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Mechanical Springs

» Exert Force
 Provide flexibility
 Store or absorb energy
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Helical Spring

 Helical coil spring with round wire

» Equilibrium forces at cut section anywhere in the body of the
spring indicates direct shear and torsion

Shigley’s Mechanical Engineering Design



Stresses in Helical Springs

o Torsional shear and direct shear ‘F

» Additive (maximum) on inside fiber of
Cross-section
Tr F

Tmax = T + E

11

o Substitute terms
Tmax =T, 1 = FD/2,r =d/2,

T=FD/2

J = 7Td4/32 A= T(d2/4 Fig. 10-1b




Stresses in Helical Springs

SFD n 4F
T —
7d?  wd?

Factor out the torsional stress

( d j(SFDj
T=|1+
2D )\ zd*®

Define Spring Index ¢ = b

d

Define Shear Stress Correction Factor
1 B 2C +1

K,=1l+—=
2C 2C

Maximum shear stress for helical spring
SFD

Td3

T = K;

(10-1)

(10-3)

(10-2)



Curvature Effect

Stress concentration type of effect on inner fiber due to curvature

Can be ignored for static, ductile conditions due to localized cold-
working

Can account for effect by replacing K, with Wahl factor or
Bergstrasser factor which account for both direct shear and

curvature effect |
A4C —1 0615

Kw = 10-4

alvam - = ( )
4C 4+ 2

KB:4C—3 (10-5)
8FD

T:KB “O_?}

d?

Cancelling the curvature effect to isolate the curvature factor
Kp 2C(4C +2)

_ : (10-¢)
K, 4C — 3)(2C + 1)

K, =



Deflection of Helical Springs

Use Castigliano’s method to relate force and deflection

O S
- 2GJ 2AG
Substituting T = FD/2,[ = DN, J = 7d*/32, and A = 7d*/4
AF2D3N 2F2DN :
U = +
d*G d*G
_ olU B SFD*N +4FDN
YEOF T T 4G 126 L
B SFD3N N Ly . 8FD3N !
TS 2c2) T T a6 (10-8]
d*G F
k= (10-9) ~—>b—
8D3N

Fig. 10-1a
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Ends of Compression Springs

(b) Squared or closed end, (d) Plain end, ground,
right hand left hand

Fig. 10-2
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Formulas for Compression Springs With Different Ends

Table 10-1
Type of Spring Ends
Plain and Squared or Squared and
Ground Closed Ground
End coils, N, 0 1 2 2
Total coils, N, N, N; # 1 Ny #+ 2 Nsg+ 2
Free length, L pN, + d p(N, + 1) pN; + 3d BN + 2d
Solid length, L; d(N; + 1) dN; d(N;, + 1) dN;
Pitch, p (Lo — d)/N, Lg/(Ngs + 1) (Lo — 3d)/N, (Lo — 2d)/N,
F

Free length
Solid length

!

"] —
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Set Removal

Set removal or presetting is a process used in manufacturing a
spring to induce useful residual stresses.

The spring is made longer than needed, then compressed to solid
height, intentionally exceeding the yield strength.

This operation sets the spring to the required final free length.

Yielding induces residual stresses opposite in direction to those
Induced in service.

10 to 30 percent of the initial free length should be removed.

Set removal is not recommended when springs are subject to
fatigue.



Critical Deflection for Stability

Buckling type of instability can occur in compression springs
when the deflection exceeds the critical deflection y,,

C’ 1/2
.VC]'LU(:;{I _ (l o ﬁ‘,‘fu) } [10-10)
Aeff

L.« IS the effective slenderness ratio

al
Ao = Tﬂ (10-11)

a 1S the end-condition constant, defined on the next slide
C'; and C', are elastic constants

E

C! —
L 2(E - G)

21%(E — G)
2G + E




End-Condition Constant

e The aterm in Eq. (10-11) is the end-condition constant.

« It accounts for the way in which the ends of the spring are
supported.

» Values are given in Table 10-2.

End Condition Constant o

Spring supported between flat parallel surfaces (fixed ends) 0.5
One end supported by flat surface perpendicular to spring axis (fixed);

other end pivoted (hinged) 0.707
Both ends pivoted (hinged) 1
One end clamped; other end free 2

*Ends supported by flat surfaces must be squared and ground.

Table 10-2
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Absolute Stability

» The condition for absolute stability

7D [Z(E _ G)T’2
0 =

o 2G+ E

o For steels, this turns out to be

D
Lo < 2.63—
o

(10-12)

(10-13)
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Some Common Spring Steels

» Hard-drawn wire (0.60-0.70C)
> Cheapest general-purpose

> Use only where life, accuracy, and deflection are not too
Important

 Oil-tempered wire (0.60-0.70C)
> General-purpose
- Heat treated for greater strength and uniformity of properties
o Often used for larger diameter spring wire
e Music wire (0.80-0.95C)
> Higher carbon for higher strength
- Best, toughest, and most widely used for small springs
> Good for fatigue



Some Common Spring Steels

e Chrome-vanadium
> Popular alloy spring steel
> Higher strengths than plain carbon steels
> Good for fatigue, shock, and impact
e Chrome-silicon
> Good for high stresses, long fatigue life, and shock



Strength of Spring Materials

With small wire diameters, strength is a function of diameter.

A graph of tensile strength vs. wire diameter is almost a straight
line on log-log scale.

The equation of this line is
5, = 2 (10-14)

G j m

where A is the intercept and m is the slope.

Values of A and m for common spring steels are given in Table
10-4.



Constants for Estimating Tensile Strength

A

ur=d_m

S

ASTM Exponent Diameter,

Material No. m in
Music wire* A228 0.145 0.004-0.256
OQ&T wire® A229 0.187 0.020-0.500
Hard-drawn wire* A227 0.190 0.028-0.500
Chrome-vanadium wire®  A232 0.168 0.032-0.437
Chrome-silicon wire!l A401 0.108 0.063-0.375
302 Stainless wire” A313 0.146 0.013-0.10
0.263 0.10-0.20
0.478 0.20-0.40
Phosphor-bronze wire**  B159 0 0.004-0.022

0.028 0.022-0.075
0.064 0.075-0.30

A,

kpsi - in™

201
147
140
169
202
169
128

90
145
121
110

(10-14)

Diameter, A,
mm MPa - mm™
0.10-6.5 2211
0.5-12.7 1855
0.7-12.7 1783
0.8-11.1 2005
1.6-9.5 1974
0.3-2.5 1867
2.5-5 2065
5-10 2911
0.1-0.6 1000
0.6-2 913
2-7.5 932

Relative
Cost
of Wire

2.6
1.3
1.0
3.1
4.0
7.6-11

8.0

Table 104
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Estimating Torsional Yield Strength

Since helical springs experience shear stress, shear yield strength
IS needed.

If actual data is not available, estimate from tensile strength
Assume yield strength is between 60-90% of tensile strength
0.6S,<S,<09S,

Assume the distortion energy theory can be employed to relate
the shear strength to the normal strength.

