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Failure Examples

 Failure of truck driveshaft spline due to corrosion fatigue
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Failure Examples

 Impact failure of a lawn-mower blade driver hub.

 The blade impacted a surveying pipe marker.
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Failure Examples

 Failure of an overhead-pulley retaining bolt on a weightlifting 

machine.

 A manufacturing error caused a gap that forced the bolt to take 

the entire moment load.
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Failure Examples

 Chain test fixture that failed in one cycle.  

 To alleviate complaints of excessive wear, the manufacturer decided to 

case-harden the material

 (a) Two halves showing brittle fracture initiated by stress concentration

 (b) Enlarged view showing cracks induced by stress concentration at 

the support-pin holes
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Failure Examples

 Valve-spring failure caused by spring surge in an oversped 

engine.

 The fractures exhibit the classic 45 degree shear failure
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Static Strength

 Usually necessary to design using published strength values

 Experimental test data is better, but generally only warranted 

for large quantities or when failure is very costly (in time, 

expense, or life)

 Methods are needed to safely and efficiently use published 

strength values for a variety of situations
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Stress Concentration

 Localized increase of stress near discontinuities

 Kt is Theoretical (Geometric) Stress Concentration Factor
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Theoretical Stress Concentration Factor

 Graphs available for 

standard configurations

 See Appendix A–15 and 

A–16 for common 

examples

 Many more in Peterson’s 

Stress-Concentration 

Factors

 Note the trend for higher 

Kt at sharper discontinuity 

radius, and at greater 

disruption
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Stress Concentration for Static and Ductile Conditions

 With static loads and ductile materials

◦ Highest stressed fibers yield (cold work)

◦ Load is shared with next fibers

◦ Cold working is localized

◦ Overall part does not see damage unless ultimate strength is 

exceeded

◦ Stress concentration effect is commonly ignored for static 

loads on ductile materials

 Stress concentration must be included for dynamic loading (See 

Ch. 6)

 Stress concentration must be included for brittle materials, since 

localized yielding may reach brittle failure rather than cold-

working and sharing the load.
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Need for Static Failure Theories

 Uniaxial stress element (e.g. tension test)

 Multi-axial stress element 

◦ One strength, multiple stresses

◦ How to compare stress state to single strength?
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Need for Static Failure Theories

 Failure theories propose appropriate means of comparing multi-

axial stress states to single strength

 Usually based on some hypothesis of what aspect of the stress 

state is critical

 Some failure theories have gained recognition of usefulness for 

various situations
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Maximum Normal (Principal) Stress Theory

 Theory:  Yielding begins when the maximum principal stress in 

a stress element exceeds the yield strength.

 For any stress element, use Mohr’s circle to find the principal 

stresses.  

 Compare the largest principal stress to the yield strength.

 Often the first theory to be proposed by engineering students.

 Is it a good theory?
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Maximum Normal (Principal) Stress Theory

 Experimental data 

shows the theory is 

unsafe in the 4th

quadrant.

 This theory is not safe

to use for ductile 

materials.
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Maximum Shear Stress Theory (MSS)

 Theory:  Yielding begins when the maximum shear stress in a 

stress element exceeds the maximum shear stress in a tension 

test specimen of the same material when that specimen begins to 

yield.

 For a tension test specimen, the maximum shear stress is 1 /2.  

 At yielding, when 1 = Sy, the maximum shear stress is Sy /2 .

 Could restate the theory as follows:

◦ Theory:  Yielding begins when the maximum shear stress in a 

stress element exceeds Sy/2.
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Maximum Shear Stress Theory (MSS)

 For any stress element, use Mohr’s circle to find the maximum 

shear stress. Compare the maximum shear stress to Sy/2.

 Ordering the principal stresses such that 1 ≥ 2 ≥ 3,

 Incorporating a design factor n

 Or solving for factor of safety
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Maximum Shear Stress Theory (MSS)

 To compare to experimental data, express max in terms of 

principal stresses and plot.

