Applications of Plane Stress
(Pressure Vessels, Beams,

and Combined Loadings)
EHAPTER OVERVIEW

Chaptfn: 8 deals with a number of applications of plane stress, a topiC dis-
Cussed in detail in Sections 7.2 through 7.5 of the previous chapter. Plane
Stress is a common stress condition that exists in all ordinary structures,
including buildings, machines, vehicles, and aircraft. First, thl'n—Wall shell
theory is presented describing the behavior of spherical (Section 8.2) and
cylindrical (Section 8.3) pressure vessels under internal pressure and hav-
ing walls whose thickness ¢ is small compared with radius r of.the.cr 0SS
section (i.e., r/t > 10). We will determine the stresses and strains in the
walls of these structures due to the internal pressures from the compressed
gases or liquids. Only positive internal pressure (not the effects of external
loads, reactions, the weight of the contents, and the weight of the struc-
ture) is considered. Linear-elastic behavior is assumed, and‘ the formulz_’ts
for membrane stresses in spherical tanks and hoop and axial stresses in
cylindrical tanks are only vaiifi in regions of the tank away from stress
concentrations caused by openings and s_upport brackets or legs. Next, tl{e
variation in principal stresses and maximum shpar stresses in beams Is
) . tion 8.4), building upon the discussions of stresses in
investigated (Sec e #

s in Chapter 5. The variation in these stress quantities across the
i be displayed using either stress trajectories or stress contours.
beam can tories give the directions of the principal stresses, while stress
Stress trajec Oect ints of equal principal stress at points throughout the
GOOIHIS colflln stré):ses at points of interest in structures under combined
beam. Fina .y’l shear, torsion, bending, and possibly internal pressure) are
loadings (axial, 8 55 Our objective is to determine the maximum normal
assessed (Section ‘at. various points in these structures. Linear-elastic
and shear streSSCZd so that superposition can be used to combine normal
behavlior ISg SZZ‘;?S due to various loadings, all of which contribute to the
and shear !

state of plane SIress at that point.
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FIG. 8-2 Cross section of spherical
pressure vessel showing inner radius r,
wall thickness #, and internal pressure p

sel and its loading (p;
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becomf;s ;gsultanf of the tensile stresses o in the wall is g b,

hich it acts, or 2"
force equal to the stress o times the area over w s, or
amr,t)
where ¢ is the thickness of the wall and r,, is its mean radius:
!
Im =1+ 5 o

Thus, equilibrium of forces in the horizontal direction (Fig. 8-3b) giveg
SFhoiz =0 0QRar,t) — p(mr?) =0 (¢

from which we obtain the fensile stresses in the wall of the vessel:
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Since our analysis is valid only for thin shells, we can disregard the
small difference between the two radii appearing in Eq. (d) and replace r
by r,, or replace r,, by r. While either choice is satisfactory for this
approximate analysis, it turns out that the stresses are closer to the theo-
retically exact stresses if we use the inner radius r instead of the mean
radius r,,. Therefore, we will adopt the following formula for calculating
the tensile stresses in the wall of a spherical shell:

o=— (8-1

As is evident from the Symmetry of a spherical shell, we obtain the same
equation for the tensile stresses when We cut a plane through the center
of the sphere in any direction whatsoever. Thus, we reach the following
conclusion: The wall of a pressurized Spherical vessel is subjected 1o
uniform tensile stresses o in alj directi

+ten ons. This stress condition is repre-
sented in Fig. 8-3¢ by the small Stress element with stresses ¢ acting in

mutually perpendicular directions,

Stresses that act tangentially to the curved surface of a shell, such as
the stresses o shown in Fig. 8-3c, are known as membrane stresses. The

name arises from the fact that these are the only stresses that exist in
true membranes, such as soap films,



fi6. 8-3 Tensile stresses o in the wall
of a spherical pressure vessel
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FG.8-4 Stresses in a spherical pressure
Vessel at (a) the outer surface and
(b) the inner surface

(b) {c)

Stresses at the OQuter Surface

The outer surface of a spherical pressure vessel is usually free of any
loads. Therefore, the element shown in Fig. 8-3c is in biaxial stress. To
aid in analyzing the stresses acting on this element, we show it again in
Fig. 8-4a, where a set of coordinate axes is oriented parallel to the sides of
the element. The x and y axes are tangential to the surface of the sphere,
and the z axis is perpendicular to the surface. Thus, the normal stresses
o, and o, are the same as the membrane stresses o, and the normal
stress , is zero. No shear stresses act on the sides of this element.