SSy = 0.5778y
This results in

0.358,; < 8y <0.528,, (10-15)



Mechanical Properties of Some Spring Wires (Table 10-5)

Elastic Limit,
Percent of S,; Diameter

Material Tension Torsion d, in
Music wire A228 65-75 45-60 <0.032 29.5 203.4 12.0 82.7
0.033-0.063 29.0 200 11.85 81.7
0.064-0.125 28.5 196.5 11.75 81.0
>0.125 28.0 193 11.6 80.0
HD spring A227 60-70 45-55 <0.032 28.8 198.6 11.7 80.7
0.033-0.063 28.7 197.9 11.6 80.0
0.064-0.125 28.6 197.2 11.5 79.3
>0.125 28.5 196.5 11.4 78.6
Oil tempered A239 85-90 45-50 28.5 196.5 11.2 77.2
Valve spring A230 85-90 50-60 29.5 203.4 11.2 712
Chrome-vanadium A231 88-93 65-75 29.5 203.4 11.2 T2
A232 88-93 29.5 203.4 11.2 772
Chrome-silicon A401 85-93 65-75 29.5 203.4 11.2 772

Stainless steel

A313* 65-75 45-55 28 193 10 69.0
17-7PH 75-80 55-60 29.5 208.4 11 75.8
414 65-70 42-55 29 200 11.2 112
420 65-75 45-55 29 200 11.2 772
431 72-76 50-55 30 206 11.5 79.3
Phosphor-bronze B159 75-80 45-50 15 103.4 6 41.4
Beryllium-copper B197 70 50 17 ki 6.5 44.8
75 50-55 19 131 7.3 50.3
Inconel alloy X-750 65-70 4045 31 213.7 11.2 772
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Maximum Allowable Torsional Stresses

Table 10-6

Maximum Allowable
Torsional Stresses for
Helical Compression
Springs in Static
Applications

Source: Robert E. Joerres,
“Springs,” Chap. 6 in Joseph

E. Shigley, Charles R. Mischke,
and Thomas H. Brown, Jr. (eds.),
Standard Handbook of Machine

Design, 3rd ed., McGraw-Hill,
New York, 2004.

Maximum Percent of Tensile Strength

Before Set Removed
(includes Kw or Kp)

Material

Music wire and cold- 45
drawn carbon steel

Hardened and tempered 50
carbon and low-alloy

steel

Austenitic stainless 35
steels

Nonferrous alloys 35

After Set Removed
(includes K)

60-70

65-75

55-65

55-65
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Example 10-1

A helical compression spring i1s made of no. 16 music wire. The outside coil diam-
eter of the spring is % in. The ends are squared and there are 12% total turns.

(a) Estimate the torsional yield strength of the wire.

(b) Estimate the static load corresponding to the yield strength.

(c) Estimate the scale of the spring.

(d) Estimate the deflection that would be caused by the load in part (b).

(e) Estimate the solid length of the spring.

(/) What length should the spring be to ensure that when it is compressed solid and
then released, there will be no permanent change in the free length?

(g) Given the length found in part (f), is buckling a possibility?

() What is the pitch of the body coil?
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Example 10-1

(a) From Table A-28, the wire diameter is d = 0.037 in. From Table 10-4, we find
A =201 kpsi-in™ and m = 0.145. Therefore, from Eq. (10-14)

A 201
dm ~ 0.03701%

Sut = — 324 kpsi

Then, from Table 10-6,
Ssy = 0.458,, = 0.45(324) = 146 kpsi

Shigley’s Mechanical Engineering Design



Example 10-1

(b) The mean spring coil diameter is D = % — 0.037 = 0.400 in, and so the spring
index 1s C = 0.400/0.037 = 10.8. Then, from Eq. (10-6),

_4C 42 4(10.8) +2
T 4C -3 4(10.8) -3

Kp = 1.124

Now rearrange Eq. (10-7) replacing = with S, and solve for F:

g 48y _ 7(0.037°)146(10°)

= = = 6.46 Ibf
8KpD 8(1.124) 0.400
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Example 10-1

(¢) From Table 10-1, N, = 12.5 — 2 = 10.5 turns. In Table 10-5, G = 11.85 Mpsi,
and the scale of the spring is found to be, from Eq. (10-9),

d*G B 0.0374 (11.85)10°

k = = = 4.13 Ibf/in
8D3N, 8(0.400%)10.5

F 646
_ 2 1567
(d) Y = T a3 m
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Example 10-1
(¢) From Table 10-1,

Ly = (N, + 1)d = (12.5+ 1)0.037 = 0.500 in

(f) Lo=y+L,=15640.500=2.06 in.
(g) To avoid buckling, Eq. (10-13) and Table 10-2 give
D 0.400
Lo <263— =2.63—— =2.101n
o 0.5

Mathematically, a free length of 2.06 in 1s less than 2.10 in, and buckling is unlikely.
However, the forming of the ends will control how close « is to 0.5. This has to be
investigated and an inside rod or exterior tube or hole may be needed.

(h) Finally, from Table 10-1, the pitch of the body coil is

_ Lo—3d _ 2.06—3(0.037)
- N, 10.5

p = 0.186 in
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Helical Compression Spring Design for Static Service

» Limit the design solution space by setting some practical limits
 Preferred range for spring index
4<C<12 (10-18)

 Preferred range for number of active coils
3<N, <15 (10-19)



Helical Compression Spring Design for Static Service

To achieve best linearity of spring constant, preferred to limit
operating force to the central 75% of the force-deflection curve
between F=0and F = F..

This limits the maximum operating force to F,,, < 7/8 F,

max —

Define fractional overrun to closure as & where
F:-::(I—I_E)qux (10_]7)

This leads to
7
F:-: — (1 ‘|‘{§)qux — (l +E) (g)Fi

Solving the outer equality for &, ¢=1/7=0.143 @0.15
Thus, 1t 1Is recommended that

& >0.15 (10-20)



Summary of Recommended Design Conditions

» The following design conditions are recommended for helical
compression spring design for static service

4<C <12 (10-18)
3<N, <15 (10-19)
& >0.15 (10-20)
ng > 1.2 (10-21)

where n, Is the factor of safety at solid height.



Figure of Merit for High VVolume Production

 For high volume production, the figure of merit (fom) may be the
cost of the wire.
» The fom would be proportional to the relative material cost,

weight density, and volume
yt2d*N, D
fom = —(relative material Cost):l {4 : (10-22)




Design Flowchart for Static Loading

Choose d
Over-a-rod Free In-a-hole
As-wound or set As-wound Set removed As-wound or set
D=d  +d+allow § = const(A)/d™" Sey=0.65A/d" D=d,.—d—allow
C_Ea—ﬁ+,\/ 2a - BY 3o he_ S,ymd’
4B 43 48 N 8n (1l +&F, .,
ﬂ:% 3:8(1+‘5]Fm
m o
D=Cd
|

|

Continue on next slide
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Design Flowchart for Static Loading

Continued from previous slide

'

C=D/d

Kp=(4C +2)/(4C-3)
7= K 8(1 + £)F,__ D/(mwd”)
ng=S;,/7,
OD=D+d
ID=D-d

N, =Gd"y_ /(8D°F__)

Ymax
N.: Table 10-1
L Table 10-1
L,: Table 10-1
(Lo, =2.63D/a

fom = —(rel. cost) *}rarldzﬁt D/4

Shigley’s Mechanical Engineering Design



Design Flowchart for Static Loading

Print or display: d, D, C, OD,ID,N,,N,, L, L,, (Ly).,, n;, fom
Build a table, conduct design assessment by inspection
Eliminate infeasible designs by showing active constraints

Choose among satisfactory designs using the figure of merit

Shigley’s Mechanical Engineering Design



Finding Spring Index for As-Wound Branch

In the design flowchart, for the branch with free, as-wound
condition, the spring index is found as follows:

From Egs. (10-3) and (10-17),
o o 8F.D  4C +2 [8(1 + £) an,,.;(,‘}

N zd3  4C —3 2
Let Ssy
o — —
N
8 (1 —l_ E) Fﬂ]{l}{
B =

Td?