 To simplify, consider a plane stress state

 Let A and B represent the two non-zero principal stresses, then 

order them with the zero principal stress such that 1 ≥ 2 ≥ 3

 Assuming A ≥ B there are three cases to consider

◦ Case 1: A ≥ B ≥ 0

◦ Case 2: A ≥ 0 ≥ B

◦ Case 3: 0 ≥ A ≥ B
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Maximum Shear Stress Theory (MSS)

 Case 1: A ≥ B ≥ 0

◦ For this case, 1 = A and  3 = 0

◦ Eq. (5–1) reduces to A ≥ Sy

 Case 2: A ≥ 0 ≥ B

◦ For this case, 1 = A and  3 = B

◦ Eq. (5–1) reduces to A − B ≥ Sy

 Case 3: 0 ≥ A ≥ B

◦ For this case, 1 = 0 and  3 = B

◦ Eq. (5–1) reduces to B ≤ −Sy
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Maximum Shear Stress Theory (MSS)

 Plot three cases on 

principal stress axes

 Case 1: A ≥ B ≥ 0

◦ A ≥ Sy

 Case 2: A ≥ 0 ≥ B

◦ A − B ≥ Sy

 Case 3: 0 ≥ A ≥ B

◦ B ≤ −Sy

 Other lines are 

symmetric cases

 Inside envelope is 

predicted safe zone
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Maximum Shear Stress Theory (MSS)

 Comparison to 

experimental data

 Conservative in all 

quadrants

 Commonly used for 

design situations
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Distortion Energy (DE) Failure Theory

 Also known as:

◦ Octahedral Shear Stress

◦ Shear Energy

◦ Von Mises

◦ Von Mises – Hencky
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Distortion Energy (DE) Failure Theory

 Originated from observation that ductile materials stressed 

hydrostatically (equal principal stresses) exhibited yield 

strengths greatly in excess of expected values.

 Theorizes that if strain energy is divided into hydrostatic 

volume changing energy and angular distortion energy, the 

yielding is primarily affected by the distortion energy.
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Distortion Energy (DE) Failure Theory

 Theory:  Yielding occurs when the distortion strain energy per 

unit volume reaches the distortion strain energy per unit volume 

for yield in simple tension or compression of the same material.
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Deriving the Distortion Energy

 Hydrostatic stress is average of principal stresses

 Strain energy per unit volume,

 Substituting Eq. (3–19) for principal strains into strain energy 

equation,
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Deriving the Distortion Energy

 Strain energy for producing only volume change is obtained by 

substituting av for 1, 2, and 3

 Substituting av from Eq. (a),

 Obtain distortion energy by subtracting volume changing 

energy, Eq. (5–7), from total strain energy, Eq. (b)
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Deriving the Distortion Energy

 Tension test specimen at yield has 1 = Sy and 2 = 3 =0

 Applying to Eq. (5–8), distortion energy for tension test 

specimen is 

 DE theory predicts failure when distortion energy, Eq. (5–8), 

exceeds distortion energy of tension test specimen, Eq. (5–9)
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Von Mises Stress

 Left hand side is defined as von Mises stress

 For plane stress, simplifies to

 In terms of xyz components, in three dimensions

 In terms of xyz components, for plane stress
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Distortion Energy Theory With Von Mises Stress

 Von Mises Stress can be thought of as a single, equivalent, or 

effective stress for the entire general state of stress in a stress 

element.

 Distortion Energy failure theory simply compares von Mises 

stress to yield strength.

 Introducing a design factor,

 Expressing as factor of safety,
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Octahedral Stresses

 Same results obtained by evaluating octahedral stresses.

 Octahedral stresses are identical on 8 surfaces symmetric to the 

principal stress directions.

