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Introduction  The most general state of stress at a
point may be represented by 6
components,

4

Ox,0y,0; normal stresses
Txys Tyzs Tzx  Shearing stresses

(Note : Tyy = Tyxo Tyz = Tzy» Tzx = Tyr)

« Same state of stress is represented by a
different set of components if axes are
rotated.

 The first part of the chapter is concerned
with how the components of stress are
transformed under a rotation of the
coordinate axes. The second part of the
chapter is devoted to a similar analysis
of the transformation of the components
of strain.




* Plane Stress - state of stress In which two

faces of the cubic element are free of

. stress. For the illustrated example, the
state of stress is defined by

Ox: Oy, Txy and o, =7, =7,y =0.

» State of plane stress occurs in a thin plate
subjected to forces acting in the midplane
of the plate.

 State of plane stress also occurs on the
free surface of a structural element or
machine component, i.e., at any point of
the surface not subjected to an external
force.

|



Transformation of
Plane Stress

« Consider the conditions
for equilibrium of a
prismatic element with
faces perpendicular to
the x, y, and x’axes.

y' Y

o, (AA cos )

T,y (AA cos 0)

T (AA sin )~

!
o, (AA sin 0)

Y F,=0=0,AA-0, (AAc0sH)cosO—r,, (AAcosH)sin & —
o, (AAsin@)sin@ -z, (AAsin6)cos o
> F,=0=1,,AA+0, (AAcosd)sind -z, (AAcosO)cos O —
o, (AAsin@)cos 0+, (AAsind)sin b



« The equations may be rewritten to yield

o,+O o,— O _
ax,:( y}{ 5 y]c0529+rxysm26?

2

o,+t0 o,— O _
ay,:[ yj—( y}cosze—rxysm%’
2

2

o,—0O, ) .
Ty = —( . ]Sln 20 +7,,C0S 26
2

The above transformation equations for plane stress can be
represented in graphical form by a plot known as Mohr’s circle.

Equations of Mohr’s Circle The equations of Mohr’s circle can be
derived from the transformation equations for plane stress in Egs.
(1) and (3). The two equations are repeated here, but with a slight

rearrangement as follows



o, +O o,—O _
ax,—( ; yj:( 5 yjc0326’+rxysm26?

o,—0O, | .
Ty = —( . jsm 20 +7,, C0S 26
2

To eliminate the parameter 20, we square both sides of each
equation and then add the two equations as:

{"X’ ‘(GX = ﬂ () = (“x = J +(ry )

Recognize now that this equation represents a circle which can be
written in simpler form, by using the following notation, as

[O-x’ o Gaver ]2 + (Tx’y’ )2 — R2

2
_I_ —
where o, =| 2" | and R=, | 2% +(z'xy)2
2 2




Principal Stresses

Ty’

where

Oave =

ox+0y

(ox _O'ave)z +T)%’y’ = R*

2

 The previous equations are combined to
yield the following parametric
equations for a circle,

"« Principal stresses occur on the principal
planes of stress with zero shearing stresses.

Umin O-X + Gy
0 o O max,min = 5 T (
2T
tan 20, = Xy

Omnin

+ TRy

:

2

Note : defines two angles separated by 90°



xlyl

) Maximum Shearing Stress
l Maximum shearing stress
occurs for
= Ox'" = Oave
7 - | > GX—Gy 2 2
tan 26 __Ox7%
2zyy

Note : defines two angles separated by 90° and

% offset from 6, by 45°




Examp|e For the state of plane stress shown,
determine (a) the principal panes, (b) the
10 MPa

| principal stresses, (c) the maximum shearing

stress and the corresponding normal stress.
40 MPa

‘ SOLUTION:
: ‘5" VP4« Find the element orientation for the
principal stresses from
ZTW
_ o tan 20, =
 Determine the principal stresses from Ox —Oy

2
Omax,min = 5 i\/[ 5 T Tyy

« Calculate the maximum shearing stress with ( 5 -6 T
+7




j: SOLUTION:

-0 « Find the element orientation for the
principal stresses from

50 MPa

22'xy 2(—|— 40)

= tan 20, = _ ~1.333
ox—oy 50-(-10)

20, =53.1°, 233.1°
0, = 26.6°,116.6°

oy =+90MPa Tyy = +40MPa
oy =—10MPa

 Determine the principal stresses from

N 2
B &, =70MPa O mas min = w + (GX_ZJyj + T>2W
=20 +/(30)% + (40)?