Substituting (b) and (c) into (a) yields a quadratic in C.

o _ 2B +‘/(2{1’fﬁ)2_£

4

(b)

(c)

(10-23)



Example 10-2

A music wire helical compression spring is needed to support a 20-1bf load after being
compressed 2 in. Because of assembly considerations the solid height cannot exceed
[ in and the free length cannot be more than 4 in. Design the spring.

Solution
The a priori decisions are

« Music wire, A228; from Table 104, A =201 000 psi-in™; m = 0.145; from
Table 10-5, E = 28.5 Mpsi, G = 11.75 Mpsi (expecting d > 0.064 in)

« Ends squared and ground

« Function: Fiax = 20 Ibf, ymax = 2 in

« Safety: use design factor at solid height of (n5)g = 1.2

« Robust linearity: § = 0.135

« Use as-wound spring (cheaper), Sy, = 0.455,, from Table 10-6

 Decision variable: d = 0.080 in, music wire gage #30, Table A-28. From Fig. 10-3
and Table 10-6,

201 000
0.08()0-145

Ssy = 0.45 = 130 455 psi

Shigley’s Mechanical Engineering Design



Example 10-2

From Fig. 10-3 or Eq. (10-23)
Ssy 130455

Hg 1.2

8(1 4+ &)Foax 8(1 +0.15)20
_ 8 A O e SAHO1920 g5 4

wd? 7(0.0802)
~ 2(108 713) —9151.4 N 2(108 713) — 9151.47%  3(108 713) B
a 4(9151.4) 4(9151.4) 409151.4)
D = Cd = 10.53(0.080) = 0.8424 in

 4(10.53) +2
~ 4(10.53) — 3

= 108 713 psi

o =

p

10.53

=1.128

B

8(1 +0.15)20(0.8424)
7(0.080)3

T, = 1.128 = 108 700 psi
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Example 10-2

OD = 0.843 4 0.080 = 0.923 in

 11.75(10%)0.080%(2)
“a 8(0.843)320

N, = 10.05 4+ 2 = 12.05 total turns
L, = 0.080(12.05) = 0.964 in
Lo =0.964 + (1 +0.15)2 = 3.264 in
(L)er = 2.63(0.843/0.5) = 4.43 in
fom = —2.67%(0.080)%12.05(0.843) /4 = —0.417

= 10.05 turns

Shigley’s Mechanical Engineering Design



Example 10-2

Repeat the above for other wire diameters and form a table (easily accomplished with
a spreadsheet program):

d 0.063 0.067 0.071 0.075 0.080 0.085 0.090 0.095

D 0.391 0.479 0.578 0.688 0.843 1.017 1.211 1.427
C 6.205 7.153 8.143 9.178  10.53 11.96 13.46 15.02
OD 0.454 0.546 0.649 0.763 0.923 1.102 1.301 1.522
N, 39.1 26.9 19.3 4.2 10.1 7.3 54 4.1
L 2.587 1.936 1.513 1.219 0.964 0.790 0.668 0.581
Lo 4.887 4.236 3.813 3519 3.264 3.090 2.968 2.881
(Loer - 2.06 2.52 3.04 3.62 4.43 5.35 6.37 7.51
Ny 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
fom -—-0409 -0.399 —-0398 —-0404 -0417 —-0438 —-0467 —0.505
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Example 10-2

Now examine the table and perform the adequacy assessment. The shading of the table
indicates values outside the range of recommended or specified values. The spring
index constraint 4 < C < 12 rules out diameters larger than 0.085 in. The constraint
3 < N, < 15 rules out wire diameters less than 0.075 in. The L; < | constraint rules
out diameters less than 0.080 in. The Ly < 4 constraint rules out diameters less than
0.071 in. The buckling criterion rules out free lengths longer than (Lg)c, which rules
out diameters less than 0.075 in. The factor of safety 7, 1s exactly 1.20 because the
mathematics forced it. Had the spring been in a hole or over a rod, the helix diameter
would be chosen without reference to (ny)4. The result is that there are only two springs
in the feasible domain, one with a wire diameter of 0.080 in and the other with a wire
diameter of 0.085. The figure of merit decides and the decision is the design with 0.080
in wire diameter.

Shigley’s Mechanical Engineering Design



Example 10-3

Design a compression spring with plain ends using hard-drawn wire. The deflection
is to be 2.25 in when the force is 18 Ibf and to close solid when the force is 24 Ibf.

Upon closure, use a design factor of 1.2 guarding against yielding. Select the small-
est gauge W&M (Washburn & Moen) wire.

Solution

Instead of starting with a trial wire diameter, we will start with an acceptable spring

index for C after some preliminaries. From Eq. (10-14) and Table 10-6 the shear
strength, in kpsi, is

A
Ssy = 0.458,; = 0.45 (d_m) (1)

Shigley’s Mechanical Engineering Design



Example 10-3

The shear stress 1s given by Eq. (10-7) replacing t and F with T, and Fpax, respec-
tively, gives

8Fmax D 8 FmaxC
Tmax = KB 3 — AR =d? (2)
where the Bergstrisser factor, Kg, from Eq. (10-5) is
4C + 2
= 3
T ac -3 =)

Dividing Eq. (1) by the design factor n and equating this to Eq. (2), in kpsi, gives

0.45 ( A ) _ g, S 0 "

n

Shigley’s Mechanical Engineering Design



Example 10-3

For the problem Fy,x = 24 Ibf and n = 1.2. Solving for d gives
KeC 1/(2—m)
d = (0.163%) (5)

Try a trial spring index of C = 10. From Eq. (3)

4(10) 42

— = 1.135
4(10) — 3

B

From Table 104, m = 0.190 and A = 140 kpsi - in®"". Thus, Eq. (5) gives

= 0.09160 in

1.135(10)\ /0190
140 )

d = (0.163

Shigley’s Mechanical Engineering Design



Example 10-3

From Table A-28, a 12-gauge W&M wire, d = 0.105 5 in, is selected. Checking the
resulting factor of safety, from Eq. (4) with Fpax = 24 1bf

A dZ—m

_ 7.363
" K7C

(6)

140(0.105 52-0-1%0
= 7.363 ( ) = 1.55
1.135(10)

which is pretty conservative. If we had selected the 13-gauge wire, d = 0.091 5 in,
the factor of safety would be n = 1.198, which rounds to 1.2. Taking a little liberty
here we will select the W&M 13-gauge wire.

Shigley’s Mechanical Engineering Design



Example 10-3

To continue with the design, the spring rate is

LS LR
=3 =225 o/

From Eq. (10-9) solving for the active number of coils

d*G dG  0.091 5(11.5)106

N, = = =
8kD3  8kC3 8(8)103

= 16.4 turns

This exceeds the recommended range of 3 < N, < 15. To decrease Ng, increase C.
Repeating the process with C = 12 gives Kg = 1.111 and d = 0.100 1 in. Selecting
a 12-gauge W&M wire, d = 0.105 5 in. From Eq. (6), this gives n = 1.32, which is
acceptable. The number of active coils is

dG  0.1055(11.5)10°

— Tre YOI — 10.97 = 11 turns

Ng
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Example 10-3

which is acceptable. From Table 10-1, for plain ends, the total number of coils is
N; = N, = 11 turns. The deflection from free length to solid length of the spring is

given by
Fonax 24

— — =31n

Ys = 7% 3

From Table 10-1, the solid length is

L =d(N;+1)=0.1055(11 + 1) = 1.266 in
The free length of the spring is then
Lo=Ls+ y, =1266+4+3 =4.266in
The mean coil diameter of the spring is
D =Cd =12(0.1055) = 1.266 in

and the outside coil diameter of the spring is OD =D +d = 1.266 +0.1055 =
1.372 in.
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Example 10-3
To avoid buckling, Eq. (10-13) gives

1632 — 2631200 _ 550
S T Y66 T

From Table 10-2, the spring is stable provided it is supported between either fixed-
fixed or fixed-hinged ends.
The final results are:

W&M wire size: 12 gauge, d = 0.105 5 in
Outside coil diameter: OD = 1.372 in

Total number of coils: N, = 11 turns with plain ends
Free length: Ly = 4.266 in

Shigley’s Mechanical Engineering Design



Critical Frequency of Helical Springs

When one end of a spring
Is displaced rapidly, a
wave called a spring surge
travels down the spring.

