

# Numerical Methods for Engineers

SEVENTH EDITION

**Steven C. Chapra**

Berger Chair in Computing and Engineering  
Tufts University

**Raymond P. Canale**

Professor Emeritus of Civil Engineering  
University of Michigan

## Lecture 7

# Linear Algebraic Equations: Introduction and Cramer's Rule

Prof. Dr. Ibrahim Abu-Alshaikh, JU

# Introduction

- An equation of the form  $ax + by + c = 0$  or equivalently  $ax + by = -c$  is called a linear equation in  $x$  and  $y$  variables.
- $ax + by + cz = d$  is a linear equation in three variables,  $x$ ,  $y$ , and  $z$ .
- Thus, a linear equation in  $n$  variables is
$$a_1x_1 + a_2x_2 + \dots + a_n x_n = b$$
- A solution of such an equation consists of real numbers  $c_1, c_2, c_3, \dots, c_n$ . If you need to work more than one linear equations, a system of linear equations must be solved simultaneously.

Such systems can be either linear or nonlinear. In Part Three, we deal with *linear algebraic equations* that are of the general form

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

. . . .

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

where the  $a$ 's are constant coefficients, the  $b$ 's are constants, and  $n$  is the number of equations. All other systems of equations other than the form written above are nonlinear.

# Linear Algebraic Equations

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n \end{cases}$$

# Nonlinear Equations

$$\begin{cases} a_{11}x_1 + a_{12}x_1x_2 + \cdots + a_{1n}(x_n)^5 = b_1 \\ a_{21}(x_1)^3 + a_{22}e^{x_2} + \cdots + a_{2n}(x_2)^3 / x_n = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n \end{cases}$$

# Review of Matrices

$$[A] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix}_{n \times m}$$

Elements are indicated by  $a_{ij}$

2<sup>nd</sup> row

$m^{\text{th}}$  column

row

column

**Row vector:**

$$[R] = [r_1 \quad r_2 \quad \cdots \quad r_n]_{1 \times n}$$

**Column vector:**

$$[C] = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{bmatrix}_{m \times 1}$$

**Square matrix:**

- $[A]_{n \times m}$  is a square matrix if  $n=m$ .
- A system of  $n$  equations with  $n$  unknowns has a square coefficient matrix.

- **Main (principle) diagonal:**

$[A]_{n \times n}$  consists of elements  $a_{ii}$  ;  $i=1,\dots,n$

- **Symmetric matrix:**

If  $a_{ij} = a_{ji}$   $\rightarrow$   $[A]_{n \times n}$  is a symmetric matrix

- **Diagonal matrix:**

$[A]_{n \times n}$  is diagonal if  $a_{ij} = 0$  for all  $i=1,\dots,n$  ;  
 $j=1,\dots,n$  and  $i \neq j$

- **Identity matrix:**

$[A]_{n \times n}$  is a diagonal with  $a_{ii}=1$   $i=1,\dots,n$  .

Denoted as  $[I]$

- **Upper triangular matrix:**

$[A]_{n \times n}$  is a square matrix with  $a_{ij}=0$   $i=1,\dots,n$  ;  $j=1,\dots,n$  and  $i>j$

- **Lower triangular matrix:**

$[A]_{n \times n}$  is a square matrix with  $a_{ij}=0$   $i=1,\dots,n$  ;  $j=1,\dots,n$  and  $i<j$

- **Inverse of a matrix:**

$[A]^{-1}$  is the inverse of  $[A]_{n \times n}$  if  $[A]^{-1}[A] = [I]$

or  $[A][A]^{-1} = [I]$

- **Transpose of a matrix:**

$[B]$  is the transpose of  $[A]_{n \times n}$  if  $b_{ij}=a_{ji}$  Denoted as  $[A]'$   
or  $[A]^T$

# Special Types of Square Matrices

$$[A] = \begin{bmatrix} 5 & 1 & 2 & 16 \\ 1 & 3 & 7 & 39 \\ 2 & 7 & 9 & 6 \\ 16 & 39 & 6 & 88 \end{bmatrix}$$

Symmetric

$$[D] = \begin{bmatrix} a_{11} & & & \\ & a_{22} & & \\ & & \ddots & \\ & & & a_{nn} \end{bmatrix}$$

Diagonal

$$[I] = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{bmatrix}$$

Identity

$$[A] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ & a_{22} & \cdots & a_{2n} \\ & \ddots & & \vdots \\ & & & a_{nn} \end{bmatrix}$$

