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PREFACE

Itis intended that this book provide the student with a clear and thorough
presentation of the theory and application of the principles of mechanics
of materials. To achieve this objective, over the years this work has been
shaped by the comments and suggestions of hundreds of reviewers in the
teaching profession, as well as many of the author’s students. The tenth
edition has been significantly enhanced from the previous edition, and it
is hoped that both the instructor and student will benefit greatly from
these improvements.

NEW TO THIS EDITION

e Updated Material. Many topics in the book have been re-written in
order to further enhance clarity and to be more succinct. Also, some of
the artwork has been enlarged and improved throughout the book to
support these changes.

e New Layout Design. Additional design features have been added to this
edition to provide a better display of the material. Almost all the topics
are presented on a one or two page spread so that page turning is
minimized.

¢ Improved Preliminary and Fundamental Problems. These problems sets
are located just after each group of example problems. They offer students
basic applications of the concepts covered in each section, and they help
provide the chance to develop their problem-solving skills before
attempting to solve any of the standard problems that follow. The problems
sets may be considered as extended examples, since in this edition their
complete solutions are given in the back of the book. Additionally, when
assigned, these problems offer students an excellent means of preparing
for exams, and they can be used at a later time as a review when studying
for various engineering exams.

e New Photos. The relevance of knowing the subject matter is reflected
by the real-world application of the additional new or updated photos
placed throughout the book. These photos generally are used to explain
how the principles apply to real-world situations and how materials
behave under load.



PREFACE

e New Problems. New problems involving applications to many different
fields of engineering have been added in this edition.

e New Review Problems. Updated review problems have been placed at
the end of each chapter so that instructors can assign them as additional
preparation for exams.

HALLMARK ELEMENTS

The contents of each chapter are
organized into well-defined sections that contain an explanation of
specific topics, illustrative example problems, and a set of homework
problems. The topics within each section are placed into subgroups
defined by titles. The purpose of this is to present a structured method for
introducing each new definition or concept and to make the book
convenient for later reference and review.

Each chapter begins with a full-page illustration
that indicates a broad-range application of the material within the chapter.
The “Chapter Objectives” are then provided to give a general overview
of the material that will be covered.

Found after many of the sections of the
book, this unique feature provides the student with a logical and orderly
method to follow when applying the theory. The example problems are
solved using this outlined method in order to clarify its numerical
application. It is to be understood, however, that once the relevant
principles have been mastered and enough confidence and judgment have
been obtained, the student can then develop his or her own procedures
for solving problems.

This feature provides a review or summary of the
most important concepts in a section and highlights the most significant
points that should be realized when applying the theory to solve problems.

All the example problems are presented in a
concise manner and in a style that is easy to understand.

Apart from of the preliminary, fundamental,
and conceptual problems, there are numerous standard problems in the
book that depict realistic situations encountered in engineering practice.
It is hoped that this realism will both stimulate the student’s interest in
the subject and provide a means for developing the skill to reduce any
such problem from its physical description to a model or a symbolic
representation to which principles may be applied. Furthermore, in any
set, an attempt has been made to arrange the problems in order of
increasing difficulty. The answers to all but every fourth problem are
listed in the back of the book. To alert the user to a problem without a



reported answer, an asterisk (*) is placed before the problem number.
Answers are reported to three significant figures, even though the data
for material properties may be known with less accuracy. Although this
might appear to be a poor practice, it is done simply to be consistent,
and to allow the student a better chance to validate his or her solution.

Appendices. The appendices of the book provide a source for review
and a listing of tabular data. Appendix A provides information on the
centroid and the moment of inertia of an area. Appendices B and C list
tabular data for structural shapes, and the deflection and slopes of various
types of beams and shafts.

Accuracy Checking. The Tenth Edition has undergone a rigorous
Triple Accuracy Checking review. In addition to the author’s review of all
art pieces and pages, the text was checked by the following individuals:

¢ Scott Hendricks, Virginia Polytechnic University

e Karim Nohra, University of South Florida

e Kurt Norlin, Bittner Development Group

¢ Kai Beng Yap, Engineering Consultant

The SI edition was checked by three additional reviewers.

Realistic Diagrams and Photographs. Realistic diagrams with
vectors have been used to demonstrate real-world applications. In
addition, many photographs are used throughout the book to enhance
conceptual understanding and to explain how the principles of mechanics
of materials apply to real-world situations.

452 CHAPTER 8 COMBINED LOADINGS

8-31. The drillis jammed in the wall and is subjected to the 8-35. The block is subjected to the eccentric load shown.

torque and force shown. Determine the state of stress at
point A on the cross section of the drill bit at section a-a.

#8-32. The drill is jammed in the wall and is subjected to
the torque and force shown. Determine the state of stress at

point B on the cross section of the drill bit at section a—a.

400 mm

150N

Section a-a
Probs. 8-31/32
8-33. Determine the state of stress at point A when the

beam is subjected to the cable force of 4 kN. Indicate the
result as a differential volume element.

Determine the normal stress developed at points A and B.
Neglect the weight of the block.

#8-36. The block is subjected to the eccentric load shown.
Sketch the normal-stress distribution acting over the cross
section at section a—a. Neglect the weight of the block.

150 kN

Probs. 8-35/36

8-37. If the 75-kg man stands in the position shown,
determine the state of stress at point A on the cross section

PREFACE

<« lllustrations with
Vectors

Most of the diagrams
throughout the book are in
full-color art, and many
photorealistic illustrations

with vectors have been added.
These provide a strong
connection to the 3-D nature of
engineering. This also helps the
student to visualize and be
aware of the concepts behind
the question.
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Once the beam has been selected, the shear formula can then be used
to be sure the allowable shear stress is not exceeded, 7., = Vo/n.
Often this Tequirement will not present a problem; however, if the beam
is “short” and supports large concentrated loads, the shear-stress
limitation may dictate the size of the beam.

Steel Sections. Most manufactured Steel beams are produced by
rolling a hot ingot of stee] until the desired shape is formed, These
so-called rolled shapes have properties that are tabulated in the
American TInstitute of Steel Construction (AISC) manual, A
representative listing of different cross sections taken from this manual is
given in Appendix B, Here the wide-flange shapes are designated by
their depth and mass Per unit length; for example, W46( x 68 indicates
awide-flange cross section (W) having a depth of 459 mm and a mass per
unit length of 68 kg/m, Fig, 114, For any given selection, the mass per
unit length, dimensions, Cross-sectional area, moment of inertia, and
section modulus are reported. Also included js the radius of gyration, r,
which is a geometric property related to the section’s buckling strength.
This will be discussed in Chapter 13.

PRISMATIC Beam Design

Typical profile view of a stee]
wide-flange beam

15.4 mm
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PREFACE

Video Solutions. Aninvaluable resource in and out of the classroom,
these complete solution walkthroughs of representative problems and
applications from each chapter offer fully worked solutions, self-paced
instruction, and 24/7 accessibility via the companion Website. Lecturers
and students can harness this resource to gain independent exposure to a
wide range of examples by applying formulae to actual structures.
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CONTENTS

The subject matter is organized into 14 chapters. Chapter 1 begins with a
review of the important concepts of statics, followed by a formal definition
of both normal and shear stress, and a discussion of normal stress in axially
loaded members and average shear stress caused by direct shear.

In Chapter 2 normal and shear strain are defined, and in Chapter 3 a
discussion of some of the important mechanical properties of materials is
given. Separate treatments of axial load, torsion, and bending are presented
in Chapters 4, 5, and 6, respectively. In each of these chapters, both linear-
elastic and plastic behavior of the material covered in the previous chapters,
where the state of stress results from combined loadings. In Chapter 9 the
concepts for transforming multiaxial states of stress are presented. In a
similar manner, Chapter 10 discusses the methods for strain transformation,
including the application of various theories of failure. Chapter 11 provides
a means for a further summary and review of previous material by covering
design applications of beams and shafts. In Chapter 12 various methods for
computing deflections of beams and shafts are covered. Also included is a
discussion for finding the reactions on these members if they are statically
indeterminate. Chapter 13 provides a discussion of column buckling, and
lastly, in Chapter 14 the problem of impact and the application of various
energy methods for computing deflections are considered.

Sections of the book that contain more advanced material are indicated
by a star (*). Time permitting, some of these topics may be included in
the course. Furthermore, this material provides a suitable reference for
basic principles when it is covered in other courses, and it can be used as
a basis for assigning special projects.

Some instructors prefer to cover
stress and strain transformations first, before discussing specific applications
of axial load, torsion, bending, and shear. One possible method for doing this
would be first to cover stress and its transformation, Chapter 1 and Chapter 9,
followed by strain and its transformation, Chapter 2 and the first part of
Chapter 10.The discussion and example problems in these later chapters have
been styled so that this is possible. Also, the problem sets have been subdivided
so that this material can be covered without prior knowledge of the intervening
chapters. Chapters 3 through 8 can then be covered with no loss in continuity.

ACKNOWLEDGMENTS

Over the years, this text has been shaped by the suggestions and comments
of many of my colleagues in the teaching profession. Their encouragement
and willingness to provide constructive criticism are very much appreciated
and it is hoped that they will accept this anonymous recognition. A note
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those in the teaching profession who have taken the time to e-mail me
their comments, but in particular G. H. Nazari.

I would greatly appreciate hearing from you if at any time you have
any comments or suggestions regarding the contents of this edition.

Russell Charles Hibbeler
hibbeler@bellsouth.net

GLOBAL EDITION

The publishers would like to thank the following for their contribution to
the Global Edition:

Contributor for the Tenth Edition in SI Units

Kai Beng Yap is currently a registered professional engineer who works
in Malaysia. He has BS and MS degrees in civil engineering from the
University of Louisiana, Lafayette, Louisiana; and has done further
graduate work at Virginia Tech in Blacksburg, Virginia. He has taught at
the University of Louisiana and worked as an engineering consultant in
the areas of structural analysis and design, and the associated infrastructure.

Reviewers for the Tenth Edition in SI Units

Imad Abou-Hayt, Aalborg University of Copenhagen
Weena Lokuge, University of Southern Queensland
Samit Ray Chaudhuri, Indian Institute of Technology Kanpur

Contributors for Earlier SI Editions

Pearson would like to thank S. C. Fan, who has retired from Nanyang
Technological University, Singapore, and K. S. Vijay Sekar, who teaches
in SSN College of Engineering, India, for their work on the 8th and 9th
SI editions of this title, respectively.

PREFACE

13






your answer specific feedback

Express your answer to three significant figures and include appropriate units.
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The distance between the horizontal centroidal axis of area A’ and the neutral axis of the
beam’s cross section is half the distance between the top of the shaft and the neutral axis.
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RESOURCES FOR INSTRUCTORS

e MasteringEngineering. This online Tutorial Homework program allows
you to integrate dynamic homework with automatic grading and adaptive
tutoring. MasteringEngineering allows you to easily track the performance
of your entire class on an assignment-by-assignment basis, or the detailed
work of an individual student.

e Instructor’s Solutions Manual. An instructor’s solutions manual was
prepared by the author. The manual includes homework assignment lists
and was also checked as part of the accuracy checking program. The
Instructor Solutions Manual is available at www.pearsonglobaleditions.com.

¢ Presentation Resources. All art from the text is available in PowerPoint
slide and JPEG format. These files are available for download at www
.pearsonglobaleditions.com. If you are in need of a login and password for
this site, please contact your local Pearson representative.

e Video Solutions. Developed primarily by Professor Edward Berger,
Purdue University, video solutions located on the companion Website
offer step-by-step solution walkthroughs of representative homework
problems from each section of the text. Make efficient use of class time
and office hours by showing students the complete and concise problem
solving approaches that they can access anytime and view at their own
pace.The videos are designed to be a flexible resource to be used however
each instructor and student prefers. A valuable tutorial resource, the
videos are also helpful for student self-evaluation as students can pause
the videos to check their understanding and work alongside the video.

RESOURCES FOR STUDENTS

e Mastering Engineering. Tutorial homework problems emulate the
instructor’s office-hour environment, guiding students through engineering
concepts with self-paced individualized coaching. These in-depth tutorial
homework problems are designed to coach students with feedback specific
to their errors and optional hints that break problems down into simpler steps.

e Companion Website—The companion Website, located at
www.pearsonglobaleditions.com/hibbeler, includes opportunities for
practice and review, including access to video solutions offering complete,
step-by-step solution walkthroughs of representative homework problems
from various sections of the text.
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CHAPTER 7]

(© alexskopje/Fotolia)

The bolts used for the connections of this steel framework are subjected to stress.
In this chapter we will discuss how engineers design these connections and their
fasteners.




S TRESS

. CHAPTER OBJECTIVES

B In this chapter we will review some of the important principles of
statics and show how they are used to determine the internal
resultant loadings in a body. Afterwards the concepts of normal and
shear stress will be introduced, and specific applications of the
analysis and design of members subjected to an axial load or direct
shear will be discussed.

1.1 INTRODUCTION

Mechanics of materials is a branch of mechanics that studies the internal
effects of stress and strain in a solid body. Stress is associated with the
strength of the material from which the body is made, while strain is a
measure of the deformation of the body. A thorough understanding of
the fundamentals of this subject is of vital importance for the design of
any machine or structure, because many of the formulas and rules
of design cited in engineering codes are based upon the principles of
this subject.

21
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CHAPTER 1

STRESS

Historical Development. The origin of mechanics of materials
dates back to the beginning of the seventeenth century, when Galileo
Galilei performed experiments to study the effects of loads on rods and
beams made of various materials. However, it was not until the beginning
of the nineteenth century when experimental methods for testing
materials were vastly improved. At that time many experimental and
theoretical studies in this subject were undertaken, primarily in France,
by such notables as Saint-Venant, Poisson, Lamé, and Navier.

Through the years, after many fundamental problems had been solved,
it became necessary to use advanced mathematical and computer
techniques to solve more complex problems. As a result, mechanics of
materials has expanded into other areas of mechanics, such as the theory
of elasticity and the theory of plasticity.

1.2 EQUILIBRIUM OF A DEFORMABLE
BODY

Since statics plays an important role in both the development and
application of mechanics of materials, it is very important to have a good
grasp of its fundamentals. For this reason we will now review some of the
main principles of statics that will be used throughout the text.

Loads. A body can be subjected to both surface loads and body
forces. Surface loads that act on a small area of contact are reported by
concentrated forces, while distributed loadings act over a larger surface
area of the body. When the loading is coplanar, as in Fig. 1-1a, then a
resultant force Fy of a distributed loading is equal to the area under the
distributed loading diagram, and this resultant acts through the geometric
center or centroid of this area.

Fp=400N 700N

200 N/m I l

\«1 m»‘«l qu kal 5 ma‘

Fig. 1-1
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A body force is developed when one body exerts a force on another
body without direct physical contact between the bodies. Examples
include the effects caused by the earth’s gravitation or its
electromagnetic field. Although these forces affect all the particles
composing the body, they are normally represented by a single
concentrated force acting on the body. In the case of gravitation, this
force is called the weight W of the body and acts through the body’s
center of gravity.

Support Reactions.  For bodies subjected to coplanar force systems,
the supports most commonly encountered are shown in Table 1-1. As a
general rule, if the support prevents translation in a given direction,
then a force must be developed on the member in that direction.
Likewise, if rotation is prevented, a couple moment must be exerted on
the member. For example, the roller support only prevents translation
perpendicular or normal to the surface. Hence, the roller exerts a normal
force F on the member at its point of contact. Since the member can
freely rotate about the roller, a couple moment cannot be developed on
the member.

Many machine elements are pin connected
in order to enable free rotation at their
connections. These supports exert a force
on a member, but no moment.

TABLE 1-1

Type of connection Reaction Type of connection Reaction
0 / 0 ”‘ / Fy
s
Fv 5
Cable One unknown: F External pin Two unknowns: F,, F,
F,
— //; F,
-k
Roller One unknown: F Internal pin Two unknowns: Fy, F,
M A\ F
F,
% /1: —— 4_(_?
¥/g
Smooth support One unknown: F Fixed support Three unknowns: Fy, F,, M
J== F == F"*@:
F F,
Journal bearing One unknown: F Thrust bearing Two unknowns: F,, F,
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In order to design the members of this
building frame, it is first necessary to find
the internal loadings at various points

along their length.
Fr =400 N 700N
200 N/m
feret IESTIR
= 2
e lm—t1m »‘«1 mJH 15m —

(a)

400N 700N

Equations of Equilibrium. Equilibrium of a body requires
both a balance of forces, to prevent the body from translating or
having accelerated motion along a straight or curved path, and a
balance of moments, to prevent the body from rotating. These
conditions are expressed mathematically as the equations of
equilibrium:

SF=0

SMp =0 (1-1)

Here, 3 F represents the sum of all the forces acting on the body, and
%M, is the sum of the moments of all the forces about any point O
either on or off the body.

If an x, y, z coordinate system is established with the origin at point O,
the force and moment vectors can be resolved into components along
each coordinate axis, and the above two equations can be written in
scalar form as six equations, namely,

SF,=0 3E=0 3F =0

SM,=0 3M,=0 3IM,=0 (1-2)

Often in engineering practice the loading on a body can be represented
as a system of coplanar forces in the x—y plane. In this case equilibrium of
the body can be specified with only three scalar equilibrium equations,
that is,

SF =0
SF, =0 (1-3)
2M0=0

Successful application of the equations of equilibrium must include all
the known and unknown forces that act on the body, and the best way
to account for these loadings is to draw the body’s free-body diagram
before applying the equations of equilibrium. For example, the free-body
diagram of the beam in Fig. 1-1a is shown in Fig. 1-1b. Here each force
is identified by its magnitude and direction, and the body’s dimensions
are included in order to sum the moments of the forces.
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Fy MRO

Fr

section

F,

(a) (b) (©

Fig. 1-2

Internal Resultant Loadings. In mechanics of materials,
statics is primarily used to determine the resultant loadings that act
within a body. This is done using the method of sections. For example,
consider the body shown in Fig. 1-2a, which is held in equilibrium by
the four external forces.* In order to obtain the internal loadings
acting on a specific region within the body, it is necessary to pass an
imaginary section or “cut” through the region where the internal
loadings are to be determined. The two parts of the body are then
separated, and a free-body diagram of one of the parts is drawn. When
this is done, there will be a distribution of internal force acting on the
“exposed” area of the section, Fig. 1-2b. These forces actually
represent the effects of the material of the top section of the body
acting on the bottom section.

Although the exact distribution of this internal loading may be
unknown, its resultants Fr and Mg , Fig. 1-2¢, are determined by applying
the equations of equilibrium to the segment shown in Fig. 1-2c. Here
these loadings act at point O; however, this point is often chosen at the
centroid of the sectioned area.

*The body’s weight is not shown, since it is assumed to be quite small, and therefore
negligible compared with the other loads.
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The weight of this sign and the wind
loadings acting on it will cause normal and
shear forces and bending and torsional
moments in the supporting column.

Torsional
Moment
Mg, T
Mo 4
@ F I — ~_Normal
R Y N
1 \Fr
! !
0 1 !
Bending ' }
Moment 'V
Shear
Force

FZ Fl — Fz
(c) (d)
Fig. 1-2 (cont.)

Three Dimensions. For later application of the formulas for
mechanics of materials, we will consider the components of Fz and My,
acting both normal and tangent to the sectioned area, Fig. 1-2d. Four
different types of resultant loadings can then be defined as follows:

Normal force, N. This force acts perpendicular to the area. It is
developed whenever the external loads tend to push or pull on the two
segments of the body.

Shear force, V. The shear force lies in the plane of the area, and it is
developed when the external loads tend to cause the two segments of
the body to slide over one another.

Torsional moment or torque, T. This effect is developed when the
external loads tend to twist one segment of the body with respect to the
other about an axis perpendicular to the area.

Bending moment, M. The bending moment is caused by the
external loads that tend to bend the body about an axis lying within the
plane of the area.

Notice that graphical representation of a moment or torque is shown in
three dimensions as a vector (arrow) with an associated curl around it. By
the right-hand rule, the thumb gives the arrowhead sense of this vector
and the fingers or curl indicate the tendency for rotation (twisting or
bending).
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F section
: Fs Y Shear
F, Force
A\%
M, Bending
Moment
Oe > —x
Normal
F, F; Force
(a) (b)
Fig. 1-3

Coplanar Loadings. If the body is subjected to a coplanar system of
forces, Fig. 1-3a, then only normal-force, shear-force, and bending-
moment components will exist at the section, Fig. 1-3b. If we use the x, y,
z coordinate axes, as shown on the left segment, then N can be obtained
by applying 2 F, = 0, and V can be obtained from X F, = 0. Finally, the
bending moment M can be determined by summing moments about
point O (the z axis), XMy = 0, in order to eliminate the moments caused
by the unknowns N and V.

B /VPORTANT POINTS

® Mechanics of materials is a study of the relationship between
the external loads applied to a body and the stress and strain
caused by the internal loads within the body.

® External forces can be applied to a body as distributed or
concentrated surface loadings, or as body forces that act
throughout the volume of the body.

® Linear distributed loadings produce a resultant force having a
magnitude equal to the area under the load diagram, and
having a location that passes through the centroid of this area.

® A support produces a force in a particular direction on its
attached member if it prevents translation of the member in
that direction, and it produces a couple moment on the member
if it prevents rotation.

® The equations of equilibrium XF = 0 and M = 0 must be
satisfied in order to prevent a body from translating with
accelerated motion and from rotating.

® The method of sections is used to determine the internal
resultant loadings acting on the surface of a sectioned body. In
general, these resultants consist of a normal force, shear force,
torsional moment, and bending moment.

27




28 CHAPTER 1 STRESS

B PROCEDURE FOR ANALYSIS

The resultant internal loadings at a point located on the section of a
body can be obtained using the method of sections. This requires the
following steps.

Support Reactions.

® When the body is sectioned, decide which segment of the body
is to be considered. If the segment has a support or connection
to another body, then before the body is sectioned, it will be
necessary to determine the reactions acting on the chosen
segment. To do this, draw the free-body diagram of the entire
body and then apply the necessary equations of equilibrium to
obtain these reactions.

Free-Body Diagram.

® Keep all external distributed loadings, couple moments,
torques, and forces in their exact locations, before passing the
section through the body at the point where the resultant
internal loadings are to be determined.

® Draw a free-body diagram of one of the “cut” segments and
indicate the unknown resultants N, V, M, and T at the section.
These resultants are normally placed at the point representing
the geometric center or centroid of the sectioned area.

® [f the member is subjected to a coplanar system of forces, only
N, V, and M act at the centroid.

® Establish the x, y, z coordinate axes with origin at the centroid
and show the resultant internal loadings acting along the axes.

Equations of Equilibrium.

® Moments should be summed at the section, about each of the
coordinate axes where the resultants act. Doing this eliminates the
unknown forces N and V and allows a direct solution for M and T.

® [f the solution of the equilibrium equations yields a negative
value for a resultant, the directional sense of the resultant is
opposite to that shown on the free-body diagram.

The following examples illustrate this procedure numerically and also
provide a review of some of the important principles of statics.
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EXAMPLE 1.1

Determine the resultant internal loadings acting on the cross section at C of
the cantilevered beam shown in Fig. 1-4a.

300 N/m

24 m 1

SOLUTION

Support Reactions. The support reactions at A do not have to be
determined if segment CB is considered.

Free-Body Diagram. The free-body diagram of segment CB is shown
in Fig. 1-4b. It is important to keep the distributed loading on the segment
until after the section is made. Only then should this loading be replaced
by a single resultant force. Notice that the intensity of the distributed
loading at C is found by proportion, ie., from Fig. 1-4aq,
w/24m = (300 N/m)/3.6 m, w = 200 N/m. The magnitude of the
resultant of the distributed load is equal to the area under the loading
curve (triangle) and acts through the centroid of this area. Thus,
F = (200 N/m)(2.4 m) = 240 N, which acts }(2.4 m) = 0.8 m from C
as shown in Fig. 1-4b.

Equations of Equilibrium. Applying the equations of equilibrium we

have
£ 3F =0 —Nc =0
Nec=0 Ans.
+13F, = 0; Ve —240N =0
Ve = 240N Ans.
(M- = 0; —Mc — (240N)(0.8 m) = 0
Mc = —192N-m Ans.