\ o..=/0MPa , o. =-30MPa

in —




10 MPa

» Calculate the maximum shearing stress with
—L MP

2
Oy — O 2
Tmax = X 5 y -+ TXy
, = \J(30)2 + (40)?
Tmax = 20 MPa
oy =+50MPa Tyy =+40MPa HS _ g _ 45
oy =—-10MPa O = —18.40, 71.6°
 The corresponding normal stress Is
o' = 20 MPa
- _0x+0y_50—10
O =O0qve = =
= 50 MPa 2 2
L5 o' = 20MPa

o'=20 MPa






£ 728 Mohr’s circles for an element
,triaxial Stress

(Tnmx)_\ = _(L\_ 7 7, 7,

2 (Tnmn)y + 2 (7 SZI’),(:)

Th 3
€ absolute maximum gh

Stresgec i car sir 88 14 . st g i eut ”’ 'h‘_‘
Tesses determined from E i sty I (s mmoacioely A

the difference betwean g qs. (7-52a, b, and c). It is equal to one-half
estof the three princi lnlt o ‘ll‘gchrallcalliy largest and algebraically small

The stresses uclinp , Mr.%scs' : . .
and 7 axes can be Viwub' ;’}l’clcn']cnls orllcnlc‘(l at v:u"uu!s unglc.‘f to th ’f le
oriented by romlion; -;t: 1zed with the aid of Mohr’s CI.rcIes‘. l'nr'tj-l;:l;::ln‘ lj
A in Fig, 7.28 N(;I: [(l)l-" lhq 2 axis, ll?c corrcspu.mlmg circle 18 1a huh
0> &, and bot‘h . L 1at this cnrglc is drawn for the case 1 Whit

) vand o are tensile stresses

In a similar manner, w s ' for elements
otiented by rotatio “le) we can construct circles B u'nd C fr‘)r L t:nll.tj ('f
K el ations about the x and y axes, respectively. The £adli @

ircles represent the maximum shear stresses given by Eqs. (7-524,
b, and ¢), and the absolute maximum shear stress is equal o the radius
of the largest circle. The normal stresses acting on the planes of maxi-
mum shear stresses have magnitudes given by the abscissas of the
centers of the respective circles.

In the preceding discussion of triaxial stress we only considered
stresses acting on planes obtained by rotating about the x, y, and z axes.
Thus, every plane we considered is parallel to one of the axes. For
instance, the inclined plane of Fig. 7-27b is parallel to the z axis, and its
normal is parallel to the xy plane. Of course, we can also cut through
the element in skew directions, so that the resulting inclined planes
are skew to all three coordinate axes. The normal and shear stresses
acting on such planes can be obtained by a more complicated three-
dimensional analysis., However, the normal stresses acting on skew
planes are intermediate in value between the algebraically maximum
and minimum principal stresses, and the shear stresses on those planes
are smaller (in absolute value) than the absolute maximum shear stress
obtained from Egs. (7-52a, b, and ¢).

Hooke's Law for Triaxial Stress

If the material follows Hooke’s law, we can obtain the relationships
| stresses and normal strains by using the same procedure
as for plane stress (see Section 7.5). The strains produccd by the stresses
o.. oy and O acting indepcn.demly. are supcrpnpnsgd to oht'am (!w
rexs’ult;nt strains. Thus, we readily arrive at the following equations for

the strains in triaxial stress:

between the norma

r

&, = -(Ef - -;;‘((r‘. + ;) (7-53a)
T ] ,

g™ (I':t -;'|(¢r_._ + ) (7-53b)

€ =" - ';"‘_((T\ + ay) (7-53¢)



In these equations, the standard sign conventions are used; that is, tensile
stress o and extensional strain € are positive.

The preceding equations can be solved simultaneously for the
stresses in terms of the strains:

E

e Sha e T edls (154
%7+ » - 2v) Ul i ' 2
E S =

= L e y - (ez -+ ex) (7'54b
%7 U+ v -29) Qe : )
L 2 (l S V)fz i V(Ex P Ey): (7'54C)

Sk (1 =y

Equations (7-53) and (7-54) represent Hooke’s law for triaxial stress.

In the special case of biaxial stress (Fig. 7-11b), we can obtain the
equations of Hooke’s law by substituting o, = 0 into the preceding
equations. The resulting equations reduce to Egs. (7-39) and (7-40) of
Section 7.5.

Unit Volume Change

The unit volume change (or dilatation) for an element in triaxial stress is
obtained in the same manner as for plane stress (see Section 7.5). If the
element is subjected to strains €,, €,, and €, we may use Eq. (7-46) for
the unit volume change:

g= e tueptie (7-55)

This equation is valid for any material provided the strains are small.
If Hooke’s law holds for the material, we can substitute for the
strains €,, €,, and €, from Eqs. (7-53a, b, and c) and obtain

=1—21/
E

e (0% oy o) (7-56)

Equations (7-55) and (7-56) give the unit volume change in triax
stress in terms of the strains and stresses, respectively.