Upper Triangular

$$[A] = \begin{bmatrix} a_{11} & & & \\ a_{21} & a_{22} & & \\ \vdots & & \ddots & \\ a_{n1} & \cdots & \cdots & a_{nn} \end{bmatrix}$$

Lower Triangular

# Review of Matrices

- **Matrix Addition or Subtraction**

$$[A]_{n \times m} \pm [B]_{n \times m} = [C]_{n \times m}$$

**Addition or Subtraction of two matrices is valid if and only if both have the same size**  
**The resultant matrix have the size of the original matrices**

Note:  $[A] \pm [B] = [B] \pm [A]$

$$c_{ij} = a_{ij} \pm b_{ij}$$

# Review of Matrices

- **Matrix multiplication:**

$$[A]_{n \times m} \quad [B]_{m \times l} \quad = \quad [C]_{n \times l}$$

Interior dimensions  
are equal;  
multiplication  
is possible

Exterior dimensions define  
the dimensions of the result

Note:  $[A][B] \neq [B][A]$

$$c_{ij} = \sum_{k=1}^r a_{ik} b_{kj}$$

# Review of Matrices

- **Augmented matrix:** is a special way of showing two matrices together.

For example  $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$  augmented with the

column vector  $B = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$  is  $\begin{bmatrix} a_{11} & a_{12} & | & b_1 \\ a_{21} & a_{22} & | & b_2 \end{bmatrix}$

- **Determinant of a matrix:**

A single number. Determinant of  $[A]$  is shown as  $|A|$ .

# Non-computer Methods for Solving Systems of Equations

- For small number of equations ( $n \leq 3$ ) linear equations can be solved readily by simple techniques such as “method of elimination” or “method of substitution”.
- Linear algebra provides the tools to solve such systems of linear equations.
- Nowadays, easy access to computers makes the solution of large sets of linear algebraic equations possible and practical.

# Solving Small Numbers of Equations

- There are many ways to solve a system of linear equations:
  - Graphical method
  - Cramer's rule
  - Method of elimination
  - Computer methods

For  $n \leq 3$

# Graphical Method

- For two equations:

$$a_{11}x_1 + a_{12}x_2 = b_1$$

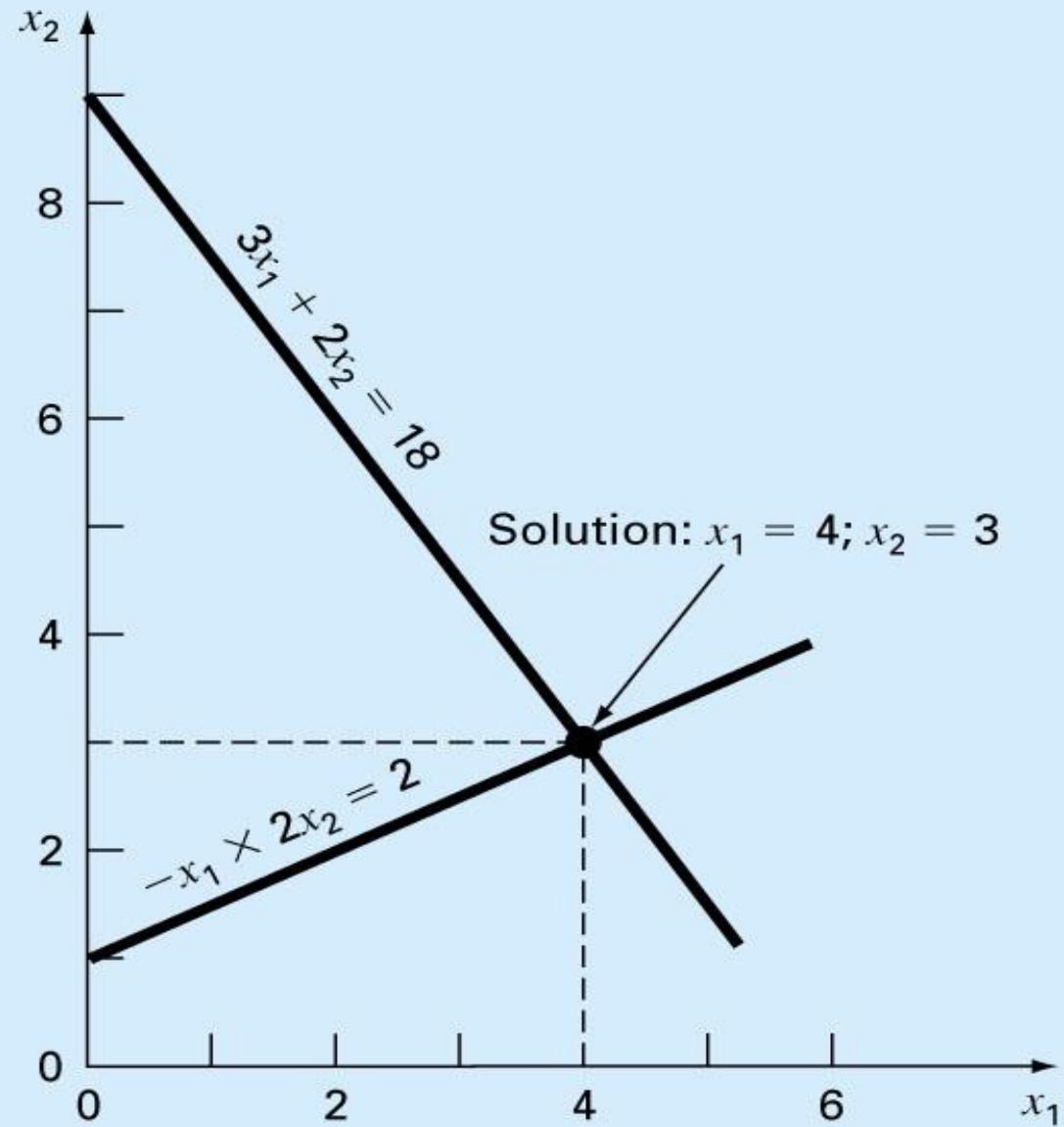
$$a_{21}x_1 + a_{22}x_2 = b_2$$

- Solve both equations for  $x_2$ :

$$x_2 = -\left(\frac{a_{11}}{a_{12}}\right)x_1 + \frac{b_1}{a_{12}} \quad \Rightarrow \quad x_2 = (\text{slope})x_1 + \text{intercept}$$

$$x_2 = -\left(\frac{a_{21}}{a_{22}}\right)x_1 + \frac{b_2}{a_{22}}$$

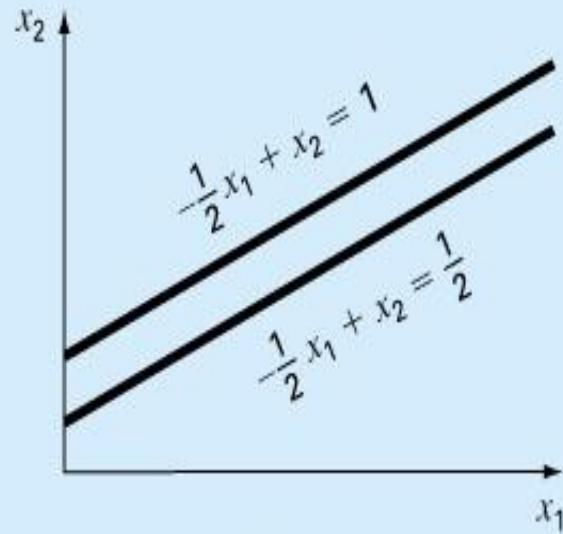
Plot  $x_2$  vs.  $x_1$  on rectilinear paper, the intersection of the lines present the solution.