The negative sign indicates that M acts in the opposite direction to
that shown on the free-body diagram. Try solving this problem using
segment AC, by first checking the support reactions at A, which are given
in Fig. 1-4c.

100 N/m{] =
S40N |

i

(©)
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500(9.81) N

2452.5N
(©)

Fig. 1-5

The 500-kg engine is suspended from the crane boom in Fig. 1-5a.
Determine the resultant internal loadings acting on the cross section of
the boom at point E.

SOLUTION

Support Reactions. We will consider segment AE of the boom, so we
must first determine the pin reactions at A. Since member CD is a
two-force member, it acts like a cable, and therefore exerts a force Fp
having a known direction. The free-body diagram of the boom is shown
in Fig. 1-5b. Applying the equations of equilibrium,

(+3M, = 0; Fep(2)(2m) — [500(9.81) N](3m) = 0

Fep = 122625 N

ESF = 0; A, — (122625N)(3) =0
A, = 9810 N

+13F, = 0; —A, + (122625 N)(2) — 500(9.81)) N = 0
A, = 24525 N

Free-Body Diagram. The free-body diagram of segment AFE is shown
in Fig. 1-5c¢.

Equations of Equilibrium.

X 3F, = 0; Ng + 9810 N =0

Ng = —9810 N = —9.81 kN Ans.
+13F = 0; —Vy — 24525 N =0

Vp = —2452.5 N = —2.45 kN Ans.
(+3Mg = 0; Mg + (2452.5N)(1m) = 0

Mg = —24525 N-m = —2.45 kN-m Ans.
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EXAMPLE 1.3

Determine the resultant internal loadings acting on the cross section at G of
the beam shown in Fig. 1-6a. Each joint is pin connected.

/)

) - Fye = 6200 N
1500 N
1.5m

E, = 6200N

} e TEy=24OON
‘ -
| -
-
3m

+ §(3m):2m»

%(3 m)(600 N /m) = 900 N
(a) (b)
Fig. 1-6

SOLUTION

Support Reactions. Here we will consider segment AG. The free-body B
diagram of the entire structure is shown in Fig. 1-6b. Verify the calculated /SD==— 6200 N
reactions at £ and C. In particular, note that BC is a two-force member ot |
since only two forces act on it. For this reason the force at C must act / 4
along BC, which is horizontal as shown. Fyy = 770N
Since BA and BD are also two-force members, the free-body diagram Fpp = 4650 N
of joint B is shown in Fig. 1-6¢. Again, verify the magnitudes of forces Fpy4 (c)
and FBD‘

Free-Body Diagram. Using the result for Fp,, the free-body diagram 1500 N 7750 N
of segment AG is shown in Fig. 1-6d.

Equations of Equilibrium. 4 _) Ng
M
5H3F =0, (7750N)(}) + Ng=0 Ng= —6200N Ans, Fim v e
+13F,=0; —1500N + (7750N)(2) - Vs =0
Vg = 3150N

(+3Mg =0; Mg — (7750 N)(2)(1m) + (1500 N)(1m) = 0
Mg = 3150N -m

Ans.

Ans.
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Determine the resultant internal loadings acting on the cross section at B of
the pipe shown in Fig. 1-7a. End A is subjected to a vertical force of 50 N, a
horizontal force of 30 N, and a couple moment of 70 N - m. Neglect the
pipe’s mass.

SOLUTION

The problem can be solved by considering segment AB, so we do not need
to calculate the support reactions at C.

Free-Body Diagram. The free-body diagram of segment AB is shown in
Fig. 1-7b, where the x, y, z axes are established at B. The resultant force and
moment components at the section are assumed to act in the positive
coordinate directions and to pass through the centroid of the cross-sectional
area at B.

Equations of Equilibrium. Applying the six scalar equations of
equilibrium, we have*

SF, = 0; (Fg), =0 Ans.
2F, =0; (Fg)y + 30N =0 (Fg)y = —30N Ans.
2F, = 0; (Fg), —=S0N =10 (Fp), = 50N Ans.

S(Mg), =0;  (Mg), + 70N-m — (50 N)(0.5m) = 0

(Mp), = —45N-m Ans.
%(Mp), = 0; (Mp), + (SON)(1.25m) = 0

(Mg), = —62.5N-m Ans.
S(Mg), =0,  (Mg), + (30N)(1.25) = 0 Ans.

(Mg), = —37.5N-m

NOTE: What do the negative signs for (F),, (Mp),, (Mg),, and (Mp),
indicate? The normal force Ny = |(Fz),| = 30N, whereas the shear
force is Vz = V(0)*> + (50)> = 50 N. Also, the torsional moment
is Tz = |(Mp)y| = 625N-m, and the bending moment is M, =

V(45)* + (37.5)> = 58.6 N-m.

*The magnitude of each moment about the x, y, or z axis is equal to the magnitude of
each force times the perpendicular distance from the axis to the line of action of the force.
The direction of each moment is determined using the right-hand rule, with positive
moments (thumb) directed along the positive coordinate axes.
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It is suggested that you test yourself on the solutions to these examples, by covering them over and then trying

to think about which equilibrium equations must be used and how they are applied in order to determine the
unknowns. Then before solving any of the problems, build your skills by first trying to solve the Preliminary
Problems, which actually require little or no calculations, and then do some of the Fundamental Problems given
on the following pages. The solutions and answers to all these problems are given in the back of the book. Doing
this throughout the book will help immensely in understanding how to apply the theory, and thereby develop [
your problem-solving skills.

. PRELIMINARY PROBLEMS

P1-1. Ineach case, explain how to find the resultant internal

loading acting on the cross section at point A. Draw all

necessary free-body diagrams, and indicate the relevant B
equations of equilibrium. Do not calculate values. The lettered

dimensions, angles, and loads are assumed to be known.
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. FUNDAMENTAL PROBLEMS

F1-1. Determine the resultant internal normal force,
shear force, and bending moment at point C in the beam.

10 kN

60 kN-m

A—= B==
‘472 m%Ll m*‘«l mJ%2 m%‘

Prob. F1-1

F1-2. Determine the resultant internal normal force,
shear force, and bending moment at point C in the beam.

100N/m 200 N/m

Prob. F1-2

I'1-3. Determine the resultant internal normal force,
shear force, and bending moment at point C in the beam.

20 kN/m

LZm 2m 1

Prob. F1-3

I'1-4. Determine the resultant internal normal force,
shear force, and bending moment at point C in the beam.

10 kN/m

Prob. F1-4

F1-5. Determine the internal normal force, shear force,
and bending moment at point C in the beam.

5 kN/m

F1-6. Determine the resultant internal normal force,
shear force, and bending moment at point C in the beam.

32 ma}-*Z m4<—2 m—

Prob. F1-6
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1-1. A force of 80 N is supported by the bracket as shown.
Determine the resultant internal loadings acting on the
section through point A.

Prob. 1-1

1-2. Determine the resultant internal loadings on the cross
section at point D.

1-3. Determine the resultant internal loadings at cross
sections at points £ and F on the assembly.

C

Im

e

F 2 m

1.25 kN/m

WH”"U.

05m 0.5m 0.5m

Probs. 1-2/3

*1-4. The shaft is supported by a smooth thrust bearing

at A and a smooth journal bearing at B. Determine the

resultant internal loadings acting on the cross section at C.
600 N/m

1.5m

A B D

= !
= C —

Im-~lm-«~Im-~—15m—15m

T

900 N
Prob. 1-4

1-5. Determine the resultant internal loadings in the
beam at cross sections through points D and E. Point E is
just to the right of the 15-kN load.

15 kN

25 kN/m

L—zm ‘ 2m ‘ 1.5m 1.5m

Prob. 1-5

1-6. The shaft is supported by a smooth thrust bearing
at B and a journal bearing at C. Determine the resultant
internal loadings acting on the cross section at E.

Prob. 1-6

1-7. Determine the resultant internal normal and shear
force in the member at (a) section a-a and (b) section b-b,
each of which passes through point A. The 2000-N load is
applied along the centroidal axis of the member.

a b
7
2000 N €———

Ij 4

/ \

A
Prob. 1-7

—> 2000 N

a
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*1-8. The floor crane is used to lift a 600-kg concrete pipe.
Determine the resultant internal loadings acting on the cross
section at G.

1-9. The floor crane is used to lift a 600-kg concrete pipe.
Determine the resultant internal loadings acting on the cross
section at H.

Probs. 1-8/9

1-10. The beam supports the distributed load shown.
Determine the resultant internal loadings acting on the cross
section at point C. Assume the reactions at the supports A
and B are vertical.

1-11. The beam supports the distributed load shown.
Determine the resultant internal loadings acting on the cross
section at point D. Assume the reactions at the supports A
and B are vertical.

4 kN/m

Probs. 1-10/11

*1-12. The blade of the hacksaw is subjected to a pretension
force of F=100 N. Determine the resultant internal loadings
acting on section a—a that passes through point D.

1-13. The blade of the hacksaw is subjected to a pretension
force of F=100 N. Determine the resultant internal loadings
acting on section b-b that passes through point D.

Probs. 1-12/13

1-14. The boom DF of the jib crane and the column DE
have a uniform weight of 750 N/m. If the hoist and load
weigh 1500 N, determine the resultant internal loadings in
the crane on cross sections through points A, B and C.

D °B A | F
\ 24 m 0.9 m
1500 N

2.1 m

Al

Prob. 1-14
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1-15. The metal stud punch is subjected to a force of 120 N on 1-18. Determine the resultant internal loadings acting on
the handle. Determine the magnitude of the reactive force at the cross section through point B of the signpost. The post is
the pin A and in the short link BC. Also, determine the resultant fixed to the ground and a uniform pressure of 500 N/m? acts
internal loadings acting on the cross section at point D. perpendicular to the face of the sign.

*]-16. Determine the resultant internal loadings acting on
the cross section at point E of the handle arm, and on the cross
section of the short link BC.

120N

Probs. 1-15/16

Prob. 1-18

1-17. The forged steel clamp exerts a force of F = 900N
on the wooden block. Determine the resultant internal
loadings acting on section a—a passing through point A.

1-19. Determine the resultant internal loadings acting on
the cross section at point C in the beam. The load D has a
mass of 300 kg and is being hoisted by the motor M with
constant velocity.

*1-20. Determine the resultant internal loadings acting on
the cross section at point E. The load D has a mass of 300 kg

and is being hoisted by the motor M with constant velocity.

2m 2m i 2m
‘ 0.1 m
D D @
E —2>— C A
.
Im—-—15m
D

Prob. 1-17 Probs. 1-19/20
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1-21. Determine the resultant internal loading on the cross
section through point C of the pliers. There is a pin at A, and
the jaws at B are smooth.

1-22. Determine the resultant internal loading on the cross
section through point D of the pliers.

Probs. 1-21/22

1-23. The shaft is supported at its ends by two bearings
A and B and is subjected to the forces applied to the pulleys
fixed to the shaft. Determine the resultant internal loadings
acting on the cross section at point C. The 400-N forces act
in the —z direction and the 200-N and 80-N forces act in the
+y direction. The journal bearings at A and B exert only
y and z components of force on the shaft.

Prob. 1-23

*1-24. The force 400 N acts on the gear tooth. Determine
the resultant internal loadings on the root of the tooth, i.e.,
at the centroid point A of section a—a.

Prob. 1-24

1-25. The shaft is supported at its ends by two bearings
A and B and is subjected to the forces applied to the pulleys
fixed to the shaft. Determine the resultant internal loadings
acting on the cross section at point D. The 400-N forces act
in the —z direction and the 200-N and 80-N forces act in the
+y direction. The journal bearings at A and B exert only y
and z components of force on the shaft.

Prob. 1-25



1-26. The serving tray 7 used on an airplane is supported on
each side by an arm. The tray is pin connected to the arm at A4,
and at B there is a smooth pin. (The pin can move within the
slot in the arms to permit folding the tray against the front
passenger seat when not in use.) Determine the resultant
internal loadings acting on the cross section of the arm through
point C when the tray arm supports the loads shown.

12N
9N
15 mm —| ~100 mm=}—150 mm
A
B \ q
60° T
500 mm
Ve
C
Mc
Ne
Prob. 1-26

1-27. The pipe has a mass of 12 kg/m. If it is fixed to the
wall at A, determine the resultant internal loadings acting on
the cross section at B.

300N

400 N

Prob. 1-27
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*1-28 The brace and drill bit is used to drill a hole at O. If
the drill bit jams when the brace is subjected to the forces
shown, determine the resultant internal loadings acting on
the cross section of the drill bit at A.

E=150N

Prob. 1-28

1-29. The curved rod AD of radius r has a weight per
length of w. If it lies in the horizontal plane, determine the
resultant internal loadings acting on the cross section at
point B. Hint: The distance from the centroid C of segment
AB to point O is CO =0.9745r.

Prob. 1-29

1-30. A differential element taken from a curved bar is
shown in the figure. Show that dN/d6 = V, dV/d® = —N,
dM/d0 = —T,and dT/do = M.

M+ dM T+dT
/
V+dv /Q
X AN + dN
u V.
)
N, ;\ do
/
)
i
Prob. 1-30
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Fr

F, F,

Fig. 1-8

F, F,

1.3 STRESS

It was stated in Section 1.2 that the force and moment acting at a specified
point O on the sectioned area of the body, Fig. 1-8, represents the
resultant effects of the distribution of loading that acts over the sectioned
area, Fig. 1-9a. Obtaining this distribution is of primary importance in
mechanics of materials. To solve this problem it is first necessary to
establish the concept of stress.

We begin by considering the sectioned area to be subdivided into
small areas, such as AA shown in Fig. 1-9a. As we reduce AA to a
smaller and smaller size, we will make two assumptions regarding the
properties of the material. We will consider the material to be
continuous, that is, to consist of a continuum or uniform distribution of
matter having no voids. Also, the material must be cohesive, meaning
that all portions of it are connected together, without having breaks,
cracks, or separations. A typical finite yet very small force AF, acting on
AA, is shown in Fig. 1-9a. This force, like all the others, will have a
unique direction, but to compare it with all the other forces, we will
replace it by its three components, namely, AF,, AF,, and AF,. As AA
approaches zero, so do AF and its components; however, the quotient
of the force and area will approach a finite limit. This quotient is called
stress, and it describes the intensity of the internal force acting on a
specific plane (area) passing through a point.

Txy

Fy

(b) (©)
Fig. 1-9



The intensity of the force acting normal to AA is
referred to as the normal stress, o (sigma). Since AF, is normal to the
area then

AR,
% = aa (1-4)

If the normal force or stress “pulls” on AA as shown in Fig. 1-9a, it is
tensile stress, whereas if it “pushes” on AA it is compressive stress.

The intensity of force acting tangent to AA is called
the shear stress, T (tau). Here we have two shear stress components,

. AF,
Tor = A0 A

o (1-5)

7, = lim —
D AA—0AA

The subscript notation z specifies the orientation of the area AA,
Fig. 1-10, and x and y indicate the axes along which each shear stress acts.

If the body is further sectioned by
planes parallel to the x—z plane, Fig. 1-9b, and the y—z plane, Fig. 1-9¢, we
can then “cut out” a cubic volume element of material that represents
the state of stress acting around a chosen point in the body. This state of
stress is then characterized by three components acting on each face of
the element, Fig. 1-11.

Since stress represents a force per unit area, in the International
Standard or SI system, the magnitudes of both normal and shear stress
are specified in the basic units of newtons per square meter (N /m?). This
combination of units is called a pascal (1 Pa = 1 N/m?), and because it is
rather small, prefixes such as kilo- (10°), symbolized by k, mega- (10°),
symbolized by M, or giga- (10°), symbolized by G, are used in engineering
to represent larger, more realistic values of stress.*

*Sometimes stress is expressed in units of N/ mm?, where 1 mm = 107> m. However, in
the SI system, prefixes are not allowed in the denominator of a fraction, and therefore it
is better to use the equivalent 1 N/mm? = 1 MN/m’? = 1 MPa.

1.3 STRESS 41

Fig. 1-11
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1.4 AVERAGE NORMAL STRESS IN AN
AXIALLY LOADED BAR

We will now determine the average stress distribution acting over the
cross-sectional area of an axially loaded bar such as the one shown in
Fig. 1-12a. Specifically, the cross section is the section taken perpendicular
to the longitudinal axis of the bar, and since the bar is prismatic all cross
sections are the same throughout its length. Provided the material of the
bar is both homogeneous and isotropic, that is, it has the same physical
and mechanical properties throughout its volume, and it has the same
properties in all directions, then when the load P is applied to the bar
through the centroid of its cross-sectional area, the bar will deform
uniformly throughout the central region of its length, Fig. 1-12b.

Realize that many engineering materials may be approximated as
being both homogeneous and isotropic. Steel, for example, contains
thousands of randomly oriented crystals in each cubic millimeter of its
volume, and since most objects made of this material have a physical size
that is very much larger than a single crystal, the above assumption
regarding the material’s composition is quite realistic.

Note that anisotropic materials,such as wood, have different properties
in different directions; and although this is the case, if the grains of wood
are oriented along the bar’s axis (as for instance in a typical wood board),
then the bar will also deform uniformly when subjected to the axial load P.

Average Normal Stress Distribution. If we pass a section
through the bar, and separate it into two parts, then equilibrium requires the
resultant normal force N at the section to be equal to P, Fig. 1-12¢. And
because the material undergoes a uniform deformation, it is necessary that
the cross section be subjected to a constant normal stress distribution.

P

Region of N=P

uniform

deformation Internal force
of bar

Cross-sectional
area

External force

i
|
;

Fig. 1-12
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As a result, each small area AA on the cross section is subjected to a
force AN = o AA, Fig. 1-12d, and the sum of these forces acting over
the entire cross-sectional area must be equivalent to the internal resultant
force P at the section. If we let AA — dA and therefore AN — dN, then,
recognizing o is constant, we have

+1 Fg, = 3F; /dN:/crdA
A

N=cA

(1-6)

==

Here
o = average normal stress at any point on the cross-sectional area

N = internal resultant normal force, which acts through the centroid of the
cross-sectional area. N is determined using the method of sections
and the equations of equilibrium, where for this case N = P.

A = cross-sectional area of the bar where o is determined

Equilibrium.  The stress distribution in Fig. 1-12 indicates that only
a normal stress exists on any small volume element of material located at
each point on the cross section. Thus, if we consider vertical equilibrium
of an element of material and then apply the equation of force
equilibrium to its free-body diagram, Fig. 1-13,

SFE, = 0; o(AA) — 0'(AA) = 0
o=o'
oAA
ag
b b
l |
Ay
o'AA
Stress on element Free-body diagram

Fig. 1-13

Fig. 1-12 (cont.)
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This steel tie rod is used as a hanger to
suspend a portion of a staircase. As a
result it is subjected to tensile stress.

z

b
<
i I ?

f
i |

Tension Compression

Fig. 1-14

In other words, the normal stress components on the element must be
equal in magnitude but opposite in direction. Under this condition
the material is subjected to uniaxial stress, and this analysis applies
to members subjected to either tension or compression, as shown in
Fig. 1-14.

Although we have developed this analysis for prismatic bars, this
assumption can be relaxed somewhat to include bars that have a slight
taper. For example, it can be shown, using the more exact analysis of the
theory of elasticity, that for a tapered bar of rectangular cross section,
where the angle between two adjacent sides is 15°, the average normal
stress, as calculated by o = N/A, is only 2.2% less than its value found
from the theory of elasticity.

Maximum Average Normal Stress. For our analysis, both the
internal force N and the cross-sectional area A were constant along the
longitudinal axis of the bar, and as a result the normal stress ¢ = N/A is
also constant throughout the bar’s length. Occasionally, however, the bar
may be subjected to several external axial loads, or a change in its
cross-sectional area may occur. As a result, the normal stress within the
bar may be different from one section to the next, and, if the maximum
average normal stress is to be determined, then it becomes important
to find the location where the ratio N/A is a maximum.
Example 1.5 illustrates the procedure. Once the internal loading
throughout the bar is known, the maximum ratio N/A can then be
identified.
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B \VPORTANT POINTS

® When a body subjected to external loads is sectioned, there is a
distribution of force acting over the sectioned area which holds
each segment of the body in equilibrium. The intensity of this
internal force at a point in the body is referred to as stress.

® Stress is the limiting value of force per unit area, as the area
approaches zero. For this definition, the material is considered to
be continuous and cohesive.

® The magnitude of the stress components at a point depends upon
the type of loading acting on the body, and the orientation of the
element at the point.

® When a prismatic bar is made of homogeneous and isotropic
material, and is subjected to an axial force acting through the
centroid of the cross-sectional area, then the center region of the
bar will deform uniformly. As a result, the material will be
subjected only to normal stress. This stress is uniform or averaged
over the cross-sectional area.

- PROCEDURE FOR ANALYSIS

The equation o = N/A gives the average normal stress on the
cross-sectional area of a member when the section is subjected to an
internal resultant normal force N. Application of this equation
requires the following steps.

Internal Loading.

® Section the member perpendicular to its longitudinal axis at
the point where the normal stress is to be determined, and
draw the free-body diagram of one of the segments. Apply the
force equation of equilibrium to obtain the internal axial force
N at the section.

Average Normal Stress.

® Determine the member’s cross-sectional area at the section
and calculate the average normal stress ¢ = N/A.

® Jtissuggested that o be shown acting on a small volume element
of the material located at a point on the section where stress is
calculated. To do this, first draw o on the face of the element
coincident with the sectioned area A. Here o acts in the same
direction as the internal force N since all the normal stresses on
the cross section develop this resultant. The normal stress o on
the opposite face of the element acts in the opposite direction.
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CHAPTER 1 STRESS

1.5

f 30 kN
JEE_’
85.7 MPa

(d)

Fig. 1-15

The bar in Fig. 1-15a has a constant width of 35 mm and a thickness of
10 mm. Determine the maximum average normal stress in the bar when it is
subjected to the loading shown.

A B 9kN C 4kN D
12kN @ & @4— I— 22 kN
- r é;::;@;.:_—»
! 9KN '
35 mm SN
(a)
12 kN@@—»NAB = 12kN
9 kN
12 kN<—@ i ——> Ny =30kN
= 9 kN
H&N 4kN
12 kN<—@ Il | —> Np =22kN
_ 9 kN 4 kN
N (kN) (b)
30 4 I
22 7|
12
X
()
SOLUTION

Internal Loading. By inspection, the internal axial forces in regions
AB, BC, and CD are all constant yet have different magnitudes. Using
the method of sections, these loadings are shown on the free-body
diagrams of the left segments shown in Fig. 1-15b.* The normal force
diagram, which represents these results graphically, is shown in
Fig. 1-15¢. The largest loading is in region BC, where Ngc = 30 kN.
Since the cross-sectional area of the bar is constant, the largest average
normal stress also occurs within this region of the bar.

Average Normal Stress. Applying Eq. 1-6, we have

Npc 30(10°) N
A (0.035m)(0.010 m)

= 85.7 MPa Ans.

Opc —

The stress distribution acting on an arbitrary cross section of the bar
within region BC is shown in Fig. 1-15d.

*Show that you get these same results using the right segments.
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EXAMPLE 1.6

The 80-kg lamp is supported by two rods AB and BC as shown in
Fig. 1-16a. If AB has a diameter of 10 mm and BC has a diameter of 8 mm,
determine the average normal stress in each rod.

80(9.81) = 784.8 N

b
Fig. 1-16 ®

SOLUTION

Internal Loading. We must first determine the axial force in each rod.
A free-body diagram of the lamp is shown in Fig. 1-16b. Applying the
equations of force equilibrium,

HKIF=0; Fpe(2) — Fgacos60° =0
+13F, = 0;  Fgc(3) + Fpasin60° — 784.8N = 0
Fge = 3952N,  Fgy = 6324N

By Newton’s third law of action, equal but opposite reaction, these forces
subject the rods to tension throughout their length.

Average Normal Stress. Applying Eq. 1-6,

F, .
Be _ 3B2N 4 o0 ipa Ans, 805MPa

P8¢ T Ape  m(0.004 m)?