Strain-Energy Density

The strain-energy density for an element in triaxial stress is obtained by
the same method used for plane stress. When stresses o, and o, act
alone (biaxial stress), the strain-energy density (from Eq. 7-49 with the
shear term discarded) is

1
U= E (o€ t+ Oy€)

When the element is in triaxial stress and subjected to stresses Oy, Oy
and o, the expression for strain-energy density becomes



y
]
I 0
| _/
i ”
1
004_..- EO —— 0'0
/ /J ————————— x
,/
W

el Ao

7% 7.2 Element in spherical stress

il
=< lo.6 + 0yey+ 0.8) (1-57a)

Substituti A
St\::isr:ltutmg for th.e s_trams from Egs. (7-53a, b, and c), we obtain the
-energy density in terms of the stresses:

u=—= (o4 02+ o) -~ (7-57b
BRIy o) E(maﬁaxaﬁcr,tfz) -57b)

In a simi .
. a similar manner, b_ut using Egs. (7-54a, b, and c), we can express the
rain-energy density in terms of the strains:

E

== o 2 2+ Z
2(1 + »)(1 — 29 [0 B+ Gy T

u

+ 2U(eg, + €€ T EE)] (7-57¢)
When calculating from these expressions, we must be sure to substitute
the stresses and strains with their proper algebraic signs.

Spherical Stress

A special type of triaxial stress, called spherical stress, occurs whenever
all three normal stresses are equal (Fig. 7-29):

o, =0y,= 0,= 00 (7-58)
Under these stress conditions, any plane cut through the element will
be subjected to the same normal stress o and will be free of shear
stress. Thus, we have equal normal stresses in every direction and no
shear stresses anywhere in the material. Every plane is a principal
plane, and the three Mohr’s circles shown in Fig. 7-28 reduce to a

single point. .
strains in spherical stress are als

The normal : . :
tions, provided the material is homogeneous and isotropic. 1f Hooke's

Jaw applies, the normal strains are

o the same in all direc-

0y
& = —EQ(l —2) (1-59)

ained from Eqs. (7-53a, b, and ¢).

are no shear strains, an element in the shape of a cube

changes in size but remains & cube. !n gt‘.neml.‘an)‘l body ‘Tlumweg :)(:
.pherical Stress will maintain 1ts relative pmpqmom_but will expan

e A | nding upon whether ap 18 tensile or compressive.
contract If P u :on for the unit volume change can be obtained ﬁ:om
The eXPrest s from Eq. (7-59). The result 18

Eq. (7-55) by substitut

as obt
Since there

o 3gy 3ol =29 (7-60)
E
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e ading alon
The copper bar in Fig. 10-24 is subjected 10 @ umh‘;/r;:‘ :1”!;“ ’;“ mm%
its edges as shown. If it has a length @ = 3""""?"]", .d. determine its
and thickness ¢ = 20 mm before the load s appiiee,

s At the load.
new length, width, and thickness after application of
Take E, = 120 GPa, v, = 0.34.

_:,{ | | 500 MPa
PRI

-

800 MPa

T f

500 MPa

i .,.I,[,;.l[,.lt._ |

%ig. 10-24

SOLUTION
By inspection, the bar is subjected to a state of plane stress. From the

loading we have
o,=80MPa o,=-500MPa 7,, =0 o, =10

The associated normal strains are determined from the generalized
Hooke’s law, Eq. 10-18; that is,

Oy Vv

€, = ‘E—: - E(a'y + o,)
L BOMPRCST 034 |
120(10°) MPa  120(10°) MPa a + 0) = 0.00808
O'y v
€, = "E = E(O'x + o,)
__SOMPa 034
120(10°) MPa  120(10%) Mpa (800 MPa + 0) = —0.00643
a, v
€= ‘E - E(ax + Uy)
=0~ —-&(800 MPa — 5
120(10*) MPa a = 500 MPa) = —0.000850

The new bar length, width, and thickness are therefore

a’ = 300 mm + 0.00808(300 mm) = 302.4 mm
b' = 50 mm + (~0.00643)(50 mm) = 49,68 mm
" =20mm + (—0.000850)(20 mm) = 1998 mm

{ ;’\'- E




1 the rectangular block shown in Fig. 1025 s subjected to a uniform
essure of p = 0.2 MPa, determine the dilatation

i dt -
{;ﬂgth of each side. Take E = 6 MPa, v = (45 and the change in

Fig. 10-25

SOLUTION

Dilatation. The dilatation can be determined using Eq. 10-23 with
ox = oy = 0z = —0.2 MPa. We have

e Sl

e (o + 0, + 0,)

1 — 2(0.45)

e 13(~02 MPa)]

= —0.01 m*/m> F

Change in Length. The normal strain on each side can be
determined from Hooke’s law, Eq. 10-18; that is,

1
£ = E[(TJr v o, o,)]

=ﬁ}ﬁ)‘a[—0.2 MPa — (0.45)(—0.2 MPa — 0.2 MPa)]| = —0.00333 m/m
Thus, the change in length of each side is
5a = —0.00333(40 mm) = —0.133 mm Ans.
8b = —0.00333(20 mm) = —0.0667 mm Ans.
5¢ = —0.00333(30 mm) = —0.100 mm Ans.

&(;ative signs indicate that each dimension is decreased.




