + 31 i (3)
On the basis of the given design factor, the goal for o’ is
S 0.276
o' < =+ =—— =0.0690 GPa (4)
ng 4

where we have used gigapascals in this relation to agree with Egs. (1) and (2).

Shigley’s Mechanical Engineering Design



Example 5-4

Programming Eqs. (1) to (3) on a spreadsheet and entering metric sizes from
Table A—8 reveals that a 42 x 5-mm tube 1s satisfactory. The von Mises stress is found
to be 6" = 0.06043 GPa for this size. Thus the realized factor of safety is

Sy 0276

o 0.06043

For the next size smaller, a 42 x 4-mm tube, ¢’ = 0.07105 GPa giving a factor of
safety of
Sy 0.276

= = 3.88
o’ 0.07105

H =

Shigley’s Mechanical Engineering Design



Failure Theories for Brittle Materials

» Experimental data indicates some differences in failure for brittle
materials.

« Failure criteria is generally ultimate fracture rather than yielding
o Compressive strengths are usually larger than tensile strengths

oy, MPa
300 —
max. normal S0
gl
I - . o
I o B i
S : ==~ con” S
| Tuc pee® T | | | | 1 1 ut__ | o,, MPa
=700 -300 0 / 300
/
— /
/
/
B b T
/
/ S
300 — 1 ' 2
/ @ I
/ I
1 /g !
O Gray cast-iron data II :
/ |
—1 % |
/ |
l/ o I
I
5 E— 1
- _Su(‘
Fig. 5-19 -



Maximum Normal Stress Theory

Theory: Failure occurs when the maximum principal stress in a
stress element exceeds the strength.

Predicts failure when

o1 = Sm‘ or 03 = _Suc (5_28)

For plane stress,

oA > Sut Oor o < —Suc (5_29)
Incorporating design factor,
Su Suc
Oop=— or op=-— (5-30)

n n



Maximum Normal Stress Theory

Plot on principal stress axes

Unsafe in part of fourth quadrant

Not recommended for use

Included for historical comparison

Op

~ut

uc

ut



Brittle Coulomb-Mohr

e Same as previously derived, using ultimate strengths for failure
» Failure equations dependent on quadrant

Quadrant condition

Failure criteria

Sut

Ty

(5-31a)

s, \(;’5’\ s,
(5-31b) &
(5-31¢)

Fig. 5-14



Brittle Failure Experimental Data

e Coulomb-Mohr is
conservative in 41 quadrant

o Modified Mohr criteria

adjusts to better fit the data >

in the 41 quadrant

Fig. 5-19

oy, MPa
300 —
max. normal S0
o
I - P o
0\ -
: oL > a”’ 0\\‘- —
[ W - \orP
| =i ¢ S
= 1] I I | l u
-300 0 / 300
/
— /
/
/
B bt T
/
/ .
/ | J’,(')
300 1 /] ”
/ @ !
/ |
1/ |
O Gray cast-iron data II :
/ 1
—1 % |
/ |
[/ o |
|
______ 1
—Su(‘
=700 —

o4, MPa



Modified-Mohr

Quadrant condition Failure criteria
o4 =0 =10 o Sut
oA =—= (5-32q)
OB S
=>0>= el ur
o4 >0>o0p and P I op = — (5-32q)
A n
a Sue — Sf T4 op ]
o4 >0>0p and 2l Oue ut) — = — (5-32b)
(o)) Sur:Sur Sur: n
SHC
0>04=>o0p 9 =T~ (5-32¢)
oy, MPa
300
gl Su
B |
| T | ] | | | [ a4, MPa
=700 =300 0 300

-300

O Gray cast-iron data
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Example 5-5

Consider the wrench 1n Ex. 5-3, Fig. 5-16, as made of cast iron, machined to dimen-
sion. The force F required to fracture this part can be regarded as the strength of the

component part. If the material 1s ASTM grade 30 cast iron, find the force F with
(a) Coulomb-Mohr failure model.

(b) Modified Mohr failure model.