F 632.4 N
opy = 24 = S = 8.05MPa Ans.
Ags  m(0.005m)

8.05 MPa

The average normal stress distribution acting over a cross section of
rod AB is shown in Fig. 1-16¢, and at a point on this cross section, an
element of material is stressed as shown in Fig. 1-16d. (d) )

632.4N
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1.7

STRESS

The casting shown in Fig. 1-17a is made of steel having a density of
7850 kg/m>. Determine the average compressive stress acting at points A
and B.

Wst

800 mm

61.6 kKN /m?
(b) ()

Fig. 1-17
SOLUTION

Internal Loading. A free-body diagram of the top segment of the
casting where the section passes through points A and B is shown in
Fig. 1-17b. The weight of this segment is determined from W = y V.
Thus the internal axial force P at the section is

+13F, = 0; P—W,=0
P — (7850 kg/m?) (9.81 m/s?)(0.8 m)[7(0.2 m)?] = 0
P = 7.7417(10°)N

Average Compressive Stress. The cross-sectional area at the section
is A = (0.2 m)?, and so the average compressive stress becomes

P _ TIMTAC)N 61.61 (10°)N/m?> = 61.6 kKN/m* A
=—=———""—=0L m” = 61. m ns.
77 A (0.2 m)?

NOTE: The stress shown on the volume element of material in Fig. 1-17¢
is representative of the conditions at either point A or B. Notice that this
stress acts upward on the bottom or shaded face of the element since
this face forms part of the bottom surface area of the section, and on this
surface, the resultant internal force P is pushing upward.
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EXAMPLE 1.8

Member AC shown in Fig. 1-18a is subjected to a vertical force of 3 kIN.
Determine the position x of this force so that the average compressive stress
at the smooth support C is equal to the average tensile stress in the tie
rod AB.The rod has a cross-sectional area of 400 mm? and the contact area

at Cis 650 mm?’.
—
B
Fup 3 kN
X —
A
200 mm

Fc
(a) (b)
Fig. 1-18

SOLUTION

Internal Loading. The forces at A and C can be related by considering
the free-body diagram of member AC, Fig. 1-18b. There are three
unknowns, namely, F,pz, F¢, and x. To solve we will work in units of
newtons and millimeters.

+13EF = 0; Fup + Fc —3000N =0 (1)
(+2M, = 0; —(3000 N)(x) + F-(200mm) =0 2)
Average Normal Stress. A necessary third equation can be written

that requires the tensile stress in the bar AB and the compressive stress at
C to be equivalent, i.e.,

R Y: S 76
o = —
400 mm> 650 mm?

FC = 1625FAB

Substituting this into Eq. 1, solving for F,p, then solving for Fg,
we obtain
FAB = 1143 N

Fc=1857TN
The position of the applied load is determined from Eq. 2,

x = 124 mm Ans.
As required, 0 < x < 200 mm.
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The pin A used to connect the
linkage of this tractor is subjected to
double shear because shearing
stresses occur on the surface of the
pin at B and C. See Fig. 1-21c.

1.5 AVERAGE SHEAR STRESS

Shear stress has been defined in Section 1.3 as the stress component that
acts in the plane of the sectioned area. To show how this stress can develop,
consider the effect of applying a force F to the bar in Fig. 1-19a. If F is
large enough, it can cause the material of the bar to deform and fail along
the planes identified by AB and CD. A free-body diagram of the
unsupported center segment of the bar, Fig. 1-19b, indicates that the shear
force V = F/2 must be applied at each section to hold the segment in
equilibrium. The average shear stress distributed over each sectioned area
that develops this shear force is defined by

(1-7)

Tavg — Z

Here
Tavg = average shear stress at the section, which is assumed to be
the same at each point on the section

V = internal resultant shear force on the section determined
from the equations of equilibrium

A = area of the section

The distribution of average shear stress acting over the sections is
shown in Fig. 1-19¢. Notice that 7,,, is in the same direction as 'V, since
the shear stress must create associated forces, all of which contribute to
the internal resultant force V.

The loading case discussed here is an example of simple or direct
shear, since the shear is caused by the direct action of the applied load F.
This type of shear often occurs in various types of simple connections
that use bolts, pins, welding material, etc. In all these cases, however,
application of Eq.1-7 is only approximate. A more precise investigation
of the shear-stress distribution over the section often reveals that
much larger shear stresses occur in the material than those predicted
by this equation. Although this may be the case, application of Eq. 1-7
is generally acceptable for many problems involving the design or
analysis of small elements. For example, engineering codes allow its
use for determining the size or cross section of fasteners such as bolts,
and for obtaining the bonding strength of glued joints subjected to
shear loadings.



r Section plane

(a)

Fig. 1-20

Shear Stress Equilibrium. Let us consider the block in
Fig. 1-20a, which has been sectioned and is subjected to the internal
shear force V. A volume element taken at a point located on its surface
will be subjected to a direct shear stress 7., as shown in Fig. 1-20b.
However, force and moment equilibrium of this element will also require
shear stress to be developed on three other sides of the element. To show
this, it is first necessary to draw the free-body diagram of the element,
Fig. 1-20c. Then force equilibrium in the y direction requires
force

stress area

M
Ty (Ax Ay) — 7, Ax Ay =0

Ty = Toy
In a similar manner, force equilibrium in the z direction yields 7,, = 7/..
Finally, taking moments about the x axis,

moment
force arm

stress area

1
XM, =0 —7y(Ax Ay) Az + 7, (Ax Az) Ay =0

Tzy = Tyz
In other words,
Ty = Toy = Typ = Ty = T

and so, all four shear stresses must have equal magnitude and be directed
either toward or away from each other at opposite edges of the element,
Fig. 1-20d. This is referred to as the complementary property of shear,
and the element in this case is subjected to pure shear.
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r Section plane

(®)

Az

/

Free-body diagram

Pure shear

(d)
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B \PORTANT POINTS

® [If two parts are thin or small when joined together, the applied
loads may cause shearing of the material with negligible
bending. If this is the case, it is generally assumed that an
average shear stress acts over the cross-sectional area.

® When shear stress 7 acts on a plane, then equilibrium of a
volume element of material at a point on the plane requires
associated shear stress of the same magnitude act on the three
other sides of the element.

- PROCEDURE FOR ANALYSIS

The equation 7,,, = V/A is used to determine the average shear
stress in the material. Application requires the following steps.

Internal Shear.

® Section the member at the point where the average shear stress
is to be determined.

® Draw the necessary free-body diagram, and calculate the
internal shear force V acting at the section that is necessary to
hold the part in equilibrium.

Average Shear Stress.

® Determine the sectioned area A, and then calculate the
average shear stress 7,,, = V/A.

® Itissuggested that 7,,, be shown on a small volume element of
material located at a point on the section where it is determined.
To do this, first draw 7,,, on the face of the element, coincident
with the sectioned area A. This stress acts in the same direction
as V. The shear stresses acting on the three adjacent planes can
then be drawn in their appropriate directions following the
scheme shown in Fig. 1-20d.




EXAMPLE 1.9

Determine the average shear stress in the 20-mm-diameter pin at A
and the 30-mm-diameter pin at B that support the beam in Fig. 1-21a.

SOLUTION

Internal Loadings. The forces on the pins can be obtained by
considering the equilibrium of the beam, Fig. 1-21b.

(+2M, = 0;
FB(:)(6 m) —30kN(2m) =0  Fg = 12.5kN

HSE =0, (125 kN)@) — A, =0 A, = 7.50 kN

4
+13E, = 0; Ay+(12.5kN)<5>—3OkN=O A, =20 kN

Thus, the resultant force acting on pin A is

Fy = VA + A = V(150 kN)*> + (20 kN)? = 21.36 kN

The pin at A is supported by two fixed “leaves” and so the
free-body diagram of the center segment of the pin shown in
Fig. 1-21c¢ has two shearing surfaces between the beam and each
leaf. Since the force of the beam (21.36 kN) acting on the pin is
supported by shear force on each of two surfaces, it is called double
shear. Thus,
Vi = £ _ 2L30KN 10.68 kN

2 2
In Fig. 1-21a, note that pin B is subjected to single shear, which occurs
on the section between the cable and beam, Fig. 1-21d. For this pin
segment,

Average Shear Stress.

vV, 10.68(10°) N

(Ta)ag = 5 = = 34.0 MPa Ans.
A4 70,02 m)?
4
V, 12.5(10°) N
(78) avg = — 125(10) N _ 17.7 MPa Ans.

As %(0.03 m)?2

1.5

AVERAGE SHEAR STRESS

A

Fg=125kN

(d)

Fig. 1-21
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EXAMPLE

1.10

6 kN

If the wood joint in Fig. 1-22a has a thickness of 150 mm, determine the
average shear stress along shear planes a—a and b-b of the connected
member. For each plane, represent the state of stress on an element of the
material.

—_—
6 kN
-—
———— _3kN
(! -
01m  0.125m 7,=200kPa = %
a
(a) (©)
m— 3kN
W —EE
— P a—
7, =160 kPa v,

(b) (d)

Fig. 1-22
SOLUTION
Internal Loadings. Referring to the free-body diagram of the member,
Fig. 1-22b,
KX3FE=0 6kKN-F-F=0 F=3kN

Now consider the equilibrium of segments cut across shear planes a—a
and b-b, shown in Figs. 1-22¢ and 1-22d.

& SF = 0; V,—3kN =0 V, = 3kN
K 3E =0 3kN -V, =0 V, = 3kN
Average Shear Stress.

_Ye_ 300N 200 kP A
() = 4 = 01 m) (05 m) a "

Vi 3(10°) N

=== = 160 kP Ans.

(%)ave = 4= (0125 m) (0.15 m) a "

The state of stress on elements located on sections a—a and b—b is shown
in Figs. 1-22¢ and 1-22d, respectively.
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EXAMPLE 1.11

The inclined member in Fig. 1-23a is subjected to a compressive force of
3000 N. Determine the average compressive stress along the smooth areas
of contact defined by AB and BC, and the average shear stress along
the horizontal plane defined by DB.
3000 N
;ﬁ
. 3

(a) Fig. 1-23
SOLUTION

Internal Loadings. The free-body diagram of the inclined member is
shown in Fig. 1-23b. The compressive forces acting on the areas of contact are

S3F, =0,  Fu — (3000N)(2) =0 Fu5 = 1800N
+13F,=0;  Fgc— (3000N)(2) =0 Fgc = 2400 N
Also, from the free-body diagram of the top segment ABD of the bottom

member, Fig. 1-23¢, the shear force acting on the sectioned horizontal
plane DB is

L3F =0, V = 1800N

Average Stress. The average compressive stresses along the horizontal
and vertical planes of the inclined member are

Fup 1800 N

- = — 1.80(10°)N/m? = 1.80 MPa  Ans.

AT Agp (0025 m)(0.04 m) A a  Ans
Fpc 2400 N

- = = 120(10°)N/m? = 120 MPa  Ans.
TBC T Ape  (0.05 m)(0.04 m) e a  Ans

These stress distributions are shown in Fig. 1-234.
The average shear stress acting on the horizontal plane defined by DB is
1800 N
T. =
& (0.075 m)(0.04 m)

This stress is shown uniformly distributed over the sectioned area in
Fig. 1-23e.

= 0.600(10°)N/m? = 0.600 MPa  Ans.
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. PRELIMINARY PROBLEMS

P1-2. In each case, determine the largest internal shear
force resisted by the bolt. Include all necessary free-body
diagrams.

| Fﬁ_H_SkN

[ —> 6kN
L_-_D—>21<N
(a)
A 6 kN
| F—> 10kN
[«—41KkN
I | €«——8 kN
L—!_)—>201<N

(b)
Prob. P1-2

P1-3. Determine the largest internal normal force in the bar.

F
| D C B A
10 kN
5 kN 2 kN 6 kN
Prob. P1-3

P1-4. Determine the internal normal force at section A if
the rod is subjected to the external uniformally distributed
loading along its length of 8 KN /m.

| 4 8 kN/m

I 2m 1 3m 1

Prob. P1-4

P1-5. The lever is held to the fixed shaft using the pin AB.
If the couple is applied to the lever, determine the shear
force in the pin between the pin and the lever.

ﬁ'@
A 10 mm
20N 20N
Prob. P1-5

P1-6. The single-V butt joint transmits the force of 5 kN
from one bar to the other. Determine the resultant normal and
shear force components on the face of the weld, section AB.

SkN

A

Prob. P1-6
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. FUNDAMENTAL PROBLEMS

[1-7. The uniform beam is supported by two rods AB and F1-10. If the 600-kN force acts through the centroid of
CD that have cross-sectional areas of 10 mm? and 15 mm?, the cross section, determine the location y of the centroid
respectively. Determine the intensity w of the distributed and the average normal stress on the cross section. Also,
load so that the average normal stress in each rod does not sketch the normal stress distribution over the cross section.
exceed 300 kPa.

Prob. F1-7 Prob. F1-10

F1-8. Determine the average normal stress on the cross
section. Sketch the normal stress distribution over the

Cross section. F1-11. Determine the average normal stress developed at

points A, B, and C. The diameter of each segment is

300 kN indicated in the figure.
10 mm
5 mm l 5 mm
| |
300N A T9OONT—SOON fc 200N

Prob. F1-11

Prob. F1-8 I1-12.  Determine the average normal stress in rod AB if the

load h. f 50 kg. The diameter of rod AB is 8 mm.
[1-9.  Determine the average normal stress developed on cadliasamasso & Hhe dlameter oo 186 mm

the cross section. Sketch the normal stress distribution over
the cross section.

Prob. F1-9 Prob. F1-12
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. PROBLEMS

1-31. The bar has a cross-sectional area A and is subjected
to the axial load P. Determine the average normal and
average shear stresses acting over the shaded section, which
is oriented at 6 from the horizontal. Plot the variation of
these stresses as a function of 6 (0 = 6 = 90°).

N_f 7' A_w

A
Prob. 1-31

*1-32. The built-up shaft consists of a pipe AB and solid
rod BC.The pipe has an inner diameter of 20 mm and outer
diameter of 28 mm. The rod has a diameter of 12 mm.
Determine the average normal stress at points D and E and
represent the stress on a volume element located at each of
these points.

A B 6kN
4kN —~—— C
—>(] B ( e N > 3 kN
D 6kN E
Prob. 1-32

1-33. The triangular blocks are glued along each side of
the joint. A C-clamp placed between two of the blocks is
used to draw the joint tight. If the glue can withstand a
maximum average shear stress of 800 kPa, determine the
maximum allowable clamping force F.

1-34. The triangular blocks are glued along each side of
the joint. A C-clamp placed between two of the blocks is
used to draw the joint tight. If the clamping force is
F = 900 N, determine the average shear stress developed
in the glued shear plane.

Probs. 1-33/34

1-35. Determine the largest intensity w of the uniform
loading that can be applied to the frame without causing
either the average normal stress or the average shear stress
at section b-b to exceed o = 15 MPa and 7 = 16 MPa,
respectively. Member CB has a square cross section of
30 mm on each side.

B
w
b b
3m
C ) A Je
| n |
Prob. 1-35

*1-36. The supporting wheel on a scaffold is held in place
on the leg using a 4-mm-diameter pin. If the wheel is
subjected to a normal force of 3 kN, determine the average
shear stress in the pin. Assume the pin only supports the
vertical 3-kN load.

3kN

Prob. 1-36



1-37. If P = 5 kN, determine the average shear stress in
the pins at A, B, and C. All pins are in double shear, and
each has a diameter of 18 mm.

1-38. Determine the maximum magnitude P of the loads
the beam can support if the average shear stress in each pin
is not to exceed 80 MPa. All pins are in double shear, and
each has a diameter of 18 mm.

6P

1.5m 2 m 1.5m 3

)
<
] e

Probs. 1-37/38

1-39. Determine the average normal stress in each of the
20-mm-diameter bars of the truss. Set P =40 kN.

*1-40. If the average normal stress in each of the 20-mm-
diameter bars is not allowed to exceed 150 MPa, determine
the maximum force P that can be applied to joint C.

1-41. Determine the maximum average shear stress in pin
A of the truss. A horizontal force of P =40 kN is applied to
joint C. Each pin has a diameter of 25 mm and is subjected
to double shear.

¢ p

1

1.5m

b Y

| 2m |

Probs. 1-39/40/41

1-42. The pedestal has a triangular cross section as shown.
If it is subjected to a compressive force of 2250 N, specify
the x and y coordinates for the location of point P(x, y),
where the load must be applied on the cross section, so that
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the average normal stress is uniform. Compute the stress
and sketch its distribution acting on the cross section at a
location removed from the point of load application.

2250 N

Prob. 1-42

1-43. The plate has a width of 0.5 m. If the stress distribution
at the support varies as shown, determine the force P applied
to the plate and the distance d to where it is applied.

4 m
IP

d

o = (15x'2) MPa—" 30 MPa

Prob. 1-43

*1-44. The joint is subjected to the axial member force of
27 kN. Determine the average normal stress acting on
sections AB and BC. Assume the member is smooth and is
40 mm thick.

27 kN

Prob. 1-44
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1-45. The plastic block is subjected to an axial compressive
force of 600 N. Assuming that the caps at the top and bottom
distribute the load uniformly throughout the block,
determine the average normal and average shear stress
acting along section a—a.

600 N

30°

Vs v

50 mm 50 mm

600 N

Prob. 1-45

1-46. The column is made of concrete having a density
of 2.30 Mg/m>. At its top B it is subjected to an axial
compressive force of 15 kN. Determine the average normal
stress in the column as a function of the distance z measured
from its base.

z
15 kN
BA%}/SO mm
4m
.
x /\J\\ y
Prob. 1-46

1-47. If P =15 kN, determine the average shear stress in
the pins at A, B, and C. All pins are in double shear, and
each has a diameter of 18 mm.

i P 4P 4P 2P

0.5m 0.5m

T g 1m»"<f1.5 m*"kl.S m—
c; I I 1 1l
B :

&

Prob. 1-47

*1-48. The driver of the sports car applies his rear brakes
and causes the tires to slip. If the normal force on each rear
tire is 1800 N and the coefficient of kinetic friction between
the tires and the pavement is w, = 0.5, determine the
average shear stress developed by the friction force on the
tires. Assume the rubber of the tires is flexible and each tire
is filled with an air pressure of 225 kPa.

1800 N

Prob. 1-48

1-49. The beam is supported by two rods AB and CD that
have cross-sectional areas of 12 mm? and 8 mm?2, respectively.
If d =1 m, determine the average normal stress in each rod.

1-50. The beam is supported by two rods AB and CD that
have cross-sectional areas of 12 mm? and 8 mm?, respectively.
Determine the position d of the 6-kN load so that the average
normal stress in each rod is the same.

2wl
B D

6 kN

Probs. 1-49/50



1-51. The uniform bar, having a cross-sectional area of A
and mass per unit length of m, is pinned at its center. If it is
rotating in the horizontal plane at a constant angular rate of
w, determine the average normal stress in the bar as a
function of x.

e

Prob. 1-51

*]1-52. The two members used in the construction of an
aircraft fuselage are joined together using a 30° fish-mouth
weld. Determine the average normal and average shear
stress on the plane of each weld. Assume each inclined
plane supports a horizontal force of 2 kN.

3725 mm 30
4KN <—| 25 rmgi 4 kN
25mm|
30°
Prob. 1-52

1-53. The pier is made of material having a specific weight vy.
If it has a square cross section, determine its width w
as a function of z so that the average normal stress in the
pier remains constant. The pier supports a constant load P
at its top where its width is wy.

Prob. 1-53
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1-54. The 2-Mg concrete pipe has a center of mass at
point G. If it is suspended from cables AB and AC,
determine the average normal stress in the cables. The
diameters of AB and AC are 12 mm and 10 mm, respectively.

1-55. The 2-Mg concrete pipe has a center of mass at point
G. If it is suspended from cables AB and AC, determine the
diameter of cable AB so that the average normal stress in
this cable is the same as in the 10-mm-diameter cable AC.

Probs. 1-54/55

#*1-56. Rods AB and BC have diameters of 4 mm
and 6 mm, respectively. If the 3 kN force is applied to the
ring at B, determine the angle 6 so that the average normal
stress in each rod is equivalent. What is this stress?

3kN

Prob. 1-56
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1-57. The bar has a cross-sectional area of 400(10-%) m?. If it
is subjected to a triangular axial distributed loading along its
length which is 0 at x =0 and 9 kN/m at x = 1.5 m, and to
two concentrated loads as shown, determine the average
normal stress in the bar as a function of x for 0 = x < 0.6 m.

function of x for 0.6 m < x = 1.5 m.

8 kN
> —> —> —>/—> —> —> 4N
> —

Probs. 1-57/58

1-59. The two steel members are joined together using a
30° scarf weld. Determine the average normal and average

shear stress resisted in the plane of the weld.

15 kN

30° 71720 mm

40 mm —-

15 kN

Prob. 1-59

1-58. The bar has a cross-sectional area of 400(107%) m?. If
it is subjected to a uniform axial distributed loading along
its length of 9 kN/m, and to two concentrated loads as
shown, determine the average normal stress in the bar as a

#1-60. The bar has a cross-sectional area of 400(107°) m?.
If it is subjected to a uniform axial distributed loading along
its length and to two concentrated loads, determine the
average normal stress in the bar as a function of x for
0<x=05m.

1-61. The bar has a cross-sectional area of 400(107%) m?. If
it is subjected to a uniform axial distributed loading along
its length and to two concentrated loads, determine the
average normal stress in the bar as a function of x for
05m <x=125m.

Probs. 1-60/61

1-62. The prismatic bar has a cross-sectional area A. If it is
subjected to a distributed axial loading that increases
linearly from w = 0 at x =0 to w = w, at x = a, and then
decreases linearly to w =0 at x = 2a, determine the average
normal stress in the bar as a function of x for 0 = x < a.

1-63. The prismatic bar has a cross-sectional area A. If it is
subjected to a distributed axial loading that increases
linearly from w = 0 at x =0 to w = w, at x = a, and then
decreases linearly to w =0 at x = 2a, determine the average
normal stress in the bar as a function of x fora < x = 2a.

Wo
- —» —p —P — — —p >

> > —> —>——>—> —> —> >

——

a \ a \

Probs. 1-62/63



*1-64. Determine the greatest constant angular velocity w
of the flywheel so that the average normal stress in its rim
does not exceed o = 15 MPa. Assume the rim is a thin ring
having a thickness of 3 mm, width of 20 mm, and a mass of
30 kg/m. Rotation occurs in the horizontal plane. Neglect
the effect of the spokes in the analysis. Hint: Consider a
free-body diagram of a semicircular segment of the ring.
The center of mass for this segment is located at 7 = 2r /7
from the center.

Prob. 1-64

1-65. Determine the largest load P that can be applied to
the frame without causing either the average normal stress
or the average shear stress at section a—a to exceed
o = 150 MPa and 7 = 60 MPa, respectively. Member CB
has a square cross section of 25 mm on each side.

Prob. 1-65
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1-66. The bars of the truss each have a cross-sectional
area of 780 mm?. Determine the average normal stress in
each member due to the loading P = 40 kN. State whether
the stress is tensile or compressive.

1-67. The bars of the truss each have a cross-sectional
area of 780 mm?. If the maximum average normal stress in
any bar is not to exceed 140 MPa, determine the maximum
magnitude P of the loads that can be applied to the truss.

Probs. 1-66/67

*1-68. The radius of the pedestal is defined by
= (0.5¢-098") m, where y is in meters. If the material has a
density of 2.5 Mg/m?3, determine the average normal stress
at the support.

‘

0.5m

Prob. 1-68
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1.6 ALLOWABLE STRESS DESIGN

To ensure the safety of a structural or mechanical member, it is necessary
to restrict the applied load to one that is less than the load the member
can fully support. There are many reasons for doing this.

e The intended measurements of a structure or machine may not be
exact,due to errors in fabrication or in the assembly of its component
parts.

e Unknown vibrations, impact, or accidental loadings can occur that
may not be accounted for in the design.

e Atmospheric corrosion, decay, or weathering tend to cause materials
to deteriorate during service.

e Some materials, such as wood, concrete, or fiber-reinforced
composites, can show high variability in mechanical properties.