 Octahedral stresses allow representation of any stress situation 

with a set of normal and shear stresses.
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Octahedral Shear Stress

 Octahedral normal stresses are normal to the octahedral 

surfaces, and are equal to the average of the principal stresses.

 Octahedral shear stresses lie on the octahedral surfaces.
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Octahedral Shear Stress Failure Theory

 Theory:  Yielding begins when the octahedral shear stress in a 

stress element exceeds the octahedral shear stress in a tension 

test specimen at yielding.

 The octahedral shear stress is

 For a tension test specimen at yielding, 1 = Sy , 2 = 3 = 0.   

Substituting into Eq. (5–16),

 The theory predicts failure when Eq. (5–16) exceeds 

Eq. (5–17).  This condition reduces to
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Failure Theory in Terms of von Mises Stress

 Equation is identical to Eq. (5–10) from Distortion Energy 

approach

 Identical conclusion for:

◦ Distortion Energy 

◦ Octahedral Shear Stress

◦ Shear Energy

◦ Von Mises

◦ Von Mises – Hencky
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DE Theory Compared to Experimental Data

 Plot von Mises stress on 

principal stress axes to 

compare to experimental 

data (and to other failure 

theories)

 DE curve is typical of data

 Note that typical equates to 

a 50% reliability from a 

design perspective

 Commonly used for 

analysis situations

 MSS theory useful for 

design situations where 

higher reliability is desired
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Shear Strength Predictions

Shigley’s Mechanical Engineering Design

 For pure shear loading, Mohr’s circle shows that A = −B = 

 Plotting this equation on principal stress axes gives load line for 

pure shear case

 Intersection of pure shear load line with failure curve indicates 

shear strength has been reached

 Each failure theory predicts shear strength to be some fraction of 

normal strength

Fig. 5–9



Shear Strength Predictions

Shigley’s Mechanical Engineering Design

 For MSS theory, intersecting pure shear load line with failure 

line [Eq. (5–5)] results in
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Shear Strength Predictions

Shigley’s Mechanical Engineering Design

 For DE theory, intersection pure shear load line with failure 

curve [Eq. (5–11)] gives

 Therefore, DE theory predicts shear strength as 

Fig. 5–9
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Mohr Theory

 Some materials have compressive strengths different from 

tensile strengths

 Mohr theory is based on three simple tests: tension, 

compression, and shear

 Plotting Mohr’s circle for each, bounding curve defines failure 

envelope
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Coulomb-Mohr Theory

 Curved failure curve is difficult to determine analytically

 Coulomb-Mohr theory simplifies to linear failure envelope using 

only tension and compression tests (dashed circles)
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Coulomb-Mohr Theory

 From the geometry, derive 

the failure criteria
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Coulomb-Mohr Theory

 Incorporating factor of safety

 For ductile material, use tensile and compressive yield strengths

 For brittle material, use tensile and compressive ultimate 

strengths
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Coulomb-Mohr Theory

 To plot on principal stress axes, consider three cases

 Case 1: A ≥ B ≥ 0 For this case, 1 = A and  3 = 0

◦ Eq. (5−22) reduces to

 Case 2: A ≥ 0 ≥ B For this case, 1 = A and  3

= B

◦ Eq. (5-22) reduces to

 Case 3: 0 ≥ A ≥ B For this case, 1 = 0 and  3

= B

◦ Eq. (5−22) reduces to
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Coulomb-Mohr Theory

 Plot three cases on principal stress axes

 Similar to MSS theory, except with different strengths for 

compression and tension
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Coulomb-Mohr Theory

 Intersect the pure shear load line with the failure line to 

determine the shear strength

 Since failure line is a function of tensile and compressive 

strengths, shear strength is also a function of these terms.
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Failure Theories for Brittle Materials

 Experimental data indicates some differences in failure for brittle 

materials.

 Failure criteria is generally ultimate fracture rather than yielding

 Compressive strengths are usually larger than tensile strengths
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Maximum Normal Stress Theory

 Theory:  Failure occurs when the maximum principal stress in a 

stress element exceeds the strength.