Shigley’s Mechanical Engineering Design



Example 5-5

We assume that the lever DC is strong enough, and not part of the problem. Since grade
30 cast iron 1s a brittle material and cast iron, the stress-concentration factors K; and K,
are set to unity. From Table A-24, the tensile ultimate strength is 31 kpsi and the com-
pressive ultimate strength 1s 109 kpsi. The stress element at A on the top surface will be
subjected to a tensile bending stress and a torsional stress. This location, on the 1-in-
diameter section fillet, is the weakest location, and it governs the strength of the assem-
bly. The normal stress o, and the shear stress at A are given by

M 2M 32(14F)
=Ki— =K = (l)——— = 142.6F
ox =R =R m = =03
I'r 16T [6(15F) |
I_r}.- = K”T = K”E = (I)W =T764F
From Eq. (3—13) the nonzero principal stresses o4 and op are

Op.O0p =

142.6F+0i\/(142.6F—0

2
> > ) + (76.4F)? = 175.8F, —33.2F

This puts us in the fourth-quadrant of the o4, op plane.

Shigley’s Mechanical Engineering Design



Example 5-5

(a) For BCM, Eq. (5-31b) applies with n = | for failure.
op op  1158F (=33.2F)

Su S, 31(103)  109(103)

Solving for F yields

F =167 1bf

(b) For MM, the slope of the load line is |og/oa] = 33.2/175.8 =0.189 < 1.
Obviously, Eq. (5-32a) applies.

op  II58F

Sue  31(103)

F =176 1bf

As one would expect from inspection of Fig. 5-19, Coulomb-Mohr is more conservative.

Shigley’s Mechanical Engineering Design



Selection of Failure Criteria

o First determine ductile vs. brittle
e For ductile

- MSS Is conservative, often used for design where higher
reliability is desired

- DE 1s typical, often used for analysis where agreement with
experimental data Is desired

o If tensile and compressive strengths differ, use Ductile
Coulomb-Mohr

 For brittle
> Mohr theory is best, but difficult to use
> Brittle Coulomb-Mohr is very conservative in 4" quadrant

- Modified Mohr is still slightly conservative in 4" quadrant, but
closer to typical



Selection of Failure Criteria in Flowchart Form

A

Y

Ductile behavior

Y
A

Brittle behavior

< 0.05 >0.05

Yes

Conservative?

Mod. Mohr Brittle Coulomb-Mohr Ductile Coulomb-Mohr

(MM) (BCM) (DCM)
Eq. (5-32) Eq. (5-31) Eq. (5-26) Conservative? Yes
Distortion-energy Maximum shear stress
- . (DE) (MSS)
Flg. 5-21 Egs. (5-15) Eq. (5-3)
and (5-19)
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Introduction to Fracture Mechanics

Linear elastic fracture mechanics (LEFM) analyzes crack
growth during service

Assumes cracks can exist before service begins, e.g. flaw,
Inclusion, or defect

Attempts to model and predict the growth of a crack

Stress concentration approach is inadequate when notch radius
becomes extremely sharp, as in a crack, since stress
concentration factor approaches infinity

Ductile materials often can neglect effect of crack growth, since
local plastic deformation blunts sharp cracks

Relatively brittle materials, such as glass, hard steels, strong
aluminum alloys, and steel below the ductile-to-brittle transition
temperature, benefit from fracture mechanics analysis



Quasi-Static Fracture

» Though brittle fracture seems instantaneous, it actually takes
time to feed the crack energy from the stress field to the crack
for propagation.

» Astatic crack may be stable and not propagate.

» Some level of loading can render a crack unstable, causing it to
propagate to fracture.



Quasi-Static Fracture

» Foundation work for fracture mechanics established by Griffith
In 1921

» Considered infinite plate with an elliptical flaw
o Maximum stress occurs at (+4, 0)

(U)‘)lnax — (1 + 2%)0' (5—33)

>\'

b
4
Fig. 522

a



Quasi-Static Fracture

» Crack growth occurs when energy release rate from applied
loading is greater than rate of energy for crack growth

» Unstable crack growth occurs when rate of change of energy

release rate relative to crack length exceeds rate of change of
crack growth rate of energy