One method of specifying the allowable load for a member is to use a
number called the factor of safety (F.S.). It is a ratio of the failure load
Fi,; to the allowable load Fjjoy,

Cranes are often supported using
bearing pads to give them stability. Care

must be taken not to crush the

supporting surface, due to the large Bl

bearing stress developed between the FS. = — (1-8)
pad and the surface. Faniow

Here F; is found from experimental testing of the material.

If the load applied to the member is linearly related to the stress
developed within the member, as in the case of ¢ = N/A and
Tavg = V/A, then we can also express the factor of safety as a ratio of the
failure stress o,y (OT T1451) to the allowable stress oy (OF Taow)- Here the
area A will cancel, and so,

Otail
FS. = — 1-9
Tallow ( )
or
F.S. = —mil (1-10)

Tallow
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Specific values of E.S. depend on the types of materials to be used
and the intended purpose of the structure or machine, while accounting
for the previously mentioned uncertainties. For example, the F.S. used
in the design of aircraft or space vehicle components may be close to 1
in order to reduce the weight of the vehicle. Or, in the case of a nuclear
power plant, the factor of safety for some of its components may be as
high as 3 due to uncertainties in loading or material behavior. Whatever
the case, the factor of safety or the allowable stress for a specific case
can be found in design codes and engineering handbooks. Design that
is based on an allowable stress limit is called allowable stress design
(ASD). Using this method will ensure a balance between both public
and environmental safety on the one hand and economic considerations
on the other.

Simple Connections. By making simplifying assumptions
regarding the behavior of the material, the equations o = N/A and
Tavg = V//A can often be used to analyze or design a simple connection
or mechanical element. For example, if a member is subjected to normal
force at a section, its required area at the section is determined from

N

Tallow

A:

(1-11)
or if the section is subjected to an average shear force, then the required
area at the section is

|4

Tallow

A

= (1-12)

Three examples of where the above equations apply are shown in
Fig. 1-24.The first figure shows the normal stress acting on the bottom of
a base plate. This compressive stress caused by one surface that bears
against another is often called bearing stress.

The area of the bolt for this lap joint
is determined from the shear stress,
which is largest between the plates.

65

(Op)atiow |

Assumed uniform |
normal stress
distribution
P
A=
(Ub)allow

The area of the column base plate B is determined
from the allowable bearing stress for the concrete.

The embedded length / of this rod in concrete
can be determined using the allowable shear
stress of the bonding glue.

Assumed uniform

shear stress
Tallow
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1.7 LIMIT STATE DESIGN

We have stated in the previous section that a properly designed member
must account for the uncertainties resulting from the variability of both the
material’s properties and the applied loading. Each of these uncertainties can
be investigated using statistics and probability theory, and so in structural
engineering there has been an increasing trend to separate load uncertainty
from material uncertainty.* This method of design is called limit state design
(LSD), or more specifically,in the United States it is called load and resistance
Jactor design (LRFD). We will now discuss how this method is applied.

Various types of loads R can act on a structure or
structural member, and each can be multiplied by a load factor
v (gamma) that accounts for its variability. The loads include dead load,
which is the fixed weight of the structure, and live loads, which involve
people or vehicles that move about. Other types of live loads include
wind, earthquake, and snow loads. The dead load D is multiplied by a
relatively small factor such as y,, = 1.2, since it can be determined with
greater certainty than, for example, the live load L caused by people,
which can have a load factor of y; = 1.6.

Building codes often require a structure to be designed to support various
combinations of the loads, and when applied in combination, each type of
load will have a unique load factor. For example, the load factor of one load
combination of dead (D), live (L), and snow () loads gives a total load R of

R =12D + 1.6L + 058

The load factors for this combined loading reflect the probability that R will
occur for all the events stated. In this equation, notice that the load factor
vs = 0.5 is small, because of the low probability that a maximum snow
load will occur simultaneously with the maximum dead and live loads.

Resistance factors ¢ (phi) are determined
from the probability of material failure as it relates to the material’s
quality and the consistency of its strength. These factors will differ for
different types of materials. For example, concrete has smaller factors
than steel, because engineers have more confidence about the behavior
of steel under load than they do about concrete. A typical resistance
factor ¢ = 0.9 is used for a steel member in tension.

* ASD combines these uncertainties by using the factor of safety or defining the allowable stress.



Design Criteria.  Once the load and resistance factors y and ¢ have
been specified using a code, then proper design of a structural member
requires that its predicted strength, ¢P,, be greater than the predicted
load it is intended to support. Thus, the LRFD criterion can be stated as

¢P, = 2y R; (1-13)

Here P, is the nominal strength of the member, meaning the load, when
applied to the member, causes it either to fail (ultimate load), or deform
to a state where it is no longer serviceable. In summary then, the
resistance factor ¢ reduces the nominal strength of the member and
requires it to be equal to or greater than the applied load or combination
of loads calculated using the load factors vy.

B VPORTANT POINT

® Design of a member for strength is based on selecting either
an allowable stress or a factor of safety that will enable it to
safely support its intended load (ASD), or using load and
resistance factors to modify the strength of the material and
the load, respectively (LRFD).

B PROCEDURE FOR ANALYSIS

When solving problems using the average normal and average shear
stress equations, careful consideration should first be given to finding
the section over which the critical stress is acting. Once this section
is determined, the member must then be designed to have a sufficient
cross-sectional area at the section to resist the stress that acts on it.
This area is determined using the following steps.

Internal Loading.

® Section the member through the area and draw a free-body
diagram of a segment of the member. The internal resultant
force at the section is then determined using the equations of
equilibrium.

Required Area.

® Provided either the allowable stress or the load and resistance
factors are known or can be determined, then the required
area needed to sustain the calculated load or factored load at
the section is determined from A = N/ogor A = V/7.
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Appropriate factors of safety must be
considered when designing cranes and cables
used to transfer heavy loads.
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EXAMPLE 1.12

The control arm is subjected to the loading shown in Fig. 1-25a. Determine
to the nearest 5 mm the required diameter of the steel pin at A and C if the
factor of safety for shear is F.S. = 1.5 and the failure shear stress for
the steel is 7¢,; = 82.5 MPa.

F
b & s
::ﬁF 200 mm
200 mm l 4
P /' . P
\\@C %{’L\a O Q) ©
o\ N 75 mmy 50 mm 25 KN
75 mmy S0mm ! 25 kN C, 15kN
15kN (b)
@ Fig. 1-25
15kN SOLUTION
Internal Shear Force. A free-body diagram of the arm is shown in
15 kN ) e
AL Fig. 1-25b. For equilibrium we have
© (+3Mc=0; F45(0.2m) — (15 kN)(0.075 m) — (25 kN) (2) (0.125m) =0
FAB = 15kN
S HSF =0,  -I15kN—-C, + (25kN)(}) =0 ¢, =5kN
+13F,=0; C,—15kN— (25kN)(2) =0  C, = 30kN
15.205 kN i . C .
15,205 kKN The pin at C resists the resultant force at C, which is
Pinat C Fe = V(5kN)? + (30 kN)? = 30.41 kN
d
& Allowable Shear Stress. We have
o 82.5 MP
FS. = w5228 55MPa
Tallow Tallow

Pin at A. This pin is subjected to single shear, Fig. 1-25¢, so that

v d 2 15(10%)N
2 55(10% N /m
Usedy, = 20 mm Ans.

Pin at C. Since the pin is subjected to double shear, a shear force of
15.205 kN acts over its cross-sectional area between the arm and each
supporting leaf for the pin, Fig. 1-25d. We have

|4 (dc)2 15.205(10°)N
s Mo =2

2 55(10°) N /m?

Use d¢c = 20 mm Ans.

A:

b
Tallow

A= dc = 0.01876 m = 18.76 mm

Tallow



EXAMPLE 1.13

The suspender rod is supported at its end by a fixed-connected circular disk
as shown in Fig. 1-26a. If the rod passes through a 40-mm-diameter hole,
determine the minimum required diameter of the rod and the minimum
thickness of the disk needed to support the 20-kN load. The allowable
normal stress for the rod is oy, = 60 MPa, and the allowable shear stress
for the disk is 7,0, = 35 MPa.

—»‘ 40 mm ‘<—

A Tallow

Fig. 1-26

SOLUTION

Diameter of Rod. By inspection, the axial force in the rod is 20 kN.
Thus the required cross-sectional area of the rod is

20(10°) N
A = N : zdz _ (6 ) .
Tallow 4 60(10 ) N/m
so that
d = 0.0206 m = 20.6 mm Ans.

Thickness of Disk. As shown on the free-body diagram in Fig. 1-26b,
the material at the sectioned area of the disk must resist shear stress
to prevent movement of the disk through the hole. If this shear stress
is assumed to be uniformly distributed over the sectioned area, then,
since V = 20 kN, we have

% 20(10°) N
A= ;o 2m(0.02m) (1) = s
Tallow 35(10 )N/m

t =4.55(1073)m = 4.55 mm Ans.

1.7 LimiT STATE DESIGN
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EXAMPLE 1.14

Determine the largest load P that can be applied to the bars of the
lap joint shown in Fig. 1-27a. The bolt has a diameter of 10 mm and an
/P allowable shear stress of 80 MPa. Each plate has an allowable tensile

stress of 50 MPa, an allowable bearing stress of 80 MPa, and an allowable
shear stress of 30 MPa.

50 mm

SOLUTION

To solve the problem we will determine P for each possible failure
condition; then we will choose the smallest value of P. Why?

@ Failure of Plate in Tension. If the plate fails in tension, it will do so at

its smallest cross section, Fig. 1-27b.

N r
(aiow)e = 43 SOAYN/m™ = ) (0,015 m)

P =30kN

Failure of Plate by Bearing. A free-body diagram of the top plate,
Failure of plate in tension Fig. 1-27¢, shows that the bolt will exert a complicated distribution of
(b) stress on the plate along the curved central area of contact with the bolt.*
To simplify the analysis for small connections having pins or bolts such as
this, design codes allow the projected area of the bolt to be used when
calculating the bearing stress. Therefore,

‘=) =

Actual stress
distribution

_N, ON/m? = -
(@aow)s = 75 800N /m™ = o (0.015 m)

Assumed uniform
stress distribution

P =12kN
P

Failure of plate in bearing caused by bolt

(©

Fig. 1-27
*The material strength of a bolt or pin is generally greater than that of the plate material,
so bearing failure of the member is of greater concern.



v=pP
Failure of bolt by shear
(e)

Failure of Plate by Shear. There is the possibility for the bolt to tear
through the plate along the section shown on the free-body diagram in
Fig. 1-27d. Here the shear is V= P/2, and so

v - P2
(Fanowly = 3 3010 N/m? = 0015 m)

P = 18 kN

Failure of Bolt by Shear. The bolt can fail in shear along the plane
between the plates. The free-body diagram in Fig. 1-27¢ indicates that
V =P, so that

1% P

aow)s = 3 80(10°) N/m? = —————

(Tatow)s = 4 (10 N/m = 51005 m)?
P = 628kN

Comparing the above results, the largest allowable load for the
connections depends upon the bolt shear. Therefore,

P = 6.28 kN » Ans.

Failure of plate by shear
(d)

Fig. 1-27 (cont.)

1.7 LimiT STATE DESIGN
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The 400-kg uniform bar A B shown in Fig. 1-28a is supported by a steel rod
AC and a roller at B. If it supports a live distributed loading of 3 kN /m,
determine the required diameter of the rod. The failure stress for the steel
is 03, = 345 MPa. Use the LRFD method, where the resistance factor for
tension is ¢ = 0.9 and the load factors for the dead and live loads are
vp = 1.2 and y; = 1.6, respectively.

EERaEE =
A ‘ A B
‘ ~5 B R 1m—4
! A 1 4‘.;09 KN Fs
(a) (b)
Fig. 1-28

SOLUTION

Factored Loads. Here the dead load is the bar’s weight
D = 400(9.81) N = 3.924 kN. Therefore, the factored dead load is
1.2D = 4.709 kN. The live load resultant is L = (3kN/m)(2m) = 6kN,
so that the factored live load is 1.6 = 9.60 kN.

From the free-body diagram of the bar, Fig. 1-28b, the factored load in
the rod can now be determined.

(+3SMg = 0;  9.60 kN(1m) + 4.709 kN(1m) — Fyc(2m) = 0

Area. The nominal strength of the rod is determined from P, = o, A,
and since the nominal strength is defined by the resistance factor ¢ = 0.9,
we require

dP, = Fyc;  0.9[345(10° N/m?] A e = 7.154(10°) N
Aqe = 23.04(107%) m? = 23.04 mm? = %dﬁc

dAC = 542 mm Ans.
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. FUNDAMENTAL PROBLEMS

I1-13. Rods AC and BC are used to suspend the 200-kg F1-15. Determine the maximum average shear stress
mass. If each rod is made of a material for which the average developed in each 12-mm-diameter bolt.

normal stress cannot exceed 150 MPa, determine the

minimum required diameter of each rod to the nearest mm.

10 kN

=

SkN

Prob. F1-15

Prob. F1-13

["1-14.  The frame supports the loading shown. The pin at
A has a diameter of 50 mm. If it is subjected to double shear,

determine the average shear stress in the pin. 1-16. If each of the three nails has a diameter of 4 mm and

can withstand an average shear stress of 60 MPa, determine
the maximum allowable force P that can be applied to
the board.

Prob. F1-14 Prob. F1-16
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F1-17. The strut is glued to the horizontal member at I'1-19. If the eyebolt is made of a material having a yield
surface AB. If the strut has a thickness of 25 mm and the glue stress of oy = 250 MPa, determine the minimum required
can withstand an average shear stress of 600 kPa, determine diameter d of its shank. Apply a factor of safety F.S. = 1.5
the maximum force P that can be applied to the strut. against yielding.

Prob. F1-19

Prob. F1-17

F1-18. Determine the maximum average shear stress

developed in the 30-mm-diameter pin.
[1-20. If the bar assembly is made of a material having a

yield stress of oy = 350 MPa, determine the minimum
required dimensions /; and 4, to the nearest mm. Apply a
factor of safety F.S. = 1.5 against yielding. Each bar has a
thickness of 12 mm.

30 kN

5KN ),
«— M 150 kN

3

A

——
40KN C B KN

Prob. F1-18 Prob. F1-20



F1-21. Determine the maximum force P that can be
applied to the rod if it is made of material having a yield
stress of oy = 250 MPa. Consider the possibility that failure
occurs in the rod and at section a—a. Apply a factor of safety
of F.S. = 2 against yielding.

50 mm

; n
120 I;lgi 160 mm

Section a-a

Prob. F1-21

F1-22. The pin is made of a material having a failure shear
stress of 7,; = 100 MPa. Determine the minimum required
diameter of the pin to the nearest mm. Apply a factor of
safety of F.S. = 2.5 against shear failure.

T |
0 —

=

Prob. F1-22

1.7  LiMIT STATE DESIGN 75

F1-23.  If the bolt head and the supporting bracket are made
of the same material having a failure shear stress of
Trail = 120 MPa, determine the maximum allowable force P
that can be applied to the bolt so that it does not pull
through the plate. Apply a factor of safety of F.S. = 2.5
against shear failure.

Prob. F1-23

I'1-24.  Six nails are used to hold the hanger at A against
the column. Determine the minimum required diameter of
each nail to the nearest 1 mm if it is made of material having
Tran = 112 MPa. Apply a factor of safety of F.S. = 2 against
shear failure.

5kN/m

3m

Prob. F1-24
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. PROBLEMS

1-69. The tension member is fastened together using two
bolts, one on each side of the member as shown. Each bolt
has a diameter of 7.5 mm. Determine the maximum load P
that can be applied to the member if the allowable shear
stress for the bolts is 7,5,y = 84 MPa. and the allowable
average normal stress is ooy = 140 MPa.

Prob. 1-69

1-70. Member B is subjected to a compressive force of
4 kN. If A and B are both made of wood and are 10 mm
thick, determine to the nearest multiples of 5 mm the
smallest dimension /4 of the horizontal segment so that it
does not fail in shear. The allowable shear stress for the
segment is T, 0w = 2.1 MPa.

Prob. 1-70

1-71. The lever is attached to the shaft A using a key that
has a width d and length of 25 mm. If the shaft is fixed and a
vertical force of 200 N is applied perpendicular to the
handle, determine the dimension d if the allowable shear
stress for the key is 7,0 = 35 MPa.

Prob. 1-71

*1-72. The lapbelt assembly is to be subjected to a force of
800 N. Determine (a) the required thickness ¢ of the belt
if the allowable tensile stress for the material is
(0))alow = 10 MPa (b) the required lap length d, if the glue
can sustain an allowable shear stress of (7yow)g = 0.75 MPa,
and (c) the required diameter d, of the pin if the allowable
shear stress for the pin is (7yow), = 30 MPa.

Prob. 1-72



1-73. The cotter is used to hold the two rods together.
Determine the smallest thickness ¢ of the cotter and the
smallest diameter d of the rods. All parts are made of steel
for which the failure normal stress is op,; = S00MPa and
the failure shear stress is 7,; = 375MPa. Use a factor of
safety of (F.S.), = 2.50 in tension and (F.S.); = 1.75 in
shear.

Prob. 1-73

1-74. The truss is used to support the loading shown
Determine the required cross-sectional area of member BC
if the allowable normal strees is oy, = 165 MPa.

Prob. 1-74
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1-75. If the allowable tensile stress for wires AB and AC
iS Oyow = 200 MPa, determine the required diameter of
each wire if the applied load is P = 6 kN.

*]1-76. If the allowable tensile stress for wires AB and AC
iS Ouow = 180 MPa, and wire AB has a diameter of 5 mm
and AC has a diameter of 6 mm, determine the greatest
force P that can be applied to the chain.

Probs. 1-75/76

1-77. The spring mechanism is used as a shock absorber
for a load applied to the drawbar AB. Determine the force
in each spring when the 50-kN force is applied. Each spring
is originally unstretched and the drawbar slides along the
smooth guide posts CG and EF. The ends of all springs are
attached to their respective members. Also, what is
the required diameter of the shank of bolts CG and EF if
the allowable stress for the bolts is o), = 150 MPa?

k = 80 kN/m

50 kN

Prob. 1-77

1
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1-78. The soft-ride suspension system of the mountain
bike is pinned at C and supported by the shock absorber
BD. If it is designed to support a load P = 1500 N,
determine the required minimum diameter of pins B and C.
Use a factor of safety of 2 against failure. The pins are made
of material having a failure shear stress of m,; = 150 MPa,
and each pin is subjected to double shear.

1-79. The soft-ride suspension system of the mountain bike
is pinned at C and supported by the shock absorber BD. If it is
designed to support a load of P = 1500 N, determine the
factor of safety of pins B and C against failure if they are made
of a material having a shear failure stress of 7,; = 150 MPa.
Pin B has a diameter of 75 mm, and pin C has a diameter of
6.5 mm. Both pins are subjected to double shear.

p 100 mm

300 mm

Probs. 1-78/79

*1-80. Determine the required diameter of the pins at
A and B if the allowable shear stress for the material is
Talow — 100 MPa. Both pins are subjected to double shear.

4 2kN/m
I B
| A

J 3m

s

HNe

Prob. 1-80

1-81. The steel pipe is supported on the circular base
plate and concrete pedestal. If the thickness of the pipe
is t = 5 mm and the base plate has a radius of 150 mm,
determine the factors of safety against failure of the steel
and concrete. The applied force is 500 kN, and the normal
failure stresses for steel and concrete are (o) = 350 MPa
and (0 gi)con = 25 MPa, respectively.

Prob. 1-81

1-82. The steel swivel bushing in the elevator control of
an airplane is held in place using a nut and washer as shown
in Fig. (a). Failure of the washer A can cause the push rod to
separate as shown in Fig. (b). If the average shear stress is
Tovg = 145 MPa, determine the force F that must be applied
to the bushing that will cause this to happen. The washer is
1.5 mm thick.

el ([
A

(b)

Prob. 1-82
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1-83. Determine the required minimum thickness ¢ of 1-85. The hanger is supported using the rectangular pin.
member AB and edge distance b of the frame if P = 40 kN Determine the magnitude of the allowable suspended load
and the factor of safety against failure is 2. The wood has a P if the allowable bearing stress is (03,).10w = 220 MPa, the
normal failure stress of oy,; = 42 MPa, and shear failure allowable tensile stress is (0;)aow = 150 MPa, and the

stress of 7,; = 10.5 MPa. allowable shear stress is 7, = 130 MPa. Take t = 6 mm,
a = 5mm and b = 25 mm.

37.5 mm
Prob. 1-83 Prob. 1-85
*]1-84. Determine the maximum allowable load P that can 1-86. The hanger is supported using the rectangular pin.
be safely supported by the frame if = 30mm and Determine the required thickness ¢ of the hanger, and
b =90 mm. The wood has a normal failure stress of dimensions a and b if the suspended load is P = 60 kN. The
Otait = 42 MPa, and shear failure stress of 7,; = 10.5 MPa. allowable tensile stress is (0;)a10w = 150 MPa, the allowable
Use a factor of safety against failure of 2. bearing stress iS (0p)aow = 290 MPa, and the allowable

shear stress is 7,0 = 125 MPa.

37.5 mm

Prob. 1-84 Prob. 1-86
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1-87. The assembly is used to support the distributed
loading of w = 10 kN /m. Determine the factor of safety with
respect to yielding for the steel rod BC and the pins at A and
B if the yield stress for the steel in tension is oy = 250 MPa
and in shear 7y = 125 MPa.The rod has a diameter of 13 mm,
and the pins each have a diameter of 10 mm.

*1-88. If the allowable shear stress for each of the
10-mm-diameter steel pins at A, B, and C is 7, = 90 MPa,
and the allowable normal stress for the 13-mm-diameter rod
iS Ouow = 150 MPa, determine the largest intensity w of
the uniform distributed load that can be suspended from
the beam.

Probs. 1-87/88

1-89. The compound wooden beam is connected together
by a bolt at B. Assuming that the connections at A, B, C,
and D exert only vertical forces on the beam, determine the
required diameter of the bolt at B and the required outer
diameter of its washers if the allowable tensile stress for the
bolt is (07)a10w = 150 MPa and the allowable bearing
stress for the wood is (03, ) aiow = 28 MPa. Assume that the
hole in the washers has the same diameter as the bolt.

3 kN 1.5kN
~—2m—}—2m—F1.5 m*‘*l.S mifl.S m*l*l.S m*‘

=—— — 1]

-

Prob. 1-89

1-90. The two aluminum rods support the vertical force
of P = 20 kN. Determine their required diameters if the
allowable tensile stress for the aluminum is o,,,, = 150 MPa.

Prob. 1-90

1-91. The two aluminum rods AB and AC have diameters
of 10 mm and 8 mm, respectively. Determine the largest
vertical force P that can be supported. The allowable tensile
stress for the aluminum is oy, = 150 MPa.

Prob. 1-91



*1-92. The assembly consists of three disks A, B, and C
that are used to support the load of 140 kN. Determine the
smallest diameter d; of the top disk, the largest diameter d,
of the opening, and the largest diameter d; of the hole
in the bottom disk. The allowable bearing stress for the
material 18 (03)a0w = 350 MPa and allowable shear stress is
Tallow — 125 MPa.

Prob. 1-92

1-93. The aluminum bracket A is used to support the
centrally applied load of 40 kN. If it has a constant thickness
of 12 mm, determine the smallest height / in order to prevent
a shear failure. The failure shear stress is 7,; = 160 MPa.
Use a factor of safety for shear of F.S. = 2.5.

3t

—

40 kN

Prob. 1-93
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1-94. The rods AB and CD are made of steel. Determine
their smallest diameter so that they can support the dead
loads shown. The beam is assumed to be pin connected at A
and C. Use the LRFD method, where the resistance factor
for steel in tension is ¢ = 0.9, and the dead load factor is
vp = 1.4.The failure stress is op,;; = 345 MPa.

s e R

_—;“--' S et _ql,_‘
B 5D
6 kKN
5kN
4 kN
\i
A c
<2 m—~2m—r—3m—~—3m—-~

Prob. 1-94

1-95. If the allowable bearing stress for the material
under the supports at A and B is (0p)aiow = 1.5 MPa,
determine the size of square bearing plates A’ and B’
required to support the load. Dimension the plates to the
nearest mm. The reactions at the supports are vertical. Take
P = 100 kN.