If the other end is fixed,
the wave can reflect back.

If the wave frequency is
near the natural frequency
of the spring, resonance
may occur resulting in
extremely high stresses.

Catastrophic failure may
occur, as shown in this
valve-spring from an over-
revved engine.




Critical Frequency of Helical Springs

e The governing equation is the wave equation
9% u W 0% u
ax2  kgl? dr?

where k = spring rate

(10-24)

¢ = acceleration due to gravity
[ = length of spring
W = weight of spring

x = coordinate along length of spring

u = motion of any particle at distance x
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Critical Frequency of Helical Springs

The solution to this equation is harmonic and depends on the given
physical properties as well as the end conditions.

The harmonic, natural, frequencies for a spring placed between
two flat and parallel plates, in radians per second, are

ko
cu:ﬁm.m—‘i’, m=1,2,3,...

In cycles per second, or hertz,
| [kg

— e | e— 10_25
2V w | }

!

With one end against a flat plate and the other end free,

| f ko

f



Critical Frequency of Helical Springs

» The weight of a helical spring is

d* m2d*DNg)
L DNy = ———a¥ (10-27)

W= ALy =
F = 4

» The fundamental critical frequency should be greater than 15 to
20 times the frequency of the force or motion of the spring.

* |f necessary, redesign the spring to increase k or decrease W.



Fatigue Loading of Helical Compression Springs

» Zimmerli found that size, material, and tensile strength have no
effect on the endurance limits of spring steels in sizes under 3/8
In (10 mm).

 Testing found the endurance strength components for infinite life
to be

Unpeened:

Ssa = 35 kpsi (241 MPa) Ssm = 55 kpsi (379 MPa) (10-28)
Peened:

Ssa = 57.5 kpsi (398 MPa) Ssm = 17.5 kpsi (534 MPa) (10-29)

e These constant values are used with Gerber or Goodman failure
criteria to find the endurance limit.



Fatigue Loading of Helical Compression Springs

» For example, with an unpeened spring with S, = 211.5 kpsi, the
Gerber ordinate intercept for shear, from Eq. (6-42), Is

S 35
S¢ = - = ~ = 37.5 kpsi

1 S\ ? 1 55 )3
S, 211.5

 For the Goodman criterion, it would be S, = 47.3 kpsi.

» Each possible wire size would change the endurance limit since
S, Is a function of wire size.




Fatigue Loading of Helical Compression Springs

« It has been found that for polished, notch-free, cylindrical
specimens subjected to torsional shear stress, the maximum
alternating stress that may be imposed is constant and
Independent of the mean stress.

» Many compression springs approach these conditions.
 This failure criterion is known as the Sines failure criterion.



Torsional Modulus of Rupture

 The torsional modulus of rupture S., will be needed for the
fatigue diagram.

 Lacking test data, the recommended value is
Ssu = 0.67S,; (10-30)



Stresses for Fatigue Loading

e From the standard approach, the alternating and midrange forces
are
Fmax - Fmin

F, = (10-31q)
2

Fmax Fmin
F, — Cmax T (10-31b)

-2

» The alternating and midrange stresses are
8F,D

wd?

(10-32)

Tg = KB

8FuD

Td3

™Tm = Kp

(10-33)



Example 104

An as-wound helical compression spring, made of music wire, has a wire size of 0.092
in, an outside coil diameter of 1—96 in, a free length of 4% in, 21 active coils, and both ends
squared and ground. The spring is unpeened. This spring is to be assembled with a
preload of 5 Ibf and will operate with a maximum load of 35 Ibf during use.

(a) Estimate the factor of safety guarding against fatigue failure using a torsional
Gerber fatigue failure criterion with Zimmerli data.

(b) Repeat part (a) using the Sines torsional fatigue criterion (steady stress compo-
nent has no effect), with Zimmerl data.

(c) Repeat using a torsional Goodman failure criterion with Zimmerli data.

(d) Estimate the critical frequency of the spring.

Shigley’s Mechanical Engineering Design



Example 104

The mean coil diameter is D = 0.5625 — 0.092 = 0.4705 in. The spring index is C =
D/d = 0.4705/0.092 = 5.11. Then

4C+2  4(5.11) 42

= = = 1.287
4C —3  4(5.11) =3

Kp

From Eqgs. (10-31),

35-5 3545
FH=T=151bf Fm=T=201bf

The alternating shear-stress component is found from Eq. (10-32) to be

8F. D 8(15)0.4705 . |
— (1.287 10-3) = 297 k
- S aaoys U9 PSI

7, = Kp

Equation (10-33) gives the midrange shear-stress component

8FnD 8(20)0.4705
. = Kp = 1.287 )

— : (0.002)3 (1073) = 39.6 kpsi
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Example 104

From Table 104 we find A = 201 kpsi-in” and m = 0.145. The ultimate tensile
strength 1s estimated from Eq. (10-14) as

A 201

dm — 0.0920.145
Also the shearing ultimate strength is estimated from

Ssu = 0.675,, = 0.67(284.1) = 190.3 kpsi

(a) The Gerber ordinate intercept for the Zimmerli data, Eq. (10-28), 1s

Ssa . (Ssm)’ s 35

1=—+( ) =d = — — = 38.2 kpsi
See | \S.. | — (Sen/Se)2 1 —(55/190.3)2 pe!

and the fatigue factor of safety ny 1s given by

1 1, N (rm)z 29.7 (39.6

s.) 382 T \1903

Sut = = 284.1 kpsi

2
- n, = 1.218
f
nf SSIE )

(b) The Sines failure criterion ignores S;,, so that, for the Zimmerli data with S,, =
35 kpsi,
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Example 104

(¢) The ordinate intercept Ss. for the Goodman failure criterion with the Zimmerli
data is

1=S‘S_a_|_ssm—} Ssez SSH = 35
See  Seu 1 —(S;n/Se) 1 —(55/190.3)

The fatigue factor of safety is given by

1 1, L Tm _ 29.7+ 39.6
ne  Sse Seu 492 1903

= 49.2 kpsi

- n, = 1.23
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Example 104
(d) Using Eq. (10-9) and Table 10-5, we estimate the spring rate as

d*G 0.092*[11.75(10%)]
k = = — 48.1 1bf/i
SD3N, __ 8(0.4705)321 A
From Eq. (10-27) we estimate the spring weight as
2 2
0.0927)0.4705(21)0.284
w = 2097 d e  0.0586 Ibf

and from Eq. (10-25) the frequency of the fundamental wave is

B i [48.1(386)

1/2
= 281 Hz
21 0.0586

[f the operating or exciting frequency is more than 281/20 = 14.1 Hz, the spring may
have to be redesigned.
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Example 10-5