Crack Modes and the Stress Intensity Factor

o Three distinct modes of crack propagation
o Mode I: Opening crack mode, due to tensile stress field
o Mode I1: Sliding mode, due to in-plane shear
o Moae Ill: Tearing mode, due to out-of-plane shear
» Combination of modes possible
» Opening crack mode iIs most common, and is focus of this text

s T
o

> U

'

™ Fig.5-23

(a) Mode | (b) Mode 11 (¢) Mode 111



Mode | Crack Model
« Stress field on dx dyelement at crack tip

/ 0 0 360
Oy =0 % COS 5 (1 — §in 5 sin 7) (5_34U]
[ 2 cos 2 (14 sinZsin 2 ) (5-34h)
;= — — n —sin — -
Oy g 2, COS 5 S > S 5

. 2, 2, 36
f Toy = 0| 2 in < cos = cos — (5-34c)
o ] 2r 2 2 2
A
M, 10 (for plane stress)
Z 7T { v(oy + oy) (for plane strain) (5-34)
dx
dy
' 0 B
~<— (] AP‘
Fig. 5-24
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Stress Intensity Factor

o Common practice to define stress intensity factor

K( — O0A/TTd (5_35)
* Incorporating K, stress field equations are
Ki CO 0 (1 inQ i 39) (5-364a)
Oy = S — — sin — sin — -36a
S 2 2 2 2
K, 0 0 30
= cos — | 1 4+ sin — sin — 5-36b
T Ay 02 ( S s ) | )
Ki ine CO 0 30 (5-36¢)
Tpy = Sin — COS — COS — -
VT amr 22 2 )
10 (for plane stress) -
Or = { v(o, + oy) (for plane strain) (5-364)



Stress Intensity Modification Factor

Stress intensity factor K, is a function of geometry, size, and
shape of the crack, and type of loading

For various load and geometric configurations, a stress intensity
modification factor [ can be incorporated

K[ — ﬁO'\/FG (5—37)

Tables for S are available in the literature
Figures 5—25 to 5—30 present some common configurations



Stress Intensity Modification Factor

2.2

» Off-center crack in plate in o I
longitudinal tension Pretteet
« Solid curves are for crack tip s
at A A A
» Dashed curves are fortipat B < )

B 1.6 ¢¢¢¢i¢¢¢¢

a/d ratio



Stress Intensity Modification Factor

7.0

 Plate loaded in longitudinal )
tension with crack at edge pH4444444

| o 1
 For solid curve there are no J/F o e
/
l

constraints to bending

» Dashed curve obtained with 2
bending constraints added

Rzzasans

B 4.0

3.0

2.0

Fig. 5—26]0

0.8



Stress Intensity Modification Factor

» Beams of rectangular cross =2 ( | % )
section having an edge crack M f‘ M
F

1.8 X

b
ot
e | e[ —>|

1.6
B

Pure bending

Fig. 5-27

0 0.2 0.4 0.6 0.8
a/h ratio



Stress Intensity Modification Factor

 Plate in tension containing circular hole with two cracks

RERPYIYTYYo
2a
A P
B
l IE
L =0
OO 0.2 04 0.6 0.8

F|g 5—-28 a/b ratio
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Stress Intensity Modification Factor

e Cylinder loaded in axial tension having a radial crack of depth a
extending completely around the circumference

I EPVIVVVIVY:
(T
3.0 (1_>—|[|J|J_——“:IH'I—
| .
B A'\D'> i
YYYYVY
2.0 \
1'Oo 0.2 0.4 0.6 0.8

Flg 5-29 a/(r,—r;) ratio



Stress Intensity Modification Factor

34

e Cylinder subjected to internal
pressure p, having a radial crack
In the longitudinal direction of
depth a

3.0

2.6

B 22

0.2

0.4

a/(r,— r;) ratio

0.6

0.8



Fracture Toughness

Crack propagation initiates when the stress intensity factor
reaches a critical value, the critical stress intensity factor K,

K. 1s a material property dependent on material, crack mode,
processing of material, temperature, loading rate, and state of
stress at crack site