*1-96. If the allowable bearing stress for the material
under the supports at A and B is (0p)a0w = 1.5 MPa,
determine the maximum load P that can be applied to the
beam. The bearing plates A’ and B’ have square cross
sections of 150 mm X 150 mm and 250 mm X 250 mm,
respectively.

40 kN/m lP

15m—

3m l 1.5 m—

Probs. 1-95/96
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. CHAPTER REVIEW

The internal loadings in a body consist of SE =0 Torsional

a normal force, shear force, bending * NMeone
moment, and torsional moment. They XF, =0 T
represent the resultants of both a normal B f\

and shear stress distribution that act over 2 =0 C" Normal
the cross section. To obtain these SM, =0 Force
resultants, use the method of sections

and the equations of equilibrium. M, =0 Bending M“Q’

Moment

SM, =0

If a bar is made from homogeneous =
. . . .. . N €— o =N
isotropic material and it is subjected to a —

series of external axial loads that pass
through the centroid of the cross section,
then a uniform normal stress distribution
will act over the cross section. This N
average normal stress can be determined a ‘_O_' 7=
from o = N/A, where N is the internal
axial load at the section.

>z

The average shear stress can be
determined using 7,,, = V//A, where V' is
the shear force acting on the cross section. _
This formula is often used to find the Tave =
average shear stress in fasteners or in
parts used for connections.

)<

Tavg = %

The ASD method of design of any simple
connection requires that the average
stress along any cross section not exceed
an allowable stress of oyow OT Tallow-
These values are reported in codes and  ORil Thil
are considered safe on the basis of FS. = -
experiments or through experience.
Sometimes a factor of safety is reported
provided the failure stress is known.

Tallow Tallow

The LRFD method of design is used for
the design of structural members. It
modifies the load and the strength of the P, = 2R,
material separately, using load and
resistance factors.
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. CONCEPTUAL PROBLEMS

Cl1-1. Hurricane winds have caused the failure of this
highway sign. Assuming the wind creates a uniform pressure
on the sign of 2 kPa, use reasonable dimensions for the sign
and determine the resultant shear and moment at each of

the two connections where the failure occurred.

C1-1

C1-2. High-heel shoes can often do damage to soft wood
or linoleum floors. Using a reasonable weight and
dimensions for the heel of a regular shoe and a high-heel
shoe, determine the bearing stress under each heel if the
weight is transferred down only to the heel of one shoe.

C1-2

C1-3. Here is an example of the single shear failure of a
bolt. Using appropriate free-body diagrams, explain why
the bolt failed along the section between the plates, and not
along some intermediate section such as a—a.

C1-3

C1-4. The vertical load on the hook is 5 kN. Draw the
appropriate free-body diagrams and determine the maximum
average shear force on the pins at A, B, and C. Note that due
to symmetry four wheels are used to support the loading on
the railing.
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. REVIEW PROBLEMS

R1-1. The circular punch B exerts a force of 2 kN on the
top of the plate A. Determine the average shear stress in the
plate due to this loading.

2 kN
B
~—4 mm
2 mm
Prob. R1-1

R1-2. Determine the required thickness of member BC
and the diameter of the pins at A and B to the nearest mm
if the allowable normal stress for member BC is
Taow — 200 MPa and the allowable shear stress for the pins
is Tallow — 70 MPa.

40 mm

B 24 m

g
Q\:b

30 kN/m

Prob. R1-2

R1-3. The long bolt passes through the 30-mm-thick plate.
If the force in the bolt shank is 8 kN, determine the average
normal stress in the shank, the average shear stress along
the cylindrical area of the plate defined by the section lines
a-a, and the average shear stress in the bolt head along the
cylindrical area defined by the section lines b—b.

Prob. R1-3

*R1-4. The beam AB is pin supported at A and supported
by a cable BC. A separate cable CG is used to hold up the
frame. If AB weighs 2.0 kN/m and the column FC has a
weight of 3.0 kN/m, determine the resultant internal
loadings acting on cross sections located at points D and E.
Neglect the thickness of both the beam and column in the
calculation.

Prob. R1-4
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R1-5. Determine the average punching shear stress the R1-7. The yoke-and-rod connection is subjected to a
circular shaft creates in the metal plate through section AC tensile force of 5 kN. Determine the average normal stress
and BD. Also, what is the average bearing stress developed in each rod and the average shear stress in the pin A

on the surface of the plate under the shaft? between the members.

40 mm

30 mm

120 mm

Prob. R1-5 S5kN
Prob. R1-7

R1-6. The 150 mm by 150 mm block of aluminum supports
a compressive load of 6 kN. Determine the average normal
and shear stress acting on the plane through section a-a.
Show the results on a differential volume element located
on the plane.

*R1-8. The cable has a specific weight y (weight/volume)
and cross-sectional area A. Assuming the sag s is small, so
that the cable’s length is approximately L and its weight can
be distributed uniformly along the horizontal axis, determine
the average normal stress in the cable at its lowest point C.

L) | L2

Prob. R1-6 Prob. R1-8
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Noticeable deformation occurred in this chain link just before excessive stress
caused it to fracture.




STRAIN

. CHAPTER OBJECTIVES

B In engineering the deformation of a body is specified using the
concepts of normal and shear strain. In this chapter we will define
these quantities and show how they can be determined for
various types of problems.

2.1 DEFORMATION

Whenever a force is applied to a body, it will tend to change the body’s
shape and size. These changes are referred to as deformation, and they
may be highly visible or practically unnoticeable. For example, a rubber
band will undergo a very large deformation when stretched, whereas only
slight deformations of structural members occur when a building is
occupied. Deformation of a body can also occur when the temperature of
the body is changed. A typical example is the thermal expansion or
contraction of a roof caused by the weather.

In a general sense, the deformation will not be uniform throughout the
body, and so the change in geometry of any line segment within the body
may vary substantially along its length. Hence, to study deformation, we
will consider line segments that are very short and located in the
neighborhood of a point. Realize, however, that the deformation will also
depend on the orientation of the line segment at the point. For example,
as shown in the adjacent photos, a line segment may elongate if it is
oriented in one direction, whereas it may contract if it is oriented in
another direction.

Note the before and after positions of three
different line segments on this rubber
membrane which is subjected to tension. The
vertical line is lengthened, the horizontal line
is shortened, and the inclined line changes its
length and rotates.

87
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P

As

Undeformed body

r—]

—
As'

Deformed body

Fig. 2-2

2.2 STRAIN

In order to describe the deformation of a body by changes in the lengths
of line segments and changes in the angles between them, we will develop
the concept of strain. Strain is actually measured by experiment, and once
the strain is obtained, it will be shown in the next chapter how it can be
related to the stress acting within the body.

e ——

| |
P ‘ P
|

| L

Fig. 2-1

If an axial load P is applied to the bar in Fig. 2-1, it
will change the bar’s length L to a length L. We will define the average
normal strain e (epsilon) of the bar as the change in its length
8 (delta) = L — L divided by its original length, that is

L—- L,

eavg = LO (2_1)

The normal strain at a point in a body of arbitrary shape is defined in a
similar manner. For example, consider the very small line segment As
located at the point, Fig. 2-2. After deformation it becomes As’, and the
change in its length is therefore As’ — As. As As — 0, in the limit the
normal strain at the point is therefore

e = lim A —As (2-2)
As—0 As

In both cases € (or €,,,) is a change in length per unit length, and it is pos-
itive when the initial line elongates, and negative when the line contracts.

As shown, normal strain is a dimensionless quantity, since it is a
ratio of two lengths. However, it is sometimes stated in terms of a ratio of
length units. If the SI system is used, where the basic unit for length is the
meter (m), then since e is generally very small, for most engineering
applications, measurements of strain will be in micrometers per meter
(um/m), where 1um = 10°m. For experimental work, strain is
sometimes expressed as a percent. For example, a normal strain of 480(10°)
can be reported as 480 wm/m, or 0.0480%. Or one can state the strain as
simply 480 w (480 “micros”).
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v
—
s
Bt g
Undeformed body Deformed body
(@)
4
Y ™
o ‘i\oT
2 3
0
Positive shear strain y Negative shear strain vy
©
Fig. 2-3

Shear Strain.  Deformations not only cause line segments to elongate
or contract, but they also cause them to change direction. If we select two
line segments that are originally perpendicular to one another, then the
change in angle that occurs between them is referred to as shear strain. This
angle is denoted by y (gamma) and is always measured in radians (rad),
which are dimensionless. For example, consider the two perpendicular line
segments at a point in the block shown in Fig. 2-3a. If an applied loading
causes the block to deform as shown in Fig. 2-3b, so that the angle between

the line segments becomes 6, then the shear strain at the point becomes m
2
T
vy=—-—20 (2-3) Az m
2 2
m Ax
2 Ay
Notice that if 6 is smaller than 7 /2, Fig. 2-3c, then the shear strain is
.. e .. . Undeformed
positive, whereas if 6 is larger than 7 /2, then the shear strain is negative. element
. . . L b
Cartesian Strain Components.  We can generalize our definitions ®)
of normal and shear strain and consider the undeformed element at a @ )
point in a body, Fig. 2-4a. Since the element’s dimensions are very small, 72
its deformed shape will become a parallelepiped, Fig. 2-4b. Here the
normal strains change the sides of the element to (1 + e)Az
m
1+ e)Ax (1 +e)dy (1 +e)Az oG =)
. , ™ ) (1 + €)Ax
which produces a change in the volume of the element. And the shear 2 7Y (1 +e)hy
strain changes the angles between the sides of the element to D
eformed
m w m element
E — Yxy 5 ~ Vyz E — VYxz (c)

which produces a change in the shape of the element. Fig. 24
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Small Strain Analysis.  Most engineering design involves applications
for which only small deformations are allowed. In this text, therefore, we will
assume that the deformations that take place within a body are almost
infinitesimal. For example, the normal strains occurring within the material
are very small compared to 1, so that € << 1. This assumption has wide
practical application in engineering, and it is often referred to as a small
strain analysis. It can also be used when a change in angle, A6, is small, so
that sin A@ = A6,cos A6 = 1,and tan A6 = AS6.

The rubber bearing support under this
concrete bridge girder is subjected to
both normal and shear strain. The
normal strain is caused by the weight
and bridge loads on the girder, and the
shear strain is caused by the horizontal
movement of the girder due to
temperature changes.

B VPORTANT POINTS

® T.oads will cause all material bodies to deform and, as a result,
points in a body will undergo displacements or changes in
position.

® Normal strain is a measure per unit length of the elongation or
contraction of a small line segment in the body, whereas shear
strain is a measure of the change in angle that occurs between
two small line segments that are originally perpendicular to one
another.

® The state of strain at a point is characterized by six strain
components: three normal strains €,, €, €, and three shear strains
Yays Yyz» Viz- These components all depend upon the original
orientation of the line segments and their location in the body.

® Strain is the geometrical quantity that is measured using
experimental techniques. Once obtained, the stress in the body
can then be determined from material property relations, as
discussed in the next chapter.

® Most engineering materials undergo very small deformations,
and so the normal strain € << 1.This assumption of “small strain
analysis” allows the calculations for normal strain to be simplified,
since first-order approximations can be made about its size.




EXAMPLE 2.1

Determine the average normal strains in the two wires in Fig. 2-5 if the ring
at Amovesto A'.

3m 3m
B [
C
4m
Al
_:‘ A 20 mm
P 10 mm
Fig. 2-5

SOLUTION

Geometry. The original length of each wire is

LAB:LAC: \/(3111)2"1‘ (4m)2=5m

The final lengths are

Lyg=VE@m—00lm) + (4m + 0.02m)? = 501004 m

Lyc=V(@m+00lm)+ (4m + 0.02m)’ = 5.02200 m

Average Normal Strain.

_ LA’B - LAB _ 5.01004m — 5
€AB = LAB B Sm

T = 201(10%) m/m  Ans.

LA’C - LAC _ 5.02200m — 5
LAC Sm

€4C == 4.40(10°) m/m  Ans.

2.2

STRAIN
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EXAMPLE 2.2

When force P is applied to the rigid lever arm ABC in Fig. 2-6a, the arm
rotates counterclockwise about pin A through an angle of 0.05°. Determine
the normal strain in wire BD.

D SOLUTION |

P 300 5 . c g
mm Geometry. The orientation of the lever arm after it rotates about point A
is shown in Fig. 2-6b. From the geometry of this figure,

400
o = tan1(300 22) = 53.1301°

Then
¢ =90° — a + 0.05° = 90° — 53.1301° + 0.05° = 36.92°

For triangle ABD the Pythagorean theorem gives

L,p = V(300 mm)? + (400 mm)? = 500 mm

Using this result and applying the law of cosines to triangle AB'D,

Lgp = \/L,Zw + Lip — 2(Lap) (Lap) cos ¢
= V(500 mm)? + (400 mm)? — 2(500 mm) (400 mm) cos 36.92°
= 300.3491 mm

Normal Strain.

c LB’D B LBD
BD —
LBD

(b) _300.3491 mm — 300 mm
300 mm

= 0.00116 mm/mm Ans.

SOLUTION II

Since the strain is small, this same result can be obtained by approximating
the elongation of wire BD as A Lgp,shown in Fig. 2-6b. Here,

0.05°

180° > (7 rad)} (400 mm) = 0.3491 mm

ALBD = OLAB = |:<
Therefore,

ALgp 03491 mm
= = = 0.0011 Ans.
€3D Lon 300 mm 0.00116 mm/mm ns.




EXAMPLE 2.3

The plate shown in Fig. 2-7a is fixed connected along AB and held in
the horizontal guides at its top and bottom, AD and BC. If its right side
CD is given a uniform horizontal displacement of 2 mm, determine (a)
the average normal strain along the diagonal AC, and (b) the shear
strain at E relative to the x, y axes.

SOLUTION

Part (a). When the plate is deformed, the diagonal AC becomes
AC', Fig. 2-7b. The lengths of diagonals AC and AC’ can be found
from the Pythagorean theorem. We have

AC =V (0150m)% + (0.150m)? = 021213 m

AC' = V(0150 m)2 + (0.152m)2 = 021355 m
Therefore the average normal strain along AC is

o AC' — AC _ 021355m — 021213 m
€AC) avg AC 021213 m

= 0.00669 mm/mm Ans.

Part (b). To find the shear strain at E relative to the x and y axes,
which are 90° apart, it is necessary to find the change in the angle at
E. After deformation, Fig. 2-7b,

. <0> _ 76 mm
an 2 75 mm

)(90.7590) = 1.58404 rad

5 r
6 = 90.759 ( TG

Applying Eq. 2-3, the shear strain at E is therefore the change in the

angle AED,

Yy = g — 1.58404 rad = —0.0132 rad Ans.

The negative sign indicates that the once 90° angle becomes larger.

NOTE: If the x and y axes were horizontal and vertical at point E, then
the 90° angle between these axes would not change due to the

deformation, and so y,, = 0 at point E.

75 mm p

>
—i——i
s~
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} 150 mm } ‘P 2 mm

(a)

‘&76 mm —+—76 mm »‘
A D'
Vi

N ‘ e
N e
).
N7

e \\
Ve
7 FIOEN
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. PRELIMINARY PROBLEMS

P2-1. A loading causes the member to deform into the
dashed shape. Explain how to determine the normal strains
ecp and €453. The displacement A and the lettered
dimensions are known.

Prob. P2-1

P2-2. A loading causes the member to deform into the
dashed shape. Explain how to determine the normal strains
ecp and €45. The displacement A and the lettered
dimensions are known.

N

|
]a

l 2L L—

Prob. P2-2

P2-3. A loading causes the wires to elongate into the
dashed shape. Explain how to determine the normal strain
e, p in wire AB. The displacement A and the distances
between all lettered points are known.

Prob. P2-3

P2-4. A loading causes the block to deform into the
dashed shape. Explain how to determine the strains €4,
€40> €c> (Ya)yy The angles and distances between all
lettered points are known.

y
B C
7 B
/ /
g /
/ /
4 /
/ /
4 /
/\e )
A D *
Prob. P2-4

P2-5. A loading causes the block to deform into the
dashed shape. Explain how to determine the strains (y4)yy.
(vB)xy- The angles and distances between all lettered points
are known.

02 I S

:
|
|
|
|
|
|

T ——_ 1400 A

-

Prob. P2-5
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. FUNDAMENTAL PROBLEMS

[2-1. When force P is applied to the rigid arm ABC,
point B displaces vertically downward through a distance of
0.2 mm. Determine the normal strain in wire CD.

Prob. F2-1

12-2. If the force P causes the rigid arm ABC to rotate
clockwise about pin A through an angle of 0.02°, determine
the normal strain in wires BD and CE.

600 mm

600 mm

Prob. F2-2
F2-3.  The rectangular plate is deformed into the shape of a
parallelogram shown by the dashed line. Determine the average
shear strain at corner A with respect to the x and y axes.

y
2 mm
D[ C

==

| 1
! |

400 mm | | |

|
B
I
Al T T - 4mmx
<f300mm—i

Prob. F2-3

F2-4. The triangular plate is deformed into the shape
shown by the dashed line. Determine the normal strain
along edge BC and the average shear strain at corner A
with respect to the x and y axes.

y
S mm
. 400 <=
| mm ‘ .
Il ‘_B‘ I3mm
300mm 7

Prob. F2—-4

I2-5. The square plate is deformed into the shape shown
by the dashed line. Determine the average normal strain
along diagonal AC and the shear strain at point E with
respect to the x and y axes.

}-NA— 300 mm —B+i‘
3 mm

Prob. F2-5
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. PROBLEMS

2-1. An air-filled rubber ball has a diameter of 150 mm. If
the air pressure within it is increased until the ball’s
diameter becomes 175 mm, determine the average normal
strain in the rubber.

2-2. A thin strip of rubber has an unstretched length of
375 mm. If it is stretched around a pipe having an outer
diameter of 125 mm, determine the average normal strain in
the strip.

2-3. If the load P on the beam causes the end C to be
displaced 10 mm downward, determine the normal strain in
wires CE and BD.

| 3m | 2m |

Prob. 2-3

*2-4. The force applied at the handle of the rigid lever
causes the lever to rotate clockwise about the pin B through
an angle of 2°. Determine the average normal strain in each
wire. The wires are unstretched when the lever is in the
horizontal position.

200

Prob. 24

2-5. The pin-connected rigid rods AB and BC are inclined
at 6 = 30° when they are unloaded. When the force P is
applied 6 becomes 30.2°. Determine the average normal
strain in wire AC.

Prob. 2-5

2-6. The wire AB is unstretched when 0 = 45°. If a load is
applied to the bar AC, which causes 6 to become 47°,
determine the normal strain in the wire.

2-7. If a horizontal load applied to the bar AC causes point
A to be displaced to the right by an amount AL, determine
the normal strain in the wire AB. Originally, 6 = 45°.

Probs. 2—-6/7



*2-8. Therectangular plate is subjected to the deformation
shown by the dashed line. Determine the average shear
strain vy, in the plate.

2-9. The square deforms into the position shown by the
dashed lines. Determine the shear strain at each of its
corners, A, B, C, and D, relative to the x, y axes. Side D'B’
remains horizontal.
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2-10. Part of a control linkage for an airplane consists of a
rigid member CB and a flexible cable AB. If a force is
applied to the end B of the member and causes it to rotate
by 6 = 0.5°, determine the normal strain in the cable.
Originally the cable is unstretched.

mm

600 mm

Prob. 2-10

2-11. Part of a control linkage for an airplane consists of a
rigid member CB and a flexible cable AB. If a force is
applied to the end B of the member and causes a normal
strain in the cable of 0.004 mm/mm, determine the
displacement of point B. Originally the cable is unstretched.

o
2N

800 mm

Prob. 2-11
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*2-16. The nylon cord has an original length L and is tied
to a bolt at A and a roller at B. If a force P is applied to the

. . . roller, determine the normal strain in the cord when the
2-13. ]?ete'rmme the shear strain v, at corners Dand Cit roller is at C, and at D. If the cord is originally unstrained
the plastic distorts as shown by the dashed lines. when it is at C, determine the normal strain € when the
roller moves to D. Show that if the displacements A and A

are small,then e, = €p — €.

*2-12. Determine the shear strain v, at corners A and B
if the plastic distorts as shown by the dashed lines.

y
Ap
—Ac—
P
z
B C D
; /
/ /
X / /
Iy
I
I
Probs. 2-12/13 s
|/
|/
|/
/
A
2-14. The material distorts into the dashed position
shown. Determine the average normal strains €,, €, and the
Prob. 2-16

shear strain v,, at A, and the average normal strain along
line BE.

2-15. The material distorts into the dashed position
shown. Determine the average normal strains along the

diagonals AD and CF.
2-17. A thin wire, lying along the x axis, is strained such
that each point on the wire is displaced Ax = kx? along the
Yy x axis. If k is constant, what is the normal strain at any
point P along the wire?
15 mm

[ol
T
|
|
[

|
|
|

200 mm

|
| P

| 50 mm

¢ I
* X

 A—150mm—F

Probs. 2-14/15

Prob. 2-17



2-18. The block is deformed into the position shown by
the dashed lines. Determine the average normal strain along

line AB.

15 mm

110 mm 100 mm

Prob. 2-18
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*2-20. The guy wire AB of a building frame is originally
unstretched. Due to an earthquake, the two columns of the
frame tilt § = 2°. Determine the approximate normal strain
in the wire when the frame is in this position. Assume the
columns are rigid and rotate about their lower supports.

Yoo i

4m \
rﬁ]——ﬂﬁ

Prob. 2-20

2-19. Nylon strips are fused to glass plates. When
moderately heated the nylon will become soft while the
glass stays approximately rigid. Determine the average
shear strain in the nylon due to the load P when the

assembly deforms as indicated.

s T | —r
5 mmﬁi\ \
3mm | | |
5 mm \ \

3 mm7

Prob. 2-19

2-21. The rectangular plate is deformed into the shape
shown by the dashed lines. Determine the average normal
strain along diagonal AC, and the average shear strain at

corner A relative to the x, y axes.

y
6 mm
400 mm i
2 R 2 mm L
mm ‘,#,#,~'~’* _ I’T6mm
1D C I’
| |
i I
300 mm |! |
| ;
' | 2mm
__________ | ¥
A B [
400 mm ~3 mm
Prob. 2-21
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2-26. If the unstretched length of the bowstring is
8875 mm, determine the average normal strain in the string

2-22. The corners B and D of the square plate are given
when it is stretched to the position shown.

the displacements indicated. Determine the shear strains at

A and B.
y
450 mm
A
T 16 mm
D
B X 450 mm
3mm —| < 2ol |
/ 3mm 16 mm
Prob. 2-26
16 mm 16 mm
Prob. 2-22 2-27. The triangular plate is fixed at its base, and its apex A
is given a horizontal displacement of 5 mm. Determine the
shear strain, y,,, at A.
) ] ) #2-28. The triangular plate is fixed at its base, and its apex A
2-23. Determine the shear strain v, at corners A and B if is given a horizontal displacement of 5 mm. Determine the
the plate distorts as shown by the dashed lines. average normal strain e, along the x axis.
2-29. The triangular plate is fixed at its base, and its apex A

*2-24. Determine the shear strain y,, at corners D and C
is given a horizontal displacement of 5 mm. Determine the

if the plate distorts as shown by the dashed lines.
average normal strain €, along the x' axis.

2-25. Determine the average normal strain that occurs
along the diagonals AC and DB.

| 5 mm
e ]
dmmi | T » ,/ [4 m
CIH |
l’ I|
1 1
300 mm |} i
" :
1 J
L, BEE— i 2mm .
D
———400 mm ————
3 mm
Probs. 2-27/28/29

Probs. 2-23/24/25



2-30. The rubber band AB has an unstretched length of 1
m. If it is fixed at B and attached to the surface at point A’,
determine the average normal strain in the band. The surface
is defined by the function y = (x?) m, where x is in meters.