 Predicts failure when

 For plane stress,

 Incorporating design factor,
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Maximum Normal Stress Theory

 Plot on principal stress axes

 Unsafe in part of fourth quadrant

 Not recommended for use

 Included for historical comparison
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Brittle Coulomb-Mohr

 Same as previously derived, using ultimate strengths for failure

 Failure equations dependent on quadrant
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Brittle Failure Experimental Data

 Coulomb-Mohr is 

conservative in 4th quadrant

 Modified Mohr criteria 

adjusts to better fit the data 

in the 4th quadrant
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Modified-Mohr
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Selection of Failure Criteria

 First determine ductile vs. brittle

 For ductile

◦ MSS is conservative, often used for design where higher 

reliability is desired

◦ DE is typical, often used for analysis where agreement with 

experimental data is desired

◦ If tensile and compressive strengths differ, use Ductile 

Coulomb-Mohr

 For brittle

◦ Mohr theory is best, but difficult to use

◦ Brittle Coulomb-Mohr is very conservative in 4th quadrant

◦ Modified Mohr is still slightly conservative in 4th quadrant, but 

closer to typical
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Selection of Failure Criteria in Flowchart Form
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Introduction to Fracture Mechanics

 Linear elastic fracture mechanics (LEFM) analyzes crack 

growth during service

 Assumes cracks can exist before service begins, e.g. flaw, 

inclusion, or defect

 Attempts to model and predict the growth of a crack

 Stress concentration approach is inadequate when notch radius 

becomes extremely sharp, as in a crack, since stress 

concentration factor approaches infinity

 Ductile materials often can neglect effect of crack growth, since 

local plastic deformation blunts sharp cracks

 Relatively brittle materials, such as glass, hard steels, strong 

aluminum alloys, and steel below the ductile-to-brittle transition 

temperature, benefit from fracture mechanics analysis
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Quasi-Static Fracture

 Though brittle fracture seems instantaneous, it actually takes 

time to feed the crack energy from the stress field to the crack 

for propagation.

 A static crack may be stable and not propagate.

 Some level of loading can render a crack unstable, causing it to 

propagate to fracture.
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Quasi-Static Fracture

 Foundation work for fracture mechanics established by Griffith 

in 1921

 Considered infinite plate with an elliptical flaw

 Maximum stress occurs at (±a, 0)
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Quasi-Static Fracture

 Crack growth occurs when energy release rate from applied 

loading is greater than rate of energy for crack growth

 Unstable crack growth occurs when rate of change of energy 

release rate relative to crack length exceeds rate of change of 

crack growth rate of energy
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Crack Modes and the Stress Intensity Factor

 Three distinct modes of crack propagation

◦ Mode I: Opening crack mode, due to tensile stress field

◦ Mode II: Sliding mode, due to in-plane shear

◦ Mode III: Tearing mode, due to out-of-plane shear

 Combination of modes possible

 Opening crack mode is most common, and is focus of this text
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Mode I Crack Model

 Stress field on dx dy element at crack tip
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Stress Intensity Factor

 Common practice to define stress intensity factor

 Incorporating KI, stress field equations are 
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Stress Intensity Modification Factor

 Stress intensity factor KI is a function of geometry, size, and 

shape of the crack, and type of loading

 For various load and geometric configurations, a stress intensity 

modification factor b can be incorporated

 Tables for b are available in the literature

 Figures 5−25 to 5−30 present some common configurations
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Stress Intensity Modification Factor

 Off-center crack in plate in 

longitudinal tension

 Solid curves are for crack tip 

at A

 Dashed curves are for tip at B
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Stress Intensity Modification Factor

 Plate loaded in longitudinal 

tension with crack at edge

 For solid curve there are no 

constraints to bending

 Dashed curve obtained with 

bending constraints added
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Stress Intensity Modification Factor