If we analyze the element of Fig. 8-4a by using the transforma-
tion equations for plane stress (see Fig. 7-1 and Eqs. 7-4a and 7-4b of
Section 7.2), we find

o,=0 and 7, =0
as expected. In other words, when we consider elements obtained by
rotating the axes about the z axis, the normal stresses remain constant
and there are no shear stresses. Every plane is a principal plane and
every direction is a principal direction. Thus, the principal stresses for
the element are

pr
O=o==— 03=0

(8-2a,b)
2

The stresses oy and o2 lie in the xy plane and the stress o acts in the 2
direction. h t consider out-
To obtain the maximum shear stresses, we must O N
_plane rotations, that is, rotations about the x z.md y axes (because 1
f’f P hear stresses are Zero). Elements oriented by making 45
m-!)lf'mcg :nboul the x and y axes have maximum shear stresses equal
:::l:.t;zuzm normal stresses equal to /2. Therefore,
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3.8-6 Cylindrical pressure vessels with
sircular cross sections

Bylindrical storage tanks in a petrochemical

53 CYLINDRICAL PRESSURE VESSELS
B -

Cylindrical pressure vessels with a circular cross section (Fig. 8-6)
are found in industrial settings (compressed air tanks and TOCkc{
motors), in homes (fire extinguishers and spray cans), a.nd b e
countryside (propane tanks and grain silos). Pressurized pIpes. such
as water-supply pipes and penstocks, are also classified as cylindrical
pressure vessels. .

We begin our analysis of cylindrical vessels by dete""i"_mg e
normal stresses in a thin-walled circular tank AB subjected to internal
pressure (Fig. 8-7a). A stress element with its faces parallel and perpen-
dicular to the axis of the tank is shown on the wall of the tank. The
normal stresses or; and o, acting on the side faces of this element are
the membrane stresses in the wall. No shear stresses act on these faces
because of the symmetry of the vessel and its loading. Therefore, the
stresses o and o are principal stresses. ]

Because of their directions, the stress o is called the circumferential
stress or the hoop stress, and the stress o, is called the longitudinal
stress or the axial stress. Each of these stresses can be calculated from
equilibrium by using appropriate free-body diagrams.

Circumferential Stress

To determine the circumferential stress o, we make two cuts (mn and
pq) perpendicular to the longitudinal axis and distance b apart (Fig. 8-7a).
Then we make a third cut in a vertical plane through the longitudinal
axis of the tank, resulting in the free body shown in Fig. 8-7b. This
free body consists not only of the half-circular piece of the tank but
also of the fluid contained within the cuts. Acting on the longitudinal
cut (plane mpgn) are the circumferential stresses o and the internal
pressure p.

Stresses and pressures also act on the left-hand and right-hand faces
of the free body. However, these stresses and pressures are not shown in
the figure because they do not enter the equation of equilibrium that we
will use. As in our analysis of a spherical vessel, we will disregard the
weight of the tank and its contents.

The circumferential stresses o acting in the wall of the vessel have
a resultant equal to o(2bt), where ¢ is the thickness of the wall. Also,
the resultant force P, of the internal pressure is equal to 2pbr, where r is
the inner radius of the cylinder. Hence, we have the following equation
of equilibrium:

o (2bt) = 2pbr = 0



FIG. 8-7 Stresses in a circular cylindrical
pressure vessel

Py =2pbr

(b

From this equation we obtain the following formula for the circumferennal

stress in a pressurized cylinder:

r
o= pT~ (8-5)

This stress is uniformly distributed over the thickness of the wall,
provided the thickness is small compared to the radius.

Longitudinal Stress

The longitudinal stress @, is obtained from the equilibrium of a free
body of the part of the vessel to the left of cross section mn (Fig. 8-7¢).
Again, the free body includes not only part of the tank but also its con-
tents. The stresses o, act longitudinally and have a resultant force equal
to o»(27rr1). Note that we are using the inner radius of the shell in place
of the mean radius, as explained in Section 8.2.

’zl"he resultant force P, of the internal pressure is a force equal t©
pmr~. Thus, the equation of equilibrium for the free body is

0'2(271"'1') = p,,,n_l = ()

Solving this equation for e, we obtain the following formula for the
longitudinal stress in a cylindrical pressure vessel:

pr
- J-— 8_0)
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The coping saw has an adjustable blade that is
ughtened with a tension of 40 N. Determine the state of
stress in the frame at points A and B.

R
P Mc 40 4(0.004) |
Y™™ s = 123MP Ans. _
TA= TA T T T(0.008)(0.003) T 1(0.003)(0.008)° e e
- 2(0.004 :

o = ik T ( ) = 62.5 MPa = Ans.

I~ 1(0.003)(0.008) | 2
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- The offset link supports the loading of P = 30 kN.
| Determine its required width w if the allowable normal
| stressisogiow = 73 MPa. The link has a thickness of 40mm..