A music wire helical compression spring with infinite life is needed to resist a
dynamic load that varies from 5 to 20 Ibf at 5 Hz while the end deflection varies from
% to 2 in. Because of assembly considerations, the solid height cannot exceed 1 in
and the free length cannot be more than 4 in. The springmaker has the following wire
sizes in stock: 0.069, 0.071, 0.080, 0.085, 0.090, 0.095, 0.105, and 0.112 in.
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Example 10-5

The a priori decisions are:

« Material and condition: for music wire, A =201 kpsi-in”, m =0.145, G =
11.75(10%) psi; relative cost is 2.6

« Surface treatment: unpeened

« End treatment: squared and ground

« Robust linearity: & = 0.15

« Set: use in as-wound condition

« Fatigue-safe: ny = 1.5 using the Sines-Zimmerl fatigue-failure criterion

« Function: Fpj, = 5 Ibf, Fpax = 20 Ibf, ypin = 0.5 1n, ypmax = 2 in, spring operates
free (no rod or hole)

« Decision variable: wire size d

The figure of merit will be the volume of wire to wind the spring, Eq. (10-22). The
design strategy will be to set wire size d, build a table, inspect the table, and choose
the satisfactory spring with the highest figure of merit.
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Example 10-5

Set d =0.112 in. Then

20-5 2045
bz = 5 = 7.5 Ibf o — —5 = 12.5 1bf

F 20
= - = 10 1bf/in

H-u
I
I

201
Sur = 0.1120-145

= 276.1 kpsi

Ssu = 0.67(276.1) = 185.0 kpsi

Ssy = 0.45(276.1) = 124.2 kpsi
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From Eq. (10-28), with the Sines criterion, S, = S;, = 35 kpsi. Equation (10-23)
can be used to determine C with S, n¢, and F, in place of S;,, ny, and (1 + &) Fpax,

respectively. Thus,

Sse 35000 _
a = = = 23 333 psi

ny 1.5

8F, 8(7.5)

_ Sfa _ — 1522.5 psi
P= @~ 701D pSt

_ 2033331525  [r2(23 333) — 15225 ? 323333 003
T 4(15225) 4(1522.5) 4(1522.5) —
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Example 10-5
D =Cd = 14.005(0.112) = 1.569 in

F = (1 +&)Fpax = (1 4+0.15)20 = 23 Ibf

d*G B 0.112%(11.75)(10°)

N, = =
8D3k 8(1.569)310

= 5.98 turns

N, =N,+2=598+2="7.98 turns
L, =dN, =0.112(7.98) = 0.894 in

F, 23 .
Lo=L+ T = 0.894 + 0= 3.194 in

ID=1.569 —-0.112 = 1.457 in

OD =1.569+0.112 = 1.681 in
vs=Lo—L; =3.194 — 0.894 = 2.30 in

2.63D (1.569) _
= 2.63 = 8.253 in

o {] 5 Shigley’s Mechanical Engineering Design

(Lo)er <




Example 10-5

_ 4(14.005) + 2
~ 4(14.005) — 3

B = 1.094

w _ Td’DNay _ m20.1122(1.569)5.98(0.284)

4 ]
O Y T
o =05 =7= =05y 30805 = -

= 0.0825 Ibf
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8F,D 8(7.5)1.56 _
= 1.094 (/) i = 23 334 psi

a — K
< T 20.1123

F, 12.5 :
Ty = r{,? =23 334? = 38 890 psi

a

F 23 .
s =Tap = 23 334ﬁ = 71 560 psi

o

Sea 35000

= T3
B Ssy B 124 200 _ 174
s T 560
fom = —(relative material cost)72d*N, D /4

= —2.67%(0.112%)(7.98)1.569/4 = —1.01
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Inspection of the results shows that all conditions are satisfied except for4 < C < 12.
Repeat the process using the other available wire sizes and develop the following table:

0.071 0.080

D 0.297 0.332 0.512 0.632 0.767 0919 1.274 1.569
ID 0.228 0.261 0.432 0.547 0.677 0.824 1.169 1.457
OD 0.366 0.403 0.592 0.717 0.857 1.014 1.379 1.681
C 4.33 4.67 6.40 7.44 8.53 9.67 12.14 14.00
Ng 127.2 102.4 44.8 30.5 21.3 154 8.63 6.0
L 8.916 7.414 3.740 2.750 2.100 1.655 [.116 0.895
Lg 11.216 9.714 6.040 5.050 4.400 3.955 3416 3.195
(Lo)er 1.562 1.744 2.964 3.325 4.036 4.833 6.703 8.250
ng .50 1.50 1.50 1.50 1.50 1.50 1.50 1.50
g [.86 1.85 1.82 1.81 1.79 1.78 1.75 1.74
In 87.5 89.7 96.9 99.7 101.9 103.8 106.6 108

fom —1.17 —1.12 -0983 —-0948 —-0930 —-0927 —-0958 —1.01
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Example 10-5

The problem-specific inequality constraints are
L; <1in
Lop<4 in
fn > 5(20) = 100 Hz

The general constraints are
3<N, <15
C <

4<C<12
(Lo)er > Lo

We see that none of the diameters satisfy the given constraints. The 0.105-in-diameter
wire is the closest to satisfying all requirements. The value of C = 12.14 1s not a
serious deviation and can be tolerated. However, the tight constraint on L needs to be
addressed. If the assembly conditions can be relaxed to accept a solid height of 1.116 in,
we have a solution. If not, the only other possibility is to use the 0.112-in diameter
and accept a value C = 14, individually package the springs, and possibly reconsider
supporting the spring in service.
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Extension Springs

» Extension springs are similar to compression springs within the
body of the spring.

» To apply tensile loads, hooks are needed at the ends of the
springs.

e Some common hook types:

DOdir OCa

(a) Machine half loop—open (b) Raised hook

O il € il

(c) Short twisted loop (d) Full twisted loop

Fig. 10-5




Stress in the Hook

 Inatypical hook, a critical stress location is at point A, where there
Is bending and axial loading.

16D 4
= F | (K 10-
o4 [( - dz] 10-34)
* (K), Is a bending stress-correction factor for curvature
4C —Cy — 1 2r
(K)y = ——no ==t (10-35)

4C1(Cp — 1) d
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Stress in the Hook

» Another potentially critical stress location is at point B, where

there Is primarily torsion.
g = (K)p 8};,? (10-36)
» (K)g Is a stress-correction factor for curvature.
(K)p = jgz :i C; = % (10-37)
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An Alternate Hook Design

 This hook design reduces the coil diameter at point A.

.
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Close-wound Extension Springs

» Extension springs are often made with colils in contact with one
another, called close-wound.

» Including some initial tension in close-wound springs helps hold
the free length more accurately.

» The load-deflection curve is offset by this initial tension F;

F F =F; +ky (10-38)

¥ =

Flg 10—7 (a)



Terminology of Extension Spring Dimensions

» The free length is measured inside the end hooks.
Lo=2(D —d)+ (Np+ 1)d = (2C — 1 + Np)d

(10-39)

» The hooks contribute to the spring rate. This can be handled by
obtaining an equivalent number of active coils.

Wire
diameter

A

Gap

(

~ Hook _

“length ™

, G
Ng = Np + E
Free length >
~ Lengthof
body
ﬁ I
N Inside
/ diameter
&// +
~_ Loop _
“length

Flg 107 (b)

A

Outside

diameter

\

J

_)...

\_/

a
\N

(10-40)

Mean |

diameter



Initial Tension in Close-Wound Springs

Initial tension Is created
by twisting the wire as it
IS wound onto a mandrel.