A

F—1m—
Prob. 2-30

2-31. The rectangular plate is deformed into the shape
shown by the dashed lines. Determine the average normal
strain along diagonal BD, and the average shear strain at

corner B relative to the x, y axes.

y
6 mm
400 mm
2 mm 2 mm L
- - == |
I -~ ITGmm
1D C"
| |
i |
300 mm ! |
,‘ |
I
' | 2mm
__________ | ) ]
A B [
400 mm 3 mm

Prob. 2-31
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*2-32. The nonuniform loading causes a normal strain in
. T
the shaft that can be expressed as €, = k sin zx , where

k is a constant. Determine the displacement of the center C
and the average normal strain in the entire rod.

Prob. 2-32

2-33. The fiber AB has a length L and orientation 6. If its
ends A and B undergo very small displacements ©, and vy
respectively, determine the normal strain in the fiber when

it is in position A’ B'.

Prob. 2-33

2-34. If the normal strain is defined in reference to the
final length As’, that is,
. lim (As’ - As)
€ = _—
As'— 0 As’

instead of in reference to the original length, Eq. 2-2, show
that the difference in these strains is represented as a

second-order term, namely,e — €' = €e€’.
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Horizontal ground displacements caused by an earthquake produced fracture of
this concrete column. The material properties of the steel and concrete must

be determined so that engineers can properly design the column to resist the
loadings that caused this failure.




MECHANICAL
PROPERTIES OF
MATERIALS

. CHAPTER OBJECTIVES

B Having discussed the basic concepts of stress and strain, in this
chapter we will show how stress can be related to strain by using
experimental methods to determine the stress—strain diagram for
a specific material. Other mechanical properties and tests that
are relevant to our study of mechanics of materials also will
be discussed.

3.1 THE TENSION AND COMPRESSION
TEST

The strength of a material depends on its ability to sustain a load without
undue deformation or failure. This strength is inherent in the material
itself and must be determined by experiment. One of the most important
tests to perform in this regard is the tension or compression test. Once
this test is performed, we can then determine the relationship between
the average normal stress and average normal strain in many engineering
materials such as metals, ceramics, polymers, and composites.
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dy =13 mm

Typical steel specimen with attached strain
gage

movable
upper T
crosshead\E,\
i

tension |
specimen

Fig. 3-2

To perform a tension or compression test, a specimen of the material
is made into a “standard” shape and size, Fig. 3-1. As shown it has a
constant circular cross section with enlarged ends, so that when tested,
failure will occur somewhere within the central region of the
specimen. Before testing, two small punch marks are sometimes placed
along the specimen’s uniform length. Measurements are taken of both
the specimen’s initial cross-sectional area, Ay, and the gage-length
distance L, between the punch marks. For example, when a metal
specimen is used in a tension test, it generally has an initial diameter
of dy = 13 mm and a gage length of Ly = 51 mm, Fig. 3-1. A testing
machine like the one shown in Fig. 3-2 is then used to stretch the
specimen at a very slow, constant rate until it fails. The machine is
designed to read the load required to maintain this uniform stretching.

At frequent intervals, data is recorded of the applied load P. Also, the
elongation 6 = L — L, between the punch marks on the specimen may
be measured, using either a caliper or a mechanical or optical device
called an extensometer. Rather than taking this measurement and then
calculating the strain, it is also possible to read the normal strain directly
on the specimen by using an electrical-resistance strain gage, which
looks like the one shown in Fig. 3-3. As shown in the adjacent photo, the
gage is cemented to the specimen along its length, so that it becomes an
integral part of the specimen. When the specimen is strained in the
direction of the gage, both the wire and specimen will experience the
same deformation or strain. By measuring the change in the electrical
resistance of the wire, the gage may then be calibrated to directly read
the normal strain in the specimen.

motor
and load
controls

Electrical-resistance
strain gage

Fig. 3-3
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3.2 THE STRESS-STRAIN DIAGRAM

Once the stress and strain data from the test are known, then the results
can be plotted to produce a curve called the stress—strain diagram. This
diagram is very useful since it applies to a specimen of the material made
of any size. There are two ways in which the stress—strain diagram is
normally described.

Conventional Stress-Strain Diagram. The nominal or
engineering stress is determined by dividing the applied load P by the
specimen’s original cross-sectional area A. This calculation assumes that
the stress is constant over the cross section and throughout the gage
length. We have

g =— (3-1)

Likewise, the nominal or engineering strain is found directly from the
strain gage reading, or by dividing the change in the specimen’s gage
length, 6, by the specimen’s original gage length L. Thus,

g == (3-2)

When these values of o and € are plotted, where the vertical axis is the
stress and the horizontal axis is the strain, the resulting curve is called a
conventional stress—strain diagram. A typical example of this curve is
shown in Fig. 3-4. Realize, however, that two stress—strain diagrams for a
particular material will be quite similar, but will never be exactly the
same. This is because the results actually depend upon such variables as
the material’s composition, microscopic imperfections, the way the
specimen is manufactured, the rate of loading, and the temperature
during the time of the test.

From the curve in Fig. 3-4, we can identify four different regions in
which the material behaves in a unique way, depending on the amount of
strain induced in the material.

Elastic Behavior. The initial region of the curve, indicated in light
orange, is referred to as the elastic region. Here the curve is a straight line
up to the point where the stress reaches the proportional limit, o,
When the stress slightly exceeds this value, the curve bends until the
stress reaches an elastic limit. For most materials, these points are very
close, and therefore it becomes rather difficult to distinguish their exact
values. What makes the elastic region unique, however, is that after
reaching oy, if the load is removed, the specimen will recover its original
shape. In other words, no damage will be done to the material.

true fracture stress

fracture
stress

proportional limit

elastic [imit
ield stres:

elastic |yielding strain necking
region hardening
elastic plastic behavior

Ibehavior

Conventional and true stress—strain diagram
for ductile material (steel) (not to scale)

Fig. 3-4
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Because the curve is a straight line up to o, any increase in stress will
cause a proportional increase in strain. This fact was discovered in 1676
by Robert Hooke, using springs, and is known as Hooke’s law. It is

expressed mathematically as
o

Here E represents the constant of proportionality, which is called the
modulus of elasticity or Young’s modulus, named after Thomas Young,
who published an account of it in 1807

As noted in Fig. 3-4, the modulus of elasticity represents the slope of
the straight line portion of the curve. Since strain is dimensionless, from
Eq. 3-3, E will have the same units as stress, such as pascals (Pa),
megapascals (MPa), or gigapascals (GPa).

a
, true fracture stress
g
ultimate|
Tu stress fracture
o proportional limit stress
f elastic limit
oy yield stres
(Tp[
E
" €
elastic |yielding strain necking
region hardening
elastic plastic behavior
lbehavior

Conventional and true stress—strain diagram
for ductile material (steel) (not to scale)

Fig. 3-4 (Repeated)

Yielding. A slight increase in stress above the elastic limit will result in
a breakdown of the material and cause it to deform permanently. This
behavior is called yielding, and it is indicated by the rectangular dark
orange region in Fig. 3—4. The stress that causes yielding is called the yield
stress or yield point, oy, and the deformation that occurs is called plastic
deformation. Although not shown in Fig. 3-4, for low-carbon steels or
those that are hot rolled, the yield point is often distinguished by two
values. The upper yield point occurs first, followed by a sudden decrease in
load-carrying capacity to a lower yield point. Once the yield point is
reached, then as shown in Fig. 3—4, the specimen will continue to elongate
(strain) without any increase in load. When the material behaves in this
manner, it is often referred to as being perfectly plastic.
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Strain Hardening. When yielding has ended, any load causing an
increase in stress will be supported by the specimen, resulting in a curve
that rises continuously but becomes flatter until it reaches a maximum
stress referred to as the ultimate stress, o,. The rise in the curve in this
manner is called strain hardening, and it is identified in Fig. 3-4 as the
region in light green.

Necking. Up to the ultimate stress, as the specimen elongates, its
cross-sectional area will decrease in a fairly uniform manner over the
specimen’s entire gage length. However, just after reaching the ultimate
stress, the cross-sectional area will then begin to decrease in a localized
region of the specimen, and so it is here where the stress begins to
increase. As a result, a constriction or “neck” tends to form with further
elongation, Fig. 3-5a. This region of the curve due to necking is indicated
in dark green in Fig. 3—4. Here the stress—strain diagram tends to curve
downward until the specimen breaks at the fracture stress, oy, Fig. 3-5b.

Instead of always using the original
cross-sectional area Ay and specimen length L to calculate the (engineering)
stress and strain, we could have used the actual cross-sectional area A and
specimen length L at the instant the load is measured. The values of stress
and strain found from these measurements are called true stress and
true strain, and a plot of their values is called the true stress—strain diagram.
When this diagram is plotted, it has a form shown by the upper blue curve
in Fig. 3-4. Note that the conventional and true o—e diagrams are practically
coincident when the strain is small. The differences begin to appear in the
strain-hardening range, where the magnitude of strain becomes more
significant. From the conventional o—e diagram, the specimen appears to
support a decreasing stress (or load), since Ay is constant, o = N/A,. In
fact, the true o—e diagram shows the area A within the necking region is
always decreasing until fracture, o f, and so the material actually sustains
increasing stress,since 0 = N/A.

Although there is this divergence between these two diagrams, we can
neglect this effect since most engineering design is done only within the
elastic range. This will generally restrict the deformation of the material to
very small values, and when the load is removed the material will restore
itself to its original shape. The conventional stress—strain diagram can be
used in the elastic region because the true strain up to the elastic limit is
small enough, so that the error in using the engineering values of o and € is
very small (about 0.1%) compared with their true values.

S

Necking Failure of a
ductile material

(@) (b)
Fig. 3-5

Typical necking pattern
which has occurred on this
steel specimen just before
fracture.

This steel specimen clearly shows the necking
that occurred just before the specimen failed.
This resulted in the formation of a “cup-cone”
shape at the fracture location, which is
characteristic of ductile materials.
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o (MPa)

MECHANICAL PROPERTIES OF MATERIALS

Steel. A typical conventional stress—strain diagram for a mild steel
specimen is shown in Fig. 3-6. In order to enhance the details, the elastic
region of the curve has been shown in green using an exaggerated strain
scale, also shown in green. Following this curve, as the load (stress) is
increased, the proportional limit is reached at o,; = 241 MPa, where
€, = 0.0012 mm/mm. When the load is further increased, the stress
reaches an upper yield point of (oy), = 262 MPa, followed by a drop in
stress to a lower yield point of (oy); = 248 MPa. The end of yielding
occurs at a strain of ey = 0.030 mm/mm, which is 25 times greater than
the strain at the proportional limit! Continuing, the specimen undergoes
strain hardening until it reaches the ultimate stress of g, = 435 MPa; then
it begins to neck down until fracture occurs, at oy = 324 MPa. By
comparison, the strain at failure, €, = 0.380 mm/mm, is 317 times greater
than €,,!

Since a;,; =241 MPa and €,, = 0.0012 mm /mm, we can determine the
modulus of elasticity. From Hooke’s law, it is

o 241(10°) Pa
€y 0.0012 mm/mm

= 200 GPa

Although steel alloys have different carbon contents, most grades of
steel, from the softest rolled steel to the hardest tool steel, have about
this same modulus of elasticity, as shown in Fig. 3-7

o (MPa)
o, =435
400 - 1200 1 spring steel
350 (1% carbon)
B 1100 |
o= 32U 0T 1000 -
(oy), = 262 J 900
PRI N N
(oy), = 248ti[ — o 800 L hard steel
o, = 241700 (0.6% carbon)
P 700 heat treated
150 600 -
machine steel
100 500 - (0.6% carbon)
50 400 1 structural steel
300 - (0.2% carbon)
I I I I I € (mm/mm) 200 - SOftDSteel
/0.050 0.10 0.20 0.30 0.40 (0.1% carbon)
ey =0.030 0.001 0.002 0003/ 0.004 100 -
€y = 0.0012 €= 0.380 ‘ ‘ ‘ ‘ ‘ « (cam/imm)
Stress—strain diagram for mild steel 0.002 0.004 0.006 0.008 0.01
Fig. 3-6 Fig. 3-7
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3.3 STRESS-STRAIN BEHAVIOR OF
DUCTILE AND BRITTLE MATERIALS

Materials can be classified as either being ductile or brittle, depending on
their stress—strain characteristics.

Any material that can be subjected to large
strains before it fractures is called a ductile material. Mild steel, as
discussed previously, is a typical example. Engineers often choose ductile
materials for design because these materials are capable of absorbing
shock or energy, and if they become overloaded, they will usually exhibit
large deformation before failing.

One way to specify the ductility of a material is to report its percent
elongation or percent reduction in area at the time of fracture. The
percent elongation is the specimen’s fracture strain expressed as a
percent. Thus, if the specimen’s original gage length is L and its length at
fracture is Ly, then

L
Percent elongation = %(100%) (3-4)
0

For example, as in Fig. 3-6, since €; = 0.380, this value would be 38% for
a mild steel specimen.

The percent reduction in area is another way to specify ductility. It is
defined within the region of necking as follows:

Ay
Percent reduction of area = Tf (100%) (3-5)

Here A, is the specimen’s original cross-sectional area and Ay is the area
of the neck at fracture. Mild steel has a typical value of 60%.

Besides steel, other metals such as brass, molybdenum, and zinc may
also exhibit ductile stress—strain characteristics similar to steel, whereby
they undergo elastic stress—strain behavior, yielding at constant stress,
strain hardening, and finally necking until fracture. In most metals and
some plastics, however, constant yielding will not occur beyond the
elastic range. One metal where this is the case is aluminum, Fig. 3-8.
Actually, this metal often does not have a well-defined yield point, and
consequently it is standard practice to define a yield strength using a
graphical procedure called the offset method. Normally for structural
design a 0.2% strain (0.002 mm/mm) is chosen, and from this point on
the € axis a line parallel to the initial straight line portion of the stress—
strain diagram is drawn. The point where this line intersects the curve
defines the yield strength. From the graph, the yield strength is
Oys = 352 MPa.
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200
150
100
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[F—— 0.005 0.010
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Yield strength for an aluminum alloy

Fig. 3-8
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o (MPa)
200

100
—0.06 —0.05 —0.04 —0.03 —0.02 —0.01 A
T T T T T T L € (mm/mm)
0.01
—100

2 4 6 8
o—e diagram for natural rubber

Fig. 3-9

Concrete used for structural purposes
must be tested in compression to be
sure it reaches its ultimate design
stress after curing for 30 days.

L € (mm/mm
m (mm/mm) o

—300
—400
—500
—600
=700
—800

o—e diagram for gray cast iron

Fig. 3-10

Realize that the yield strength is not a physical property of the material,
since it is a stress that causes a specified permanent strain in the material.
In this text, however, we will assume that the yield strength, yield point,
elastic limit, and proportional limit all coincide unless otherwise stated.
An exception would be natural rubber, which in fact does not even have
a proportional limit, since stress and strain are not linearly related.
Instead, as shown in Fig. 3-9, this material, which is known as a polymer,
exhibits nonlinear elastic behavior.

Wood is a material that is often moderately ductile, and as a result it is
usually designed to respond only to elastic loadings. The strength
characteristics of wood vary greatly from one species to another, and for
each species they depend on the moisture content, age, and the size and
arrangement of knots in the wood. Since wood is a fibrous material, its
tensile or compressive characteristics parallel to its grain will differ
greatly from these characteristics perpendicular to its grain. Specifically,
wood splits easily when it is loaded in tension perpendicular to its grain,
and consequently tensile loads are almost always intended to be applied
parallel to the grain of wood members.
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o (MPa)
10
(gt)max = 2‘76
—0.0025 —0.0015 —0.0005 o ‘
T T T € (mm/mm)
0 0.0005
4 —10
ﬂiﬁﬁﬁmﬁi b L ﬁmﬁm 41 —20
‘- 17300 = 345
Tension failure of Compression causes -1 —40
a brittle material material to bulge out
(a) (b) o —e diagram for typical concrete mix

Fig. 3-11 Fig. 3-12

Brittle Materials. Materials that exhibit little or no yielding
before failure are referred to as brittle materials. Gray cast iron is an
example, having a stress-strain diagram in tension as shown by the
curve AB in Fig. 3-10. Here fracture at oy = 152 MPa occurred due to a
microscopic crack, which then spread rapidly across the specimen,
causing complete fracture. Since the appearance of initial cracks in a
specimen is quite random, brittle materials do not have a well-defined
tensile fracture stress. Instead the average fracture stress from a set of
observed tests is generally reported. A typical failed specimen is shown
in Fig. 3-11a.

Compared with their behavior in tension, brittle materials exhibit a
much higher resistance to axial compression, as evidenced by segment
AC of the gray cast iron curve in Fig. 3-10. For this case any cracks or
imperfections in the specimen tend to close up, and as the load increases
the material will generally bulge or become barrel shaped as the strains
become larger, Fig. 3-11b.

Like gray cast iron, concrete is classified as a brittle material, and it
also has a low strength capacity in tension. The characteristics of its
stress—strain diagram depend primarily on the mix of concrete (water,
sand, gravel, and cement) and the time and temperature of curing.
A typical example of a “complete” stress—strain diagram for concrete is
given in Fig. 3-12. By inspection, its maximum compressive strength is
about 12.5 times greater than its tensile strength, (o) pn.c = 34.5 MPa
versus (0;) max = 2.76 MPa. For this reason, concrete is almost always
reinforced with steel bars or rods whenever it is designed to support
tensile loads.

It can generally be stated that most materials exhibit both ductile and
brittle behavior. For example, steel has brittle behavior when it contains
a high carbon content, and it is ductile when the carbon content is
reduced. Also, at low temperatures materials become harder and more
brittle, whereas when the temperature rises they become softer and more
ductile. This effect is shown in Fig. 313 for a methacrylate plastic.

Steel rapidly loses its strength when
heated. For this reason engineers often
require main structural members to be
insulated in case of fire.

40°C

70°C

I I I I I I € (mm/mm)
0.01 0.02 0.03 0.04 0.05 0.06

o—e diagrams for a methacrylate plastic

Fig. 3-13
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Stiffness. The modulus of elasticity is a mechanical property that
indicates the stiffness of a material. Materials that are very stiff, such as
steel, have large values of E (Eyq = 200 GPa), whereas spongy materials
such as vulcanized rubber have low values (£, =0.69 MPa). Values of E for
commonly used engineering materials are often tabulated in engineering
codes and reference books. Representative values are also listed in the back
of the book.

The modulus of elasticity is one of the most important mechanical
properties used in the development of equations presented in this text. It
must always be remembered, though, that E, through the application of
Hooke’s law, Eq. 3-3, can be used only if a material has linear elastic
behavior. Also, if the stress in the material is greater than the proportional
limit, the stress—strain diagram ceases to be a straight line, and so Hooke’s
law is no longer valid.

Strain Hardening. If a specimen of ductile material, such as steel,
is loaded into the plastic region and then unloaded, elastic strain is
recovered as the material returns to its equilibrium state. The plastic
strain remains, however, and as a result the material will be subjected to
a permanent set. For example, a wire when bent (plastically) will spring
back a little (elastically) when the load is removed; however, it will not
fully return to its original position. This behavior is illustrated on the
stress—strain diagram shown in Fig. 3-14a. Here the specimen is loaded
beyond its yield point A to point A’. Since interatomic forces have to be
overcome to elongate the specimen elastically, then these same forces
pull the atoms back together when the load is removed, Fig. 3—14a.
Consequently, the modulus of elasticity, £, is the same, and therefore the
slope of line O’A’ is the same as line OA. With the load removed, the
permanent setis OO'.

If the load is reapplied, the atoms in the material will again be displaced
until yielding occurs at or near the stress A’, and the stress—strain
diagram continues along the same path as before, Fig. 3-14b. Although
this new stress—strain diagram, defined by O’'A’B, now has a higher yield
point (A'),a consequence of strain hardening, it also has less ductility, or
a smaller plastic region, than when it was in its original state.

This pin was made of a hardened steel
alloy, that is, one having a high carbon
content. It failed due to brittle fracture.
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As amaterial is deformed by an external load, the load will do external work,
which in turn will be stored in the material as internal energy. This energy is
related to the strains in the material, and so it is referred to as strain energy.
To show how to calculate strain energy, consider a small volume element of
material taken from a tension test specimen, Fig. 3-15. It is subjected to the
uniaxial stress o-. This stress develops a force AF = o0 AA = o(Ax Ay)on
the top and bottom faces of the element, which causes the element to
undergo a vertical displacement e Az, Fig. 3-15b. By definition, work is
determined by the product of a force and displacement in the direction of
the force. Here the force is increased uniformly from zero to its final
magnitude AF when the displacement € Az occurs, and so during the
displacement the work done on the element by the force is equal to the
average force magnitude (AF/2) times the displacement e Az. The
conservation of energy requires this “external work” on the element to
be equivalent to the “internal work” or strain energy stored in the element,
assuming that no energy is lost in the form of heat. Consequently, the strain
energyis AU = (3AF) € Az = (3 o Ax Ay) e Az Since the volume of the
elementis AV = Ax Ay Az,then AU = Joe AV.

For engineering applications, it is often convenient to specify the strain
energy per unit volume of material. This is called the strain energy
density, and it can be expressed as

AU 1

u=——=_0¢€ 3-6
AV 2 (3-6)
Finally, if the material behavior is linear elastic, then Hooke’s law
applies, o = Ee, and therefore we can express the elastic strain energy
density in terms of the uniaxial stress o as

_10'2

u = Ef (3—7)

When the stress in a material reaches the
proportional limit, the strain energy density, as calculated by Eq. 3-6
or 3-7,is referred to as the modulus of resilience. 1t is

2
1 1 Opi
Uy = 5O €p = 5 (3-8)

Here u, is equivalent to the shaded triangular area under the elastic
region of the stress—strain diagram, Fig. 3-16a. Physically the modulus of
resilience represents the largest amount of strain energy per unit volume
the material can absorb without causing any permanent damage to the
material. Certainly this property becomes important when designing
bumpers or shock absorbers.
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T Another important property of a material
is its modulus of toughness, u,. This quantity represents the entire area under
the stress—strain diagram, Fig. 3-16b, and therefore it indicates the maximum
amount of strain energy per unit volume the material can absorb just before
it fractures. Certainly this becomes important when designing members that
may be accidentally overloaded. By alloying metals, engineers can change

u
7 their resilience and toughness. For example, by changing the percentage of
carbon in steel, the resulting stress—strain diagrams in Fig. 3-17 show how its
resilience and toughness can be changed.
Modulus of toughness u, ) - /MPUR TANT PU/N TS
(®)
Fig. 3-16 (cont.) ® A conventional stress—strain diagram is important in engineering
” since it provides a means for obtaining data about a material’s
hard steel tensile or compressive strength without regard for the material’s
(0.6% carbon) physical size or shape.
highest strength . . . . L
structural steel C Engzneermg stress and strain are calculated using the original
(0.2% carbon) cross-sectional area and gage length of the specimen.
toughest . . . . .
oughes ® A ductile material,such as mild steel, has four distinct behaviors
ng{ "S/te:;rbon) as it is loaded. They are elastic behavior, yielding, strain
most ductile hardening, and necking.
® A material is linear elastic if the stress is proportional to the strain
. within the elastic region. This behavior is described by Hooke’s law,
o = Ee,where the modulus of elasticity E is the slope of the line.
Fig. 3-17

® Important points on the stress—strain diagram are the proportional
limit, elastic limit, yield stress, ultimate stress, and fracture stress.

® The ductility of a material can be specified by the specimen’s
percent elongation or the percent reduction in area.

® [famaterial does not have a distinct yield point, a yield strength
can be specified using a graphical procedure such as the offset
method.

® PBrittle materials, such as gray cast iron, have very little or no
yielding and so they can fracture suddenly.

® Strain hardening is used to establish a higher yield point for a
material. This is done by straining the material beyond the
elastic limit, then releasing the load. The modulus of elasticity
remains the same; however, the material’s ductility decreases.

® Strain energy is energy stored in a material due to its
deformation. This energy per unit volume is called strain
energy density. If it is measured up to the proportional limit, it
is referred to as the modulus of resilience, and if it is measured
up to the point of fracture, it is called the modulus of toughness.
It can be determined from the area under the o—e diagram.

This nylon specimen exhibits a high degree
of toughness as noted by the large amount
of necking that has occurred just before
fracture.