Also know as fracture toughness of material

Fracture toughness for plane strain is normally lower than for
plain stress

K. 1s typically defined as moae 1, plane strain fracture toughness



Table 5-1

Values of Kj. for Some
Engineering Materials
at Room Temperature

Typical Values for K|,

Material K., MPa./m Sy, MPa
Aluminum
2024 455
7075 495
7178 490
Titanium
Ti-6AL-4V 910
Ti-6AL-4V 1035
Steel
4340 860
4340 1515
52100 2070
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Brittle Fracture Factor of Safety

o Brittle fracture should be considered as a failure mode for

> Low-temperature operation, where ductile-to-brittle transition
temperature may be reached

> Materials with high ratio of 5/S,, indicating little ability to
absorb energy in plastic region

A factor of safety for brittle fracture
K]C

n—= (5-38)
K




Example 5-6

A steel ship deck plate 1s 30 mm thick and 12 m wide. It is loaded with a nominal uni-
axial tensile stress of 50 MPa. It is operated below its ductile-to-brittle transition tem-
perature with K;. equal to 28.3 MPa. If a 65-mm-long central transverse crack is
present, estimate the tensile stress at which catastrophic failure will occur. Compare this
stress with the yield strength of 240 MPa for this steel.

Shigley’s Mechanical Engineering Design



Example 5-6

For Fig. 5-25, withd = b, 2a =65 mmand 26 = 12 m, so that d/b =1 and a/d =
65/12(10%) = 0.00542. Since a/d is so small, B = 1, so that

K; = o+/ma =50/7(32.5 x 10-3) = 16.0 MPa +/m

FALAEA 44
L, :
L]
B 16 HHiHH

Fig. 525
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Example 5-6

From Eq. (5-38),

P
K, 16.0
The stress at which catastrophic failure occurs is
K. 28.3
— = ——(50) = 88.4 MP
=R T 160" :

The yield strength is 240 MPa, and catastrophic failure occurs at 88.4/240 = 0.37, or

at 37 percent of yield. The factor of safety in this circumstance is Kj./K; =
28.3/16 = 1.77 and not 240/50 = 4.8.

Shigley’s Mechanical Engineering Design



Example 5-7

A plate of width 1.4 m and length 2.8 m 1s required to support a tensile force in the
2.8-m direction of 4.0 MN. Inspection procedures will detect only through-thickness
edge cracks larger than 2.7 mm. The two Ti-6AL-4V alloys in Table 5-1 are being con-
sidered for this application, for which the safety factor must be 1.3 and minimum
weight 1s important. Which alloy should be used?

Shigley’s Mechanical Engineering Design



Example 5-7

(a) We elect first to estimate the thickness required to resist yielding. Since 0 = P /wf,

we have t = P/wo. For the weaker alloy, we have, from Table 5-1, §; = 910 MPa.
Thus,

Sy 910

— 2 _ 700 MP
7 13 .

Tall =

Thus

P 4.0(10)3
wom ~ TA700)
For the stronger alloy, we have, from Table 5-1,

1035
Tall = W = 796 MPa

[ =

= 4.08 mm or greater

and so the thickness is

P 4.0(10)°

= =
Wog 1.4(796)

= 3.59 mm or greater

Shigley’s Mechanical Engineering Design



Example 5-7

(b) Now let us find the thickness required to prevent crack growth. Using Fig. 5-26, we

have
h 2.8/2 a 2.7

= 0.001 93

b 14 b 1.4(10%)
Corresponding to these ratios we find from Fig. 5-26 that g = [.1,and K; = |.lo\/7a.

7.0

yyveny _ Ko _ 1VIO __ K
6.0 -T_ "= K}’ - l.lﬂia\fﬂﬂ, 7= 1.1?’14,.!'}1'{1
el
Lvmgmv

B 4.0

3.0

2.0

1.0

08 F I g ' 5_2 6 Shigley’s Mechanical Engineering Design



Example 5-7

From Table 5-1, K;. = 115 MPa ,/m for the weaker of the two alloys. Solving for o with
n = | gives the fracture stress

B 115
C1.1/7(27 x 1073)

which 1s greater than the yield strength of 910 MPa, and so yield strength is the basis
for the geometry decision. For the stronger alloy Sy = 1035 MPa, with n = 1 the frac-
ture stress is

= 1135 MPa

a

Kie 55
nK;  1(1.1)y/7 (2.7 x 10-3)
which is less than the yield strength of 1035 MPa. The thickness 7 1s