When removed from the
mandrel, the initial
tension is locked in
because the spring cannot
get any shorter.

The amount of initial
tension that can routinely
be incorporated is shown.

The two curves bounding
the preferred range Is
given by
33 500
exp(0.105C)

+ 1000 (4 —

Torsional stress (uncorrected)

caused by initial tension MPa ——

300

275

250

225

200

175

150

125

100

Available upon
special request
from springmaker

Preferred

Difficult
to attain

40

35

30

25

20

Torsional stress (uncorrected)

caused by initial tension (107 psi) —

range
— 15
Difficult 10
. to control
I S N Y = )
6 8 10 12 14 16
Index — » Flg 10-7c

3 ) .
- psI

6.5

(10-41)



Guidelines for Maximum Allowable Stresses

o Recommended maximum allowable stresses, corrected for
curvature effect, for static applications is given in Table 10-7.

Table 107
Percent of Tensile Strength

In Torsion In Bending
Materials Body End End

Patented, cold-drawn or 45-50 40 75
hardened and tempered

carbon and low-alloy

steels

Austenitic stainless 35 30 55
steel and nonferrous
alloys

This information is based on the following conditions: set not removed and low
temperature heat treatment applied. For springs that require high initial tension,
use the same percent of tensile strength as for end.
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Example 10-6

A hard-drawn steel wire extension spring has a wire diameter of 0.035 in, an outside
coil diameter of 0.248 in, hook radii of ri = 0.106 1n and r» = 0.089 in, and an initial
tension of 1.19 Ibf. The number of body turns 1s 12.17. From the given information:
(a) Determine the physical parameters of the spring.

(b) Check the initial preload stress conditions.

(c) Find the factors of safety under a static 5.25-Ibf load.

Solution
(a) D =0D —d=0248 — 0.035 = 0213 in
D 0.213
= — = — = 06.086
d 0.035

4C +2  4(6.086) 42

Kp = —
B=4C =3 7 4(6.086) — 3

= 1.234
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Example 10-6

Eq. (10-40) and Table 10-5:
No=Np+G/E =12.17T+11.6/28.7 = 12.57 turns

_d*G  0.035%(11.6)10°
~ 8D3N,  8(0.213%)12.57

= 17.91 Ibt/in

Eq. (10-9): k

Eq. (10-39): Lo=2C — 1+ Np)d =[2(6.086) — 1 +12.17]0.035 = 0.817 in
The deflection under the service load is

_ Faw—F;  525-1.19

Ymax = 7 = 701 = 0.227 in

where the spring length becomes L = Lo+ y = 0.817 +0.227 = 1.044 in.
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Example 10-6

(h) The uncorrected initial stress is given by Eq. (10-2) without the correction factor.

That 1s,
8F: D B 8(1.19)0.213(1073)

(Ti Juncorr = xd3 n(0.0353)

= 15.1 kpsi

The preferred range is given by Eq. (10—41) and for this case is

33 500 C -3
exp(0.105C) 6.5

33500
~ exp[0.105(6.086)]

6.086 — 3
+ 1000 ( 4 —
(+-55)

= 17 681 3525 = 21.2, 14.2 kpsi

Thus, the initial tension of 15.1 kpsi is in the preferred range.
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Example 10-6

Thus, the initial tension of 15.1 kpsi is in the preferred range.
(c) For hard-drawn wire, Table 104 gives m = 0.190 and A = 140 kpsi - in™. From

Eq. (10-14)

A 140
4dm — 0.0350.190
For torsional shear in the main body of the spring, from Table 10-7,

Ssy = 0.455,, = 0.45(264.7) = 119.1 kpsi
The shear stress under the service load is
B 8K p Frax D B 8(1.234)5.25(0.213)
max =T 72(0.0359)

Sut = = 264.7 kpsi

(1073) = 82.0 kpsi

Thus, the factor of safety is
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Example 10-6
For the end-hook bending at A,

Cy = 2r1/d = 2(0.106)/0.0.035 = 6.057

From Eq. (10-35)
4C? —Cy — 1 4(6.057%) — 6.057 — 1
(K= i1 _ OB — 1.14
4C1(Cr — 1) 4(6.057)(6.057 — 1)
From Eq. (10-34)
i 16D 4
oA = Fax _(K)Am + W}
i 16(0.213 4
—=5.25|1.14 ( J + (107%) = 156.9 kpsi
7(0.035%)  7(0.035%)

The yield strength, from Table 10-7, is given by
Sy =0.758,; = 0.75(264.7) = 198.5 kpsi

The factor of safety for end-hook bending at A is then

S 198.5
e = 1.27

a A 1569 Shigley’s Mechanical Engineering Design

ng =




Example 10-6
For the end-hook in torsion at B, from Eq. (10-37)
Cy = 2ry/d = 2(0.089)/0.035 = 5.086

4C; —1  4(5.086) —1

(K)p = = = 1.18
4C, —4  4(5.086) — 4
and the corresponding stress, given by Eq. (10-36), 1s
bl 8(5.25)0.213 ., ,
= (K = 1.18 1077) =784k
= 700359 ) =

Using Table 10-7 for yield strength, the factor of safety for end-hook torsion at B is

C (Sy)p  0.42647)

— 1.35
B 78.4

np

Yield due to bending of the end hook will occur first.
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Example 10-7

The helical coil extension spring of Ex. 10-6 is subjected to a dynamic loading from
1.5 to 5 Ibf. Estimate the factors of safety using the Gerber failure criterion for (a) coil
fatigue, (b) coil yielding, (c¢) end-hook bending fatigue at point A of Fig. 10-6a, and
(d) end-hook torsional fatigue at point B of Fig. 10-6b.

Solution

A number of quantities are the same as in Ex. 10-6: d = 0.035 in, S,; = 264.7 kpsi,
D = 0.213 in, r;y = 0.106 in, C = 6.086, Kp = 1.234, (K)4 = 1.14, (K)g = 1.18,
Np = 12.17 turns, Lo = 0.817 in, K = 17.91 Ibt/in, F; = 1.19 Ibf, and (7j)uncorr = 15.1
kpsi. Then

Fo = (Fmax — Fain)/2 = (O —1.5)/2 = 1.75 lbt
Fop = (Fpax + Fain)/2 = 0+ 1.5)/2 = 3.25 bt

The strengths from Ex. 10-6 include S,, = 264.7 kpsi, S, = 198.5 kpsi, and S,y =
119.1 kpsi. The ultimate shear strength 1s estimated from Eq. (10-30) as

Ssu = 0.67S,;, = 0.67(264.7) = 177.3 kpsi
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Example 10-7
(a) Body-coil fatigue:
_ 8KpF,D  8(1.234)1.75(0.213)
T ad3 7(0.0353)

Fn 3.25 :
Ty = —1, = ——=27.3 = 50.7 kpsi
F, 1.75

(1073%) = 27.3 kpsi

Ta

Using the Zimmerli data of Eq. (10-28) gives

Ssa 35 :
See = = = 38.7 kpsi

1 S\ 1 55 \?
s, -\ 177.3

From Table 67, p. 307, the Gerber fatigue criterion for shear is

( ) _1 S_gu zfa 1+ 1+ 21'.??:'55;3 2
ey =3\ ) .. Sen Ta

1 /177.3\% 273 50.7 38.7\2
2 ( 50.7 ) 38.7 +\/ i ( 177.3 27.3)