EXAMPLE 3.1

A tension test for a steel alloy results in the stress—strain diagram shown
in Fig. 3-18. Calculate the modulus of elasticity and the yield strength
based on a 0.2% offset. Identify on the graph the ultimate stress and the
fracture stress.

o(MPa)

800
o, = 745\

700 [ _— —
o,= 621
I 600 c

50F A &
1= 469 55 i

345 e
300 s

E E
200 i

100 | v
, €=0.23

| | | P | | | | | | E(mm/mm)
O 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24

| 0.0008 | 00016 | 0.0024
00004 0.0012  0.0020
0.002¢

0.2%
Fig. 3-18

SOLUTION

Modulus of Elasticity. We must calculate the slope of the initial straight-
line portion of the graph. Using the magnified curve and scale shown in
blue, this line extends from point O to an estimated point A, which has
coordinates of approximately (0.0016 mm/mm, 345 MPa). Therefore,

345 MPa

=_=»a Ans.
E = 0.0016 mm/mm _ 210 6F2 "

Note that the equation of line OA is thus o = [216(10%)e] MPa.

Yield Strength. For a 0.2% offset, we begin at a strain of 0.2% or
0.0020 mm/mm and graphically extend a (dashed) line parallel to OA until
it intersects the o —e curve at A'. The yield strength is approximately

oys = 469 MPa Ans.

Ultimate Stress. This is defined by the peak of the o—e graph, point B
in Fig. 3-18.

g, = 745 MPa Ans.

Fracture Stress. When the specimen is strained to its maximum of
€; = 0.23mm/mm, it fractures at point C. Thus,

oy = 621 MPa Ans.

3.4
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EXAMPLE 3.2

The stress—strain diagram for an aluminum alloy that is used for making
aircraft parts is shown in Fig. 3-19. If a specimen of this material is
stressed to o = 600 MPa, determine the permanent set that remains in
the specimen when the load is released. Also, find the modulus of
resilience both before and after the load application.

o (MPa)
750
B
600 - F
oy =450 —fA
parallel
300
150 |-
G C D
L L L L € (mm,/mm
O| /001 | 0.02) 003 0.04 L)
ey=0.006]  0.023
HGOC*»

Fig. 3-19

SOLUTION

Permanent Strain. When the specimen is subjected to the load, it
strain hardens until point B is reached on the o—e diagram. The strain at
this point is approximately 0.023 mm/mm. When the load is released, the
material behaves by following the straight line BC, which is parallel
to line OA. Since both of these lines have the same slope, the strain at
point C can be determined analytically. The slope of line OA is the
modulus of elasticity, i.e.,
450 MPa

E= 0.006 mm/mm = 75.0GPa



From triangle CBD, we require

600(10°) Pa
CD

CD = 0.008 mm/mm

_BD

E=—
CcD’

75.0(10%) Pa =

This strain represents the amount of recovered elastic strain. The
permanent set or strain, €, is thus

€oc = 0.023 mm/mm — 0.008 mm/mm

= 0.0150 mm/mm Ans.

NOTE: If gage marks on the specimen were originally 50 mm apart, then
after the load 1is released these marks will be 50mm +
(0.0150) (50 mm ) = 50.75 mm apart.

Modulus of Resilience. Applying Eq. 3-8, the areas under OAG and
CBD in Fig. 3-19 are*

1 1
(4 )inial = 5 Op1 €51 = 5 (450 MPa) (0.006 mm/mm )
= 1.35MJ/m’ Ans.
1 1
() tnal = 5 1 €1 = 5(600 MPa) (0.008 mm /mm)
= 240 MJ/m? Ans.

NOTE: By comparison, the effect of strain hardening the material has
caused an increase in the modulus of resilience; however, note that
the modulus of toughness for the material has decreased, since the
area under the original curve, OABF, is larger than the area under
curve CBF.

*Work in the SI system of units is measured in joules, where 1J = 1 N-m.

3.4 STRAIN ENERGY

117




118 CHAPTER 3

EXAMPLE 3.3

MECHANICAL PROPERTIES OF MATERIALS

20 mm

The aluminum rod, shown in Fig. 3-20a, has a circular cross section and is
subjected to an axial load of 10 kN. If a portion of the stress—strain
diagram is shown in Fig. 3-20b, determine the approximate elongation of
the rod when the load is applied. Take E, = 70 GPa.

o (MPa)

60
S50
O'y:40’

15 mm 30
B | ¢ 20

56.59

10 kN < ‘

egc = 0.045

600 mm

(a)

; » 10 kKN 10
‘H 400 mm# o 0.02 0.04 0.06

(®)

Fig. 3-20

SOLUTION

In order to find the elongation of the rod, we must first obtain the strain.
This is done by calculating the stress, then using the stress—strain diagram.
The normal stress within each segment is

N _ 10(10°) N

=2 = — 31.83 MP

TAB T 4 T (001 m)? :
N 10(10°) N

T = = % = 56.59 MPa
A 7(0.0075m)

From the stress—strain diagram, the material in segment AB is strained
elastically since o435 < oy = 40 MPa. Using Hooke’s law,

oap _ 31.83( 10%) Pa
E, 70(10%) Pa

€A = = 0.0004547 mm/mm

The material within segment BC is strained plastically, since
ogc > oy = 40 MPa. From the graph, for opc = 56.59 MPa,
egc ~ 0.045 mm/mm.The approximate elongation of the rod is therefore

8§ = el = 0.0004547 (600 mm) + 0.0450 (400 mm )
= 183 mm Ans.
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. FUNDAMENTAL PROBLEMS

['3-1. Define a homogeneous material.

I'3-2. Indicate the points on the stress-strain diagram
which represent the proportional limit and the ultimate
stress.

Prob. F3-2

I'3-3.  Define the modulus of elasticity E.

F3-4. At room temperature, mild steel is a ductile
material. True or false?

I'3-5. Engineering stress and strain are calculated using
the actual cross-sectional area and length of the specimen.
True or false?

['3-6. As the temperature increases the modulus of
elasticity will increase. True or false?

1'3-7. A 100-mm-long rod has a diameter of 15 mm. If an
axial tensile load of 100 kN is applied, determine its change
in length. Assume linear elastic behavior with £ = 200 GPa.

I'3-8. A bar has a length of 200 mm and cross-sectional
area of 7500 mm?. Determine the modulus of elasticity of the
material if it is subjected to an axial tensile load of 50 kN and
stretches 0.075 mm. The material has linear-elastic behavior.

13-9. A 10-mm-diameter rod has a modulus of elasticity
of E = 100 GPa. If it is 4 m long and subjected to an axial
tensile load of 6 kN, determine its elongation. Assume linear
elastic behavior.

F3-10. The material for the 50-mm-long specimen has the
stress—strain diagram shown. If P = 100 kN, determine the
elongation of the specimen.

I3-11. The material for the 50-mm-long specimen has the
stress—strain diagram shown. If P = 150 kN is applied and
then released, determine the permanent elongation of the
specimen.

P
o (MPa) 20 mm
500 P
450
1 € (mm/mm
0.00225 0.03 (mm/mm)

Prob. F3-10/11

F3-12. If the elongation of wire BC is 0.2 mm after the
force P is applied, determine the magnitude of P. The wire
is A-36 steel and has a diameter of 3 mm.

Prob. F3-12
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. PROBLEMS

MECHANICAL PROPERTIES OF MATERIALS

3-1. A tension test was performed on a steel specimen having
an original diameter of 12.5 mm and gauge length of 50 mm.
The data is listed in the table. Plot the stress—strain diagram
and determine approximately the modulus of elasticity, the
yield stress, the ultimate stress, and the rupture stress. Use a
scale of 25mm = 140 MPa and 25mm = 0.05 mm/mm.
Redraw the elastic region, using the same stress scale but a
strain scale of 25 mm = 0.001 mm/mm.

Load (kN) [Elongation (mm)
0 0
7.0 0.0125
21.0 0.0375
36.0 0.0625
50.0 0.0875
53.0 0.125
53.0 0.2
54.0 0.5
75.0 1.0
90.0 2.5
97.0 7.0
87.8 10.0
83.3 11.5
Prob. 3-1

3-2. Data taken from a stress—strain test for a ceramic are
given in the table. The curve is linear between the origin and
the first point. Plot the diagram, and determine the modulus
of elasticity and the modulus of resilience.

3-3. Data taken from a stress-strain test for a ceramic are
given in the table. The curve is linear between the origin and the
first point. Plot the diagram, and determine approximately the
modulus of toughness. The rupture stress is o, = 373.8 MPa.

o (MPa) | e (mm/mm)
0 0
232.4 0.0006
318.5 0.0010
345.8 0.0014
360.5 0.0018
373.8 0.0022

Probs. 3-2/3

*3—4. The stress—strain diagram for a metal alloy having an
original diameter of 12 mm and a gauge length of 50 mm is
given in the figure. Determine approximately the modulus of
elasticity for the material, the load on the specimen that causes
yielding, and the ultimate load the specimen will support.

o (MPa)
600

500

400

300 —— e

/|

200
/{
100 /

€ (mm/mm)

0 004 008 012 0.16 020 024 0.28
0 0.0005 0.0010.0015 0.002 0.0025 0.003 0.0035

Prob. 3-4

3-5. The stress-strain diagram for a steel alloy having an
original diameter of 12 mm and a gauge length of 50 mm is
given in the figure. If the specimen is loaded until it is
stressed to 500 MPa, determine the approximate amount of
elastic recovery and the increase in the gauge length after it
is unloaded.

o (MPa)
600

500

400

300 —— —

200 /

/{
100 /

€ (mm/mm)

0 004 008 0.12 0.16 020 024 0.28
0 0.0005 0.0010.0015 0.002 0.0025 0.003 0.0035

Prob. 3-5



3-6. The stress—strain diagram for a steel alloy having an
original diameter of 12 mm and a gauge length of 50 mm is
given in the figure. Determine approximately the modulus
of resilience and the modulus of toughness for the material.

o (MPa)

600

500 // ]

400

300 — o—

200 /

/{
100 /

€ (mm/mm)

0.04 008 0.12 0.16 020 024 0.28
0 0.0005 0.0010.0015 0.002 0.0025 0.003 0.0035

Prob. 3-6

3-7. A specimen is originally 300 mm long, has a diameter
of 12 mm, and is subjected to a force of 2.5 kN. When the
force is increased from 2.5 kN to 9 kN, the specimen
elongates 0.225 mm. Determine the modulus of elasticity
for the material if it remains linear elastic.

*3-8. The strut is supported by a pin at C and an A-36
steel guy wire AB. If the wire has a diameter of 5 mm,
determine how much it stretches when the distributed load
acts on the strut.

N3
A
L 60°
3.4 kN/m
D) ~1,
i |
[ 2.7m |
Prob. 3-8
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3-9. The o—e diagram for elastic fibers that make up
human skin and muscle is shown. Determine the modulus
of elasticity of the fibers and estimate their modulus of
toughness and modulus of resilience.

o (MPa)

0.385

0.077

1 1
1 2225

Prob. 3-9

€ (mm/mm)

3-10. A structural member in a nuclear reactor is made of
a zirconium alloy. If an axial load of 20 kN is to be supported
by the member, determine its required cross-sectional area.
Use a factor of safety of 3 relative to yielding. What is the
load on the member if it is 1 m long and its elongation is
0.5 mm? E,, = 100 GPa, oy = 400 MPa. The material has
elastic behavior.

3-11. A tension test was performed on an aluminum
2014-T6 alloy specimen. The resulting stress—strain diagram
is shown in the figure. Estimate (a) the proportional limit,
(b) the modulus of elasticity, and (c) the yield strength
based on a 0.2% strain offset method.

*3-12. A tension test was performed on an aluminum
2014-T6 alloy specimen. The resulting stress—strain diagram
is shown in the figure. Estimate (a) the modulus of resilience;
and (b) modulus of toughness.

o (MPa)

490
420
350 /
280 /
210 /

140 I

70/

(mm/mm)

0 0.02 0.04 0.06 0.08 0.10

Probs. 3-10/11/12
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3-13. A bar having a length of 125 mm and cross-sectional
area of 4375 mm? is subjected to an axial force of 40 kN. If
the bar stretches 0.05 mm, determine the modulus of
elasticity of the material. The material has linear-elastic
behavior.

} 125 mm |
Prob. 3-13

3-14. The rigid pipe is supported by a pin at A and an A-36
steel guy wire BD. If the wire has a diameter of 6.5 mm,
determine how much it stretches when a load of P = 3 kN
acts on the pipe.

3-15. The rigid pipe is supported by a pin at A and an A-36
guy wire BD.If the wire has a diameter of 6.5 mm, determine
the load P if the end C is displaced 1.675 mm downward.

i3

1.2m P

B | A D
S > |c

| 0.9 m | 0.9 m 1

Probs. 3-14/15

*3-16. Direct tension indicators are sometimes used
instead of torque wrenches to ensure that a bolt has a
prescribed tension when used for connections. If a nut on
the bolt is tightened so that the six 3-mm high heads of the
indicator are strained 0.1 mm/mm, and leave a contact area
on each head of 1.5 mm?, determine the tension in the bolt
shank. The material has the stress—strain diagram shown.

o (MPa)

600

450

€ (mm/mm
0.0015 0.3 (mm/mm)

Prob. 3-16

MECHANICAL PROPERTIES OF MATERIALS

3-17. The stress-strain diagram for a polyester resin is
given in the figure. If the rigid beam is supported by a strut
AB and post CD, both made from this material, and
subjected to a load of P = 80 kN, determine the angle of
tilt of the beam when the load is applied. The diameter of
the strut is 40 mm and the diameter of the post is 80 mm.

3-18. The stress—strain diagram for a polyester resin is
given in the figure. If the rigid beam is supported by a strut
AB and post CD made from this material, determine the
largest load P that can be applied to the beam before it
ruptures. The diameter of the strut is 12 mm and the
diameter of the post is 40 mm.

o (MPa)

100 -
95

8oL compression

70+
60
50+
40+ tension
322

20+

C

S :
0.75m '0.75 m ‘ D 0'? m L € (mm/mm)

0 L L L
— 0 001 0.02 0.03 0.04

Probs. 3-17/18

3-19. The stress—strain diagram for a bone is shown, and
can be described by the equation e = 0.45(107°%) o +
0.36(107'2) o3, where & is in kPa. Determine the yield
strength assuming a 0.3% offset.

~

t

€ =0.45(10"%0 + 0.36(10"'?)0?
¥

P

Prob. 3-19



*3-20. The stress—strain diagram for a bone is shown and
can be described by the equation e = 0.45(107°%) o +
0.36(107'2) o3, where o is in kPa. Determine the modulus
of toughness and the amount of elongation of a 200-mm-long
region just before it fractures if failure occurs at
€ = 0.12 mm/mm.

TP

€ =0.45(10"%0 + 0.36(107?)0?
.

P

Prob. 3-20

3-21. The two bars are made of polystyrene, which has the
stress—strain diagram shown. If the cross-sectional area of
bar AB is 975 mm? and BC is 2600 mm?, determine the
largest force P that can be supported before any member
ruptures. Assume that buckling does not occur.

3-22. The two bars are made of polystyrene, which has the
stress—strain diagram shown. Determine the cross-sectional
area of each bar so that the bars rupture simultaneously
when the load P = 13.5 kN. Assume that buckling does not
occur.

P

‘ 12m

175 |---- === mmmmmmmmmm oo
140

105 - .
compression

35 H ptension

- - - L — € (mm/mm)
0 0.20 0.40 0.60 0.80

Probs. 3-21/22
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3-23. The stress-strain diagram for many metal alloys can
be described analytically using the Ramberg-Osgood three
parameter equation € = o/E + ko", where E, k, and n are
determined from measurements taken from the diagram.
Using the stress—strain diagram shown in the figure, take
E = 210 GPa and determine the other two parameters k and
n and thereby obtain an analytical expression for the curve.

o (MPa)

560

420

\

280

140

€ (107%)

01 02 03 04 05

Prob. 3-23

*3-24. The o—e diagram for a collagen fiber bundle from
which a human tendon is composed is shown. If a segment
of the Achilles tendon at A has a length of 165 mm and an
approximate cross-sectional area of 145 mm?, determine its
elongation if the foot supports a load of 625 N, which causes
a tension in the tendon of 1718.75 N.

o (MPa)

31.50
26.25
21.00 /

15.75
10.50 /
525 / 625N

€ (mm/mm)

0.05 0.10

Prob. 3-24
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When the rubber block is
compressed (negative strain), its
sides will expand (positive strain).
The ratio of these strains remains
constant.

3.5 POISSON’S RATIO

When a deformable body is subjected to a force, not only does it elongate
but it also contracts laterally. For example, consider the bar in Fig. 3-21
that has an original radius r and length L, and is subjected to the tensile
force P. This force elongates the bar by an amount &, and its radius
contracts by an amount §'. The strains in the longitudinal or axial direction
and in the lateral or radial direction become

€long — z and €lat — 7

In the early 1800s, the French scientist S. D. Poisson realized that within
the elastic range the ratio of these strains is a constant, since the
displacements 6 and 6’ are proportional to the same applied force. This
ratio is referred to as Poisson’s ratio,v (nu), and it has a numerical value
that is unique for any material that is both homogeneous and isotropic.
Stated mathematically it is

p = — (3-9)

€long

The negative sign is included here since longitudinal elongation (positive
strain) causes lateral contraction (negative strain), and vice versa. Keep
in mind that these strains are caused only by the single axial or
longitudinal force P;i.e., no force acts in a lateral direction in order to
strain the material in this direction.

Poisson’s ratio is a dimensionless quantity, and it will be shown in
Sec. 10.6 that its maximum possible value is 0.5, so that 0 = » = 0.5. For
most nonporous solids it has a value that is generally between 0.25 and
0.355. Typical values for common engineering materials are listed in the
back of the book.

Original Shape

Tension

Fig. 3-21



3.5 PoIsSON’s RATIO

EXAMPLE 3.4

A bar made of A-36 steel has the dimensions shown in Fig. 3-22. If an
axial force of P =80 kN is applied to the bar, determine the change in its
length and the change in the dimensions of its cross section. The material
behaves elastically.

P =80 kN
>
- 1
50 mm
15m \ i 7
\ P =80kN
\
100 mm \ 7
Fig. 3-22
SOLUTION
The normal stress in the bar is
N 80 ( 103) N

_ N _ _ 6
%= 4T (0am)(005m) 1000107 Pa

From the table given in the back of the book for A-36 steel £, = 200 GPa,
and so the strain in the z direction is

o,  16.0(10°) Pa 80(10°5) mm/
= = = mm/mm
T E, T 200(10°) Pa

The axial elongation of the bar is therefore
8, =€ L,=[80(10°)](1.5m) = 120 um Ans.

Using Eq. 3-9, where vy = 0.32 as found in the back of the book, the
lateral contraction strains in both the x and y directions are

€, =€, = —vye, = —032[80(107°°)] = —25.6 um/m
Thus the changes in the dimensions of the cross section are
8, =€ L, = —[256(10°)](0.1m) = —2.56 um Ans.

o, = ¢ L,

—[25.6(107%)](0.05m) = —1.28 um Ans.
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Fig. 3-24
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3.6 THE SHEAR STRESS-STRAIN
DIAGRAM

In Sec. 1.5 it was shown that when a small element of material is subjected
to pure shear, equilibrium requires that equal shear stresses must be
developed on four faces of the element, Fig. 3-23a. Furthermore, if the
material is homogeneous and isotropic, then this shear stress will distort
the element uniformly, Fig. 3-23b, producing shear strain.

In order to study the behavior of a material subjected to pure shear,
engineers use a specimen in the shape of a thin tube and subject it to a
torsional loading. If measurements are made of the applied torque and
the resulting angle of twist, then by the methods to be explained in
Chapter 5, the data can be used to determine the shear stress and shear
strain within the tube and thereby produce a shear stress—strain diagram
such as shown in Fig. 3-24. Like the tension test, this material when
subjected to shear will exhibit linear elastic behavior and it will have a
defined proportional limit 7,,. Also, strain hardening will occur until an
ultimate shear stress T, is reached. And finally, the material will begin to
lose its shear strength until it reaches a point where it fractures, ;.

For most engineering materials, like the one just described, the elastic
behavior is linear, and so Hooke’s law for shear can be written as

T = Gy (3-10)

Here G is called the shear modulus of elasticity or the modulus of
rigidity. Its value represents the slope of the line on the r—y diagram,
thatis, G = 7,,/7,;. Units of measurement for G will be the same as those
for 7 (Pa), since vy is measured in radians, a dimensionless quantity.
Typical values for common engineering materials are listed in the back
of the book.

Later it will be shown in Sec. 10.6 that the three material constants,
E, v,and G can all be related by the equation

E
G= 2(1 + ) (-11)

Therefore, if E and G are known, the value of v can then be determined
from this equation rather than through experimental measurement.
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EXAMPLE 3.5

A specimen of titanium alloy is tested in torsion and the shear stress— 7 (MPa)
strain diagram is shown in Fig. 3-25a. Determine the shear modulus
G, the proportional limit, and the ultimate shear stress. Also,determine
the maximum distance d that the top of a block of this material, shown 001 =360
in Fig. 3-25b, could be displaced horizontally if the material behaves 404

elastically when acted upon by a shear force V. What is the magnitude 300|

600 . =504

of V necessary to cause this displacement? 200 F

100
SOLUTION Oyr=008  yo=05a 075 "V
Shear Modulus. This value represents the slope of the straight- (a)

line portion OA of the 7—vy diagram. The coordinates of point A are
(0.008 rad, 360 MPa). Thus,

_ 360MPa s B 100 mm
= 0.008tad 45(10°) MPa = 45 GPa Ans.

The equation of line OA is therefore 7 = Gy = [45(10°)y] MPa, Somm | %
which is Hooke’s law for shear.

Proportional Limit. By inspection, the graph ceases to be linear at
point A. Thus,

(b)
Fig. 3-25

7,1 = 360 MPa Ans.

Ultimate Stress. This value represents the maximum shear stress,
point B. From the graph,

7, = 504 MPa Ans.

Maximum Elastic Displacement and Shear Force. Since the
maximum elastic shear strain is 0.008 rad, a very small angle, the top of
the block in Fig. 3-25b will be displaced horizontally:

tan(0.008 rad) =~ 0.008 rad = 0 mm
d = 0.4mm Ans.

The corresponding average shear stress in the block is 7,, = 360 MPa.
Thus, the shear force V needed to cause the displacement is

_v 6 2 _ 14
Tave T g0 3600107 N/m™ = 6 575m) (0.1 m)

V = 2700 kN Ans.
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EXAMPLE 3.6

An aluminum specimen shown in Fig. 3-26 has a diameter of d; = 25 mm
and a gage length of L, = 250 mm. If a force of 165 kN elongates the
gage length 1.20 mm, determine the modulus of elasticity. Also,determine
by how much the force causes the diameter of the specimen to contract.
Take G, = 26 GPa and oy = 440 MPa.

SOLUTION

Modulus of Elasticity. The average normal stress in the specimen is

N 165(10°) N
o=—= 5 = 336.1 MPa
A (w/4)(0.025m)

and the average normal strain is

1) 1.20 mm

Since o < gy = 440 MPa, the material behaves elastically. The modulus
of elasticity is therefore

o 336.1(10°) Pa
165 kN E, = ; = W = 70.0 GPa Ans.

Fig. 3-26
Contraction of Diameter. First we will determine Poisson’s ratio for
the material using Eq. 3-11.

E
G= 2(1 +v)
26 Gpa — 100 GPa
2(1 +v)

v = 0.347

Since €jopy = 0.00480 mm/mm, then by Eq. 3-9,

y = — St
€long
€lat
0.347 =
0.00480 mm/mm

€, = —0.00166 mm/mm

The contraction of the diameter is therefore

8" = (0.00166) (25 mm
= 0.0416 mm Ans.
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*3.7 FAILURE OF MATERIALS DUE TO
CREEP AND FATIGUE

The mechanical properties of a material have up to this point been
discussed only for a static or slowly applied load at constant temperature.
In some cases, however, a member may have to be used in an environment
for which loadings must be sustained over long periods of time at elevated
temperatures, or in other cases, the loading may be repeated or cycled. We
will not cover these effects in this book, although we will briefly mention
how one determines a material’s strength for these conditions, since in
some cases they must be considered for design.