: & due to axial force:

_ P 3000 750010%)

e . t& 30(103@% A ‘ '

= L0
4500 (10H(005+3)

2z
W

‘Tmax ‘Taikrw =0, + (Tr: _ _|“.

750(10°) 450()(1”)(005 *+ %} i
+ i
HF | . I 1

73 H- “% wF 0.2
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The bar has a diameter of 40 mm. If it is subjected
to aforce of 800 N as shown, determine the stress components
that act at point A and show the results on a volume element
located at this point.

= -}w e -}I(w)(o.oz“) — 0.1256637 (10~%) m*

A=mr=m(002°) = 1250637 (10" ) m?

O =yA = (4(2'02))(”%02)—) = 5.3333 (10;'6)1-;;3
m et

Gl e

e 400
T 1.256637(107%)

+0 = 0318 MPa
92.82 (5.3333)(107°) ,

i L2 GRBICIRNL | g
It 0.1256637 (107 °)(0.04) | s

Ans.

- Ans.

M8 56 A-m
( -veémeaen

 Prasgn A9 T N g




R

1 1
== i = Z(w)(o.oz“) = 0.1256637 (10 %) m*

A =72 = m(0.022) = 1.256637 (10™3) m>

QOp=0 |
. : 138.56 (0.02
e e R oL AR ( ) = -21.7 MPa
A T 1256637(107%)  0.1256637 (1079
TB — O |

'A_ns.

Ans.




The 20-kg drum is suspended from the hook - 50 mm
mounted on the wooden frame. Determine the state of l-_"

stress at point E on the cross section of the frame at / i
section a-a. Indicate the results on an element. T / - mm];l _.,l;mm N. A
csakis

/\, | /-\\ Sectiona - a
N FG : /-\j 05mo0Sm
e B l 1]

. —> A v
' S}lp rt Reactions: Referring to the free-body diagram of member BC

—

shown in Fig. a.
C+SMz=0;  Fsinda5°(1) — 20(9.81)(2) = 0 F = 554.94N
HEF, =0 554.94 cos45° — B, = 0 B, = 3924N
+1SF, =0 554.94sin45° — 20(9.81) - B, =0 B, = 1962N
iy ; . 25 mm
Internal Loadings: Consider the equilibrium of the free - body diagram of -0 e
the right segment shown in Fig. b.
S IF =0 No— 3924 =0 N =3924N- _ | N A




+13F, =0, V -192=0 . v=19%2N
CH3Me=0; 1962(05) - M =0 M = 98.1N-m

Seetlon Properties: The cross -sectional area and the moment of inertia of the cross

- A =005(0.075) = 3.75(107%) m?

1= --(o 05)(0.075%) = 1.7578(107%) m*

Rcfemnglo Fig. &, Qs
Qf = y'A’ = 0.025(0.025)(0 05) = 3 125(10**')

Nm'mul Str:ss: The normal stmss is lhe combination of axial and bending stress. -

’i"hmx.

Fﬂrpmmd y = 0.0375 — 0.025 = 0.0125m.Then

98.1(0.0125
sy e X = 802 kPa Ans.

7E "~ 375(107) 17578(10°) —

 Shear Stress: The shear stress is contributed by transverse shear stress only. Thus. = -

1962[31.25(10°¢)]
— - 698 kla
1?5?8([0 )(0.05) ——

Thi. state of stress at point Eisre pth{.ﬂlLd on the Llum.nt shmm m FE{ fi




B3R =0 _A—mﬁsmsooao L 0N

':: i Muml Loadings: Consider the eqml:bnum nf thc fme body dnagram of the Iowcr
_ cut segment, Fg. b, i |

| .'|i
i ..:,;5 | "'|
LIF =0 1m=s—_v=q -lBﬁJEN

_\..

HIEE =0 - Nio . N-amBN

_(+EM,:-0 1308(1) - M =0

Su:hon Properties: The cross s -sectional area and the nm |
rxmmadal axis u[ the cross section are :

;_g,msmﬂ?s) = 3.525( 10“3)5

"-.;:__. = _113 fﬂ..w:q(tiu_‘b’) ;étﬁbl(lﬂ *)m

'-::5‘_'.:__ Rc&:ﬂmg ft:r ﬁg, = ﬁ? e

“.honnat !:tn:ae; 'I?Ie nurmdl stress 18 ﬂ'N. wmhlmalmn uf iL"Krl:i[ ;md bc:ndmg stress.
'ﬁmk 5-___ HE i I




_ Shear Stress: The shear stress is contributed by transverse shear stress only. Thus,

vo 1308{46.8’75(10“‘)]
A=t — = 31.0kPa Ans.
It 26367(107%)0075) T ——

The state of stress at point A is represented on the element shown in Fig. d.

T

3m
20(9. 3!)/0