Example 10-7

(b) The load-line for the coil body begins at S5,, = 7; and has a slope r = 7,/(7,, — ;).
It can be shown that the intersection with the yield line is given by (Ss)y =
[r/(r + D](Ssy — 1i). Consequently, t; = (F;/F,)t, = (1.19/1.75)27.3 = 18.6 kpsi,
r=27.3/(50.7 — 18.6) = 0.850, and

0.850 ,
R — 0350 1 1(1 19.1 — 18.6) = 46.2 kpsi
Thus,
_ (Su)y _ 462
(”y)bod}f — = =373 1.69
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(¢) End-hook bending fatigue: using Eqgs. (10-34) and (10-35) gives

16D
.= F, | (K
? |:( ) wd? + ndz]
16(0.213 4
=1.75| 1. ( ) + (1073) = 52.3 kpsi
7(0.0353)  7(0.0352)
o 3'2552’%—97 | kpsi
Om =F %a= 757000 T O AP

To estimate the tensile endurance limit using the distortion-energy theory,
Se = S5¢/0.577 = 38.7/0.577 = 67.1 kpsi

Using the Gerber criterion for tension gives

1 /S, \% o, om S\
o P 1414 (222
(1) 2(am) s, +\/ +( Smga)

1 /264.7\* 523 97.1 67.1\2 |
— _ —14+. /1412 — 1.08
2\ 97.1 ) 67.1 264.7 52.3




Example 10-7
(d) End-hook torsional fatigue: from Eq. (10-36)

8F,D 8(1.75)0.213 =, _
g = (K = 1.18 1077) =26.1 k
p =BT 700355 ) E
Fp 3.25 :
(Tm)B = Fa (ra)B — mzﬁl = 48.5 kpSl

Then, again using the Gerber criterion, we obtain
L[S\ © T Sse\
— su ta_ 1 1 ) m_ Dse
Us)s 2(rm) S +\/ +(Sm ra)

1 /177.3\% 26.1 48.5 38.7\°
— —1 1+(2 — 1.30
2 ( 485 ) 38.7 +\/ +( 177.3 26.1)
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Helical Coll Torsion Springs

 Helical coil springs
can be loaded with
torsional end loads.

» Special ends are used
to allow a force to be
applied at a distance
from the coll axis.

o Usually used over a
rod to maintain
alignment and provide
buckling resistance.

AR
((+))
\\ \/

1+
‘ fﬁr

(NP

Special ends

'y

a

Double torsion

Uil

Fig. 10-8
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End Locations of Torsion Springs

» Terminology for locating relative positions of ends is shown.
» The initial unloaded partial turn in the coil body is given by
N, = B/360°
» The number of body turns N, will be the full turns plus the initial
partial turn.
N, = integer + % = integer + N,




End Locations of Torsion Springs

» Commercial tolerances on relative end positions is given in Table
10-9

Table 10-9 Total Coils Tolerance: + Degrees*
End Position Tolerances Upto3 8

for Helical Coil Torsion Over 3-10 10

Springs (for D/d Ratios Over 10-20 15

up to and Including 16) Over 20-30 20

Source: From Design Over 30 25

Handbook, 1987, p. 52.

Courtesy of Associated Spring. *Closer tolerances available on request.
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Stress in Torsion Springs

» The colil of a torsion spring experiences bending stress (despite the
name of the spring).

« Including a stress-correction factor, the stress in the coil can be
represented by M
ag = KT

e The stress-correction factor at inner and outer fibers has been
found analytically for round wire to be
AC?2 —C — | AC? 4+ C — |
Kf — K{) — ~ —Ij [] 0_43]
4C(C = 1) AC(C + 1)

» K, is always larger, giving the highest stress at the inner fiber.

» With a bending moment of M = Fr, for round wire the bending

stress IS DFy

- (10-44)
wd’

o=K

i



Spring Rate for Torsion Springs

» Angular deflection is commonly expressed in both radians and
revolutions (turns).

« If a term contains revolutions, the variable will be expressed with a
prime sign.

e The spring rate, If linear, Is

My My, M,— M,

,I\J: = p—
o] ~ 0 o,—0

(10-45)

where moment M can be expressed as Fl or Fr.



Deflection in the Body of Torsion Springs

e Use Castigliano’s method to find the deflection in radians in the
body of a torsion spring.

. f M? dx
- ] 2EI

o Let M = FI = Fr, and integrate over the length of the body-coill
wire. The force F will deflect through a distance ré.

9 — oU _f”DNF’ 0 F2r? dx _/‘IDN* Fridx
—OF ), OF \ 2EI o El

 Using I for round wire, and solving for 6,
9 — 64FrDN,  64M DN,

r

d*E  d*E




Deflection in the Ends of Torsion Springs

» The deflection in the ends of the spring must be accounted for.

e The angle subtended by the end deflection is obtained from
standard cantilever beam approach.

, Y _ P FI? 64M|

S — _ (10-46)
|~ 3EI  3E(wd*/64) 3nd*E




Deflection in Torsion Springs
» The total angular deflection is obtained by combining the body
deflection and the end deflection.

» With end lengths of I, and I,, combining the two deflections
previously obtained gives,

"= T AE T 32dE T idE - d°E

64M DNy, 64M I, 64MI, 64M D ( f [ +[»
— — b .
O

) (10-47)



Equivalent Active Turns

» The equivalent number of active turns, including the effect of the
ends, Is

(10-48)
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Spring Rate in Torsion Springs

The spring rate, in torque per radian

Fr M I*E
= = — = — (10-49)
0, 6,  64DN,
The spring rate, in torque per turn
2nd*E I*E
Ul (10-50)
64DN, 10.2DN,

To compensate for the effect of friction between the coils and an
arbor, tests show that the 10.2 should be increased to 10.8.
, d*E

— _ (10-51)
10.8DN,

Expressing Eq. (10-47) in revolutions, and applying the same

correction for friction, gives the total angular deflection as
_ 10.8MD I + 1

§ = N, 10-52
! d*E ( b ;%HD) | )




Decrease of Inside Diameter

A torsion spring under load will experience a change in coil
diameter.

If the spring is over a pin, the inside diameter of the coil must not
be allowed to decrease to the pin diameter.

The angular deflection of the body of the coll, extracted from the
total deflection in Eq. (10-52), is

10.8M DN,
! = f (10-54)
d*E
The new helix diameter D' of a deflected coil is
) NF)D
D = 10-53
Nb + H; [ ]

The new Inside diameter is
D/ =D —d



Decrease of Inside Diameter

» The diametral clearance A between the body coil and the pin of
diameter D, Is

A=D—d—D,= —d-D, (10-55)

 Solving for N,,
OL(A+d+ Dp)

th —
D—A—d—D,

(10-56)

 This gives the number of body turns necessary to assure a
specified diametral clearance.



Static Strength for Torsion Springs

» To obtain normal yield strengths for spring wires loaded in
bending, divide values given for torsion in Table 10-6 by 0.577
(distortion energy theory). This gives

0.78S,; Music wire and cold-drawn carbon steels
Sy = 1 0.87S,; OQ&T carbon and low-alloy steels (10-57)

0.61S,; Austenitic stainless steel and nonferrous alloys



Fatigue Strength for Torsion Springs

» The Sines method and Zimmerli data were only for torsional
stress, so are not applicable.

 Lacking better data for endurance limit in bending, use Table 10—
10, from Associated Spring for torsion springs with repeated load,
to obtain recommended maximum bending stress S..

Table 10-10

Maximum
Recommended Bending
Stresses (Kp Corrected)
for Helical Torsion
Springs in Cyclic
Applications as

Percent of S,

Source: Courtesy of Associated
Spring.