P 40(10%
woa | 1.4(542.9/1.3)

= 542.9 MPa

o =

=

= 6.84 mm or greater

This example shows that the fracture toughness K. limits the geometry when the
stronger alloy is used, and so a thickness of 6.84 mm or larger is required. When the
weaker alloy is used the geometry i1s limited by the yield strength, giving a thickness of
only 4.08 mm or greater. Thus the weaker alloy leads to a thinner and lighter weight

choice since the failure modes differ.
Shigley’s Mechanical Engineering Design



Stochastic Analysis

» Reliability is the probability that machine systems and
components will perform their intended function without failure.

» Deterministic relations between stress, strength, and design
factor are often used due to simplicity and difficulty in acquiring
statistical data.

» Stress and strength are actually statistical in nature.



Probability Density Functions

 Stress and strength are statistical in nature
 Plots of probability density functions shows distributions

» Overlap is called /nterference of o and S, and indicates parts
expected to fail

J(s), f(o)

Mo Ky
Fig. 5-31 (4) Stress



f(s), f(o)

Probability Density Functions

Mean values of stress and strength are x_and p.
Average factor of safety is

a LS
n—=— (a)
Mo

Margin of safety for any value of stress o and strength S'is
m=S—o (b)

The overlap area has negative margin of safety

o S
Fig.5-31(a) ' s

Stress



Margin of Safety

« Distribution of margin of safety Is dependent on distributions of
stress and strength

o Reliability Ris area under the margin of safety curve for m>0
« Interference is the area 1- /R where parts are expected to fail

f(m)

(1 -R)

0 Fom

Stress margin

Fig. 5-31 (b)



Normal-Normal Case

Common for stress and strength to have normal distributions
S = N(us, 05) and ¢ = N(uuy., 04)
Margin of safety ism =S — o, and will be normally distributed
Reliability is probability pthat m> 0
R=pS>0)=pS—0>0)=pm>0) (5—-39)

To find chance that /77> 0, form the transformation variable of m
and substitute m=0 [See Eqg. (20—16)]

_ m — [ _ 0 — Mm _ _H'm _ Mms — Ho (5_40)

Om Om Om (0'52 - O'C%) /

7
Y

Eq. (5—40) is known as the normal coupling equation



Normal-Normal Case

 Reliability is given by

/OO e ( ”2)2 |- F=1-d(2) (5-41)
= xpl——= |du=1—F=1—-®(z -
N A

o Get A from Table A—10
» The design factor is given by

11— (1-263) (1 - 22
n =
2
I — zZCS

(5-42)

where Cg = 35‘/;/,5 and C, = 3g/ﬂg



Lognormal-Lognormal Case

» For case where stress and strength have lognormal distributions,
from Egs. (20—18) and (20—19),

Mins =Inps —Iny/ 1 +C§
(strength)

87[,15 = -\/]I'l(l —{—C:é)

Mo = In iy — ll‘l.\; l + (“5

bno = /In (1 + C2)
» Applying Eq. (5-40),

(£L9 /1%—(23)
In 5
MinS — Hino . Ho 1 + C.S'

(Gins +60) " m[(1+C3) (1+¢2)]

(stress)

(5-43)

~
A




Lognormal-Lognormal Case

» The design factor n is the random variable that is the quotient of
Slo

» The quotient of lognormals is lognormal. Note that
C:+ C? .
Hn = i Cu — \/ > ks --;U On = Cmun
U I + C;

e The companion normal to n, from Egs. (20—18) and (20—19), has
mean and standard deviation of

[y = Inpu, —In,/1+ Cﬁ (}}; — -\/11‘1 (1 + Cﬁ)




Lognormal-Lognormal Case

» The transformation variable for the companion normal y

distribution iIs
Y — Ky

ay s

G V

« Failure will occur when the stress is greater than the strength,
when n <1, or when yy<0. So,
0=y oy =T+ G (/Y14 G 544
Oy Oy \/ln 1+ C3) \/ln 1+ C2)

» Solving for u,,

/ Ch
Ly =N = exp [—z\/ln (1 + Cg) +1In,/1+ ij} = exp [C,,, (— 7+ 7)] (5—-45)




Example 5-8

A round cold-drawn 1018 steel rod has an 0.2 percent yield strength S, = N(78.4, 5.90)
kpsi and 1s to be subjected to a static axial load of P = N(50, 4.1) kip. What value of
the design factor n corresponds to a reliability of 0.999 against yielding (z = —3.09)?
Determine the corresponding diameter of the rod.