 Beams of rectangular cross 

section having an edge crack
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Stress Intensity Modification Factor

 Plate in tension containing circular hole with two cracks
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Stress Intensity Modification Factor

 Cylinder loaded in axial tension having a radial crack of depth a

extending completely around the circumference
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Stress Intensity Modification Factor

 Cylinder subjected to internal 

pressure p, having a radial crack 

in the longitudinal direction of 

depth a
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Fracture Toughness

 Crack propagation initiates when the stress intensity factor 

reaches a critical value, the critical stress intensity factor KIc

 KIc is a material property dependent on material, crack mode, 

processing of material, temperature, loading rate, and state of 

stress at crack site

 Also know as fracture toughness of material

 Fracture toughness for plane strain is normally lower than for 

plain stress

 KIc is typically defined as mode I, plane strain fracture toughness

Shigley’s Mechanical Engineering Design



Typical Values for KIc
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Brittle Fracture Factor of Safety

 Brittle fracture should be considered as a failure mode for

◦ Low-temperature operation, where ductile-to-brittle transition 

temperature may be reached

◦ Materials with high ratio of Sy/Su, indicating little ability to 

absorb energy in plastic region

 A factor of safety for brittle fracture
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Stochastic Analysis

 Reliability is the probability that machine systems and 

components will perform their intended function without failure.

 Deterministic relations between stress, strength, and design 

factor are often used due to simplicity and difficulty in acquiring 

statistical data.

 Stress and strength are actually statistical in nature.
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Probability Density Functions

 Stress and strength are statistical in nature

 Plots of probability density functions shows distributions

 Overlap is called interference of  and S, and indicates parts 

expected to fail
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Probability Density Functions

 Mean values of stress and strength are m and mS

 Average factor of safety is

 Margin of safety for any value of stress  and strength S is

 The overlap area has negative margin of safety
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Margin of Safety

 Distribution of margin of safety is dependent on distributions of 

stress and strength

 Reliability R is area under the margin of safety curve for m > 0

 Interference is the area 1−R where parts are expected to fail
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Normal-Normal Case

 Common for stress and strength to have normal distributions

 Margin of safety is m = S – , and will be normally distributed

 Reliability is probability p that m > 0

 To find chance that m > 0, form the transformation variable of m

and substitute m=0  [See Eq. (20−16)]

 Eq. (5−40) is known as the normal coupling equation
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Normal-Normal Case

 Reliability is given by

 Get R from Table A−10

 The design factor is given by

where 
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Lognormal-Lognormal Case

 For case where stress and strength have lognormal distributions, 

from Eqs. (20−18) and (20−19),

 Applying Eq. (5−40),
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Lognormal-Lognormal Case

 The design factor n is the random variable that is the quotient of 

S/

 The quotient of lognormals is lognormal.  Note that

 The companion normal to n, from Eqs. (20−18) and (20−19), has 

mean and standard deviation of
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Lognormal-Lognormal Case

 The transformation variable for the companion normal y

distribution is

 Failure will occur when the stress is greater than the strength, 

when          , or when y < 0.  So,

 Solving for mn,
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Interference - General

 A general approach to 

interference is needed to 

handle cases where the 

two variables do not have 

the same type of 

distribution.

 Define variable x to 

identify points on both 

distributions
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Interference - General

 Substituting 1– R2 for F2 and 

–dR1 for dF1,

 The reliability is obtained by 

integrating x from – ∞ to ∞ which 

corresponds to integration from 1 

to 0 on reliability R1.
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Interference - General
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where



Interference - General

Shigley’s Mechanical Engineering Design

 Plots of R1 vs R2

 Shaded area is equal to 1– R, and is obtained by numerical 

integration

 Plot (a) for asymptotic distributions

 Plot (b) for lower truncated distributions such as Weibull

Fig. 5−33