ASTM A228
Fatigue and Type 302 Stainless Steel ASTM A230 and A232
Life, Not Shot- Not Shot-
Cycles Peened Shot-Peened* Peened Shot-Peened*
10° 53 62 55 64
10° 50 60 53 62

This information is based on the following conditions: no surging, springs are in the “as-stress-relieved”
condition.

*Not always possible.
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Fatigue Strength for Torsion Springs

» Next, apply the Gerber criterion to obtain the endurance limit.

» Note that repeated loading is assumed.

S, /2
5, = i (10-58)

(52
(55)

 This accounts for corrections for size, surface finish, and type of
loading, but not for temperature or miscellaneous effects.




Fatigue Factor of Safety for Torsion Springs

o Applying the Gerber criterion as usual from Table 67, with the
slope of the load line r = M/M_,

252 25, \?
S, = —4L | —] 1 - 10-59
s, + +(;*5H,) [ ]
S,
ng = i (10-60)
Oq

 Or, finding n. directly using Table 6-7,

Om S 2
—1+ 1+(25—U—) (10-61)
ur a




Example 10-8

A stock spring is shown in Fig. 10-10. It is made from 0.072-in-diameter music wire

and has 4% body turns with straight torsion ends. It works over a pin of 0.400 in

diameter. The coil outside diameter 1s % in.

(a) Find the maximum operating torque and corresponding rotation for static loading.
(b) Estimate the inside coil diameter and pin diametral clearance when the spring is
subjected to the torque in part (a).

(c¢) Estimate the fatigue factor of safety n, if the applied moment varies between
Mpin = 1 to Myax = 5 Ibf - in.

< 2 in - Fig. 10-10
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Example 10-8

(a) For music wire, from Table 10—4 we find that A = 201 kpsi - in” and m = 0.145.
Theretore,

A 201
Sm‘ = —

T = 0,072,015 = 294.4 kpsi

Using Eq. (10-57) gives
Sy = 0.78S,; = 0.78(294.4) = 229.6 kpsi

The mean coil diameter is D = 19/32 —0.072 = 0.5218 in. The spring index
C =D/d = 0.5218/0.072 = 7.247. The bending stress-correction factor K; from
Eq. (10-43), is

- 4(7.247)2 —7.247 — 1
CTA(7.247)(7.247 — 1)

= 1.115

Now rearrange Eq. (10—44), substitute S, for o, and solve for the maximum torque
Fr to obtain

nd’S,  (0.072)7229 600

_ — 7.546 1bf - i
32K, 32(1.115) h

Mmpax = (Fr)max =
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Example 10-8

Note that no factor of safety has been used. Next, from Eq. (10-54) and Table 10-5,
the number of turns of the coil body 6. is

_ 10.8MDN,;,  10.8(7.546)0.5218(4.25)

/ — 0.236 t
JE 0.072%(28.5)10 -
(6))aeg = 0.236(360°) = 85.0°
The active number of turns N,, from Eq. (10-48), 1s
I +1 1+ 1
N, =N+ 172 _ 405, s — 4.657 turns
37D 37(0.5218)
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Example 10-8

The spring rate of the complete spring, from Eq. (10-51), is
. 0.072%(28.5)10°

k' = = 29.18 Ibf - in/t
10.8(0.5218)4.657 /turn
The number of turns of the complete spring 6’ is
M 7.546
e — = — =),
0" = o = 2918 0.259 turn

(6))deg = 0.259(360°) = 93.24°

Shigley’s Mechanical Engineering Design



Example 10-8
(h) With no load, the mean coil diameter of the spring is 0.5218 in. From Eq. (10-53),

o NeD _ 425(05218)
 Np+6,  4.25+0.236

The diametral clearance between the inside of the spring coil and the pin at load is

= 0.494 1n

A=D"—d—-D,=0.494 —0.072 — 0.400 = 0.022 in

Shigley’s Mechanical Engineering Design



Example 10-8

(c) Fatigue:
M; = (Mmax — Mnin)/2=(0—1)/2=21bf-in

M,, = (Mpyax + Mpyin)/2 = (5 + 1)/2 = 3 Ibf - in

M, 2
F = = —
M, 3
32M,, 32(2) _
=K. —2 =1.115 — 60 857
. 3 20.072° L
_ M 3 60 857) = 91 286 psi
Jm—MaUa—z( ) = ps1

Shigley’s Mechanical Engineering Design



Example 10-8
From Table 1010, S, = 0.50S,, = 0.50(294.4) = 147.2 kpsi. Then

147.2/2
S, = / = 78.51 kpsi

(141272 2
-\ 2944

The amplitude component of the strength S,, from Eq. (10-39), is

(2/3)2294.4% | | 2 78.51\° _
S, = 1+ 1 — 68.85 k
2(78.51) T T \332012 pS!

The fatigue factor of safety is

Sa 68.85
e e = 1.13
P 60.86

Shigley’s Mechanical Engineering Design



The Belleville
spring Is a coned-
disk spring with
unique properties
It has a non-linear
spring constant

With h/t > 2.83, the
S curve can be
useful for snap-
acting mechanisms

For 1.41<h/t<2.1
the flat central
portion provides
constant load for a
considerable
deflection range

-
5

Load, Ibf

Belleville Springs

600

Load
23-in dia
_J Y e § 0040 in =1
500
+—/z T
5-in dia
400 P ey i
\\\\ I I
‘ M -
NY AN
300 Q / .
-y N ~
R J 2
N\ o
SN 7
200 N
S
o k=
—100
0 0.08 0.16 0.24 0.32
Deflection, in
Fig. 10-11



Constant-Force Springs

» The extension spring shown is made of slightly curved strip steel,
not flat.

» The fore required to uncoil it remains constant.
» Known as a constant-force spring.

Initial
deflection

Rated load

Fig. 10-12



Conical Spring

» A conical spring is wound in the shape of a cone.
e Most are compression springs, made with round wire.

» The principal advantage is that the solid height is only a single
wire diameter.

F
R|—>| l<—




Volute Spring

A volute spring is a conical spring made from a wide, thin strip, or
“flat”, of material wound on the flat so that the coils fit inside one
another.

Since the coils do not stack on each other, the solid height is the width
of the strip.

A variable-spring scale is obtained by permitting the coils to contact the
support.

As deflection increases (in compression), the number of active coils
decreases. 1 .

Fig. 10-13a



Constant-Stress Cantilever Spring

 Auniform-section cantilever spring made ~
from flat stock has stress which is | Y
proportional to the distance x. T -
M B Fx
=TT T ()

« It is often economical to proportion the
width b to obtain uniform stress,
Independent of x.

‘—1— = —1-‘

Fig. 10-13b




Constant-Stress Cantilever Spring

For a rectangular section, I/c = bh?/6.

Combining with Eq. (a), ' Y
bh®>  Fx Lo
6 o
Solving for b, T
6F x b,
h— 1’} X i >>
h-o —
Since b is linearly related to x, the width b, at Fig. 10-13b
the base iIs
y = 2! (10-62)

2

h=o



Constant-Stress Cantilever Spring

* Apply Castigliano’s method to obtain
deflection and spring constant equations.

e The width is a function of x,
b=>b,x/I

» Integrating Castigliano’s deflection equation
with M and | both functions of x,

f !W({}IW/()F} —Fx(—x) J
V — — — a.x
‘ 0 El 0 ]](b x/h?
12F1 [! 6F [
b3 E f L= L E

» Thus, the spring constant, k = F/y, is

b,h*E
k== (10-64)

‘ ”r:‘ ‘

Fig. 10-13b
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