Solution

Cs =5.90/78.4 = 0.0753, and
P 4P
C=—=—

A wd?

Since the COV of the diameter is an order of magnitude less than the COV of the load
or strength, the diameter is treated deterministically:

Shigley’s Mechanical Engineering Design



Example 5-8

From Eq. (5-42),

I+ 1= [1 =(=3.09°(0.0753%][1 —(—3.09)°(0.082")]
- = 1.416
1 —(—3.09)%(0.0753%

The diameter is found deterministically:

i= |22 _ 16999 _ 1 072in
7Sy/ii \ 7 (78 400)/1.416

Shigley’s Mechanical Engineering Design



Example 5-8

Check
S}. = N(78.4, 5.90) kpsi, P = N(50, 4.1) kip, and d = 1.072 in. Then

ad?> 7w (1.072%)

A= — = 0.9026 in*
4 4
P (50000
== = Q = 55 400 psi
A 0.9026
4.1
Cp=0C, = % = 0.082

0o = Coo = 0.082(55 400) = 4540 psi

os = 5.90 kpsi

From Eq. (5-40) 78.4 —55.4

_ — 30
*= T 5.902 + 4.542)12 &

From Appendix Table A-10, R = ®(—3.09) = 0.999.

Shigley’s Mechanical Engineering Design



Example 5-9

Rework Ex. 5-8 with lognormally distributed stress and strength.

Solution
Cs=35.90/78.4=0.0753,and C, = Cp =4.1/50 = 0.082. Then
P 4P
C=— = —
A Td?

=0.1110

_|Ci+C2 [0.0753% +0.0822
TV 142 T | +0.0822

From Table A-10, z = —3.09. From Eq. (5-45),
i = exp [-(—3.09)\/111(1 +01112) +1Iny/1+0.11 12] — 1.416

4(50 000) |
— 1.0723
\/:r(?8400)/1.416 h

J‘IS},/H
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Check

Example 5-9

S, =LN(78.4,5.90), P =LN(50, 4.1) kip. Then

d? 1.07232
A= T _ ) 0.9031
4 4

P 50000
A~ 0.903]
Cp
C, 1

— 55 365 psi

Q1
I

4l

e — = 0.082
50

— 0.082(55 367) = 4540 psi

784 [ 1+ 0.0822

55.365Y 1 +0.07532

R = —3.1343
VIn[(1 +0.07532)(1 + 0.0822)]

Appendix Table A-10 gives R = 0.99950.

=

From Eq. (5-43), \/
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Interference - General

f1(S)
» A general approach to

Interference Is needed to
handle cases where the
two variables do not have
the same type of

dF,(x) = f,(x)dx

distribution.

o Define variable xto
Identify points on both |

(a)

—>| |«— dx

distributions

Cursor
V'

\< RZ (x)

(b)

ag

Fig. 5—32



Interference - General

Probability that
(stress 1s less ) =dp(c <x)=dR = Fy(x)dF(x)
than strength
» Substituting 1- R, for ~, and "'(S’
—aR, for aF,, dF{() = fid
dR = —[1 — Ry(x)]dR;(x) /
» The reliability is obtained by
Integrating x from — oo to co which | [

corresponds to integration from 1 ‘
to 0 on reliability /. |

Cursor
V'

\<R2(.\')

ag



Interference - General

0
R = —f [l — Ra(x)] dR(x)
1

1
R=1-— / Ry dR, (5—-46)
0
where
Ri(x) =f H(S)dsS (5-47)

Ra(x) = f fo(o) do (5-48)
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Interference - General

Plots of R, vs R,
Shaded area is equal to 1- R, and is obtained by numerical

Integration

Plot (4) for asymptotic distributions
Plot () for lower truncated distributions such as Weibull

1

|

1