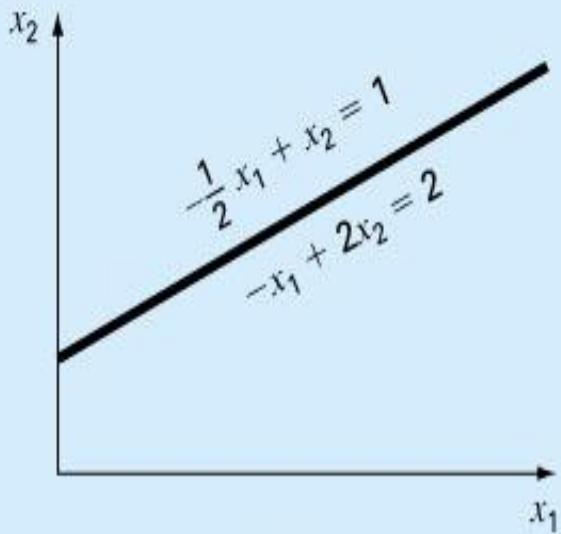
# Graphical Method

- Or equate and solve for  $x_1$

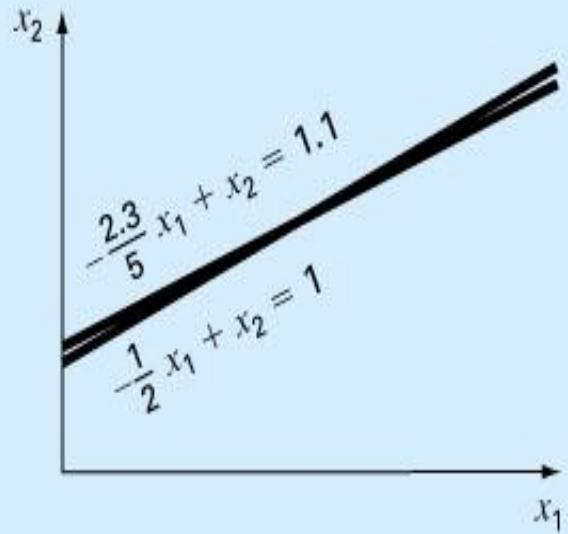
$$\begin{aligned}x_2 &= -\left(\frac{a_{11}}{a_{12}}\right)x_1 + \frac{b_1}{a_{12}} = -\left(\frac{a_{21}}{a_{22}}\right)x_1 + \frac{b_2}{a_{22}} \\ \Rightarrow &\left(\frac{a_{21}}{a_{22}} - \frac{a_{11}}{a_{12}}\right)x_1 + \frac{b_1}{a_{12}} - \frac{b_2}{a_{22}} = 0 \\ \Rightarrow x_1 &= -\frac{\left(\frac{b_1}{a_{12}} - \frac{b_2}{a_{22}}\right)}{\left(\frac{a_{21}}{a_{22}} - \frac{a_{11}}{a_{12}}\right)} = \frac{\left(\frac{b_2}{a_{22}} - \frac{b_1}{a_{12}}\right)}{\left(\frac{a_{21}}{a_{22}} - \frac{a_{11}}{a_{12}}\right)}\end{aligned}$$



(a)



(b)



(c)

No solution

Infinite solutions

Ill-conditioned  
(Slopes are too close)

# Determinants and Cramer's Rule

- Determinant can be illustrated for a set of three equations:

$$Ax = b$$

- Where A is the coefficient matrix:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

- Assuming all matrices are square matrices, there is a number associated with each square matrix  $A$  called the determinant,  $D$ , of  $A$ . ( $D=\det(A)$ ). If  $[A]$  is order 1, then  $[A]$  has one element:

$$A = [a_{11}]$$

$$D = a_{11}$$

- For a square matrix of order 2,  $A =$

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

the determinant is  $D = a_{11} a_{22} - a_{21} a_{12}$

- For a square matrix of order 3, the *minor* of an element  $a_{ij}$  is the determinant of the matrix of order 2 by deleting row  $i$  and column  $j$  of A.

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$D_{11} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} = a_{22} a_{33} - a_{32} a_{23}$$

$$D_{12} = \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} = a_{21} a_{33} - a_{31} a_{23}$$

$$D_{13} = \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} = a_{21} a_{32} - a_{31} a_{22}$$

$$D = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

- *Cramer's rule* expresses the solution of a systems of linear equations in terms of ratios of determinants of the array of coefficients of the equations. For example,  $x_1$  would be computed as:

$$x_1 = \frac{D_1}{D}, \quad \text{where} \quad D_1 = \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix}$$

- $x_2$  would be computed as:

$$x_2 = \frac{D_2}{D}, \quad \text{Where } D_2 = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix}$$

- $x_3$  would be computed as:

$$x_3 = \frac{D_3}{D}, \quad \text{Where } D_3 = \begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{vmatrix}$$

- In general for n by n system; *Cramer's rule* expresses the solution of a systems of linear equations in terms of ratios of determinants of the array of coefficients of the equations.

$$x_j = \frac{D_j}{D}, \quad \text{Where } j = 1, \dots, n$$

$D_j$  is the determinant of the coefficient matrix after replacing the jth column by the constant vector **b**

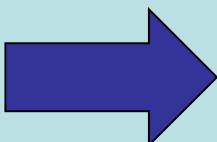
# Example 3- Cramer's Rule 3x3

- Solve the system:

$$x+3y-z=1$$

$$-2x-6y+z=-3$$

$$3x+5y-2z=4$$



Let's  
solve  
for z

$$z = \frac{\begin{vmatrix} 1 & 3 & 1 \\ -2 & -6 & -3 \\ 3 & 5 & 4 \end{vmatrix}}{\begin{vmatrix} 1 & 3 & -1 \\ -2 & -6 & 1 \\ 3 & 5 & -2 \end{vmatrix}} = \frac{-4}{-4} = 1$$

The answer is: **(-2,0,1)!!!**

By similar means Find x and y

$$z=1$$