Creep. When a material has to support a load for a very long period
of time, it may continue to deform until a sudden fracture occurs or its
usefulness is impaired. This time-dependent permanent deformation is
known as creep. Normally creep is considered when metals and ceramics
are used for structural members or mechanical parts that are subjected
to high temperatures. For some materials, however, such as polymers and
composite materials—including wood or concrete—temperature is not an
important factor, and yet creep can occur strictly from long-term load
application. As a typical example, consider the fact that a rubber band
will not return to its original shape after being released from a stretched
position in which it was held for a very long period of time.

For practical purposes, when creep becomes important, a member is
usually designed to resist a specified creep strain for a given period of
time. An important mechanical property that is used in this regard is
called the creep strength. This value represents the highest stress the
material can withstand during a specified time without exceeding an
allowable creep strain. The creep strength will vary with temperature,
and for design, a temperature, duration of loading, and allowable creep
strain must all be specified. For example, a creep strain of 0.1% per year
has been suggested for steel used for bolts and piping.

Several methods exist for determining the allowable creep strength
for a particular material. One of the simplest involves testing several
specimens simultaneously at a constant temperature, but with each
subjected to a different axial stress. By measuring the length of time
needed to produce the allowable creep strain for each specimen, a
curve of stress versus time can be established. Normally these tests are
run to a maximum of 1000 hours. An example of the results for stainless
steel at a temperature of 650°C and prescribed creep strain of 1% is
shown in Fig. 3-27 As noted, this material has a yield strength of
276 MPa at room temperature (0.2% offset) and the creep strength at
1000 h is found to be approximately o, = 138 MPa.

129

The long-term application of the cable loading
on this pole has caused the pole to deform

due to creep.

& (MPa)
300

250
200 -
o, =138150

100
50

0

I
200

I I I I
400 600 800 1000

o—t diagram for stainless steel
at 650°C and creep strain at 1%

Fig. 3-27

t(h)



130 CHAPTER 3 MECHANICAL PROPERTIES OF MATERIALS

The design of members used for amusement
park rides requires careful consideration of
cyclic loadings that can cause fatigue.

Engineers must account for possible fatigue

failure of the moving parts
oil-pumping rig.

of this

For longer periods of time, extrapolations from the curves must be
made. To do this usually requires a certain amount of experience with
creep behavior, and some supplementary knowledge about the creep
properties of the material. Once the material’s creep strength has been
determined, however, a factor of safety is applied to obtain an appropriate
allowable stress for design.

Fatigue. When a metal is subjected to repeated cycles of stress or
strain, it causes its internal structure to break down, ultimately leading to
fracture. This behavior is called fatigue, and it is usually responsible for a
large percentage of failures in connecting rods and crankshafts of engines;
steam or gas turbine blades; connections or supports for bridges, railroad
wheels, and axles; and other parts subjected to cyclic loading. In all
these cases, fracture will occur at a stress that is less than the material’s
yield stress.

The nature of this failure apparently results from the fact that there are
microscopic imperfections, usually on the surface of the member, where
the localized stress becomes much greater than the average stress acting
over the cross section. As this higher stress is cycled, it leads to the
formation of minute cracks. Occurrence of these cracks causes a further
increase of stress at their tips, which in turn causes a further extension of
the cracks into the material as the stress continues to be cycled.
Eventually the cross-sectional area of the member is reduced to the point
where the load can no longer be sustained, and as a result sudden fracture
occurs. The material, even though known to be ductile, behaves as if it
were brittle.

In order to specify a safe strength for a metallic material under
repeated loading, it is necessary to determine a limit below which no
evidence of failure can be detected after applying a load for a specified
number of cycles. This limiting stress is called the endurance or fatigue
limir. Using a testing machine for this purpose, a series of specimens are
each subjected to a specified stress and cycled to failure. The results are
plotted as a graph representing the stress S (or o) on the vertical axis and
the number of cycles-to-failure N on the horizontal axis. This graph is
called an S-N diagram or stress—cycle diagram, and most often the
values of N are plotted on a logarithmic scale since they are generally
quite large.

Examples of S—N diagrams for two common engineering metals are
shown in Fig. 3-28. The endurance limit is usually identified as the stress
for which the S—N graph becomes horizontal or asymptotic. As noted, it
has a well-defined value of (S,)s = 186 MPa for steel. For aluminum,
however, the endurance limit is not well defined, and so here it may be
specified as the stress having a limit of, say, 500 million cycles,
(Se/)ar = 131 MPa. Once a particular value is obtained, it is often
assumed that for any stress below this value the fatigue life will be
infinite, and therefore the number of cycles to failure is no longer given
consideration.
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300
aluminum
250 |

200 steel

(Sel)sl = 186v
150

Se)a=131
100

50

0 | | |
0.1 1 10 100 5001000

S-N diagram for steel and aluminum alloys
(N axis has a logarithmic scale)

N(10%)

Fig. 3-28

B VPORTANT POINTS

® Poisson’s ratio,v,is aratio of the lateral strain of a homogeneous
and isotropic material to its longitudinal strain. Generally
these strains are of opposite signs, that is, if one is an elongation,
the other will be a contraction.

® The shear stress—strain diagram is a plot of the shear stress versus
the shear strain. If the material is homogeneous and isotropic,
and is also linear elastic, the slope of the straight line within the
elastic region is called the modulus of rigidity or the shear
modulus, G.

® There is a mathematical relationship between G, E, and v.

® Creep is the time-dependent deformation of a material for which
stress and/or temperature play an important role. Members are
designed to resist the effects of creep based on their material
creep strength, which is the largest initial stress a material can
withstand during a specified time without exceeding a specified
creep strain.

® Fatigue occurs in metals when the stress or strain is cycled. This
phenomenon causes brittle fracture of the material. Members
are designed to resist fatigue by ensuring that the stress in the
member does not exceed its endurance or fatigue limit. This
value is determined from an S-N diagram as the maximum
stress the material can resist when subjected to a specified
number of cycles of loading.
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. FUNDAMENTAL PROBLEMS
A 20-mm-wide block is firmly bonded to rigid

F3-13. A 100-mm-long rod has a diameter of 15 mm. If an F3-15.
axial tensile load of 10 kN is applied to it, determine the plates at its top and bottom. When the force P is applied the
change in its diameter. E = 70 GPa, v = 0.35. block deforms into the shape shown by the dashed line.
Determine the magnitude of P. The block’s material has a

modulus of rigidity of G =26 GPa. Assume that the material

does not yield and use small angle analysis.

0.5 mm [~ P
____________ — i
I

I
I

150 mm | )
I
i ]
I
|

10 kN

10 kN
Prob. F3-15

Prob. F3-13

F3-16. A 20-mm-wide block is bonded to rigid plates at its
top and bottom. When the force P is applied the block
deforms into the shape shown by the dashed line. If
a=3mm and P is released, determine the permanent shear

[73-14. A solid circular rod that is 600 mm long and 20 mm
in diameter is subjected to an axial force of P =50 kN. The strain in the block.

elongation of the rod is 6 = 1.40 mm, and its diameter
becomes d’' = 19.9837 mm. Determine the modulus of
elasticity and the modulus of rigidity of the material. 7 (MPa)
Assume that the material does not yield.
130
rad
0.005 ¥ (rad)

P =50kN

Prob. F3-14 Prob. F3-16
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. PROBLEMS

3-25. The acrylic plastic rod is 200 mm long and 15 mm in
diameter. If an axial load of 300 N is applied to it, determine
the change in its length and the change in its diameter.
E, =270 GPa,v, = 0.4.

<~—(
300N ‘

‘ 200 mm |

Prob. 3-25

3-26. The plug has a diameter of 30 mm and fits within a
rigid sleeve having an inner diameter of 32 mm. Both the
plug and the sleeve are 50 mm long. Determine the axial
pressure p that must be applied to the top of the plug to
cause it to contact the sides of the sleeve. Also, how far must
the plug be compressed downward in order to do this? The
plug is made from a material for which E =5 MPa, v = 0.45.

Prob. 3-26

3-27. The elastic portion of the stress—strain diagram for
an aluminum alloy is shown in the figure. The specimen
from which it was obtained has an original diameter of
12.7 mm and a gage length of 50.8 mm. When the applied
load on the specimen is 50 kN, the diameter is 12.67494 mm.
Determine Poisson's ratio for the material.

*3-28. The elastic portion of the stress—strain diagram for
an aluminum alloy is shown in the figure. The specimen from
which it was obtained has an original diameter of 12.7 mm
and a gage length of 50.8 mm. If a load of P =60 kN is applied
to the specimen, determine its new diameter and length. Take
r=0.35.

o (MPa)

490

0007 € (mm/mm)

Probs. 3-27/28

3-29. The brake pads for a bicycle tire are made of rubber.
If a frictional force of 50 N is applied to each side of the
tires, determine the average shear strain in the rubber. Each
pad has cross-sectional dimensions of 20 mm and 50 mm.
G,=0.20 MPa.

Prob. 3-29
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3-30. The lap joint is connected together using a 30 mm
diameter bolt. If the bolt is made from a material having a
shear stress—strain diagram that is approximated as shown,
determine the shear strain developed in the shear plane of
the bolt when P = 340 kN.

3-31. The lap joint is connected together using a 30 mm
diameter bolt. If the bolt is made from a material having a
shear stress-strain diagram that is approximated as shown,
determine the permanent shear strain in the shear plane of
the bolt when the applied force P = 680 kN is removed.

P
2
R P
-
L
2
7(MPa)
525
350
v (rad)

0.005 0.05
Probs. 3-30/31

*3-32. A shear spring is made by bonding the rubber
annulus to a rigid fixed ring and a plug. When an axial load
P is placed on the plug, show that the slope at point y in the
rubber is dy/dr = —tan y = —tan(P/(2whGr)). For small
angles we can write dy/dr = —P/(2whGr). Integrate this
expression and evaluate the constant of integration using
the condition that y = 0 at r = r,. From the result compute
the deflection y = 6 of the plug.

Prob. 3-32

3-33. The support consists of three rigid plates, which are
connected together using two symmetrically placed rubber
pads. If a vertical force of 5 Nis applied to plate A, determine
the approximate vertical displacement of this plate due to
shear strains in the rubber. Each pad has cross-sectional
dimensions of 30 mm and 20 mm. G, = 0.20 MPa

SN

Prob. 3-33

3-34. A shear spring is made from two blocks of rubber,
each having a height 4, width b, and thickness a. The blocks
are bonded to three plates as shown. If the plates are rigid
and the shear modulus of the rubber is G, determine the
displacement of plate A when the vertical load P is applied.
Assume that the displacement is small so that
6 =atanvy = ay.

Prob. 3-34
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strain on the horizontal axis.

One of the most important tests for material strength is the tension test. The results, found from
stretching a specimen of known size, are plotted as normal stress on the vertical axis and normal

Many engineering materials exhibit
initial linear elastic behavior, whereby
stress is proportional to strain, defined by
Hooke’s law, 0 = Ee. Here E, called the
modulus of elasticity, is the slope of this
straight line on the stress—strain diagram.

o = Ee

ductile material

When the material is stressed beyond
the yield point, permanent deformation
will occur. In particular, steel has a
region of yielding, whereby the material
will exhibit an increase in strain with no
increase in stress. The region of strain
hardening causes further yielding of the
material with a corresponding increase
in stress. Finally, at the ultimate stress, a
localized region on the specimen will
begin to constrict, forming a neck. It is
after this that the fracture occurs.

proportional limit

fracture
stress

reduction in the cross-sectional area.

elastic |yielding strain necking
region hardening
elastic plastic behavior
Ibehavior
Ductile materials, such as most metals,
exhibit both elastic and plastic behavior. Ly — L
. . e P 1 ion = —— (100%
Wood is moderately ductile. Ductility is ercent elongation = Lo ( o)
usually specified by the percent Ay — A
elongation to failure or by the percent Percent reduction of area = (100% )

0
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Brittle materials exhibit little or no
yielding before failure. Cast iron,
concrete, and glass are typical examples.

The yield point of a material at A can be
increased by strain hardening. This is
accomplished by applying a load that
causes the stress to be greater than the
yield stress, then releasing the load. The
larger stress A" becomes the new yield
point for the material.

o
brittle material
g
elastic plastic
region region

‘)

load
o

E /mload

’
permanent, elastic |
" set " recovery

When a load is applied to a member, the
deformations cause strain energy to be
stored in the material. The strain energy
per unit volume, or strain energy density,
is equivalent to the area under the
stress—strain curve. This area up to the
yield point is called the modulus of
resilience. The entire area under the
stress—strain diagram is called the
modulus of toughness.

a

—u,

Epl

Modulus of resilience u,

— U,

Modulus of toughness u,
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Poisson’s ratio v is a dimensionless
material property that relates the lateral
strain to the longitudinal strain. Its range
of valuesis 0 = v = 0.5.

_ €lat

€long

Tension

Shear stress—strain diagrams can also be
established for a material. Within the
elastic region, 7 = Gy, where G is the
shear modulus, found from the slope of
the line. The value of v can be obtained
from the relationship that exists between
G, E,and v.

2(1 +v)

When materials are in service for long
periods of time, considerations of creep
become important. Creep is the time
rate of deformation, which occurs at
high stress and/or high temperature.
Design requires that the stress in the
material not exceed an allowable stress
which is based on the material’s creep
strength.

Fatigue can occur when the material
undergoes a large number of cycles of
loading. This effect will cause
microscopic cracks to form, leading to a
brittle failure. To prevent fatigue, the
stress in the material must not exceed a
specified endurance or fatigue limit.
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MECHANICAL PROPERTIES OF MATERIALS

R3-1. The elastic portion of the tension stress—strain
diagram for an aluminum alloy is shown in the figure. The
specimen used for the test has a gauge length of 50 mm and
a diameter of 12.5 mm. When the applied load is 45 kN, the
new diameter of the specimen is 12.4780 mm. Compute the
shear modulus G, for the aluminum.

R3-2. The elastic portion of the tension stress—strain
diagram for an aluminum alloy is shown in the figure. The
specimen used for the test has a gauge length of 50 mm and
a diameter of 12.5 mm. If the applied load is 40 kN,
determine the new diameter of the specimen. The shear
modulus is G, = 27 GPa.

-

o (MPa)

-

350 ——

€ (mm/mm)

0.00480

Prob. R3-1/2

R3-3. The rigid beam rests in the horizontal position on
two 2014-T6 aluminum cylinders having the unloaded
lengths shown. If each cylinder has a diameter of 30 mm,
determine the placement x of the applied 80-kN load so
that the beam remains horizontal. What is the new diameter
of cylinder A after the load is applied? v, = 0.35.

80 kN
—

A B

1
220 mm| 2}0 mm
|

I 3m

Prob. R3-3

*R3-4. When the two forces are placed on the beam, the
diameter of the A-36 steel rod BC decreases from 40 mm to
39.99 mm. Determine the magnitude of each force P.

R3-5. If P = 150 kN, determine the elastic elongation of
rod BC and the decrease in its diameter. Rod BC is made
of A-36 streel and has a diameter of 40 mm.

0.75m

Prob. R3-4/5

R3-6. The head H is connected to the cylinder of a
compressor using six steel bolts. If the clamping force in
each bolt is 4 kN, determine the normal strain in the bolts.
Each bolt has a diameter of 5 mm. If oy = 280 MPa and
E,, = 200 GPa, what is the strain in each bolt when the nut
is unscrewed so that the clamping force is released?

Prob. R3-6



R3-7. The stress—strain diagram for polyethylene, which is
used to sheath coaxial cables, is determined from testing a
specimen that has a gauge length of 250 mm. If a load P on
the specimen develops a strain of e = 0.024 mm/mm,
determine the approximate length of the specimen,
measured between the gauge points, when the load is
removed. Assume the specimen recovers elastically.

o (MPa)

35

21 T

14

P

0 € (mm/mm)
0 0.008 0.016 0.024 0.032 0.040 0.048

Prob. R3-7

*R3-8. The solid rod, of radius r, with two rigid caps
attached to its ends is subjected to an axial force P. If the
rod is made from a material having a modulus of elasticity E
and Poisson’s ratio v, determine the change in volume of the
material.
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R3-9. The 8-mm-diameter bolt is made of an aluminum
alloy. It fits through a magnesium sleeve that has an inner
diameter of 12 mm and an outer diameter of 20 mm. If the
original lengths of the bolt and sleeve are 80 mm and
50 mm, respectively, determine the strains in the sleeve and
the bolt if the nut on the bolt is tightened so that the tension
in the bolt is 8 kN. Assume the material at A is rigid.
E, = 70 GPa, E,, = 45 GPa.

Prob. R3-9

R3-10. An acetal polymer block is fixed to the rigid plates
at its top and bottom surfaces. If the top plate displaces
2 mm horizontally when it is subjected to a horizontal force
P =2 kN, determine the shear modulus of the polymer. The
width of the block is 100 mm. Assume that the polymer is
linearly elastic and use small angle analysis.

Prob. R3-8

Prob. R3-10
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The string of drill pipe stacked on this oil rig will be subjected to large axial
deformations when it is placed in the hole.




AXIAL LOA

. CHAPTER OBJECTIVES

m In this chapter we will discuss how to determine the deformation
of an axially loaded member, and we will also develop a method
for finding the support reactions when these reactions cannot be
determined strictly from the equations of equilibrium. An analysis
of the effects of thermal stress, stress concentrations, inelastic
deformations, and residual stress will also be discussed.

4.1 SAINT-VENANT'S PRINCIPLE

In the previous chapters, we have developed the concept of stress as a
means of measuring the force distribution within a body and strain as a
means of measuring a body’s deformation. We have also shown that the
mathematical relationship between stress and strain depends on the type
of material from which the body is made. In particular, if the material
behaves in a linear elastic manner, then Hooke’s law applies, and there is
a proportional relationship between stress and strain.

Using this idea, consider the manner in which a rectangular bar will
deform elastically when the bar is subjected to the force P applied along
its centroidal axis, Fig. 4-1a. The once horizontal and vertical grid lines
drawn on the bar become distorted, and localized deformation occurs at
each end. Throughout the midsection of the bar, the lines remain
horizontal and vertical.

141
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Notice how the lines on this rubber
membrane distort after it is stretched. The
localized distortions at the grips smooth
out as stated by Saint-Venant’s principle.

P
p— Load distorts lines
. oa located near load
a—H1T1T14 a
b—e b b
c c

7

—— Lines located away
from the load and support
remain straight

Load distorts lines
located near support

(a)
Fig. 4-1

If the material remains elastic, then the strains caused by this
deformation are directly related to the stress in the bar through Hooke’s
law,o = Ee. As aresult,a profile of the variation of the stress distribution
acting at sections a—a, b—b, and c—c, will look like that shown in Fig. 4-1b.
By comparison, the stress tends to reach a uniform value at section c—c,
which is sufficiently removed from the end since the localized
deformation caused by P vanishes. The minimum distance from the bar’s
end where this occurs can be determined using a mathematical analysis
based on the theory of elasticity. It has been found that this distance
should at least be equal to the largest dimension of the loaded cross
section. Hence, section c—c should be located at a distance at least equal
to the width (not the thickness) of the bar.*

In the same way, the stress distribution at the support in Fig. 4-1a will
also even out and become uniform over the cross section located the
same distance away from the support.

The fact that the localized stress and deformation behave in this manner
is referred to as Saint-Venant’s principle, since it was first noticed by the
French scientist Barré de Saint-Venant in 1855. Essentially it states that
the stress and strain produced at points in a body sufficiently removed
from the region of external load application will be the same as the stress
and strain produced by any other applied external loading that has the
same statically equivalent resultant and is applied to the body within the
same region. For example, if two symmetrically applied forces P/2 act on
the bar, Fig. 4-1c, the stress distribution at section c—c will be uniform and
therefore equivalent to o,,, = P/A as in Fig. 4-1c.

*When section c—c is so located, the theory of elasticity predicts the maximum stress to
be ooy = 1.02 gy,
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section a—a section b—b section c—c

(b)

Fig. 4-1 (cont.)

4.2 ELASTIC DEFORMATION OF AN
AXIALLY LOADED MEMBER

Using Hooke’s law and the definitions of stress and strain, we will now
develop an equation that can be used to determine the elastic displacement
of a member subjected to axial loads. To generalize the development,
consider the bar shown in Fig. 4-2a, which has a cross-sectional area that
gradually varies along its length L, and is made of a material that has a
variable stiffness or modulus of elasticity. The bar is subjected to
concentrated loads at its ends and a variable external load distributed
along its length. This distributed load could, for example, represent the
weight of the bar if it is in the vertical position, or friction forces acting on
the bar’s surface.

Here we wish to find the relative displacement 6 (delta) of one end of
the bar with respect to the other end as caused by the loading. We will
neglect the localized deformations that occur at points of concentrated
loading and where the cross section suddenly changes. From Saint-
Venant’s principle, these effects occur within small regions of the bar’s
length and will therefore have only a slight effect on the final result. For
the most part, the bar will deform uniformly, so the normal stress will be
uniformly distributed over the cross section.

o=
o=

1

o

i

section ¢—c

(©)

The vertical displacement of the rod at the
top floor B only depends upon the force in
the rod along length AB. However, the
displacement at the bottom floor C depends
upon the force in the rod along its entire
length, ABC.
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Using the method of sections, a differential element (or wafer) of length
dx and cross-sectional area A(x) is isolated from the bar at the arbitrary
position x, where the modulus of elasticity is E(x). The free-body diagram
of this element is shown in Fig. 4-2b. The resultant internal axial force will
be a function of x since the external distributed loading will cause it to
vary along the length of the bar. This load, N(x), will deform the element
into the shape indicated by the dashed outline, and therefore the
displacement of one end of the element with respect to the other end
becomes dé. The stress and strain in the element are therefore

i
N(x) 4—|}{—>N(x)

|
- ds

a1

(®)

Fig. 4-2 (Repeated)

Provided the stress does not exceed the proportional limit, we can apply
Hooke’s law;i.e.,c = E(x)e, and so

N(x) ds

A(x) E(x)(dx>
_ N(x)dx
- AW@E®)

For the entire length L of the bar, we must integrate this expression to
find &. This yields

5= L N(x)dx (4-1)
o AX)E()
Here
6 = displacement of one point on the bar relative to the other

point
L = original length of bar
N (x) = internal axial force at the section, located a distance x from
one end
A(x) = cross-sectional area of the bar expressed as a function of x
E(x) = modulus of elasticity for the material expressed as a function of x

In many cases
the bar will have a constant cross-sectional area A; and the material will
be homogeneous, so E is constant. Furthermore, if a constant external
force is applied at each end, Fig. 4-3a, then the internal force N
throughout the length of the bar is also constant. As a result, Eq. 4-1
when integrated becomes

NL

5=——
AE

(+2)
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(@)
Fig. 4-3

If the bar is subjected to several different axial forces along its length,
or the cross-sectional area or modulus of elasticity changes abruptly
from one region of the bar to the next, as in Fig. 4-3b, then the above
equation can be applied to each segment of the bar where these quantities
remain constant. The displacement of one end of the bar with respect to
the other is then found from the algebraic addition of the relative
displacements of the ends of each segment. For this general case,

=3 == (4-3)

When applying Egs. 4-1 through 4-3, it is best
to use a consistent sign convention for the internal axial force and the
displacement of the bar. To do so, we will consider both the force and
displacement to be positive if they cause tension and elongation, Fig. 4—4;
whereas a negative force and displacement will cause compression and
contraction.

B /VPORTANT POINTS

® Saint-Venant’s principle states that both the localized
deformation and stress which occur within the regions of load
application or at the supports tend to “even out” at a distance
sufficiently removed from these regions.

® The displacement of one end of an axially loaded member
relative to the other end is determined by relating the applied
internal load to the stress using ¢ = N/A and relating the
displacement to the strain using € = d&/dx. Finally these two
equations are combined using Hooke’s law, o = Ee, which
yields Eq. 4-1.

® Since Hooke’s law has been used in the development of the
displacement equation, it is important that no internal load
causes yielding of the material, and that the material behaves
in a linear elastic manner.

— 2 +N

N

+8
+N  _

-

+6

Fig. 4-4
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